1
|
Yang R, Liu Q, Zhang M. The Past and Present Lives of the Intraocular Transmembrane Protein CD36. Cells 2022; 12:cells12010171. [PMID: 36611964 PMCID: PMC9818597 DOI: 10.3390/cells12010171] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/19/2022] [Accepted: 12/27/2022] [Indexed: 01/03/2023] Open
Abstract
Cluster of differentiation 36 (CD36) belongs to the B2 receptors of the scavenger receptor class B family, which is comprised of single-chain secondary transmembrane glycoproteins. It is present in a variety of cell types, including monocytes, macrophages, microvascular endothelial cells, adipocytes, hepatocytes, platelets, skeletal muscle cells, kidney cells, cardiomyocytes, taste bud cells, and a variety of other cell types. CD36 can be localized on the cell surface, mitochondria, endoplasmic reticulum, and endosomes, playing a role in lipid accumulation, oxidative stress injury, apoptosis, and inflammatory signaling. Recent studies have found that CD36 is expressed in a variety of ocular cells, including retinal pigment epithelium (RPE), retinal microvascular endothelial cells, retinal ganglion cells (RGC), Müller cells, and photoreceptor cells, playing an important role in eye diseases, such as age-related macular degeneration (AMD), diabetic retinopathy (DR), and glaucoma. Therefore, a comprehensive understanding of CD36 function and downstream signaling pathways is of great significance for the prevention and treatment of eye diseases. This article reviews the molecular characteristics, distribution, and function of scavenger receptor CD36 and its role in ophthalmology in order to deepen the understanding of CD36 in eye diseases and provide new ideas for treatment strategies.
Collapse
Affiliation(s)
- Rucui Yang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
- Department of Ophthalmology, Shantou University Medical College, Shantou University, Shantou 515041, China
| | - Qingping Liu
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| | - Mingzhi Zhang
- Joint Shantou International Eye Center of Shantou University and The Chinese University of Hong Kong, Shantou 515041, China
| |
Collapse
|
2
|
Defries D, Curtis K, Petkau JC, Shariati-Ievari S, Blewett H, Aliani M. Patterns of Alpha-Linolenic Acid Incorporation into Phospholipids in H4IIE Cells. J Nutr Biochem 2022; 106:109014. [PMID: 35461904 DOI: 10.1016/j.jnutbio.2022.109014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 12/15/2021] [Accepted: 03/03/2022] [Indexed: 10/18/2022]
Abstract
Alpha linolenic acid (ALA) is an 18-carbon essential fatty acid found in plant-based foods and oils. While much attention has been placed on conversion of ALA to long chain polyunsaturated fatty acids, alternative routes of ALA metabolism exist and may lead to formation of other bioactive metabolites of ALA. The current study employed a non-targeted metabolomics approach to profile ALA metabolites that are significantly upregulated by ALA treatment. H4IIE hepatoma cells (n=3 samples per time point) were treated with 60 μM ALA or vehicle for 0, 0.25, 0.5, 1, 2, 3, 4, 6, 8, and 12 hours. Samples were then extracted with methanol and analyzed using high-performance liquid chromatography/quadrupole time-of-flight mass spectrometry. We observed selective changes in ALA incorporation into phospholipid classes and subclasses over the 12 hours following ALA treatment. While levels of specific molecular species of ALA-containing phosphatidylcholine, phosphatidylethanolamine, phosphatidylserine, and lysophospholipids were elevated with ALA treatment, others were not affected. Of the phospholipids that were increased, some [e.g. PC(18:3/18:1), PC(18:3/18:4), PE(18:3/18:2), PE(18:3/18:3)] were elevated almost immediately after exposure to ALA, while others (e.g. PE(18:1/18:3) PA(18:3/22:6), and PA(18:3/18:2)] were not elevated until several hours after ALA treatment. Overall, these results suggest that ALA incorporation into phospholipids is selective and support a metabolic hierarchy for ALA incorporation into specific phospholipids. Given the functionality of phospholipids based on their fatty acid composition, future studies will need to investigate the implications of ALA incorporation into specific phospholipids on cell function.
Collapse
Affiliation(s)
- Danielle Defries
- Department of Kinesiology and Applied Health, University of Winnipeg, 3D09 Duckworth Building, 515 Portage Avenue, Winnipeg, Manitoba, Canada, R3B 2E9.
| | - Kayla Curtis
- Department of Food and Human Nutritional Sciences, University of Manitoba, Room 209 Human Ecology Building, 35 Chancellor's Circle, Winnipeg, Manitoba, Canada, R3T 2N2
| | - Jay C Petkau
- Canadian Centre for Agri-food Research in Health and Medicine (CCARM), St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Avenue, Winnipeg, Manitoba, Canada, R2H 2A6; Morden Research and Development Centre, Agriculture and Agri-food Canada, Route 100, Unit 100-101 Morden, Manitoba, Canada, R6M 1Y5
| | - Shiva Shariati-Ievari
- Department of Food and Human Nutritional Sciences, University of Manitoba, Room 209 Human Ecology Building, 35 Chancellor's Circle, Winnipeg, Manitoba, Canada, R3T 2N2; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Avenue, Winnipeg, Manitoba, Canada, R2H 2A6
| | - Heather Blewett
- Department of Food and Human Nutritional Sciences, University of Manitoba, Room 209 Human Ecology Building, 35 Chancellor's Circle, Winnipeg, Manitoba, Canada, R3T 2N2; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Avenue, Winnipeg, Manitoba, Canada, R2H 2A6; Morden Research and Development Centre, Agriculture and Agri-food Canada, Route 100, Unit 100-101 Morden, Manitoba, Canada, R6M 1Y5
| | - Michel Aliani
- Department of Food and Human Nutritional Sciences, University of Manitoba, Room 209 Human Ecology Building, 35 Chancellor's Circle, Winnipeg, Manitoba, Canada, R3T 2N2; Canadian Centre for Agri-food Research in Health and Medicine (CCARM), St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Avenue, Winnipeg, Manitoba, Canada, R2H 2A6; Division of Neurodegenerative Disorders (DND), St. Boniface Hospital Albrechtsen Research Centre, 351 Taché Avenue, Winnipeg, Manitoba, Canada, R2H 2A6.
| |
Collapse
|
3
|
Rendell MS. Current and emerging gluconeogenesis inhibitors for the treatment of Type 2 diabetes. Expert Opin Pharmacother 2021; 22:2167-2179. [PMID: 34348528 DOI: 10.1080/14656566.2021.1958779] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
INTRODUCTION In the last several decades, fueled by gene knockout and knockdown techniques, there has been substantial progress in detailing the pathways of gluconeogenesis. A host of molecules have been identified as potential targets for therapeutic intervention. A number of hormones, enzymes and transcription factors participate in gluconeogenesis. Many new agents have come into use to treat diabetes and several of these are in development to suppress gluconeogenesis. AREAS COVERED Herein, the author reviews agents that have been discovered and/or are in development, which control excess gluconeogenesis. The author has used multiple sources including PubMed, the preprint servers MedRxIv, BioRxIv, Research Gate, as well as Google Search and the database of the U.S. Patent and Trademarks Office to find appropriate literature. EXPERT OPINION It is now clear that lipid metabolism and hepatic lipogenesis play a major role in gluconeogenesis and resistance to insulin. Future efforts will focus on the duality of gluconeogenesis and adipose tissue metabolism. The exploration of therapeutic RNA agents will accelerate. The balance of clinical benefit and adverse effects will determine the future of new gluconeogenesis inhibitors.
Collapse
Affiliation(s)
- Marc S Rendell
- The Association of Diabetes Investigators, Newport Coast, California, United States.,The Rose Salter Medical Research Foundation, Newport Coast, California, United States
| |
Collapse
|
4
|
Fukushima S, Nishi H, Kumano M, Yamanaka D, Kataoka N, Hakuno F, Takahashi SI. A novel amino acid signaling process governs glucose-6-phosphatase transcription. iScience 2021; 24:102778. [PMID: 34278273 PMCID: PMC8267547 DOI: 10.1016/j.isci.2021.102778] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 01/12/2021] [Accepted: 06/22/2021] [Indexed: 11/30/2022] Open
Abstract
Emerging evidence has shown that amino acids act as metabolic regulatory signals. Here, we showed that glucose-6-phosphatase (G6Pase) mRNA levels in cultured hepatocyte models were downregulated in an amino-acid-depleted medium. Inversely, stimulation with amino acids increased G6Pase mRNA levels, demonstrating that G6Pase mRNA level is directly controlled by amino acids in a reversible manner. Promoter assay revealed that these amino-acid-mediated changes in G6Pase mRNA levels were attributable to transcriptional regulation, independent of canonical hormone signaling pathways. Metabolomic analysis revealed that amino acid starvation induces a defect in the urea cycle, decreasing ornithine, a major intermediate, and supplementation of ornithine in an amino-acid-depleted medium fully rescued G6Pase mRNA transcription, similar to the effects of amino acid stimulation. This pathway was also independent of established mammalian target of rapamycin complex 1 pathway. Collectively, we present a hypothetical concept of “metabolic regulatory amino acid signal,” possibly mediated by ornithine. Amino acids regulate G6Pase transcription in hepatocytes independently of hormones Urea cycle activity changes reflecting the extracellular amino acid concentration Ornithine regulates G6Pase mRNA level in the same manner as proteinogenic amino acids Amino acids/ornithine signals are independent of canonical mTORC1 pathway
Collapse
Affiliation(s)
- Sara Fukushima
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hiroki Nishi
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Mikako Kumano
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Daisuke Yamanaka
- Department of Veterinary Medical Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, Tokyo 113-8657, Japan
| | - Naoyuki Kataoka
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Fumihiko Hakuno
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shin-Ichiro Takahashi
- Department of Animal Resource Sciences, Graduate School of Agriculture and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
5
|
Zhang M, Yang M, Wang N, Liu Q, Wang B, Huang T, Tong Y, Ming Y, Wong CW, Liu J, Yao D, Guan M. Andrographolide modulates HNF4α activity imparting on hepatic metabolism. Mol Cell Endocrinol 2020; 513:110867. [PMID: 32422400 DOI: 10.1016/j.mce.2020.110867] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/09/2020] [Accepted: 05/10/2020] [Indexed: 12/28/2022]
Abstract
Hepatic nuclear factor 4 alpha (HNF4α) drives the expression of apolipoprotein B (ApoB), microsomal triglyceride transfer protein (MTP) and phospholipase A2 G12B (PLA2G12B), governing hepatic very-low-density lipoprotein (VLDL) production and secretion. Andrographolide (AP) is a major constituent isolated from Andrographis paniculata. We found that AP can disrupt the interaction between HNF4α and its coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC1α). Virtual docking and mutational analysis indicated that arginine 235 of HNF4α is essential for binding to AP. As a consequence of antagonizing the activity of HNF4α, AP suppresses the expression of ApoB, MTP and PLA2G12B and reduces the rate of hepatic VLDL secretion in vivo. AP additionally reduced gluconeogenesis via down-regulating the expression of HNF4α target genes phosphoenolpyruvate carboxykinase (Pepck) and glucose-6-phosphatase (G6pc). Collectively, our results suggest that AP affects liver function via modulating the transcriptional activity of HNF4α.
Collapse
Affiliation(s)
- Minyi Zhang
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, Guangdong, China; Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Meng Yang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Na Wang
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Qingli Liu
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Binxu Wang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Tongling Huang
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China
| | - Yan Tong
- Institute of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Yanlin Ming
- Institute of Chemical Engineering, Huaqiao University, Xiamen, Fujian, 361021, China
| | - Chi-Wai Wong
- NeuMed Pharmaceuticals Limited, Yuen Long, Hong Kong, China
| | - Jinsong Liu
- Guangdong Provincial Key Laboratory of Biocomputing, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, 510530, China
| | - Dongsheng Yao
- National Engineering Research Center of Genetic Medicine, Institute of Biomedicine, Jinan University, Guangzhou, 510632, Guangdong, China.
| | - Min Guan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
6
|
Dittmann A, Kennedy NJ, Soltero NL, Morshed N, Mana MD, Yilmaz ÖH, Davis RJ, White FM. High-fat diet in a mouse insulin-resistant model induces widespread rewiring of the phosphotyrosine signaling network. Mol Syst Biol 2019; 15:e8849. [PMID: 31464373 PMCID: PMC6674232 DOI: 10.15252/msb.20198849] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 12/17/2022] Open
Abstract
Obesity-associated type 2 diabetes and accompanying diseases have developed into a leading human health risk across industrialized and developing countries. The complex molecular underpinnings of how lipid overload and lipid metabolites lead to the deregulation of metabolic processes are incompletely understood. We assessed hepatic post-translational alterations in response to treatment of cells with saturated and unsaturated free fatty acids and the consumption of a high-fat diet by mice. These data revealed widespread tyrosine phosphorylation changes affecting a large number of enzymes involved in metabolic processes as well as canonical receptor-mediated signal transduction networks. Targeting two of the most prominently affected molecular features in our data, SRC-family kinase activity and elevated reactive oxygen species, significantly abrogated the effects of saturated fat exposure in vitro and high-fat diet in vivo. In summary, we present a comprehensive view of diet-induced alterations of tyrosine signaling networks, including proteins involved in fundamental metabolic pathways.
Collapse
MESH Headings
- Animals
- Cell Line, Tumor
- Diabetes Mellitus, Type 2/etiology
- Diabetes Mellitus, Type 2/genetics
- Diabetes Mellitus, Type 2/metabolism
- Diabetes Mellitus, Type 2/pathology
- Diet, High-Fat/adverse effects
- Disease Models, Animal
- Fatty Acids/pharmacology
- Hepatocytes/drug effects
- Hepatocytes/metabolism
- Hepatocytes/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/pathology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Obesity/etiology
- Obesity/genetics
- Obesity/metabolism
- Obesity/pathology
- Phosphorylation/drug effects
- Phosphotyrosine/metabolism
- Protein Kinase Inhibitors/pharmacology
- Protein Processing, Post-Translational
- Proteomics/methods
- Rats
- Reactive Oxygen Species/agonists
- Reactive Oxygen Species/metabolism
- Signal Transduction
- src-Family Kinases/genetics
- src-Family Kinases/metabolism
Collapse
Affiliation(s)
- Antje Dittmann
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Norman J Kennedy
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
| | - Nina L Soltero
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Nader Morshed
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
| | - Miyeko D Mana
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of Harvard and MITCambridgeMAUSA
| | - Ömer H Yilmaz
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Broad Institute of Harvard and MITCambridgeMAUSA
- Department of PathologyMassachusetts General Hospital and Harvard Medical SchoolBostonMAUSA
| | - Roger J Davis
- Program in Molecular MedicineUniversity of Massachusetts Medical SchoolWorcesterMAUSA
- Howard Hughes Medical InstituteWorcesterMAUSA
| | - Forest M White
- The David H. Koch Institute for Integrative Cancer ResearchMassachusetts Institute of TechnologyCambridgeMAUSA
- Center for Precision Cancer MedicineMassachusetts Institute of TechnologyCambridgeMAUSA
- Department of Biological EngineeringMassachusetts Institute of TechnologyCambridgeMAUSA
| |
Collapse
|
7
|
Interaction of palmitate and LPS regulates cytokine expression and apoptosis through sphingolipids in human retinal microvascular endothelial cells. Exp Eye Res 2018; 178:61-71. [PMID: 30273577 DOI: 10.1016/j.exer.2018.09.016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 09/24/2018] [Accepted: 09/26/2018] [Indexed: 11/22/2022]
Abstract
Studies have implicated saturated fatty acid (SFA) and lipopolysaccharide (LPS) in diabetic retinopathy. Since type 2 diabetes is associated with increases in both SFA and LPS in circulation, we investigated how SFA interacts with LPS to regulate proinflammatory cytokine expression and apoptosis in human retinal microvascular endothelial cells (HRMVECs) and the underlying mechanisms. HRMVECs were challenged with palmitate, a major SFA, LPS or palmitate plus LPS and the expression of proinflammatory cytokines were quantified using real-time PCR and enzyme-linked immunosorbent assay. The interaction between palmitate and LPS on inflammatory signaling and sphingolipid metabolism was demonstrated by immunoblotting and lipidomic analysis, respectively. The effect of palmitate and LPS on apoptosis was also studied by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and histone-associated DNA fragment assays. Results showed that palmitate robustly stimulated the expression of proinflammatory cytokines including interleukin (IL)-6 and IL-1β, and the combination of palmitate and LPS further upregulated the proinflammatory cytokines by cooperatively stimulating inflammatory signaling pathways. Results also showed that while palmitate stimulated ceramide (CER) production via CER de novo synthesis and sphingomyelin (SM) hydrolysis, addition of LPS further increased CER de novo synthesis, but not SM hydrolysis. The involvement of sphingolipids in the cooperative stimulation by palmitate and LPS on cytokine expression was indicated by the findings that the inhibitor of CER de novo synthesis or SM hydrolysis attenuated the stimulation of IL-6 expression by palmitate and LPS. In addition, our study showed that fatty acid receptors GPR40 and CD36 were involved in the IL-6 upregulation by palmitate and LPS. Furthermore, palmitate induced apoptosis via CER production, but addition of LPS did not further increase apoptosis. Taken together, this study showed that palmitate interacted with LPS to upregulate cytokine expression via free fatty acid receptor-mediated inflammatory signaling and sphingolipid metabolism in HRMVECs. In contrast, the interaction between palmitate and LPS did not further increase apoptosis.
Collapse
|
8
|
Limones M, Sevillano J, Sánchez-Alonso MG, Herrera E, Ramos-Álvarez MDP. Metabolic alterations associated with maternal undernutrition during the first half of gestation lead to a diabetogenic state in the rat. Eur J Nutr 2018; 58:2521-2533. [PMID: 30109419 DOI: 10.1007/s00394-018-1805-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 08/02/2018] [Indexed: 11/30/2022]
Abstract
BACKGROUND Although recent studies have investigated the effect of maternal nutrition on metabolic programming of the offspring, the question whether a nutritional insult during early gestation favours an altered metabolic state of the mother that persists during the remainder period of pregnancy, when foetal growth is maximal, remains to be answered. METHODS To address this issue, we analysed the effect of 40% food restriction during the first 12 days of gestation on glucose tolerance, as well as on liver and adipose tissue metabolism, in Sprague-Dawley pregnant rats. RESULTS We found that undernutrition at early gestation blocks pregnancy-associated accumulation of fat, leading to a net breakdown of lipids that may account for an increased delivery of fatty acids and glycerol to the liver. Together with altered expression of hepatic enzymes, this creates a catabolic state, characterized by decreased lipogenesis and increased β-oxidation, which contributes to the ketonemia of underfed mothers. Furthermore, we observed that undernutrition during early pregnancy impairs insulin sensitivity at this stage and, importantly, exacerbates insulin resistance at late gestation, contributing to a diabetogenic state. CONCLUSION Undernutrition during the first half of pregnancy not only alters liver and adipose tissue metabolism, but also exacerbates the maternal insulin resistance at late gestation, which may increase their risk of gestational diabetes. GENERAL SIGNIFICANCE Together, these findings highlight the persistent impact of maternal nutrition during early gestation on the metabolism of the mother during late pregnancy.
Collapse
Affiliation(s)
- María Limones
- Biochemistry and Molecular Biology, Chemistry and Biochemistry Department, Facultad de Farmacia, Universidad CEU San Pablo, Carretera de Boadilla del Monte, Km 5.3, 28668, Madrid, Spain
| | - Julio Sevillano
- Biochemistry and Molecular Biology, Chemistry and Biochemistry Department, Facultad de Farmacia, Universidad CEU San Pablo, Carretera de Boadilla del Monte, Km 5.3, 28668, Madrid, Spain
| | - María G Sánchez-Alonso
- Biochemistry and Molecular Biology, Chemistry and Biochemistry Department, Facultad de Farmacia, Universidad CEU San Pablo, Carretera de Boadilla del Monte, Km 5.3, 28668, Madrid, Spain
| | - Emilio Herrera
- Biochemistry and Molecular Biology, Chemistry and Biochemistry Department, Facultad de Farmacia, Universidad CEU San Pablo, Carretera de Boadilla del Monte, Km 5.3, 28668, Madrid, Spain
| | - María Del Pilar Ramos-Álvarez
- Biochemistry and Molecular Biology, Chemistry and Biochemistry Department, Facultad de Farmacia, Universidad CEU San Pablo, Carretera de Boadilla del Monte, Km 5.3, 28668, Madrid, Spain.
| |
Collapse
|
9
|
Lu Z, Li Y, Brinson CW, Lopes-Virella MF, Huang Y. Cooperative stimulation of atherogenesis by lipopolysaccharide and palmitic acid-rich high fat diet in low-density lipoprotein receptor-deficient mice. Atherosclerosis 2017; 265:231-241. [PMID: 28934649 DOI: 10.1016/j.atherosclerosis.2017.09.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Revised: 07/07/2017] [Accepted: 09/06/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND AND AIMS Either lipopolysaccharide (LPS) or high-fat diet (HFD) enriched with saturated fatty acid (SFA) promotes atherosclerosis. In this study, we investigated the effect of LPS in combination with SFA-rich HFD on atherosclerosis and how LPS and SFA interact to stimulate inflammatory response in vascular endothelial cells. METHODS Low-density lipoprotein receptor-deficient (LDLR-/-) mice were fed a low-fat diet (LFD), HFD with low palmitic acid (PA) (LP-HFD), or HFD with high PA (HP-HFD) for 20 weeks. During the last 12 weeks, half mice received LPS and half received PBS. After treatment, metabolic parameters and aortic atherosclerosis were analyzed. To understand the underlying mechanisms, human aortic endothelial cells (HAECs) were treated with LPS and/or PA and proinflammatory molecule expression was quantified. RESULTS The metabolic study showed that LPS had no significant effect on cholesterol, triglycerides, free fatty acids, but increased insulin and insulin resistance. Both LP-HFD and HP-HFD increased body weight and cholesterol while LP-HFD increased glucose and HP-HFD increased triglycerides, insulin, and insulin resistance. Analysis of aortic atherosclerosis showed that HP-HFD was more effective than LP-HFD in inducing atherosclerosis and LPS in combination with HP-HFD increased atherosclerosis in the thoracic aorta, a less common site for atherosclerosis, as compared with LPS or HP-HFD. To understand the mechanisms, results showed that LPS and PA synergistically upregulated adhesion molecules and proinflammatory cytokines in HAECs. CONCLUSIONS LPS and PA-rich HFD cooperatively increased atherogenesis in the thoracic aorta. The synergy between LPS and PA on proinflammatory molecules in HAECs may play an important role in atherogenesis.
Collapse
Affiliation(s)
- Zhongyang Lu
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yanchun Li
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Colleen W Brinson
- Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Maria F Lopes-Virella
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA; Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Yan Huang
- Ralph H. Johnson Veterans Affairs Medical Center, Charleston, SC 29401, USA; Division of Endocrinology, Diabetes and Medical Genetics, Department of Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.
| |
Collapse
|
10
|
Weiss TS, Lupke M, Ibrahim S, Buechler C, Lorenz J, Ruemmele P, Hofmann U, Melter M, Dayoub R. Attenuated lipotoxicity and apoptosis is linked to exogenous and endogenous augmenter of liver regeneration by different pathways. PLoS One 2017; 12:e0184282. [PMID: 28877220 PMCID: PMC5587239 DOI: 10.1371/journal.pone.0184282] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Accepted: 08/21/2017] [Indexed: 02/06/2023] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) covers a spectrum from simple steatosis to nonalcoholic steatohepatitis (NASH) and cirrhosis. Free fatty acids (FFA) induce steatosis and lipo-toxicity and correlate with severity of NAFLD. In this study we aimed to investigate the role of exogenous and endogenous ALR (augmenter of liver regeneration) for FFA induced ER (endoplasmatic reticulum) -stress and lipoapoptosis. Primary human hepatocytes or hepatoma cells either treated with recombinant human ALR (rhALR, 15kDa) or expressing short form ALR (sfALR, 15kDa) were incubated with palmitic acid (PA) and analyzed for lipo-toxicity, -apoptosis, activation of ER-stress response pathways, triacylglycerides (TAG), mRNA and protein expression of lipid metabolizing genes. Both, exogenous rhALR and cytosolic sfALR reduced PA induced caspase 3 activity and Bax protein expression and therefore lipotoxicity. Endogenous sfALR but not rhALR treatment lowered TAG levels, diminished activation of ER-stress mediators C-Jun N-terminal kinase (JNK), X-box binding protein-1 (XBP1) and proapoptotic transcription factor C/EBP-homologous protein (CHOP), and reduced death receptor 5 protein expression. Cellular ALR exerts its lipid lowering and anti-apoptotic actions by enhancing FABP1, which binds toxic FFA, increasing mitochondrial β-oxidation by elevating the mitochondrial FFA transporter CPT1α, and decreasing ELOVL6, which delivers toxic FFA metabolites. We found reduced hepatic mRNA levels of ALR in a high fat diet mouse model, and of ALR and FOXA2, a transcription factor inducing ALR expression, in human steatotic as well as NASH liver samples, which may explain increased lipid deposition and reduced β-oxidation in NASH patients. Present study shows that exogenous and endogenous ALR reduce PA induced lipoapoptosis. Furthermore, cytosolic sfALR changes mRNA and protein expression of genes regulating lipid metabolism, reduces ER-stress finally impeding progression of NASH.
Collapse
Affiliation(s)
- Thomas S. Weiss
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
- Center for Liver Cell Research, University of Regensburg Hospital, Regensburg, Germany
- * E-mail:
| | - Madeleine Lupke
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
| | - Sara Ibrahim
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
| | - Christa Buechler
- Department of Internal Medicine, University of Regensburg Hospital, Regensburg, Germany
| | - Julia Lorenz
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
| | - Petra Ruemmele
- Institute of Pathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nuernberg, Erlangen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology and University of Tübingen, Stuttgart, Germany
| | - Michael Melter
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
| | - Rania Dayoub
- Children’s University Hospital, University of Regensburg, Regensburg, Germany
- Department of Biochemistry and Microbiology, Faculty of Pharmacy, Damascus University, Damascus, Syria
| |
Collapse
|
11
|
Yoshida M, Lee EY, Kohno T, Tanaka T, Miyazaki M, Miki T. Importance of Hepatocyte Nuclear Factor 4α in Glycerol-induced Glucose-6-phosphatase Expression in Liver. Biomed Res 2017; 37:85-93. [PMID: 27108878 DOI: 10.2220/biomedres.37.85] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Glucose-6-phosphatase (G6Pase) is a key regulator of gluconeogenesis. We previously found that administration of glycerol, a substrate for gluconeogenesis, transactivates G6Pase in the mouse liver. To clarify its cell-autonomous transcriptional activation in hepatocytes, we examined the mechanism of expression of the gene G6pc, which encodes G6Pase, in rat hepatoma cell line FAO cells. Endogenous G6pc expression in FAO cells was increased by glycerol administration as well as by the fatty acid oleate. Luciferase reporter assay revealed that the ~2.0 kb mouse G6pc promoter contains the element(s) responsible for glycerol-stimulated G6pc transactivation. Using several deletion- or chimeric-constructs of G6pc promoter, we found that the DNA response element for hepatocyte nuclear factor 4α (HNF4α) (-77/-65) in the G6pc promoter is essential for transactivation by glycerol. Similarly to glycerol, oleate also increased G6pc expression through its action on the HNF4α element (-77/-65). Furthermore, the reporter activities were higher in the cells co-treated with glycerol plus oleate than in those singly treated with glycerol or oleate. In addition, the temporal profiles of G6pc expression differed between glycerol and oleate administration. Our present results suggest that glycerol and oleate induce G6pc expression both via the HNF4αelement (-77/-65) and also through other regulatory mechanisms.
Collapse
Affiliation(s)
- Mitsuhiko Yoshida
- Department of Medical Physiology, Graduate School of Medicine, Chiba University
| | | | | | | | | | | |
Collapse
|
12
|
Legrand P, Rioux V. Specific roles of saturated fatty acids: Beyond epidemiological data. EUR J LIPID SCI TECH 2015. [DOI: 10.1002/ejlt.201400514] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine; Agrocampus Ouest; Rennes France
| | - Vincent Rioux
- Laboratoire de Biochimie-Nutrition Humaine; Agrocampus Ouest; Rennes France
| |
Collapse
|
13
|
Bennett KA, Hammill M, Currie S. Liver glucose-6-phosphatase proteins in suckling and weaned grey seal pups: structural similarities to other mammals and relationship to nutrition, insulin signalling and metabolite levels. J Comp Physiol B 2013; 183:1075-88. [PMID: 23743798 DOI: 10.1007/s00360-013-0768-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2013] [Revised: 05/10/2013] [Accepted: 05/21/2013] [Indexed: 01/05/2023]
Abstract
Phocid seals have been proposed as models for diabetes because they exhibit limited insulin response to glucose, high blood glucose and increasing insulin resistance when fasting. Liver glucose-6-phosphatase (G6Pase) catalyses the final step in glucose production and is central to glucose regulation in other animals. G6Pase comprises a translocase (SLC37A4) and a catalytic subunit (G6PC). G6PC and SLC37A4 expression and activity are normally regulated by nutritional state and glucostatic hormones, particularly insulin, and are elevated in diabetes. We tested the hypotheses that (1) grey seal G6PC and SLC37A4 cDNA and predicted protein sequences differ from other species' at functional sites, (2) relative G6Pase protein abundances are lower during feeding than fasting and (3) relative G6Pase protein abundances are related to insulin, insulin receptor phosphorylation and key metabolite levels. We show that G6PC and partial SLC37A4 cDNA sequences encode proteins sharing 82-95 % identity with other mammals. Seal G6PC contained no differences in sites responsible for activity, stability or subcellular location. Several substitutions in seal SLC37A4 were predicted to be tolerated with low probability, which could affect glucose production. Suckling pups had higher relative abundance of both subunits than healthy, postweaned fasting pups. Furthermore, relative G6PC abundance was negatively related to glucose levels. These findings contrast markedly with the response of relative hepatic G6Pase abundance to feeding, fasting, insulin, insulin sensitivity and key metabolites in other animals, and highlight the need to understand the regulation of enzymes involved in glucose control in phocids if these animals are to be informative models of diabetes.
Collapse
Affiliation(s)
- K A Bennett
- Marine Biology and Ecology Research Centre, School of Marine Science and Engineering, Plymouth University, Portland Square, Drake Circus, Plymouth, Devon, PL4 8AA, UK,
| | | | | |
Collapse
|
14
|
Mamedova LK, Yuan K, Laudick AN, Fleming SD, Mashek DG, Bradford BJ. Toll-like receptor 4 signaling is required for induction of gluconeogenic gene expression by palmitate in human hepatic carcinoma cells. J Nutr Biochem 2013; 24:1499-507. [PMID: 23465595 DOI: 10.1016/j.jnutbio.2012.12.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 11/17/2012] [Accepted: 12/14/2012] [Indexed: 02/06/2023]
Abstract
Saturated free fatty acids (FFA) can activate inflammatory cascades including the toll-like receptor 4 (TLR4) pathway. TLR4 is expressed by hepatocytes and may help link FFA to altered hepatic gluconeogenesis in type 2 diabetes mellitus. This study examined the role of TLR4 in mediating palmitate effects on the expression of phosphoenolpyruvate carboxykinase (PCK1) and the catalytic subunit of glucose-6-phosphatase (G6PC), rate-determining gluconeogenic enzymes. Human hepatocellular carcinoma cells (HepG2 and HuH7) were incubated in media including 2% bovine serum albumin and 250 to 1000 μM palmitate for 24 h. Signaling mediated by TLR4 was blocked by a TLR4 decoy peptide or small interfering RNA knockdown of TLR4. Palmitate induced dose-dependent increases in PCK1 and G6PC mRNA abundance, which were prevented by the TLR4 decoy peptide. Palmitate doubled PCK1 promoter activity, and TLR4 knockdown ablated this response. Lipopolysaccharide and monophosphoryl lipid A also up-regulated G6PC and PCK1 transcript abundance in a TLR4-dependent manner. Addition of oleate attenuated palmitate-induced increases in G6PC and PCK1 mRNA abundance. Palmitate increased nuclear factor κ-light-chain-enhancer of activated B cells reporter gene activity, which was unaffected by TLR4 blockade, but increased mRNA abundance of hepatocyte-specific cyclic AMP response element binding protein, a transcriptional regulator of PCK1, in a TLR4-dependent manner. Finally, TLR4 activation by palmitate increased subsequent cellular uptake of palmitate, and inhibiting ceramide synthesis ablated palmitate effects on PCK1 mRNA abundance and promoter activity. These results suggest that TLR4 signaling could play a critical role in linking elevated saturated FFA to increased transcription of gluconeogenic genes.
Collapse
Affiliation(s)
- Laman K Mamedova
- Department of Animal Sciences and Industry, Kansas State University, Manhattan, KS 66506, USA
| | | | | | | | | | | |
Collapse
|
15
|
Pervin M, Paeng N, Yasui K, Imai S, Isemura M, Yokogoshi H, Nakayama T. Effects of Lens culinaris agglutinin on gene expression of gluconeogenic enzymes in the mouse intestine. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:857-861. [PMID: 21969243 DOI: 10.1002/jsfa.4658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2010] [Revised: 07/19/2011] [Accepted: 08/18/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Lectins are proteins that bind specifically to the carbohydrate moiety of glyco-conjugates. Japanese mistletoe lectin given intragastrically affected cytokine gene expression in the mouse intestine. This study examines the actions of Lens culinaris agglutinin (LCA) on the gene expression of gluconeogenic enzymes in the intestine. RESULTS The results of quantitative real-time reverse transcription-polymerase chain reaction indicated that LCA caused an up-regulation of the gene expression of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). This change was correlated with an increase in the expression of two transcription factors, HNF1α and HNF4α. Experiments using human colonic cancer Caco-2 cells demonstrated that LCA up-regulated the gene expression of G6Pase and PEPCK whereas insulin had the opposite effect. In addition, the observed up-regulation of HNF4α gene expression in the duodenum raises the possibility that the lectin promotes the colorectal cancer. CONCLUSION Lentil beans should be cooked well to avoid unfavourable effects of LCA.
Collapse
Affiliation(s)
- Monira Pervin
- Graduate School of Nutritional and Environmental Sciences and Global COE, University of Shizuoka, Yada, Shizuoka, Japan
| | | | | | | | | | | | | |
Collapse
|
16
|
Yasui K, Tanabe H, Miyoshi N, Suzuki T, Goto S, Taguchi K, Ishigami Y, Paeng N, Fukutomi R, Imai S, Isemura M. Effects of (-)-epigallocatechin-3-O-gallate on expression of gluconeogenesis-related genes in the mouse duodenum. ACTA ACUST UNITED AC 2012; 32:313-20. [PMID: 22033300 DOI: 10.2220/biomedres.32.313] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Green tea has been shown to have many beneficial health effects. We have previously reported that dietary (-)-epigallocatechin-3-O-gallate (EGCG), the major polyphenol in green tea, reduced gene expressions of gluconeogenic enzymes, glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK), in the normal mouse liver. In the present study, we examined the effects of intragastrical administration of EGCG on the expression of gluconeogenesis-related genes in the mouse intestine. The results of experiments with the semi-quantitative reverse transcription-polymerase chain reaction indicated that EGCG at 0.6 mg/head caused a reduced expression of G6Pase, PEPCK, hepatocyte nuclear factor 1α (HNF1α), and HNF4α. Experiments using the quantitative real-time polymerase chain reaction confirmed these effects. We then examined the effects of EGCG using human colon carcinoma Caco-2 cells stimulated with dexamethasone and dibutyryl cAMP. The results were generally consistent with those from the experiments in vivo. The present findings suggest EGCG to contribute to the beneficial effects of green tea on diabetes, obesity, and cancer by modulating gene expression in the intestine.
Collapse
Affiliation(s)
- Kensuke Yasui
- Health Care Research Center, Nisshin Pharma Inc., Fujimino, Saitama 356-8511
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Im SS, Kim MY, Kwon SK, Kim TH, Bae JS, Kim H, Kim KS, Oh GT, Ahn YH. Peroxisome proliferator-activated receptor {alpha} is responsible for the up-regulation of hepatic glucose-6-phosphatase gene expression in fasting and db/db Mice. J Biol Chem 2010; 286:1157-64. [PMID: 21081500 DOI: 10.1074/jbc.m110.157875] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Glucose-6-phosphatase (G6Pase) is a key enzyme that is responsible for the production of glucose in the liver during fasting or in type 2 diabetes mellitus (T2DM). During fasting or in T2DM, peroxisome proliferator-activated receptor α (PPARα) is activated, which may contribute to increased hepatic glucose output. However, the mechanism by which PPARα up-regulates hepatic G6Pase gene expression in these states is not well understood. We evaluated the mechanism by which PPARα up-regulates hepatic G6Pase gene expression in fasting and T2DM states. In PPARα-null mice, both hepatic G6Pase and phosphoenolpyruvate carboxykinase levels were not increased in the fasting state. Moreover, treatment of primary cultured hepatocytes with Wy14,643 or fenofibrate increased the G6Pase mRNA level. In addition, we have localized and characterized a PPAR-responsive element in the promoter region of the G6Pase gene. Chromatin immunoprecipitation (ChIP) assay revealed that PPARα binding to the putative PPAR-responsive element of the G6Pase promoter was increased in fasted wild-type mice and db/db mice. These results indicate that PPARα is responsible for glucose production through the up-regulation of hepatic G6Pase gene expression during fasting or T2DM animal models.
Collapse
Affiliation(s)
- Seung-Soon Im
- Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul 120-752, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yasui K, Tanabe H, Okada N, Fukutomi R, Ishigami Y, Isemura M. Effects of catechin-rich green tea on gene expression of gluconeogenic enzymes in rat hepatoma H4IIE cells. ACTA ACUST UNITED AC 2010; 31:183-9. [PMID: 20622468 DOI: 10.2220/biomedres.31.183] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Rat hepatoma H4IIE cells were stimulated with dexamethasone and dibutyryl cAMP to increase gene expressions of gluconeogenic enzymes, glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase (PEPCK). Inclusion of catechin-rich green tea beverage (GTB) in the culture medium reduced the up-regulation of these genes as well as that of hepatocyte nuclear factor 4 alpha (HNF4alpha) gene. GTB was fractionated into chloroform-soluble (Fraction I), ethyl acetatesoluble (Fraction II), methanol-soluble (Fraction III) and residual (Fraction IV) fractions. Fractions II and III containing catechins caused an attenuation of the up-regulated expression of these genes as well as the down-regulation of HNF4alpha gene expression. Fraction IV had a synergistic effect on the up-regulation by dexamethasone/dibutyryl cAMP of the PEPCK gene expression and upregulated HNF4alpha gene expression. These results suggest that GTB down-regulated the expression of the HNF4alpha gene to cause the down-regulated gene expression of gluconeogenic enzymes. One reason why GTB did not down-regulate hepatic PEPCK gene expression in previous animal experiments may be that the component(s) acting to up-regulate PEPCK gene expression was more effective in vivo than in cultured cells.
Collapse
Affiliation(s)
- Kensuke Yasui
- Health Care Research Center, Nisshin Pharma Inc., Fujimino, Saitama 356-8511, Japan
| | | | | | | | | | | |
Collapse
|
19
|
Legrand P, Rioux V. The complex and important cellular and metabolic functions of saturated fatty acids. Lipids 2010; 45:941-6. [PMID: 20625935 PMCID: PMC2974191 DOI: 10.1007/s11745-010-3444-x] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2010] [Accepted: 06/21/2010] [Indexed: 12/27/2022]
Abstract
This review summarizes recent findings on the metabolism and biological functions of saturated fatty acids (SFA). Some of these findings show that SFA may have important and specific roles in the cells. Elucidated biochemical mechanisms like protein acylation (N-myristoylation, S-palmitoylation) and regulation of gene transcription are presented. In terms of physiology, SFA are involved for instance in lipogenesis, fat deposition, polyunsaturated fatty acids bioavailability and apoptosis. The variety of their functions demonstrates that SFA should no longer be considered as a single group.
Collapse
Affiliation(s)
- Philippe Legrand
- Laboratoire de Biochimie-Nutrition Humaine, Agrocampus Rennes, INRA USC 2012, 65 rue de Saint-Brieuc, CS 84215, Rennes Cedex, France.
| | | |
Collapse
|
20
|
Abstract
Tight control of storage and synthesis of glucose during nutritional transitions is essential to maintain blood glucose levels, a process in which the liver has a central role. PPARα is the master regulator of lipid metabolism during fasting, but evidence is emerging for a role of PPARα in balancing glucose homeostasis as well. By using PPARα ligands and PPARα(-/-) mice, several crucial genes were shown to be regulated by PPARα in a direct or indirect way. We here review recent evidence that PPARα contributes to the adaptation of hepatic carbohydrate metabolism during the fed-to-fasted or fasted-to-fed transition in rodents.
Collapse
|
21
|
Juan YC, Tsai WJ, Lin YL, Wang GJ, Cheng JJ, Yang HY, Hsu CY, Liu HK. The novel anti-hyperglycemic effect of Paeoniae radix via the transcriptional suppression of phosphoenopyruvate carboxykinase (PEPCK). PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2010; 17:626-634. [PMID: 20096551 DOI: 10.1016/j.phymed.2009.12.007] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2009] [Revised: 10/30/2009] [Accepted: 12/11/2009] [Indexed: 05/28/2023]
Abstract
The antidiabetic actions of Paeoniae Radix involve stimulating glucose uptake and reducing glucose absorption. However, the importance of this herb in the transcriptional regulation of hepatic gluconeogenesis has not previously been investigated, although hepatic gluconeogenesis contributes the most to fasting hyperglycemia. Using rats with streptozotocin-induced diabetes and db/db mice, the dose- and time-dependent suppressive effects of the ethanol extract of Paeoniae Radix (PR-Et) on diabetic hyperglycemia and phosphoenopyruvate carboxykinase (PEPCK) transcription are first demonstrated. Second, by employing H4IIE cells, the inhibitory action of PR-Et on both dexamethasone- and 8-bromo-cAMP-induced-PEPCK expression was also confirmed without causing any cytotoxicity. In addition, this inhibitory effect could be sustained for over 24 h with repeated treatment. Most importantly, PR-Et's action was unaffected by either insulin desensitization or palmitate stimulation. Finally, paeonol and paeoniflorin, two well-known constituents in Paeoniae Radix, did not suppress PEPCK expression at testing concentration. In conclusion, it was clearly demonstrated that transcriptional inhibition of gluconeogenesis is one of the important antidiabetic actions of Paeoniae Radix. Future development of this herb as a dietary supplement or drug should bring substantial benefits for the diabetic population.
Collapse
MESH Headings
- 8-Bromo Cyclic Adenosine Monophosphate
- Acetophenones/isolation & purification
- Acetophenones/pharmacology
- Acetophenones/therapeutic use
- Animals
- Benzoates/isolation & purification
- Benzoates/pharmacology
- Benzoates/therapeutic use
- Bridged-Ring Compounds/isolation & purification
- Bridged-Ring Compounds/pharmacology
- Bridged-Ring Compounds/therapeutic use
- Cell Line
- Dexamethasone
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/genetics
- Diabetes Mellitus, Experimental/metabolism
- Dose-Response Relationship, Drug
- Drugs, Chinese Herbal/chemistry
- Drugs, Chinese Herbal/pharmacology
- Drugs, Chinese Herbal/therapeutic use
- Gene Expression/drug effects
- Gluconeogenesis/drug effects
- Gluconeogenesis/genetics
- Glucosides/isolation & purification
- Glucosides/pharmacology
- Glucosides/therapeutic use
- Humans
- Hypoglycemic Agents/isolation & purification
- Hypoglycemic Agents/pharmacology
- Hypoglycemic Agents/therapeutic use
- Insulin/metabolism
- Liver/drug effects
- Liver/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Monoterpenes
- Paeonia/chemistry
- Palmitic Acid/metabolism
- Phosphoenolpyruvate Carboxykinase (GTP)/genetics
- Phosphoenolpyruvate Carboxykinase (GTP)/metabolism
- Phytotherapy
- Plant Roots
- Rats
- Rats, Sprague-Dawley
Collapse
Affiliation(s)
- Y-C Juan
- Institute of Pharmacology, University of Yang Ming, Taipei, Taiwan, ROC
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Glucose-6-phosphatase catalyzes the hydrolysis of glucose 6-phosphate (G6P) to glucose and inorganic phosphate. It is a multicomponent system located in the endoplasmic reticulum that comprises several integral membrane proteins, namely a catalytic subunit (G6PC) and transporters for G6P, inorganic phosphate, and glucose. The G6PC gene family contains three members, designated G6PC, G6PC2, and G6PC3. The tissue-specific expression patterns of these genes differ, and mutations in all three genes have been linked to distinct diseases in humans. This minireview discusses the disease association and transcriptional regulation of the G6PC genes as well as the biological functions of the encoded proteins.
Collapse
Affiliation(s)
- John C Hutton
- Barbara Davis Center for Childhood Diabetes, University of Colorado at Denver, Aurora, Colorado 80045, USA
| | | |
Collapse
|
23
|
Abe K, Okada N, Tanabe H, Fukutomi R, Yasui K, Isemura M, Kinae N. Effects of chronic ingestion of catechin-rich green tea on hepatic gene expression of gluconeogenic enzymes in rats. Biomed Res 2009; 30:25-9. [DOI: 10.2220/biomedres.30.25] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Rioux V, Legrand P. Saturated fatty acids: simple molecular structures with complex cellular functions. Curr Opin Clin Nutr Metab Care 2007; 10:752-8. [PMID: 18089958 DOI: 10.1097/mco.0b013e3282f01a75] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE OF REVIEW This review summarizes recent findings on the biological functions of saturated fatty acids. Some of these findings suggest that saturated fatty acids may have important and specific regulatory roles in the cells. Until now these roles have largely been outweighed by the negative impact of dietary saturated fatty acids on atherosclerosis biomarkers. Elucidated biochemical mechanisms like protein acylation (N-myristoylation, S-palmitoylation) and putative physiological roles are described. RECENT FINDINGS The review will focus on the following topics: new aspects on the metabolism of saturated fatty acids; recent reports on the biochemical functions of saturated fatty acids; current investigations on the physiological roles (elucidated and putative) of saturated fatty acids; and a discussion of the nutritional dietary recommendations (amounts and types) of saturated fatty acids. SUMMARY Dietary saturated fatty acids are usually associated with negative consequences for human health. Experimental results on the relationship between doses, physiological effects, specificities and functions of individual saturated fatty acids are, however, conflicting. In this context, this review describes emerging recent evidence that some saturated fatty acids have important and specific biological roles. Such data are needed to allow a balanced view in terms of potential nutritional benefits of saturated fatty acids, and, if necessary, reassessment of the current nutritional dietary recommendations.
Collapse
Affiliation(s)
- Vincent Rioux
- Biochemistry and Human Nutrition Laboratory, Agrocampus Rennes, INRA USC 2012, Rennes, France
| | | |
Collapse
|