1
|
Passarelli S, Free CM, Shepon A, Beal T, Batis C, Golden CD. Global estimation of dietary micronutrient inadequacies: a modelling analysis. Lancet Glob Health 2024; 12:e1590-e1599. [PMID: 39218000 PMCID: PMC11426101 DOI: 10.1016/s2214-109x(24)00276-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/12/2024] [Accepted: 06/20/2024] [Indexed: 09/04/2024]
Abstract
BACKGROUND Inadequate micronutrient intakes and related deficiencies are a major challenge to global public health. Analyses over the past 10 years have assessed global micronutrient deficiencies and inadequate nutrient supplies, but there have been no global estimates of inadequate micronutrient intakes. We aimed to estimate the global prevalence of inadequate micronutrient intakes for 15 essential micronutrients and to identify dietary nutrient gaps in specific demographic groups and countries. METHODS In this modelling analysis, we adopted a novel approach to estimating micronutrient intake, which accounts for the shape of a population's nutrient intake distribution and is based on dietary intake data from 31 countries. Using a globally harmonised set of age-specific and sex-specific nutrient requirements, we then applied these distributions to publicly available data from the Global Dietary Database on modelled median intakes of 15 micronutrients for 34 age-sex groups from 185 countries, to estimate the prevalence of inadequate nutrient intakes for 99·3% of the global population. FINDINGS On the basis of estimates of nutrient intake from food (excluding fortification and supplementation), more than 5 billion people do not consume enough iodine (68% of the global population), vitamin E (67%), and calcium (66%). More than 4 billion people do not consume enough iron (65%), riboflavin (55%), folate (54%), and vitamin C (53%). Within the same country and age groups, estimated inadequate intakes were higher for women than for men for iodine, vitamin B12, iron, and selenium and higher for men than for women for magnesium, vitamin B6, zinc, vitamin C, vitamin A, thiamin, and niacin. INTERPRETATION To our knowledge, this analysis provides the first global estimates of inadequate micronutrient intakes using dietary intake data, highlighting highly prevalent gaps across nutrients and variability by sex. These results can be used by public health practitioners to target populations in need of intervention. FUNDING The National Institutes of Health and the Dutch Ministry of Foreign Affairs.
Collapse
Affiliation(s)
- Simone Passarelli
- Department of Nutrition, Harvard T H Chan School of Public Health, Boston, MA, USA; Office of Global Food Security, US Department of State, Washington, DC, USA.
| | - Christopher M Free
- Marine Science Institute, University of California, Santa Barbara, Santa Barbara, CA, USA; Bren School of Environmental Science and Management, University of California, Santa Barbara, Santa Barbara, CA, USA
| | - Alon Shepon
- Department of Environmental Studies, The Porter School of the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Ty Beal
- Institute for Social, Behavioral and Economic Research, University of California, Santa Barbara, Santa Barbara, CA, USA; Global Alliance for Improved Nutrition, Washington, DC, USA
| | - Carolina Batis
- Nutrition and Health Research Center, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Christopher D Golden
- Department of Nutrition, Harvard T H Chan School of Public Health, Boston, MA, USA; Department of Environmental Health, Harvard T H Chan School of Public Health, Boston, MA, USA; Department of Global Health and Population, Harvard T H Chan School of Public Health, Boston, MA, USA
| |
Collapse
|
2
|
Ruxton CHS, Gordon S. Animal board invited review: The contribution of red meat to adult nutrition and health beyond protein. Animal 2024; 18:101103. [PMID: 38442540 DOI: 10.1016/j.animal.2024.101103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/07/2024] Open
Abstract
Red meat has been a critical part of human diets for millennia, providing a source of high-quality protein, micronutrients and essential fatty acids. However, as societies evolved and industrialisation reshaped our food systems, there has been a noticeable shift in meat-eating trends driven by concerns about the environmental impact of meat production and its potential risk to health. Yet, despite falling out of favour with some dietary experts and influencers, meat has an important role in a healthy diet and most adults still consume it. This article explores the nutritional value of red meat, authorised nutrition and health claims, how red meat fits into diet, providing the example of the United Kingdom (UK), and the health benefits and risks associated with both eating and avoiding red meat. Benefits of red meat include nutrient density and bioavailability while risks include colorectal cancer at high intakes of processed meats, based on observational studies. Benefits of meat-free diets include a lower risk of chronic diseases, based on observational studies, while risks include nutrient inadequacy, higher bone fracture risk and low protein quality. Hence, a wholesale shift to plant-based diets may not benefit adults who are vulnerable to sub-optimal nutrient intakes, such as women of child-bearing age and the elderly. More evidence from randomised controlled trials is recommended to fully understand the benefits and risks of both meat-containing and meat-free diets.
Collapse
Affiliation(s)
- C H S Ruxton
- Nutrition Communications, Cupar KY15 4HQ, United Kingdom.
| | - S Gordon
- NICHE, Ulster University, Coleraine BT52 1SA, United Kingdom
| |
Collapse
|
3
|
Domellöf M, Sjöberg A. Iron - a background article for the Nordic Nutrition Recommendations 2023. Food Nutr Res 2024; 68:10451. [PMID: 38370116 PMCID: PMC10870973 DOI: 10.29219/fnr.v68.10451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 11/14/2023] [Accepted: 12/20/2023] [Indexed: 02/20/2024] Open
Abstract
Iron absorption from foods is generally lower than that of most other nutrients and is highly variable depending on individual iron status and iron bioavailability in the meal. Several large population groups in the Nordic and Baltic countries are at risk of iron deficiency, including infants, young children, menstruating females, pregnant women as well as vegetarians. Iron deficiency leads to anemia, fatigue, and limited capacity for physical activity. Of particular concern is that iron deficiency anemia in young children is associated with impaired neurodevelopment. A comprehensive literature search has been performed and summarized. New factorial calculations have been performed considering iron losses, iron absorption and iron requirements in various population groups. Recent data on iron intakes and the prevalence of iron deficiency in the Nordic countries are presented. Average requirements and tentative recommended intakes are presented for 12 different population groups. Pregnant women and those with high menstrual blood losses should consume iron-rich food and undergo screening for iron deficiency. Infants should consume iron-rich complementary foods and cow's milk should be avoided as a drink before 12 months of age and limited to < 500 mL/day in toddlers. Vegetarians should consume a diet including wholegrains, legumes, seeds, and green vegetables together with iron absorption enhancers. There is no evidence that iron intake per se increases the risk of cancer or diabetes. Iron absorption from foods is generally lower than that of most other nutrients and can vary between <2 and 50% depending on individual iron status and iron bioavailability in the meal.
Collapse
Affiliation(s)
- Magnus Domellöf
- Department of Clinical Sciences, Umeå University, Umeå, Sweden
| | - Agneta Sjöberg
- Department of Food and Nutrition and Sport Science, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
4
|
Perera DN, Palliyaguruge CL, Eapasinghe DD, Liyanage DM, Seneviratne RACH, Demini SMD, Jayasinghe JASM, Faizan M, Rajagopalan U, Galhena BP, Hays H, Senathilake K, Tennekoon KH, Samarakoon SR. Factors affecting iron absorption and the role of fortification in enhancing iron levels. NUTR BULL 2023; 48:442-457. [PMID: 37965925 DOI: 10.1111/nbu.12643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 10/02/2023] [Accepted: 10/03/2023] [Indexed: 11/16/2023]
Abstract
Iron is an important micronutrient required for a number of biological processes including oxygen transport, cellular respiration, the synthesis of nucleic acids and the activity of key enzymes. The World Health Organization has recognised iron deficiency as the most common nutritional deficiency globally and as a major determinant of anaemia. Iron deficiency anaemia affects 40% of all children between the ages of 6 and 59 months, 37% of mothers who are pregnant and 30% of women between the ages of 15 and 49 years worldwide. Dietary iron exists in two main forms known as haem iron and non-haem iron. Haem iron is obtained from animal sources such as meat and shows higher bioavailability than non-haem iron, which can be obtained from both plant and animal sources. Different components in food can enhance or inhibit iron absorption from the diet. Components such as meat proteins and organic acids increase iron absorption, while phytate, calcium and polyphenols reduce iron absorption. Iron levels in the body are tightly regulated since both iron overload and iron deficiency can exert harmful effects on human health. Iron is stored mainly as haemoglobin and as iron bound to proteins such as ferritin and hemosiderin. Iron deficiency affects individuals at increased risk due to factors such as age, pregnancy, menstruation and various diseases. Different solutions for iron deficiency are applied at individual and community levels. Iron supplements and intravenous iron can be used to treat individuals with iron deficiency, while various types of iron-fortified foods and biofortified crops can be employed for larger communities. Foods such as rice, flour and biscuits have been used to prepare fortified iron products. However, it is important to ensure the fortification process does not exert significant negative effects on organoleptic properties and the shelf life of the food product.
Collapse
Affiliation(s)
- Dipun Nirmal Perera
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | | | - Dasuni Dilkini Eapasinghe
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Dilmi Maleesha Liyanage
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - R A C Haily Seneviratne
- Department of Food Sciences Technology, Faculty of Livestock Fisheries and Nutrition, Wayamba University of Sri Lanka, Kuliyapitiya, Sri Lanka
| | - S M D Demini
- Lanka ORIX Leasing Company (LOLC) Advanced Technologies (Pvt) Ltd, Ethul Kotte, Sri Lanka
| | - J A S M Jayasinghe
- Lanka ORIX Leasing Company (LOLC) Advanced Technologies (Pvt) Ltd, Ethul Kotte, Sri Lanka
| | - Mishal Faizan
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | | | - B Prasanna Galhena
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Hasi Hays
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Kanishka Senathilake
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Kamani H Tennekoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| | - Sameera R Samarakoon
- Institute of Biochemistry, Molecular Biology and Biotechnology, University of Colombo, Colombo, Sri Lanka
| |
Collapse
|
5
|
van Wonderen D, Melse-Boonstra A, Gerdessen JC. Iron Bioavailability Should be Considered when Modeling Omnivorous, Vegetarian, and Vegan Diets. J Nutr 2023; 153:2125-2132. [PMID: 37182693 DOI: 10.1016/j.tjnut.2023.05.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/03/2023] [Accepted: 05/10/2023] [Indexed: 05/16/2023] Open
Abstract
BACKGROUND To lower environmental impact of human food consumption, replacement of animal proteins with plant-based proteins is encouraged. However, the lower iron bioavailability of plant-based foods is rarely considered when designing healthy and sustainable diets by using diet modeling. The estimated absorbable iron content of vegetarian and vegan menu plans might therefore be too optimistic. OBJECTIVE The main aim of this study was to investigate and compare the impact of various methods to estimate absorbable iron intake on the nutritional adequacy of omnivorous, vegetarian, and vegan menu plans designed for women of reproductive age. METHODS A diet model was developed to design menu plans consisting of a selection of meals that best complied with nutritional requirements. Meals used for modeling were created based on food intake data from the National Health and Nutrition Examination Survey (NHANES). For each meal, absorbable iron concentrations were estimated by using 2 constant absorption factors (18% and 10%) and 2 diet-dependent absorption equations (Conway and Hallberg). For each absorption method and diet type, we used the diet model to design the optimal menu plan. Retrospectively, menu plans were evaluated by estimating the absorbable iron content by using the other absorption methods. RESULTS Retrospective diet-dependent absorbable iron estimates were consistently lower than estimates based on constant absorption factors. Using diet-dependent estimates increased absorbable iron by optimizing enhancer and inhibitor concentrations. CONCLUSION Iron bioavailability should be considered when modeling diets.
Collapse
Affiliation(s)
- Dominique van Wonderen
- Wageningen Economic Research, Wageningen University & Research, Wageningen, Netherlands.
| | | | - Johanna C Gerdessen
- Group Operations Research and Logistics, Wageningen University, Wageningen, Netherlands
| |
Collapse
|
6
|
Atkins LA, Spence AC, Szymlek-Gay EA. Iron Nutrition of Pre-Schoolers in High-Income Countries: A Review. Nutrients 2023; 15:nu15112616. [PMID: 37299582 DOI: 10.3390/nu15112616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/25/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Pre-schoolers are vulnerable to iron deficiency, which, in high-resource countries, is mainly caused by suboptimal or poorly absorbable iron intakes. This review examines the prevalence of inadequate iron intakes and status, and the non-dietary factors associated with these, among children aged between 2 and 5 years within high-income countries. It then considers the quality of the pre-schooler diet in terms of dietary factors, dietary patterns, and iron intakes. Additionally, it discusses the assessment of iron bioavailability and examines the various methods used to estimate the amount of absorbable iron in pre-schooler diets. Knowledge of the adequacy of iron intakes and bioavailability of iron intakes, and dietary patterns associated with iron intakes can facilitate the design and implementation of effectively targeted community-based intervention studies to improve iron intakes and iron bioavailability to minimise the risk of iron deficiency.
Collapse
Affiliation(s)
- Linda A Atkins
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - Alison C Spence
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia
| | - Ewa A Szymlek-Gay
- Institute for Physical Activity and Nutrition (IPAN), School of Exercise and Nutrition Sciences, Deakin University, Geelong, VIC 3220, Australia
| |
Collapse
|
7
|
Consalez F, Ahern M, Andersen P, Kjellevold M. The Effect of the Meat Factor in Animal-Source Foods on Micronutrient Absorption: A Scoping Review. Adv Nutr 2022; 13:2305-2315. [PMID: 36055778 PMCID: PMC9776636 DOI: 10.1093/advances/nmac089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 06/21/2022] [Accepted: 08/18/2022] [Indexed: 01/29/2023] Open
Abstract
The EAT-Lancet Commission's planetary health guidelines suggest a reduction in the consumption of animal-source foods (ASFs) for better health and more sustainable food systems. ASFs are highly nutrient dense, therefore suited to address the widespread issue of micronutrient deficiencies, particularly in low-resource settings where diets are predominantly plant based. ASFs are also believed to contain the meat factor, a substance enhancing the absorption of micronutrients from plant-based foods. We conducted a scoping review with the objective of systematically mapping the available evidence on the meat factor. The MEDLINE/PubMed and Web of Science databases were searched for literature published up to September 2021. Articles eligible for inclusion were all studies assessing the effect of adding ASFs and/or ASF fractions on micronutrient absorption from a plant-based meal or the overall diet in animal models and human subjects. Screening and data extraction were performed, and results were charted into 12 categories. We identified 77 articles eligible for inclusion, 52 of which were conducted in human subjects, 24 in animal models, and 1 in both. The addition of muscle tissue and muscle tissue fractions to single plant-based meals steadily increased absorption of iron and zinc across studies. The efficacy of the meat factor in increasing iron and zinc absorption in the overall diet is less clear. No clear differences emerged between red meat, poultry, and fish in promoting the meat factor effect. No clear evidence indicates that milk and egg products contain the meat factor. Our review highlights the importance of muscle tissue for the potential of the meat factor to enhance absorption of micronutrients of concern. Although the literature supports including sustainable and economically accessible forms of these ASFs into the diet, we found limited studies in resource-poor countries and of diets with low meat intake.
Collapse
Affiliation(s)
- Fabio Consalez
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Molly Ahern
- Fisheries and Aquaculture Division, Food and Agriculture Organization of the United Nations (FAO), Rome, Italy
| | - Peter Andersen
- Department of Geography, University of Bergen, Bergen, Norway
| | | |
Collapse
|
8
|
The influence of iron source, hydrophilic emulsifiers, and positioning of encapsulates on in vitro bioaccessibility and simultaneous delivery of iron and curcumin by water-in-oil-in-water (W1/O/W2) double emulsions. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2022. [DOI: 10.1007/s11694-022-01691-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
9
|
Ravindra PV, Janhavi P, Divyashree S, Muthukumar SP. Nutritional interventions for improving the endurance performance in athletes. Arch Physiol Biochem 2022; 128:851-858. [PMID: 32223574 DOI: 10.1080/13813455.2020.1733025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Endurance refers to the ability of skeletal muscles to perform continuously withstanding the hardships of exercise. Endurance exercises have three phases: pre-, during-, and post-workout phase. The nutritional requirements that drive these phases vary on intensity, type of workout, individual's body composition, training, weather conditions, etc. Generally, the pre-workout phase requires glycogen synthesis and spare glycogen breakdown. While workout phase, requires rapid absorption of exogenous glucose, insulin release to transport glucose into muscle cells, replenish the loss of electrolytes, promote fluid retention, etc. However, post-workout phase requires quick amino acid absorption, muscle protein synthesis, repair of damaged muscle fibres and tendon, ameliorate inflammation, oxidative stress, etc. Therefore, nutritional sources that can help these metabolic requirements is recommended. In this review, various dietary interventions including timing and amount of nutrient consumption that can promote the above metabolic requirements that in turn support in improving the endurance potential in athletes are discussed.HIGHLIGHTSReview article describes nutritional requirements of endurance exercises.It also describes nutritional interventions to enhance the endurance potential in athletes.
Collapse
Affiliation(s)
- P V Ravindra
- Department of Biochemistry, CSIR-CFTRI, Mysuru, India
| | - P Janhavi
- Department of Biochemistry, CSIR-CFTRI, Mysuru, India
| | - S Divyashree
- Department of Biochemistry, CSIR-CFTRI, Mysuru, India
| | | |
Collapse
|
10
|
Mayer Labba IC, Hoppe M, Gramatkovski E, Hjellström M, Abdollahi M, Undeland I, Hulthén L, Sandberg AS. Lower Non-Heme Iron Absorption in Healthy Females from Single Meals with Texturized Fava Bean Protein Compared to Beef and Cod Protein Meals: Two Single-Blinded Randomized Trials. Nutrients 2022; 14:nu14153162. [PMID: 35956338 PMCID: PMC9370477 DOI: 10.3390/nu14153162] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 12/19/2022] Open
Abstract
Meat analogs based on plant protein extracts are rising in popularity as meat consumption declines. A dietary shift away from meat, which has a high iron bioavailability, may have a negative effect on the amount of iron absorbed from the diet. Iron absorption from legumes cultivated in regions not suitable for soy production, such as fava bean, has not yet been explored. The aim of this study was to evaluate non-heme iron absorption from a meal with texturized fava bean protein compared to beef and cod protein meals. The study included two single-blinded iron isotope trials in healthy Swedish women of the ages 18–45 years, each of whom served as their own control. The participants were served matched test meals containing beef and fava bean protein (Study 1) or cod and fava bean protein (Study 2) with radiolabeled non-heme iron 55Fe and 59Fe. The absorption of non-heme iron from test meals was measured by whole-body counting and erythrocyte incorporation. The absorption of non-heme iron, measured as erythrocyte incorporation ratio, from beef protein meal was 4.2 times higher compared to texturized fava bean meal, and absorption from cod protein meal was 2.7 times higher compared to the fava bean meal. The adjusted non-heme iron absorption, normalized to a 40% reference dose uptake, was 9.2% for cod protein meal, 21.7% for beef protein meal, and 4.2% for texturized fava bean meal. A fava bean protein meal has markedly lower iron bioavailability in healthy females compared with a meal of beef or cod protein. Therefore, a dietary shift from meat and fish protein to fava bean protein may increase the risk of iron deficiency.
Collapse
Affiliation(s)
- Inger-Cecilia Mayer Labba
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 58 Gothenburg, Sweden; (M.A.); (I.U.); (A.-S.S.)
- Correspondence:
| | - Michael Hoppe
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; (M.H.); (E.G.); (L.H.)
| | - Elisabeth Gramatkovski
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; (M.H.); (E.G.); (L.H.)
| | - Martin Hjellström
- Department of Medical Radiation Sciences, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden;
| | - Mehdi Abdollahi
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 58 Gothenburg, Sweden; (M.A.); (I.U.); (A.-S.S.)
| | - Ingrid Undeland
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 58 Gothenburg, Sweden; (M.A.); (I.U.); (A.-S.S.)
| | - Lena Hulthén
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 413 45 Gothenburg, Sweden; (M.H.); (E.G.); (L.H.)
| | - Ann-Sofie Sandberg
- Food and Nutrition Science, Department of Biology and Biological Engineering, Chalmers University of Technology, 412 58 Gothenburg, Sweden; (M.A.); (I.U.); (A.-S.S.)
| |
Collapse
|
11
|
Piskin E, Cianciosi D, Gulec S, Tomas M, Capanoglu E. Iron Absorption: Factors, Limitations, and Improvement Methods. ACS OMEGA 2022; 7:20441-20456. [PMID: 35755397 PMCID: PMC9219084 DOI: 10.1021/acsomega.2c01833] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 05/20/2022] [Indexed: 05/04/2023]
Abstract
Iron is an essential element for human life since it participates in many functions in the human body, including oxygen transport, immunity, cell division and differentiation, and energy metabolism. Iron homeostasis is mainly controlled by intestinal absorption because iron does not have active excretory mechanisms for humans. Thus, efficient intestinal iron bioavailability is essential to reduce the risk of iron deficiency anemia. There are two forms of iron, heme and nonheme, found in foods. The average daily dietary iron intake is 10 to 15 mg in humans since only 1 to 2 mg is absorbed through the intestinal system. Nutrient-nutrient interactions may play a role in dietary intestinal iron absorption. Dietary inhibitors such as calcium, phytates, polyphenols and enhancers such as ascorbic acid and proteins mainly influence iron bioavailability. Numerous studies have been carried out for years to enhance iron bioavailability and combat iron deficiency. In addition to traditional methods, innovative techniques are being developed day by day to enhance iron bioavailability. This review will provide information about iron bioavailability, factors affecting absorption, iron deficiency, and recent studies on improving iron bioavailability.
Collapse
Affiliation(s)
- Elif Piskin
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Danila Cianciosi
- Faculty of Medicine, Department of Clinical Sciences, Polytechnic University of Marche, via Pietro Ranieri, 60131 Ancona, Italy
| | - Sukru Gulec
- Molecular Nutrition and Human Physiology Laboratory, Department of Food Engineering, İzmir Institute of Technology, 35430 Urla, İzmir
| | - Merve Tomas
- Faculty of Engineering and Natural Sciences, Food Engineering Department, Istanbul Sabahattin Zaim University, Halkali, 34303 Istanbul, Turkey
| | - Esra Capanoglu
- Department of Food Engineering, Faculty of Chemical and Metallurgical Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| |
Collapse
|
12
|
Vatandoust A, Diosady L. Iron compounds and their organoleptic properties in salt fortification with iron and iodine: an overview. Curr Opin Food Sci 2022. [DOI: 10.1016/j.cofs.2021.12.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
13
|
Association of Habitual Dietary Intake with Liver Iron-A Population-Based Imaging Study. Nutrients 2021; 14:nu14010132. [PMID: 35011009 PMCID: PMC8746950 DOI: 10.3390/nu14010132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023] Open
Abstract
Iron-related disorders of the liver can result in serious health conditions, such as liver cirrhosis. Evidence on the role of modifiable lifestyle factors like nutrition in liver iron storage is lacking. Thus, we aimed to assess the association of habitual diet with liver iron content (LIC). We investigated 303 participants from the population-based KORA-MRI study who underwent whole-body magnetic resonance imaging (MRI). Dietary habits were evaluated using repeated 24 h food lists and a food frequency questionnaire. Sex-stratified multiple linear regression models were applied to quantify the association between nutrition variables of interest and LIC, adjusting for liver fat content (LFC), energy intake, and age. Mean age of participants was 56.4 ± 9.0 years and 44.2% were female. Mean LIC was 1.23 ± 0.12 mg/g dry weight, with higher values in men than in women (1.26 ± 0.13 and 1.20 ± 0.10 mg/g, p < 0.001). Alcohol intake was positively associated with LIC (men: β = 1.94; women: β = 4.98, p-values < 0.03). Significant negative associations with LIC were found for fiber (β = −5.61, p < 0.001) and potassium (β = −0.058, p = 0.034) for female participants only. Furthermore, LIC was highly correlated with liver fat content in both sexes. Our findings suggests that there are sex-specific associations of habitual dietary intake and LIC. Alcohol, fiber, and potassium may play a considerable role in liver iron metabolism.
Collapse
|
14
|
Cristina NM, Lucia D. Nutrition and Healthy Aging: Prevention and Treatment of Gastrointestinal Diseases. Nutrients 2021; 13:4337. [PMID: 34959889 PMCID: PMC8706789 DOI: 10.3390/nu13124337] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/16/2022] Open
Abstract
Nutritional well-being is a fundamental aspect for the health, autonomy and, therefore, the quality of life of all people, but especially of the elderly. It is estimated that at least half of non-institutionalized elderly people need nutritional intervention to improve their health and that 85% have one or more chronic diseases that could improve with correct nutrition. Although prevalence estimates are highly variable, depending on the population considered and the tool used for its assessment, malnutrition in the elderly has been reported up to 50%. Older patients are particularly at risk of malnutrition, due to multiple etiopathogenetic factors which can lead to a reduction or utilization in the intake of nutrients, a progressive loss of functional autonomy with dependence on food, and psychological problems related to economic or social isolation, e.g., linked to poverty or loneliness. Changes in the aging gut involve the mechanical disintegration of food, gastrointestinal motor function, food transit, intestinal wall function, and chemical digestion of food. These alterations progressively lead to the reduced ability to supply the body with adequate levels of nutrients, with the consequent development of malnutrition. Furthermore, studies have shown that the quality of life is impaired both in gastrointestinal diseases, but especially in malnutrition. A better understanding of the pathophysiology of malnutrition in elderly people is necessary to promote the knowledge of age-related changes in appetite, food intake, homeostasis, and body composition in order to better develop effective prevention and intervention strategies to achieve healthy aging.
Collapse
Affiliation(s)
- Neri Maria Cristina
- Division of Gastroenterology, Geriatric Institute Pio Albergo Trivulzio, 20146 Milan, Italy
| | - d’Alba Lucia
- Department of Gastroenterology and Endoscopy, San Camillo Forlanini Hospital, 00149 Rome, Italy;
| |
Collapse
|
15
|
Tian Q, Fan Y, Hao L, Wang J, Xia C, Wang J, Hou H. A comprehensive review of calcium and ferrous ions chelating peptides: Preparation, structure and transport pathways. Crit Rev Food Sci Nutr 2021:1-13. [PMID: 34761991 DOI: 10.1080/10408398.2021.2001786] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Calcium and iron play crucial roles in human health, deficiencies of which have globally generated public health risks. The poor solubility, low bioavailability and gastrointestinal irritation of existing commercial mineral supplements limit their further application. As an emerging type of mineral supplement, mineral chelating peptides have drawn plenty of attention due to their advantages in stability, absorptivity and safety. A majority of calcium and ferrous ions chelating peptides have been isolated from food processing by-products. Enzymatic hydrolysis combined with affinity chromatography, gel filtration and other efficient separation techniques is the predominant method to obtain peptides with high calcium and ferrous affinity. Peptides with small molecular weight are more likely to chelate metals, and carboxyl, amino groups and nitrogen, oxygen, sulfur atoms in the side chain, which can provide lone-pair electrons to combine with metallic ions. Unidentate, bidentate, tridentate, bridging and α mode are regarded as common chelating modes. Moreover, the stability of peptide-mineral complexes in the gastrointestinal tract and possible transport pathways were summarized. This review is to present an overview of the latest research progress, existing problems and research prospects in the field of peptide-mineral complexes and to provide a more comprehensive theoretical basis for their exploitation in food industry.
Collapse
Affiliation(s)
- Qiaoji Tian
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Yan Fan
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Li Hao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jie Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Chensi Xia
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jingfeng Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Hu Hou
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Geiker NRW, Bertram HC, Mejborn H, Dragsted LO, Kristensen L, Carrascal JR, Bügel S, Astrup A. Meat and Human Health-Current Knowledge and Research Gaps. Foods 2021; 10:1556. [PMID: 34359429 PMCID: PMC8305097 DOI: 10.3390/foods10071556] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 12/14/2022] Open
Abstract
Meat is highly nutritious and contributes with several essential nutrients which are difficult to obtain in the right amounts from other food sources. Industrially processed meat contains preservatives including salts, possibly exerting negative effects on health. During maturation, some processed meat products develop a specific microbiota, forming probiotic metabolites with physiological and biological effects yet unidentified, while the concentration of nutrients also increases. Meat is a source of saturated fatty acids, and current WHO nutrition recommendations advise limiting saturated fat to less than ten percent of total energy consumption. Recent meta-analyses of both observational and randomized controlled trials do not support any effect of saturated fat on cardiovascular disease or diabetes. The current evidence regarding the effect of meat consumption on health is potentially confounded, and there is a need for sufficiently powered high-quality trials assessing the health effects of meat consumption. Future studies should include biomarkers of meat intake, identify metabolic pathways and include detailed study of fermented and other processed meats and their potential of increasing nutrient availability and metabolic effects of compounds.
Collapse
Affiliation(s)
- Nina Rica Wium Geiker
- Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (L.O.D.); (S.B.); (A.A.)
| | | | - Heddie Mejborn
- National Food Institute, Division of Food Technology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark;
| | - Lars O. Dragsted
- Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (L.O.D.); (S.B.); (A.A.)
| | - Lars Kristensen
- Danish Meat Research Institute—DMRI Technological Institute, DK-2630 Taastrup, Denmark;
| | - Jorge R. Carrascal
- Department of Food Science, University of Copenhagen, DK-1958 Frederiksberg C, Denmark;
- IPROCAR, University of Extremadura, E-10004 Caceres, Spain
| | - Susanne Bügel
- Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (L.O.D.); (S.B.); (A.A.)
| | - Arne Astrup
- Department of Nutrition, Exercise and Sports, University of Copenhagen, DK-2200 Copenhagen N, Denmark; (L.O.D.); (S.B.); (A.A.)
| |
Collapse
|
17
|
Delivery systems for improving iron uptake in anemia. Int J Pharm 2021; 601:120590. [PMID: 33845149 DOI: 10.1016/j.ijpharm.2021.120590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/30/2021] [Accepted: 04/05/2021] [Indexed: 01/01/2023]
Abstract
Anemia poses a threat to a broad population globally as depleted hemoglobin leads to a plethora of conditions, and the most common cause includes iron deficiency. Iron is an essential element important for erythropoiesis, DNA synthesis, protection of the immune system, energy production, and cognitive function and hence should be maintained at appropriate levels. Various proteins are involved in transporting and absorption of iron, activation of heme synthesis, and RBC production that could be possible targets to improve iron delivery. Oral supplementation of iron either from dietary or synthetic sources has been the frontline therapy for treating iron deficiency in anemia. At the same time, intravenous administration is provided in chronic anemia, such as chronic kidney diseases (CKD). This review focuses on the strategies developed to overcome the disadvantages of available iron therapies and increase iron absorption and uptake in the body to restore iron content. Nanotechnology combined with the food fortification processes gained attention as they help develop new delivery systems to improve iron uptake by enterocytes. Furthermore, naturally obtained products such as polysaccharides, peptides, proteins, and new synthetic molecules have been used in fabrication of iron-carrier systems. The establishment of transdermal iron delivery systems such as microneedle arrays or iontophoresis, or the discovery of new molecules also proved to be an effective way for delivering iron in patients non-compliant to oral therapy.
Collapse
|
18
|
Milman NT. Managing Genetic Hemochromatosis: An Overview of Dietary Measures, Which May Reduce Intestinal Iron Absorption in Persons With Iron Overload. Gastroenterology Res 2021; 14:66-80. [PMID: 34007348 PMCID: PMC8110241 DOI: 10.14740/gr1366] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 02/23/2021] [Indexed: 01/22/2023] Open
Abstract
Genetic hemochromatosis causes iron overload by excess absorption of dietary iron, due to a decreased expression of hepcidin. The objective was to elaborate dietary recommendations that can reduce intestinal iron absorption in hemochromatosis patients, based on our present knowledge of the iron contained in nutrients and the mechanisms of iron uptake. This is a narrative review. Literature search in PubMed and Google Scholar of papers dealing with iron absorption from the diet was conducted. Most important proposed dietary recommendations are: 1) Choose a varied vegetarian, semi-vegetarian or flexitarian diet. A “veggie-lacto-ovo-poultry-pescetarian” diet seems optimal. Avoid iron enriched foods and iron supplements. 2) Eat many vegetables and fruits, at least 600 g per day. Choose protein rich pulses and legumes (e.g., kidney- and soya beans). Fresh fruits should be eaten between meals. 3) Abstain from red meat from mammals and choose the lean, white meat from poultry. Avoid processed meat, offal and blood containing foods. Eat no more than 200 g meat from poultry per week. Choose fish, eggs, vegetables and protein rich legumes the other days. Eat fish two to four times a week as main course, 350 - 500 g fish per week, of which half should be fat fish. 4) Choose whole grain products in cereals and bread. Avoid iron enriched grains. Choose non-sourdough, yeast-fermented bread with at least 50% whole grain. 5) Choose vegetable oils, and low-fat dairy products. 6) Eat less sugar and salt. Choose whole foods and foods with minimal processing and none or little added sugar or salt. 7) Quench your thirst in water. Drink green- or black tea, coffee, or low-fat milk with the meals, alternatively water or non-alcoholic beer. Fruit juices must be consumed between meals. Abstain from alcoholic beverages. Drink soft drinks, non-alcoholic beer, or non-alcoholic wine instead. These advices are close to the official Danish dietary recommendations in 2021. In the management of hemochromatosis, dietary modifications that lower iron intake and decrease iron bioavailability may provide additional measures to reduce iron uptake from the foods and reduce the number of phlebotomies. However, there is a need for large, prospective, randomized studies that specifically evaluate the effect of dietary interventions.
Collapse
Affiliation(s)
- Nils Thorm Milman
- Department of Clinical Biochemistry, Naestved Hospital, University College Zealand, DK-4700 Naestved, Denmark.
| |
Collapse
|
19
|
Palacios AM, Freeland-Graves JH, Dulience SJL, Delnatus JR, Iannotti LL. Differences in factors associated with anemia in Haitian children from urban and rural areas. PLoS One 2021; 16:e0247975. [PMID: 33822795 PMCID: PMC8023464 DOI: 10.1371/journal.pone.0247975] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 02/16/2021] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND In Haiti, differences in the prevalence of anemia between urban and rural areas have been observed. OBJECTIVE To identify moderating factors that may help explain the difference in the prevalence of anemia in children from poor urban vs. rural areas of Haiti. METHODS This cross-sectional study used secondary data from urban and rural school-based trials that assessed the effectiveness of a nutrition intervention. The study was registered at ClinicalTrials.gov as NCT02747524. A total of 300 rural- and 981 urban- children between 2.5-13 years of age were included in this analysis. Effect modification in a binary logistic generalized linear mixed model was conducted using sample weights in SPSS® version 26. Models were adjusted for age and income. School cluster was included as random effect. RESULTS In rural areas, stunting was more prevalent in children with anemia vs. no anemia, (16.6%, and 6.3%, P = 0.008), respectively. Also, rural children with anemia lived with fewer adults vs. rural children with no anemia, ([Formula: see text] = 2.83±1.29, and 3.30±1.54, P = 0.005), respectively. In poor urban areas, helminth morbidities were more frequent in children with anemia vs. no anemia, (21.9% vs. 13.9, P = 0.011), respectively. In the combined sample, stunting, [AOR = 2.05; 95%CI (1.32-3.18)], age [AOR = 0.89; 95%CI (0.85-0.93)], and households with more adults [AOR = 0.77; 95%CI (0.67-0.87)] were associated with anemia. Effect modification by place of residence was observed in households with more adults (t = 3.83, P<0.001). No other nutritional, dietary, sanitation or morbidity factors or effect modifiers were observed. CONCLUSIONS In this sample, factors associated with anemia differed in poor urban and rural children from Haiti including family structure and helminth morbidities. Stunting and lower age increased the odds of anemia in the combined sample. Family structure appears to have an important role in anemia, and further research understanding the influence of family structures in anemia is needed.
Collapse
Affiliation(s)
- Ana M. Palacios
- Department of Applied Health Science, School of Public Health, Indiana University, Bloomington, IN, United States of America
| | - Jeanne H. Freeland-Graves
- Department of Applied Health Science, School of Public Health, Indiana University, Bloomington, IN, United States of America
| | | | | | - Lora L. Iannotti
- Institute for Public Health, George Warren Brown School of Social Work, Washington University in St. Louis, St. Louis, Missouri, United States of America
| |
Collapse
|
20
|
Abdurahman A, Gashu D. Level of hemoglobin among cow milk and camel milk consuming young children: A comparative study. PLoS One 2021; 16:e0247572. [PMID: 33662032 PMCID: PMC7932090 DOI: 10.1371/journal.pone.0247572] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 02/09/2021] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Cow milk is an important source of macro-and micronutrients. However, it has low iron content but high content of casein and calcium thus could negatively influence hemoglobin synthesis. On the other hand, camel milk contains higher iron concentration than cow milk. In addition, the majority of iron in camel milk is associated with the lower molecular fraction of casein suggesting better bioavailability. Furthermore, vitamin C concentration, a useful iron absorption enhancer, is more than three-fold greater in camel milk than cow milk. This study compared hemoglobin concentration among young children consuming consistently cow milk or camel milk. METHODS Hemoglobin concentration of young children (aged 6-59 mo) from settled pastoralist communities of the Somali region, Ethiopia, consistently consuming cow milk (n = 166) or camel milk (n = 166) was determined. In addition, socio-demographic and water, sanitation, and hygienic (WASH) conditions of study participants' households were captured. Furthermore, dietary intake and anthropometric characteristics of participating children were assessed. RESULTS Among the participating children, 38.6% were underweight, 33.4% were stunted, and 34.5% were wasted. In addition, 77.4% of children were anemic. The present study households had poor WASH conditions. Only 0.6% of children had the minimum acceptable dietary diversity. There was small but significant mean hemoglobin difference among camel milk and cow milk consuming children (9.6±1.8 g/dl vs 9.1±2.2 g/dl; p = 0.012). In addition, the odds of low hemoglobin concentration was greater among cow milk consuming children than camel milk consuming children [AOR 2.17; 95 CI; 1.39, 3.37; p = 0.001]. However, the overall anemia prevalence among the two groups was similar. CONCLUSION Camel milk consumption is associated with better hemoglobin concentration but may not be sufficient to prevent anemia in populations from resource poor settings. The etiology of anemia is multifactorial thus further studies on the link between milk consumption and hemoglobin concentration are important.
Collapse
Affiliation(s)
- Ahmed Abdurahman
- Department of Food Science and Nutrition, Jigjiga University, Jijiga, Ethiopia
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| | - Dawd Gashu
- Center for Food Science and Nutrition, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
21
|
Hurrell RF. Iron Fortification Practices and Implications for Iron Addition to Salt. J Nutr 2021; 151:3S-14S. [PMID: 33582781 PMCID: PMC7882371 DOI: 10.1093/jn/nxaa175] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 03/31/2020] [Accepted: 05/28/2020] [Indexed: 02/06/2023] Open
Abstract
This introductory article provides an in-depth technical background for iron fortification, and thus introduces a series of articles in this supplement designed to present the current evidence on the fortification of salt with both iodine and iron, that is, double-fortified salt (DFS). This article reviews our current knowledge of the causes and consequences of iron deficiency and anemia and then, with the aim of assisting the comparison between DFS and other common iron-fortified staple foods, discusses the factors influencing the efficacy of iron-fortified foods. This includes the dietary and physiological factors influencing iron absorption; the choice of an iron compound and the fortification technology that will ensure the necessary iron absorption with no sensory changes; encapsulation of iron fortification compounds to prevent unacceptable sensory changes; the addition of iron absorption enhancers; the estimation of the iron fortification level for each vehicle based on iron requirements and consumption patterns; and the iron status biomarkers that are needed to demonstrate improved iron status in populations regularly consuming the iron-fortified food. The supplement is designed to provide a summary of evidence to date that can help advise policy makers considering DFS as an intervention to address the difficult public health issue of iron deficiency anemia, while at the same time using DFS to target iodine deficiency.
Collapse
|
22
|
Alrosan M, Tan TC, Easa AM, Gammoh S, Alu'datt MH. Molecular forces governing protein-protein interaction: Structure-function relationship of complexes protein in the food industry. Crit Rev Food Sci Nutr 2021; 62:4036-4052. [PMID: 33455424 DOI: 10.1080/10408398.2021.1871589] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The application of protein-protein interaction (PPI) has been widely used in various industries, such as food, nutraceutical, and pharmaceutical. A deeper understanding of PPI is needed, and the molecular forces governing proteins and their interaction must be explained. The design of new structures with improved functional properties, e.g., solubility, emulsion, and gelation, has been fueled by the development of structural and colloidal building blocks. In this review, the molecular forces of protein structures are discussed, followed by the relationship between molecular force and structure, ways of a bind of proteins together in solution or at the interface, and functional properties. A more detailed look is thus taken at the relationship between the various influencing factors on molecular forces involved in PPI. These factors include protein properties, such as types, concentration, and mixing ratio, and solvent conditions, such as ionic strength and pH. This review also summarizes methods tha1t are capable of identifying molecular forces in protein and PPI, as well as characterizing protein structure.
Collapse
Affiliation(s)
- Mohammad Alrosan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia.,Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Thuan-Chew Tan
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Azhar Mat Easa
- Food Technology Division, School of Industrial Technology, Universiti Sains Malaysia, Penang, Malaysia
| | - Sana Gammoh
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| | - Muhammad H Alu'datt
- Department of Nutrition and Food Technology, Faculty of Agriculture, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
23
|
Zhang YY, Stockmann R, Ng K, Ajlouni S. Opportunities for plant-derived enhancers for iron, zinc, and calcium bioavailability: A review. Compr Rev Food Sci Food Saf 2020; 20:652-685. [PMID: 33443794 DOI: 10.1111/1541-4337.12669] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 09/08/2020] [Accepted: 10/20/2020] [Indexed: 12/31/2022]
Abstract
Understanding of the mechanism of interactions between dietary elements, their salts, and complexing/binding ligands is vital to manage both deficiency and toxicity associated with essential element bioavailability. Numerous mineral ligands are found in both animal and plant foods and are known to exert bioactivity via element chelation resulting in modulation of antioxidant capacity or micobiome metabolism among other physiological outcomes. However, little is explored in the context of dietary mineral ligands and element bioavailability enhancement, particularly with respect to ligands from plant-derived food sources. This review highlights a novel perspective to consider various plant macro/micronutrients as prospective bioavailability enhancing ligands of three essential elements (Fe, Zn, and Ca). We also delineate the molecular mechanisms of the ligand-binding interactions underlying mineral bioaccessibility at the luminal level. We conclude that despite current understandings of some of the structure-activity relationships associated with strong mineral-ligand binding, the physiological links between ligands as element carriers and uptake at targeted sites throughout the gastrointestinal (GI) tract still require more research. The binding behavior of potential ligands in the human diet should be further elucidated and validated using pharmacokinetic approaches and GI models.
Collapse
Affiliation(s)
- Yianna Y Zhang
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,CSIRO Agriculture & Food, Werribee, VIC, Australia
| | | | - Ken Ng
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Said Ajlouni
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| |
Collapse
|
24
|
Milman NT. A Review of Nutrients and Compounds, Which Promote or Inhibit Intestinal Iron Absorption: Making a Platform for Dietary Measures That Can Reduce Iron Uptake in Patients with Genetic Haemochromatosis. J Nutr Metab 2020; 2020:7373498. [PMID: 33005455 PMCID: PMC7509542 DOI: 10.1155/2020/7373498] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/01/2020] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To provide an overview of nutrients and compounds, which influence human intestinal iron absorption, thereby making a platform for elaboration of dietary recommendations that can reduce iron uptake in patients with genetic haemochromatosis. DESIGN Review. Setting. A literature search in PubMed and Google Scholar of papers dealing with iron absorption. RESULTS The most important promoters of iron absorption in foods are ascorbic acid, lactic acid (produced by fermentation), meat factors in animal meat, the presence of heme iron, and alcohol which stimulate iron uptake by inhibition of hepcidin expression. The most important inhibitors of iron uptake are phytic acid/phytates, polyphenols/tannins, proteins from soya beans, milk, eggs, and calcium. Oxalic acid/oxalate does not seem to influence iron uptake. Turmeric/curcumin may stimulate iron uptake through a decrease in hepcidin expression and inhibit uptake by complex formation with iron, but the net effect has not been clarified. CONCLUSIONS In haemochromatosis, iron absorption is enhanced due to a decreased expression of hepcidin. Dietary modifications that lower iron intake and decrease iron bioavailability may provide additional measures to reduce iron uptake from the foods. This could stimulate the patients' active cooperation in the treatment of their disorder and reduce the number of phlebotomies.
Collapse
Affiliation(s)
- Nils Thorm Milman
- Department of Clinical Biochemistry, Næstved Hospital, University College Zealand, DK-4700 Næstved, Denmark
| |
Collapse
|
25
|
Rametta R, Meroni M, Dongiovanni P. From Environment to Genome and Back: A Lesson from HFE Mutations. Int J Mol Sci 2020; 21:ijms21103505. [PMID: 32429125 PMCID: PMC7279025 DOI: 10.3390/ijms21103505] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 05/07/2020] [Accepted: 05/12/2020] [Indexed: 02/06/2023] Open
Abstract
The environment and the human genome are closely entangled and many genetic variations that occur in human populations are the result of adaptive selection to ancestral environmental (mainly dietary) conditions. However, the selected mutations may become maladaptive when environmental conditions change, thus becoming candidates for diseases. Hereditary hemochromatosis (HH) is a potentially lethal disease leading to iron accumulation mostly due to mutations in the HFE gene. Indeed, homozygosity for the C282Y HFE mutation is associated with the primary iron overload phenotype. However, both penetrance of the C282Y variant and the clinical manifestation of the disease are extremely variable, suggesting that other genetic, epigenetic and environmental factors play a role in the development of HH, as well as, and in its progression to end-stage liver diseases. Alcohol consumption and dietary habits may impact on the phenotypic expression of HFE-related hemochromatosis. Indeed, dietary components and bioactive molecules can affect iron status both directly by modulating its absorption during digestion and indirectly by the epigenetic modification of genes involved in its uptake, storage and recycling. Thus, the premise of this review is to discuss how environmental pressures led to the selection of HFE mutations and whether nutritional and lifestyle interventions may exert beneficial effects on HH outcomes and comorbidities.
Collapse
Affiliation(s)
- Raffaela Rametta
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (R.R.); (M.M.)
| | - Marica Meroni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (R.R.); (M.M.)
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, 20122 Milan, Italy
| | - Paola Dongiovanni
- General Medicine and Metabolic Diseases, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Pad. Granelli, via F Sforza 35, 20122 Milan, Italy; (R.R.); (M.M.)
- Correspondence: ; Tel.: +39-02-5503-3467; Fax: +39-02-5503-4229
| |
Collapse
|
26
|
Wu W, Yang Y, Sun N, Bao Z, Lin S. Food protein-derived iron-chelating peptides: The binding mode and promotive effects of iron bioavailability. Food Res Int 2020; 131:108976. [DOI: 10.1016/j.foodres.2020.108976] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/01/2020] [Accepted: 01/01/2020] [Indexed: 12/16/2022]
|
27
|
Dell'Aquila C. Qualitative in vitro study on the degradation of mineral complexes in vegetables. Food Chem 2020; 308:125655. [PMID: 31669947 DOI: 10.1016/j.foodchem.2019.125655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 09/14/2019] [Accepted: 10/05/2019] [Indexed: 11/16/2022]
Abstract
Mechanisms of degradation and absorption of mineral complexes by the human digestive system are complex and still under investigation. The elaborate matrix of vegetables, and the presence of phytates and other inhibitors make study of these mechanisms difficult. In this qualitative study, extracts from freeze-dried savoy cabbage, broccoli, kale and spinach were subjected to digestion in vitro at pH 2.0 and pH 7.5 and analysed using SEC-ICP-MS. The results suggest that low molecular weight species (peak 6), related to the iron and zinc fractions, which appeared after acidic digestion in all vegetables, except in kale, were considerably reduced after digestion at pH 7.5. Low molecular weight species (peak 9), related to the phosphorus fraction, were present in all vegetables, except in kale, after alkaline digestion. While cabbage, broccoli and spinach showed similar degradation patterns, kale showed a different degradation behaviour.
Collapse
|
28
|
Lesjak M, K S Srai S. Role of Dietary Flavonoids in Iron Homeostasis. Pharmaceuticals (Basel) 2019; 12:E119. [PMID: 31398897 PMCID: PMC6789581 DOI: 10.3390/ph12030119] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2019] [Revised: 07/29/2019] [Accepted: 08/05/2019] [Indexed: 01/14/2023] Open
Abstract
Balancing systemic iron levels within narrow limits is critical for human health, as both iron deficiency and overload lead to serious disorders. There are no known physiologically controlled pathways to eliminate iron from the body and therefore iron homeostasis is maintained by modifying dietary iron absorption. Several dietary factors, such as flavonoids, are known to greatly affect iron absorption. Recent evidence suggests that flavonoids can affect iron status by regulating expression and activity of proteins involved the systemic regulation of iron metabolism and iron absorption. We provide an overview of the links between different dietary flavonoids and iron homeostasis together with the mechanism of flavonoids effect on iron metabolism. In addition, we also discuss the clinical relevance of state-of-the-art knowledge regarding therapeutic potential that flavonoids may have for conditions that are low in iron such as anaemia or iron overload diseases.
Collapse
Affiliation(s)
- Marija Lesjak
- Department of Chemistry, Biochemistry and Environmental Protection, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovića 3, 21000 Novi Sad, Serbia.
| | - Surjit K S Srai
- Research Department of Structural and Molecular Biology, Division of Biosciences, University College London, Darwin Building, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
29
|
Milman NT. Dietary Iron Intake in Women of Reproductive Age in Europe: A Review of 49 Studies from 29 Countries in the Period 1993-2015. J Nutr Metab 2019; 2019:7631306. [PMID: 31312532 PMCID: PMC6595378 DOI: 10.1155/2019/7631306] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 05/05/2019] [Accepted: 05/26/2019] [Indexed: 01/22/2023] Open
Abstract
OBJECTIVE Assessment of dietary iron intake in women of reproductive age in Europe. DESIGN Review. SETTING Literature search of dietary surveys reporting intake of iron using PubMed, Internet browsers, and national nutrient databases in the period 1993-2015. SUBJECTS Women of reproductive age. RESULTS 49 dietary surveys/studies in 29 European countries were included. Belgium, Bosnia, Denmark, Hungary, Italy, Northern Ireland, Serbia, Scotland, Sweden, Switzerland, United Kingdom/England, and Wales reported a median/mean iron intake of 7.6-9.9 mg/day. Finland, Iceland, Ireland, the Netherlands, Norway, Poland, and Spain reported an intake of 10.0-10.7 mg/day. Austria, Estonia, France, and Russia reported an intake of 11.0-11.9 mg/day. Latvia and Germany reported an intake of 12.0-12.2 mg/day. Croatia, Lithuania, Portugal, and Slovakia reported an intake of 15.9-19.0 mg/day. The percentage of dietary iron consisting of heme iron, reported in 7 studies, varied from 4.3% in United Kingdom to 25% in Spain. Nutrient density for iron (mg iron/10 MJ, median/mean) varied from 11.8 in Sweden to 23.0 in Lithuania. The correlation between nutrient density and dietary iron was significant (p=0.0006). In most countries, the majority of women had a dietary iron intake below 15 mg/day. In Belgium, Denmark, Hungary, and Sweden, 91-95% of women had an intake below 15 mg/day. In Ireland and Germany, 61-78% had an intake below 15 mg/day. CONCLUSIONS In Europe, 61-97% of women have a dietary iron intake below 15 mg/day. This contributes to a low iron status in many women. We need common European standardized dietary methods, uniform dietary reference values, and uniform statistical methods to perform intercountry comparisons.
Collapse
Affiliation(s)
- Nils Thorm Milman
- Department of Clinical Biochemistry, Næstved Hospital, University College Zealand, DK-4700 Næstved, Denmark
| |
Collapse
|
30
|
Skolmowska D, Głąbska D. Analysis of Heme and Non-Heme Iron Intake and Iron Dietary Sources in Adolescent Menstruating Females in a National Polish Sample. Nutrients 2019; 11:E1049. [PMID: 31083370 PMCID: PMC6567869 DOI: 10.3390/nu11051049] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 04/27/2019] [Accepted: 05/07/2019] [Indexed: 01/01/2023] Open
Abstract
Iron intake and heme/non-heme iron proportions are crucial for iron deficiency anemia prevention. Women of childbearing age are indicated by World Health Organization as the primary target group, but maintaining iron balance is particularly challenging for adolescents. The aim of the presented study was to analyze heme and non-heme iron intake and dietary sources in adolescent menstruating females in a national Polish sample. The study was conducted in a representative sample of adolescents (aged 15-20) who were recruited from all regions of Poland based on secondary school sampling (random quota sampling), with 1385 female adolescents being included in the sample. The iron intake was assessed using the previously validated IRONIC-FFQ (IRON Intake Calculation-Food Frequency Questionnaire). The intakes of iron, heme iron, non-heme iron, and iron from food product groups were assessed and compared with those of male adolescents (n = 1025) who were recruited from the same schools, as well as between sub-groups stratified by age, body mass index, anemia history, following vegetarian diet, applying iron supplementation and school type. Compared with male individuals, females were characterized by a lower intake of all forms of iron. It was stated that non-heme iron intake was highest in younger ones, overweight ones, vegetarian ones, and comprehensive school students. Female adolescents with anemia history were characterized by similar iron intake as others. For the target group, there is inadequate nutritional education and a necessity to broaden the knowledge about specific sources of iron.
Collapse
Affiliation(s)
- Dominika Skolmowska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159c Nowoursynowska Street, 02-776 Warsaw, Poland.
| | - Dominika Głąbska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW-WULS), 159c Nowoursynowska Street, 02-776 Warsaw, Poland.
| |
Collapse
|
31
|
Głąbska D, Guzek D, Kanarek B, Lech G. Analysis of Association Between Dietary Intake and Red Blood Cell Count Results in Remission Ulcerative Colitis Individuals. ACTA ACUST UNITED AC 2019; 55:medicina55040096. [PMID: 30965640 PMCID: PMC6524049 DOI: 10.3390/medicina55040096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/30/2019] [Accepted: 04/03/2019] [Indexed: 12/17/2022]
Abstract
Background and objectives: The anemia is the most common extra-intestinal manifestation of the ulcerative colitis. Taking into account, that meat products are perceived as factor, that may promote relapses, the crucial is to indicate the dietary recommendations to prevent anemia development but without high animal products intake. Aim of the study was to analyze the influence of animal products intake on the red blood cell count results in remission ulcerative colitis individuals and pair-matched control group, during 6 weeks of observation. Materials and Methods: The intake of nutrients associated with anemia development (iron, vitamin B12, protein, animal protein, calcium) and the products being their sources (meat, meat products, dairy beverages, cottage cheese, rennet cheese) were analyzed. Results: In spite of the higher meat products intake in the group of ulcerative colitis individuals, the iron intake did not differ between groups. The positive correlations between intakes of meat, meat products, total protein, animal protein, iron, vitamin B12 and red blood cell count results were stated for ulcerative colitis individuals, while in control group were not observed, that may have resulted from higher susceptibility for the diet-influenced changes. Conclusions: The positive correlation between red blood cell count results and energy value of diet, and daily iron intake observed in ulcerative colitis individuals, accompanied by negative correlation for iron intake per 1000 kcal of diet, may indicate, that higher iron intake may be beneficial, but only while accompanied by high energy value of diet.
Collapse
Affiliation(s)
- Dominika Głąbska
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW-WULS), 02-776 Warsaw, Poland.
| | - Dominika Guzek
- Department of Organization and Consumption Economics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW-WULS), 02-776 Warsaw, Poland.
| | - Barbara Kanarek
- Department of Dietetics, Faculty of Human Nutrition and Consumer Sciences, Warsaw University of Life Sciences (SGGW-WULS), 02-776 Warsaw, Poland.
| | - Gustaw Lech
- Department of General, Gastroenterological and Oncological Surgery, Medical University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
32
|
Visser M, Van Zyl T, Hanekom SM, Baumgartner J, van der Hoeven M, Taljaard-Krugell C, Smuts CM, Faber M. Nutrient patterns and their relation to anemia and iron status in 5- to 12-y-old children in South Africa. Nutrition 2019; 62:194-200. [PMID: 30925444 DOI: 10.1016/j.nut.2019.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 12/27/2018] [Accepted: 01/23/2019] [Indexed: 01/08/2023]
Abstract
OBJECTIVE The aim of this study was to assess nutrient patterns and their relation to anemia and iron status of school children using pooled data from three study populations in South Africa. METHODS Data from 5- to 12-y-old children (N = 578) from three independent studies conducted in two provinces in South Africa were pooled. Data used in the analysis were dietary intake, hemoglobin, and plasma ferritin concentrations. Nutrient patterns were determined using factor analysis. Logistic regression analysis was performed to determine relationships of nutrient patterns with anemia and iron deficiency. RESULTS In the pooled group, 13.8% of the children were anemic and 27.7% were iron deficient (ID). More than half of children did not meet the Estimated Average Requirement for various nutrients, including vitamins A, C, B12, folate, and zinc, although only 17.7% of children had an iron intake below the requirements. Median intakes for vitamins A and C were lower for anemic than non-anemic children (P = 0.03 and 0.02, respectively) and for ID versus non-ID children (P = 0.03 and 0.046, respectively). Four nutrient patterns were identified: plant protein, carbohydrate, iron, and B vitamins; animal protein and saturated fat; vitamins A and B12; and calcium and fiber. The vitamin A and B12 nutrient pattern was associated with lower odds of being anemic (odds ratio, 0.63; 95% confidence interval, 0.49-0.91; P = 0.035). CONCLUSION The present results highlighted the potential role of the combination of dietary vitamin A and B12 in the etiology of nutritional anemia in school-age children in South Africa. Nutrient pattern analysis may improve the understanding of the synergistic role of nutrients related to anemia and may assist in planning intervention strategies.
Collapse
Affiliation(s)
- Marina Visser
- Centre of Excellence for Nutrition, North-West University, South Africa.
| | - Tertia Van Zyl
- Centre of Excellence for Nutrition, North-West University, South Africa
| | - Susanna M Hanekom
- Centre of Excellence for Nutrition, North-West University, South Africa
| | | | - Marinka van der Hoeven
- Centre of Excellence for Nutrition, North-West University, South Africa; Infectious Disease and Public Health, Vrije University, The Netherlands
| | | | - Cornelius M Smuts
- Centre of Excellence for Nutrition, North-West University, South Africa
| | - Mieke Faber
- Centre of Excellence for Nutrition, North-West University, South Africa; Non-Communicable Diseases Research Unit, South African Medical Research Council, South Africa
| |
Collapse
|
33
|
Blanco-Rojo R, Vaquero MP. Iron bioavailability from food fortification to precision nutrition. A review. INNOV FOOD SCI EMERG 2019. [DOI: 10.1016/j.ifset.2018.04.015] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
O'Flaherty EAA, Tsermoula P, O'Neill EE, O'Brien NM. Co‐products of beef processing enhance non‐haem iron absorption in an
in vitro
digestion/caco‐2 cell model. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.14049] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Paraskevi Tsermoula
- School of Food and Nutritional Sciences University College Cork Western Road Cork T12 YN60 Ireland
| | - Eileen E. O'Neill
- School of Food and Nutritional Sciences University College Cork Western Road Cork T12 YN60 Ireland
| | - Nora M. O'Brien
- School of Food and Nutritional Sciences University College Cork Western Road Cork T12 YN60 Ireland
| |
Collapse
|
35
|
Luo T, Lei L, Chen F, Zheng S, Deng Z. Iron homeostasis in the human body and nutritional iron deficiency and solutions in China. J Food Biochem 2018. [DOI: 10.1111/jfbc.12673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Ting Luo
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang China
| | - Lin Lei
- College of Food Science Southwest University Chongqing China
| | - Fang Chen
- School of Public Health Nanchang University Nanchang China
- Jiangxi Provincial Key Laboratory of Prevention Medicine Nanchang University Nanchang China
| | - Shilian Zheng
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang China
| | - Ze‐yuan Deng
- State Key Laboratory of Food Science and Technology Nanchang University Nanchang China
| |
Collapse
|
36
|
Jones AD, Colecraft EK, Awuah RB, Boatemaa S, Lambrecht NJ, Adjorlolo LK, Wilson ML. Livestock ownership is associated with higher odds of anaemia among preschool-aged children, but not women of reproductive age in Ghana. MATERNAL AND CHILD NUTRITION 2018; 14:e12604. [PMID: 29608248 PMCID: PMC6055803 DOI: 10.1111/mcn.12604] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 12/21/2017] [Accepted: 02/07/2018] [Indexed: 12/21/2022]
Abstract
Livestock ownership may influence anaemia through complex and possibly contradictory mechanisms. In this study, we aimed to determine the association of household livestock ownership with anaemia among women aged 15–49 years and children aged 6–59 months in Ghana and to examine the contribution of animal source foods (ASFs) to consumption patterns as a potential mechanism mediating this association. We analysed data on 4,441 women and 2,735 children from the 2014 Ghana Demographic and Health Survey and 16,772 households from the Ghana Living Standards Survey Round 6. Haemoglobin measurements were used to define anaemia (non‐pregnant women: <120 g/L; children: <110 g/L). Child‐ and household‐level ASF consumption data were collected from 24‐hour food group intake and food consumption and expenditure surveys, respectively. In multiple logistic regression models, household livestock ownership was associated with anaemia among children (OR, 95% CI: 1.5 [1.1, 2.0]), but not women (1.0 [0.83, 1.2]). Household ownership of chickens was associated with higher odds of anaemia among children (1.6 [1.2, 2.2]), but ownership of other animal species was not associated with anaemia among women or children. In path analyses, we observed no evidence of mediation of the association of household livestock ownership with child anaemia by ASF consumption. Ownership of livestock likely has limited importance for consumption of ASFs among young children in Ghana and may in fact place children at an increased risk of anaemia. Further research is needed to elucidate if and how pathogen exposure associated with livestock rearing may underlie this increased risk of anaemia.
Collapse
Affiliation(s)
- Andrew D Jones
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | - Esi K Colecraft
- Nutrition and Food Science Department, University of Ghana, Accra, Ghana
| | - Raphael B Awuah
- Regional Institute for Population Studies, University of Ghana, Accra, Ghana
| | - Sandra Boatemaa
- Regional Institute for Population Studies, University of Ghana, Accra, Ghana
| | - Nathalie J Lambrecht
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| | | | - Mark L Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
37
|
Thongprasert C, Hutchinson C, Satheannoppakao W, Tipayamongkholgul M. Dietary iron intake and availability are related to maternal education level in overweight/obese adolescents. Eur J Nutr 2017; 57:2249-2260. [PMID: 28702719 DOI: 10.1007/s00394-017-1501-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 07/03/2017] [Indexed: 02/05/2023]
Abstract
PURPOSE To compare intakes of dietary iron and enhancers and inhibitors of iron absorption between overweight/obese (OW/OB) adolescents and their normal weight (NW) peers, and between parental education levels stratified by weight status. METHODS This was a comparative cross-sectional study of adolescents (n 121 OW/OB and n 102 NW) aged 12-14 years, attending a secondary school in Nonthaburi province, Thailand. Socio-demographic data were obtained from participants' parents using a questionnaire. Participants recorded their intakes for 3 non-consecutive days, using a prospective food record. RESULTS Compared with NW adolescents, OW/OB adolescents consumed more total protein and animal protein after adjustment for energy intake (both p = 0.047). OW/OB adolescents whose mothers were less educated consumed more total iron and available iron after adjustment for energy intake, compared with their OW/OB peers whose mothers were more educated (p = 0.045 and p = 0.040). NW adolescents with more highly educated mothers had higher absolute and energy-adjusted fibre intakes (both p = 0.047). However, NW adolescents of mothers with a high-intermediate level of education consumed less calcium, after adjustment for energy intake (p = 0.028). CONCLUSIONS OW/OB adolescents with less educated mothers had higher energy-adjusted intakes of iron and available iron. Dietary differences in OW/OB adolescents relative to maternal education, and other socioeconomic indicators, should be explored in a nationally representative data set.
Collapse
Affiliation(s)
- Chaleelak Thongprasert
- Department of Nutrition, Faculty of Public Health, Mahidol University, 420/1 Rajvithi Road, Rachathewi District, Bangkok, 10400, Thailand
| | - Carol Hutchinson
- Department of Nutrition, Faculty of Public Health, Mahidol University, 420/1 Rajvithi Road, Rachathewi District, Bangkok, 10400, Thailand.
| | - Warapone Satheannoppakao
- Department of Nutrition, Faculty of Public Health, Mahidol University, 420/1 Rajvithi Road, Rachathewi District, Bangkok, 10400, Thailand
| | - Mathuros Tipayamongkholgul
- Department of Epidemiology, Faculty of Public Health, Mahidol University, 420/1 Rajvithi Road, Rachathewi District, Bangkok, 10400, Thailand
| |
Collapse
|
38
|
Wang H, Betti M. Sulfated glycosaminoglycan-derived oligosaccharides produced from chicken connective tissue promote iron uptake in a human intestinal Caco-2 cell line. Food Chem 2017; 220:460-469. [PMID: 27855926 DOI: 10.1016/j.foodchem.2016.10.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 09/19/2016] [Accepted: 10/05/2016] [Indexed: 10/20/2022]
|
39
|
Williamson E. Nutritional implications for ultra-endurance walking and running events. EXTREME PHYSIOLOGY & MEDICINE 2016; 5:13. [PMID: 27895900 PMCID: PMC5117571 DOI: 10.1186/s13728-016-0054-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Accepted: 11/01/2016] [Indexed: 01/15/2023]
Abstract
This paper examines the various nutritional challenges which athletes encounter in preparing for and participating in ultra-endurance walking and running events. Special attention is paid to energy level, performance, and recovery within the context of athletes' intake of carbohydrate, protein, fat, and various vitamins and minerals. It outlines, by way of a review of literature, those factors which promote optimal performance for the ultra-endurance athlete and provides recommendations from multiple researchers concerned with the nutrition and performance of ultra-endurance athletes. Despite the availability of some research about the subject, there is a paucity of longitudinal material which examines athletes by nature and type of ultra-endurance event, gender, age, race, and unique physiological characteristics. Optimal nutrition results in a decreased risk of energy depletion, better performance, and quicker full-recovery.
Collapse
Affiliation(s)
- Eric Williamson
- Department of Exercise Science, University of Toronto, 55 Harbord Street, Toronto, ON M5S 2W6 Canada
| |
Collapse
|
40
|
O'Sullivan A, O'Grady M, O'Callaghan Y, Smyth T, O'Brien N, Kerry J. Seaweed extracts as potential functional ingredients in yogurt. INNOV FOOD SCI EMERG 2016. [DOI: 10.1016/j.ifset.2016.07.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
41
|
Nair MK, Augustine LF, Konapur A. Food-Based Interventions to Modify Diet Quality and Diversity to Address Multiple Micronutrient Deficiency. Front Public Health 2016; 3:277. [PMID: 26779472 PMCID: PMC4700276 DOI: 10.3389/fpubh.2015.00277] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Accepted: 12/07/2015] [Indexed: 11/23/2022] Open
Abstract
Global data indicate a high prevalence of hidden hunger among population. Deficiencies of certain micronutrients such as folic acid, iodine, iron, and vitamin A have long lasting effects on growth and development and therefore have been a National priority from many decades. The strategy implemented so far limits to the use of supplemental sources or fortified foods in alleviating the burden of deficiencies. These approaches however undermine the food-based strategies involving dietary diversification as the long-term sustainable strategy. There is lack of understanding on the level of evidence needed to implement such strategies and the level of monitoring required for impact evaluation. Dietary diversity concerns how to ensure access for each individual to a quality and safe diet with adequate macro- and micronutrients. The key to success in using dietary diversity as a strategy to tackle hidden hunger is in integrating it with the principles of bioavailability, translated to efficient food synergies with due emphasis on food accessibility, affordability, and outdoor physical activity/life style modifications. Promoting enabling environment and sustainable agriculture is crucial for practicing dietary diversification with behavior change communication as an integral segment. It can be concluded that food-based strategies require careful understanding of the factors associated with it and moderate it to form an effective strategy for controlling multiple micronutrient deficiencies.
Collapse
Affiliation(s)
- Madhavan K. Nair
- Micronutrient Research, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Little Flower Augustine
- Micronutrient Research, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| | - Archana Konapur
- Micronutrient Research, National Institute of Nutrition, Indian Council of Medical Research, Hyderabad, India
| |
Collapse
|
42
|
Tamilmani P, Pandey MC. Iron binding efficiency of polyphenols: Comparison of effect of ascorbic acid and ethylenediaminetetraacetic acid on catechol and galloyl groups. Food Chem 2015; 197 Pt B:1275-9. [PMID: 26675868 DOI: 10.1016/j.foodchem.2015.11.045] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Revised: 10/29/2015] [Accepted: 11/10/2015] [Indexed: 10/22/2022]
Abstract
Dietary polyphenols are markedly studied for their antioxidant activity. They also have a negative impact on nutrition whereby they interfere with iron absorption. Common dietary polyphenols include: catechins, flavonols, flavanols, flavones, anthocyanins, proanthocyanidins and phenolic acids. Ascorbic acid (AA) and Ethylenediaminetetraacetic acid (EDTA) are commonly used to counter act this reaction and increase iron bioavailability. This study was aimed at determining the effect of AA and EDTA on the catechol or galloyl iron binding ability of pure phenolics, coffee and tea. Phenolic concentrations of 40, 80, 610, 240, 320, 400, 520 and 900 μg/ml were tested against six levels of AA and EDTA. These effects were studied in detail using Multivariate Analysis of Variance (MANOVA) with the hypothesis that there would be one or more mean differences between the ratio of enhancer and the different concentrations of samples tested. AA was found to be more efficient than EDTA in a way that lesser quantity is required for completely overcoming negative iron binding effects of polyphenols and similar samples.
Collapse
Affiliation(s)
- Poonkodi Tamilmani
- Freeze Drying and Animal Product Technology Division, Defence Food Research Laboratory, Siddartha Nagar, Mysore 570011, Karnataka, India.
| | - Mohan Chandra Pandey
- Freeze Drying and Animal Product Technology Division, Defence Food Research Laboratory, Siddartha Nagar, Mysore 570011, Karnataka, India.
| |
Collapse
|
43
|
Kobayashi Y, Wakasugi E, Yasui R, Kuwahata M, Kido Y. Egg Yolk Protein Delays Recovery while Ovalbumin Is Useful in Recovery from Iron Deficiency Anemia. Nutrients 2015; 7:4792-803. [PMID: 26083113 PMCID: PMC4488814 DOI: 10.3390/nu7064792] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 06/02/2015] [Accepted: 06/04/2015] [Indexed: 11/17/2022] Open
Abstract
Protein is a main nutrient involved in overall iron metabolism in vivo. In order to assess the prevention of iron deficiency anemia (IDA) by diet, it is necessary to confirm the influence of dietary protein, which coexists with iron, on iron bioavailability. We investigated the usefulness of the egg structural protein in recovery from IDA. Thirty-one female Sprague-Dawley rats were divided into a control group (n = 6) fed a casein diet (4.0 mg Fe/100 g) for 42 days and an IDA model group (n = 25) created by feeding a low-iron casein diet (LI, 0.4 mg Fe/100 g) for 21 days and these IDA rats were fed normal iron diet with different proteins from eggs for another 21 days. The IDA rats were further divided into four subgroups depending on the proteins fed during the last 21 days, which were those with an egg white diet (LI-W, 4.0 mg Fe/100 g, n = 6), those with an ovalbumin diet (LI-A, 4.0 mg Fe/100 g, n = 7), those with an egg yolk-supplemented diet (LI-Y, 4.0 mg Fe/100 g, n = 6), and the rest with a casein diet (LI-C, 4.0 mg Fe/100 g, n = 6). In the LI-Y group, recovery of the hematocrit, hemoglobin, transferrin saturation level and the hepatic iron content were delayed compared to the other groups (p < 0.01, 0.01, 0.01, and 0.05, respectively), resulting in no recovery from IDA at the end of the experimental period. There were no significant differences in blood parameters in the LI-W and LI-A groups compared to the control group. The hepatic iron content of the LI-W and LI-A groups was higher than that of the LI-C group (p < 0.05). We found that egg white protein was useful for recovery from IDA and one of the efficacious components was ovalbumin, while egg yolk protein delayed recovery of IDA. This study demonstrates, therefore, that bioavailability of dietary iron varies depending on the source of dietary protein.
Collapse
Affiliation(s)
- Yukiko Kobayashi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto 606-8522, Japan.
| | - Etsuko Wakasugi
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto 606-8522, Japan.
| | - Risa Yasui
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto 606-8522, Japan.
| | - Masashi Kuwahata
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto 606-8522, Japan.
| | - Yasuhiro Kido
- Laboratory of Nutrition Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Shimogamo, Sakyo, Kyoto 606-8522, Japan.
| |
Collapse
|
44
|
Rémond D, Shahar DR, Gille D, Pinto P, Kachal J, Peyron MA, Dos Santos CN, Walther B, Bordoni A, Dupont D, Tomás-Cobos L, Vergères G. Understanding the gastrointestinal tract of the elderly to develop dietary solutions that prevent malnutrition. Oncotarget 2015; 6:13858-98. [PMID: 26091351 PMCID: PMC4546438 DOI: 10.18632/oncotarget.4030] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Accepted: 05/13/2015] [Indexed: 12/11/2022] Open
Abstract
Although the prevalence of malnutrition in the old age is increasing worldwide a synthetic understanding of the impact of aging on the intake, digestion, and absorption of nutrients is still lacking. This review article aims at filling the gap in knowledge between the functional decline of the aging gastrointestinal tract (GIT) and the consequences of malnutrition on the health status of elderly. Changes in the aging GIT include the mechanical disintegration of food, gastrointestinal motor function, food transit, chemical food digestion, and functionality of the intestinal wall. These alterations progressively decrease the ability of the GIT to provide the aging organism with adequate levels of nutrients, what contributes to the development of malnutrition. Malnutrition, in turn, increases the risks for the development of a range of pathologies associated with most organ systems, in particular the nervous-, muscoskeletal-, cardiovascular-, immune-, and skin systems. In addition to psychological, economics, and societal factors, dietary solutions preventing malnutrition should thus propose dietary guidelines and food products that integrate knowledge on the functionality of the aging GIT and the nutritional status of the elderly. Achieving this goal will request the identification, validation, and correlative analysis of biomarkers of food intake, nutrient bioavailability, and malnutrition.
Collapse
Affiliation(s)
- Didier Rémond
- UMR 1019, UNH, CRNH Auvergne, INRA, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, 63000 Clermont-Ferrand, France
| | - Danit R. Shahar
- Department of Public Health, The S. Daniel Abraham International Center for Health and Nutrition, Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
| | - Doreen Gille
- Institute for Food Sciences IFS, Agroscope, Federal Department of Economic Affairs, Education and Research EAER, 3003 Berne, Switzerland
| | - Paula Pinto
- Escola Superior Agrária, Insituto Politécnico de Santarém, 2001-904 Santarem, Portugal
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
| | | | - Marie-Agnès Peyron
- UMR 1019, UNH, CRNH Auvergne, INRA, 63000 Clermont-Ferrand, France
- Clermont Université, Université d'Auvergne, Unité de Nutrition Humaine, BP 10448, 63000 Clermont-Ferrand, France
| | - Claudia Nunes Dos Santos
- Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157 Oeiras, Portugal
- Instituto de Biologia Experimental e Tecnológica, 2780-157 Oeiras, Portugal
| | - Barbara Walther
- Institute for Food Sciences IFS, Agroscope, Federal Department of Economic Affairs, Education and Research EAER, 3003 Berne, Switzerland
| | - Alessandra Bordoni
- Department of Agri-Food Sciences and Technologies, University of Bologna, 47521 Cesena, Italy
| | - Didier Dupont
- UMR 1253, Science et Technologie du Lait & de l'Œuf, INRA, 35000 Rennes, France
| | | | - Guy Vergères
- Institute for Food Sciences IFS, Agroscope, Federal Department of Economic Affairs, Education and Research EAER, 3003 Berne, Switzerland
| |
Collapse
|
45
|
Coad J, Pedley K. Iron deficiency and iron deficiency anemia in women. Scand J Clin Lab Invest Suppl 2015; 244:82-9; discussion 89. [PMID: 25083899 DOI: 10.3109/00365513.2014.936694] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Iron deficiency is one of the most common nutritional problems in the world and disproportionately affects women and children. Stages of iron deficiency can be characterized as mild deficiency where iron stores become depleted, marginal deficiency where the production of many iron-dependent proteins is compromised but hemoglobin levels are normal and iron deficiency anemia where synthesis of hemoglobin is decreased and oxygen transport to the tissues is reduced. Iron deficiency anemia is usually assessed by measuring hemoglobin levels but this approach lacks both specificity and sensitivity. Failure to identify and treat earlier stages of iron deficiency is concerning given the neurocognitive implications of iron deficiency without anemia. Most of the daily iron requirement is derived from recycling of senescent erythrocytes by macrophages; only 5-10 % comes from the diet. Iron absorption is affected by inhibitors and enhancers of iron absorption and by the physiological state. Inflammatory conditions, including obesity, can result in iron being retained in the enterocytes and macrophages causing hypoferremia as a strategic defense mechanism to restrict iron availability to pathogens. Premenopausal women usually have low iron status because of iron loss in menstrual blood. Conditions which further increase iron loss, compromise absorption or increase demand, such as frequent blood donation, gastrointestinal lesions, athletic activity and pregnancy, can exceed the capacity of the gastrointestinal tract to upregulate iron absorption. Women of reproductive age are at particularly high risk of iron deficiency and its consequences however there is a controversial argument that evolutionary pressures have resulted in an iron deficient phenotype which protects against infection.
Collapse
Affiliation(s)
- Jane Coad
- Institute of Food, Nutrition & Human Health, College of Health Te Kura Hauora Tangata, Massey University , Palmerston North , New Zealand
| | | |
Collapse
|
46
|
Palika R, Mashurabad PC, Nair MK, Reddy GB, Pullakhandam R. Characterization of iron-binding phosphopeptide released by gastrointestinal digestion of egg white. Food Res Int 2015. [DOI: 10.1016/j.foodres.2014.11.049] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Blood donation, being Asian, and a history of iron deficiency are stronger predictors of iron deficiency than dietary patterns in premenopausal women. BIOMED RESEARCH INTERNATIONAL 2014; 2014:652860. [PMID: 25006582 PMCID: PMC4072018 DOI: 10.1155/2014/652860] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Accepted: 05/25/2014] [Indexed: 12/21/2022]
Abstract
This study investigated dietary patterns and nondietary determinants of suboptimal iron status (serum ferritin < 20 μg/L) in 375 premenopausal women. Using multiple logistic regression analysis, determinants were blood donation in the past year [OR: 6.00 (95% CI: 2.81, 12.82); P < 0.001], being Asian [OR: 4.84 (95% CI: 2.29, 10.20); P < 0.001], previous iron deficiency [OR: 2.19 (95% CI: 1.16, 4.13); P = 0.016], a “milk and yoghurt” dietary pattern [one SD higher score, OR: 1.44 (95% CI: 1.08, 1.93); P = 0.012], and longer duration of menstruation [days, OR: 1.38 (95% CI: 1.12, 1.68); P = 0.002]. A one SD change in the factor score above the mean for a “meat and vegetable” dietary pattern reduced the odds of suboptimal iron status by 79.0% [OR: 0.21 (95% CI: 0.08, 0.50); P = 0.001] in women with children. Blood donation, Asian ethnicity, and previous iron deficiency were the strongest predictors, substantially increasing the odds of suboptimal iron status. Following a “milk and yoghurt” dietary pattern and a longer duration of menstruation moderately increased the odds of suboptimal iron status, while a “meat and vegetable” dietary pattern reduced the odds of suboptimal iron status in women with children.
Collapse
|
48
|
O'Sullivan AM, O'Callaghan YC, O'Grady MN, Waldron DS, Smyth TJ, O'Brien NM, Kerry JP. An examination of the potential of seaweed extracts as functional ingredients in milk. INT J DAIRY TECHNOL 2014. [DOI: 10.1111/1471-0307.12121] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anthoney M O'Sullivan
- College of Science, Engineering and Food Science; School of Food and Nutritional Sciences; University College Cork; Western Road Cork Ireland
| | - Yvonne C O'Callaghan
- College of Science, Engineering and Food Science; School of Food and Nutritional Sciences; University College Cork; Western Road Cork Ireland
| | - Michael N O'Grady
- College of Science, Engineering and Food Science; School of Food and Nutritional Sciences; University College Cork; Western Road Cork Ireland
| | - David S Waldron
- College of Science, Engineering and Food Science; School of Food and Nutritional Sciences; University College Cork; Western Road Cork Ireland
| | - Thomas J Smyth
- Department of Food BioSciences; Teagasc Food Research Centre; Ashtown Dublin 15 Dublin Ireland
| | - Nora M O'Brien
- College of Science, Engineering and Food Science; School of Food and Nutritional Sciences; University College Cork; Western Road Cork Ireland
| | - Joseph P Kerry
- College of Science, Engineering and Food Science; School of Food and Nutritional Sciences; University College Cork; Western Road Cork Ireland
| |
Collapse
|
49
|
Thorisdottir AV, Gunnarsdottir I, Palsson GI, Gretarsson SJ, Thorsdottir I. Iron status and developmental scores in 6-year-olds highlights ongoing need to tackle iron deficiency in infants. Acta Paediatr 2013; 102:914-9. [PMID: 23772831 DOI: 10.1111/apa.12316] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 05/15/2013] [Accepted: 06/10/2013] [Indexed: 11/30/2022]
Abstract
AIM To investigate iron status and developmental scores at 6 years of age in a population with decreased prevalence of iron deficiency in infancy. Iron status at 6 years and tracking from 12 months were also studied. METHODS Children (n = 143) born in Iceland in 2005 were followed up at the age of six. Motor and verbal development was assessed by a parental questionnaire, and iron status was assessed by Hb, MCV and serum ferritin (SF). Iron depletion was defined as SF <15 μg/L and deficiency as MCV <76 fL and SF <15 μg/L. RESULTS Iron depletion was observed in 5.6% of 6-year-olds, and 1.4% were iron deficient. Self-help (subset in motor development) differed by -4.14 (95% CI = -7.61, -0.67), between those iron depleted at 12 months (n = 6) and those nondepleted (n = 102), adjusted for maternal education. The combined motor developmental score seemed lower in iron depleted infants, although of borderline significance (p = 0.066). MCV concentration tracked from 12 months to 6 years (r = 0.31, p < 0.002), but Hb and SF did not. CONCLUSION Improved iron status at 12 months and 6 years has diminished the public health threat associated with iron depletion in the population studied, but iron depletion and development still associate weakly. Action to prevent iron depletion in infancy remains important.
Collapse
Affiliation(s)
- Asa Vala Thorisdottir
- Unit for Nutrition Research; Faculty of Food Science and Nutrition; School of Health Sciences; University of Iceland & Landspitali - University Hospital of Iceland; Reykjavik Iceland
| | - Ingibjorg Gunnarsdottir
- Unit for Nutrition Research; Faculty of Food Science and Nutrition; School of Health Sciences; University of Iceland & Landspitali - University Hospital of Iceland; Reykjavik Iceland
| | - Gestur I. Palsson
- Children's Hospital; Landspitali - University Hospital of Iceland; Reykjavik Iceland
| | | | - Inga Thorsdottir
- Unit for Nutrition Research; Faculty of Food Science and Nutrition; School of Health Sciences; University of Iceland & Landspitali - University Hospital of Iceland; Reykjavik Iceland
| |
Collapse
|
50
|
|