1
|
Tresbach RH, Sperb-Ludwig F, Ligabue-Braun R, Bitencourt FHD, Tonon T, Souza CFMD, Poswar FDO, Leite MEDQ, Amorim T, Porta G, Seda Neto J, Miura IK, Steiner CE, Martins AM, Pessoa ALS, Ribeiro EM, Schwartz IVD. Maple syrup urine disease diagnosis in Brazilian patients by massive parallel sequencing. Mol Genet Metab 2024; 143:108569. [PMID: 39270351 DOI: 10.1016/j.ymgme.2024.108569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 08/26/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024]
Abstract
Biallelic pathogenic variants cause maple syrup urine disease (MSUD) in one of the branched-chain α-keto acid dehydrogenase (BCKDH) complex genes (BCKDHA, BCKDHB, DBT, DLD, and PPM1K) leading to the accumulation of leucine, isoleucine, and valine. This study aimed to perform a molecular diagnosis of Brazilian patients with MSUD using gene panels and massive parallel sequencing. Eighteen Brazilian patients with a biochemical diagnosis of MSUD were analyzed by massive parallel sequencing in the Ion PGM Torrent Server using a gene panel with the BCKDHA, BCKDHB, and DBT genes. The American College of Medical Genetics and Genomics guidelines were used to determine variant pathogenicity. Thirteen patients had both variants found by massive parallel sequencing, whereas 3 patients had only one variant found. In 2 patients, the variants were not found by this analysis. These 5 patients required additional Sanger sequencing to confirm their genotype. Twenty-five pathogenic variants were identified in the 3 MSUD-related genes (BCKDHA, BCKDHB, and DBT). Most variants were present in the BCKDHB gene, and no common variants were found. Nine novel variants were observed: c.922 A > G, c.964C > A, and c.1237 T > C in the BCKDHA gene; and c.80_90dup, c.384delA, c.478 A > T, c.528C > G, c.977 T > C, and c.1039-2 A > G in the BCKDHB gene. All novel variants were classified as pathogenic. Molecular modeling of the novel variants indicated that the binding of monomers was affected in the BCKDH complex tetramer, which could lead to a change in the stability and activity of the enzyme. Massive parallel sequencing with targeted gene panels seems to be a cost-effective method that can provide a molecular diagnosis of MSUD.
Collapse
Affiliation(s)
- Rafael Hencke Tresbach
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Fernanda Sperb-Ludwig
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rodrigo Ligabue-Braun
- Graduate Program in Biological Sciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil; Department of Pharmacosciences, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Fernanda Hendges de Bitencourt
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Tássia Tonon
- Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Carolina Fischinger Moura de Souza
- Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Fabiano de Oliveira Poswar
- Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Maria Efigênia de Queiroz Leite
- Newborn Screening Reference Center - Association of Parents and Friends of People with Disabilities (APAE), Salvador, BA, Brazil
| | - Tatiana Amorim
- Newborn Screening Reference Center - Association of Parents and Friends of People with Disabilities (APAE), Salvador, BA, Brazil
| | - Gilda Porta
- Pedro de Alcântara Children's Institute - Hospital das Clínicas, Medical School, Universidade de São Paulo (USP), São Paulo, SP, Brazil
| | - João Seda Neto
- Department of Hepatology and Liver Transplantation, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Irene Kazumi Miura
- Department of Hepatology and Liver Transplantation, Hospital Sírio-Libanês, São Paulo, SP, Brazil
| | - Carlos Eduardo Steiner
- Department of Translational Medicine, School of Medical Sciences, Universidade Estadual de Campinas (Unicamp), Campinas, SP, Brazil
| | - Ana Maria Martins
- Reference Center for Inborn Errors of Metabolism, Universidade Federal de São Paulo (Unifesp), São Paulo, SP, Brazil
| | - André Luiz Santos Pessoa
- Hospital Infantil Albert Sabin, Fortaleza, CE, Brazil; Department of Pediatrics, Universidade Estadual do Ceará (UECE), Fortaleza, CE, Brazil
| | | | - Ida Vanessa Doederlein Schwartz
- BRAIN Laboratory (Basic Research and Advanced Investigations in Neurosciences), Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Graduate Program in Genetics and Molecular Biology, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Graduate Program in Medicine: Medical Sciences, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Clinical Research Center, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Medical Genetics Service, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Genetics, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; InRaras, National Institute of Rare Diseases, Brazil
| |
Collapse
|
2
|
Schweickart A, Batra R, Neth BJ, Martino C, Shenhav L, Zhang AR, Shi P, Karu N, Huynh K, Meikle PJ, Schimmel L, Dilmore AH, Blennow K, Zetterberg H, Blach C, Dorrestein PC, Knight R, Craft S, Kaddurah-Daouk R, Krumsiek J. Serum and CSF metabolomics analysis shows Mediterranean Ketogenic Diet mitigates risk factors of Alzheimer's disease. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:15. [PMID: 38962750 PMCID: PMC11216994 DOI: 10.1038/s44324-024-00016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean Ketogenic Diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.
Collapse
Affiliation(s)
- Annalise Schweickart
- Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
| | - Bryan J. Neth
- Department of Neurology, Mayo Clinic, Rochester, MN USA
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA USA
| | - Liat Shenhav
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - Anru R. Zhang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC USA
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC USA
| | - Naama Karu
- Tasmanian Independent Metabolomics and Analytical Chemistry Solutions (TIMACS), Hobart, TAS Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC Australia
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC USA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA USA
| | - Alzheimer’s Gut Microbiome Project Consortium
- Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
- Department of Neurology, Mayo Clinic, Rochester, MN USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC USA
- Tasmanian Independent Metabolomics and Analytical Chemistry Solutions (TIMACS), Hobart, TAS Australia
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC Australia
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Duke Molecular Physiology Institute, Duke University, Durham, NC USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA USA
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC USA
- Department of Medicine, Duke University, Durham, NC USA
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC USA
- Department of Medicine, Duke University, Durham, NC USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
| |
Collapse
|
3
|
Schweickart A, Batra R, Neth BJ, Martino C, Shenhav L, Zhang AR, Shi P, Karu N, Huynh K, Meikle PJ, Schimmel L, Dilmore AH, Blennow K, Zetterberg H, Blach C, Dorrestein PC, Knight R, Craft S, Kaddurah-Daouk R, Krumsiek J. A Modified Mediterranean Ketogenic Diet mitigates modifiable risk factors of Alzheimer's Disease: a serum and CSF-based metabolic analysis. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.11.27.23298990. [PMID: 38076824 PMCID: PMC10705656 DOI: 10.1101/2023.11.27.23298990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean-ketogenic diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.
Collapse
Affiliation(s)
- Annalise Schweickart
- Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY, USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY 10021, USA
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY 10021, USA
| | | | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA
| | - Liat Shenhav
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY, USA
| | - Anru R. Zhang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC, USA
| | - Naama Karu
- Tasmanian Independent Metabolomics and Analytical Chemistry Solutions (TIMACS), Hobart, 7008 Tasmania, Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC, Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC, Australia
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA
| | - Pieter C Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA
| | | | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC, USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC, USA
- Department of Medicine, Duke University, Durham, NC, USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY 10021, USA
| |
Collapse
|
4
|
Yan LJ, Wang Y. Roles of Dihydrolipoamide Dehydrogenase in Health and Disease. Antioxid Redox Signal 2023; 39:794-806. [PMID: 37276180 PMCID: PMC10615065 DOI: 10.1089/ars.2022.0181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 05/22/2023] [Accepted: 05/28/2023] [Indexed: 06/07/2023]
Abstract
Significance: Dihydrolipoamide dehydrogenase (DLDH) is a flavin-dependent disulfide oxidoreductase. The active form of DLDH is a stable homodimer, and its deficiencies have been linked to numerous metabolic disorders. A better understanding of redox and nonredox features of DLDH may reveal druggable targets for disease interventions or preventions. Recent Advances: In this article, the authors review the different roles of DLDH in selected pathological conditions, including its deficiency in humans, its role in stroke and neuroprotection, skin photoaging, Alzheimer's disease, and DLDH as a nondehydrogenating protein, and construction of genetically modified DLDH animal models for further studying the role of DLDH in specific pathological conditions. DLDH is also vulnerable to oxidative modifications in pathological conditions. Critical Issues: Novel animal models need to be constructed using gene knockdown techniques to investigate the redox- and nonredox roles of DLDH in related metabolic diseases. Specific small-molecule DLDH inhibitors need to be discovered. The relationship between modifications of specific amino acid residues in DLDH and given pathological conditions is an interesting area that remains to be comprehensively evaluated. Future Directions: Cell-specific or tissue-specific knockdown of DLDH creating specific pathological conditions will provide more insights into the mechanisms, whereby DLDH may have therapeutic values under a variety of pathological conditions. Antioxid. Redox Signal. 39, 794-806.
Collapse
Affiliation(s)
- Liang-Jun Yan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, USA
| | - Yucheng Wang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| |
Collapse
|
5
|
Duarte MB, Medeiros BZ, da Silva Lemos I, da Silva GL, Alano CG, Dondossola ER, Torres CA, Effting PS, Rico EP, Streck EL. Melatonin improves behavioral parameters and oxidative stress in zebrafish submitted to a leucine-induced MSUD protocol. Metab Brain Dis 2023; 38:2105-2114. [PMID: 37099078 DOI: 10.1007/s11011-023-01220-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 04/19/2023] [Indexed: 04/27/2023]
Abstract
Maple syrup urine disease (MSUD) is an inherited metabolic disorder caused by a deficiency in branched-chain alpha-ketoacid dehydrogenase complex (BCKAC). The treatment is a standard therapy based on a protein-restricted diet with low branched-chain amino acids (BCAA) content to reduce plasma levels and, consequently, the effects of accumulating their metabolites, mainly in the central nervous system. Although the benefits of dietary therapy for MSUD are undeniable, natural protein restriction may increase the risk of nutritional deficiencies, resulting in a low total antioxidant status that can predispose and contribute to oxidative stress. As MSUD is related to redox and energy imbalance, melatonin can be an important adjuvant treatment. Melatonin directly scavenges the hydroxy radical, peroxyl radical, nitrite anion, and singlet oxygen and indirectly induces antioxidant enzyme production. Therefore, this study assesses the role of melatonin treatment on oxidative stress in brain tissue and behavior parameters of zebrafish (Danio rerio) exposed to two concentrations of leucine-induced MSUD: leucine 2 mM and 5mM; and treated with 100 nM of melatonin. Oxidative stress was assessed through oxidative damage (TBARS, DCF, and sulfhydryl content) and antioxidant enzyme activity (SOD and CAT). Melatonin treatment improved redox imbalance with reduced TBARS levels, increased SOD activity, and normalized CAT activity to baseline. Behavior was analyzed with novel object recognition test. Animals exposed to leucine improved object recognition due to melatonin treatment. With the above, we can suggest that melatonin supplementation can protect neurologic oxidative stress, protecting leucine-induced behavior alterations such as memory impairment.
Collapse
Affiliation(s)
- Mariane Bernardo Duarte
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Bianca Zampiroli Medeiros
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Isabela da Silva Lemos
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Guilherme Lodetti da Silva
- Laboratório de Psiquiatria Translacional, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Carolina Giassi Alano
- Laboratório de Psiquiatria Translacional, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Eduardo Ronconi Dondossola
- Laboratório de Psiquiatria Translacional, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Carolina Antunes Torres
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Pauline Souza Effting
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Eduardo Pacheco Rico
- Laboratório de Psiquiatria Translacional, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Emilio Luiz Streck
- Laboratório de Doenças Neurometabólicas, Programa de Pós-graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil.
| |
Collapse
|
6
|
Nishi K, Yoshii A, Abell L, Zhou B, Frausto R, Ritterhoff J, McMillen TS, Sweet I, Wang Y, Gao C, Tian R. Branched-chain keto acids inhibit mitochondrial pyruvate carrier and suppress gluconeogenesis in hepatocytes. Cell Rep 2023; 42:112641. [PMID: 37310861 PMCID: PMC10592489 DOI: 10.1016/j.celrep.2023.112641] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/06/2023] [Accepted: 05/29/2023] [Indexed: 06/15/2023] Open
Abstract
Branched-chain amino acid (BCAA) metabolism is linked to glucose homeostasis, but the underlying signaling mechanisms are unclear. We find that gluconeogenesis is reduced in mice deficient of Ppm1k, a positive regulator of BCAA catabolism, which protects against obesity-induced glucose intolerance. Accumulation of branched-chain keto acids (BCKAs) inhibits glucose production in hepatocytes. BCKAs suppress liver mitochondrial pyruvate carrier (MPC) activity and pyruvate-supported respiration. Pyruvate-supported gluconeogenesis is selectively suppressed in Ppm1k-deficient mice and can be restored with pharmacological activation of BCKA catabolism by BT2. Finally, hepatocytes lack branched-chain aminotransferase that alleviates BCKA accumulation via reversible conversion between BCAAs and BCKAs. This renders liver MPC most susceptible to circulating BCKA levels hence a sensor of BCAA catabolism.
Collapse
Affiliation(s)
- Kiyoto Nishi
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA; Department of Pharmacology, Shiga University of Medical Science, Otsu, Shiga 520-2182, Japan
| | - Akira Yoshii
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Lauren Abell
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Bo Zhou
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Ricardo Frausto
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Julia Ritterhoff
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Timothy S McMillen
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA
| | - Ian Sweet
- University of Washington Medicine Diabetes Institute, University of Washington, 750 Republican Street, Seattle, WA 98109, USA
| | - Yibin Wang
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Signature Program in Cardiovascular and Metabolic Diseases, Duke-NUS School of Medicine, Singapore, Singapore
| | - Chen Gao
- Department of Anesthesiology, Cardiovascular Research Laboratories, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Pharmacology and Systems Physiology, University of Cincinnati, College of Medicine, Cincinnati, OH 45267-0575, USA.
| | - Rong Tian
- Mitochondria and Metabolism Center, Department of Anesthesiology and Pain Medicine, University of Washington, 850 Republican Street, Seattle, WA 98109, USA.
| |
Collapse
|
7
|
Fermo KT, da Silva Lemos I, Farias HR, Rosso MP, Effting PS, Leipnitz G, Streck EL. Branched-chain amino acids (BCAA) administration increases autophagy and the autophagic pathway in brain tissue of rats submitted to a Maple Syrup Urine Disease (MSUD) protocol. Metab Brain Dis 2023; 38:287-293. [PMID: 36305998 DOI: 10.1007/s11011-022-01109-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023]
Abstract
Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism (EIM) biochemically characterized by the tissue accumulation of branched-chain amino acids (BCAA) and their branched-chain alpha-keto acids. The mechanisms by which BCAA and their branched-chain alpha-keto acids lead to the neurological damage observed in MSUD are poorly understood. Mounting evidence has demonstrated that BCAA induce the overproduction of reactive oxygen species, which may modulate several important signaling pathways necessary for cellular homeostasis maintenance, such as autophagy. Taking this into account, we evaluated the effects of BCAA on the autophagic pathway in brain structures of rats submitted to the administration of these amino acids (animal model of MSUD). Our findings showed that BCAA significantly increased the levels of Beclin-1, ATG7, and ATG5 in the cerebral cortex of rats. In addition, BCAA augmented ATG12 levels in the striatum and ATG5 and LC3 I-II in the hippocampus. Therefore, our work demonstrates that the administration of BCAA increases autophagy and autophagic cell death, possibly mediated by the elevated levels of reactive species generated by BCAA.
Collapse
Affiliation(s)
- Karoline Teixeira Fermo
- Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Isabela da Silva Lemos
- Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Hemelin Resende Farias
- Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Marina Peyrot Rosso
- Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Pauline Souza Effting
- Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil
| | - Guilhian Leipnitz
- Departamento de Bioquímica, Universidade Federal Do Rio Grande Sul, Porto Alegre, RS, 90035-003, Brasil
| | - Emílio Luiz Streck
- Laboratório de Doenças Neurometabólicas, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Do Extremo Sul Catarinense, Criciúma, SC, 88806-000, Brasil.
| |
Collapse
|
8
|
A Gain-of-Function Mutation on BCKDK Gene and Its Possible Pathogenic Role in Branched-Chain Amino Acid Metabolism. Genes (Basel) 2022; 13:genes13020233. [PMID: 35205278 PMCID: PMC8872256 DOI: 10.3390/genes13020233] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/17/2022] [Accepted: 01/23/2022] [Indexed: 02/06/2023] Open
Abstract
BCKDK is an important key regulator of branched-chain ketoacid dehydrogenase complex activity by phosphorylating and so inactivating branched-chain ketoacid dehydrogenases, the rate-limiting enzyme of the branched-chain amino acid metabolism. We identified, by whole exome-sequencing analysis, the p.His162Gln variant of the BCKDK gene in a neonate, picked up by newborn screening, with a biochemical phenotype of a mild form of maple syrup urine disease (MSUD). The same biochemical and genetic picture was present in the father. Computational analysis of the mutation was performed to better understand its role. Extensive atomistic molecular dynamics simulations showed that the described mutation leads to a conformational change of the BCKDK protein, which reduces the effect of inhibitory binding bound to the protein itself, resulting in its increased activity with subsequent inactivation of BCKDC and increased plasmatic branched-chain amino acid levels. Our study describes the first evidence of the involvement of the BCKDK gene in a mild form of MSUD. Although further data are needed to elucidate the clinical relevance of the phenotype caused by this variant, awareness of this regulatory activation of BCKDK is very important, especially in newborn screening data interpretation.
Collapse
|
9
|
Mann G, Mora S, Madu G, Adegoke OAJ. Branched-chain Amino Acids: Catabolism in Skeletal Muscle and Implications for Muscle and Whole-body Metabolism. Front Physiol 2021; 12:702826. [PMID: 34354601 PMCID: PMC8329528 DOI: 10.3389/fphys.2021.702826] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 06/24/2021] [Indexed: 12/20/2022] Open
Abstract
Branched-chain amino acids (BCAAs) are critical for skeletal muscle and whole-body anabolism and energy homeostasis. They also serve as signaling molecules, for example, being able to activate mammalian/mechanistic target of rapamycin complex 1 (mTORC1). This has implication for macronutrient metabolism. However, elevated circulating levels of BCAAs and of their ketoacids as well as impaired catabolism of these amino acids (AAs) are implicated in the development of insulin resistance and its sequelae, including type 2 diabetes, cardiovascular disease, and of some cancers, although other studies indicate supplements of these AAs may help in the management of some chronic diseases. Here, we first reviewed the catabolism of these AAs especially in skeletal muscle as this tissue contributes the most to whole body disposal of the BCAA. We then reviewed emerging mechanisms of control of enzymes involved in regulating BCAA catabolism. Such mechanisms include regulation of their abundance by microRNA and by post translational modifications such as phosphorylation, acetylation, and ubiquitination. We also reviewed implications of impaired metabolism of BCAA for muscle and whole-body metabolism. We comment on outstanding questions in the regulation of catabolism of these AAs, including regulation of the abundance and post-transcriptional/post-translational modification of enzymes that regulate BCAA catabolism, as well the impact of circadian rhythm, age and mTORC1 on these enzymes. Answers to such questions may facilitate emergence of treatment/management options that can help patients suffering from chronic diseases linked to impaired metabolism of the BCAAs.
Collapse
Affiliation(s)
| | | | | | - Olasunkanmi A. J. Adegoke
- Muscle Health Research Centre, School of Kinesiology and Health Science, York University, Toronto, ON, Canada
| |
Collapse
|
10
|
O'Reilly D, Crushell E, Hughes J, Ryan S, Rogers Y, Borovickova I, Mayne P, Riordan M, Awan A, Carson K, Hunter K, Lynch B, Shahwan A, Rüfenacht V, Häberle J, Treacy EP, Monavari AA, Knerr I. Maple syrup urine disease: Clinical outcomes, metabolic control, and genotypes in a screened population after four decades of newborn bloodspot screening in the Republic of Ireland. J Inherit Metab Dis 2021; 44:639-655. [PMID: 33300147 DOI: 10.1002/jimd.12337] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/05/2020] [Accepted: 12/07/2020] [Indexed: 12/27/2022]
Abstract
Since 1972, 18 patients (10 females/8 males) have been detected by newborn bloodspot screening (NBS) with neonatal-onset maple syrup urine disease (MSUD) in Ireland. Patients were stratified into three clusters according to clinical outcome at the time of data collection, including developmental, clinical, and IQ data. A fourth cluster comprised of two early childhood deaths; a third patient died as an adult. We present neuroimaging and electroencephalography together with clinical and biochemical data. Incidence of MSUD (1972-2018) was 1 in 147 975. Overall good clinical outcomes were achieved with 15/18 patients alive and with essentially normal functioning (with only the lowest performing cluster lying beyond a single SD on their full scale intelligence quotient). Molecular genetic analysis revealed genotypes hitherto not reported, including a possible digenic inheritance state for the BCKDHA and DBT genes in one family. Treatment has been based on early implementation of emergency treatment, diet, close monitoring, and even dialysis in the setting of acute metabolic decompensation. A plasma leucine ≥400 μmol/L (outside therapeutic range) was more frequently observed in infancy or during adolescence, possibly due to infections, hormonal changes, or noncompliance. Children require careful management during metabolic decompensations in early childhood, and this represented a key risk period in our cohort. A high level of metabolic control can be achieved through diet with early implementation of a "sick day" regime and, in some cases, dialysis as a rescue therapy. The Irish cohort, despite largely classical phenotypes, achieved good outcomes in the NBS era, underlining the importance of early diagnosis and skilled multidisciplinary team management.
Collapse
Affiliation(s)
- Daniel O'Reilly
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Ellen Crushell
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Joanne Hughes
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Stephanie Ryan
- Department of Paediatric Radiology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Yvonne Rogers
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Ingrid Borovickova
- Metabolic Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
- National Newborn Screening Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Philip Mayne
- Metabolic Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
- National Newborn Screening Laboratory, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Michael Riordan
- Department of Nephrology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Atif Awan
- Department of Nephrology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Kevin Carson
- Paediatric Intensive Care Unit, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Kim Hunter
- Paediatric Intensive Care Unit, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Bryan Lynch
- Department of Neurology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Amre Shahwan
- Department of Neurology, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Véronique Rüfenacht
- Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Johannes Häberle
- Division of Metabolism and Children's Research Centre, University Children's Hospital, Zurich, Switzerland
| | - Eileen P Treacy
- Adult Metabolic Services/National Centre for Inherited Metabolic Disorders, Mater Misericordiae University Hospital, Dublin, Ireland
| | - Ahmad A Monavari
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland at Temple Street, Dublin, Ireland
| | - Ina Knerr
- National Centre for Inherited Metabolic Disorders, Children's Health Ireland at Temple Street, Dublin, Ireland
| |
Collapse
|
11
|
Fuenzalida K, Valiente A, Faundez A, Guerrero P, Soto V, Leal-Witt M, Cabello J, Cornejo V. Quantitative Determination of Branched-Chain Amino Acids in Dried Blood Spot Samples by LC-MSMS and its Application in Diagnosis and Follow-Up of Chilean Patients with Maple Syrup Urine Disease. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2021. [DOI: 10.1590/2326-4594-jiems-2021-0005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
12
|
Amari S, Shahrook S, Namba F, Ota E, Mori R. Branched-chain amino acid supplementation for improving growth and development in term and preterm neonates. Cochrane Database Syst Rev 2020; 10:CD012273. [PMID: 33006765 PMCID: PMC8078205 DOI: 10.1002/14651858.cd012273.pub2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND Branched-chain amino acids (BCAAs) play a vital role in neonatal nutrition. Optimal BCAA supplementation might improve neonatal nutrient storage, leading to better physical and neurological development and other outcomes. OBJECTIVES To determine the effect of BCAA supplementation on physical growth and neurological development in term and preterm neonates. We planned to make the following comparisons: parenteral nutrition with and without BCAA supplementation; enteral BCAA supplementation versus no supplementation; and any type of supplementation including enteral, parenteral and both ways versus no supplementation. To investigate the supplementation effectiveness for different dosages assessed in the eligible trials. SEARCH METHODS We conducted comprehensive searches using Cochrane Neonatal's standard search strategies: Cochrane Central Register of Controlled Trials (CENTRAL 2016, Issue 6), MEDLINE, Embase and CINAHL (up to July 2016). We updated the search with CENTRAL (2019, Issue 8), MEDLINE, Embase and CINAHL (up to August 2019). We also searched clinical trials registries and reference lists of retrieved articles. SELECTION CRITERIA We planned to include individual and cluster-randomised and quasi-randomised controlled trials comparing BCAA supplementation versus placebo or no supplementation in term and preterm neonates. We excluded trials presented only as abstracts and cross-over trials. DATA COLLECTION AND ANALYSIS Two review authors independently assessed the eligibility of all potential studies identified from the search strategy. We planned to extract data using a pilot-tested standard data extraction form and assess risk of bias of the included studies following the methods described in the Cochrane Handbook for Systematic Reviews of Interventions. We planned to analyse treatment effects and report their effect estimates as per dichotomous or continuous data with 95% confidence intervals. We planned to conduct subgroup analysis to investigate heterogeneity, and perform sensitivity analysis where possible. We planned to use fixed-effect meta-analysis to combine data wherever appropriate. We planned to assess evidence quality using the GRADE approach. MAIN RESULTS We did not identify any potentially eligible studies that met the inclusion criteria in this review. AUTHORS' CONCLUSIONS We found no trial data to support or refute the idea that BCAA supplementation affects physical and neurological development and other outcomes in term and preterm neonates.
Collapse
Affiliation(s)
- Shoichiro Amari
- Neonatology, National Center for Child Health and Development, Tokyo, Japan
| | | | - Fumihiko Namba
- Department of Pediatrics, Saitama Medical Center, Saitama Medical University, Kawagoe, Japan
| | - Erika Ota
- Global Health Nursing, Graduate School of Nursing Science, St. Luke's International University, Tokyo, Japan
| | - Rintaro Mori
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| |
Collapse
|
13
|
Tsai HY, Wu SC, Li JC, Chen YM, Chan CC, Chen CH. Loss of the Drosophila branched-chain α-ketoacid dehydrogenase complex results in neuronal dysfunction. Dis Model Mech 2020; 13:dmm044750. [PMID: 32680850 PMCID: PMC7473638 DOI: 10.1242/dmm.044750] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 07/06/2020] [Indexed: 12/28/2022] Open
Abstract
Maple syrup urine disease (MSUD) is an inherited error in the metabolism of branched-chain amino acids (BCAAs) caused by a severe deficiency of the branched-chain α-ketoacid dehydrogenase (BCKDH) complex, which ultimately leads to neurological disorders. The limited therapies, including protein-restricted diets and liver transplants, are not as effective as they could be for the treatment of MSUD due to the current lack of molecular insights into the disease pathogenesis. To address this issue, we developed a Drosophila model of MSUD by knocking out the dDBT gene, an ortholog of the human gene encoding the dihydrolipoamide branched chain transacylase (DBT) subunit of BCKDH. The homozygous dDBT mutant larvae recapitulate an array of MSUD phenotypes, including aberrant BCAA accumulation, developmental defects, poor mobile behavior and disrupted L-glutamate homeostasis. Moreover, the dDBT mutation causes neuronal apoptosis during the developmental progression of larval brains. The genetic and functional evidence generated by in vivo depletion of dDBT expression in the eye indicates severe impairment of retinal rhabdomeres. Further, the dDBT mutant shows elevated oxidative stress and higher lipid peroxidation accumulation in the larval brain. Therefore, we conclude from in vivo evidence that the loss of dDBT results in oxidative brain damage that may lead to neuronal cell death and contribute to aspects of MSUD pathology. Importantly, when the dDBT mutants were administrated with Metformin, the aberrances in BCAA levels and motor behavior were ameliorated. This intriguing outcome strongly merits the use of the dDBT mutant as a platform for developing MSUD therapies.This article has an associated First Person interview with the joint first authors of the paper.
Collapse
Affiliation(s)
- Hui-Ying Tsai
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10090, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Shih-Cheng Wu
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Jian-Chiuan Li
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Yu-Min Chen
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10090, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| | - Chih-Chiang Chan
- Graduate Institute of physiology, National Taiwan University College of Medicine, Taipei 10051, Taiwan
| | - Chun-Hong Chen
- Institute of Infectious Diseases and Vaccinology, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
- Institute of Molecular and Cellular Biology, National Taiwan University, Taipei 10090, Taiwan
- National Mosquito-Borne Diseases Control Research Center, National Health Research Institutes, Zhunan, Miaoli 35053, Taiwan
| |
Collapse
|
14
|
Dahpy MA, Saleem TH, El-Asheer OM, ELrasoul AA, Abo Elgeit AM. Clinical, Biochemical, Molecular, and Therapeutic Analysis of Maple Syrup Urine Disease in Upper Egypt. J Pediatr Genet 2020; 10:116-125. [PMID: 33996182 DOI: 10.1055/s-0040-1715111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 06/22/2020] [Indexed: 10/23/2022]
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive inherited metabolic disorder caused by mutations in any of the genes encoding for the branched-chain keto dehydrogenase (BCKDH) components. This study screened MSUD patients throughout the whole Upper Egypt describing their symptoms, clinical and laboratory findings, genetic studies, and their treatment, with a 6-month follow-up for their responses. Screening identified three children with MSUD. Homozygous mutation in R195Q single nucleotide polymorphism (SNP) within the BCKDHA gene was found with the second MSUD patient. Follow-up for 6 months to assess the treatment regimens and progression of cases demonstrated that early treatment regimens including a dietary restriction of branched-chain amino acids with L-Carnitine administration could prevent MSUD-associated intellectual disabilities. It was concluded that R195Q SNP is pathogenic, and it may cause inherited forms of MSUD in some patients. MSUD cases have rarely been reported; so these findings will be highly useful for future cases of MSUD in the Upper Egyptian population.
Collapse
Affiliation(s)
- Marwa A Dahpy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Tahia H Saleem
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Osama M El-Asheer
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Ahmed Abd ELrasoul
- Department of Biochemistry, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Amir M Abo Elgeit
- Department of Pediatrics, Faculty of Medicine, Assiut University, Assiut, Egypt
| |
Collapse
|
15
|
Conway ME. Alzheimer's disease: targeting the glutamatergic system. Biogerontology 2020; 21:257-274. [PMID: 32048098 PMCID: PMC7196085 DOI: 10.1007/s10522-020-09860-4] [Citation(s) in RCA: 101] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022]
Abstract
Alzheimer’s disease (AD) is a debilitating neurodegenerative disease that causes a progressive decline in memory, language and problem solving. For decades mechanism-based therapies have primarily focused on amyloid β (Aβ) processing and pathways that govern neurofibrillary tangle generation. With the potential exception to Aducanumab, a monotherapy to target Aβ, clinical trials in these areas have been challenging and have failed to demonstrate efficacy. Currently, the prescribed therapies for AD are those that target the cholinesterase and glutamatergic systems that can moderately reduce cognitive decline, dependent on the individual. In the brain, over 40% of neuronal synapses are glutamatergic, where the glutamate level is tightly regulated through metabolite exchange in neuronal, astrocytic and endothelial cells. In AD brain, Aβ can interrupt effective glutamate uptake by astrocytes, which evokes a cascade of events that leads to neuronal swelling, destruction of membrane integrity and ultimately cell death. Much work has focussed on the post-synaptic response with little insight into how glutamate is regulated more broadly in the brain and the influence of anaplerotic pathways that finely tune these mechanisms. The role of blood branched chain amino acids (BCAA) in regulating neurotransmitter profiles under disease conditions also warrant discussion. Here, we review the importance of the branched chain aminotransferase proteins in regulating brain glutamate and the potential consequence of dysregulated metabolism in the context of BCAA or glutamate accumulation. We explore how the reported benefits of BCAA supplementation or restriction in improving cognitive function in other neurological diseases may have potential application in AD. Given that memantine, the glutamate receptor agonist, shows clinical relevance it is now timely to research related pathways, an understanding of which could identify novel approaches to treatment of AD.
Collapse
Affiliation(s)
- Myra E Conway
- Faculty of Health and Applied Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK. .,Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
16
|
Titcomb TJ, Tanumihardjo SA. Global Concerns with B Vitamin Statuses: Biofortification, Fortification, Hidden Hunger, Interactions, and Toxicity. Compr Rev Food Sci Food Saf 2019; 18:1968-1984. [DOI: 10.1111/1541-4337.12491] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/18/2019] [Accepted: 07/11/2019] [Indexed: 12/15/2022]
Affiliation(s)
- Tyler J. Titcomb
- Dept. of Nutritional SciencesUniv. of Wisconsin‐Madison Madison WI 53706 U.S.A
| | | |
Collapse
|
17
|
Yang C, Linpeng S, Cao Y, Wu L. Identification of six novel mutations in five infants with suspected maple syrup urine disease based on blood and urine metabolism screening. Gene 2019; 710:9-16. [PMID: 31112740 DOI: 10.1016/j.gene.2019.04.086] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 04/09/2019] [Accepted: 04/30/2019] [Indexed: 11/18/2022]
Abstract
Maple syrup urine disease (MSUD) is a rare autosomal recessive genetic metabolic disease, with a high incidence rate in infants. We analyzed the data of molecular genetic analysis of five infants whose metabolism screening suspected MSUD and described their clinical symptoms. Further, we performed next-generation sequencing and Sanger sequencing to determine the genetic causes of the disease. Bioinformatics tools were used to predict the pathogenicity of novel mutations by performing structural modeling. All the five infants showed symptoms before one year of age and had elevated plasma leucine and valine levels. Among them, four infants presented an obvious increase in the urine lactic acid level. We identified the genetic cause of the disease in four infants and analyzed the pathogenicity of six novel mutations, viz., two mutations in BCKDHA (p.Gly180Asp and p.Arg265Gln), three in BCKDHB (p.Tyr169Cys, p.Ala331Thr, and p.Gly336Ser), and one in DBT (p.Leu69Arg), using in silico analysis. We also reviewed previously reported mutations in Chinese patients and summarized their genotypic and phenotypic characteristics. Our study has confirmed or corrected the clinical diagnosis and enriched the mutation spectrum of BCKDHA, BCKDHB, and DBT. We suggest blood and urine metabolism screening combined with next generation sequencing to diagnose MSUD, especially in infants, to achieve early diagnosis and early treatment.
Collapse
Affiliation(s)
- Chenxi Yang
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Siyuan Linpeng
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yingxi Cao
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Lingqian Wu
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China.
| |
Collapse
|
18
|
Abstract
Inborn errors of metabolism, also known as inherited metabolic diseases, constitute an important group of conditions presenting with neurologic signs in newborns. They are individually rare but collectively common. Many are treatable through restoration of homeostasis of a disrupted metabolic pathway. Given their frequency and potential for treatment, the clinician should be aware of this group of conditions and learn to identify the typical manifestations of the different inborn errors of metabolism. In this review, we summarize the clinical, laboratory, electrophysiologic, and neuroimaging findings of the different inborn errors of metabolism that can present with florid neurologic signs and symptoms in the neonatal period.
Collapse
MESH Headings
- Adult
- Female
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/diagnosis
- Infant, Newborn, Diseases/diagnostic imaging
- Infant, Newborn, Diseases/physiopathology
- Infant, Newborn, Diseases/therapy
- Metabolism, Inborn Errors/diagnosis
- Metabolism, Inborn Errors/diagnostic imaging
- Metabolism, Inborn Errors/physiopathology
- Metabolism, Inborn Errors/therapy
- Neuroimaging
- Pregnancy
Collapse
Affiliation(s)
- Carlos R Ferreira
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, United States; Rare Disease Institute, Children's National Health System, Washington, DC, United States
| | - Clara D M van Karnebeek
- Departments of Pediatrics and Clinical Genetics, Amsterdam University Medical Centers, Amsterdam, The Netherlands; Department of Pediatrics, Centre for Molecular Medicine and Therapeutics, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
19
|
Suzuki M, Yoshioka M, Ohno Y, Akune Y. Plasma metabolomic analysis in mature female common bottlenose dolphins: profiling the characteristics of metabolites after overnight fasting by comparison with data in beagle dogs. Sci Rep 2018; 8:12030. [PMID: 30104643 PMCID: PMC6089887 DOI: 10.1038/s41598-018-30563-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Accepted: 08/02/2018] [Indexed: 12/14/2022] Open
Abstract
The present study was aimed at determining the characteristics of plasma metabolites in bottlenose dolphins to provide a greater understanding of their metabolism and to obtain information for the health management of cetaceans. Capillary electrophoresis-time-of-flight mass spectrometry (CE-TOFMS) and liquid chromatograph-time-of-flight mass spectrometry (LC-TOFMS) were conducted on plasma samples after overnight fasting from three common bottlenose dolphins as well as three beagle dogs (representative terrestrial carnivores) for comparison. In total, 257 and 227 plasma metabolites were identified in the dolphins and the dogs, respectively. Although a small number of animals were used for each species, the heatmap patterns, a principal component analysis and a cluster analysis confirmed that the composition of metabolites could be segregated from each other. Of 257 compounds detected in dolphin plasma, 24 compounds including branched amino acids, creatinine, urea, and methylhistidine were more abundant than in dogs; 26 compounds including long-chained acyl-carnitines and fatty acids, astaxanthin, and pantothenic acid were detected only in dolphins. In contrast, 25 compounds containing lactic acid and glycerol 3-phosphate were lower in dolphins compared to dogs. These data imply active protein metabolism, differences in usage of lipids, a unique urea cycle, and a low activity of the glycolytic pathway in dolphins.
Collapse
Affiliation(s)
- Miwa Suzuki
- Department of Marine Resources and Sciences, College of Bioresource Sciences, Nihon University, Kameino, Fujisawa, Kanagawa, 252-0880, Japan.
| | - Motoi Yoshioka
- Cetacean Research Center, Graduate School of Bioresources, Mie University, Kurimamachiya, Tsu, Mie, 514-8507, Japan.
| | - Yoshito Ohno
- Port of Nagoya Public Aquarium, Minato, Nagoya, Aichi, 455-0033, Japan
| | - Yuichiro Akune
- Port of Nagoya Public Aquarium, Minato, Nagoya, Aichi, 455-0033, Japan
| |
Collapse
|
20
|
Liu G, Ma D, Hu P, Wang W, Luo C, Wang Y, Sun Y, Zhang J, Jiang T, Xu Z. A Novel Whole Gene Deletion of BCKDHB by Alu-Mediated Non-allelic Recombination in a Chinese Patient With Maple Syrup Urine Disease. Front Genet 2018; 9:145. [PMID: 29740478 PMCID: PMC5928131 DOI: 10.3389/fgene.2018.00145] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive inherited metabolic disorder caused by mutations in the BCKDHA, BCKDHB, DBT, and DLD genes. Among the wide range of disease-causing mutations in BCKDHB, only one large deletion has been associated with MSUD. Compound heterozygous mutations in BCKDHB were identified in a Chinese patient with typical MSUD using next-generation sequencing, quantitative PCR, and array comparative genomic hybridization. One allele presented a missense mutation (c.391G > A), while the other allele had a large deletion; both were inherited from the patient’s unaffected parents. The deletion breakpoints were characterized using long-range PCR and sequencing. A novel 383,556 bp deletion (chr6: g.80811266_81194921del) was determined, which encompassed the entire BCKDHB gene. The junction site of the deletion was localized within a homologous sequence in two AluYa5 elements. Hence, Alu-mediated non-allelic homologous recombination is speculated as the mutational event underlying the large deletion. In summary, this study reports a recombination mechanism in the BCKDHB gene causing a whole gene deletion in a newborn with MSUD.
Collapse
Affiliation(s)
- Gang Liu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Dingyuan Ma
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Ping Hu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Wen Wang
- Reproductive Genetic Center, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Chunyu Luo
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yan Wang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Yun Sun
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Jingjing Zhang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Tao Jiang
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| | - Zhengfeng Xu
- State Key Laboratory of Reproductive Medicine, Department of Prenatal Diagnosis, The Affiliated Obstetrics and Gynecology Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, China
| |
Collapse
|
21
|
Haydar S, Lautier C, Grigorescu F. BRANCHED CHAIN AMINO ACIDS AT THE EDGE BETWEEN MENDELIAN AND COMPLEX DISORDERS. ACTA ENDOCRINOLOGICA (BUCHAREST, ROMANIA : 2005) 2018; 14:238-247. [PMID: 31149264 PMCID: PMC6516512 DOI: 10.4183/aeb.2018.238] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Branched chained amino acids (BCAA) are essential components of the human diet and important nutrient signals, which regain particular interest in recent years with the avenue of metabolomics studies suggesting their potential role as biomarkers. There is now compelling evidence for predictive role of BCAA in progression of diabetes, but causality relationship is still debated concerning insulin resistance and genetic versus non-genetic pathogenesis. Mendelian randomization studies in large cohorts of diabetes indicated pathogenic role of PPM1K (protein phosphatase Mg2+/Mn2+ dependent 1K) on Chr 4q22.1 gene, encoding for a phosphatase that activates BCKDH (branched chain keto acid dehydrogenase) complex. Recent studies indicated that insulin rapidly and dose-dependently regulates gene expression of the same complex, but the relationship with systemic insulin resistance and glucose levels is complex. Rare genetic syndromes due to Mendelian mutations in key genes in BCAA catabolism may be good models to understand potential role of gene of BCAA catabolism. However, in studying complex disorders geneticists are faced to complete new aspects of metabolic regulation complicating understanding genetics of obesity, diabetes or metabolic syndrome. A review of genetic syndromes of BCAA metabolism suggests that insulin resistance is not present, except rare cases of methylmalonic aciduria due to MUT (methylmalonyl-coA mutase) gene on Chr 6p12.3. Another aspect that complicates understanding is the new role of central nervous system (CNS) in insulin resistance. For a long time the hypothalamic hunger/satiety neuronal system was considered a key site of nutrient regulation. Genes may also affect the brain rewarding system (BRS) that would regulate food intake by modulating the motivation to obtain food and considering hedonic properties. Nutrigenomic and nutrigenetic investigations taking into account concurrently BCAA intake, metabolic regulation and gene variation have large perspectives to merge genetic and nutritional understanding in complex disorders.
Collapse
Affiliation(s)
| | | | - F. Grigorescu
- University of Montpellier, UMR204 NUTRIPASS (IRD, UM, SupAgro), Montpellier, France
| |
Collapse
|
22
|
Zeynalzadeh M, Tafazoli A, Aarabi A, Moghaddassian M, Ashrafzadeh F, Houshmand M, Taghehchian N, Abbaszadegan MR. Four novel mutations of the BCKDHA, BCKDHB and DBT genes in Iranian patients with maple syrup urine disease. J Pediatr Endocrinol Metab 2018; 31:205-212. [PMID: 29306928 DOI: 10.1515/jpem-2017-0305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/04/2017] [Indexed: 11/15/2022]
Abstract
BACKGROUND Maple syrup urine disease (MSUD) is a rare metabolic autosomal recessive disorder caused by dysfunction of the branched-chain α-ketoacid dehydrogenase (BCKDH) complex. Mutations in the BCKDHA, BCKDHB and DBT genes are responsible for MSUD. The current study analyzed seven Iranian MSUD patients genetically and explored probable correlations between their genotype and phenotype. METHODS The panel of genes, including BCKDHA, BCKDHB and DBT, was evaluated, using routine the polymerase chain reaction (PCR)-sequencing method. In addition, protein modeling (homology and threading modeling) of the deduced novel mutations was performed. The resulting structures were then analyzed, using state-of-the-art bioinformatics tools to better understand the structural and functional effects caused by mutations. RESULTS Seven mutations were detected in seven patients, including four novel pathogenic mutations in BCKDHA (c.1198delA, c.629C>T), BCKDHB (c.652C>T) and DBT (c.1150A>G) genes. Molecular modeling of the novel mutations revealed clear changes in the molecular energy levels and stereochemical traits of the modeled proteins, which may be indicative of strong correlations with the functional modifications of the genes. Structural deficiencies were compatible with the observed phenotypes. CONCLUSIONS Any type of MSUD can show heterogeneous clinical manifestations in different ethnic groups. Comprehensive molecular investigations would be necessary for differential diagnosis.
Collapse
Affiliation(s)
- Monica Zeynalzadeh
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.,Department of Genetics, University of North Carolina, Chapel Hill, NC, USA
| | - Alireza Tafazoli
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Azadeh Aarabi
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Moghaddassian
- The Edward S. Rogers Sr. Department of Electrical and Computer Engineering, Faculty of Applied Science and Engineering, University of Toronto, Ontario, Canada
| | - Farah Ashrafzadeh
- Department of Pediatric Neurology, Qaem Medical Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Massoud Houshmand
- Department of Medical Genetics, National Institute for Genetic Engineering and Biotechnology, Tehran, Iran
| | - Negin Taghehchian
- Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Medical Genetics Research Center and Division of Human Genetics, Immunology Research Center, Avicenna Research Institute, Mashhad University of Medical Sciences, Mashhad 9196773117, Iran
| |
Collapse
|
23
|
|
24
|
Sun L, Xie B, Zhang Q, Wang Y, Wang X, Gao B, Liu M, Wang M. Biomarkers identification by a combined clinical and metabonomics analysis in Henoch-Schonlein purpura nephritis children. Oncotarget 2017; 8:114239-114250. [PMID: 29371982 PMCID: PMC5768399 DOI: 10.18632/oncotarget.23207] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 10/29/2017] [Indexed: 11/25/2022] Open
Abstract
Background In children with Henoch-Schonlein purpura (HSP), the severity of Henoch-Schonlein purpura nephritis (HSPN) is considered responsible for the prognosis of HSP. The pathological process from HSP to HSPN is not clear yet and current diagnostic tools have shortcomings in accurate diagnosis of HSPN. This study aims to assess clinical characteristics of HSP and HSPN, to identify metabolic perturbations involved in HSP progress, and to combine metabolic biomarkers and clinical features into a better prediction for HSPN. Methods A total of 162 children were recruited, including 109 HSP patients and 53 healthy children (HC). The clinical characteristics were compared between HSPN and HSP without nephritis (HSPWN). The serum metabonomics analysis was performed to determine the metabolic differences in HSP and HC. Results Among 109 HSP children, 57 progressed to HSPN. The increased D-dimer level was significantly associated with renal damage in HSP. The metabonomic profiles revealed alterations between various subgroups of HSP and HC, making it possible to investigate small-molecule metabolites related to the pathological process of HSP. In total, we identified 9 biomarkers for HSP vs. HC, 7 for HSPWN vs. HC, 9 for HSPN vs. HC, and 3 for HSPN vs. HSPWN. Conclusions (S)-3-hydroxyisobutyric acid, p-Cresol sulfate, and 3-carboxy-4-methyl-5-pentyl-2-furanpropanoic acid were found associated with the progress of HSP to HSPN. Moreover, resulting biomarkers, when combined with D-dimer, allowed improving the HSPN prediction with high sensitivity (94.7%) and specificity (80.8%). Together these findings highlighted the strength of the combination of metabonomics and clinical analysis in the research of HSP.
Collapse
Affiliation(s)
- Lin Sun
- Department of Epidemiology and Biostatistics, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Biao Xie
- Department of Epidemiology and Biostatistics, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Qiuju Zhang
- Department of Epidemiology and Biostatistics, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Yupeng Wang
- Department of Epidemiology and Biostatistics, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Xinyu Wang
- Department of Epidemiology and Biostatistics, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Bing Gao
- Department of Epidemiology and Biostatistics, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Meina Liu
- Department of Epidemiology and Biostatistics, Public Health College, Harbin Medical University, Harbin, P. R. China
| | - Maoqing Wang
- Department of Nutrition and Food Hygiene, Public Health College, Harbin Medical University, Harbin, P. R. China
| |
Collapse
|
25
|
A Patient with MSUD: Acute Management with Sodium Phenylacetate/Sodium Benzoate and Sodium Phenylbutyrate. Case Rep Pediatr 2017; 2017:1045031. [PMID: 28589054 PMCID: PMC5447276 DOI: 10.1155/2017/1045031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/26/2017] [Indexed: 12/15/2022] Open
Abstract
In treatment of metabolic imbalances caused by maple syrup urine disease (MSUD), peritoneal dialysis, and hemofiltration, pharmacological treatments for elimination of toxic metabolites can be used in addition to basic dietary modifications. Therapy with sodium phenylacetate/benzoate or sodium phenylbutyrate (NaPB) in urea-cycle disorder cases has been associated with a reduction in branched-chain amino acid (BCAA) concentrations when the patients are on adequate dietary protein intake. Moreover, NaPB in treatment of MSUD patients is also associated with reduction of BCAA levels in a limited number of cases. However, there are not enough studies in the literature about application and efficacy of this treatment. Our case report sets an example of an alternative treatment's efficacy when extracorporeal procedures are not available due to technical difficulties during attack period of the disease.
Collapse
|
26
|
Imtiaz F, Al-Mostafa A, Allam R, Ramzan K, Al-Tassan N, Tahir AI, Al-Numair NS, Al-Hamed MH, Al-Hassnan Z, Al-Owain M, Al-Zaidan H, Al-Amoudi M, Qari A, Balobaid A, Al-Sayed M. Twenty novel mutations in BCKDHA, BCKDHB and DBT genes in a cohort of 52 Saudi Arabian patients with maple syrup urine disease. Mol Genet Metab Rep 2017; 11:17-23. [PMID: 28417071 PMCID: PMC5388912 DOI: 10.1016/j.ymgmr.2017.03.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/22/2017] [Accepted: 03/22/2017] [Indexed: 01/23/2023] Open
Abstract
Maple syrup urine disease (MSUD), an autosomal recessive inborn error of metabolism due to defects in the branched-chain α-ketoacid dehydrogenase (BCKD) complex, is commonly observed among other inherited metabolic disorders in the kingdom of Saudi Arabia. This report presents the results of mutation analysis of three of the four genes encoding the BCKD complex in 52 biochemically diagnosed MSUD patients originating from Saudi Arabia. The 25 mutations (20 novel) detected spanned across the entire coding regions of the BCKHDA, BCKDHB and DBT genes. There were no mutations found in the DLD gene in this cohort of patients. Prediction effects, conservation and modelling of novel mutations demonstrated that all were predicted to be disease-causing. All mutations presented in a homozygous form and we did not detect the presence of a "founder" mutation in any of three genes. In addition, prenatal molecular genetic testing was successfully carried out on chorionic villus samples or amniocenteses in 10 expectant mothers with affected children with MSUD, molecularly characterized by this study.
Collapse
Affiliation(s)
- Faiqa Imtiaz
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Abeer Al-Mostafa
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Rabab Allam
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Khushnooda Ramzan
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Nada Al-Tassan
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Asma I Tahir
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Nouf S Al-Numair
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Mohamed H Al-Hamed
- Department of Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Zuhair Al-Hassnan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia.,College of Medicine, Al-Faisal University, PO Box 50927, Riyadh 11533, Saudi Arabia
| | - Mohammad Al-Owain
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia.,College of Medicine, Al-Faisal University, PO Box 50927, Riyadh 11533, Saudi Arabia
| | - Hamad Al-Zaidan
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Mohammad Al-Amoudi
- National Laboratory for Newborn Screening, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Alya Qari
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Ameera Balobaid
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia
| | - Moeenaldeen Al-Sayed
- Department of Medical Genetics, King Faisal Specialist Hospital & Research Centre, PO Box 3354, Riyadh 11211, Saudi Arabia.,College of Medicine, Al-Faisal University, PO Box 50927, Riyadh 11533, Saudi Arabia
| |
Collapse
|
27
|
Enzymes involved in branched-chain amino acid metabolism in humans. Amino Acids 2017; 49:1005-1028. [DOI: 10.1007/s00726-017-2412-7] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Accepted: 03/15/2017] [Indexed: 12/27/2022]
|
28
|
Zhang B, Sun GZ, Zhu ML, Li Y, Sun DJ, Zhang B, Bai XP. The plasma levels of CST and BCKDK in patients with sepsis. Peptides 2016; 86:80-84. [PMID: 27773658 DOI: 10.1016/j.peptides.2016.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/09/2016] [Accepted: 10/18/2016] [Indexed: 12/28/2022]
Abstract
OBJECTIVES CST has been recently identified as a mediator of various beneficial effects in animal models of sepsis. At present, no data are available concerning the levels of CST in sepsis patients. In sepsis the plasma amino acid pattern is characterized by decreased branced chain amino acids (BCAAs). We investigated the levels of plasma CST or branched-chain α-ketoacid dehydrogenase kinase (BCKDK) and their relationship to component traits in patients with sepsis. DESIGN AND METHODS We studied 228 patients and divided them into two groups based on severity of infection. Blood samples were taken at study entry, and CST, BCKDK were measured. RESULTS CST and BCKDK levels were significantly higher in patients with sepsis than in controls: the median plasma CST concentration was 103.1ng/ml (range, <83.13-189.7ng/ml) in patients with sepsis and 49.69ng/ml (range, <19.38-100.8ng/ml) in controls (p=0.0022); the median plasma BCKDK concentration was 801.7ng/ml in sepsis group and 745ng/ml in controls (p=0.0292). Additionally, there was correlation between the plasma concentrations of CST and BCKDK in sepsis patients (r2=0.6357, p<0.01). CONCLUSIONS We conclude that the plasma levels of CST in sepsis patients were higher than in controls, and there is a relationship between CST and BCKDK in sepsis patients. Future experimental and clinical studies are needed to evaluate CST as a novel prognostic tool in sepsis patients and its potential therapeutic use in sepsis.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Cardiology, The fourth affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Gui-Zhi Sun
- Department of Cardiology, The fourth affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Min-Ling Zhu
- Department of Emergency, First affiliated Hospital of Harbin Medical University, Harbin 150001, China
| | - Yue Li
- Department of ICU, Second affiliated Hospital of Harbin Medical University, Harbin 150086, China
| | - Dian-Jun Sun
- Center for Endemic Disease Control, Harbin Medical University, Harbin 150086, China
| | - Bo Zhang
- Department of Cardiology, The fourth affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| | - Xiu-Ping Bai
- Department of Cardiology, The fourth affiliated Hospital of Harbin Medical University, Harbin 150001, China.
| |
Collapse
|
29
|
Liver BCATm transgenic mouse model reveals the important role of the liver in maintaining BCAA homeostasis. J Nutr Biochem 2016; 40:132-140. [PMID: 27886623 DOI: 10.1016/j.jnutbio.2016.10.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 10/19/2016] [Accepted: 10/25/2016] [Indexed: 01/08/2023]
Abstract
Unlike other amino acids, the branched-chain amino acids (BCAAs) largely bypass first-pass liver degradation due to a lack of hepatocyte expression of the mitochondrial branched-chain aminotransferase (BCATm). This sets up interorgan shuttling of BCAAs and liver-skeletal muscle cooperation in BCAA catabolism. To explore whether complete liver catabolism of BCAAs may impact BCAA shuttling in peripheral tissues, the BCATm gene was stably introduced into mouse liver. Two transgenic mouse lines with low and high hepatocyte expression of the BCATm transgene (LivTg-LE and LivTg-HE) were created and used to measure liver and plasma amino acid concentrations and determine whether the first two BCAA enzymatic steps in liver, skeletal muscle, heart and kidney were impacted. Expression of the hepatic BCATm transgene lowered the concentrations of hepatic BCAAs while enhancing the concentrations of some nonessential amino acids. Extrahepatic BCAA metabolic enzymes and plasma amino acids were largely unaffected, and no growth rate or body composition differences were observed in the transgenic animals as compared to wild-type mice. Feeding the transgenic animals a high-fat diet did not reverse the effect of the BCATm transgene on the hepatic BCAA catabolism, nor did the high-fat diet cause elevation in plasma BCAAs. However, the high-fat-diet-fed BCATm transgenic animals experienced attenuation in the mammalian target of rapamycin (mTOR) pathway in the liver and had impaired blood glucose tolerance. These results suggest that complete liver BCAA metabolism influences the regulation of glucose utilization during diet-induced obesity.
Collapse
|
30
|
Shibata K, Sakamoto M. Urinary Branched-Chain 2-Oxo Acids as a Biomarker for Function of B-Group Vitamins in Humans. J Nutr Sci Vitaminol (Tokyo) 2016; 62:220-228. [PMID: 27725406 DOI: 10.3177/jnsv.62.220] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
To find a functional biomarker of B-group vitamins, we collected 24-h urine samples from young Japanese women who lived in the community (n=29) to measure branched-chain 2-oxo acids such as 2-oxo-3-methylbutanoic acid, 2-oxo-3-methylpentanoic acid, and 2-oxo-4-methylpentanoic acid because B-group vitamins are involved in the catabolism of branched-chain amino acids. The relationships between each pair of the three urinary 2-oxo acids were very high (2-oxo-3-methylbutanoic acid and 2-oxo-3-methylpentanoic acid, p<0.001; 2-oxo-3-methylbutanoic acid and 2-oxo-4-methylpentanoic acid, p<0.001; 2-oxo-3-methylpentanoic acid and 2-oxo-4-methylpentanoic acid, p<0.001). The participants were divided into three groups using the upper (n=10), middle (n=9), and lower tertiles (n=10) based on the urinary excretion amounts of the sum of the three branched-chain 2-oxo acids. The administration of capsules containing the daily necessary amounts of B-group vitamins led to a decrease in the urinary excretion of the sum of the three types of branched-chain 2-oxo acids in participants belonging to the upper tertile. A similar phenomenon was observed in the middle tertile, but not in the lower tertile. Intakes of B-group vitamins and the urinary excretion amounts of B-group vitamins were not observed to be significantly different among the upper, middle, and lower tertiles. These results indicate that some young Japanese women need much higher levels of B-group vitamins than the Dietary Reference Intakes for Japanese. Thus, urinary branched-chain 2-oxo acids are useful functional biomarkers for B-group vitamins in humans.
Collapse
Affiliation(s)
- Katsumi Shibata
- Department of Nutrition, School of Human Cultures, The University of Shiga Prefecture
| | | |
Collapse
|
31
|
Sun H, Wang Y. Branched chain amino acid metabolic reprogramming in heart failure. Biochim Biophys Acta Mol Basis Dis 2016; 1862:2270-2275. [PMID: 27639835 DOI: 10.1016/j.bbadis.2016.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/07/2016] [Accepted: 09/08/2016] [Indexed: 01/12/2023]
Abstract
Metabolic remodeling is a hall-mark of cardiac maturation and pathology. The switch of substrate utilization from glucose to fatty acid is observed during post-natal maturation period in developing heart, but the process is reversed from fatty acids to glucose in the failing hearts across different clinic and experimental models. Majority of the current investigations have been focusing on the regulatory mechanism and functional impact of this metabolic reprogramming involving fatty acids and carbohydrates. Recent progress in metabolomics and transcriptomic analysis, however, revealed another significant remodeled metabolic branch associated with cardiac development and disease, i.e. Branched-Chain Amino Acid (BCAA) catabolism. These findings have established BCAA catabolic deficiency as a novel metabolic feature in failing hearts with potentially significant impact on the progression of pathological remodeling and dysfunction. In this review, we will evaluate the current evidence and potential implication of these discoveries in the context of heart diseases and novel therapies. This article is part of a Special Issue entitled: The role of post-translational protein modifications on heart and vascular metabolism edited by Jason R.B. Dyck & Jan F.C. Glatz.
Collapse
Affiliation(s)
- Haipeng Sun
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Departments of Anesthesiology, Physiology and Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States
| | - Yibin Wang
- Key Laboratory of Cell Differentiation and Apoptosis of Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Departments of Anesthesiology, Physiology and Medicine, David Geffen School of Medicine, University of California, Los Angeles, United States.
| |
Collapse
|
32
|
Meierhofer D, Halbach M, Şen NE, Gispert S, Auburger G. Ataxin-2 (Atxn2)-Knock-Out Mice Show Branched Chain Amino Acids and Fatty Acids Pathway Alterations. Mol Cell Proteomics 2016; 15:1728-39. [PMID: 26850065 DOI: 10.1074/mcp.m115.056770] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Indexed: 12/13/2022] Open
Abstract
Human Ataxin-2 (ATXN2) gene locus variants have been associated with obesity, diabetes mellitus type 1,and hypertension in genome-wide association studies, whereas mouse studies showed the knock-out of Atxn2 to lead to obesity, insulin resistance, and dyslipidemia. Intriguingly, the deficiency of ATXN2 protein orthologs in yeast and flies rescues the neurodegeneration process triggered by TDP-43 and Ataxin-1 toxicity. To understand the molecular effects of ATXN2 deficiency by unbiased approaches, we quantified the global proteome and metabolome of Atxn2-knock-out mice with label-free mass spectrometry. In liver tissue, significant downregulations of the proteins ACADS, ALDH6A1, ALDH7A1, IVD, MCCC2, PCCA, OTC, together with bioinformatic enrichment of downregulated pathways for branched chain and other amino acid metabolism, fatty acids, and citric acid cycle were observed. Statistical trends in the cerebellar proteome and in the metabolomic profiles supported these findings. They are in good agreement with recent claims that PBP1, the yeast ortholog of ATXN2, sequestrates the nutrient sensor TORC1 in periods of cell stress. Overall, ATXN2 appears to modulate nutrition and metabolism, and its activity changes are determinants of growth excess or cell atrophy.
Collapse
Affiliation(s)
- David Meierhofer
- From the ‡Max Planck Institute for Molecular Genetics, Ihnestraβe 63-73, 14195 Berlin, Germany;
| | - Melanie Halbach
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Nesli Ece Şen
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Suzana Gispert
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| | - Georg Auburger
- §Experimental Neurology, Building 89, Goethe University Medical School, Theodor Stern Kai 7, 60590 Frankfurt am Main, Germany
| |
Collapse
|
33
|
Conway ME, Hutson SM. BCAA Metabolism and NH3 Homeostasis. ADVANCES IN NEUROBIOLOGY 2016; 13:99-132. [DOI: 10.1007/978-3-319-45096-4_5] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
34
|
Pan BF, Gao C, Ren SX, Wang YB, Sun HP, Zhou MY. Regulation of PP2Cm expression by miRNA-204/211 and miRNA-22 in mouse and human cells. Acta Pharmacol Sin 2015; 36:1480-6. [PMID: 26592513 PMCID: PMC4816230 DOI: 10.1038/aps.2015.119] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Accepted: 08/11/2015] [Indexed: 02/08/2023] Open
Abstract
AIM The mitochondrial targeted 2C-type serine/threonine protein phosphatase (PP2Cm) is encoded by the gene PPM1K and is highly conserved among vertebrates. PP2Cm plays a critical role in branched-chain amino acid catabolism and regulates cell survival. Its expression is dynamically regulated by the nutrient environment and pathological stresses. However, little is known about the molecular mechanism underlying the regulation of PPM1K gene expression. In this study, we aimed to reveal how PPM1K expression is affected by miRNA-mediated post-transcriptional regulation. METHODS Computational analysis based on conserved miRNA binding motifs was applied to predict the candidate miRNAs that potentially affect PPM1K expression. Dual-luciferase reporter assay was performed to verify the miRNAs' binding sites in the PPM1K gene and their influence on PPM1K 3'UTR activity. We further over-expressed the mimics of these miRNAs in human and mouse cells to examine whether miRNAs affected the mRNA level of PPM1K. RESULTS Computational analysis identified numerous miRNAs potentially targeting PPM1K. Luciferase reporter assays demonstrated that the 3'UTR of PPM1K gene contained the recognition sites of miR-204 and miR-211. Overexpression of these miRNAs in human and mouse cells diminished the 3'UTR activity and the endogenous mRNA level of PPM1K. However, the miR-22 binding site was found only in human and not mouse PPM1K 3'UTR. Accordingly, PPM1K 3'UTR activity was suppressed by miR-22 overexpression in human but not mouse cells. CONCLUSION These data suggest that different miRNAs contribute to the regulation of PP2Cm expression in a species-specific manner. miR-204 and miR-211 are efficient in both mouse and human cells, while miR-22 regulates PP2Cm expression only in human cells.
Collapse
Affiliation(s)
- Bang-fen Pan
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chen Gao
- Division of Molecular Medicine, Department of Anesthesiology, Medicine and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Shu-xun Ren
- Division of Molecular Medicine, Department of Anesthesiology, Medicine and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Yi-bin Wang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Division of Molecular Medicine, Department of Anesthesiology, Medicine and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Hai-peng Sun
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Division of Molecular Medicine, Department of Anesthesiology, Medicine and Physiology, Molecular Biology Institute, Cardiovascular Research Laboratories, David Geffen School of Medicine at University of California, Los Angeles, CA 90095, USA
| | - Mei-yi Zhou
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of the Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
35
|
L-carnitine Prevents Oxidative Stress in the Brains of Rats Subjected to a Chemically Induced Chronic Model of MSUD. Mol Neurobiol 2015; 53:6007-6017. [PMID: 26526843 DOI: 10.1007/s12035-015-9500-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 10/19/2015] [Indexed: 02/07/2023]
Abstract
Maple syrup urine disease (MSUD), or branched-chain α-keto aciduria, is an inherited disorder that is caused by a deficiency in branched-chain α-keto acid dehydrogenase complex (BCKAD) activity. Blockade of this pathway leads to the accumulation of the branched-chain amino acids (BCAAs), leucine, isoleucine, and valine, and their respective ketoacids in tissues. The main clinical symptoms presented by MSUD patients include ketoacidosis, hypoglycemia, opisthotonos, poor feeding, apnea, ataxia, convulsions, coma, psychomotor delay, and mental retardation. Although increasing evidence indicates that oxidative stress is involved in the pathophysiology of this disease, the mechanisms of the brain damage caused by this disorder remain poorly understood. In the present study, we investigated the effect of BCAAs on some oxidative stress parameters and evaluated the efficacy of L-carnitine (L-car), an efficient antioxidant that may be involved in the reduction of oxidative damage observed in some inherited neurometabolic diseases, against these possible pro-oxidant effects of a chronic MSUD model in the cerebral cortex and cerebellum of rats. Our results showed that chronic BCAA administration was able to promote both lipid and protein oxidation, impair brain antioxidant defenses, and increase reactive species production, particularly in the cerebral cortex, and that L-car was able to prevent these effects. Taken together, the present data indicate that chronic BCAA administration significantly increased oxidative damage in the brains of rats subjected to a chronic model of MSUD and that L-car may be an efficient antioxidant in this disorder.
Collapse
|
36
|
Li X, Ding Y, Liu Y, Ma Y, Song J, Wang Q, Li M, Qin Y, Yang Y. Eleven novel mutations of the BCKDHA, BCKDHB and DBT genes associated with maple syrup urine disease in the Chinese population: Report on eight cases. Eur J Med Genet 2015; 58:617-23. [PMID: 26453840 DOI: 10.1016/j.ejmg.2015.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Revised: 09/30/2015] [Accepted: 10/03/2015] [Indexed: 12/01/2022]
Abstract
Maple syrup urine disease (MSUD) is a rare autosomal recessive disorder that affects the degradation of branched chain amino acids (BCAAs). Only a few cases of MSUD have been documented in Mainland China, and prenatal diagnosis has not been performed so far. In this report, 8 patients (4 girls and 4 boys) with MSUD from 8 unrelated Chinese families were diagnosed at the age of 9 days to 1 year and 8 months. The diagnosis was confirmed by serum BCAAs and genetic analyses. Among the 8 patients, only one was detected by newborn screening. The remaining 7 patients were admitted because of neurological disorders and underwent selective screening. Significantly elevated BCAAs were observed in 7 patients. One patient was diagnosed by post-mortem study. 12 mutations were found in the BCKDHA, BCKDHB and DBT genes. 11 of these mutations were novel: c.178G > T, c.491T > C, c.740A > G, c.1214_1219dupCCAACC and IVS6+1delG in BCKDHA; c.482T > G, c.508C > T, c.767A > G, c.768C > G and IVS4,-2A > C in BCKDHB; and c.1A > G in DBT. Only one mutation, c.659C > T in the BCKDHA gene, had been previously reported. 7 patients were treated by dietary intervention and symptomatic therapy. 6 of them showed clinical improvement. The mother of one patient who died from MSUD underwent amniocentesis during her second pregnancy. The BCAAs level in her amniotic fluid was normal. Only one heterozygous mutation, IVS4,-2A > C in the BCKDHB gene, was detected in the cultured amniocytes. The results revealed that the fetus was not affected by MSUD. Normal development and the blood BCAAs profile confirmed the prenatal diagnosis after birth. Thus, we identified eleven novel mutations associated with MSUD in the Chinese population. Prenatal diagnosis of MSUD was successfully performed on one fetus by genetic analysis of the cultured amniocytes.
Collapse
Affiliation(s)
- Xiyuan Li
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yuan Ding
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yupeng Liu
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Yanyan Ma
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Jinqing Song
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Qiao Wang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | | | | | - Yanling Yang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China.
| |
Collapse
|
37
|
Identification of mutations, genotype–phenotype correlation and prenatal diagnosis of maple syrup urine disease in Indian patients. Eur J Med Genet 2015; 58:471-8. [DOI: 10.1016/j.ejmg.2015.08.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 08/03/2015] [Accepted: 08/03/2015] [Indexed: 01/01/2023]
|
38
|
Patel N, Loveland J, Zuckerman M, Moshesh P, Britz R, Botha J. Heterozygote to homozygote related living donor liver transplantation in maple syrup urine disease: a case report. Pediatr Transplant 2015; 19:E62-5. [PMID: 25677046 DOI: 10.1111/petr.12439] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/09/2015] [Indexed: 01/18/2023]
Abstract
Liver transplantation is an accepted treatment modality in the management of MSUD. To our knowledge, ours is only the second successful case to date of a patient with MSUD receiving an allograft from an RLD who is a heterozygous carrier for the disease. In view of the worldwide shortage of available organs for transplantation, heterozygote to homozygote transplantation in the setting of MSUD may provide a viable alternative for those awaiting transplantation. We report on the case of a two-yr-old infant with MSUD, who received a left lateral segment (segments II and III) liver transplant from his mother, a heterozygote carrier of one of the three abnormal genes implicated in MSUD. Post-operative BCAA levels normalized in our patient and remained so on an unrestricted protein diet and during times of physiological stress. To date, this is only the second case of a successful RLD liver transplant in a child with MSUD. Preliminary results indicate that RLD liver transplants are at least equivalent to deceased donor liver transplants in the treatment of MSUD, although longer term follow-up is required. Heterozygote to homozygote RLD transplant in patients with MSUD presents a new pool of potential liver donors.
Collapse
Affiliation(s)
- N Patel
- Department of Surgery, University of the Witwatersrand, Johannesburg, South Africa
| | | | | | | | | | | |
Collapse
|
39
|
Hull J, Patel VB, Hutson SM, Conway ME. New insights into the role of the branched-chain aminotransferase proteins in the human brain. J Neurosci Res 2015; 93:987-98. [PMID: 25639459 DOI: 10.1002/jnr.23558] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Revised: 11/26/2014] [Accepted: 12/21/2014] [Indexed: 11/10/2022]
Abstract
The human cytosolic branched-chain aminotransferase (hBCATc) enzyme is strategically located in glutamatergic neurons, where it is thought to provide approximately 30% of de novo nitrogen for brain glutamate synthesis. In health, glutamate plays a dominant role in facilitating learning and memory. However, in patients with Alzheimer's disease (AD), synaptic levels of glutamate become toxic, resulting in a direct increase in postsynaptic neuronal calcium, causing a cascade of events that contributes to the destruction of neuronal integrity and cell death, pathological features of AD. Our group is the first to map the hBCAT proteins to the human brain, where cell-specific compartmentation indicates key roles for these proteins in regulating glutamate homeostasis. Moreover, increased expression of hBCAT was observed in the brains of patients with AD relative to matched controls. We reflect on the importance of the redox-active CXXC motif, which confers novel roles for the hBCAT proteins, particularly with respect to substrate channeling and protein folding. This implies that, in addition to their role in glutamate metabolism, these proteins have additional functional roles that might impact redox cell signaling. This review discusses how these proteins behave as potential neuroprotectors during periods of oxidative stress. These findings are particularly important because an increase in misfolded proteins, linked to increased oxidative stress, occurs in several neurodegenerative conditions. Together, these studies give an overview of the diverse role that these proteins play in brain metabolism, in which a dysregulation of their expression may contribute to neurodegenerative conditions such as AD.
Collapse
Affiliation(s)
- Jonathon Hull
- Department of Applied Science, University of the West of England, Bristol, United Kingdom
| | - Vinood B Patel
- Department of Applied Science, University of Westminster, London, United Kingdom
| | - Susan M Hutson
- Department of Human Nutrition, Foods, and Exercise, Virginia Tech, Blacksburg, Virginia, 24061
| | - Myra E Conway
- Department of Applied Science, University of the West of England, Bristol, United Kingdom
| |
Collapse
|
40
|
Strand JM, Skinnes R, Scheffler K, Rootvelt T, Woldseth B, Bjørås M, Eide L. Genome instability in Maple Syrup Urine Disease correlates with impaired mitochondrial biogenesis. Metabolism 2014; 63:1063-70. [PMID: 24928662 DOI: 10.1016/j.metabol.2014.05.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 04/09/2014] [Accepted: 05/04/2014] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The mitochondrial branched-chain ketoacid dehydrogenase (BCKD) catalyzes the degradation of branched-chain amino acids (BCAA), which have been shown to induce oxidative stress. Maple Syrup Urine Disease (MSUD) is caused by impaired activity of BCKD, suggesting that oxidative stress and resulting DNA damage could contribute to pathology. We evaluated the potential effect of BCKD deficiency on genome integrity and mitochondrial function as a downstream target. METHODS Primary fibroblasts from MSUD patients and controls were either cultivated under normal conditions or exposed to metabolic or oxidative stress. DNA was analyzed for damage and mitochondrial function was evaluated by gene expression analyses, functional assays and immunofluorescent methods. RESULTS Patient fibroblasts accumulated damage in mitochondrial DNA (mtDNA) and nuclear DNA, with a corresponding reduction in mitochondrial transcription, mtDNA copy number and pyruvate dehydrogenase. We found no evidence of increased level of reactive oxygen species (ROS) in patient fibroblasts under normal conditions, suggesting that the genotoxic effect is ascribed to accumulating metabolites. CONCLUSIONS Impaired BCKD activity as in MSUD, results in accumulation of DNA damage and corresponding mitochondrial dysfunction.
Collapse
Affiliation(s)
- Janne M Strand
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Microbiology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Ragnhild Skinnes
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Katja Scheffler
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Microbiology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Terje Rootvelt
- Women and Children's Division, Oslo University Hospital, Oslo, Norway
| | - Berit Woldseth
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway
| | - Magnar Bjørås
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway; Department of Microbiology, University of Oslo, Oslo University Hospital, Oslo, Norway
| | - Lars Eide
- Department of Medical Biochemistry, Oslo University Hospital, Oslo, Norway.
| |
Collapse
|
41
|
Brown G. Defects of thiamine transport and metabolism. J Inherit Metab Dis 2014; 37:577-85. [PMID: 24789339 DOI: 10.1007/s10545-014-9712-9] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 03/25/2014] [Accepted: 03/31/2014] [Indexed: 01/19/2023]
Abstract
Thiamine, in the form of thiamine pyrophosphate, is a cofactor for a number of enzymes which play important roles in energy metabolism. Although dietary thiamine deficiency states have long been recognised, it is only relatively recently that inherited defects in thiamine uptake, activation and the attachment of the active cofactor to target enzymes have been described, and the underlying genetic defects identified. Thiamine is transported into cells by two carriers, THTR1 and THTR2, and deficiency of these results in thiamine-responsive megaloblastic anaemia and biotin-responsive basal ganglia disease respectively. Defective synthesis of thiamine pyrophosphate has been found in a small number of patients with episodic ataxia, delayed development and dystonia, while impaired transport of thiamine pyrophosphate into the mitochondrion is associated with Amish lethal microcephaly in most cases. In addition to defects in thiamine uptake and metabolism, patients with pyruvate dehydrogenase deficiency and maple syrup urine disease have been described who have a significant clinical and/or biochemical response to thiamine supplementation. In these patients, an intrinsic structural defect in the target enzymes reduces binding of the cofactor and this can be overcome at high concentrations. In most cases, the clinical and biochemical abnormalities in these conditions are relatively non-specific, and the range of recognised presentations is increasing rapidly at present as new patients are identified, often by genome sequencing. These conditions highlight the value of a trial of thiamine supplementation in patients whose clinical presentation falls within the spectrum of documented cases.
Collapse
Affiliation(s)
- Garry Brown
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford, OX1 3QU, UK,
| |
Collapse
|
42
|
Fernández-Guerra P, Birkler RID, Merinero B, Ugarte M, Gregersen N, Rodríguez-Pombo P, Bross P, Palmfeldt J. Selected reaction monitoring as an effective method for reliable quantification of disease-associated proteins in maple syrup urine disease. Mol Genet Genomic Med 2014; 2:383-92. [PMID: 25333063 PMCID: PMC4190873 DOI: 10.1002/mgg3.88] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Revised: 04/25/2014] [Accepted: 04/29/2014] [Indexed: 12/15/2022] Open
Abstract
Selected reaction monitoring (SRM) mass spectrometry can quantitatively measure proteins by specific targeting of peptide sequences, and allows the determination of multiple proteins in one single analysis. Here, we show the feasibility of simultaneous measurements of multiple proteins in mitochondria-enriched samples from cultured fibroblasts from healthy individuals and patients with mutations in branched-chain α-ketoacid dehydrogenase (BCKDH) complex. BCKDH is a mitochondrial multienzyme complex and its defective activity causes maple syrup urine disease (MSUD), a rare but severe inherited metabolic disorder. Four different genes encode the catalytic subunits of BCKDH: E1α (BCKDHA), E1β (BCKDHB), E2 (DBT), and E3 (DLD). All four proteins were successfully quantified in healthy individuals. However, the E1α and E1β proteins were not detected in patients carrying mutations in one of those genes, whereas mRNA levels were almost unaltered, indicating instability of E1α and E1β monomers. Using SRM we elucidated the protein effects of mutations generating premature termination codons or misfolded proteins. SRM is a complement to transcript level measurements and a valuable tool to shed light on molecular mechanisms and on effects of pharmacological therapies at protein level. SRM is particularly effective for inherited disorders caused by multiple proteins such as defects in multienzyme complexes.
Collapse
Affiliation(s)
- Paula Fernández-Guerra
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Rune I D Birkler
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Begoña Merinero
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Investigación en Red de Enfermedades Raras (CIBERER), IDIPAZ, Universidad Autónoma Madrid Madrid, Spain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Investigación en Red de Enfermedades Raras (CIBERER), IDIPAZ, Universidad Autónoma Madrid Madrid, Spain
| | - Niels Gregersen
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Pilar Rodríguez-Pombo
- Dpto Biol. Mol., Centro de Diagnóstico de Enfermedades Moleculares (CEDEM), Centro de Biología Molecular Severo Ochoa, UAM-CSIC, Centro de Investigación en Red de Enfermedades Raras (CIBERER), IDIPAZ, Universidad Autónoma Madrid Madrid, Spain
| | - Peter Bross
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| | - Johan Palmfeldt
- Research Unit for Molecular Medicine, Department of Clinical Medicine, Aarhus University and Aarhus University Hospital Aarhus, Denmark
| |
Collapse
|
43
|
Feier FH, Miura IK, Fonseca EA, Porta G, Pugliese R, Porta A, Schwartz IVD, Margutti AVB, Camelo JS, Yamaguchi SN, Taveira AT, Candido H, Benavides M, Danesi V, Guimaraes T, Kondo M, Chapchap P, Neto JS. Successful domino liver transplantation in maple syrup urine disease using a related living donor. ACTA ACUST UNITED AC 2014; 47:522-6. [PMID: 24770567 PMCID: PMC4086180 DOI: 10.1590/1414-431x20143830] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 04/25/2014] [Indexed: 11/22/2022]
Abstract
Maple syrup urine disease (MSUD) is an autosomal recessive disease associated with
high levels of branched-chain amino acids. Children with MSUD can present severe
neurological damage, but liver transplantation (LT) allows the patient to resume a
normal diet and avoid further neurological damage. The use of living related donors
has been controversial because parents are obligatory heterozygotes. We report a case
of a 2-year-old child with MSUD who underwent a living donor LT. The donor was the
patient's mother, and his liver was then used as a domino graft. The postoperative
course was uneventful in all three subjects. DNA analysis performed after the
transplantation (sequencing of the coding regions of BCKDHA,
BCKDHB, and DBT genes) showed that the MSUD
patient was heterozygous for a pathogenic mutation in the BCKDHB
gene. This mutation was not found in his mother, who is an obligatory carrier for
MSUD according to the family history and, as expected, presented both normal clinical
phenotype and levels of branched-chain amino acids. In conclusion, our data suggest
that the use of a related donor in LT for MSUD was effective, and the liver of the
MSUD patient was successfully used in domino transplantation. Routine donor
genotyping may not be feasible, because the test is not widely available, and, most
importantly, the disease is associated with both the presence of allelic and locus
heterogeneity. Further studies with this population of patients are required to
expand the use of related donors in MSUD.
Collapse
Affiliation(s)
- F H Feier
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - I K Miura
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - E A Fonseca
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - G Porta
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - R Pugliese
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - A Porta
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - I V D Schwartz
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brasil
| | - A V B Margutti
- Departamento de Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - J S Camelo
- Departamento de Pediatria, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil
| | - S N Yamaguchi
- Departamento de Nutrição, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - A T Taveira
- Departamento de Hepatologia, Universidade Estadual do Amazonas, Manaus, AM, Brasil
| | - H Candido
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - M Benavides
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - V Danesi
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - T Guimaraes
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - M Kondo
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - P Chapchap
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| | - J Seda Neto
- Departamento de Hepatologia e Transplante Hepático, Hospital Sírio-Libanês, São Paulo, SP, Brasil
| |
Collapse
|
44
|
Angelovici R, Lipka AE, Deason N, Gonzalez-Jorge S, Lin H, Cepela J, Buell R, Gore MA, DellaPenna D. Genome-wide analysis of branched-chain amino acid levels in Arabidopsis seeds. THE PLANT CELL 2013; 25:4827-43. [PMID: 24368787 PMCID: PMC3903990 DOI: 10.1105/tpc.113.119370] [Citation(s) in RCA: 106] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 11/26/2013] [Accepted: 12/10/2013] [Indexed: 05/18/2023]
Abstract
Branched-chain amino acids (BCAAs) are three of the nine essential amino acids in human and animal diets and are important for numerous processes in development and growth. However, seed BCAA levels in major crops are insufficient to meet dietary requirements, making genetic improvement for increased and balanced seed BCAAs an important nutritional target. Addressing this issue requires a better understanding of the genetics underlying seed BCAA content and composition. Here, a genome-wide association study and haplotype analysis for seed BCAA traits in Arabidopsis thaliana revealed a strong association with a chromosomal interval containing two branched-chain amino acid transferases, BCAT1 and BCAT2. Linkage analysis, reverse genetic approaches, and molecular complementation analysis demonstrated that allelic variation at BCAT2 is responsible for the natural variation of seed BCAAs in this interval. Complementation analysis of a bcat2 null mutant with two significantly different alleles from accessions Bayreuth-0 and Shahdara is consistent with BCAT2 contributing to natural variation in BCAA levels, glutamate recycling, and free amino acid homeostasis in seeds in an allele-dependent manner. The seed-specific phenotype of bcat2 null alleles, its strong transcription induction during late seed development, and its subcellular localization to the mitochondria are consistent with a unique, catabolic role for BCAT2 in BCAA metabolism in seeds.
Collapse
Affiliation(s)
- Ruthie Angelovici
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824–1319
| | - Alexander E. Lipka
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Nicholas Deason
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824–1319
| | - Sabrina Gonzalez-Jorge
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824–1319
| | | | - Jason Cepela
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Robin Buell
- Department of Plant Biology, Michigan State University, East Lansing, Michigan 48824
| | - Michael A. Gore
- Department of Plant Breeding and Genetics, Cornell University, Ithaca, New York 14853
| | - Dean DellaPenna
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan 48824–1319
- Address correspondence to
| |
Collapse
|
45
|
Zimmerman HA, Olson KC, Chen G, Lynch CJ. Adipose transplant for inborn errors of branched chain amino acid metabolism in mice. Mol Genet Metab 2013; 109:345-53. [PMID: 23800641 PMCID: PMC3955948 DOI: 10.1016/j.ymgme.2013.05.010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Accepted: 05/16/2013] [Indexed: 11/24/2022]
Abstract
Liver transplantation appears to be quite beneficial for treatment of maple syrup urine disease (MSUD, an inherited disorder of branched chain amino acid metabolism); however, there is a limited availability of donor livers worldwide and the first year costs of liver transplants are quite high. Recent studies have suggested that intact adipose tissue, already widely used in reconstructive surgery, may have an underappreciated high capacity for branched chain amino acid (BCAA) metabolism. Here we examined the potential for adipose tissue transplant to lower circulating BCAAs in two models of defective BCAA metabolism, BCATm and PP2Cm [branched chain keto acid dehydrogenase complex (BCKDC) phosphatase] knockout (KO) mice. After 1-2g fat transplant, BCATm and PP2Cm KO mice gained or maintained body weight 3weeks after surgery and consumed similar or more food/BCAAs the week before phlebotomy. Transplant of fat into the abdominal cavity led to a sterile inflammatory response and nonviable transplanted tissue. However when 1-2g of fat was transplanted subcutaneously into the back, either as small (0.1-0.3g) or finely minced pieces introduced with an 18-ga. needle, plasma BCAAs decreased compared to Sham operated mice. In two studies on BCATm KO mice and one study on PP2Cm KO mice, fat transplant led to 52-81% reductions in plasma BCAAs compared to baseline plasma BCAA concentrations of untreated WT type siblings. In PP2Cm KO mice, individual BCAAs in plasma were also significantly reduced by fat transplant, as were the alloisoleucine/Phe ratios. Therefore, subcutaneous fat transplantation may have merit as an adjunct to dietary treatment of MSUD. Additional studies are needed to further refine this approach.
Collapse
Affiliation(s)
- Heather A. Zimmerman
- Department of Comparative Medicine, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Kristine C. Olson
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Gang Chen
- Department of Public Health Sciences, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
- The Macromolecular Core Facility, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
| | - Christopher J. Lynch
- Department of Cellular and Molecular Physiology, Penn State University College of Medicine, 500 University Dr., Hershey, PA 17033, USA
- Correspondence: Christopher J. Lynch, Ph.D., Dept. of Cellular & Molecular Physiology, Penn State College of Medicine. 500 University Drive, MC-H166, Hershey, PA 17033, USA FAX: +1 717 531 7667,
| |
Collapse
|
46
|
Zastre JA, Sweet RL, Hanberry BS, Ye S. Linking vitamin B1 with cancer cell metabolism. Cancer Metab 2013; 1:16. [PMID: 24280319 PMCID: PMC4178204 DOI: 10.1186/2049-3002-1-16] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Accepted: 07/09/2013] [Indexed: 02/08/2023] Open
Abstract
The resurgence of interest in cancer metabolism has linked alterations in the regulation and exploitation of metabolic pathways with an anabolic phenotype that increases biomass production for the replication of new daughter cells. To support the increase in the metabolic rate of cancer cells, a coordinated increase in the supply of nutrients, such as glucose and micronutrients functioning as enzyme cofactors is required. The majority of co-enzymes are water-soluble vitamins such as niacin, folic acid, pantothenic acid, pyridoxine, biotin, riboflavin and thiamine (Vitamin B1). Continuous dietary intake of these micronutrients is essential for maintaining normal health. How cancer cells adaptively regulate cellular homeostasis of cofactors and how they can regulate expression and function of metabolic enzymes in cancer is underappreciated. Exploitation of cofactor-dependent metabolic pathways with the advent of anti-folates highlights the potential vulnerabilities and importance of vitamins in cancer biology. Vitamin supplementation products are easily accessible and patients often perceive them as safe and beneficial without full knowledge of their effects. Thus, understanding the significance of enzyme cofactors in cancer cell metabolism will provide for important dietary strategies and new molecular targets to reduce disease progression. Recent studies have demonstrated the significance of thiamine-dependent enzymes in cancer cell metabolism. Therefore, this review discusses the current knowledge in the alterations in thiamine availability, homeostasis, and exploitation of thiamine-dependent pathways by cancer cells.
Collapse
Affiliation(s)
- Jason A Zastre
- Department of Pharmaceutical and Biomedical Sciences, College of Pharmacy, University of Georgia, R,C, Wilson Pharmacy Building, Athens, GA 30602, USA.
| | | | | | | |
Collapse
|
47
|
Olson KC, Chen G, Lynch CJ. Quantification of branched-chain keto acids in tissue by ultra fast liquid chromatography-mass spectrometry. Anal Biochem 2013; 439:116-22. [PMID: 23684523 DOI: 10.1016/j.ab.2013.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Revised: 05/03/2013] [Accepted: 05/06/2013] [Indexed: 01/16/2023]
Abstract
Branched-chain keto acids (BCKAs) are associated with increased susceptibility to several degenerative diseases. However, BCKA concentrations in tissues or the amounts of tissue available are frequently at the limit of detection for standard plasma methods. To accurately and quickly determine tissue BCKAs, we have developed a sensitive ultra fast liquid chromatography-mass spectrometry (UFLC-MS) method. BCKAs from deproteinized tissue extractions were o-phenylenediamine (OPD) derivatized, ethyl acetate extracted, lyophilized in a vacuum centrifuge, and reconstituted in 200 mM ammonium acetate. Samples were injected onto a Shimadzu UFLC system coupled to an AB-Sciex 5600 Triple TOF mass spectrometer instrument that detected masses of the OPD BCKA products using a multiple reaction monitoring method. An OPD-derivatized (13)C-labeled keto acid was used as an internal standard. Application of the method for C57BL/6J (wild-type) and PP2Cm knockout mouse tissues, including kidney, adipose tissue, liver, gastrocnemius, and hypothalamus, is shown. The lowest tissue concentration measured by this method was 20 nM, with the standard curve covering a wide range (7.8-32,000 nM). Liquid chromatography-mass spectrometry run times for this assay were less than 5 min, facilitating high throughput, and the OPD derivatives were found to be stable over several days.
Collapse
Affiliation(s)
- Kristine C Olson
- Department of Cellular and Molecular Physiology, Penn State College of Medicine, Hershey, PA 17033, USA
| | | | | |
Collapse
|
48
|
Oyarzabal A, Martínez-Pardo M, Merinero B, Navarrete R, Desviat LR, Ugarte M, Rodríguez-Pombo P. A novel regulatory defect in the branched-chain α-keto acid dehydrogenase complex due to a mutation in the PPM1K gene causes a mild variant phenotype of maple syrup urine disease. Hum Mutat 2012; 34:355-62. [PMID: 23086801 DOI: 10.1002/humu.22242] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Accepted: 10/04/2012] [Indexed: 11/11/2022]
Abstract
This article describes a hitherto unreported involvement of the phosphatase PP2Cm, a recently described member of the branched-chain α-keto acid dehydrogenase (BCKDH) complex, in maple syrup urine disease (MSUD). The disease-causing mutation was identified in a patient with a mild variant phenotype, involving a gene not previously associated with MSUD. SNP array-based genotyping showed a copy-neutral homozygous pattern for chromosome 4 compatible with uniparental isodisomy. Mutation analysis of the candidate gene, PPM1K, revealed a homozygous c.417_418delTA change predicted to result in a truncated, unstable protein. No PP2Cm mutant protein was detected in immunocytochemical or Western blot expression analyses. The transient expression of wild-type PPM1K in PP2Cm-deficient fibroblasts recovered 35% of normal BCKDH activity. As PP2Cm has been described essential for cell survival, apoptosis and metabolism, the impact of its deficiency on specific metabolic stress variables was evaluated in PP2Cm-deficient fibroblasts. Increases were seen in ROS levels along with the activation of specific stress-signaling MAP kinases. Similar to that described for the pyruvate dehydrogenase complex, a defect in the regulation of BCKDH caused the aberrant metabolism of its substrate, contributing to the patient's MSUD phenotype--and perhaps others.
Collapse
Affiliation(s)
- Alfonso Oyarzabal
- Centro de Diagnóstico de Enfermedades Moleculares, Centro de Biología Molecular Severo Ochoa CSIC-UAM, Departamento de Biología Molecular, Universidad Autónoma de Madrid, CIBERER U746, IDIPAZ, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
49
|
Wang H, Wu G, Park HJ, Jiang PP, Sit WH, van Griensven LJ, Wan JMF. Protective effect of Phellinus linteus polysaccharide extracts against thioacetamide-induced liver fibrosis in rats: a proteomics analysis. Chin Med 2012; 7:23. [PMID: 23075396 PMCID: PMC3536605 DOI: 10.1186/1749-8546-7-23] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2012] [Accepted: 10/09/2012] [Indexed: 01/10/2023] Open
Abstract
Background The hepatoprotective potential of Phellinus linteus polysaccharide (PLP) extracts has been described. However, the molecular mechanism of PLP for the inhibition of liver fibrosis is unclear. This study aims to investigate the molecular protein signatures involved in the hepatoprotective mechanisms of PLP via a proteomics approach using a thioacetamide (TAA)-induced liver fibrosis rat model. Methods Male Sprague–Dawley rats were divided into three groups of six as follows: Normal group; TAA group, in which rats received TAA only; and PLP group, in which rats received PLP and TAA. Liver fibrosis was induced in the rats by repeated intraperitoneal injections of TAA at a dose of 200 mg/kg body weight twice a week for 4 weeks. PLP was given orally at a dose of 50 mg/kg body weight twice a day from the beginning of the TAA treatment until the end of the experiment. The development of liver cirrhosis was verified by histological examination. Liver proteomes were established by two-dimensional gel electrophoresis. Proteins with significantly altered expression levels were identified by matrix-assisted laser desorption/ionization-time of flight/time of flight mass spectrometry and the differentially expressed proteins were validated by immunohistochemical staining and reverse transcription polymerase chain reaction. Results Histological staining showed a remarkable reduction in liver fibrosis in the rats with PLP treatment. A total of 13 differentially expressed proteins including actin, tubulin alpha-1C chain, preprohaptoglobin, hemopexin, galectin-5, glutathione S-transferase alpha-4 (GSTA4), branched chain keto acid dehydrogenase hterotetrameric E1 subunit alpha (BCKDHA), glutathione S-transferase mu (GSTmu); glyceraldehyde-3-phosphate dehydrogenase (GAPDH); thiosulfate sulfurtransferase (TFT); betaine-homocysteine S-methyltransferase 1 (BHMT1); quinoid dihydropteridine reductase (QDPR); ribonuclease UK114 were observed between the TAA and PLP groups. These proteins are involved in oxidative stress, heme and iron metabolism, cysteine metabolism, and branched-chain amino acid catabolism. Conclusion The proteomics data indicate that P. linteus may be protective against TAA-induced liver fibrosis via regulation of oxidative stress pathways, heat shock pathways, and metabolic pathways for amino acids and nucleic acids.
Collapse
Affiliation(s)
- Hualin Wang
- Food and Nutrition Division, School of Biological Sciences, The University of Hong Kong, Hong Kong, SAR, China.
| | | | | | | | | | | | | |
Collapse
|
50
|
Shim W, Paik MJ, Nguyen DT, Lee JK, Lee Y, Kim JH, Shin EH, Kang JS, Jung HS, Choi S, Park S, Shim JS, Lee G. Analysis of changes in gene expression and metabolic profiles induced by silica-coated magnetic nanoparticles. ACS NANO 2012; 6:7665-7680. [PMID: 22830605 DOI: 10.1021/nn301113f] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Magnetic nanoparticles (MNPs) have proven themselves to be useful in biomedical research; however, previous reports were insufficient to address the potential dangers of nanoparticles. Here, we investigated gene expression and metabolic changes based on the microarray and gas chromatography-mass spectrometry with human embryo kidney 293 cells treated with MNPs@SiO(2)(RITC), a silica-coated MNP containing Rhodamine B isothiocyanate (RITC). In addition, measurement of reactive oxygen species (ROS) and ATP analysis were performed to evaluate the effect of MNPs@SiO(2)(RITC) on mitochondrial function. Compared to the nontreated control, glutamic acid was increased by more than 2.0-fold, and expression of genes related to the glutamic acid metabolic pathway was also disturbed in 1.0 μg/μL of MNPs@SiO(2)(RITC)-treated cells. Furthermore, increases in ROS concentration and mitochondrial damage were observed in this MNPs@SiO(2)(RITC) concentration. The organic acids related to the Krebs cycle were also disturbed, and the capacity of ATP synthesis was decreased in cell treated with an overdose of MNPs@SiO(2)(RITC). Collectively, these results suggest that overdose (1.0 μg/μL) of MNPs caused transcriptomic and metabolic disturbance. In addition, we suggest that a combination of gene expression and metabolic profiles will provide more detailed and sensitive toxicological evaluation for nanoparticles.
Collapse
Affiliation(s)
- Wooyoung Shim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|