1
|
Liu SX, Muelken P, Maxim ZL, Ramakrishnan A, Estill MS, LeSage MG, Smethells JR, Shen L, Tran PV, Harris AC, Gewirtz JC. Differential gene expression and chromatin accessibility in the medial prefrontal cortex associated with individual differences in rat behavioral models of opioid use disorder. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.29.582799. [PMID: 38979145 PMCID: PMC11230220 DOI: 10.1101/2024.02.29.582799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Opioid use disorder (OUD) is a neuropsychological disease that has a devastating impact on public health. Substantial individual differences in vulnerability exist, the neurobiological substrates of which remain unclear. To address this question, we investigated genome-wide gene transcription (RNA-seq) and chromatin accessibility (ATAC-seq) in the medial prefrontal cortex (mPFC) of male and female rats exhibiting differential vulnerability in behavioral paradigms modeling different phases of OUD: Withdrawal-Induced Anhedonia (WIA), Demand, and Reinstatement. Ingenuity Pathway Analysis (IPA) of RNA-seq revealed greater changes in canonical pathways in Resilient (vs. Saline) rats in comparison to Vulnerable (vs. Saline) rats across 3 paradigms, suggesting brain adaptations that might contribute to resilience to OUD across its trajectory. Analyses of gene networks and upstream regulators implicated processes involved in oligodendrocyte maturation and myelination in WIA, neuroinflammation in Demand, and metabolism in Reinstatement. Motif analysis of ATAC-seq showed changes in chromatin accessibility to a small set of transcription factor (TF) binding sites as a function either of opioid exposure (i.e., morphine versus saline) generally or of individual vulnerability specifically. Some of these were shared across the 3 paradigms and others were unique to each. In conclusion, we have identified changes in biological pathways, TFs, and their binding motifs that vary with paradigm and OUD vulnerability. These findings point to the involvement of distinct transcriptional and epigenetic mechanisms in response to opioid exposure, vulnerability to OUD, and different stages of the disorder.
Collapse
|
2
|
Rao RB. Biomarkers of Brain Dysfunction in Perinatal Iron Deficiency. Nutrients 2024; 16:1092. [PMID: 38613125 PMCID: PMC11013337 DOI: 10.3390/nu16071092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/14/2024] Open
Abstract
Iron deficiency in the fetal and neonatal period (perinatal iron deficiency) bodes poorly for neurodevelopment. Given its common occurrence and the negative impact on brain development, a screening and treatment strategy that is focused on optimizing brain development in perinatal iron deficiency is necessary. Pediatric societies currently recommend a universal iron supplementation strategy for full-term and preterm infants that does not consider individual variation in body iron status and thus could lead to undertreatment or overtreatment. Moreover, the focus is on hematological normalcy and not optimal brain development. Several serum iron indices and hematological parameters in the perinatal period are associated with a risk of abnormal neurodevelopment, suggesting their potential use as biomarkers for screening and monitoring treatment in infants at risk for perinatal iron deficiency. A biomarker-based screening and treatment strategy that is focused on optimizing brain development will likely improve outcomes in perinatal iron deficiency.
Collapse
Affiliation(s)
- Raghavendra B. Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, MN 55455, USA;
- Masonic Institute for the Developing Brain, Minneapolis, MN 55414, USA
| |
Collapse
|
3
|
Liu SX, Ramakrishnan A, Shen L, Gewirtz JC, Georgieff MK, Tran PV. Chromatin accessibility and H3K9me3 landscapes reveal long-term epigenetic effects of fetal-neonatal iron deficiency in rat hippocampus. BMC Genomics 2024; 25:301. [PMID: 38515015 PMCID: PMC10956188 DOI: 10.1186/s12864-024-10230-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 03/15/2024] [Indexed: 03/23/2024] Open
Abstract
BACKGROUND Iron deficiency (ID) during the fetal-neonatal period results in long-term neurodevelopmental impairments associated with pervasive hippocampal gene dysregulation. Prenatal choline supplementation partially normalizes these effects, suggesting an interaction between iron and choline in hippocampal transcriptome regulation. To understand the regulatory mechanisms, we investigated epigenetic marks of genes with altered chromatin accessibility (ATAC-seq) or poised to be repressed (H3K9me3 ChIP-seq) in iron-repleted adult rats having experienced fetal-neonatal ID exposure with or without prenatal choline supplementation. RESULTS Fetal-neonatal ID was induced by limiting maternal iron intake from gestational day (G) 2 through postnatal day (P) 7. Half of the pregnant dams were given supplemental choline (5.0 g/kg) from G11-18. This resulted in 4 groups at P65 (Iron-sufficient [IS], Formerly Iron-deficient [FID], IS with choline [ISch], and FID with choline [FIDch]). Hippocampi were collected from P65 iron-repleted male offspring and analyzed for chromatin accessibility and H3K9me3 enrichment. 22% and 24% of differentially transcribed genes in FID- and FIDch-groups, respectively, exhibited significant differences in chromatin accessibility, whereas 1.7% and 13% exhibited significant differences in H3K9me3 enrichment. These changes mapped onto gene networks regulating synaptic plasticity, neuroinflammation, and reward circuits. Motif analysis of differentially modified genomic sites revealed significantly stronger choline effects than early-life ID and identified multiple epigenetically modified transcription factor binding sites. CONCLUSIONS This study reveals genome-wide, stable epigenetic changes and epigenetically modifiable gene networks associated with specific chromatin marks in the hippocampus, and lays a foundation to further elucidate iron-dependent epigenetic mechanisms that underlie the long-term effects of fetal-neonatal ID, choline, and their interactions.
Collapse
Affiliation(s)
- Shirelle X Liu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | | | - Li Shen
- Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael K Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
4
|
Sandri BJ, Ennis-Czerniak K, Kanajam P, Frey WH, Lock EF, Rao RB. Intranasal insulin treatment partially corrects the altered gene expression profile in the hippocampus of developing rats with perinatal iron deficiency. Am J Physiol Regul Integr Comp Physiol 2023; 325:R423-R432. [PMID: 37602386 PMCID: PMC10639019 DOI: 10.1152/ajpregu.00311.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Perinatal iron deficiency (FeD) targets the hippocampus and leads to long-term cognitive deficits. Intranasal insulin administration improves cognitive deficits in adult humans with Alzheimer's disease and type 2 diabetes and could provide benefits in FeD-induced hippocampal dysfunction. To objective was to assess the effects of intranasal insulin administration intranasal insulin administration on the hippocampal transcriptome in a developing rat model of perinatal FeD. Perinatal FeD was induced using low-iron diet from gestational day 3 until postnatal day (P) 7, followed by an iron sufficient (FeS) diet through P21. Intranasal insulin was administered at a dose of 0.3 IU twice daily from P8 to P21. Hippocampi were removed on P21 from FeS control, FeD control, FeS insulin, and FeD insulin groups. Total RNA was isolated and profiled using next-generation sequencing. Gene expression profiles were characterized using custom workflows and expression patterns examined using ingenuity pathways analysis (n = 7-9 per group). Select RNAseq results were confirmed via qPCR. Transcriptomic profiling revealed that mitochondrial biogenesis and flux, oxidative phosphorylation, quantity of neurons, CREB signaling in neurons, and RICTOR-based mTOR signaling were disrupted with FeD and positively affected by intranasal insulin treatment with the most benefit observed in the FeD insulin group. Both perinatal FeD and intranasal insulin administration altered gene expression profile in the developing hippocampus. Intranasal insulin treatment reversed the adverse effects of FeD on many molecular pathways and could be explored as an adjunct therapy in perinatal FeD.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kathleen Ennis-Czerniak
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | - Priya Kanajam
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | - William H Frey
- HealthPartners Center for Memory and Aging, HealthPartners Neurosciences, St. Paul, Minnesota, United States
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
5
|
Liu SX, Fredrickson TK, Calixto Mancipe N, Georgieff MK, Tran PV. Sex-Specific Effects of Early-Life Iron Deficiency and Prenatal Choline Treatment on Adult Rat Hippocampal Transcriptome. Nutrients 2023; 15:nu15061316. [PMID: 36986048 PMCID: PMC10055746 DOI: 10.3390/nu15061316] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/04/2023] [Accepted: 03/05/2023] [Indexed: 03/11/2023] Open
Abstract
Background: Fetal-neonatal iron deficiency (ID) causes long-term neurocognitive and affective dysfunctions. Clinical and preclinical studies have shown that early-life ID produces sex-specific effects. However, little is known about the molecular mechanisms underlying these early-life ID-induced sex-specific effects on neural gene regulation. Objective: To illustrate sex-specific transcriptome alterations in adult rat hippocampus induced by fetal-neonatal ID and prenatal choline treatment. Methods: Pregnant rats were fed an iron-deficient (4 mg/kg Fe) or iron-sufficient (200 mg/kg Fe) diet from gestational day (G) 2 to postnatal day (P) 7 with or without choline supplementation (5 g/kg choline) from G11–18. Hippocampi were collected from P65 offspring of both sexes and analyzed for changes in gene expression. Results: Both early-life ID and choline treatment induced transcriptional changes in adult female and male rat hippocampi. Both sexes showed ID-induced alterations in gene networks leading to enhanced neuroinflammation. In females, ID-induced changes indicated enhanced activity of oxidative phosphorylation and fatty acid metabolism, which were contrary to the ID effects in males. Prenatal choline supplementation induced the most robust changes in gene expression, particularly in iron-deficient animals where it partially rescued ID-induced dysregulation. Choline supplementation also altered hippocampal transcriptome in iron-sufficient rats with indications for both beneficial and adverse effects. Conclusions: This study provided unbiased global assessments of gene expression regulated by iron and choline in a sex-specific manner, with greater effects in female than male rats. Our new findings highlight potential sex-specific gene networks regulated by iron and choline for further investigation.
Collapse
Affiliation(s)
- Shirelle X. Liu
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Natalia Calixto Mancipe
- Research Informatic Solutions, Minnesota Supercomputing Institute, University of Minnesota, Minneapolis, MN 55455, USA
| | | | - Phu V. Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
- Correspondence: ; Tel.: +01-612-626-7964
| |
Collapse
|
6
|
Larson LM, Feuerriegel D, Hasan MI, Braat S, Jin J, Tipu SMU, Shiraji S, Tofail F, Biggs BA, Hamadani JD, Johnson KA, Bode S, Pasricha SR. Effects of iron supplementation on neural indices of habituation in Bangladeshi children. Am J Clin Nutr 2023; 117:73-82. [PMID: 36789946 DOI: 10.1016/j.ajcnut.2022.11.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/23/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Iron deficiency and anemia have been associated with poor cognition in children, yet the effects of iron supplementation on neurocognition remain unclear. OBJECTIVE We aimed to examine the effects of supplementation with iron on neural indices of habituation using auditory event-related brain potentials (ERPs). METHODS This substudy was nested within a 3-arm, double-blind, double-dummy, individual randomized trial in Bangladesh, in which 3300 8-mo-old children were randomly selected to receive 3 mo of daily iron syrup (12.5 mg iron), multiple micronutrient powders (MNPs) (including 12.5 mg iron), or placebo. Children were assessed after 3 mo of intervention (mo 3) and 9 mo thereafter (mo 12). The neurocognitive substudy comprised a randomly selected subset of children from the main trial. Brain activity elicited during an auditory roving oddball task was recorded using electroencephalography to provide an index of habituation. The differential response to a novel (deviant) compared with a repeated (standard) sound was examined. The primary outcome was the amplitude of the mismatch response (deviant minusstandard tone waveforms) at mo 3. Secondary outcomes included the deviant and standard tone-evoked amplitudes, N2 amplitude differences, and differences in mean amplitudes evoked by deviant tones presented in the second compared with first half of the oddball sequence at mo 3 and 12. RESULTS Data were analyzed from 329 children at month 3 and 363 at mo 12. Analyses indicated no treatment effects of iron interventions compared with placebo on the amplitude of the mismatch response (iron syrup compared with placebo: mean difference (MD) = 0.07μV [95% CI: -1.22, 1.37]; MNPs compared with placebo: MD = 0.58μV [95% CI: -0.74, 1.90]) nor any secondary ERP outcomes at mo 3 or 12, despite improvements in hemoglobin and ferritin concentrations from iron syrup and MNPs in this nested substudy. CONCLUSION In Bangladeshi children with >40% anemia prevalence, iron or MNP interventions alone are insufficient to improve neural indices of habituation. This trial was registered at the Australian New Zealand Clinical Trials Registry as ACTRN12617000660381.
Collapse
Affiliation(s)
- Leila M Larson
- Department of Health Promotion, Education, and Behavior, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA; Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Infectious Diseases at the Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia.
| | - Daniel Feuerriegel
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Mohammed Imrul Hasan
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Sabine Braat
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Department of Infectious Diseases at the Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia; Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Australia
| | - Jerry Jin
- Department of Infectious Diseases at the Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia; Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Sm Mulk Uddin Tipu
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Shamima Shiraji
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Fahmida Tofail
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Beverley-Ann Biggs
- Department of Infectious Diseases at the Peter Doherty Institute, The University of Melbourne, Melbourne, VIC, Australia; The Victorian Infectious Diseases Service, The Royal Melbourne Hospital, Melbourne, VIC, Australia
| | - Jena D Hamadani
- Maternal and Child Health Division, International Centre for Diarrhoeal Disease Research, Dhaka, Bangladesh
| | - Katherine A Johnson
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Stefan Bode
- Melbourne School of Psychological Sciences, The University of Melbourne, Melbourne, VIC, Australia
| | - Sant-Rayn Pasricha
- Population Health and Immunity Division, Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia; Diagnostic Hematology, The Royal Melbourne Hospital, Parkville VIC, Australia; Diagnostic Hematology and Clinical Hematology, The Peter MacCallum Cancer Centre and The Royal Melbourne Hospital, Parkville VIC, Australia; Department of Medical Biology, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
7
|
Kulhanek D, Abrahante Llorens JE, Buckley L, Tkac I, Rao R, Paulsen ME. Female and male C57BL/6J offspring exposed to maternal obesogenic diet develop altered hypothalamic energy metabolism in adulthood. Am J Physiol Endocrinol Metab 2022; 323:E448-E466. [PMID: 36342228 PMCID: PMC9639756 DOI: 10.1152/ajpendo.00100.2022] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 08/12/2022] [Accepted: 09/12/2022] [Indexed: 11/22/2022]
Abstract
Maternal obesity is exceedingly common and strongly linked to offspring obesity and metabolic disease. Hypothalamic function is critical to obesity development. Hypothalamic mechanisms causing obesity following exposure to maternal obesity have not been elucidated. Therefore, we studied a cohort of C57BL/6J dams, treated with a control or high-fat-high-sugar diet, and their adult offspring to explore potential hypothalamic mechanisms to explain the link between maternal and offspring obesity. Dams treated with obesogenic diet were heavier with mild insulin resistance, which is reflective of the most common metabolic disease in pregnancy. Adult offspring exposed to maternal obesogenic diet had no change in body weight but significant increase in fat mass, decreased glucose tolerance, decreased insulin sensitivity, elevated plasma leptin, and elevated plasma thyroid-stimulating hormone. In addition, offspring exposed to maternal obesity had decreased energy intake and activity without change in basal metabolic rate. Hypothalamic neurochemical profile and transcriptome demonstrated decreased neuronal activity and inhibition of oxidative phosphorylation. Collectively, these results indicate that maternal obesity without diabetes is associated with adiposity and decreased hypothalamic energy production in offspring. We hypothesize that altered hypothalamic function significantly contributes to obesity development. Future studies focused on neuroprotective strategies aimed to improve hypothalamic function may decrease obesity development.NEW & NOTEWORTHY Offspring exposed to maternal diet-induced obesity demonstrate a phenotype consistent with energy excess. Contrary to previous studies, the observed energy phenotype was not associated with hyperphagia or decreased basal metabolic rate but rather decreased hypothalamic neuronal activity and energy production. This was supported by neurochemical changes in the hypothalamus as well as inhibition of hypothalamic oxidative phosphorylation pathway. These results highlight the potential for neuroprotective interventions in the prevention of obesity with fetal origins.
Collapse
Affiliation(s)
- Debra Kulhanek
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | | | - Lauren Buckley
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Ivan Tkac
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota Medical School, Minneapolis, Minnesota
| | - Megan E Paulsen
- Division of Neonatology, Department of Pediatrics, University of Minnesota Medical School, Minneapolis, Minnesota
- Minnesota Institute for the Developing Brain, Minneapolis, Minnesota
| |
Collapse
|
8
|
Abstract
Growing evidence indicates that a suboptimal intrauterine environment confers risk for schizophrenia. The developmental model of schizophrenia posits that aberrant brain growth during early brain development and adolescence may interact to contribute to this psychiatric disease in adulthood. Although a variety of factors may perturb the environment of the developing fetus and predispose for schizophrenia later, a common mechanism has yet to be elucidated. Micronutrient deficiencies during the perinatal period are known to induce potent effects on brain development by altering neurodevelopmental processes. Iron is an important candidate nutrient to consider because of its role in energy metabolism, monoamine synthesis, synaptogenesis, myelination, and the high prevalence of iron deficiency (ID) in the mother-infant dyad. Understanding the current state of science regarding perinatal ID as an early risk factor for schizophrenia is imperative to inform empirical work investigating the etiology of schizophrenia and develop prevention and intervention programs. In this narrative review, we focus on perinatal ID as a common mechanism underlying the fetal programming of schizophrenia. First, we review the neural aberrations associated with perinatal ID that indicate risk for schizophrenia in adulthood, including disruptions in dopaminergic neurotransmission, hippocampal-dependent learning and memory, and sensorimotor gating. Second, we review the pathophysiology of perinatal ID as a function of maternal ID during pregnancy and use epidemiological and cohort studies to link perinatal ID with risk of schizophrenia. Finally, we review potential confounding phenotypes, including nonanemic causes of perinatal brain ID and future risk of schizophrenia.
Collapse
Affiliation(s)
- Andrea M. Maxwell
- Medical Scientist Training Program, University of Minnesota, Minneapolis, MN 55455 (USA)
| | - Raghavendra B. Rao
- Department of Pediatrics, Division of Neonatology, University of Minnesota Medical School, Minneapolis, MN 55455 (USA)
- Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN 55455 (USA)
| |
Collapse
|
9
|
Szklarz M, Gontarz-Nowak K, Matuszewski W, Bandurska-Stankiewicz E. Can Iron Play a Crucial Role in Maintaining Cardiovascular Health in the 21st Century? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11990. [PMID: 36231287 PMCID: PMC9565681 DOI: 10.3390/ijerph191911990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/01/2022] [Accepted: 09/08/2022] [Indexed: 06/16/2023]
Abstract
In the 21st century the heart is facing more and more challenges so it should be brave and iron to meet these challenges. We are living in the era of the COVID-19 pandemic, population aging, prevalent obesity, diabetes and autoimmune diseases, environmental pollution, mass migrations and new potential pandemic threats. In our article we showed sophisticated and complex regulations of iron metabolism. We discussed the impact of iron metabolism on heart diseases, treatment of heart failure, diabetes and obesity. We faced the problems of constant stress, climate change, environmental pollution, migrations and epidemics and showed that iron is really essential for heart metabolism in the 21st century.
Collapse
|
10
|
Singh G, Wallin DJ, Abrahante Lloréns JE, Tran PV, Feldman HA, Georgieff MK, Gisslen T. Dose- and sex-dependent effects of phlebotomy-induced anemia on the neonatal mouse hippocampal transcriptome. Pediatr Res 2022; 92:712-720. [PMID: 34775474 PMCID: PMC9098692 DOI: 10.1038/s41390-021-01832-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 01/08/2023]
Abstract
BACKGROUND Phlebotomy-induced anemia (PIA) is universal and variable in degree among preterm infants and may contribute to neurodevelopmental risk. In mice, PIA causes brain tissue hypoxia, iron deficiency, and long-term sex-dependent neurobehavioral abnormalities. The neuroregulatory molecular pathways disrupted by PIA underlying these effects are unknown. METHODS Male and female pups were phlebotomized daily from postnatal day (P)3-P14 via facial venipuncture to target hematocrits of 25% (moderate, mPIA) and 18% (severe, sPIA). P14 hippocampal RNA from non-bled control and PIA mice was sequenced by next-generation sequencing to identify differentially expressed genes (DEGs) that were analyzed using Ingenuity Pathway Analysis. RESULTS mPIA females showed the least DEGs (0.5% of >22,000 genes) whereas sPIA females had the most (8.6%), indicating a dose-dependent effect. mPIA and sPIA males showed similar changes in gene expression (5.3% and 4.7%, respectively), indicating a threshold effect at mPIA. The pattern of altered genes induced by PIA indicates sex-specific and anemia-dose-dependent effects with increased pro-inflammation in females and decreased neurodevelopment in males. CONCLUSION These gene-expression changes may underlie the reduced recognition memory function in male and abnormal social-cognitive behavior in female adult mice following neonatal PIA. These results parallel clinical studies demonstrating sex-specific behavioral outcomes as a function of neonatal anemia. IMPACT Phlebotomy-induced anemia (PIA) in neonatal mice results in an altered hippocampal transcriptome and the severity of changes are dependent upon degree of anemia and sex of neonatal mice. The reported findings provide context to the sex-specific outcomes that have been reported in transfusion threshold clinical trials of preterm infants and therefore may inform treatment strategies that may be based on sex. These data advance the field by showing that consequences of PIA may be based in sex-specific transcriptomic alterations. Such changes may also result from other causes of neonatal anemia that also affect term infants.
Collapse
Affiliation(s)
- Garima Singh
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Diana J. Wallin
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | | | - Phu V. Tran
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Henry A. Feldman
- Division of Newborn Medicine, Institutional Centers for Clinical and Translational Research, Boston Children’s Hospital, Boston, MA
| | - Michael K. Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN
| | - Tate Gisslen
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
11
|
Li X, Wang Q, Wu D, Zhang DW, Li SC, Zhang SW, Chen X, Li W. The effect of a novel anticonvulsant chemical Q808 on gut microbiota and hippocampus neurotransmitters in pentylenetetrazole-induced seizures in rats. BMC Neurosci 2022; 23:7. [PMID: 35114941 PMCID: PMC8812211 DOI: 10.1186/s12868-022-00690-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 01/28/2022] [Indexed: 11/18/2022] Open
Abstract
Background The gut microbiota can modulate brain function and behavior and is increasingly recognized as an important factor in mediating the risk of epilepsy and the effects of seizure interventions. Drug therapy is one of the factors that influence the composition of the intestinal microbiota. Q808 is an innovative chemical with strong anticonvulsant activity and low neurotoxicity. However, studies evaluating the effect of Q808 on gut microbial communities are lacking. In this study, we aimed to evaluate the anticonvulsant activity of Q808 on a pentylenetetrazol (PTZ)—induced seizure model and analyze and compare the intestinal microbiota composition of non-PTZ vehicle control group, the PTZ-induced seizure model rats with and without Q808, through 16S rDNA sequencing. Neurotransmitter levels in the hippocampus were quantitatively estimated using HPLC–MS. Results The results suggest that Q808 effectively alleviates seizures in chronic PTZ-kindled model rats. Additionally, based on the analyzed abundance of the gut microbiota, dysbacteriosis of model rats was found to be corrected after Q808 treatment at the phylum level. The unique bacterial taxa (e.g., Lactobacillus) that are associated with acetylcholine production, were significantly increased. Several short-chain fatty acids (SCFAs)-producing bacteria, including Roseburia, Alloprevptella, Prevotellaceae_NK3B31_group, Prevotellaceae_UCG-001, and Prevotella_9, were enriched. In the hippocampus, the contents of acetylcholine increased, whereas the levels of 3-methoxytyramine, glutamine, and 5-hydroxyindole acetic acid (5-HIAA) decreased after Q808 treatment. Conclusions This study demonstrates that Q808 can be used to remodel the dysbiosis of the gut microbiome and influence neurotransmitter levels in the hippocampus of PTZ-induced seizure model rats. We hope that these novel findings prompt further research on the interaction between gut microbiota and seizures and the mechanism of Q808. Supplementary Information The online version contains supplementary material available at 10.1186/s12868-022-00690-3.
Collapse
Affiliation(s)
- Xiang Li
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Qing Wang
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin, China
| | - Di Wu
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin, China
| | - Dian-Wen Zhang
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin, China
| | | | - Si-Wei Zhang
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China
| | - Xia Chen
- Department of Pharmacology, College of Basic Medical Sciences, Jilin University, Changchun, Jilin, China.
| | - Wei Li
- Academy of Chinese Medical Sciences of Jilin Province, Changchun, Jilin, China.
| |
Collapse
|
12
|
Lindlöf A. The Vulnerability of the Developing Brain: Analysis of Highly Expressed Genes in Infant C57BL/6 Mouse Hippocampus in Relation to Phenotypic Annotation Derived From Mutational Studies. Bioinform Biol Insights 2022; 16:11779322211062722. [PMID: 35023907 PMCID: PMC8743926 DOI: 10.1177/11779322211062722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 11/03/2021] [Indexed: 12/06/2022] Open
Abstract
The hippocampus has been shown to have a major role in learning and memory, but also to participate in the regulation of emotions. However, its specific role(s) in memory is still unclear. Hippocampal damage or dysfunction mainly results in memory issues, especially in the declarative memory but, in animal studies, has also shown to lead to hyperactivity and difficulty in inhibiting responses previously taught. The brain structure is affected in neuropathological disorders, such as Alzheimer's, epilepsy, and schizophrenia, and also by depression and stress. The hippocampus structure is far from mature at birth and undergoes substantial development throughout infant and juvenile life. The aim of this study was to survey genes highly expressed throughout the postnatal period in mouse hippocampus and which have also been linked to an abnormal phenotype through mutational studies to achieve a greater understanding about hippocampal functions during postnatal development. Publicly available gene expression data from C57BL/6 mouse hippocampus was analyzed; from a total of 5 time points (at postnatal day 1, 10, 15, 21, and 30), 547 genes highly expressed in all of these time points were selected for analysis. Highly expressed genes are considered to be of potential biological importance and appear to be multifunctional, and hence any dysfunction in such a gene will most likely have a large impact on the development of abilities during the postnatal and juvenile period. Phenotypic annotation data downloaded from Mouse Genomic Informatics database were analyzed for these genes, and the results showed that many of them are important for proper embryo development and infant survival, proper growth, and increase in body size, as well as for voluntary movement functions, motor coordination, and balance. The results also indicated an association with seizures that have primarily been characterized by uncontrolled motor activity and the development of proper grooming abilities. The complete list of genes and their phenotypic annotation data have been compiled in a file for easy access.
Collapse
|
13
|
Barks A, Beeson MM, Hallstrom TC, Georgieff MK, Tran PV. Developmental Iron Deficiency Dysregulates TET Activity and DNA Hydroxymethylation in the Rat Hippocampus and Cerebellum. Dev Neurosci 2022; 44:80-90. [PMID: 35016180 PMCID: PMC8983444 DOI: 10.1159/000521704] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/23/2021] [Indexed: 01/13/2023] Open
Abstract
Iron deficiency (ID) during neurodevelopment is associated with lasting cognitive and socioemotional deficits and increased risk for neuropsychiatric disease throughout the lifespan. These neurophenotypical changes are underlain by gene dysregulation in the brain that outlasts the period of ID; however, the mechanisms by which ID establishes and maintains gene expression changes are incompletely understood. The epigenetic modification of 5-hydroxymethylcytosine (5hmC), or DNA hydroxymethylation, is one candidate mechanism because of its dependence on iron-containing TET enzymes. The aim of the present study was to determine the effect of fetal-neonatal ID on regional brain TET activity, Tet expression, and 5hmC in the developing rat hippocampus and cerebellum and to determine whether changes are reversible with dietary iron treatment. Timed pregnant Sprague Dawley rats were fed iron-deficient diet (ID; 4 mg/kg Fe) from gestational day 2 to generate iron-deficient anemic (IDA) offspring. Control dams were fed iron-sufficient diet (IS; 200 mg/kg Fe). At postnatal day (P)7, a subset of ID-fed litters was randomized to IS diet, generating treated IDA (TIDA) offspring. At P15, the hippocampus and cerebellum were isolated for subsequent analysis. TET activity was quantified by ELISA from nuclear proteins. Expression of Tet1, Tet2, and Tet3 was quantified by qPCR from total RNA. Global %5hmC was quantified by ELISA from genomic DNA. ID increased DNA hydroxymethylation (p = 0.0105), with a corresponding increase in TET activity (p < 0.0001) and Tet3 expression (p < 0.0001) in the P15 hippocampus. In contrast, ID reduced TET activity (p = 0.0016) in the P15 cerebellum, with minimal effect on DNA hydroxymethylation. Neonatal dietary iron treatment resulted in partial normalization of these changes in both brain regions. These results demonstrate that the TET/DNA hydroxymethylation system is disrupted by developmental ID in a brain region-specific manner. Differential regional disruption of this epigenetic system may contribute to the lasting neural circuit dysfunction and neurobehavioral dysfunction associated with developmental ID.
Collapse
Affiliation(s)
- Amanda Barks
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Montana M. Beeson
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Timothy C. Hallstrom
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Michael K. Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN, United States
| | - Phu V. Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States,Corresponding author: Phu V. Tran, Division of Neonatology, Department of Pediatrics, University of Minnesota, AO-401, 2450 Riverside Ave, Minneapolis, MN, 55454, United States, Tel: (612) 626-0644,
| |
Collapse
|
14
|
Prenatal Iron Deficiency and Choline Supplementation Interact to Epigenetically Regulate Jarid1b and Bdnf in the Rat Hippocampus into Adulthood. Nutrients 2021; 13:nu13124527. [PMID: 34960080 PMCID: PMC8706459 DOI: 10.3390/nu13124527] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/10/2021] [Accepted: 12/14/2021] [Indexed: 11/24/2022] Open
Abstract
Early-life iron deficiency (ID) causes long-term neurocognitive impairments and gene dysregulation that can be partially mitigated by prenatal choline supplementation. The long-term gene dysregulation is hypothesized to underlie cognitive dysfunction. However, mechanisms by which iron and choline mediate long-term gene dysregulation remain unknown. In the present study, using a well-established rat model of fetal-neonatal ID, we demonstrated that ID downregulated hippocampal expression of the gene encoding JmjC-ARID domain-containing protein 1B (JARID1B), an iron-dependent histone H3K4 demethylase, associated with a higher histone deacetylase 1 (HDAC1) enrichment and a lower enrichment of acetylated histone H3K9 (H3K9ac) and phosphorylated cAMP response element-binding protein (pCREB). Likewise, ID reduced transcriptional capacity of the gene encoding brain-derived neurotrophic factor (BDNF), a target of JARID1B, associated with repressive histone modifications such as lower H3K9ac and pCREB enrichments at the Bdnf promoters in the adult rat hippocampus. Prenatal choline supplementation did not prevent the ID-induced chromatin modifications at these loci but induced long-lasting repressive chromatin modifications in the iron-sufficient adult rats. Collectively, these findings demonstrated that the iron-dependent epigenetic mechanism mediated by JARID1B accounted for long-term Bdnf dysregulation by early-life ID. Choline supplementation utilized a separate mechanism to rescue the effect of ID on neural gene regulation. The negative epigenetic effects of choline supplementation in the iron-sufficient rat hippocampus necessitate additional investigations prior to its use as an adjunctive therapeutic agent.
Collapse
|
15
|
Moreno-Reyes R, Corvilain B, Daelemans C, Wolff F, Fuentes Peña C, Vandevijvere S. Iron Deficiency Is a Risk Factor for Thyroid Dysfunction During Pregnancy: A Population-Based Study in Belgium. Thyroid 2021; 31:1868-1877. [PMID: 34538131 DOI: 10.1089/thy.2021.0286] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Background: Iron deficiency affects thyroid hormone synthesis by impairing the activity of the heme-dependent thyroid peroxidase. The prevalence of iron deficiency is elevated particularly in pregnant women. This study aimed to investigate the effects of iron status on thyroid function in a nationally representative sample of mildly iodine-deficient pregnant women. Methods: The study population comprised a sample of pregnant women in Belgium during the first and third trimesters of pregnancy (n = 1241). Women were selected according to a multistage proportional-to-size stratified and clustered sampling design. Urine and blood samples were collected, and a questionnaire was completed face to face with the study nurse. Concentrations of free thyroxine (fT4), total thyroxine (T4), free triiodothyronine, thyrotropin (TSH), thyroglobulin (Tg), thyroid peroxidase antibodies, Tg antibodies, hemoglobin, serum ferritin (SF), soluble transferrin receptor, urinary iodine concentrations (UICs) were measured and body iron stores (BIS) were calculated. Results: Median UICs were 117 and 132 μg/L in the first and third trimesters of pregnancy, respectively (p < 0.05). The frequency of SF <15 μg/L was 6.2% in the first trimester and 39.6% in the third trimester of pregnancy (p < 0.05). UIC was a significant predictor of serum Tg concentrations (p < 0.01) but not of thyroid hormone or TSH concentrations. The frequency of fT4<percentile 10th in the third trimester of pregnancy was 24% and 14% in pregnant women with negative BIS and positive BIS, respectively (p < 0.05). SF and BIS were significant predictors of fT4 and T4 in the first trimester of pregnancy (p < 0.05). Hemoglobin was a significant predictor of fT4 in both trimesters (p < 0.01) and for T4 in the third trimester (p = 0.015). Conclusion: Iron deficiency, but not mild iodine deficiency, is a determinant of serum fT4 and T4 in pregnant women. Correcting iron deficiency may help to maintain optimal thyroid function, in addition to preventing anemia during pregnancy.
Collapse
Affiliation(s)
- Rodrigo Moreno-Reyes
- Department of Nuclear Medicine, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB); Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Bernard Corvilain
- Department of Endocrinology and Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB); Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Caroline Daelemans
- Department of Gynecology and Obstetrics, Hôpital Erasme; Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB); Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Fleur Wolff
- Department of Department of Clinical Chemistry, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB); Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Camilo Fuentes Peña
- Department of Nuclear Medicine, Laboratoire Hospitalier Universitaire de Bruxelles (LHUB-ULB); Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | |
Collapse
|
16
|
Early-Life Iron Deficiency Anemia Programs the Hippocampal Epigenomic Landscape. Nutrients 2021; 13:nu13113857. [PMID: 34836113 PMCID: PMC8623089 DOI: 10.3390/nu13113857] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/21/2021] [Accepted: 10/25/2021] [Indexed: 01/04/2023] Open
Abstract
Iron deficiency (ID) anemia is the foremost micronutrient deficiency worldwide, affecting around 40% of pregnant women and young children. ID during the prenatal and early postnatal periods has a pronounced effect on neurodevelopment, resulting in long-term effects such as cognitive impairment and increased risk for neuropsychiatric disorders. Treatment of ID has been complicated as it does not always resolve the long-lasting neurodevelopmental deficits. In animal models, developmental ID results in abnormal hippocampal structure and function associated with dysregulation of genes involved in neurotransmission and synaptic plasticity. Dysregulation of these genes is a likely proximate cause of the life-long deficits that follow developmental ID. However, a direct functional link between iron and gene dysregulation has yet to be elucidated. Iron-dependent epigenetic modifications are one mechanism by which ID could alter gene expression across the lifespan. The jumonji and AT-rich interaction domain-containing (JARID) protein and the Ten-Eleven Translocation (TET) proteins are two families of iron-dependent epigenetic modifiers that play critical roles during neural development by establishing proper gene regulation during critical periods of brain development. Therefore, JARIDs and TETs can contribute to the iron-mediated epigenetic mechanisms by which early-life ID directly causes stable changes in gene regulation across the life span.
Collapse
|
17
|
Hoyos AB, Vasquez-Hoyos P. Transfusion prevention using erythropoietin, parenteral sucrose iron, and fewer phlebotomies in infants born at ≤30 weeks gestation at a high altitude center: a 10-year experience. J Perinatol 2021; 41:1403-1411. [PMID: 33568772 DOI: 10.1038/s41372-021-00945-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 01/31/2023]
Abstract
INTRODUCTION Red blood cell transfusions in infants born at ≤30 weeks gestation are frequent. Erythropoietin therapy reduces transfusions. An increase in hematocrit is an adaptive response at high altitudes but a guaranteed source of iron is necessary for adequate erythropoiesis. METHODS A retrospective cohort study was done to compare red blood cell transfusion practices of the 2019 EpicLatino (EPIC) Latin America network database with a single unit at 2650 m above sea level (LOCAL). The data from LOCAL for three time periods were compared over 10 years based on changes in erythropoietin dose and fewer phlebotomies. The number of cases that received transfusions and the total number of transfusions required were compared. Adjustments were made for known risk factors using a multivariate regression analysis. RESULTS Two hundred and twenty-one cases in LOCAL and 382 cases from EPIC were included. Overall basic demographic characteristics were similar. In EPIC a significantly higher rate of infection (28% vs. 15%) and outborn (10% vs. 1%) was found, but less necrotizing enterocolitis (9% vs. 15%) and use of prenatal steroids (62% vs. 93%) than LOCAL (p < 0.05). EPIC patients received more transfusions (2.6 ± 3 vs. 0.6 ± 1 times) than LOCAL (p < 0.001) and received them significantly more frequently (61% vs. 25%). Within the LOCAL time periods, no statistically significant differences were found other than the need for transfusions (1st 32%, 2nd 28%, 3rd 9%, p = 0.005) and the average number of transfusions (1st 0.8 ± 1.6, 2nd 0.7 ± 1.3, 3rd 0.1 ± 0.3, p = 0.004). These differences remained significant after multivariate regression analysis and adjusting for risk variables. CONCLUSION The combination of erythropoietin, parenteral sucrose iron, fewer phlebotomies during the first 72 h, and delayed umbilical cord clamping seem to reduce red blood cell transfusion needs. This can be extremely important in high altitude units where higher hematocrit is desirable but may also be valuable at sea level.
Collapse
Affiliation(s)
- Angela B Hoyos
- Division of Neonatology, Clínica del Country, Bogota, DC, Colombia. .,Universidad El Bosque, Bogota, Colombia.
| | - Pablo Vasquez-Hoyos
- Sociedad de Cirugía Hospital de San José, Bogota, Colombia.,Department of Pediatrics, Universidad Nacional de Colombia, Bogota, Colombia.,Department of Pediatrics, Fundación Universitaria de Ciencias de la Salud, Bogota, Colombia
| |
Collapse
|
18
|
Bahr TM, Carr NR, Christensen TR, Wilkes J, O'Brien EA, German KR, Ohls RK, Ward DM, Christensen RD. Early iron supplementation and iron sufficiency at one month of age in NICU patients at-risk for iron deficiency. Blood Cells Mol Dis 2021; 90:102575. [PMID: 33989937 DOI: 10.1016/j.bcmd.2021.102575] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 04/27/2021] [Accepted: 04/27/2021] [Indexed: 12/16/2022]
Abstract
In order to reduce iron deficiency in neonates at-risk for iron deficiency, we implemented a guideline to increase the consistency of early iron supplementation in infants of diabetic mothers, small for gestational age neonates and very low birthweight premature neonates. Three years following implementation we performed a retrospective analysis in order to assess adherence to the guideline and to compare timing of early iron supplementation and reticulocyte-hemoglobin (RET-He) values at one month of life in at-risk infants. Adherence with early iron supplementation guidelines was 73.4% (399/543) with 51% (275/543) having RET-He values obtained at one month. Despite good adherence, 16% (44/275) had RET-He <25 pg (5th percentile for gestational age). No infants receiving red blood cell transfusion (0/20) had RET-He <25 pg vs. 26.1% (40/153) of those treated with darbepoetin (p < 0.001). There was no evidence of increased feeding intolerance (episodes of emesis/day) with early iron supplementation.
Collapse
Affiliation(s)
- Timothy M Bahr
- Department of Pediatrics, Division of Neonatology, University of Utah Health, Salt Lake City, UT, USA.
| | - Nicholas R Carr
- Department of Pediatrics, Division of Neonatology, University of Utah Health, Salt Lake City, UT, USA
| | | | - Jacob Wilkes
- Intermountain Healthcare Research, Salt Lake City, UT, USA
| | - Elizabeth A O'Brien
- Department of Pediatrics, Division of Neonatology, University of Utah Health, Salt Lake City, UT, USA; Intermountain Healthcare Research, Salt Lake City, UT, USA
| | - Kendell R German
- Department of Pediatrics, Division of Neonatology, University of Washington, Seattle, WA, USA
| | - Robin K Ohls
- Department of Pediatrics, Division of Neonatology, University of Utah Health, Salt Lake City, UT, USA
| | - Diane M Ward
- Department of Pathology, University of Utah Health, Salt Lake City, UT, USA; Center for Iron and Heme Disorders, University of Utah, Salt Lake City, UT, USA
| | - Robert D Christensen
- Department of Pediatrics, Division of Neonatology, University of Utah Health, Salt Lake City, UT, USA; Intermountain Healthcare Research, Salt Lake City, UT, USA; Center for Iron and Heme Disorders, University of Utah, Salt Lake City, UT, USA; Department of Pediatrics, Division of Hematology/Oncology, University of Utah Health, Salt Lake City, UT, USA
| |
Collapse
|
19
|
Chan A, Karpel H, Spartz E, Willett T, Farhadian B, Jeng M, Thienemann M, Frankovich J. Hypoferritinemia and iron deficiency in youth with pediatric acute-onset neuropsychiatric syndrome. Pediatr Res 2021; 89:1477-1484. [PMID: 32746449 DOI: 10.1038/s41390-020-1103-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/16/2020] [Accepted: 07/21/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND Pediatric acute-onset neuropsychiatric syndrome (PANS) is an abrupt debilitating psychiatric illness. We anecdotally observed hypoferritinemia and iron deficiency in a subset of patients with PANS, prompting this study. METHODS In this IRB-approved prospective cohort study, we included patients seen at the Stanford PANS Clinic who met study criteria. The prevalence of hypoferritinemia (using cut-offs of 7 ng/ml in children ≤ 15 years and 18 ng/ml in adolescents > 15 years) and iron deficiency was estimated. Differences in patients with and without hypoferritinemia during PANS flare were explored. RESULTS Seventy-nine subjects (mean age of PANS onset of 8.7 years) met study criteria. Hypoferritinemia was observed in 27% and three quarters occurred during a PANS flare. Compared to patients without hypoferritinemia during PANS flare, patients with hypoferritinemia had worse global impairment, more comorbid inflammatory diseases, and exhibited a chronic course of PANS illness. The estimated prevalence of iron deficiency was 3-8% in the PANS cohort, 1.4-2.0-fold higher than in the age- and sex-matched U.S. POPULATION More stringent ferritin level cut-offs than the comparison CDC dataset were used. CONCLUSION Hypoferritinemia and iron deficiency appear to be more common in PANS patients. More research is needed to confirm and understand this association. IMPACT Our study suggests hypoferritinemia and iron deficiency are more common in patients with pediatric acute-onset neuropsychiatric syndrome (PANS) than in the sex- and age-matched US population. Hypoferritinemia was commonly observed during a disease flare but not associated with dietary or demographic factors. In patients with PANS and iron deficiency, clinicians should consider possibility of inflammation as the cause especially if iron deficiency cannot be explained by diet and blood loss. Future research should include larger cohorts to corroborate our study findings and consider examining the iron dynamics on MRI brain imaging in order to better understand the pathophysiology of PANS.
Collapse
Affiliation(s)
- Avis Chan
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Hannah Karpel
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA.,New York University School of Medicine, New York City, NY, USA
| | - Ellen Spartz
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA.,University of Minnesota Medical School, Minneapolis, MN, USA
| | - Theresa Willett
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Bahare Farhadian
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA.,Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA
| | - Michael Jeng
- Division of Hematology & Oncology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Margo Thienemann
- Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA.,Division of Child & Adolescent Psychiatry, Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Jennifer Frankovich
- Division of Allergy, Immunology, & Rheumatology, Department of Pediatrics, Stanford University School of Medicine, Palo Alto, CA, USA. .,Stanford PANS Clinic and Research Program at Lucile Packard Children's Hospital, Palo Alto, CA, USA.
| |
Collapse
|
20
|
Liu SX, Gades MS, Swain Y, Ramakrishnan A, Harris AC, Tran PV, Gewirtz JC. Repeated morphine exposure activates synaptogenesis and other neuroplasticity-related gene networks in the dorsomedial prefrontal cortex of male and female rats. Drug Alcohol Depend 2021; 221:108598. [PMID: 33626484 PMCID: PMC8026706 DOI: 10.1016/j.drugalcdep.2021.108598] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND Opioid abuse is a chronic disorder likely involving stable neuroplastic modifications. While a number of molecules contributing to these changes have been identified, the broader spectrum of genes and gene networks that are affected by repeated opioid administration remain understudied. METHODS We employed Next-Generation RNA-sequencing (RNA-seq) followed by quantitative chromatin immunoprecipitation to investigate changes in gene expression and their regulation in adult male and female rats' dorsomedial prefrontal cortex (dmPFC) after a regimen of daily injection of morphine (5.0 mg/kg; 10 days). Ingenuity Pathway Analysis (IPA) was used to analyze affected molecular pathways, gene networks, and associated regulatory factors. A complementary behavioral study evaluated the effects of the same morphine injection regimen on locomotor activity, pain sensitivity, and somatic withdrawal signs. RESULTS Behaviorally, repeated morphine injection induced locomotor hyperactivity and hyperalgesia in both sexes. 90 % of differentially expressed genes (DEGs) in morphine-treated rats were upregulated in both males and females, with a 35 % overlap between sexes. A substantial number of DEGs play roles in synaptic signaling and neuroplasticity. Chromatin immunoprecipitation revealed enrichment of H3 acetylation, a transcriptionally activating chromatin mark. Although broadly similar, some differences were revealed in the gene ontology networks enriched in females and males. CONCLUSIONS Our results cohere with findings from previous studies based on a priori gene selection. Our results also reveal novel genes and molecular pathways that are upregulated by repeated morphine exposure, with some common to males and females and others that are sex-specific.
Collapse
Affiliation(s)
- Shirelle X Liu
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Mari S Gades
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Yayi Swain
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, United States; Hennepin Healthcare Research Institute, Minneapolis, MN, 55404, United States
| | | | - Andrew C Harris
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, United States; Department of Medicine, University of Minnesota, Minneapolis, MN, 55455, United States; Hennepin Healthcare Research Institute, Minneapolis, MN, 55404, United States
| | - Phu V Tran
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, 55455, United States
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, 55455, United States.
| |
Collapse
|
21
|
Matveeva TM, Singh G, Gisslen TA, Gewirtz JC, Georgieff MK. Sex differences in adult social, cognitive, and affective behavioral deficits following neonatal phlebotomy-induced anemia in mice. Brain Behav 2021; 11:e01780. [PMID: 33605555 PMCID: PMC7994701 DOI: 10.1002/brb3.1780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 12/19/2022] Open
Abstract
INTRODUCTION Anemia is common in prematurely born infants due to blood loss resulting from frequent phlebotomies and may contribute to their neurobehavioral deficits. Preclinical models of phlebotomy-induced anemia (PIA) have revealed metabolic and genomic changes in multiple brain structures of young mice, yet the impact of neonatal PIA on early-life and adult behavior has not been assessed. METHODS The present study employed a range of behavioral measures in phlebotomized anemic neonatal mice to investigate short- and long-term neurodevelopmental effects. PIA from postnatal (P) days 3 to 14 caused sex-specific changes in social behavior, novelty preference, and anxiety at P17 that persisted into adulthood. RESULTS Our preclinical model suggests that PIA may contribute to acute and long-term behavioral and affective deficits and warrants further substantiation of the observed behavioral phenomena in larger samples. CONCLUSIONS We conclude that this model is a useful tool for beginning to better understand the lasting effect that early-life PIA might have on the developing brain. The differential impact of PIA on male and female subjects warrants further exploration for the development of appropriately targeted interventions.
Collapse
Affiliation(s)
| | - Garima Singh
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Tate A Gisslen
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Jonathan C Gewirtz
- Department of Psychology, University of Minnesota, Minneapolis, MN, USA.,Department of Neuroscience, University of Minnesota, Minneapolis, MN, USA
| | | |
Collapse
|
22
|
Vlasova RM, Wang Q, Willette A, Styner MA, Lubach GR, Kling PJ, Georgieff MK, Rao RB, Coe CL. Infantile Iron Deficiency Affects Brain Development in Monkeys Even After Treatment of Anemia. Front Hum Neurosci 2021; 15:624107. [PMID: 33716694 PMCID: PMC7947927 DOI: 10.3389/fnhum.2021.624107] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
A high percent of oxidative energy metabolism is needed to support brain growth during infancy. Unhealthy diets and limited nutrition, as well as other environmental insults, can compromise these essential developmental processes. In particular, iron deficiency anemia (IDA) has been found to undermine both normal brain growth and neurobehavioral development. Even moderate ID may affect neural maturation because when iron is limited, it is prioritized first to red blood cells over the brain. A primate model was used to investigate the neural effects of a transient ID and if deficits would persist after iron treatment. The large size and postnatal growth of the monkey brain makes the findings relevant to the metabolic and iron needs of human infants, and initiating treatment upon diagnosis of anemia reflects clinical practice. Specifically, this analysis determined whether brain maturation would still be compromised at 1 year of age if an anemic infant was treated promptly once diagnosed. The hematology and iron status of 41 infant rhesus monkeys was screened at 2-month intervals. Fifteen became ID; 12 met clinical criteria for anemia and were administered iron dextran and B vitamins for 1-2 months. MRI scans were acquired at 1 year. The volumetric and diffusion tensor imaging (DTI) measures from the ID infants were compared with monkeys who remained continuously iron sufficient (IS). A prior history of ID was associated with smaller total brain volumes, driven primarily by significantly less total gray matter (GM) and smaller GM volumes in several cortical regions. At the macrostructual level, the effect on white matter volumes (WM) was not as overt. However, DTI analyses of WM microstructure indicated two later-maturating anterior tracts were negatively affected. The findings reaffirm the importance of iron for normal brain development. Given that brain differences were still evident even after iron treatment and following recovery of iron-dependent hematological indices, the results highlight the importance of early detection and preemptive supplementation to limit the neural consequences of ID.
Collapse
Affiliation(s)
- Roza M. Vlasova
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Qian Wang
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Auriel Willette
- Department of Food Science and Human Nutrition, Iowa State University, Ames, IA, United States
| | - Martin A. Styner
- Department of Psychiatry, The University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Gabriele R. Lubach
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| | - Pamela J. Kling
- Department of Pediatrics, University of Wisconsin-Madison, Madison, WI, United States
| | - Michael K. Georgieff
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Raghavendra B. Rao
- Department of Pediatrics, University of Minnesota, Minneapolis, MN, United States
| | - Christopher L. Coe
- Harlow Center for Biological Psychology, University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
23
|
The nAChR Chaperone TMEM35a (NACHO) Contributes to the Development of Hyperalgesia in Mice. Neuroscience 2021; 457:74-87. [PMID: 33422618 PMCID: PMC7897319 DOI: 10.1016/j.neuroscience.2020.12.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 12/17/2020] [Accepted: 12/21/2020] [Indexed: 01/21/2023]
Abstract
Pain is a major health problem, affecting over fifty million adults in the US alone, with significant economic cost in medical care and lost productivity. Despite evidence implicating nicotinic acetylcholine receptors (nAChRs) in pathological pain, their specific contribution to pain processing in the spinal cord remains unclear given their presence in both neuronal and non-neuronal cell types. Here we investigated if loss of neuronal-specific TMEM35a (NACHO), a novel chaperone for functional expression of the homomeric α7 and assembly of the heteromeric α3, α4, and α6-containing nAChRs, modulates pain in mice. Mice with tmem35a deletion exhibited thermal hyperalgesia and mechanical allodynia. Intrathecal administration of nicotine and the α7-specific agonist, PHA543613, produced analgesic responses to noxious heat and mechanical stimuli in tmem35a KO mice, respectively, suggesting residual expression of these receptors or off-target effects. Since NACHO is expressed only in neurons, these findings indicate that neuronal α7 nAChR in the spinal cord contributes to heat nociception. To further determine the molecular basis underlying the pain phenotype, we analyzed the spinal cord transcriptome. Compared to WT control, the spinal cord of tmem35a KO mice exhibited 72 differentially-expressed genes (DEGs). These DEGs were mapped onto functional gene networks using the knowledge-based database, Ingenuity Pathway Analysis, and suggests increased neuroinflammation as a potential contributing factor for the hyperalgesia in tmem35a KO mice. Collectively, these findings implicate a heightened inflammatory response in the absence of neuronal NACHO activity. Additional studies are needed to determine the precise mechanism by which NACHO in the spinal cord modulates pain.
Collapse
|
24
|
|
25
|
Cavallucci V, Fidaleo M, Pani G. Nutrients and neurogenesis: the emerging role of autophagy and gut microbiota. Curr Opin Pharmacol 2019; 50:46-52. [PMID: 31869664 DOI: 10.1016/j.coph.2019.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2019] [Revised: 11/04/2019] [Accepted: 11/07/2019] [Indexed: 12/18/2022]
Abstract
Adult neurogenesis, the generation of mature functional neurons from neural stem cells in specific regions of the adult mammalian brain, is implicated in brain physiology, neurodegeneration and mood disorders. Among the many intrinsic and extrinsic factors that modulate neurogenic activity, the role of nutrients, energy metabolism, and gut microbiota has recently emerged. It is increasingly evident that excessive calorie intake accelerates the age-dependent decline of neurogenesis, while calorie restriction and physical exercise have the opposite effect. Mechanistically, nutrient availability could affect neurogenesis by modulating autophagy, a cell-rejuvenating process, in neural stem cells. In parallel, diet can alter the composition of gut microbiota thus impacting the intestine-neurogenic niche communication. These exciting breakthroughs are here concisely reviewed.
Collapse
Affiliation(s)
- Virve Cavallucci
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.
| | - Marco Fidaleo
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy
| | - Giovambattista Pani
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Roma, Italy; Institute of General Pathology, Università Cattolica del Sacro Cuore, Roma, Italy.
| |
Collapse
|
26
|
Ennis K, Felt B, Georgieff MK, Rao R. Early-Life Iron Deficiency Alters Glucose Transporter-1 Expression in the Adult Rodent Hippocampus. J Nutr 2019; 149:1660-1666. [PMID: 31162576 PMCID: PMC6736205 DOI: 10.1093/jn/nxz100] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 11/26/2018] [Accepted: 04/24/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Early-life iron deficiency (ID) impairs hippocampal energy production. Whether there are changes in glucose transporter (GLUT) expression is not known. OBJECTIVE The aim of this study was to investigate whether early-life ID and the treatment iron dose alter brain regional GLUT expression in adult rats and mice. METHODS In Study 1, ID was induced in male and female Sprague Dawley rat pups by feeding dams a 3-mg/kg iron diet during gestation and the first postnatal week, followed by treatment using low-iron [3-10 mg/kg; formerly iron-deficient (FID)-10 group], standard-iron (40-mg/kg; FID-40 group), or high-iron (400-mg/kg; FID-400 group) diets until weaning. The control group received the 40 mg/kg iron diet. GLUT1, GLUT3, hypoxia-inducible factor (HIF)-1α, and prolyl-hydroxylase-2 (PHD2) mRNA and protein expression in the cerebral cortex, hippocampus, striatum, cerebellum, and hypothalamus were determined at adulthood. In Study 2, the role of hippocampal ID in GLUT expression was examined by comparing the Glut1, Glut3, Hif1α, and Phd2 mRNA expression in adult male and female wild-type (WT) and nonanemic hippocampal iron-deficient and iron-replete dominant negative transferrin receptor 1 (DNTfR1-/-) transgenic mice. RESULTS In Study 1, Glut1, Glut3, and Hif1α mRNA, and GLUT1 55-kDa protein expression was upregulated 20-33% in the hippocampus of the FID-10 group but not the FID-40 group, relative to the control group. Hippocampal Glut1 mRNA (-39%) and GLUT1 protein (-30%) expression was suppressed in the FID-400 group, relative to the control group. Glut1 and Glut3 mRNA expression was not altered in the other brain regions in the 3 FID groups. In Study 2, hippocampal Glut1 (+14%) and Hif1α (+147%) expression was upregulated in the iron-deficient DNTfR1-/- mice, but not in the iron-replete DNTfR1-/- mice, relative to the WT mice (P < 0.05, all). CONCLUSIONS Early-life ID is associated with altered hippocampal GLUT1 expression in adult rodents. The mouse study suggests that tissue ID is potentially responsible.
Collapse
Affiliation(s)
- Kathleen Ennis
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Barbara Felt
- Department of Pediatrics, University of Michigan, Ann Arbor, MI, USA
| | - Michael K Georgieff
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA
| | - Raghavendra Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA,Center for Neurobehavioral Development, University of Minnesota, Minneapolis, MN, USA,Address correspondence to RR (e-mail: )
| |
Collapse
|
27
|
Armitage AE, Moretti D. The Importance of Iron Status for Young Children in Low- and Middle-Income Countries: A Narrative Review. Pharmaceuticals (Basel) 2019; 12:E59. [PMID: 30995720 PMCID: PMC6631790 DOI: 10.3390/ph12020059] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/09/2019] [Accepted: 04/12/2019] [Indexed: 12/21/2022] Open
Abstract
Early childhood is characterised by high physiological iron demand to support processes including blood volume expansion, brain development and tissue growth. Iron is also required for other essential functions including the generation of effective immune responses. Adequate iron status is therefore a prerequisite for optimal child development, yet nutritional iron deficiency and inflammation-related iron restriction are widespread amongst young children in low- and middle-income countries (LMICs), meaning iron demands are frequently not met. Consequently, therapeutic iron interventions are commonly recommended. However, iron also influences infection pathogenesis: iron deficiency reduces the risk of malaria, while therapeutic iron may increase susceptibility to malaria, respiratory and gastrointestinal infections, besides reshaping the intestinal microbiome. This means caution should be employed in administering iron interventions to young children in LMIC settings with high infection burdens. In this narrative review, we first examine demand and supply of iron during early childhood, in relation to the molecular understanding of systemic iron control. We then evaluate the importance of iron for distinct aspects of physiology and development, particularly focusing on young LMIC children. We finally discuss the implications and potential for interventions aimed at improving iron status whilst minimising infection-related risks in such settings. Optimal iron intervention strategies will likely need to be individually or setting-specifically adapted according to iron deficiency, inflammation status and infection risk, while maximising iron bioavailability and considering the trade-offs between benefits and risks for different aspects of physiology. The effectiveness of alternative approaches not centred around nutritional iron interventions for children should also be thoroughly evaluated: these include direct targeting of common causes of infection/inflammation, and maternal iron administration during pregnancy.
Collapse
Affiliation(s)
- Andrew E Armitage
- MRC Human Immunology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, John Radcliffe Hospital, Oxford, OX3 9DS, UK.
| | - Diego Moretti
- Laboratory of Human Nutrition, Institute of Food Nutrition and Health, Department of Health Sciences and Technology, ETH Zürich, CH-8092 Zürich, Switzerland.
- Nutrition Group, Health Department, Swiss Distance University of Applied Sciences, CH-8105 Regensdorf, Switzerland.
| |
Collapse
|
28
|
|
29
|
Iron as a model nutrient for understanding the nutritional origins of neuropsychiatric disease. Pediatr Res 2019; 85:176-182. [PMID: 30341413 PMCID: PMC6353667 DOI: 10.1038/s41390-018-0204-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2018] [Revised: 10/04/2018] [Accepted: 10/04/2018] [Indexed: 12/19/2022]
Abstract
Adequate nutrition during the pre- and early-postnatal periods plays a critical role in programming early neurodevelopment. Disruption of neurodevelopment by nutritional deficiencies can result not only in lasting functional deficits, but increased risk of neuropsychiatric disease in adulthood. Historical periods of famine such as the Dutch Hunger Winter and the Chinese Famine have provided foundational evidence for the long-term effects of developmental malnutrition on neuropsychiatric outcomes. Because neurodevelopment is a complex process that consists of many nutrient- and brain-region-specific critical periods, subsequent clinical and pre-clinical studies have aimed to elucidate the specific roles of individual macro- and micronutrient deficiencies in neurodevelopment and neuropsychiatric pathologies. This review will discuss developmental iron deficiency (ID), the most common micronutrient deficiency worldwide, as a paradigm for understanding the role of early-life nutrition in neurodevelopment and risk of neuropsychiatric disease. We will review the epidemiologic data linking ID to neuropsychiatric dysfunction, as well as the underlying structural, cellular, and molecular mechanisms that are thought to underlie these lasting effects. Understanding the mechanisms driving lasting dysfunction and disease risk is critical for development and implementation of nutritional policies aimed at preventing nutritional deficiencies and their long-term sequelae.
Collapse
|