1
|
Xu T, Xiong M, Hong Q, Pan B, Xu M, Wang Y, Sun Y, Sun H, Pan Y, Wang S, He B. Hsa_circ_0007990 promotes breast cancer growth via inhibiting YBX1 protein degradation to activate E2F1 transcription. Cell Death Dis 2024; 15:153. [PMID: 38378679 PMCID: PMC10879541 DOI: 10.1038/s41419-024-06527-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 01/28/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
Breast cancer (BC) is the most commonly diagnosed malignant tumour in females worldwide. Although remarkable advances in early detection and treatment strategies have led to decreased mortality, recurrence and metastasis remain the major causes of cancer death in BC patients. Increasing evidence has demonstrated that circular RNAs (circRNAs) play critical roles in cancer progression. However, the detailed biological functions and molecular mechanisms of circRNAs in BC are unclear. The aim of this study was to investigate the possible role of circRNAs in the progression of BC. Differentially expressed circRNAs in BC were identified by integrating breast tumour-associated somatic CNV data and circRNA high-throughput sequencing. Aberrant hsa_circ_0007990 expression and host gene copy number were detected in BC cell lines via quantitative polymerase chain reaction (qPCR). The expression level of hsa_circ_0007990 in BC tissues was validated by in situ hybridization (ISH). Loss- and gain-of-function experiments were performed in vitro and in vivo, respectively, to explore the potential biological function of hsa_circ_0007990 in BC. The underlying mechanisms of hsa_circ_0007990 were investigated through MS2 RNA pull-down, RNA immunoprecipitation, RNA fluorescence in situ hybridization, immunofluorescence, chromatin immunoprecipitation and luciferase reporter assays. The levels of hsa_circ_0007990 were elevated in BC tissues and cell lines, an effect that was partly due to host gene copy number gains. Functional assays showed that hsa_circ_0007990 promoted BC cell growth. Mechanistically, hsa_circ_0007990 could bind to YBX1 and inhibit its degradation by preventing ubiquitin/proteasome-dependent degradation, thus enhancing the expression of the cell cycle-associated gene E2F1. Rescue experiments suggested that hsa_circ_0007990 promoted BC progression through YBX1. In general, our study demonstrated that hsa_circ_0007990 modulates the ubiquitination and degradation of YBX1 protein and further regulates E2F1 expression to promote BC progression. We explored the possible function and molecular mechanism of hsa_circ_0007990 in BC and identified a novel candidate target for the treatment of BC.
Collapse
Affiliation(s)
- Tao Xu
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mengqiu Xiong
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiwei Hong
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Bei Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mu Xu
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ying Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yalan Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Huiling Sun
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuqin Pan
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shukui Wang
- General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
- Jiangsu Cancer Personalized Medicine Collaborative Innovation Center, Nanjing, Jiangsu, China.
| | - Bangshun He
- Department of Laboratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Maxwell M, Söderlund R, Härtle S, Wattrang E. Single-cell RNA-seq mapping of chicken peripheral blood leukocytes. BMC Genomics 2024; 25:124. [PMID: 38287279 PMCID: PMC10826067 DOI: 10.1186/s12864-024-10044-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/23/2024] [Indexed: 01/31/2024] Open
Abstract
BACKGROUND Single-cell transcriptomics provides means to study cell populations at the level of individual cells. In leukocyte biology this approach could potentially aid the identification of subpopulations and functions without the need to develop species-specific reagents. The present study aimed to evaluate single-cell RNA-seq as a tool for identification of chicken peripheral blood leukocytes. For this purpose, purified and thrombocyte depleted leukocytes from 4 clinically healthy hens were subjected to single-cell 3' RNA-seq. Bioinformatic analysis of data comprised unsupervised clustering of the cells, and annotation of clusters based on expression profiles. Immunofluorescence phenotyping of the cell preparations used was also performed. RESULTS Computational analysis identified 31 initial cell clusters and based on expression of defined marker genes 28 cluster were identified as comprising mainly B-cells, T-cells, monocytes, thrombocytes and red blood cells. Of the remaining clusters, two were putatively identified as basophils and eosinophils, and one as proliferating cells of mixed origin. In depth analysis on gene expression profiles within and between the initial cell clusters allowed further identification of cell identity and possible functions for some of them. For example, analysis of the group of monocyte clusters revealed subclusters comprising heterophils, as well as putative monocyte subtypes. Also, novel aspects of TCRγ/δ + T-cell subpopulations could be inferred such as evidence of at least two subtypes based on e.g., different expression of transcription factors MAF, SOX13 and GATA3. Moreover, a novel subpopulation of chicken peripheral B-cells with high SOX5 expression was identified. An overall good correlation between mRNA and cell surface phenotypic cell identification was shown. CONCLUSIONS Taken together, we were able to identify and infer functional aspects of both previously well known as well as novel chicken leukocyte populations although some cell types. e.g., T-cell subtypes, proved more challenging to decipher. Although this methodology to some extent is limited by incomplete annotation of the chicken genome, it definitively has benefits in chicken immunology by expanding the options to distinguish identity and functions of immune cells also without access to species specific reagents.
Collapse
Affiliation(s)
- Matilda Maxwell
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden
- Department of Clinical Sciences, Faculty of Medicine, Lund University, Lund, Sweden
| | - Robert Söderlund
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden
| | - Sonja Härtle
- Department for Veterinary Sciences, Ludwig-Maximilians-Universität Munich, Munich, Germany
| | - Eva Wattrang
- Department of Microbiology, Swedish Veterinary Agency, Uppsala, Sweden.
| |
Collapse
|
3
|
Dinh NTM, Nguyen TM, Park MK, Lee CH. Y-Box Binding Protein 1: Unraveling the Multifaceted Role in Cancer Development and Therapeutic Potential. Int J Mol Sci 2024; 25:717. [PMID: 38255791 PMCID: PMC10815159 DOI: 10.3390/ijms25020717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 01/24/2024] Open
Abstract
Y-box binding protein 1 (YBX1), a member of the Cold Shock Domain protein family, is overexpressed in various human cancers and is recognized as an oncogenic gene associated with poor prognosis. YBX1's functional diversity arises from its capacity to interact with a broad range of DNA and RNA molecules, implicating its involvement in diverse cellular processes. Independent investigations have unveiled specific facets of YBX1's contribution to cancer development. This comprehensive review elucidates YBX1's multifaceted role in cancer across cancer hallmarks, both in cancer cell itself and the tumor microenvironment. Based on this, we proposed YBX1 as a potential target for cancer treatment. Notably, ongoing clinical trials addressing YBX1 as a target in breast cancer and lung cancer have showcased its promise for cancer therapy. The ramp up in in vitro research on targeting YBX1 compounds also underscores its growing appeal. Moreover, the emerging role of YBX1 as a neural input is also proposed where the high level of YBX1 was strongly associated with nerve cancer and neurodegenerative diseases. This review also summarized the up-to-date advanced research on the involvement of YBX1 in pancreatic cancer.
Collapse
Affiliation(s)
- Ngoc Thi Minh Dinh
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Tuan Minh Nguyen
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| | - Mi Kyung Park
- Department of BioHealthcare, Hwasung Medi-Science University, Hwaseong-si 18274, Republic of Korea
| | - Chang Hoon Lee
- College of Pharmacy, Dongguk University, Goyang 10326, Republic of Korea; (N.T.M.D.); (T.M.N.)
| |
Collapse
|
4
|
Wang Y, Zhu W, Ma R, Tian Y, Chen X, Gao P. PIN1P1 is activated by CREB1 and promotes gastric cancer progression via interacting with YBX1 and upregulating PIN1. J Cell Mol Med 2024; 28:e18022. [PMID: 37929660 PMCID: PMC10805483 DOI: 10.1111/jcmm.18022] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 10/05/2023] [Accepted: 10/22/2023] [Indexed: 11/07/2023] Open
Abstract
Long noncoding RNAs (lncRNAs) play critical roles in the carcinogenesis and progression of cancers. However, the role and mechanism of the pseudogene lncRNA PIN1P1 in gastric carcinoma remain unclear. The expression and effects of lncRNA PIN1P1 in gastric cancer were investigated. The transcriptional regulation of CREB1 on PIN1P1 was determined by ChIP and luciferase assays. The mechanistic model of PIN1P1 in gastric cancer was further explored by RNA pull-down, RIP and western blot analysis. PIN1P1 was overexpressed in gastric cancer tissues, and upregulated PIN1P1 predicted poor prognosis in patients. CREB1 was directly combined with the promoter region of PIN1P1 to promote the transcription of PIN1P1. CREB1-mediated enhanced proliferation, migration and invasion could be partially reversed by downregulation of PIN1P1. Overexpressed PIN1P1 promoted the proliferation, migration and invasion of gastric cancer cells, whereas decreased PIN1P1 showed the opposite effects. PIN1P1 directly interacted with YBX1 and promoted YBX1 protein expression, leading to upregulation of PIN1, in which E2F1 may be involved. Silencing of YBX1 during PIN1P1 overexpression could partially rescue PIN1 upregulation. PIN1, the parental gene of PIN1P1, was elevated in gastric cancer tissues, and its upregulation was correlated with poor patient outcomes. PIN1 facilitated gastric cancer cell proliferation, migration and invasion. To sum up, CREB1-activated PIN1P1 could promote gastric cancer progression through YBX1 and upregulating PIN1, suggesting that it is a potential target for gastric cancer.
Collapse
Affiliation(s)
- Ya‐Wen Wang
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| | - Wen‐Jie Zhu
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| | - Ran‐Ran Ma
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| | - Ya‐Ru Tian
- Department of Radiation Oncology, Shandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical ScienceJinanShandongChina
| | - Xu Chen
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| | - Peng Gao
- Department of PathologyQilu Hospital of Shandong UniversityJinanShandongChina
- Key Laboratory for Experimental Teratology of Ministry of Education, Department of Pathology, School of Basic Medical SciencesShandong UniversityJinanShandongChina
| |
Collapse
|
5
|
Heger J, Partsch S, Harjung C, Varga ZV, Baranyai T, Weiß J, Kremer L, Locquet F, Leszek P, Ágg B, Benczik B, Ferdinandy P, Schulz R, Euler G. YB-1 Is a Novel Target for the Inhibition of α-Adrenergic-Induced Hypertrophy. Int J Mol Sci 2023; 25:401. [PMID: 38203580 PMCID: PMC10778708 DOI: 10.3390/ijms25010401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 12/20/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024] Open
Abstract
Cardiac hypertrophy resulting from sympathetic nervous system activation triggers the development of heart failure. The transcription factor Y-box binding protein 1 (YB-1) can interact with transcription factors involved in cardiac hypertrophy and may thereby interfere with the hypertrophy growth process. Therefore, the question arises as to whether YB-1 influences cardiomyocyte hypertrophy and might thereby influence the development of heart failure. YB-1 expression is downregulated in human heart biopsies of patients with ischemic cardiomyopathy (n = 8), leading to heart failure. To study the impact of reduced YB-1 in cardiac cells, we performed small interfering RNA (siRNA) experiments in H9C2 cells as well as in adult cardiomyocytes (CMs) of rats. The specificity of YB-1 siRNA was analyzed by a miRNA-like off-target prediction assay identifying potential genes. Testing three high-scoring genes by transfecting cardiac cells with YB-1 siRNA did not result in downregulation of these genes in contrast to YB-1, whose downregulation increased hypertrophic growth. Hypertrophic growth was mediated by PI3K under PE stimulation, as well by downregulation with YB-1 siRNA. On the other hand, overexpression of YB-1 in CMs, caused by infection with an adenovirus encoding YB-1 (AdYB-1), prevented hypertrophic growth under α-adrenergic stimulation with phenylephrine (PE), but not under stimulation with growth differentiation factor 15 (GDF15; n = 10-16). An adenovirus encoding the green fluorescent protein (AdGFP) served as the control. YB-1 overexpression enhanced the mRNA expression of the Gq inhibitor regulator of G-protein signaling 2 (RGS2) under PE stimulation (n = 6), potentially explaining its inhibitory effect on PE-induced hypertrophic growth. This study shows that YB-1 protects cardiomyocytes against PE-induced hypertrophic growth. Like in human end-stage heart failure, YB-1 downregulation may cause the heart to lose its protection against hypertrophic stimuli and progress to heart failure. Therefore, the transcription factor YB-1 is a pivotal signaling molecule, providing perspectives for therapeutic approaches.
Collapse
Affiliation(s)
- Jacqueline Heger
- Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; (S.P.); (C.H.); (J.W.); (L.K.); (F.L.); (R.S.); (G.E.)
| | - Stefan Partsch
- Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; (S.P.); (C.H.); (J.W.); (L.K.); (F.L.); (R.S.); (G.E.)
| | - Claudia Harjung
- Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; (S.P.); (C.H.); (J.W.); (L.K.); (F.L.); (R.S.); (G.E.)
| | - Zoltán V. Varga
- HCEMM-SU Cardiometabolic Immunology Research Group, 1094 Budapest, Hungary;
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1094 Budapest, Hungary; (T.B.); (B.Á.); (B.B.); (P.F.)
| | - Tamás Baranyai
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1094 Budapest, Hungary; (T.B.); (B.Á.); (B.B.); (P.F.)
| | - Johannes Weiß
- Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; (S.P.); (C.H.); (J.W.); (L.K.); (F.L.); (R.S.); (G.E.)
| | - Lea Kremer
- Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; (S.P.); (C.H.); (J.W.); (L.K.); (F.L.); (R.S.); (G.E.)
| | - Fabian Locquet
- Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; (S.P.); (C.H.); (J.W.); (L.K.); (F.L.); (R.S.); (G.E.)
| | - Przemyslaw Leszek
- Department of Heart Failure and Transplantology, Cardinal Stefan Wyszyński Institute of Cardiology, 04-628 Warszawa, Poland;
| | - Bence Ágg
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1094 Budapest, Hungary; (T.B.); (B.Á.); (B.B.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Bettina Benczik
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1094 Budapest, Hungary; (T.B.); (B.Á.); (B.B.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Péter Ferdinandy
- Cardiometabolic and MTA-SE System Pharmacology Research Group, Department of Pharmacology and Pharmacotherapy, Semmelweis University, 1094 Budapest, Hungary; (T.B.); (B.Á.); (B.B.); (P.F.)
- Pharmahungary Group, 6722 Szeged, Hungary
| | - Rainer Schulz
- Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; (S.P.); (C.H.); (J.W.); (L.K.); (F.L.); (R.S.); (G.E.)
| | - Gerhild Euler
- Institute of Physiology, Justus Liebig University, 35392 Giessen, Germany; (S.P.); (C.H.); (J.W.); (L.K.); (F.L.); (R.S.); (G.E.)
| |
Collapse
|
6
|
Khozooei S, Veerappan S, Toulany M. YB-1 activating cascades as potential targets in KRAS-mutated tumors. Strahlenther Onkol 2023; 199:1110-1127. [PMID: 37268766 DOI: 10.1007/s00066-023-02092-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/23/2023] [Indexed: 06/04/2023]
Abstract
Y‑box binding protein‑1 (YB-1) is a multifunctional protein that is highly expressed in human solid tumors of various entities. Several cellular processes, e.g. cell cycle progression, cancer stemness and DNA damage signaling that are involved in the response to chemoradiotherapy (CRT) are tightly governed by YB‑1. KRAS gene with about 30% mutations in all cancers, is considered the most commonly mutated oncogene in human cancers. Accumulating evidence indicates that oncogenic KRAS mediates CRT resistance. AKT and p90 ribosomal S6 kinase are downstream of KRAS and are the major kinases that stimulate YB‑1 phosphorylation. Thus, there is a close link between the KRAS mutation status and YB‑1 activity. In this review paper, we highlight the importance of the KRAS/YB‑1 cascade in the response of KRAS-mutated solid tumors to CRT. Likewise, the opportunities to interfere with this pathway to improve CRT outcome are discussed in light of the current literature.
Collapse
Affiliation(s)
- Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Soundaram Veerappan
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
7
|
Drug Resistance in Medulloblastoma Is Driven by YB-1, ABCB1 and a Seven-Gene Drug Signature. Cancers (Basel) 2023; 15:cancers15041086. [PMID: 36831428 PMCID: PMC9954169 DOI: 10.3390/cancers15041086] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/01/2023] [Accepted: 02/04/2023] [Indexed: 02/10/2023] Open
Abstract
Therapy resistance represents an unmet challenge in the treatment of medulloblastoma. Accordingly, the identification of targets that mark drug-resistant cell populations, or drive the proliferation of resistant cells, may improve treatment strategies. To address this, we undertook a targeted approach focused on the multi-functional transcription factor YB-1. Genetic knockdown of YB-1 in Group 3 medulloblastoma cell lines diminished cell invasion in 3D in vitro assays and increased sensitivity to standard-of-care chemotherapeutic vincristine and anti-cancer agents panobinostat and JQ1. For vincristine, this occurred in part by YB-1-mediated transcriptional regulation of multi-drug resistance gene ABCB1, as determined by chromatin immunoprecipitation. Whole transcriptome sequencing of YB-1 knockdown cells identified a role for YB-1 in the regulation of tumourigenic processes, including lipid metabolism, cell death and survival and MYC and mTOR pathways. Stable cisplatin- and vincristine-tolerant Group 3 and SHH cell lines were generated to identify additional mechanisms driving resistance to standard-of-care medulloblastoma therapy. Next-generation sequencing revealed a vastly different transcriptomic landscape following chronic drug exposure, including a drug-tolerant seven-gene expression signature, common to all sequenced drug-tolerant cell lines, representing therapeutically targetable genes implicated in the acquisition of drug tolerance. Our findings provide significant insight into mechanisms and genes underlying therapy resistance in medulloblastoma.
Collapse
|
8
|
Chen M, Wan Y, Li X, Xiang J, Chen X, Jiang J, Han X, Zhong L, Xiao F, Liu J, Huang H, Li H, Liu J, Hou J. Dynamic single-cell RNA-seq analysis reveals distinct tumor program associated with microenvironmental remodeling and drug sensitivity in multiple myeloma. Cell Biosci 2023; 13:19. [PMID: 36717896 PMCID: PMC9887807 DOI: 10.1186/s13578-023-00971-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
BACKGROUND Multiple myeloma (MM) is a hematological malignancy characterized by clonal proliferation of malignant plasma cells. Despite extensive research, molecular mechanisms in MM that drive drug sensitivity and clinic outcome remain elusive. RESULTS Single-cell RNA sequencing was applied to study tumor heterogeneity and molecular dynamics in 10 MM individuals before and after 2 cycles of bortezomib-cyclophosphamide-dexamethasone (VCD) treatment, with 3 healthy volunteers as controls. We identified that unfolded protein response and metabolic-related program were decreased, whereas stress-associated and immune reactive programs were increased after 2 cycles of VCD treatment. Interestingly, low expression of the immune reactive program by tumor cells was associated with unfavorable drug response and poor survival in MM, which probably due to downregulation of MHC class I mediated antigen presentation and immune surveillance, and upregulation of markers related to immune escape. Furthermore, combined with immune cells profiling, we uncovered a link between tumor intrinsic immune reactive program and immunosuppressive phenotype in microenvironment, evidenced by exhausted states and expression of checkpoint molecules and suppressive genes in T cells, NK cells and monocytes. Notably, expression of YBX1 was associated with downregulation of immune activation signaling in myeloma and reduced immune cells infiltration, thereby contributed to poor prognosis. CONCLUSIONS We dissected the tumor and immune reprogramming in MM during targeted therapy at the single-cell resolution, and identified a tumor program that integrated tumoral signaling and changes in immune microenvironment, which provided insights into understanding drug sensitivity in MM.
Collapse
Affiliation(s)
- Mengping Chen
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Yike Wan
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Xin Li
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Jing Xiang
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Xiaotong Chen
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Jinxing Jiang
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Xiaofeng Han
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Lu Zhong
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Fei Xiao
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Jia Liu
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Honghui Huang
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| | - Hua Li
- grid.16821.3c0000 0004 0368 8293Bio-ID Center, Shanghai Jiao Tong University School of Biomedical Engineering, Shanghai, 200240 China
| | - Junling Liu
- grid.16821.3c0000 0004 0368 8293Department of Biochemistry and Molecular Cell Biology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025 China
| | - Jian Hou
- grid.16821.3c0000 0004 0368 8293Department of Hematology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127 China
| |
Collapse
|
9
|
Wu Q, Xu Y, Li X, Liu H, You T, Cai T, Yang F. YB-1 promotes cell proliferation and metastasis by targeting cell-intrinsic PD-1/PD-L1 pathway in breast cancer. Int J Biochem Cell Biol 2022; 153:106314. [DOI: 10.1016/j.biocel.2022.106314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/14/2022] [Indexed: 11/24/2022]
|
10
|
Razpotnik R, Vidmar R, Fonović M, Rozman D, Režen T. Circular RNA hsa_circ_0062682 Binds to YBX1 and Promotes Oncogenesis in Hepatocellular Carcinoma. Cancers (Basel) 2022; 14:4524. [PMID: 36139684 PMCID: PMC9497178 DOI: 10.3390/cancers14184524] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/11/2022] [Accepted: 09/11/2022] [Indexed: 11/23/2022] Open
Abstract
Circular RNAs (circRNAs) have been shown to play an important role in the pathogenesis of hepatocellular carcinoma (HCC). By implementing available transcriptomic analyses of HCC patients, we identified an upregulated circRNA hsa_circ_0062682. Stable perturbations of hsa_circ_0062682 in Huh-7 and SNU-449 cell lines influenced colony formation, migration, cell proliferation, sorafenib sensitivity, and additionally induced morphological changes in cell lines, indicating an important role of hsa_circ_0062682 in oncogenesis. Pathway enrichment analysis and gene set enrichment analysis of the transcriptome data from hsa_circ_0062682 knockdown explained the observed phenotypes and exposed transcription factors E2F1, Sp1, HIF-1α, and NFκB1 as potential downstream targets. Biotinylated oligonucleotide pulldown combined with proteomic analyses identified protein interaction partners of which YBX1, a known oncogene, was confirmed by RNA immunoprecipitation. Furthermore, we discovered a complex cell-type-specific phenotype in response to the oncogenic potential of hsa_circ_0062682. This finding is in line with different classes of HCC tumours, and more studies are needed to shed a light on the molecular complexity of liver cancer.
Collapse
Affiliation(s)
- Rok Razpotnik
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Robert Vidmar
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Marko Fonović
- Department of Biochemistry and Molecular and Structural Biology, Jožef Stefan Institute, 1000 Ljubljana, Slovenia
| | - Damjana Rozman
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Tadeja Režen
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Bhattacharjee R, Dey T, Kumar L, Kar S, Sarkar R, Ghorai M, Malik S, Jha NK, Vellingiri B, Kesari KK, Pérez de la Lastra JM, Dey A. Cellular landscaping of cisplatin resistance in cervical cancer. Biomed Pharmacother 2022; 153:113345. [PMID: 35810692 DOI: 10.1016/j.biopha.2022.113345] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 12/11/2022] Open
Abstract
Cervical cancer (CC) caused by human papillomavirus (HPV) is one of the largest causes of malignancies in women worldwide. Cisplatin is one of the widely used drugs for the treatment of CC is rendered ineffective owing to drug resistance. This review highlights the cause of resistance and the mechanism of cisplatin resistance cells in CC to develop therapeutic ventures and strategies that could be utilized to overcome the aforementioned issue. These strategies would include the application of nanocarries, miRNA, CRIPSR/Cas system, and chemotherapeutics in synergy with cisplatin to not only overcome the issues of drug resistance but also enhance its anti-cancer efficiency. Moreover, we have also discussed the signaling network of cisplatin resistance cells in CC that would provide insights to develop therapeutic target sites and inhibitors. Furthermore, we have discussed the role of CC metabolism on cisplatin resistance cells and the physical and biological factors affecting the tumor microenvironments.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Tanima Dey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Lamha Kumar
- School of Biology, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, Kerala, India
| | - Sulagna Kar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Ritayan Sarkar
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar 751024, Odisha, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand, Ranchi, Jharkhand 834001, India
| | - Niraj Kumar Jha
- Department of Biotechnology, School of Engineering and Technology (SET), Sharda University, Greater Noida, Uttar Pradesh 201310, India; Department of Biotechnology, School of Applied & Life Sciences (SALS), Uttaranchal University, Dehradun 248007, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali 140413, India.
| | - Balachandar Vellingiri
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore 641-046, India
| | - Kavindra Kumar Kesari
- Department of Applied Physics, School of Science, Aalto University, Espoo 00076, Finland; Department of Bio-products and Bio-systems, School of Chemical Engineering, Aalto University, Espoo 00076, Finland
| | - José M Pérez de la Lastra
- Biotechnology of Macromolecules, Instituto de Productos Naturales y Agrobiología, IPNA (CSIC), Avda. Astrofísico Francisco Sánchez, 3, 38206 San Cristóbal de la Laguna (Santa Cruz de Tenerife), Spain.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
12
|
Zhang M, Zheng S, Liang JQ. Transcriptional and reverse transcriptional regulation of host genes by human endogenous retroviruses in cancers. Front Microbiol 2022; 13:946296. [PMID: 35928153 PMCID: PMC9343867 DOI: 10.3389/fmicb.2022.946296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
Human endogenous retroviruses (HERVs) originated from ancient retroviral infections of germline cells millions of years ago and have evolved as part of the host genome. HERVs not only retain the capacity as retroelements but also regulate host genes. The expansion of HERVs involves transcription by RNA polymerase II, reverse transcription, and re-integration into the host genome. Fast progress in deep sequencing and functional analysis has revealed the importance of domesticated copies of HERVs, including their regulatory sequences, transcripts, and proteins in normal cells. However, evidence also suggests the involvement of HERVs in the development and progression of many types of cancer. Here we summarize the current state of knowledge about the expression of HERVs, transcriptional regulation of host genes by HERVs, and the functions of HERVs in reverse transcription and gene editing with their reverse transcriptase.
Collapse
Affiliation(s)
- Mengwen Zhang
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
| | - Shu Zheng
- The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Ministry of Education Key Laboratory of Cancer Prevention and Intervention, Second Affiliated Hospital, Cancer Institute, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shu Zheng,
| | - Jessie Qiaoyi Liang
- Department of Medicine and Therapeutics, Faculty of Medicine, Center for Gut Microbiota Research, Li Ka Shing Institute of Health Sciences, Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong, Hong Kong SAR, China
- Jessie Qiaoyi Liang,
| |
Collapse
|
13
|
Context-Dependent Regulation of Gene Expression by Non-Canonical Small RNAs. Noncoding RNA 2022; 8:ncrna8030029. [PMID: 35645336 PMCID: PMC9149963 DOI: 10.3390/ncrna8030029] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 12/02/2022] Open
Abstract
In recent functional genomics studies, a large number of non-coding RNAs have been identified. It has become increasingly apparent that noncoding RNAs are crucial players in a wide range of cellular and physiological functions. They have been shown to modulate gene expression on different levels, including transcription, post-transcriptional processing, and translation. This review aims to highlight the diverse mechanisms of the regulation of gene expression by small noncoding RNAs in different conditions and different types of human cells. For this purpose, various cellular functions of microRNAs (miRNAs), circular RNAs (circRNAs), snoRNA-derived small RNAs (sdRNAs) and tRNA-derived fragments (tRFs) will be exemplified, with particular emphasis on the diversity of their occurrence and on the effects on gene expression in different stress conditions and diseased cell types. The synthesis and effect on gene expression of these noncoding RNAs varies in different cell types and may depend on environmental conditions such as different stresses. Moreover, noncoding RNAs play important roles in many diseases, including cancer, neurodegenerative disorders, and viral infections.
Collapse
|
14
|
YB-1 as an Oncoprotein: Functions, Regulation, Post-Translational Modifications, and Targeted Therapy. Cells 2022; 11:cells11071217. [PMID: 35406781 PMCID: PMC8997642 DOI: 10.3390/cells11071217] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/26/2022] [Accepted: 04/02/2022] [Indexed: 02/04/2023] Open
Abstract
Y box binding protein 1 (YB-1) is a protein with a highly conserved cold shock domain (CSD) that also belongs to the family of DNA- and RNA-binding proteins. YB-1 is present in both the nucleus and cytoplasm and plays versatile roles in gene transcription, RNA splicing, DNA damage repair, cell cycle progression, and immunity. Cumulative evidence suggests that YB-1 promotes the progression of multiple tumor types and serves as a potential tumor biomarker and therapeutic target. This review comprehensively summarizes the emerging functions, mechanisms, and regulation of YB-1 in cancers, and further discusses targeted strategies.
Collapse
|
15
|
Zhu DQ, Liu Y, Yu ZJ, Zhang RH, Li AW, Gong FY, Wang W, Xiao W, Fan Q. The Diverse Analysis Identifies Mutated KRAS Associated With Radioresistance in Non-Small Cell Lung Cancer. World J Oncol 2022; 13:84-95. [PMID: 35571341 PMCID: PMC9076151 DOI: 10.14740/wjon1465] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/18/2022] [Indexed: 12/03/2022] Open
Abstract
Background To analyze the relationship between V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (KRAS) status and radioresistance in non-small cell lung cancer (NSCLC), we identified potential genotypic differences and pathways involved. Methods We retrospectively analyzed epidermal growth factor receptor (EGFR) and KRAS status in patients undergoing definitive radiotherapy for NSCLC between 2004 and 2018. Cox proportional hazard models were used to evaluate local progression-free survival (LPFS). Using clonogenic survival and measurement of γH2AX foci, we analyzed the difference in radiosensitivity between NSCLC cell lines with different KRAS status. The Cancer Genome Atlas (TCGA) analysis was used to explore the potential pathways involved. Results The results showed that of the 286 patients identified, 68 (24%) had local tumor progression (mean ± standard deviation (SD), 27 ± 17.4 months); of these patients, KRAS mutations were found in 14 (23%), and KRAS status was associated with LPFS. After adjusting for concurrent chemotherapy, gross tumor volume, and mutation status in multivariate analysis, KRAS mutation was associated with shorter LPFS (hazard ratio: 1.961; 95% confidence interval: 1.03 - 2.17; P = 0.032). KRAS mutation showed higher radioresistance in vitro. TCGA data showed that the ERK1/2 pathway, phosphatidylinositol I3 kinase (PI3K)/mTOR, p38 MAPK pathway, cell cycle checkpoint signaling, DNA damage, repair pathways, and EGFR/PKC/AKT pathway were differentially expressed in patients with KRAS mutations or cell lines compared with their expression in the wild-type group. Conclusions Diverse analyses identified that KRAS mutation was associated with radioresistance in NSCLC. KRAS mutation status may be helpful as a biomarker of radioresistance and a potential target to increase radiosensitivity.
Collapse
Affiliation(s)
- Dao Qi Zhu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
- These authors contributed equally to this work as joint first authors
| | - Ying Liu
- NanFang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- These authors contributed equally to this work as joint first authors
| | - Zhi Jian Yu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ru Hua Zhang
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510515, China
| | - Ai Wu Li
- NanFang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Feng Ying Gong
- NanFang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Wang
- NanFang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Wei Xiao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Qin Fan
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
16
|
Feng X, Xiao Y, He J, Yang M, Guo Q, Su T, Huang Y, Yi J, Li CJ, Luo XH, Liu XW, Zhou HY. Long noncoding RNA Gm31629 protects against mucosal damage in experimental colitis via YB-1/E2F pathway. JCI Insight 2022; 7:150091. [PMID: 35143419 PMCID: PMC8986069 DOI: 10.1172/jci.insight.150091] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 02/09/2022] [Indexed: 11/17/2022] Open
Abstract
Mucosal healing is a key treatment goal for inflammatory bowel disease, and adequate epithelial regeneration is required for an intact gut epithelium. However, the underlying mechanism is unclear. Long non-coding RNAs (lncRNAs) have been reported to be involved in the development of inflammatory bowel disease. Here, we report that a lncRNA named Gm31629, decreases in intestinal epithelial cells in response to inflammatory stimulation. Gm31629 deficiency leads to exacerbated intestinal inflammation and delayed epithelial regeneration in dextran sulfate sodium (DSS) -induced colitis model. Mechanistically, Gm31629 promotes E2F pathways and cell proliferation by stabilizing Y-box protein 1 (YB-1), thus facilitating epithelial regeneration. Genetic overexpression of Gm31629 protects against DSS-induced colitis in vivo. Theaflavin 3-gallate, a natural compound mimicking Gm31629, alleviates DSS-induced epithelial inflammation and mucosal damage. These results demonstrate an essential role of lncRNA Gm31629 in linking intestinal inflammation and epithelial cell proliferation, providing a potential therapeutic approach to inflammatory bowel disease.
Collapse
Affiliation(s)
- Xu Feng
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Ye Xiao
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Jian He
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
| | - Mi Yang
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Qi Guo
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Tian Su
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Yan Huang
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Jun Yi
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Chang-Jun Li
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiang-Hang Luo
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| | - Xiao-Wei Liu
- Department of Gastroenterology, Xiangya Hospital of Central South University, Changsha, China
| | - Hai-Yan Zhou
- Department of Endocrinology, Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
17
|
Eliseeva IA, Sogorina EM, Smolin EA, Kulakovskiy IV, Lyabin DN. Diverse Regulation of YB-1 and YB-3 Abundance in Mammals. BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S48-S167. [PMID: 35501986 DOI: 10.1134/s000629792214005x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/17/2021] [Indexed: 06/14/2023]
Abstract
YB proteins are DNA/RNA binding proteins, members of the family of proteins with cold shock domain. Role of YB proteins in the life of cells, tissues, and whole organisms is extremely important. They are involved in transcription regulation, pre-mRNA splicing, mRNA translation and stability, mRNA packaging into mRNPs, including stress granules, DNA repair, and many other cellular events. Many processes, from embryonic development to aging, depend on when and how much of these proteins have been synthesized. Here we discuss regulation of the levels of YB-1 and, in part, of its homologs in the cell. Because the amount of YB-1 is immediately associated with its functioning, understanding the mechanisms of regulation of the protein amount invariably reveals the events where YB-1 is involved. Control over the YB-1 abundance may allow using this gene/protein as a therapeutic target in cancers, where an increased expression of the YBX1 gene often correlates with the disease severity and poor prognosis.
Collapse
Affiliation(s)
- Irina A Eliseeva
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | | | - Egor A Smolin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| | - Ivan V Kulakovskiy
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Moscow, 119991, Russia
| | - Dmitry N Lyabin
- Institute of Protein Research, Pushchino, Moscow Region, 142290, Russia.
| |
Collapse
|
18
|
Guens GP. YB-1 Protein in Breast Cancer (Scientific and Personal Meetings with Professor Ovchinnikov). BIOCHEMISTRY. BIOKHIMIIA 2022; 87:S86-S47. [PMID: 35501988 DOI: 10.1134/s0006297922140073] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 06/14/2023]
Abstract
In the article, the author examines the properties of Y-box-binding protein (YB-1) and expression of the YBX-1 gene in various malignant tumors and provides the data from her own prospective study in breast cancer patients. YB-1 is a member of the highly conserved family of cold shock proteins with multiple functions in the cytoplasm and cell nucleus. YB-1 is involved in embryogenesis; it ensures cell proliferation and protects cell from the action of various aggressive environmental factors. In adult organisms, YB-1 is involved in a variety of cellular functions that regulate malignant phenotype in several types of tumors. YB-1 is a molecular marker of tumor progression that can be used in clinical practice as both prognostic factor and a target for anticancer therapy. Our prospective clinical study showed that expression of YB-1 mRNA is an independent prognostic factor, as breast cancer patients expressing YB-1 have a lower disease-free survival rate, regardless of the tumor stage and biological subtype. We recommend determining the level of YB-1 mRNA expression as a prognostic test in breast cancer patients.
Collapse
Affiliation(s)
- Gelena P Guens
- Department of Oncology and Radiation Therapy, Yevdokimov Moscow State University of Medicine and Dentistry, Moscow, 127473, Russia.
| |
Collapse
|
19
|
Ahmed M, Lai TH, Kim W, Kim DR. A Functional Network Model of the Metastasis Suppressor PEBP1/RKIP and Its Regulators in Breast Cancer Cells. Cancers (Basel) 2021; 13:6098. [PMID: 34885208 PMCID: PMC8657175 DOI: 10.3390/cancers13236098] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 12/12/2022] Open
Abstract
Drug screening strategies focus on quantifying the phenotypic effects of different compounds on biological systems. High-throughput technologies have the potential to understand further the mechanisms by which these drugs produce the desired outcome. Reverse causal reasoning integrates existing biological knowledge and measurements of gene and protein abundances to infer their function. This approach can be employed to appraise the existing biological knowledge and data to prioritize targets for cancer therapies. We applied text mining and a manual literature search to extract known interactions between several metastasis suppressors and their regulators. We then identified the relevant interactions in the breast cancer cell line MCF7 using a knockdown dataset. We finally adopted a reverse causal reasoning approach to evaluate and prioritize pathways that are most consistent and responsive to drugs that inhibit cell growth. We evaluated this model in terms of agreement with the observations under treatment of several drugs that produced growth inhibition of cancer cell lines. In particular, we suggested that the metastasis suppressor PEBP1/RKIP is on the receiving end of two significant regulatory mechanisms. One involves RELA (transcription factor p65) and SNAI1, which were previously reported to inhibit PEBP1. The other involves the estrogen receptor (ESR1), which induces PEBP1 through the kinase NME1. Our model was derived in the specific context of breast cancer, but the observed responses to drug treatments were consistent in other cell lines. We further validated some of the predicted regulatory links in the breast cancer cell line MCF7 experimentally and highlighted the points of uncertainty in our model. To summarize, our model was consistent with the observed changes in activity with drug perturbations. In particular, two pathways, including PEBP1, were highly responsive and would be likely targets for intervention.
Collapse
Affiliation(s)
| | | | | | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Science, Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Korea; (M.A.); (T.H.L.); (W.K.)
| |
Collapse
|
20
|
Di Raimondo C, Han Z, Su C, Wu X, Qin H, Sanchez JF, Yuan YC, Martinez X, Abdulla F, Zain J, Chen CW, Rosen ST, Querfeld C. Identification of a Distinct miRNA Regulatory Network in the Tumor Microenvironment of Transformed Mycosis Fungoides. Cancers (Basel) 2021; 13:cancers13225854. [PMID: 34831008 PMCID: PMC8616450 DOI: 10.3390/cancers13225854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/17/2021] [Accepted: 11/19/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary Transformed mycosis fungoides (LCT-MF) is a histopathological marker of poor prognosis and associated with worse survival. We compared miRNA and mRNA expression profiles of LCT-MF with classic MF and found a distinct miRNA regulatory network modulated immunosuppressive tumor microenvironment in LCT-MF. Our findings provide novel insights and therapeutic targets for LCT-MF. Abstract Large cell transformation of mycosis fungoides (LCT-MF) occurs in 20–50% of advanced MF and is generally associated with poor response and dismal prognosis. Although different mechanisms have been proposed to explain the pathogenesis, little is known about the role of microRNAs (miRs) in transcriptional regulation of LCT-MF. Here, we investigated the miR and mRNA expression profile in lesional skin samples of patients with LCT-MF and non-LCT MF using RNA-seq analysis. We found miR-146a and miR-21 to be significantly upregulated, and miR-708 the most significantly downregulated miR in LCT-MF. Integration of miR and mRNA expression profiles revealed the miR-regulated networks in LCT-MF. Ingenuity pathway analysis (IPA) demonstrated the involvement of genes for ICOS-ICOSL, PD1-PDL1, NF-κB, E2F transcription, and molecular mechanisms of cancer signaling pathways. Quantitative real time (qRT)-PCR results of target genes were consistent with the RNA-seq data. We further identified the immunosuppressive tumor microenvironment (TME) in LCT-MF. Moreover, our data indicated that miR-146a, -21 and -708 are associated with the immunosuppressive TME in LCT-MF. Collectively, our results suggest that the key LCT-MF associated miRs and their regulated networks may provide insights into its pathogenesis and identify promising targets for novel therapeutic strategies.
Collapse
Affiliation(s)
- Cosimo Di Raimondo
- Division of Dermatology, City of Hope, Duarte, CA 91010, USA; (C.D.R.); (Z.H.); (C.S.); (X.M.); (F.A.)
- Department of Dermatology, University of Roma Tor Vergata, Rome 00133, Italy
| | - Zhen Han
- Division of Dermatology, City of Hope, Duarte, CA 91010, USA; (C.D.R.); (Z.H.); (C.S.); (X.M.); (F.A.)
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.F.S.); (C.-W.C.); (S.T.R.)
| | - Chingyu Su
- Division of Dermatology, City of Hope, Duarte, CA 91010, USA; (C.D.R.); (Z.H.); (C.S.); (X.M.); (F.A.)
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.F.S.); (C.-W.C.); (S.T.R.)
| | - Xiwei Wu
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA; (X.W.); (H.Q.)
- Integrative Genomics Core, City of Hope, Duarte, CA 91010, USA
| | - Hanjun Qin
- Department of Molecular and Cellular Biology, City of Hope, Duarte, CA 91010, USA; (X.W.); (H.Q.)
- Integrative Genomics Core, City of Hope, Duarte, CA 91010, USA
| | - James F. Sanchez
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.F.S.); (C.-W.C.); (S.T.R.)
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA;
| | - Yate-Ching Yuan
- Department of Computational Quantitative Medicine, City of Hope, Duarte, CA 91010, USA;
- Translational Bioinformatics, Center for Informatics, City of Hope, Duarte, CA 91010, USA
| | - Xochiquetzal Martinez
- Division of Dermatology, City of Hope, Duarte, CA 91010, USA; (C.D.R.); (Z.H.); (C.S.); (X.M.); (F.A.)
| | - Farah Abdulla
- Division of Dermatology, City of Hope, Duarte, CA 91010, USA; (C.D.R.); (Z.H.); (C.S.); (X.M.); (F.A.)
| | - Jasmine Zain
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA;
| | - Chun-Wei Chen
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.F.S.); (C.-W.C.); (S.T.R.)
- Department of Systems Biology, City of Hope, Duarte, CA 91010, USA
| | - Steven T. Rosen
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.F.S.); (C.-W.C.); (S.T.R.)
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA;
| | - Christiane Querfeld
- Division of Dermatology, City of Hope, Duarte, CA 91010, USA; (C.D.R.); (Z.H.); (C.S.); (X.M.); (F.A.)
- Beckman Research Institute, City of Hope, Duarte, CA 91010, USA; (J.F.S.); (C.-W.C.); (S.T.R.)
- Department of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA 91010, USA;
- Department of Pathology, City of Hope, Duarte, CA 91010, USA
- Correspondence: ; Tel.: +1-626-634-4436; Fax: +1-626-218-6190
| |
Collapse
|
21
|
Yang JW, Sun C, Jin QY, Qiao XH, Guo XL. Potential therapeutic strategies for targeting Y-box-binding protein 1 in cancers. Curr Cancer Drug Targets 2021; 21:897-906. [PMID: 34465278 DOI: 10.2174/1568009621666210831125001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/27/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
As one of the most conservative proteins in evolution, Y-box-binding protein 1 (YB-1) has long been considered as a potential cancer target. YB-1 is usually poorly expressed in normal cells and exerts cellular physiological functions such as DNA repair, pre-mRNA splicing and mRNA stabilizing. In cancer cells, the expression of YB-1 is up-regulated and undergoes nuclear translocation and contributes to tumorigenesis, angiogenesis, tumor proliferation, invasion, migration and chemotherapy drug resistance. During the past decades, a variety of pharmacological tools such as siRNA, shRNA, microRNA, circular RNA, lncRNA and various compounds have been developed to target YB-1 for cancer therapy. In this review, we describe the physiological characteristics of YB-1 in detail, highlight the role of YB-1 in tumors and summarize the current therapeutic methods for targeting YB-1 in cancer.
Collapse
Affiliation(s)
- Jia-Wei Yang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Chao Sun
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Qiu-Yang Jin
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Xing-Hui Qiao
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| | - Xiu-Li Guo
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan 250012. China
| |
Collapse
|
22
|
Li S, Xiong Q, Chen M, Wang B, Yang X, Yang M, Wang Q, Cui Z, Ge F. Long noncoding RNA HOTAIR interacts with Y-Box Protein-1 (YBX1) to regulate cell proliferation. Life Sci Alliance 2021; 4:4/9/e202101139. [PMID: 34266873 PMCID: PMC8321693 DOI: 10.26508/lsa.202101139] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 06/29/2021] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
The authors determined that HOTAIR specifically bind to YBX1 and promote its nuclear translocation, and then regulating cell proliferation by stimulating the PI3K/Akt and ERK/RSK signaling pathways. HOTAIR is a long noncoding RNA (lncRNA) which serves as an important factor regulating diverse processes linked with cancer development. Here, we used comprehensive identification of RNA-binding proteins by mass spectrometry (ChIRP-MS) to explore the HOTAIR-protein interactome. We were able to identify 348 proteins interacting with HOTAIR, allowing us to establish a heavily interconnected HOTAIR-protein interaction network. We further developed a novel near-infrared fluorescent protein (iRFP)-trimolecular fluorescence complementation (TriFC) system to assess the interaction between HOTAIR and its interacting proteins. Then, we determined that HOTAIR specifically binds to YBX1, promotes YBX1 nuclear translocation, and stimulates the PI3K/Akt and ERK/RSK signaling pathways. We further demonstrated that HOTAIR exerts its effects on cell proliferation, at least in part, through the regulation of two YBX1 downstream targets phosphoenolpyruvate carboxykinase 2 (PCK2) and platelet derived growth factor receptor β. Our findings revealed a novel mechanism, whereby an lncRNA is able to regulate cell proliferation via altering intracellular protein localization. Moreover, the imaging tools developed herein have excellent potential for future in vivo imaging of lncRNA–protein interaction.
Collapse
Affiliation(s)
- Siting Li
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qian Xiong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Minghai Chen
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Bing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Xue Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Mingkun Yang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Qiang Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zongqiang Cui
- State Key Laboratory of Virology, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan, China .,University of Chinese Academy of Sciences, Beijing, China
| | - Feng Ge
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China .,Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
23
|
Alkrekshi A, Wang W, Rana PS, Markovic V, Sossey-Alaoui K. A comprehensive review of the functions of YB-1 in cancer stemness, metastasis and drug resistance. Cell Signal 2021; 85:110073. [PMID: 34224843 DOI: 10.1016/j.cellsig.2021.110073] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/28/2021] [Accepted: 06/30/2021] [Indexed: 12/31/2022]
Abstract
The Y Box binding protein 1 (YB-1) is a member of the highly conserved Cold Shock Domain protein family with multifunctional properties both in the cytoplasm and inside the nucleus. YB-1 is also involved in various cellular functions, including regulation of transcription, mRNA stability, and splicing. Recent studies have associated YB-1 with the regulation of the malignant phenotypes in several tumor types. In this review article, we provide an in-depth and expansive review of the literature pertaining to the multiple physiological functions of YB-1. We will also review the role of YB-1 in cancer development, progression, metastasis, and drug resistance in various malignancies, with more weight on literature published in the last decade. The methodology included querying databases PubMed, Embase, and Google Scholar for Y box binding protein 1, YB-1, YBX1, and Y-box-1.
Collapse
Affiliation(s)
- Akram Alkrekshi
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Wei Wang
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Priyanka Shailendra Rana
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Vesna Markovic
- MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA
| | - Khalid Sossey-Alaoui
- Department of Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA.; MetroHealth Medical Center, Rammelkamp Center for Research, R457, 2500 MetroHealth Drive, Cleveland, OH 44109, USA; Case Comprehensive Cancer Center, Cleveland, OH, USA.
| |
Collapse
|
24
|
Lettau K, Khozooei S, Kosnopfel C, Zips D, Schittek B, Toulany M. Targeting the Y-box Binding Protein-1 Axis to Overcome Radiochemotherapy Resistance in Solid Tumors. Int J Radiat Oncol Biol Phys 2021; 111:1072-1087. [PMID: 34166770 DOI: 10.1016/j.ijrobp.2021.06.021] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 06/07/2021] [Accepted: 06/10/2021] [Indexed: 12/18/2022]
Abstract
Multifunctional Y-box binding protein-1 (YB-1) is highly expressed in different human solid tumors and is involved in various cellular processes. DNA damage is the major mechanism by which radiochemotherapy (RCT) induces cell death. On induction of DNA damage, a multicomponent signal transduction network, known as the DNA damage response, is activated to induce cell cycle arrest and initiate DNA repair, which protects cells against damage. YB-1 regulates nearly all cancer hallmarks described to date by participating in DNA damage response, gene transcription, mRNA splicing, translation, and tumor stemness. YB-1 lacks kinase activity, and p90 ribosomal S6 kinase and AKT are the key kinases within the RAS/mitogen-activated protein kinase and phosphoinositide 3-kinase pathways that directly activate YB-1. Thus, the molecular targeting of ribosomal S6 kinase and AKT is thought to be the most effective strategy for blocking the cellular function of YB-1 in human solid tumors. In this review, after describing the prosurvival effect of YB-1 with a focus on DNA damage repair and cancer cell stemness, clinical evidence will be provided indicating an inverse correlation between YB-1 expression and the treatment outcome of solid tumors after RCT. In the interest of being concise, YB-1 signaling cascades will be briefly discussed and the current literature on YB-1 posttranslational modifications will be summarized. Finally, the current status of targeting the YB-1 axis, especially in combination with RCT, will be highlighted.
Collapse
Affiliation(s)
- Konstanze Lettau
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Shayan Khozooei
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Corinna Kosnopfel
- Department of Dermatology, University Hospital Würzburg, Würzburg, Germany
| | - Daniel Zips
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany
| | - Birgit Schittek
- Department of Dermatology, Division of Dermatooncology, Eberhard-Karls-Universität, Tübingen, Tübingen, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tübingen, Tübingen Germany; German Cancer Consortium (DKTK), partner site Tübingen, and German Cancer Research Center (DKFZ) Heidelberg, Germany.
| |
Collapse
|
25
|
Kuru Hİ, Buyukozkan M, Tastan O. PRER: A patient representation with pairwise relative expression of proteins on biological networks. PLoS Comput Biol 2021; 17:e1008998. [PMID: 34038408 PMCID: PMC8238204 DOI: 10.1371/journal.pcbi.1008998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 06/28/2021] [Accepted: 04/23/2021] [Indexed: 11/19/2022] Open
Abstract
Changes in protein and gene expression levels are often used as features in predictive modeling such as survival prediction. A common strategy to aggregate information contained in individual proteins is to integrate the expression levels with the biological networks. In this work, we propose a novel patient representation where we integrate proteins’ expression levels with the protein-protein interaction (PPI) networks: Patient representation with PRER (Pairwise Relative Expressions with Random walks). PRER captures the dysregulation patterns of proteins based on the neighborhood of a protein in the PPI network. Specifically, PRER computes a feature vector for a patient by comparing the source protein’s expression level with other proteins’ levels that are within its neighborhood. The neighborhood of the source protein is derived by biased random-walk strategy on the network. We test PRER’s performance in survival prediction task in 10 different cancers using random forest survival models. PRER yields a statistically significant predictive performance in 9 out of 10 cancers when compared to the same model trained with features based on individual protein expressions. Furthermore, we identified the pairs of proteins that their interactions are predictive of patient survival but their individual expression levels are not. The set of identified relations provides a valuable collection of protein biomarkers with high prognostic value. PRER can be used for other complex diseases and prediction tasks that use molecular expression profiles as input. PRER is freely available at: https://github.com/hikuru/PRER. Cancer remains to be one of the most prevalent and challenging diseases to treat. Cancer is a complex disease with several disrupted molecular mechanisms at play. The protein expression level is a fundamental indicator of how the molecular mechanisms are altered in each tumor. Predicting patient survival based on the changes is essential for understanding the cancer mechanisms and arriving at patient-specific treatment plans. For this task, existing machine learning models are used, such as random survival forest, which requires a feature-based representation of each patient based on her tumors. Most of these models use the individual molecular quantities of the tumors. However, cancer is a complex disease in which molecular mechanisms are dysregulated in various ways. In this work, we present a new patient representation scheme in which we integrate each tumor’s protein expression levels with their neighboring proteins’ expression levels in a protein-protein interaction network to capture patient-specific dysregulation patterns. Our results suggest that proteins’ relative expressions are more predictive than their individual expressions. We also analyze which of the protein interactions are more predictive of patient survival. The identified set of important protein interactions can be potentially used for cancer prognosis.
Collapse
Affiliation(s)
| | | | - Oznur Tastan
- Faculty of Natural Sciences and Engineering, Sabanci University, Istanbul, Turkey
- * E-mail:
| |
Collapse
|
26
|
Wang L, Zhu N, Jia J, Gu L, Du Y, Tang G, Wang X, Yang M, Yuan W. Trimethylamine N-oxide mediated Y-box binding protein-1 nuclear translocation promotes cell cycle progression by directly downregulating Gadd45a expression in a cellular model of chronic kidney disease. Life Sci 2021; 271:119173. [PMID: 33556375 DOI: 10.1016/j.lfs.2021.119173] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/14/2021] [Accepted: 01/26/2021] [Indexed: 11/30/2022]
Abstract
AIMS Cell cycle arrest plays critical roles in preventing renal tubular epithelial cell (RTEC) injury and maladaptation after the onset of chronic kidney disease (CKD), but the underlying mechanism governing this arrest has not been fully elucidated. This study was designed to determine the underlying role of YB-1 in promoting cell cycle progression and nuclear translocation in HK-2 cells induced by trimethylamine N-oxide (TMAO). MAIN METHODS YB-1 primarily accumulated in the cytoplasm in HK-2 cells after they were treated with TMAO for 30 min and 6 h. Gene expression was analysed using RNA sequencing in HK-2 cells treated with TMAO. Cell cycle progression was analysed via flow cytometry. Luciferase assay and ChIP-PCR were performed to determine the relationship between transcription factor YB-1 and Gadd45a promoter region. Additionally, mice were fed with TMAO to test renal dysfunction and measure the expression of YB-1, GADD45a and CCNA2 in the kidney sections through immunohistochemistry. KEY FINDINGS YB-1 primarily accumulated in the cytoplasm in HK-2 cells after they were treated with TMAO for 30 min and 6 h. RNA sequencing analysis showed that the cell cycle checkpoint genes growth arrest and DNA damage (Gadd)45a, Gadd45g, cyclin (Ccn)a2, Ccnb1, Ccne1 and Ccnf were differentially expressed in HK-2 cells after treated with 400 μM TMAO for 30 min. Flow cytometry results demonstrated that cell cycle progression was blocked at the G2/M checkpoint. In animal models, elevated dietary TMAO directly led to progressive renal tubulointerstitial dysfunction and inhibited the expression of YB-1 in kidney. Moreover, YB-1 was determined to regulate Gadd45a expression by directly binding to its promoter region. YB-1 expression was negatively correlated with the expression of Gadd45a and Gadd45g but positively correlated with Ccna2, Ccnb1, Ccne1 and Ccnf in CKD. SIGNIFICANCE YB-1 may be a reliable molecular target and an effective prognostic biomarker for CKD.
Collapse
Affiliation(s)
- Ling Wang
- Department of Nephrology, Shanghai General Hospital, Nanjing Medical University, No.100 Haining Road, Hongkou District, Shanghai, China; Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Nan Zhu
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Jieshuang Jia
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Lijie Gu
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Yi Du
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Gang Tang
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Xuan Wang
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Man Yang
- Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China
| | - Weijie Yuan
- Department of Nephrology, Shanghai General Hospital, Nanjing Medical University, No.100 Haining Road, Hongkou District, Shanghai, China; Department of Nephrology, Shanghai General Hospital, No.100 Haining Road, Hongkou District, Shanghai, China.
| |
Collapse
|
27
|
Ban Y, Tan Y, Li X, Li X, Zeng Z, Xiong W, Li G, Xiang B, Yi M. RNA-binding protein YBX1 promotes cell proliferation and invasiveness of nasopharyngeal carcinoma cells via binding to AURKA mRNA. J Cancer 2021; 12:3315-3324. [PMID: 33976741 PMCID: PMC8100805 DOI: 10.7150/jca.56262] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Accepted: 03/27/2021] [Indexed: 01/02/2023] Open
Abstract
Background: RNA-binding proteins (RBPs) play essential roles in post-transcriptional control of gene expression. Dysregulation of RBPs is intensively implicated in development and progression of human diseases, including cancers. However, the roles of RBPs in nasopharyngeal carcinoma (NPC), which is a distinct subtype of head and neck cancer, remain elusive. Methods: NPC-related RBPs were explored by analyzing GEO database and high-throughput proteomic data obtained from crosslinking immunoprecipitation. The expression levels of Y box binding protein 1 (YBX1) protein in NPC samples were measured by immunohistochemistry (IHC) staining. The association of YBX1 protein levels with prognosis of NPC patients was analyzed by Kaplan-Meier Plotter. The expression levels of YBX1 in NPC cells were inhibited by RNA interference. Cell growth was measured by CCK-8 assay. Cell mobility and invasiveness were measured by transwell assays. Tumorigenicity was measured by using a xenograft tumor assay. The expression levels of mRNAs or proteins were determined by qPCR or western blot assays, respectively. The mRNAs binding to YBX1 were determined by RNA immunoprecipitation (RIP) and qPCR. The effect of YBX1 on mRNA translation was measured by luciferase reporter assay. Results: In the present study, we demonstrated a differentially expressed RBPs profile between NPC and its normal counterpart. Among these aberrantly expressed RBPs, YBX1 was overexpressed in NPC. We found that YBX1 is mainly localized in the cytoplasm of NPC cells. Loss of YBX1 led to reduced cell proliferation, migration and invasiveness in vitro, and reduced tumorigenicity in vivo. Overexpression of YBX1 associates with high expression of cell cycle G2/M checkpoint modulators. In addition, YBX1 promotes AURKA protein expression by directly binding to its mRNA. Loss of YBX1 leads to reduction of AURKA protein level. Forced expression of AURKA rescues cell proliferation and invasiveness in YBX1-silenced NPC cell. Conclusions: The current study indicated that YBX1 promotes NPC cell proliferation and invasiveness through enhancing protein synthesis of AURKA.
Collapse
Affiliation(s)
- Yuanyuan Ban
- Hunan Key Laboratory of Cancer Metabolism, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Yixin Tan
- Department of Dermatology, The Second Xiangya Hospital, The Central South University, Changsha 410011, Hunan, China
| | - Xiaoling Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Xiayu Li
- Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Zhaoyang Zeng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Wei Xiong
- Hunan Key Laboratory of Cancer Metabolism, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Guiyuan Li
- Hunan Key Laboratory of Cancer Metabolism, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Bo Xiang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Provincial Cancer Hospital and Cancer Hospital Affiliated to Xiangya Medical School, Central South University, Changsha 410013, Hunan, China.,The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute and School of Basic Medical Sciences, Central South University, Changsha 410078, Hunan, China.,The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Hunan Key Laboratory of Nonresolving Inflammation and Cancer, The Third Xiangya Hospital, Central South University, Changsha 410013, Hunan, China
| | - Mei Yi
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.,Department of Dermatology, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
28
|
Perrotta L, Giordo R, Francis D, Rogers HJ, Albani D. Molecular Analysis of the E2F/DP Gene Family of Daucus carota and Involvement of the DcE2F1 Factor in Cell Proliferation. FRONTIERS IN PLANT SCIENCE 2021; 12:652570. [PMID: 33777085 PMCID: PMC7994507 DOI: 10.3389/fpls.2021.652570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 02/22/2021] [Indexed: 06/12/2023]
Abstract
E2F transcription factors are key components of the RB/E2F pathway that, through the action of cyclin-dependent kinases, regulates cell cycle progression in both plants and animals. Moreover, plant and animal E2Fs have also been shown to regulate other cellular functions in addition to cell proliferation. Based on structural and functional features, they can be divided into different classes that have been shown to act as activators or repressors of E2F-dependent genes. Among the first plant E2F factors to be reported, we previously described DcE2F1, an activating E2F which is expressed in cycling carrot (Daucus carota) cells. In this study, we describe the identification of the additional members of the E2F/DP family of D. carota, which includes four typical E2Fs, three atypical E2F/DEL genes, and three related DP genes. Expression analyses of the carrot E2F and DP genes reveal distinctive patterns and suggest that the functions of some of them are not necessarily linked to cell proliferation. DcE2F1 was previously shown to transactivate an E2F-responsive promoter in transient assays but the functional role of this protein in planta was not defined. Sequence comparisons indicate that DcE2F1 could be an ortholog of the AtE2FA factor of Arabidopsis thaliana. Moreover, ectopic expression of the DcE2F1 cDNA in transgenic Arabidopsis plants is able to upregulate AtE2FB and promotes cell proliferation, giving rise to polycotyly with low frequency, effects that are highly similar to those observed when over-expressing AtE2FA. These results indicate that DcE2F1 is involved in the control of cell proliferation and plays important roles in the regulation of embryo and plant development.
Collapse
Affiliation(s)
- Lara Perrotta
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Roberta Giordo
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| | - Dennis Francis
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Hilary J. Rogers
- School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - Diego Albani
- Department of Agricultural Sciences, University of Sassari, Sassari, Italy
| |
Collapse
|
29
|
Ma M, Han G, Wang Y, Zhao Z, Guan F, Li X. Role of FUT8 expression in clinicopathology and patient survival for various malignant tumor types: a systematic review and meta-analysis. Aging (Albany NY) 2020; 13:2212-2230. [PMID: 33323540 PMCID: PMC7880376 DOI: 10.18632/aging.202239] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Accepted: 10/22/2020] [Indexed: 12/28/2022]
Abstract
Dysregulation of α(1,6)-fucosyltransferase (FUT8) plays significant roles in development of a variety of malignant tumor types. We collected as many relevant articles and microarray datasets as possible to assess the prognostic value of FUT8 expression in malignant tumors. For this purpose, we systematically searched PubMed, Embase, Web of Science, Springer, Chinese National Knowledge Infrastructure (CNKI), and Wan Fang, and eventually identified 7 articles and 35 microarray datasets (involving 6124 patients and 10 tumor types) for inclusion in meta-analysis. In each tumor type, FUT8 expression showed significant (p< 0.05) correlation with one or more clinicopathological parameters; these included patient gender, molecular subgroup, histological grade, TNM stage, estrogen receptor, progesterone receptor, and recurrence status. In regard to survival prognosis, FUT8 expression level was associated with overall survival in non-small cell lung cancer (NSCLC), breast cancer, diffuse large B cell lymphoma, gastric cancer, and glioma. FUT8 expression was also correlated with disease-free survival in NSCLC, breast cancer, and colorectal cancer, and with relapse-free survival in pancreatic ductal adenocarcinoma. For most tumor types, survival prognosis of patients with high FUT8 expression was related primarily to clinical features such as gender, tumor stage, age, and pathological category. Our systematic review and meta-analysis confirmed the association of FUT8 with clinicopathological features and patient survival rates for numerous malignant tumor types. Verification of prognostic value of FUT8 in these tumor types will require a large-scale study using standardized methods of detection and analysis.
Collapse
Affiliation(s)
- Minxing Ma
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China.,Department of Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Guoxiong Han
- Department of Oncology, The Fifth People's Hospital of Qinghai Province, Xining, China
| | - Yi Wang
- Department of Hematology, Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Ziyan Zhao
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Feng Guan
- Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| | - Xiang Li
- Key Laboratory of Resource Biology and Biotechnology in Western China, Ministry of Education, Institute of Hematology, School of Medicine, Northwest University, Xi'an, China.,Joint International Research Laboratory of Glycobiology and Medicinal Chemistry, College of Life Science, Northwest University, Xi'an, China
| |
Collapse
|
30
|
Y-Box Binding Protein-1: A Neglected Target in Pediatric Brain Tumors? Mol Cancer Res 2020; 19:375-387. [DOI: 10.1158/1541-7786.mcr-20-0655] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 10/21/2020] [Accepted: 11/20/2020] [Indexed: 11/16/2022]
|
31
|
Hisey CL, Tomek P, Nursalim YNS, Chamley LW, Leung E. Towards establishing extracellular vesicle-associated RNAs as biomarkers for HER2+ breast cancer. F1000Res 2020; 9:1362. [PMID: 33447385 DOI: 10.12688/f1000research.27393.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/12/2020] [Indexed: 01/07/2023] Open
Abstract
Extracellular vesicles (EVs) are emerging as key players in breast cancer progression and hold immense promise as cancer biomarkers. However, difficulties in obtaining sufficient quantities of EVs for the identification of potential biomarkers hampers progress in this area. To circumvent this obstacle, we cultured BT-474 breast cancer cells in a two-chambered bioreactor with CDM-HD serum replacement to significantly improve the yield of cancer cell-associated EVs and eliminate bovine EV contamination. Cancer-relevant mRNAs BIRC5 (Survivin) and YBX1, as well as long-noncoding RNAs HOTAIR, ZFAS1, and AGAP2-AS1 were detected in BT-474 EVs by quantitative RT-PCR. Bioinformatics meta-analyses showed that BIRC5 and HOTAIR RNAs were substantially upregulated in breast tumours compared to non-tumour breast tissue, warranting further studies to explore their usefulness as biomarkers in patient EV samples. We envision this effective procedure for obtaining large amounts of cancer-specific EVs will accelerate discovery of EV-associated RNA biomarkers for cancers including HER2+ breast cancer.
Collapse
Affiliation(s)
- Colin L Hisey
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Yohanes N S Nursalim
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
- Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
- Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
32
|
Hisey CL, Tomek P, Nursalim YNS, Chamley LW, Leung E. Towards establishing extracellular vesicle-associated RNAs as biomarkers for HER2+ breast cancer. F1000Res 2020; 9:1362. [PMID: 33447385 PMCID: PMC7780337 DOI: 10.12688/f1000research.27393.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/23/2021] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are emerging as key players in breast cancer progression and hold immense promise as cancer biomarkers. However, difficulties in obtaining sufficient quantities of EVs for the identification of potential biomarkers hampers progress in this area. To circumvent this obstacle, we cultured BT-474 breast cancer cells in a two-chambered bioreactor with CDM-HD serum replacement to significantly improve the yield of cancer cell-associated EVs and eliminate bovine EV contamination. Cancer-relevant mRNAs
BIRC5 (Survivin) and
YBX1,
as well as long-noncoding RNAs
HOTAIR,
ZFAS1, and
AGAP2-AS1 were detected in BT-474 EVs by quantitative RT-PCR. Bioinformatics meta-analyses showed that
BIRC5 and
HOTAIR RNAs were substantially upregulated in breast tumours compared to non-tumour breast tissue, warranting further studies to explore their usefulness as biomarkers in patient EV samples. We envision this effective procedure for obtaining large amounts of cancer-specific EVs will accelerate discovery of EV-associated RNA biomarkers for cancers including HER2+ breast cancer.
Collapse
Affiliation(s)
- Colin L Hisey
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland, New Zealand
| | - Petr Tomek
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand
| | - Yohanes N S Nursalim
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand
| | - Lawrence W Chamley
- Department of Obstetrics and Gynaecology, University of Auckland, Auckland, New Zealand.,Hub for Extracellular Vesicle Investigations, University of Auckland, Auckland, New Zealand
| | - Euphemia Leung
- Auckland Cancer Society Research Centre, University of Auckland, Auckland, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, University of Auckland, Auckland, New Zealand
| |
Collapse
|
33
|
Tiwari A, Iida M, Kosnopfel C, Abbariki M, Menegakis A, Fehrenbacher B, Maier J, Schaller M, Brucker SY, Wheeler DL, Harari PM, Rothbauer U, Schittek B, Zips D, Toulany M. Blocking Y-Box Binding Protein-1 through Simultaneous Targeting of PI3K and MAPK in Triple Negative Breast Cancers. Cancers (Basel) 2020; 12:cancers12102795. [PMID: 33003386 PMCID: PMC7601769 DOI: 10.3390/cancers12102795] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 09/25/2020] [Indexed: 12/22/2022] Open
Abstract
Simple Summary Triple-negative breast cancer (TNBC) is associated with the high rates of relapse and metastasis and poor survival. YB-1 is overexpressed in TNBC tumor tissues. In the present study, we demonstrated that S102 phosphorylation of YB-1 in TNBC cell lines depend on the mutation status of the components of the MAPK/ERK and PI3K/Akt pathways. Simultaneous targeting of MEK and PI3K was found to be the most effective approach to block YB-1 phosphorylation and to inhibit YB-1 dependent cell proliferation. YBX1 knockout was sufficient to block TNBC tumor growth. Abstract The multifunctional protein Y-box binding protein-1 (YB-1) regulates all the so far described cancer hallmarks including cell proliferation and survival. The MAPK/ERK and PI3K/Akt pathways are also the major pathways involved in cell growth, proliferation, and survival, and are the frequently hyperactivated pathways in human cancers. A gain of function mutation in KRAS mainly leads to the constitutive activation of the MAPK pathway, while the activation of the PI3K/Akt pathway occurs either through the loss of PTEN or a gain of function mutation of the catalytic subunit alpha of PI3K (PIK3CA). In this study, we investigated the underlying signaling pathway involved in YB-1 phosphorylation at serine 102 (S102) in KRAS(G13D)-mutated triple-negative breast cancer (TNBC) MDA-MB-231 cells versus PIK3CA(H1047R)/PTEN(E307K) mutated TNBC MDA-MB-453 cells. Our data demonstrate that S102 phosphorylation of YB-1 in KRAS-mutated cells is mainly dependent on the MAPK/ERK pathway, while in PIK3CA/PTEN-mutated cells, YB-1 S102 phosphorylation is entirely dependent on the PI3K/Akt pathway. Independent of the individual dominant pathway regulating YB-1 phosphorylation, dual targeting of MEK and PI3K efficiently inhibited YB-1 phosphorylation and blocked cell proliferation. This represents functional crosstalk between the two pathways. Our data obtained from the experiments, applying pharmacological inhibitors and genetic approaches, shows that YB-1 is a key player in cell proliferation, clonogenic activity, and tumor growth of TNBC cells through the MAPK and PI3K pathways. Therefore, dual inhibition of these two pathways or single targeting of YB-1 may be an effective strategy to treat TNBC.
Collapse
Affiliation(s)
- Aadhya Tiwari
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany; (A.T.); (D.Z.)
- Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany;
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mari Iida
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (M.I.); (M.A.); (D.L.W.); (P.M.H.)
| | - Corinna Kosnopfel
- Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany; (C.K.); (B.F.); (M.S.); (B.S.)
| | - Mahyar Abbariki
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (M.I.); (M.A.); (D.L.W.); (P.M.H.)
| | - Apostolos Menegakis
- Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany;
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Birgit Fehrenbacher
- Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany; (C.K.); (B.F.); (M.S.); (B.S.)
| | - Julia Maier
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany; (J.M.); (U.R.)
- Pharmaceutical Biotechnology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Martin Schaller
- Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany; (C.K.); (B.F.); (M.S.); (B.S.)
| | - Sara Y. Brucker
- Department of Women’s Health, University of Tuebingen, 72076 Tuebingen, Germany;
| | - Deric L. Wheeler
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (M.I.); (M.A.); (D.L.W.); (P.M.H.)
| | - Paul M. Harari
- Department of Human Oncology, University of Wisconsin, Madison, WI 53705, USA; (M.I.); (M.A.); (D.L.W.); (P.M.H.)
| | - Ulrich Rothbauer
- Natural and Medical Sciences Institute, University of Tuebingen, 72770 Reutlingen, Germany; (J.M.); (U.R.)
- Pharmaceutical Biotechnology, University of Tuebingen, 72076 Tuebingen, Germany
| | - Birgit Schittek
- Department of Dermatology, University of Tuebingen, 72076 Tuebingen, Germany; (C.K.); (B.F.); (M.S.); (B.S.)
| | - Daniel Zips
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany; (A.T.); (D.Z.)
- Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany;
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
| | - Mahmoud Toulany
- Division of Radiobiology and Molecular Environmental Research, Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany; (A.T.); (D.Z.)
- Department of Radiation Oncology, University of Tuebingen, 72076 Tuebingen, Germany;
- German Cancer Consortium (DKTK), Partner Site Tuebingen and German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120 Heidelberg, Germany
- Correspondence: ; Tel.: +49-7071-29-85832
| |
Collapse
|
34
|
Mehta S, Algie M, Al-Jabry T, McKinney C, Kannan S, Verma CS, Ma W, Zhang J, Bartolec TK, Masamsetti VP, Parker K, Henderson L, Gould ML, Bhatia P, Harfoot R, Chircop M, Kleffmann T, Cohen SB, Woolley AG, Cesare AJ, Braithwaite A. Critical Role for Cold Shock Protein YB-1 in Cytokinesis. Cancers (Basel) 2020; 12:cancers12092473. [PMID: 32882852 PMCID: PMC7565962 DOI: 10.3390/cancers12092473] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/21/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Y-box-binding protein-1, YB-1, plays an important role in regulating the cell cycle, although precisely how it does the is unknown. Using live cell imaging, we show that YB-1 is essential for initiating the last step of cell division (cytokinesis), required for creation of two daughter cells. Using confocal microscopy we showed that YB-1 regulates the spatial distribution of key proteins essential for cytokinesis to occur and that this required YB-1 to be phosphorylated on several residues. In-silico modeling demonstrated that modifications at these residues resulted in conformational changes in YB-1 protein allowing it to interact with proteins essential for cytokinesis. As many cancers have high levels YB-1 and these are associated with poor prognosis, our data suggest developing small molecule inhibitors to block YB-1 phosphorylation could be a novel approach to cancer therapy. Abstract High levels of the cold shock protein Y-box-binding protein-1, YB-1, are tightly correlated with increased cell proliferation and progression. However, the precise mechanism by which YB-1 regulates proliferation is unknown. Here, we found that YB-1 depletion in several cancer cell lines and in immortalized fibroblasts resulted in cytokinesis failure and consequent multinucleation. Rescue experiments indicated that YB-1 was required for completion of cytokinesis. Using confocal imaging we found that YB-1 was essential for orchestrating the spatio-temporal distribution of the microtubules, β-actin and the chromosome passenger complex (CPC) to define the cleavage plane. We show that phosphorylation at six serine residues was essential for cytokinesis, of which novel sites were identified using mass spectrometry. Using atomistic modelling we show how phosphorylation at multiple sites alters YB-1 conformation, allowing it to interact with protein partners. Our results establish phosphorylated YB-1 as a critical regulator of cytokinesis, defining precisely how YB-1 regulates cell division.
Collapse
Affiliation(s)
- Sunali Mehta
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Maurice Wilkins Centre for Biodiscovery, University of Otago, 9016 Dunedin, New Zealand
- Correspondence: ; Tel.: +64-3-4797169
| | - Michael Algie
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Centre for Protein Research, Department of Biochemistry, University of Otago, 9054 Dunedin, New Zealand;
| | - Tariq Al-Jabry
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Cushla McKinney
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Srinivasaraghavan Kannan
- Department of Biomolecular Modelling and Design, Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore; (S.K.); (C.S.V.)
| | - Chandra S Verma
- Department of Biomolecular Modelling and Design, Bioinformatics Institute (A*STAR), 30 Biopolis Street, 07-01 Matrix, Singapore 138671, Singapore; (S.K.); (C.S.V.)
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
- Department of Biological Sciences, National University of Singapore, 16 Science Drive 4, Singapore 117543, Singapore
| | - Weini Ma
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Jessie Zhang
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Tara K. Bartolec
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - V. Pragathi Masamsetti
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Kim Parker
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Luke Henderson
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Maurice Wilkins Centre for Biodiscovery, University of Otago, 9016 Dunedin, New Zealand
| | - Maree L Gould
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Puja Bhatia
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Rhodri Harfoot
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
| | - Megan Chircop
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Torsten Kleffmann
- Centre for Protein Research, Department of Biochemistry, University of Otago, 9054 Dunedin, New Zealand;
| | - Scott B Cohen
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Adele G Woolley
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Maurice Wilkins Centre for Biodiscovery, University of Otago, 9016 Dunedin, New Zealand
| | - Anthony J Cesare
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
| | - Antony Braithwaite
- Department of Pathology, University of Otago, 9016 Dunedin, New Zealand; (M.A.); (C.M.); (K.P.); (L.H.); (M.L.G.); (P.B.); (R.H.); (A.G.W.); (A.B.)
- Maurice Wilkins Centre for Biodiscovery, University of Otago, 9016 Dunedin, New Zealand
- Children’s Medical Research Institute, University of Sydney, Westmead, NSW 2145, Australia; (T.S.-J.); (W.M.); (J.Z.); (T.K.B.); (V.P.M.); (M.C.); (S.B.C.); (A.J.C.)
- Malaghan Institute of Medical Research, 6242 Wellington, New Zealand
| |
Collapse
|
35
|
Johnson TG, Schelch K, Lai K, Marzec KA, Kennerson M, Grusch M, Reid G, Burgess A. YB-1 Knockdown Inhibits the Proliferation of Mesothelioma Cells through Multiple Mechanisms. Cancers (Basel) 2020; 12:E2285. [PMID: 32823952 PMCID: PMC7464182 DOI: 10.3390/cancers12082285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/07/2020] [Accepted: 08/12/2020] [Indexed: 12/29/2022] Open
Abstract
Y-box binding protein-1 (YB-1) is a multifunctional oncoprotein that has been shown to regulate proliferation, invasion and metastasis in a variety of cancer types. We previously demonstrated that YB-1 is overexpressed in mesothelioma cells and its knockdown significantly reduces tumour cell proliferation, migration, and invasion. However, the mechanisms driving these effects are unclear. Here, we utilised an unbiased RNA-seq approach to characterise the changes to gene expression caused by loss of YB-1 knockdown in three mesothelioma cell lines (MSTO-211H, VMC23 and REN cells). Bioinformatic analysis showed that YB-1 knockdown regulated 150 common genes that were enriched for regulators of mitosis, integrins and extracellular matrix organisation. However, each cell line also displayed unique gene expression signatures, that were differentially enriched for cell death or cell cycle control. Interestingly, deregulation of STAT3 and p53-pathways were a key differential between each cell line. Using flow cytometry, apoptosis assays and single-cell time-lapse imaging, we confirmed that MSTO-211H, VMC23 and REN cells underwent either increased cell death, G1 arrest or aberrant mitotic division, respectively. In conclusion, this data indicates that YB-1 knockdown affects a core set of genes in mesothelioma cells. Loss of YB-1 causes a cascade of events that leads to reduced mesothelioma proliferation, dependent on the underlying functionality of the STAT3/p53-pathways and the genetic landscape of the cell.
Collapse
Affiliation(s)
- Thomas G. Johnson
- The Asbestos Diseases Research Institute (ADRI), Concord Hospital, Concord, Sydney 2139, Australia;
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney 2139, Australia
- Sydney Catalyst Translational Research Centre, Sydney 2050, Australia
| | - Karin Schelch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (M.G.)
| | - Kaitao Lai
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney 2139, Australia
| | - Kamila A. Marzec
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
| | - Marina Kennerson
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney 2139, Australia
- Molecular Medicine Laboratory, Concord Repatriation General Hospital, Sydney 2139, Australia
| | - Michael Grusch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria; (K.S.); (M.G.)
| | - Glen Reid
- Department of Pathology, The University of Otago, Dunedin 9054, New Zealand;
- The Maurice Wilkins Centre, University of Otago, Dunedin 9054, New Zealand
| | - Andrew Burgess
- The ANZAC Research Institute, Concord Repatriation General Hospital, Sydney 2139, Australia; (K.L.); (K.A.M.); (M.K.)
- Faculty of Medicine and Health, The University of Sydney Concord Clinical School, Sydney 2139, Australia
| |
Collapse
|
36
|
Cong Z, Diao Y, Li X, Jiang Z, Xu Y, Zhou H, Qiang Y, Wu H, Shen Y. Long non-coding RNA linc00665 interacts with YB-1 and promotes angiogenesis in lung adenocarcinoma. Biochem Biophys Res Commun 2020; 527:545-552. [PMID: 32423800 DOI: 10.1016/j.bbrc.2020.04.108] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 04/20/2020] [Indexed: 01/27/2023]
Abstract
Angiogenesis is a core hallmark of advanced cancers, especially in lung adenocarcinoma (LUAD). However, the underlying functions and mechanisms of lncRNAs in tumor angiogenesis remain largely unknown. Here we found that linc00665 depletion could markedly depressed proliferation and capillary tube formation of HUVECs in vitro. Mechanistically, linc00665 directly interacted with YB-1 protein, enhanced its stability through inhibiting ubiquitination-dependent proteolysis and stimulated its nuclear translocation in LUAD cells. The accumulated nuclear YB-1 activated expression of ANGPT4, ANGPTL3 and VEGFA by binding to their promoters, contributing to tumor-related angiogenesis in vitro and in vivo. Collectively, we conclude that linc00665 induces tumor-related angiogenesis in LUAD by directly interacting with YB-1 and activating YB-1-ANGPT4/ANGPTL3/VEGFA axis, which provides promising anti-angiogenic targets for cancer therapy.
Collapse
Affiliation(s)
- Zhuangzhuang Cong
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210000, China
| | - Yifei Diao
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210000, China; Department of Cardiothoracic Surgery, Jinling Hospital, Southeast University, Nanjing, 210000, China
| | - Xiaokun Li
- Department of Cardiothoracic Surgery, Jinling Hospital, Southeast University, Nanjing, 210000, China
| | - Zhisheng Jiang
- Department of Cardiothoracic Surgery, Jinling Hospital, Bengbu Medical College, Anhui, 233030, China
| | - Yang Xu
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Hai Zhou
- Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China
| | - Yong Qiang
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210000, China.
| | - Haiwei Wu
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210000, China.
| | - Yi Shen
- Department of Cardiothoracic Surgery, Jinling Hospital, Medical School of Nanjing University, Nanjing, 210000, China; Department of Cardiothoracic Surgery, Jinling Hospital, Southeast University, Nanjing, 210000, China; Department of Cardiothoracic Surgery, Jinling Hospital, Bengbu Medical College, Anhui, 233030, China; Department of Cardiothoracic Surgery, Jinling Hospital, Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
37
|
Lasham A, Tsai P, Fitzgerald SJ, Mehta SY, Knowlton NS, Braithwaite AW, Print CG. Accessing a New Dimension in TP53 Biology: Multiplex Long Amplicon Digital PCR to Specifically Detect and Quantitate Individual TP53 Transcripts. Cancers (Basel) 2020; 12:cancers12030769. [PMID: 32213968 PMCID: PMC7140069 DOI: 10.3390/cancers12030769] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 03/19/2020] [Accepted: 03/20/2020] [Indexed: 12/21/2022] Open
Abstract
TP53, the most commonly-mutated gene in cancer, undergoes complex alternative splicing. Different TP53 transcripts play different biological roles, both in normal function and in the progression of diseases such as cancer. The study of TP53’s alternative RNA splice forms and their use as clinical biomarkers has been hampered by limited specificity and quantitative accuracy of current methods. TP53 RNA splice variants differ at both 5’ and 3’ ends, but because they have a common central region of 618 bp, the individual TP53 transcripts are impossible to specifically detect and precisely quantitate using standard PCR-based methods or short-read RNA sequencing. Therefore, we devised multiplex probe-based long amplicon droplet digital PCR (ddPCR) assays, which for the first time allow precise end-to-end quantitation of the seven major TP53 transcripts, with amplicons ranging from 0.85 to 1.85 kb. Multiple modifications to standard ddPCR assay procedures were required to enable specific co-amplification of these long transcripts and to overcome issues with secondary structure. Using these assays, we show that several TP53 transcripts are co-expressed in breast cancers, and illustrate the potential for this method to identify novel TP53 transcripts in tumour cells. This capability will facilitate a new level of biological and clinical understanding of the alternatively-spliced TP53 isoforms.
Collapse
Affiliation(s)
- Annette Lasham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Correspondence:
| | - Peter Tsai
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| | - Sandra J. Fitzgerald
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| | - Sunali Y. Mehta
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
| | - Nicholas S. Knowlton
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| | - Antony W. Braithwaite
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
- Department of Pathology, University of Otago, Dunedin 9016, New Zealand
- Malaghan Institute of Medical Research, Wellington 6242, New Zealand
| | - Cristin G. Print
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland 1142, New Zealand; (P.T.); (S.J.F.); (N.S.K.); (C.G.P.)
- Maurice Wilkins Centre, University of Auckland, Auckland 1010, New Zealand; (S.Y.M.); (A.W.B.)
| |
Collapse
|
38
|
Fang Z, Lin M, Li C, Liu H, Gong C. A comprehensive review of the roles of E2F1 in colon cancer. Am J Cancer Res 2020; 10:757-768. [PMID: 32266089 PMCID: PMC7136928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 02/20/2020] [Indexed: 06/11/2023] Open
Abstract
E2F transcription factor 1 (E2F1) is a member of the E2F family of transcription factors. E2F1 binds to DNA with dimerization partner (DP) proteins through an E2 recognition site. The dissociation of E2F1 from retinoblastoma (Rb) protein recovers its transcriptional activity, which drives the cell cycle from the G1 to S phase. E2F1 has been shown to be involved in cellular proliferation, differentiation, and apoptosis in colon cancer. It was recently found that E2F1 also participates in the metastasis and chemoresistance of colon cancer. There are abundant experimental data regarding the actions of E2F1, which can be grouped as either pro-tumorigenic or pro-apoptotic. Despite a growing interest and plentiful data, there is currently no review that focuses on the role of E2F1 in colon cancer. Research on E2F1 and colon cancer has been scattered over various genes and microRNAs (miRNAs) that affect E2F1 expression. Here, we provide the first review that aims to consider and dissect all of the elucidated complex behaviors of E2F1 in colon cancer. This review also provides an analysis and conclusion regarding the current understanding of E2F1 in colon cancer in order to facilitate the direction of future research.
Collapse
Affiliation(s)
- Zejun Fang
- Central Laboratory, Sanmen People’s Hospital of Zhejiang, Sanmenwan Branch of The First Affiliated Hospital, College of Medicine, Zhejiang UniversitySanmen 317100, China
- Department of Gastroenterology, Sanmen People’s Hospital of Zhejiang, Sanmenwan Branch of The First Affiliated Hospital, College of Medicine, Zhejiang UniversitySanmen 317100, China
| | - Min Lin
- Central Laboratory, Sanmen People’s Hospital of Zhejiang, Sanmenwan Branch of The First Affiliated Hospital, College of Medicine, Zhejiang UniversitySanmen 317100, China
| | - Chunxiao Li
- Department of Gastroenterology, Ningbo First HospitalNingbo 315010, China
| | - Hong Liu
- Zhejiang Normal University-Jinhua People’s Hospital Joint Center for Biomedical ResearchJinhua 321004, China
- Department of Neuroscience, Center for Neurovirology, Lewis Katz School of Medicine at Temple UniversityPhiladelphia, PA 19140, USA
| | - Chaoju Gong
- Central Laboratory, The Municipal Affiliated Hospital of Xuzhou Medical UniversityXuzhou 221002, China
| |
Collapse
|
39
|
Bansal T, Tanveer N, Singh UR, Sharma S, Kaur N. Y-Box binding protein 1 expression in breast cancer and its correlation with hormone receptors and other prognostic markers. J Lab Physicians 2020; 10:420-425. [PMID: 30498315 PMCID: PMC6210848 DOI: 10.4103/jlp.jlp_58_18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
INTRODUCTION: The present histologic and immunohistochemical prognostic markers of breast carcinoma do not effectively identify the subset of patients with poor prognosis. Y-Box binding protein 1 (YB1) is a novel biomarker which may identify and aid in targeted personalized therapy for such patients. MATERIALS AND METHODS: The study was conducted on histopathology specimens of 74 patients of breast carcinoma who had undergone modified radical mastectomy. YB1 immunohistochemistry (IHC) was performed on manual tissue microarray blocks (each having 15 cores). The YB1 expression was quantified in terms of “immunoreactive score” which was correlated with clinical parameters, hormone receptor status, and Her2neu overexpression by IHC. The Her2neu status of the equivocal cases was further evaluated by fluorescent in situ hybridization (FISH). RESULTS: YB1 was positive in 36/74 (48.6%) cases. On IHC and analysis by FISH, 25/74 (34%) cases had Her2neu overexpression. Estrogen receptor (ER) and progesterone receptor (PR) positivity was found in 42% and 36.5% cases, respectively. YB1 immunopositivity was negatively correlated with ER and PR expression, but showed a significant positive correlation with Her2neu expression. No correlation was found with other clinical parameters, tumor stage, and grade, except lymph node involvement, which showed a positive association with YB1 expression. Triple-negative breast carcinoma constituted 25.6% of the total cases, out of which 73.6% were YB1 positive. CONCLUSION: This study found that YB1 has an association with Her2neu expression. It may in future provide a therapeutic target in Her2neu overexpressing tumors.
Collapse
Affiliation(s)
- Taruna Bansal
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Nadeem Tanveer
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Usha Rani Singh
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Sonal Sharma
- Department of Pathology, University College of Medical Sciences, New Delhi, India
| | - Navneet Kaur
- Department of Surgery, University College of Medical Sciences, New Delhi, India
| |
Collapse
|
40
|
Dephosphorylation of YB-1 is Required for Nuclear Localisation During G 2 Phase of the Cell Cycle. Cancers (Basel) 2020; 12:cancers12020315. [PMID: 32013098 PMCID: PMC7072210 DOI: 10.3390/cancers12020315] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/18/2020] [Accepted: 01/25/2020] [Indexed: 01/25/2023] Open
Abstract
Elevated levels of nuclear Y-box binding protein 1 (YB-1) are linked to poor prognosis in cancer. It has been proposed that entry into the nucleus requires specific proteasomal cleavage. However, evidence for cleavage is contradictory and high YB-1 levels are prognostic regardless of cellular location. Here, using confocal microscopy and mass spectrometry, we find no evidence of specific proteolytic cleavage. Doxorubicin treatment, and the resultant G2 arrest, leads to a significant increase in the number of cells where YB-1 is not found in the cytoplasm, suggesting that its cellular localisation is variable during the cell cycle. Live cell imaging reveals that the location of YB-1 is linked to progression through the cell cycle. Primarily perinuclear during G1 and S phases, YB-1 enters the nucleus as cells transition through late G2/M and exits at the completion of mitosis. Atomistic modelling and molecular dynamics simulations show that dephosphorylation of YB-1 at serine residues 102, 165 and 176 increases the accessibility of the nuclear localisation signal (NLS). We propose that this conformational change facilitates nuclear entry during late G2/M. Thus, the phosphorylation status of YB-1 determines its cellular location.
Collapse
|
41
|
MiR-1258 promotes the apoptosis of cervical cancer cells by regulating the E2F1/P53 signaling pathway. Exp Mol Pathol 2020; 114:104368. [PMID: 31917289 DOI: 10.1016/j.yexmp.2020.104368] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/11/2019] [Accepted: 01/03/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE Cervical cancer is the most common malignant tumor in gynaecology with high mortality. MiRNA has been reported to regulate cell biological processes in cervical cancer. This study aimed to explore the expression of miR-1258 and role of miR-1258 by targeting E2F1 in cervical cancer cells. METHODS The expression of miR-1258 and E2F1 in cervical cancer cells and transfection effects was determined by RT-qPCR analysis. The expression of E2F1, MMP2, MMP7, MMP9, Bcl2, Bax, cleaved caspase3, caspase3, KI67, p-AKT, cyclinD1, CDK2, P53 and AKT in cervical cancer cells was detected by western blot analysis. The proliferation, invasion, migration and apoptosis were respectively analyzed by CCK-8 assay, transwell assay, wound healing assay and flow cytometry analysis. E2F1 was a potential target of miR-1258, which demonstrated by a dual-luciferase reporter assay. RESULTS miR-1258 expression was decreased while E2F1 expression was increased in cervical cancer cells. MiR-1258 overexpression could down-regulate the E2F1 expression. Overexpression of miR-1258 inhibited the proliferation, invasion and migration and promoted the apoptosis of cervical cancer cells by AKT and P53 signal pathway. And, Overexpression of miR-1258 also suppressed the tumor growth by AKT and P53 signal pathway. Overexpression of E2F1 reduced the inhibition effects of miR-1258 in cervical cancer. CONCLUSION Taken together, miR-1258 overexpression exerts its inhibition effects on the proliferation, invasion and migration and promotion effects on the apoptosis of cervical cancer cells by targeting the E2F1, which might provide new ideas for clinical treatment of cervical cancer.
Collapse
|
42
|
Kim A, Shim S, Kim YH, Kim MJ, Park S, Myung JK. Inhibition of Y Box Binding Protein 1 Suppresses Cell Growth and Motility in Colorectal Cancer. Mol Cancer Ther 2019; 19:479-489. [DOI: 10.1158/1535-7163.mct-19-0265] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/14/2019] [Accepted: 10/25/2019] [Indexed: 11/16/2022]
|
43
|
Johnson TG, Schelch K, Mehta S, Burgess A, Reid G. Why Be One Protein When You Can Affect Many? The Multiple Roles of YB-1 in Lung Cancer and Mesothelioma. Front Cell Dev Biol 2019; 7:221. [PMID: 31632972 PMCID: PMC6781797 DOI: 10.3389/fcell.2019.00221] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 09/18/2019] [Indexed: 12/14/2022] Open
Abstract
Lung cancers and malignant pleural mesothelioma (MPM) have some of the worst 5-year survival rates of all cancer types, primarily due to a lack of effective treatment options for most patients. Targeted therapies have shown some promise in thoracic cancers, although efficacy is limited only to patients harboring specific mutations or target expression. Although a number of actionable mutations have now been identified, a large population of thoracic cancer patients have no therapeutic options outside of first-line chemotherapy. It is therefore crucial to identify alternative targets that might lead to the development of new ways of treating patients diagnosed with these diseases. The multifunctional oncoprotein Y-box binding protein-1 (YB-1) could serve as one such target. Recent studies also link this protein to many inherent behaviors of thoracic cancer cells such as proliferation, invasion, metastasis and involvement in cancer stem-like cells. Here, we review the regulation of YB-1 at the transcriptional, translational, post-translational and sub-cellular levels in thoracic cancer and discuss its potential use as a biomarker and therapeutic target.
Collapse
Affiliation(s)
- Thomas G Johnson
- Asbestos Diseases Research Institute, Sydney, NSW, Australia.,Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia.,Sydney Catalyst Translational Cancer Research Centre, The University of Sydney, Sydney, NSW, Australia
| | - Karin Schelch
- Institute of Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Sunali Mehta
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| | - Andrew Burgess
- Cell Division Laboratory, The ANZAC Research Institute, Sydney, NSW, Australia.,School of Medicine, The University of Sydney, Sydney, NSW, Australia
| | - Glen Reid
- Department of Pathology, University of Otago, Dunedin, New Zealand.,Maurice Wilkins Centre, University of Otago, Dunedin, New Zealand
| |
Collapse
|
44
|
Zheng H, Zhan Y, Zhang Y, Liu S, Lu J, Yang Y, Wen Q, Fan S. Elevated expression of G3BP1 associates with YB1 and p-AKT and predicts poor prognosis in nonsmall cell lung cancer patients after surgical resection. Cancer Med 2019; 8:6894-6903. [PMID: 31560169 PMCID: PMC6853815 DOI: 10.1002/cam4.2579] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/14/2022] Open
Abstract
Purpose G3BP1 is an RNA‐binding protein and plays roles in regulating signaling pathway. YB‐1 is a DNA/RNA binding protein encoded by YBX1 gene. Phosphorylated AKT (p‐AKT) acts as a pivotal molecule in PI3K/AKT pathway. YB‐1 drives stress granules (SGs) formation by activating G3BP1 translation under diverse conditions. SGs are involved in many different metabolic and signaling pathways which may include PI3K/AKT/mTOR. So far, there has been no report on the relationship between expression of G3BP1, p‐AKT, and YB1 and clinicopathological features/prognosis in surgically resected nonsmall cell lung cancer (NSCLC) patients. Methods In this study, data from TCGA (The Cancer Genome Atlas) were downloaded to investigate the mRNA expression of G3BP1 and YB1 (YBX1) and their correlation in NSCLC. Also, expression of G3BP1, YB1, and p‐AKT proteins was studied using immunohistochemistry in tissue microarrays of NSCLC and in noncancerous lung tissues. Results We found that the mRNA expression of G3BP1 and YB1 was higher in NSCLC tissues (both P < .05), and G3BP1 was positively correlated with YB1 in mRNA level (r = .399, P < .001). Also, expression of G3BP1, YB1, and p‐AKT proteins was higher in NSCLC tissues (all P < .05). And higher expression of G3BP1 and YB1 proteins was seen in patients with clinical stage II and III compared with stage I (both P < .05). Besides, expression of G3BP1 protein had a positive correlation with YB1 and p‐AKT (both P < .05). Moreover, overall survival was shorter in patients with overexpression of G3BP1, YB1, and p‐AKT proteins (all P < .05). Multivariate analysis confirmed that overexpression of G3BP1 protein was an independent poorer prognostic factor for NSCLC patients (P = .039). Conclusion G3BP1 may play a crucial role in activating PI3K/AKT/mTOR pathway. G3BP1 might be served as a novel prognostic biomarker for surgically resected NSCLC patients, which afforded new insights into the study on the mechanism and therapy of NSCLC.
Collapse
Affiliation(s)
- Hongmei Zheng
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Zhan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yuting Zhang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Sile Liu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Junmi Lu
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yang Yang
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qiuyuan Wen
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Songqing Fan
- Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
45
|
Orthogonal assays for the identification of inhibitors of the single-stranded nucleic acid binding protein YB-1. Acta Pharm Sin B 2019; 9:997-1007. [PMID: 31649849 PMCID: PMC6804448 DOI: 10.1016/j.apsb.2018.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 12/26/2018] [Accepted: 12/29/2018] [Indexed: 02/01/2023] Open
Abstract
We have previously shown that high expression of the nucleic acid binding factor YB-1 is strongly associated with poor prognosis in a variety of cancer types. The 3-dimensional protein structure of YB-1 has yet to be determined and its role in transcriptional regulation remains elusive. Drug targeting of transcription factors is often thought to be difficult and there are very few published high-throughput screening approaches. YB-1 predominantly binds to single-stranded nucleic acids, adding further difficulty to drug discovery. Therefore, we have developed two novel screening assays to detect compounds that interfere with the transcriptional activation properties of YB-1, both of which may be generalizable to screen for inhibitors of other nucleic acid binding molecules. The first approach is a cell-based luciferase reporter gene assay that measures the level of activation of a fragment of the E2F1 promoter by YB-1. The second approach is a novel application of the AlphaScreen system, to detect interference of YB-1 interaction with a single-stranded DNA binding site. These complementary assays examine YB-1 binding to two discrete nucleic acid sequences using two different luminescent signal outputs and were employed sequentially to screen 7360 small molecule compounds leading to the identification of three putative YB-1 inhibitors.
Collapse
Key Words
- AlphaScreen
- CSD, cold shock domain
- CTD, C-terminal domain
- Cancer
- DMSO, dimethylsulfoxide
- E2F1, E2F transcription factor 1
- EGR1, early growth response 1
- HTS, high-throughput screening
- Luciferase
- NTD, N-terminal domain
- Single-stranded DNA
- Transcription factor
- YB-1
- YB-1, Y-box binding protein-1
- YBX1, Y-box binding protein gene 1
- cDNA, complementary DNA
- dsDNA, double-stranded DNA
- shRNA, short-hairpin RNA
- siRNA, small-interfering RNA
- ssDNA, single-stranded DNA
Collapse
|
46
|
Kuwano M, Shibata T, Watari K, Ono M. Oncogenic Y-box binding protein-1 as an effective therapeutic target in drug-resistant cancer. Cancer Sci 2019; 110:1536-1543. [PMID: 30903644 PMCID: PMC6500994 DOI: 10.1111/cas.14006] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 12/30/2022] Open
Abstract
Y-box binding protein-1 (YBX1), a multifunctional oncoprotein containing an evolutionarily conserved cold shock domain, dysregulates a wide range of genes involved in cell proliferation and survival, drug resistance, and chromatin destabilization by cancer. Expression of a multidrug resistance-associated ATP binding cassette transporter gene, ABCB1, as well as growth factor receptor genes, EGFR and HER2/ErbB2, was initially discovered to be transcriptionally activated by YBX1 in cancer cells. Expression of other drug resistance-related genes, MVP/LRP, TOP2A, CD44, CD49f, BCL2, MYC, and androgen receptor (AR), is also transcriptionally activated by YBX1, consistently indicating that YBX1 is involved in tumor drug resistance. Furthermore, there is strong evidence to support that nuclear localization and/or overexpression of YBX1 can predict poor outcomes in patients with more than 20 different tumor types. YBX1 is phosphorylated by kinases, including AKT, p70S6K, and p90RSK, and translocated into the nucleus to promote the transcription of resistance- and malignancy-related genes. Phosphorylated YBX1, therefore, plays a crucial role as a potent transcription factor in cancer. Herein, a novel anticancer therapeutic strategy is presented by targeting activated YBX1 to overcome drug resistance and malignant progression.
Collapse
Affiliation(s)
- Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
47
|
Shibata T, Tokunaga E, Hattori S, Watari K, Murakami Y, Yamashita N, Oki E, Itou J, Toi M, Maehara Y, Kuwano M, Ono M. Y-box binding protein YBX1 and its correlated genes as biomarkers for poor outcomes in patients with breast cancer. Oncotarget 2018; 9:37216-37228. [PMID: 30647855 PMCID: PMC6324687 DOI: 10.18632/oncotarget.26469] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Accepted: 12/05/2018] [Indexed: 01/10/2023] Open
Abstract
The enhanced expression of the Y-box binding protein YBX1 is consistently correlated with poor outcomes or reduced survival of breast cancer patients. However, the mechanism underlying the association between increased YBX1 expression and poor outcomes has yet to be revealed. We searched a database for the top 500 genes that are positively or negatively correlated with YBX1 and with ESR1 in breast cancer patients. We further examined the association between YBX1-correlated genes and breast cancer outcomes in patients at Kyushu University Hospital. More than 60% of genes that are positively correlated with YBX1 are also negatively correlated with ESR1. The enhanced expression levels of the top 20 positively correlated genes mostly predict negative outcomes, while the enhanced expression levels of the top 20 negatively correlated genes mostly predict positive outcomes. Furthermore, in breast cancer patients at Kyushu University Hospital, the expression levels of YBX1 and YBX1-positively correlated genes were significantly higher and the expression levels of genes negatively correlated with YBX1 were significantly lower in patients who relapsed after their primary surgery than in those who did not relapse. The expression of YBX1 together with the expression of its positively or negatively correlated genes may help to predict outcomes as well as resistance to endocrine therapies in breast cancer patients. Determining the expression of YBX1 and its closely correlated genes will contribute to the development of precision therapeutics for breast cancer.
Collapse
Affiliation(s)
- Tomohiro Shibata
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Eriko Tokunaga
- National Hospital Organization Kyushu Cancer Center, Fukuoka, Japan
| | - Satoshi Hattori
- Department of Integrated Medicine, Biomedical Statistics, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kosuke Watari
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| | - Yuichi Murakami
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan.,Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Nami Yamashita
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Eiji Oki
- Department of Surgery and Science, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Junji Itou
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Masakazu Toi
- Department of Breast Surgery, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Yoshihiko Maehara
- Kyushu Central Hospital of the Mutual Aid Association of Public School Teachers, Fukuoka, Japan
| | - Michihiko Kuwano
- Cancer Translational Research Center, St. Mary's Institute of Health Sciences, Kurume, Japan
| | - Mayumi Ono
- Department of Pharmaceutical Oncology, Graduate School of Pharmaceutical Sciences, Kyushu University, Fukuoka, Japan
| |
Collapse
|
48
|
Peng Z, Wang J, Shan B, Li B, Peng W, Dong Y, Shi W, Zhao W, He D, Duan M, Cheng Y, Zhang C, Duan C. The long noncoding RNA LINC00312 induces lung adenocarcinoma migration and vasculogenic mimicry through directly binding YBX1. Mol Cancer 2018; 17:167. [PMID: 30470227 PMCID: PMC6260658 DOI: 10.1186/s12943-018-0920-z] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 11/19/2018] [Indexed: 12/15/2022] Open
Abstract
Vasculogenic mimicry (VM) gives rise to tumor neovascularization that is critical for tumor growth and metastasis. Long non-coding RNAs (lncRNAs) have been implicated in diverse and fundamental biological processes. LINC00312 is associated with lung adenocarcinoma. In this study, we found that LINC00312 induced migration, invasion and VM of lung cancer cells by direct binding to the transcription factor Y-Box Binding Protein 1 (YBX1). Moreover, we demonstrated that YBX1 is associated with different fragments within 0-2410 nt 5'region of LINC00312. In addition, LINC00312 is associated with VM in 124 lung adenocarcinoma clinical specimens. The results suggest that LINC00312 is a promising therapeutic and diagnostic target for lung adenocarcinoma.
Collapse
Affiliation(s)
- Zhenzi Peng
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Jun Wang
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Bin Shan
- Elison S Floyd College of Medicine, Washington State University, Spokane, WA, 99201, USA
| | - Bin Li
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Wei Peng
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Yeping Dong
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Wenwen Shi
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Wenyuan Zhao
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Dan He
- Hunan Cancer Hospital, The Affiliated Tumor Hospital of Xiangya Medical College, Central South University, Changsha, 410008, People's Republic of China
| | - Minghao Duan
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China
| | - Yuanda Cheng
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Chunfang Zhang
- Department of Thoracic Surgery, Xiangya Hospital, Central South University, Changsha, 410008, People's Republic of China
| | - Chaojun Duan
- Institute of Medical Sciences, Key Laboratory of Cancer Proteomics of Chinese Ministry of Health, Xiangya Hospital, Central South University, Xiangya Road 87th, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
49
|
Hohlfeld R, Brandt S, Bernhardt A, Gorny X, Schindele D, Jandrig B, Schostak M, Isermann B, Lindquist JA, Mertens PR. Crosstalk between Akt signaling and cold shock proteins in mediating invasive cell phenotypes. Oncotarget 2018; 9:19039-19049. [PMID: 29721182 PMCID: PMC5922376 DOI: 10.18632/oncotarget.24886] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 02/25/2018] [Indexed: 12/31/2022] Open
Abstract
Cold shock proteins are up-regulated by cellular stress and orchestrate inflammatory responses, cell proliferation, and differentiation. Enhanced cold shock protein expression promotes malignant cell transformation; up-regulation is detected in most cancers and associated with poor prognosis. Akt1, a serine/threonine kinase, is a potent oncogene, which activates pro-proliferative and anti-apoptotic signaling pathways, and phosphorylates the cold shock domain. Unexpectedly, chicken-YB-1 abrogates PI3K-Akt-dependent oncogenic cell transformation in embryonic fibroblasts. Here, we addressed the question whether chicken and human Y-box binding protein-1 (YB-1) act differently on cell transformation, and how a related protein, DNA-binding protein-A (DbpA) behaves in comparison. NIH3T3 cells were transduced with lentiviral vectors encoding for myristoylated (constitutive active) Akt1, YB-1, DbpA, or shRNA targeting YB-1 expression. Colony formation assays showed that human YB-1 acts similar to chicken on Akt-dependent cell transformation. This activity was not titratable. Given the correlation of nuclear YB-1 and upregulated DbpA expression in a series of clear cell renal cell carcinomas (n = 40) the colony formation assay was extended to include ectopic DbpA expression. DbpA alone prominently induced cell transformation, which was enhanced when constitutive active Akt1 or concomitant YB-1 expression was present. Notably, co-expression of DbpA together with YB-1 abrogated the repressive effect on Akt1 signaling observed with YB-1 alone. Macroscopically, some colonies yielded a remarkable “invasive” phenotype. Thus, cold shock proteins may convey profound anti- and pro-oncogenic effects on Akt-dependent cell transformation. DbpA is able to overcome the anti-oncogenic effects seen with combined YB-1 and Akt signaling in an in vitro model of colonial growth.
Collapse
Affiliation(s)
- Raphael Hohlfeld
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Anja Bernhardt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Xenia Gorny
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Daniel Schindele
- Clinic of Urology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Burkhard Jandrig
- Clinic of Urology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Martin Schostak
- Clinic of Urology, Otto-von-Guericke-University Magdeburg, Magdeburg, Germany
| | - Berend Isermann
- Institute of Clinical Chemistry and Pathobiochemistry, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Jonathan A Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Peter R Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
50
|
Johnson TG, Schelch K, Cheng YY, Williams M, Sarun KH, Kirschner MB, Kao S, Linton A, Klebe S, McCaughan BC, Lin RCY, Pirker C, Berger W, Lasham A, van Zandwijk N, Reid G. Dysregulated Expression of the MicroRNA miR-137 and Its Target YBX1 Contribute to the Invasive Characteristics of Malignant Pleural Mesothelioma. J Thorac Oncol 2018; 13:258-272. [PMID: 29113949 DOI: 10.1016/j.jtho.2017.10.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Revised: 10/10/2017] [Accepted: 10/21/2017] [Indexed: 12/11/2022]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is an aggressive malignancy linked to asbestos exposure. On a genomic level, MPM is characterized by frequent chromosomal deletions of tumor suppressors, including microRNAs. MiR-137 plays a tumor suppressor role in other cancers, so the aim of this study was to characterize it and its target Y-box binding protein 1 (YBX1) in MPM. METHODS Expression, methylation, and copy number status of miR-137 and its host gene MIR137HG were assessed by polymerase chain reaction. Luciferase reporter assays confirmed a direct interaction between miR-137 and Y-box binding protein 1 gene (YBX1). Cells were transfected with a miR-137 inhibitor, miR-137 mimic, and/or YBX1 small interfering RNA, and growth, colony formation, migration and invasion assays were conducted. RESULTS MiR-137 expression varied among MPM cell lines and tissue specimens, which was associated with copy number variation and promoter hypermethylation. High miR-137 expression was linked to poor patient survival. The miR-137 inhibitor did not affect target levels or growth, but interestingly, it increased miR-137 levels by means of mimic transfection suppressed growth, migration, and invasion, which was linked to direct YBX1 downregulation. YBX1 was overexpressed in MPM cell lines and inversely correlated with miR-137. RNA interference-mediated YBX1 knockdown significantly reduced cell growth, migration, and invasion. CONCLUSIONS MiR-137 can exhibit a tumor-suppressive function in MPM by targeting YBX1. YBX1 knockdown significantly reduces tumor growth, migration, and invasion of MPM cells. Therefore, YBX1 represents a potential target for novel MPM treatment strategies.
Collapse
Affiliation(s)
| | - Karin Schelch
- Asbestos Diseases Research Institute, Sydney, Australia
| | - Yuen Y Cheng
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia
| | - Marissa Williams
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia
| | - Kadir H Sarun
- Asbestos Diseases Research Institute, Sydney, Australia
| | | | - Steven Kao
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia; Department of Medical Oncology, Chris O'Brien Lifehouse, Sydney, Australia
| | - Anthony Linton
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia; Concord Cancer Centre, Concord Repatriation General Hospital, Sydney, Australia
| | - Sonja Klebe
- Department of Anatomical Pathology, Flinders University; Department of Anatomical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, Australia
| | - Brian C McCaughan
- Department of Anatomical Pathology, SA Pathology at Flinders Medical Centre, Adelaide, Australia; Sydney Cardiothoracic Surgeons, RPAH Medical Centre, Sydney, Australia
| | - Ruby C Y Lin
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medical Sciences, University of New South Wales, Sydney, Australia
| | - Christine Pirker
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Walter Berger
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Annette Lasham
- Department of Molecular Medicine and Pathology, School of Medical Sciences, University of Auckland, Auckland, New Zealand
| | - Nico van Zandwijk
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia
| | - Glen Reid
- Asbestos Diseases Research Institute, Sydney, Australia; School of Medicine, University of Sydney, Sydney, Australia.
| |
Collapse
|