1
|
Khan B, Chen M, Wang H, Khan A, Hussain S, Shi J, Yang L, Hou Y. GSK0660 enhances antitumor immunotherapy by reducing PD-L1 expression. Eur J Pharmacol 2024; 972:176565. [PMID: 38599309 DOI: 10.1016/j.ejphar.2024.176565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/12/2024]
Abstract
Blockade of PD-1/PD-L1 immune checkpoint is wildly used for multiple types of cancer treatment, while the low response rate for patients is still completely unknown. As nuclear hormone receptor, PPARδ (peroxisome-proliferator-activated receptor) regulates cell proliferation, inflammation, and tumor progression, while the effect of PPARδ on tumor immune escape is still unclear. Here we found that PPARδ antagonist GSK0660 significantly reduced colon cancer cell PD-L1 protein and gene expression. Luciferase analysis showed that GSK0660 decreased PD-L1 gene transcription activity. Moreover, reduced PD-L1 expression in colon cancer cells led to increased T cell activity. Further analysis showed that GSK0660 decreased PD-L1 expression in a PPARδ dependent manner. Implanted tumor model analysis showed that GSK0660 inhibited tumor immune escape and the combined PD-1 antibody with GSK0660 effectively enhanced colorectal cancer immunotherapy. These findings suggest that GSK0660 treatment could be an effective strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Bibimaryam Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China; School of Medicine, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Mingjun Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Huijie Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Afrasyab Khan
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Shakeel Hussain
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Limin Yang
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, China.
| |
Collapse
|
2
|
Zuo X, Kiyasu Y, Liu Y, Deguchi Y, Liu F, Moussalli M, Tan L, Wei B, Wei D, Yang P, Shureiqi I. Colorectal ALOX15 as a host factor determinant of EPA and DHA effects on colorectal carcinogenesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.02.592224. [PMID: 38746303 PMCID: PMC11092629 DOI: 10.1101/2024.05.02.592224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), omega-3 polyunsaturated fatty acids (ω-3 PUFAs) derived from fish oil, are widely used as dietary supplements and FDA-approved treatments for hypertriglyceridemia. However, studies investigating the effects of EPA and DHA on colorectal carcinogenesis (CRC) have yielded conflicting results. The factors that determine these discrepant results remain unknown. Resolvins, oxidative metabolites of EPA and DHA, inhibit key pro-tumorigenic cytokine and chemokine signaling of colorectal cancer (e.g., IL-6, IL-1β, and CCL2). 15-lipoxygenase-1 (ALOX15), a critical enzyme for resolvin generation is commonly lost during human CRC. Whether ALOX15 expression, as a host factor, modulates the effects of EPA and DHA on CRC remains unknown. Therefore, we evaluated the effects of ALOX15 transgenic expression in colonic epithelial cells on resolvin generation by EPA and DHA and CRC in mouse models representative of human CRC. Our results revealed that 1) EPA and DHA effects on CRC were diverse, ranging from suppressive to promotive, and these effects were occasionally altered by the formulations of EPA and DHA (free fatty acid, ethyl ester, triglyceride); 2) EPA and DHA uniformly suppressed CRC in the presence of intestinal ALOX15 transgenic expression, which induced the production of resolvins, decreased colonic CCL3-5 and CXCL-5 expression and tumor associated macrophages while increasing CD8 T cell abundance in tumor microenvironment; and 3) RvD5, the predominant resolvin produced by ALOX15, inhibited macrophage generation of pro-tumorigenic cytokines. These findings demonstrate the significance of intestinal ALOX15 expression as a host factor in determining the effects of EPA and DHA on CRC. Significance Eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) are widely used as dietary supplements and FDA-approved treatments for hypertriglyceridemia. Studies of EPA and DHA effects on colorectal carcinogenesis (CRC) have revealed inconsistencies; factors determining the direction of their impact on CRC have remained unidentified. Our data show that EPA and DHA effects on CRC were divergent and occasionally influenced by their formulations. More importantly, intestinal 15-lipoxgenase-1 (ALOX15) expression modulated EPA and DHA effects on CRC, leading to their consistent suppression of CRC. ALOX15 promoted EPA and DHA oxidative metabolism to generate resolvins, which inhibited key pro-tumorigenic inflammatory cytokines and chemokines, including IL-6. IL-1β, and CCL2. ALOX15 is therefore an important host factor in determining EPA and DHA effects on CRC.
Collapse
|
3
|
Zhao Y, Tan H, Zhang X, Zhu J. Roles of peroxisome proliferator-activated receptors in hepatocellular carcinoma. J Cell Mol Med 2024; 28:e18042. [PMID: 37987033 PMCID: PMC10902579 DOI: 10.1111/jcmm.18042] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 10/18/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023] Open
Abstract
Hepatocellular carcinoma (HCC), the main pathological type of liver cancer, is linked to risk factors such as viral hepatitis, alcohol intake and non-alcoholic fatty liver disease (NAFLD). Recent advances have greatly improved our understanding that NAFLD is playing a major risk factor for HCC. Peroxisome proliferator-activated receptors (PPARs) are a class of transcription factors divided into three subtypes: PPARα (PPARA), PPARδ/β (PPARD) and PPARγ (PPARG). As important nuclear receptors, PPARs are involved in many physiological processes, and PPARs can improve NAFLD by regulating lipid metabolism, accelerating fatty acid oxidation and inhibiting inflammation. In recent years, some studies have shown that PPARs can participate in the occurrence and development of HCC by regulating metabolic pathways. In addition, PPAR modulators have been reported to inhibit the proliferation and metastasis of HCC cells and can enhance the curative effect of conventional treatments. This article reviews the role of PPARs in the occurrence and development of HCC, as well as its value in the diagnosis, treatment and prognosis of HCC, in order to provide directions for future research.
Collapse
Affiliation(s)
- Yaqin Zhao
- Department of Abdominal Oncology, Cancer Center, West China HospitalSichuan UniversityChengduChina
| | - Huabing Tan
- Department of Infectious Diseases, Liver Disease Laboratory, Renmin HospitalHubei University of MedicineShiyanHubeiChina
| | - Xiaoyu Zhang
- Division of Gastrointestinal Surgery, Department of General SurgeryThe Affiliated Huai'an Hospital of Xuzhou Medical UniversityHuai'anChina
| | - Jing Zhu
- Nanjing Drum Tower HospitalNanjingChina
| |
Collapse
|
4
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Liu Y, Wei D, Deguchi Y, Xu W, Tian R, Liu F, Xu M, Mao F, Li D, Chen W, Valentin LA, Deguchi E, Yao JC, Shureiqi I, Zuo X. PPARδ dysregulation of CCL20/CCR6 axis promotes gastric adenocarcinoma carcinogenesis by remodeling gastric tumor microenvironment. Gastric Cancer 2023; 26:904-917. [PMID: 37572185 PMCID: PMC10640489 DOI: 10.1007/s10120-023-01418-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 07/27/2023] [Indexed: 08/14/2023]
Abstract
BACKGROUND Peroxisome proliferator-activated receptor delta (PPARδ) promotes inflammation and carcinogenesis in many organs, but the underlying mechanisms remains elusive. In stomachs, PPARδ significantly increases chemokine Ccl20 expression in gastric epithelial cells while inducing gastric adenocarcinoma (GAC). CCR6 is the sole receptor of CCL20. Here, we examine the role of PPARδ-mediated Ccl20/Ccr6 signaling in GAC carcinogenesis and investigate the underlying mechanisms. METHODS The effects of PPARδ inhibition by its specific antagonist GSK3787 on GAC were examined in the mice with villin-promoter-driven PPARδ overexpression (PpardTG). RNAscope Duplex Assays were used to measure Ccl20 and Ccr6 levels in stomachs and spleens. Subsets of stomach-infiltrating immune cells were measured via flow cytometry or immunostaining in PpardTG mice fed GSK3787 or control diet. A panel of 13 optimized proinflammatory chemokines in mouse sera were quantified by an enzyme-linked immunosorbent assay. RESULTS GSK3787 significantly suppressed GAC carcinogenesis in PpardTG mice. PPARδ increased Ccl20 level to chemoattract Ccr6+ immunosuppressive cells, including tumor-associated macrophages, myeloid-derived suppressor cells and T regulatory cells, but decreased CD8+ T cells in gastric tissues. GSK3787 suppressed PPARδ-induced gastric immunosuppression by inhibiting Ccl20/Ccr6 axis. Furthermore, Ccl20 protein levels increased in sera of PpardTG mice starting at the age preceding gastric tumor development and further increased with GAC progression as the mice aged. GSK3787 decreased the PPARδ-upregulated Ccl20 levels in sera of the mice. CONCLUSIONS PPARδ dysregulation of Ccl20/Ccr6 axis promotes GAC carcinogenesis by remodeling gastric tumor microenvironment. CCL20 might be a potential biomarker for the early detection and progression of GAC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Yasunori Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weiguo Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Rui Tian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fuyao Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Min Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Fei Mao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Donghui Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Weidong Chen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Lovie Ann Valentin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Eriko Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - James C Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Imad Shureiqi
- Rogel Cancer Center and Department of Internal Medicine, Division of Hematology and Oncology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| |
Collapse
|
6
|
Wang Z, Dong H, Li W, Han F, Zhao L. PPAR-δ as a prognostic biomarker and its association with immune infiltrates in breast cancer PPAR-δ as a prognostic biomarker and its association with immune infiltrates in breast cancer. J Cancer 2023; 14:1049-1061. [PMID: 37151397 PMCID: PMC10158510 DOI: 10.7150/jca.81430] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 03/25/2023] [Indexed: 05/09/2023] Open
Abstract
While peroxisome proliferator-activated receptor δ (PPAR-δ) and its associated signaling pathways have been shown to play an important regulatory role in various malignant tumors, in breast cancer, its potential influence on immune infiltration and its ability to serve as a prognostic marker remains unclear. BRCA patient samples with matched paracancerous samples were obtained from The Cancer Genome Atlas (TCGA). PPAR-δ expression, its potential effect on immune cell infiltration and its association to clinicopathological features were examined. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Set Enrichment Analysis (GSEA) and Single-Sample Gene Set Enrichment Analysis (ssGSEA) were utilized for functional and pathway enrichment and to quantify the extent of immune cell infiltration. Kaplan-Meier analysis and Cox regression analysis (nomogram) were performed to assess the association between PPAR- δ and predicted survival. To confirm these findings, an allograft tumor mouse model was generated and treated with a PPAR-δ inhibitor to examine the role of PPAR-δ expression in vivo; while immunohistochemistry (IHC) was performed to examine PPAR-δ expression in paired BRCA patient samples in vitro. Overall, the findings presented herein suggest that PPAR-δ plays a crucial role in breast cancer progression and prognosis and may serve as a survival predictive biomarker.
Collapse
Affiliation(s)
- Zonghan Wang
- Department of the Oncology, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, Jilin, China
| | - Hao Dong
- Department of the Gastrointestinal Nutrition and Hernia Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Wei Li
- Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
- ✉ Corresponding authors: Dr Wei Li, Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China (E-mail: ); Dr Fujun Han, Department of the Oncology, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China (E-mail: ); Dr Lei Zhao, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China (E-mail: )
| | - Fujun Han
- Department of the Oncology, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China
- ✉ Corresponding authors: Dr Wei Li, Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China (E-mail: ); Dr Fujun Han, Department of the Oncology, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China (E-mail: ); Dr Lei Zhao, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China (E-mail: )
| | - Lei Zhao
- Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China
- National-Local Joint Engineering Laboratory of Animal Models for Human Diseases, Jilin University, Changchun, Jilin, China
- ✉ Corresponding authors: Dr Wei Li, Department of Colorectal and Anal Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China (E-mail: ); Dr Fujun Han, Department of the Oncology, Cancer Center, The First Hospital of Jilin University, Changchun, Jilin, China (E-mail: ); Dr Lei Zhao, Key Laboratory of Organ Regeneration & Transplantation of the Ministry of Education, The First Hospital of Jilin University, Changchun, Jilin, China (E-mail: )
| |
Collapse
|
7
|
Wagner N, Wagner KD. Peroxisome Proliferator-Activated Receptors and the Hallmarks of Cancer. Cells 2022; 11:cells11152432. [PMID: 35954274 PMCID: PMC9368267 DOI: 10.3390/cells11152432] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/02/2022] [Accepted: 08/04/2022] [Indexed: 12/11/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) function as nuclear transcription factors upon the binding of physiological or pharmacological ligands and heterodimerization with retinoic X receptors. Physiological ligands include fatty acids and fatty-acid-derived compounds with low specificity for the different PPAR subtypes (alpha, beta/delta, and gamma). For each of the PPAR subtypes, specific pharmacological agonists and antagonists, as well as pan-agonists, are available. In agreement with their natural ligands, PPARs are mainly focused on as targets for the treatment of metabolic syndrome and its associated complications. Nevertheless, many publications are available that implicate PPARs in malignancies. In several instances, they are controversial for very similar models. Thus, to better predict the potential use of PPAR modulators for personalized medicine in therapies against malignancies, it seems necessary and timely to review the three PPARs in relation to the didactic concept of cancer hallmark capabilities. We previously described the functions of PPAR beta/delta with respect to the cancer hallmarks and reviewed the implications of all PPARs in angiogenesis. Thus, the current review updates our knowledge on PPAR beta and the hallmarks of cancer and extends the concept to PPAR alpha and PPAR gamma.
Collapse
Affiliation(s)
- Nicole Wagner
- Correspondence: (N.W.); (K.-D.W.); Tel.: +33-489-153-713 (K.-D.W.)
| | | |
Collapse
|
8
|
Li W, Yu Y, Cheng H, Liu S, Gong T, Ma J, Tang Q. Quercetin Inhibits KBM7R Cell Proliferation through Wnt/ β-Catenin Signaling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2022; 2022:1378976. [PMID: 35783534 PMCID: PMC9249478 DOI: 10.1155/2022/1378976] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/24/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022]
Abstract
Background Tyrosine kinase inhibitors could treat chronic myelogenous leukemia (CML) effectively, but they have no effect on patients with T315I mutation. It is necessary to find drugs to overcome the resistance. Quercetin (Qu) is a kind of bioflavonoid with an antitumor effect. In this study, we observed the effect of Qu on proliferation and Wnt/β-catenin pathway in KBM7R cells, an imatinib-resistant cell with T315I mutation. Methods The IC50 of Qu was detected by trypan blue staining. The KBM7R cell apoptosis and cycle were detected through the method of flow cytometry (FCM). The expression of the related mRNA and protein was evaluated by means of an RT-PCR assay and western blot in KBM7 (sensitive to IM) and KBM7R cells. Results These results showed that in the KBM7R cell, the proliferation inhibition effect was increased after 48 h administration with different Qu concentrations. The IC50 to Qu was 241.7 μmol/L. The different doses of Qu (50, 100, and 200 μmol/L) would raise apoptosis and depress the cell cycle at the G1 phase. Dealing with a median Qu concentration (100 μmol/L) for 48 h, the mRNA and the protein level of caspase-3, caspase-8, and caspase-9 along with p21 and p27 raised compared with the control. The median concentration of Qu could inhibit both the mRNA and protein levels of GSK-3β, β-catenin, and Lef-1 in the Wnt/β-catenin signal pathway and also the downstream targets PPAR-δ and cyclin D1 in both KBM7 and KBM7R cells. Conclusions Our findings suggest that Qu could inhibit proliferation, induce apoptosis, and arrest the cell cycle on IM-resistant KBM7R cells with T315I mutation. And this effect could be related with the inhibition of the Wnt/β-catenin signal pathway and downstream targets.
Collapse
Affiliation(s)
- Wei Li
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin 150010, Heilongjiang, China
| | - Yang Yu
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin 150010, Heilongjiang, China
| | - Huanchen Cheng
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin 150010, Heilongjiang, China
| | - Shengwei Liu
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin 150010, Heilongjiang, China
| | - Tiejun Gong
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin 150010, Heilongjiang, China
| | - Jun Ma
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin 150010, Heilongjiang, China
| | - Qinghua Tang
- Institute of Harbin Hematology & Oncology, The First Hospital of Harbin, Harbin 150010, Heilongjiang, China
| |
Collapse
|
9
|
Pudakalakatti S, Titus M, Enriquez JS, Ramachandran S, Zacharias NM, Shureiqi I, Liu Y, Yao JC, Zuo X, Bhattacharya PK. Identifying the Metabolic Signatures of PPARD-Overexpressing Gastric Tumors. Int J Mol Sci 2022; 23:1645. [PMID: 35163565 PMCID: PMC8835946 DOI: 10.3390/ijms23031645] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/26/2022] [Accepted: 01/27/2022] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor delta (PPARD) is a nuclear receptor known to play an essential role in regulation of cell metabolism, cell proliferation, inflammation, and tumorigenesis in normal and cancer cells. Recently, we found that a newly generated villin-PPARD mouse model, in which PPARD is overexpressed in villin-positive gastric progenitor cells, demonstrated spontaneous development of large, invasive gastric tumors as the mice aged. However, the role of PPARD in regulation of downstream metabolism in normal gastric and tumor cells is elusive. The aim of the present study was to find PPARD-regulated downstream metabolic changes and to determine the potential significance of those changes to gastric tumorigenesis in mice. Hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy, nuclear magnetic resonance spectroscopy, and liquid chromatography-mass spectrometry were employed for metabolic profiling to determine the PPARD-regulated metabolite changes in PPARD mice at different ages during the development of gastric cancer, and the changes were compared to corresponding wild-type mice. Nuclear magnetic resonance spectroscopy-based metabolomic screening results showed higher levels of inosine monophosphate (p = 0.0054), uracil (p = 0.0205), phenylalanine (p = 0.017), glycine (p = 0.014), and isocitrate (p = 0.029) and lower levels of inosine (p = 0.0188) in 55-week-old PPARD mice than in 55-week-old wild-type mice. As the PPARD mice aged from 10 weeks to 35 weeks and 55 weeks, we observed significant changes in levels of the metabolites inosine monophosphate (p = 0.0054), adenosine monophosphate (p = 0.009), UDP-glucose (p = 0.0006), and oxypurinol (p = 0.039). Hyperpolarized [1-13C] pyruvate magnetic resonance spectroscopy performed to measure lactate flux in live 10-week-old PPARD mice with no gastric tumors and 35-week-old PPARD mice with gastric tumors did not reveal a significant difference in the ratio of lactate to total pyruvate plus lactate, indicating that this PPARD-induced spontaneous gastric tumor development does not require glycolysis as the main source of fuel for tumorigenesis. Liquid chromatography-mass spectrometry-based measurement of fatty acid levels showed lower linoleic acid, palmitic acid, oleic acid, and steric acid levels in 55-week-old PPARD mice than in 10-week-old PPARD mice, supporting fatty acid oxidation as a bioenergy source for PPARD-expressing gastric tumors.
Collapse
Affiliation(s)
- Shivanand Pudakalakatti
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.P.); (J.S.E.)
| | - Mark Titus
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (S.R.)
| | - José S. Enriquez
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.P.); (J.S.E.)
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
| | - Sumankalai Ramachandran
- Department of Genitourinary Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (M.T.); (S.R.)
| | - Niki M. Zacharias
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.S.); (Y.L.); (J.C.Y.); (X.Z.)
| | - Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.S.); (Y.L.); (J.C.Y.); (X.Z.)
| | - James C. Yao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.S.); (Y.L.); (J.C.Y.); (X.Z.)
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (I.S.); (Y.L.); (J.C.Y.); (X.Z.)
| | - Pratip K. Bhattacharya
- Department of Cancer Systems Imaging, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; (S.P.); (J.S.E.)
- MD Anderson Cancer Center, UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA;
| |
Collapse
|
10
|
Ding J, Gou Q, Jia X, Liu Q, Jin J, Shi J, Hou Y. AMPK phosphorylates PPARδ to mediate its stabilization, inhibit glucose and glutamine uptake and colon tumor growth. J Biol Chem 2021; 297:100954. [PMID: 34270958 PMCID: PMC8397901 DOI: 10.1016/j.jbc.2021.100954] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 12/25/2022] Open
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) is a nuclear receptor transcription factor that plays an important role in the regulation of metabolism, inflammation, and cancer. In addition, the nutrient-sensing kinase 5'AMP-activated protein kinase (AMPK) is a critical regulator of cellular energy in coordination with PPARδ. However, the molecular mechanism of the AMPK/PPARδ pathway on cancer progression is still unclear. Here, we found that activated AMPK induced PPARδ-S50 phosphorylation in cancer cells, whereas the PPARδ/S50A (nonphosphorylation mimic) mutant reversed this event. Further analysis showed that the PPARδ/S50E (phosphorylation mimic) but not the PPARδ/S50A mutant increased PPARδ protein stability, which led to reduced p62/SQSTM1-mediated degradation of misfolded PPARδ. Furthermore, PPARδ-S50 phosphorylation decreased PPARδ transcription activity and alleviated PPARδ-mediated uptake of glucose and glutamine in cancer cells. Soft agar and xenograft tumor model analysis showed that the PPARδ/S50E mutant but not the PPARδ/S50A mutant inhibited colon cancer cell proliferation and tumor growth, which was associated with inhibition of Glut1 and SLC1A5 transporter protein expression. These findings reveal a new mechanism of AMPK-induced PPARδ-S50 phosphorylation, accumulation of misfolded PPARδ protein, and inhibition of PPARδ transcription activity contributing to the suppression of colon tumor formation.
Collapse
Affiliation(s)
- Jiajun Ding
- School of Life Sciences, Jiangsu University, Zhenjiang, PR China
| | - Qian Gou
- School of Medicine, Jiangsu University, Zhenjiang, PR China
| | - Xiao Jia
- School of Life Sciences, Jiangsu University, Zhenjiang, PR China
| | - Qian Liu
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, PR China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, PR China
| | - Juanjuan Shi
- School of Life Sciences, Jiangsu University, Zhenjiang, PR China.
| | - Yongzhong Hou
- School of Life Sciences, Jiangsu University, Zhenjiang, PR China.
| |
Collapse
|
11
|
Perez DM. Targeting Adrenergic Receptors in Metabolic Therapies for Heart Failure. Int J Mol Sci 2021; 22:5783. [PMID: 34071350 PMCID: PMC8198887 DOI: 10.3390/ijms22115783] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 12/14/2022] Open
Abstract
The heart has a reduced capacity to generate sufficient energy when failing, resulting in an energy-starved condition with diminished functions. Studies have identified numerous changes in metabolic pathways in the failing heart that result in reduced oxidation of both glucose and fatty acid substrates, defects in mitochondrial functions and oxidative phosphorylation, and inefficient substrate utilization for the ATP that is produced. Recent early-phase clinical studies indicate that inhibitors of fatty acid oxidation and antioxidants that target the mitochondria may improve heart function during failure by increasing compensatory glucose oxidation. Adrenergic receptors (α1 and β) are a key sympathetic nervous system regulator that controls cardiac function. β-AR blockers are an established treatment for heart failure and α1A-AR agonists have potential therapeutic benefit. Besides regulating inotropy and chronotropy, α1- and β-adrenergic receptors also regulate metabolic functions in the heart that underlie many cardiac benefits. This review will highlight recent studies that describe how adrenergic receptor-mediated metabolic pathways may be able to restore cardiac energetics to non-failing levels that may offer promising therapeutic strategies.
Collapse
Affiliation(s)
- Dianne M Perez
- The Lerner Research Institute, The Cleveland Clinic Foundation, 9500 Euclid Ave, Cleveland, OH 44195, USA
| |
Collapse
|
12
|
Influence of Lipoxygenase Inhibition on Glioblastoma Cell Biology. Int J Mol Sci 2020; 21:ijms21218395. [PMID: 33182324 PMCID: PMC7664864 DOI: 10.3390/ijms21218395] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/04/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND The relationship between glioblastoma (GBM) and fatty acid metabolism could be the key to elucidate more effective therapeutic targets. 15-lipoxygenase-1 (15-LOX), a linolenic acid and arachidonic acid metabolizing enzyme, induces both pro- and antitumorigenic effects in different cancer types. Its role in glioma activity has not yet been clearly described. The objective of this study was to identify the influence of 15-LOX and its metabolites on glioblastoma cell activity. METHODS GBM cell lines were examined using high-performance liquid chromatography-tandem mass spectrometry (HPLC-MS/MS) to identify 15-LOX metabolites. GBM cells treated with 15-LOX metabolites, 13-hydroxyoctadecadeinoic acid (HODE) and 9-HODE, and two 15-LOX inhibitors (luteolin and nordihydroguaiaretic acid) were also examined. Dose response/viability curves, RT-PCRs, flow cytometry, migration assays, and zymograms were performed to analyze GBM growth, migration, and invasion. RESULTS Higher quantities of 13-HODE were observed in five GBM cell lines compared to other lipids analyzed. Both 13-HODE and 9-HODE increased cell count in U87MG. 15-LOX inhibition decreased migration and increased cell cycle arrest in the G2/M phase. CONCLUSION 15-LOX and its linoleic acid (LA)-derived metabolites exercise a protumorigenic influence on GBM cells in vitro. Elevated endogenous levels of 13-HODE called attention to the relationship between linoleic acid metabolism and GBM cell activity.
Collapse
|
13
|
Gou Q, Zhang W, Xu Y, Jin J, Liu Q, Hou Y, Shi J. EGFR/PPARδ/HSP90 pathway mediates cancer cell metabolism and chemoresistance. J Cell Biochem 2020; 122:394-402. [PMID: 33164261 DOI: 10.1002/jcb.29868] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/04/2020] [Accepted: 10/26/2020] [Indexed: 02/06/2023]
Abstract
Epidermal growth factor receptor (EGFR) induces peroxisome-proliferator-activated receptor-δ (PPARδ)-Y108 phosphorylation, while it is unclear the effect of phosphorylation of PPARδ on cancer cell metabolism. Here we found that EGF treatment increased its protein stability by inhibiting its lysosomal dependent degradation, which was reduced by gefitinib (EGFR inhibitor) treatment. PPARδ-Y108 phosphorylation in response to EGF recruited HSP90 (heat shock protein 90) to PPARδ resulting in increased PPARδ stability. In addition, PPARδ-Y108 phosphorylation promoted cancer cell metabolism, proliferation, and chemoresistance. Therefore, this study revealed a novel molecular mechanism of EGFR/HSP90/PPARδ pathway-mediated cancer cell metabolism, proliferation, and chemoresistance, which provides a strategy for cancer treatment.
Collapse
Affiliation(s)
- Qian Gou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China.,School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenbo Zhang
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Xu
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jianhua Jin
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Qian Liu
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,Department of Oncology, The Wujin Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yongzhong Hou
- Department of Oncology, The Affiliated Wujin Hospital, Jiangsu University, Changzhou, Jiangsu, China.,School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Juanjuan Shi
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
14
|
PPARδ is a regulator of autophagy by its phosphorylation. Oncogene 2020; 39:4844-4853. [PMID: 32439863 DOI: 10.1038/s41388-020-1329-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/05/2020] [Accepted: 05/07/2020] [Indexed: 02/06/2023]
Abstract
In response to nutrient deficiency, autophagy degrades cytoplasmic materials and organelles in lysosomes, which is nutrient recycling, whereas activation of EGFR mediates autophagy suppression in response to growth factors. It is unclear whether PPARδ could be the regulator of autophagy in response to active EGFR. Here we found that EGFR induced PPARδ phosphorylation at tyrosine-108 leading to increased binding of LC3 to PPARδ by its LIR (LC3 interacting region) motif, consequently, inhibited autophagic flux. Conversely, EGFR inhibitor treatment reversed this event. Furthermore, EGFR-mediated PPARδ phosphorylation at tyrosine-108 led to autophagy inhibition and tumor growth. These findings suggest that PPARδ serves as a regulator of autophagy by its phosphorylation.
Collapse
|
15
|
Wagner N, Wagner KD. PPAR Beta/Delta and the Hallmarks of Cancer. Cells 2020; 9:cells9051133. [PMID: 32375405 PMCID: PMC7291220 DOI: 10.3390/cells9051133] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptors (PPARs) belong to the nuclear hormone receptor family. Three different isoforms, PPAR alpha, PPAR beta/delta and PPAR gamma have been identified. They all form heterodimers with retinoic X receptors to activate or repress downstream target genes dependent on the presence/absence of ligands and coactivators or corepressors. PPARs differ in their tissue expression profile, ligands and specific agonists and antagonists. PPARs attract attention as potential therapeutic targets for a variety of diseases. PPAR alpha and gamma agonists are in clinical use for the treatment of dyslipidemias and diabetes. For both receptors, several clinical trials as potential therapeutic targets for cancer are ongoing. In contrast, PPAR beta/delta has been suggested as a therapeutic target for metabolic syndrome. However, potential risks in the settings of cancer are less clear. A variety of studies have investigated PPAR beta/delta expression or activation/inhibition in different cancer cell models in vitro, but the relevance for cancer growth in vivo is less well documented and controversial. In this review, we summarize critically the knowledge of PPAR beta/delta functions for the different hallmarks of cancer biological capabilities, which interplay to determine cancer growth.
Collapse
|
16
|
Song S, Wang Z, Li Y, Ma L, Jin J, Scott AW, Xu Y, Estrella JS, Song Y, Liu B, Johnson RL, Ajani JA. PPARδ Interacts with the Hippo Coactivator YAP1 to Promote SOX9 Expression and Gastric Cancer Progression. Mol Cancer Res 2020; 18:390-402. [PMID: 31796534 DOI: 10.1158/1541-7786.mcr-19-0895] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/28/2019] [Accepted: 11/26/2019] [Indexed: 02/03/2023]
Abstract
Despite established functions of PPARδ in lipid metabolism and tumorigenesis, the mechanisms underlying its role in gastric cancer are undefined. Here, we demonstrate that SOX9 was dramatically induced by stably expressing PPARδ and by its agonist GW501516 in human gastric cancer cell lines. PPARδ knockdown in patient-derived gastric cancer cells dramatically reduced SOX9 expression and transcriptional activity, with corresponding decreases in invasion and tumor sphere formation. Mechanistically, PPARδ induced SOX9 transcription through direct interaction with and activation of the Hippo coactivator YAP1. PPARδ-YAP1 interaction occurred via the C-terminal domain of YAP1, and both TEAD- and PPARE-binding sites were required for SOX9 induction. Notably, CRISPR/Cas9-mediated genetic ablation of YAP1 or SOX9 abolished PPARδ-mediated oncogenic functions. Finally, expression of PPARδ, YAP1, and SOX9 were significantly correlated with each other and with poor survival in a large cohort of human gastric cancer tissues. Thus, these findings elucidate a novel mechanism by which PPARδ promotes gastric tumorigenesis through interaction with YAP1 and highlights the PPARδ/YAP1/SOX9 axis as a novel therapeutic target in human gastric cancer. IMPLICATIONS: Our discovery of a new model supports a distinct paradigm for PPARδ and a crucial oncogenic function of PPARδ in gastric cancer through convergence on YAP1/TEAD signaling. Therefore, PPARδ/YAP1/SOX9 axis could be a novel therapeutic target that can be translated into clinics.
Collapse
Affiliation(s)
- Shumei Song
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Zhenning Wang
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, P.R. China
| | - Yuan Li
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, P.R. China
| | - Lang Ma
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jiankang Jin
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ailing W Scott
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yan Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, P.R. China
| | | | - Yongxi Song
- Department of Surgical Oncology and General Surgery, First Hospital of China Medical University, Shenyang, P.R. China
| | - Bin Liu
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Randy L Johnson
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jaffer A Ajani
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
17
|
Xu T, Ruan H, Gao S, Liu J, Liu Y, Song Z, Cao Q, Wang K, Bao L, Liu D, Tong J, Shi J, Liang H, Yang H, Chen K, Zhang X. ISG20 serves as a potential biomarker and drives tumor progression in clear cell renal cell carcinoma. Aging (Albany NY) 2020; 12:1808-1827. [PMID: 32003757 PMCID: PMC7053611 DOI: 10.18632/aging.102714] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Accepted: 01/02/2020] [Indexed: 12/13/2022]
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common malignancies and lacks reliable biomarkers for diagnosis and prognosis, which results in high incidence and mortality rates of ccRCC. In this study, ISG20, HJURP, and FOXM1 were identified as hub genes via weighted gene co-expression network analysis (WGCNA) and Cox regression analysis. Samples validation showed that only ISG20 was up-regulated in ccRCC. Therefore, ISG20 was selected for further study. High ISG20 expression was associated with poor overall survival and disease-free survival. Furthermore, the expression of ISG20 could effectively differentiate ccRCC from normal tissues and was positively correlated to clinical stages. Functional experiments proved that knockdown of ISG20 expression could obviously inhibit cell growth, migration, and invasion in ccRCC cells. To find the potential mechanisms of ISG20, gene set enrichment analysis (GSEA) was performed and revealed that high expression of ISG20 was significantly involved in metastasis and cell cycle pathways. In addition, we found that ISG20 could regulate the expression of MMP9 and CCND1. In conclusion, these findings suggested that ISG20 promoted cell proliferation and metastasis via regulating MMP9/CCND1 expression and might serve as a potential biomarker and therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Tianbo Xu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Su Gao
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jingchong Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yuenan Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengshuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Keshan Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Di Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Junwei Tong
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Jian Shi
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hongmei Yang
- Department of Pathogenic Biology, School of Basic Medicine, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
18
|
Nguyen ATQ, Lee SY, Chin HJ, Le QVC, Lee D. Kinase activity of ERBB3 contributes to intestinal organoids growth and intestinal tumorigenesis. Cancer Sci 2019; 111:137-147. [PMID: 31724799 PMCID: PMC6942447 DOI: 10.1111/cas.14235] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/20/2019] [Accepted: 10/28/2019] [Indexed: 12/18/2022] Open
Abstract
As a member of the epidermal growth factor receptor (EGFR) family, ERBB3 plays an essential role in development and disease independent of inherently inactive kinase domain. Recently, ERBB3 has been found to bind to ATP and has catalytic activity in vitro. However, the biological function of ERBB3 kinase activity remains elusive in vivo. Here we have identified the physiological function of inactivated ERBB3 kinase activity by creating Erbb3‐K740M knockin mice in which ATP cannot bind to ERBB3. Unlike Erbb3 knockout mice, kinase‐inactive Erbb3K740M homozygous mice were born in Mendelian ratios and showed normal development. After dextran sulfate sodium‐induced colitis, the kinase‐inactive Erbb3 mutant mice showed normal recovery. However, the outgrowth of ileal organoids by neuregulin‐1 treatment was more attenuated in Erbb3 mutant mice than in WT mice. Moreover, in combination with the ApcMin mouse, the proportion of polyps less than 1 mm in diameter in mutant mice was higher than in control mice and an increase in the number of apoptotic cells was observed in polyps from mutant mice compared with polyps from control mice. Taken together, the ERBB3 kinase activity contributes to the outgrowth of ileal organoids and intestinal tumorigenesis, and the development of ERBB3 kinase inhibitors, including epidermal growth factor receptor family members, can be a potential way to target colorectal cancer.
Collapse
Affiliation(s)
| | - So-Young Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Hyun Jung Chin
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| | - Quy Van-Chanh Le
- Department of Stem Cell and Regenerative Biotechnology, Konkuk University, Seoul, South Korea
| | - Daekee Lee
- Department of Life Science, Ewha Womans University, Seoul, South Korea
| |
Collapse
|
19
|
Peters JM, Walter V, Patterson AD, Gonzalez FJ. Unraveling the role of peroxisome proliferator-activated receptor-β/δ (PPARβ/δ) expression in colon carcinogenesis. NPJ Precis Oncol 2019; 3:26. [PMID: 31602402 PMCID: PMC6779880 DOI: 10.1038/s41698-019-0098-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 09/17/2019] [Indexed: 01/09/2023] Open
Abstract
The peroxisome proliferator-activated-β/δ (PPARβ/δ) was identified in 1994, but not until 1999 was PPARβ/δ suggested to be involved in carcinogenesis. Initially, it was hypothesized that expression of PPARβ/δ was increased during colon cancer progression, which led to increased transcription of yet-to-be confirmed target genes that promote cell proliferation and tumorigenesis. It was also hypothesized at this time that lipid-metabolizing enzymes generated lipid metabolites that served as ligands for PPARβ/δ. These hypothetical mechanisms were attractive because they potentially explained how non-steroidal anti-inflammatory drugs inhibited tumorigenesis by potentially limiting the concentration of endogenous PPARβ/δ ligands that could activate this receptor that was increased in cancer cells. However, during the last 20 years, considerable research was undertaken describing expression of PPARβ/δ in normal and cancer cells that has led to a significant impact on the mechanisms by which PPARβ/δ functions in carcinogenesis. Whereas results from earlier studies led to much uncertainty about the role of PPARβ/δ in cancer, more recent analyses of large databases have revealed a more consistent understanding. The focus of this review is on the fundamental level of PPARβ/δ expression in normal tissues and cancerous tissue as described by studies during the past two decades and what has been delineated during this timeframe about how PPARβ/δ expression influences carcinogenesis, with an emphasis on colon cancer.
Collapse
Affiliation(s)
- Jeffrey M. Peters
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, State College, PA 16801 USA
| | - Vonn Walter
- Departments of Public Health Sciences and Biochemistry, The Pennsylvania State University, College of Medicine, Hershey, State College, PA 16801 USA
| | - Andrew D. Patterson
- Department of Veterinary and Biomedical Sciences, The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, State College, PA 16801 USA
| | - Frank J. Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD USA
| |
Collapse
|
20
|
Zuo X, Deguchi Y, Xu W, Liu Y, Li HS, Wei D, Tian R, Chen W, Xu M, Yang Y, Gao S, Jaoude JC, Liu F, Chrieki SP, Moussalli MJ, Gagea M, Sebastian MM, Zheng X, Tan D, Broaddus R, Wang J, Ajami NJ, Swennes AG, Watowich SS, Shureiqi I. PPARD and Interferon Gamma Promote Transformation of Gastric Progenitor Cells and Tumorigenesis in Mice. Gastroenterology 2019; 157:163-178. [PMID: 30885780 PMCID: PMC6581611 DOI: 10.1053/j.gastro.2019.03.018] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 02/20/2019] [Accepted: 03/12/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND & AIMS The peroxisome proliferator-activated receptor delta (PPARD) regulates cell metabolism, proliferation, and inflammation and has been associated with gastric and other cancers. Villin-positive epithelial cells are a small population of quiescent gastric progenitor cells. We expressed PPARD from a villin promoter to investigate the role of these cells and PPARD in development of gastric cancer. METHODS We analyzed gastric tissues from mice that express the Ppard (PPARD1 and PPARD2 mice) from a villin promoter, and mice that did not carry this transgene (controls), by histology and immunohistochemistry. We performed cell lineage-tracing experiments and analyzed the microbiomes, chemokine and cytokine production, and immune cells and transcriptomes of stomachs of these mice. We also performed immunohistochemical analysis of PPARD levels in 2 sets of human gastric tissue microarrays. RESULTS Thirty-eight percent of PPARD mice developed spontaneous, invasive gastric adenocarcinomas, with severe chronic inflammation. Levels of PPARD were increased in human gastric cancer tissues, compared with nontumor tissues, and associated with gastric cancer stage and grade. We found an inverse correlation between level of PPARD in tumor tissue and patient survival time. Gastric microbiomes from PPARD and control mice did not differ significantly. Lineage-tracing experiments identified villin-expressing gastric progenitor cells (VGPCs) as the origin of gastric tumors in PPARD mice. In these mice, PPARD up-regulated CCL20 and CXCL1, which increased infiltration of the gastric mucosa by immune cells. Immune cell production of inflammatory cytokines promoted chronic gastric inflammation and expansion and transformation of VGPCs, leading to tumorigenesis. We identified a positive-feedback loop between PPARD and interferon gamma signaling that sustained gastric inflammation to induce VGPC transformation and gastric carcinogenesis. CONCLUSIONS We found PPARD overexpression in VPGCs to result in inflammation, dysplasia, and tumor formation. PPARD and VGPCs might be therapeutic targets for stomach cancer.
Collapse
Affiliation(s)
- Xiangsheng Zuo
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Yasunori Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weiguo Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Haiyan S. Li
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Rui Tian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Weidong Chen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Min Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yaying Yang
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shen Gao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jonathan C. Jaoude
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Fuyao Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sarah P. Chrieki
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Micheline J. Moussalli
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Manu M. Sebastian
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xiaofeng Zheng
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Dongfeng Tan
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Russell Broaddus
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Nadim J. Ajami
- Alkek Center for Metagenomics and Microbiome Research and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alton G. Swennes
- Center for Comparative Medicine and Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Stephanie S. Watowich
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Imad Shureiqi
- Departments of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
21
|
Wang D, Fu L, Wei J, Xiong Y, DuBois RN. PPARδ Mediates the Effect of Dietary Fat in Promoting Colorectal Cancer Metastasis. Cancer Res 2019; 79:4480-4490. [PMID: 31239272 DOI: 10.1158/0008-5472.can-19-0384] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/10/2019] [Accepted: 06/12/2019] [Indexed: 12/17/2022]
Abstract
The nuclear hormone receptor peroxisome proliferator-activated receptor delta (PPARδ) is a ligand-dependent transcription factor involved in fatty acid metabolism, obesity, wound healing, inflammation, and cancer. Although PPARδ has been shown to promote intestinal adenoma formation and growth, the molecular mechanisms underlying the contribution of PPARδ to colorectal cancer remain unclear. Here, we demonstrate that activation of PPARδ induces expansion of colonic cancer stem cells (CSC) and promotes colorectal cancer liver metastasis by binding to the Nanog promoter and enhancing Nanog expression. Moreover, PPARδ mediated the effect of a high-fat diet in promoting liver metastasis and induction of colonic CSC expansion. Our findings uncover a novel role of dietary fats in colorectal cancer metastasis and reveal novel mechanisms underlying PPARδ-mediated induction of CSCs and those responsible for the contribution of dietary fats to colorectal cancer progression. These findings may provide a rationale for developing PPARδ antagonists to therapeutically target CSCs in colorectal cancer. SIGNIFICANCE: These findings show that PPARδ contributes to colorectal cancer metastasis by expanding the CSC population, indicating that antagonists that target PPARδ may be beneficial in treating colorectal cancer.
Collapse
Affiliation(s)
- Dingzhi Wang
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Lingchen Fu
- Laboratory for Inflammation and Cancer, Biodesign Institute of Arizona State University, Tempe, Arizona
| | - Jie Wei
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Ying Xiong
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina
| | - Raymond N DuBois
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina. .,Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, Arizona
| |
Collapse
|
22
|
Dhaini HR, Daher Z. Genetic polymorphisms of PPAR genes and human cancers: evidence for gene-environment interactions. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2019; 37:146-179. [PMID: 31045458 DOI: 10.1080/10590501.2019.1593011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Peroxisome proliferator-activated receptors (PPARs) are nuclear transcription factors that play a role in lipid metabolism, cell proliferation, terminal differentiation, apoptosis, and inflammation. Although several cancer models have been suggested to explain PPARs' involvement in tumorigenesis, however, their role is still unclear. In this review, we examined associations of the different PPARs, polymorphisms and various types of cancer with a focus on gene-environment interactions. Reviewed evidence suggests that functional genetic variants of the different PPARs may modulate the relationship between environmental exposure and cancer risk. In addition, this report unveils the scarcity of reliable quantitative environmental exposure data when examining these interactions, and the current gaps in studying gene-environment interactions in many types of cancer, particularly colorectal, prostate, and bladder cancers.
Collapse
Affiliation(s)
- Hassan R Dhaini
- a Department of Environmental Health, American University of Beirut , Lebanon
| | - Zeina Daher
- b Faculty of Public Health I, Lebanese University , Beirut , Lebanon
| |
Collapse
|
23
|
Liu Y, Deguchi Y, Tian R, Wei D, Wu L, Chen W, Xu W, Xu M, Liu F, Gao S, Jaoude JC, Chrieki SP, Moussalli MJ, Gagea M, Morris J, Broaddus RR, Zuo X, Shureiqi I. Pleiotropic Effects of PPARD Accelerate Colorectal Tumorigenesis, Progression, and Invasion. Cancer Res 2019; 79:954-969. [PMID: 30679176 DOI: 10.1158/0008-5472.can-18-1790] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/16/2018] [Accepted: 01/08/2019] [Indexed: 12/31/2022]
Abstract
APC mutations activate aberrant β-catenin signaling to drive initiation of colorectal cancer; however, colorectal cancer progression requires additional molecular mechanisms. PPAR-delta (PPARD), a downstream target of β-catenin, is upregulated in colorectal cancer. However, promotion of intestinal tumorigenesis following deletion of PPARD in Apcmin mice has raised questions about the effects of PPARD on aberrant β-catenin activation and colorectal cancer. In this study, we used mouse models of PPARD overexpression or deletion combined with APC mutation (ApcΔ580 ) in intestinal epithelial cells (IEC) to elucidate the contributions of PPARD in colorectal cancer. Overexpression or deletion of PPARD in IEC augmented or suppressed β-catenin activation via up- or downregulation of BMP7/TAK1 signaling and strongly promoted or suppressed colorectal cancer, respectively. Depletion of PPARD in human colorectal cancer organoid cells inhibited BMP7/β-catenin signaling and suppressed organoid self-renewal. Treatment with PPARD agonist GW501516 enhanced colorectal cancer tumorigenesis in ApcΔ580 mice, whereas treatment with PPARD antagonist GSK3787 suppressed tumorigenesis. PPARD expression was significantly higher in human colorectal cancer-invasive fronts versus their paired tumor centers and adenomas. Reverse-phase protein microarray and validation studies identified PPARD-mediated upregulation of other proinvasive pathways: connexin 43, PDGFRβ, AKT1, EIF4G1, and CDK1. Our data demonstrate that PPARD strongly potentiates multiple tumorigenic pathways to promote colorectal cancer progression and invasiveness. SIGNIFICANCE: These findings address long-standing, important, and unresolved questions related to the potential role of PPARD in APC mutation-dependent colorectal tumorigenesis by showing PPARD activation enhances APC mutation-dependent tumorigenesis.
Collapse
Affiliation(s)
- Yi Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasunori Deguchi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Rui Tian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Biliary-Pancreatic Surgery, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology, and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Ling Wu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weidong Chen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weiguo Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Min Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Fuyao Liu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shen Gao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jonathan C Jaoude
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sarah P Chrieki
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Micheline J Moussalli
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Mihai Gagea
- Department of Veterinary Medicine and Surgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jeffrey Morris
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Russell R Broaddus
- Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
24
|
Zhou D, Jin J, Liu Q, Shi J, Hou Y. PPARδ agonist enhances colitis-associated colorectal cancer. Eur J Pharmacol 2019; 842:248-254. [DOI: 10.1016/j.ejphar.2018.10.050] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 10/30/2018] [Accepted: 10/31/2018] [Indexed: 01/05/2023]
|
25
|
The Role of PPAR-δ in Metabolism, Inflammation, and Cancer: Many Characters of a Critical Transcription Factor. Int J Mol Sci 2018; 19:ijms19113339. [PMID: 30373124 PMCID: PMC6275063 DOI: 10.3390/ijms19113339] [Citation(s) in RCA: 120] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 10/22/2018] [Accepted: 10/23/2018] [Indexed: 02/07/2023] Open
Abstract
Peroxisome proliferator-activated receptor-delta (PPAR-δ), one of three members of the PPAR group in the nuclear receptor superfamily, is a ligand-activated transcription factor. PPAR-δ regulates important cellular metabolic functions that contribute to maintaining energy balance. PPAR-δ is especially important in regulating fatty acid uptake, transport, and β-oxidation as well as insulin secretion and sensitivity. These salutary PPAR-δ functions in normal cells are thought to protect against metabolic-syndrome-related diseases, such as obesity, dyslipidemia, insulin resistance/type 2 diabetes, hepatosteatosis, and atherosclerosis. Given the high clinical burden these diseases pose, highly selective synthetic activating ligands of PPAR-δ were developed as potential preventive/therapeutic agents. Some of these compounds showed some efficacy in clinical trials focused on metabolic-syndrome-related conditions. However, the clinical development of PPAR-δ agonists was halted because various lines of evidence demonstrated that cancer cells upregulated PPAR-δ expression/activity as a defense mechanism against nutritional deprivation and energy stresses, improving their survival and promoting cancer progression. This review discusses the complex relationship between PPAR-δ in health and disease and highlights our current knowledge regarding the different roles that PPAR-δ plays in metabolism, inflammation, and cancer.
Collapse
|
26
|
Li J, Liu YP. The roles of PPARs in human diseases. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2018; 37:361-382. [PMID: 30036119 DOI: 10.1080/15257770.2018.1475673] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Peroxisome proliferator-activated receptors (PPARs), as members of nuclear hormone receptor superfamily, can be activated by binding natural or synthetic ligands. The use of related ligands has revealed many potential roles for PPARs in the pathogenesis of some human metabolic disorders and inflammatory-related disease. Based on the previous studies, this review primarily concluded the current progress of knowledge regarding the specific biological activity of PPARs in cancers, atherosclerosis, and type 2 diabetes mellitus, providing a foundation for the potential therapeutic use of PPAR ligands in human diseases.
Collapse
Affiliation(s)
- Jingjing Li
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province , Sichuan Agricultural University , Chengdu , China
| | - Yi-Ping Liu
- a Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province , Sichuan Agricultural University , Chengdu , China
| |
Collapse
|
27
|
Tong-Lin Wu T, Tong YC, Chen IH, Niu HS, Li Y, Cheng JT. Induction of apoptosis in prostate cancer by ginsenoside Rh2. Oncotarget 2018. [PMID: 29541400 PMCID: PMC5834249 DOI: 10.18632/oncotarget.24326] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The therapeutic action of ginsenoside Rh2 on several cancer models has been reported. This study aimed to evaluate its apoptotic effect on prostate cancer and the underlying mechanism. Cultured DU145 cells were treated with Rh2 (5 × 10-5 to 1 × 10-4 M), peroxisome proliferator-activated receptor-delta (PPAR-delta) antagonist GSK0660 (1 × 10-6 to 5 × 10-6 M); or small interfering RNA (siRNA) of PPAR-delta. The treatment effects were evaluated with cell viability assay, life/death staining and flow cytometry for apoptosis. Immunostaining was used for reactive oxygen species (ROS) and superoxide detection. Western blot analysis for PPAR-delta and signal transducer and activator of transcription 3 (STAT3) protein expression were performed. The results showed that Rh2 significantly decreased DU145 cell survival and increased cell apoptosis. ROS and superoxide induction, PPAR-delta up-regulation and phosphorylated STAT3 (p-STAT3) down-regulation by Rh2 were demonstrated. GSK0660 partially but significantly inhibited the Rh2-induced apoptosis and restored cell viability. Treatment with siRNA reversed the Rh2-induced apoptosis as well as changes in PPAR-delta and p-STAT3 expression. In conclusion, our findings have demonstrated that ginsenoside Rh2 induces prostate cancer DU145 cells apoptosis through up-regulation of PPAR-delta expression which is associated with p-STAT3 up-regulation and ROS/superoxide induction. Rh2 may be potentially useful in the treatment of prostate cancer.
Collapse
Affiliation(s)
- Tony Tong-Lin Wu
- Institute of Medical Sciences, Chang Jung Christian University, Tainan, Taiwan.,Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Urology, School of Medicine, National Yang Ming University, Taipei, Taiwan
| | - Yat-Ching Tong
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - I-Hung Chen
- Department of Urology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ho-Shan Niu
- Department of Nursing, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Yingxiao Li
- Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| | - Juei-Tang Cheng
- Institute of Medical Sciences, Chang Jung Christian University, Tainan, Taiwan.,Department of Medical Research, Chi-Mei Medical Center, Tainan, Taiwan
| |
Collapse
|
28
|
Tan EHP, Sng MK, How ISB, Chan JSK, Chen J, Tan CK, Wahli W, Tan NS. ROS release by PPARβ/δ-null fibroblasts reduces tumor load through epithelial antioxidant response. Oncogene 2018; 37:2067-2078. [PMID: 29367760 PMCID: PMC5895604 DOI: 10.1038/s41388-017-0109-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 11/06/2017] [Accepted: 12/14/2017] [Indexed: 12/26/2022]
Abstract
Tumor stroma has an active role in the initiation, growth, and propagation of many tumor types by secreting growth factors and modulating redox status of the microenvironment. Although PPARβ/δ in fibroblasts was shown to modulate oxidative stress in the wound microenvironment, there has been no evidence of a similar effect in the tumor stroma. Here, we present evidence of oxidative stress modulation by intestinal stromal PPARβ/δ, using a FSPCre-Pparb/d−/− mouse model and validated it with immortalized cell lines. The FSPCre-Pparb/d−/− mice developed fewer intestinal polyps and survived longer when compared with Pparb/dfl/fl mice. The pre-treatment of FSPCre-Pparb/d−/− and Pparb/dfl/fl with antioxidant N-acetyl-cysteine prior DSS-induced tumorigenesis resulted in lower tumor load. Gene expression analyses implicated an altered oxidative stress processes. Indeed, the FSPCre-Pparb/d−/− intestinal tumors have reduced oxidative stress than Pparb/dfl/fl tumors. Similarly, the colorectal cancer cells and human colon epithelial cells also experienced lower oxidative stress when co-cultured with fibroblasts depleted of PPARβ/δ expression. Therefore, our results establish a role for fibroblast PPARβ/δ in epithelial–mesenchymal communication for ROS homeostasis.
Collapse
Affiliation(s)
- Eddie Han Pin Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.
| | - Ming Keat Sng
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore.,Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, Singapore, Singapore
| | - Ivan Shun Bo How
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jeremy Soon Kiat Chan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Jiapeng Chen
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, Singapore, Singapore
| | - Chek Kun Tan
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, Singapore, Singapore
| | - Walter Wahli
- Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, Singapore, Singapore.,INRA ToxAlim, UMR1331, Chemin de Tournefeuille, Toulouse Cedex 3, France.,Center for Integrative Genomics, University of Lausanne, Le Genopode, Lausanne, Switzerland
| | - Nguan Soon Tan
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore. .,Lee Kong Chian School of Medicine, Nanyang Technological University, Novena Campus, Singapore, Singapore. .,Institute of Molecular and Cell Biology, Proteos, Agency for Science Technology & Research, Singapore, Singapore. .,KK Research Centre, KK Women's and Children Hospital, Singapore, Singapore.
| |
Collapse
|
29
|
De Lellis L, Cimini A, Veschi S, Benedetti E, Amoroso R, Cama A, Ammazzalorso A. The Anticancer Potential of Peroxisome Proliferator-Activated Receptor Antagonists. ChemMedChem 2018; 13:209-219. [PMID: 29276815 DOI: 10.1002/cmdc.201700703] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 12/17/2017] [Indexed: 12/13/2022]
Abstract
The effects on cancer-cell proliferation and differentiation mediated by peroxisome proliferator-activated receptors (PPARs) have been widely studied, and pleiotropic outcomes in different cancer models and under different experimental conditions have been obtained. Interestingly, few studies report and little preclinical evidence supports the potential antitumor activity of PPAR antagonists. This review focuses on recent findings on the antitumor in vitro and in vivo effects observed for compounds able to inhibit the three PPAR subtypes in different tumor models, providing a rationale for the use of PPAR antagonists in the treatment of tumors expressing the corresponding receptors.
Collapse
Affiliation(s)
- Laura De Lellis
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Annamaria Cimini
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy.,National Institute for Nuclear Physics (INFN), Gran Sasso National Laboratory (LNGS), Assergi (Aq), Italy.,Sbarro Institute for Cancer Research and Molecular Medicine and Center for Biotechnology, Temple University, 1900 N. 12th Street, Philadelphia, PA, 19122, USA
| | - Serena Veschi
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | - Elisabetta Benedetti
- Department of Life, Health and Environmental Sciences, University of L'Aquila, L'Aquila, Italy
| | - Rosa Amoroso
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy
| | - Alessandro Cama
- Department of Pharmacy, University of Chieti, Via dei Vestini 31, 66100, Chieti, Italy.,Unit of General Pathology, CeSI-MeT, University of Chieti, Chieti, Italy
| | | |
Collapse
|
30
|
Zhang C, Zhang R, Chen Z, Chen J, Ruan J, Lu Z, Xiong H, Yang W. Differential DNA methylation profiles of human B lymphocytes and Epstein-Barr virus-immortalized B lymphocytes. Chin J Cancer Res 2018; 30:104-111. [PMID: 29545724 DOI: 10.21147/j.issn.1000-9604.2018.01.11] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Objective This study aimed to comprehensively assess Epstein-Barr virus (EBV)-induced methylation alterations of B cell across whole genome. Methods We compared DNA methylation patterns of primary B cells and corresponding lymphoblastoid cell lines (LCLs) from eight participants. The genome-wide DNA methylation profiles were compared at over 850,000 genome-wide methylation sites. Results DNA methylation analysis revealed 87,732 differentially methylated CpG sites, representing approximately 12.41% of all sites in LCLs compared to primary B cells. The hypermethylated and hypomethylated CpG sites were about 22.75% or 77.25%, respectively. Only 0.8% of hypomethylated sites and 4.5% of hypermethylated sites were located in CpG islands, whereas 8.0% of hypomethylated sites and 16.3% of hypermethylated sites were located in shore (N_shore and S_shore). Using principal component analysis of the DNA methylation profiles, primary B cells and LCLs could be accurately predicted. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of differently methylated genes revealed that most of the top GO biological processes were related to cell activation and immune response, and some top enrichment pathways were related with activation and malignant transformation of human B cells. Conclusions Our study demonstrated genome-wide DNA methylation variations between primary B cells and corresponding LCLs, which might yield new insight on the methylation mechanism of EBV-induced immortalization.
Collapse
Affiliation(s)
- Chaoting Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Rui Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Key Laboratory of Fertility Preservation and Maintenance, the School of Basic Medicine, the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| | - Zhiqiang Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jing Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Jigang Ruan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Zheming Lu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Hongchao Xiong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China
| | - Wenjun Yang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Biochemistry and Molecular Biology, Peking University Cancer Hospital & Institute, Beijing 100142, China.,Key Laboratory of Fertility Preservation and Maintenance, the School of Basic Medicine, the General Hospital, Ningxia Medical University, Yinchuan 750004, China
| |
Collapse
|
31
|
Gou Q, Gong X, Jin J, Shi J, Hou Y. Peroxisome proliferator-activated receptors (PPARs) are potential drug targets for cancer therapy. Oncotarget 2017; 8:60704-60709. [PMID: 28948004 PMCID: PMC5601172 DOI: 10.18632/oncotarget.19610] [Citation(s) in RCA: 75] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2017] [Accepted: 07/18/2017] [Indexed: 12/16/2022] Open
Abstract
Peroxisome-proliferator-activated receptors (PPARs) are nuclear hormone receptors including PPARα, PPARδ and PPARγ, which play an important role in regulating cancer cell proliferation, survival, apoptosis, and tumor growth. Activation of PPARs by endogenous or synthetic compounds regulates tumor progression in various tissues. Although each PPAR isotype suppresses or promotes tumor development depending on the specific tissues or ligands, the mechanism is still unclear. In this review, we summarized the regulative mechanism of PPARs on cancer progression.
Collapse
Affiliation(s)
- Qian Gou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, PR China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Xin Gong
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Jianhua Jin
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, PR China
| | - Juanjuan Shi
- Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| | - Yongzhong Hou
- Department of Oncology, Affiliated Wujin People's Hospital, Jiangsu University, Changzhou, 212017, PR China.,Institute of Life Sciences, Jiangsu University, Zhenjiang, 212013, PR China
| |
Collapse
|
32
|
PPAR-delta modulates membrane cholesterol and cytokine signaling in malignant B cells. Leukemia 2017; 32:184-193. [PMID: 28555083 DOI: 10.1038/leu.2017.162] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2016] [Revised: 05/08/2017] [Accepted: 05/16/2017] [Indexed: 12/12/2022]
Abstract
A deeper understanding of the mechanisms that underlie aberrant signal transduction in B-cell cancers such as chronic lymphocytic leukemia (CLL) may reveal new treatment strategies. The lipid-activated nuclear receptor peroxisome proliferator-activated receptor delta (PPARδ) accounts for a number of properties of aggressive cancers and was found to enhance Janus kinase (JAK)-mediated phosphorylation of signal transducer and activator of transcription (STAT) proteins in B lymphoma cell lines and primary CLL cells. Autocrine production of cytokines such as IL10 and interferon-beta was not increased by PPARδ but signaling responses to these cytokines were amplified and associated with increased cholesterol biosynthesis and plasma membrane levels. Plasmalemmal cholesterol and STAT phosphorylation from type 1 interferons (IFNs) were increased by PPARδ agonists, transgenes and exogenous cholesterol, and decreased by cyclodextrin, PPARD deletion and chemical PPARδ inhibitors. Functional consequences of PPARδ-mediated perturbation of IFN signaling included impaired upregulation of co-stimulatory molecules. These observations suggest PPARδ modulates signaling processes in malignant B cells in part by altering cholesterol metabolism and changes the outcomes of signaling from cytokines such as IFNs. PPARδ antagonists may have therapeutic activity as anti-leukemic signal transduction modulators.
Collapse
|
33
|
Tian R, Zuo X, Jaoude J, Mao F, Colby J, Shureiqi I. ALOX15 as a suppressor of inflammation and cancer: Lost in the link. Prostaglandins Other Lipid Mediat 2017; 132:77-83. [PMID: 28089732 DOI: 10.1016/j.prostaglandins.2017.01.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Revised: 01/06/2017] [Accepted: 01/09/2017] [Indexed: 02/06/2023]
Abstract
Mounting evidence supports a mechanistic link between inflammation and cancer, especially colon cancer. ALOX15 (15-lipoxygenase-1) plays an important role in the formation of key lipid mediators (e.g., lipoxins and resolvins) to terminate inflammation. ALOX15 expression is downregulated in colorectal cancer (CRC). Intestinally-targeted transgenic expression of ALOX15 in mice inhibited dextran sodium sulfate-induced colitis from promoting azoxymethane- induced colorectal tumorigenesis, demonstrating that ALOX15 can suppress inflammation-driven promotion of carcinogen-induced colorectal tumorigenesis and therefore ALOX15 downregulation during tumorigenesis is likely to enhance the link between colitis and colorectal tumorigenesis. ALOX15 suppressed the TNF-α, IL-1β/NF-κB, and IL-6/STAT3 signaling pathways, which play major roles in promotion of colorectal cancer by chronic inflammation. Defining ALOX15's regulatory role in colitis-associated colorectal cancer could identify important molecular regulatory events that could be targeted to suppress promotion of tumorigenesis by chronic inflammation.
Collapse
Affiliation(s)
- Rui Tian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jonathan Jaoude
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Fei Mao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Jennifer Colby
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, United States.
| |
Collapse
|
34
|
Zuo X, Xu W, Xu M, Tian R, Moussalli MJ, Mao F, Zheng X, Wang J, Morris JS, Gagea M, Eng C, Kopetz S, Maru DM, Rashid A, Broaddus R, Wei D, Hung MC, Sood AK, Shureiqi I. Metastasis regulation by PPARD expression in cancer cells. JCI Insight 2017; 2:e91419. [PMID: 28097239 DOI: 10.1172/jci.insight.91419] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Peroxisome proliferator-activated receptor-δ (PPARD) is upregulated in many major human cancers, but the role that its expression in cancer cells has in metastasis remains poorly understood. Here, we show that specific PPARD downregulation or genetic deletion of PPARD in cancer cells significantly repressed metastasis in various cancer models in vivo. Mechanistically, PPARD promoted angiogenesis via interleukin 8 in vivo and in vitro. Analysis of transcriptome profiling of HCT116 colon cancer cells with or without genetic deletion of PPARD and gene expression patterns in The Cancer Genome Atlas colorectal adenocarcinoma database identified novel pro-metastatic genes (GJA1, VIM, SPARC, STC1, SNCG) as PPARD targets. PPARD expression in cancer cells drastically affected epithelial-mesenchymal transition, migration, and invasion, further underscoring its necessity for metastasis. Clinically, high PPARD expression in various major human cancers (e.g., colorectal, lung, breast) was associated with significantly reduced metastasis-free survival. Our results demonstrate that PPARD, a druggable protein, is an important molecular target in metastatic cancer.
Collapse
Affiliation(s)
- Xiangsheng Zuo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Weiguo Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Department of Surgical Oncology, Affiliated Hospital of Hebei United University, Tangshan, China
| | - Min Xu
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rui Tian
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Fei Mao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | - Jing Wang
- Department of Bioinformatics and Computational Biology
| | | | - Mihai Gagea
- Department of Veterinary Medicine and Surgery
| | - Cathy Eng
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | | | | | | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, and.,Department of Cancer Biology and.,Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Imad Shureiqi
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
35
|
PPAR-delta promotes survival of chronic lymphocytic leukemia cells in energetically unfavorable conditions. Leukemia 2017; 31:1905-1914. [PMID: 28050012 DOI: 10.1038/leu.2016.395] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 12/07/2016] [Accepted: 12/09/2016] [Indexed: 12/15/2022]
Abstract
Targeting the mechanisms that allow chronic lymphocytic leukemia (CLL) cells to survive in harsh cancer microenvironments should improve patient outcomes. The nuclear receptor peroxisome proliferator activated receptor delta (PPARδ) sustains other cancers, and in silico analysis showed higher PPARD expression in CLL cells than normal lymphocytes and other hematologic cancers. A direct association was found between PPARδ protein levels in CLL cells and clinical score. Transgenic expression of PPARδ increased the growth and survival of CD5+ Daudi cells and primary CLL cells in stressful conditions including exhausted tissue culture media, low extracellular glucose, hypoxia and exposure to cytotoxic drugs. Glucocorticoids and synthetic PPARδ agonists up-regulated PPARD expression and also protected Daudi and primary CLL cells from metabolic stressors. Survival in low glucose was related to increased antioxidant expression, substrate utilization and mitochondrial performance, and was reversed by genetic deletion and synthetic PPARδ antagonists. These findings suggest PPARδ conditions CLL cells to survive in harsh microenvironmental conditions by reducing oxidative stress and increasing metabolic efficiency. Targeting PPARδ may be beneficial in the treatment of CLL.
Collapse
|
36
|
Müller R. PPARβ/δ in human cancer. Biochimie 2016; 136:90-99. [PMID: 27916645 DOI: 10.1016/j.biochi.2016.10.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/06/2016] [Accepted: 10/19/2016] [Indexed: 12/31/2022]
Abstract
The nuclear receptor factor peroxisome proliferator-activated receptor (PPARβ/δ) can regulate its target genes by transcriptional activation or repression through both ligand-dependent and independent mechanism as well as by interactions with other transcription factors. PPARβ/δ exerts essential regulatory functions in intermediary metabolism that have been elucidated in detail, but clearly also plays a role in inflammation, differentiation, apoptosis and other cancer-associated processes, which is, however, mechanistically only partly understood. Consistent with these functions clinical associations link the expression of PPARβ/δ and its target genes to an unfavorable outcome of several human cancers. However, the available data do not yield a clear picture of PPARβ/δ's role in cancer-associated processes and are in fact partly controversial. This article provides an overview of this research area and discusses the role of PPARβ/δ in cancer in light of the complex mechanisms of its transcriptional regulation and its potential as a druggable anti-cancer target.
Collapse
Affiliation(s)
- Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Hans-Meerwein-Str. 3, 35043 Marburg, Germany.
| |
Collapse
|
37
|
Smith RW, Coleman JD, Thompson JT, Vanden Heuvel JP. Therapeutic potential of GW501516 and the role of Peroxisome proliferator-activated receptor β/δ and B-cell lymphoma 6 in inflammatory signaling in human pancreatic cancer cells. Biochem Biophys Rep 2016; 8:395-402. [PMID: 28955982 PMCID: PMC5614479 DOI: 10.1016/j.bbrep.2016.10.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 09/07/2016] [Accepted: 10/27/2016] [Indexed: 01/09/2023] Open
Abstract
Peroxisome proliferator-activated receptor β/δ (PPARβ/δ) is a member of the nuclear receptor superfamily and a ligand-activated transcription factor that is involved in the regulation of the inflammatory response via activation of anti-inflammatory target genes and ligand-induced disassociation with the transcriptional repressor B-cell lymphoma 6 (BCL6). Chronic pancreatitis is considered to be a significant etiological factor for pancreatic cancer development, and a better understanding of the underlying mechanisms of the transition between inflammation and carcinogenesis would help further elucidate chemopreventative options. The aim of this study was to determine the role of PPARβ/δ and BCL6 in human pancreatic cancer of ductal origin, as well as the therapeutic potential of PPARβ/δ agonist, GW501516. Over-expression of PPARβ/δ inhibited basal and TNFα-induced Nfkb luciferase activity. GW501516-activated PPARβ/δ suppressed TNFα-induced Nfkb reporter activity. RNAi knockdown of Pparb attenuated the GW501516 effect on Nfkb luciferase, while knockdown of Bcl6 enhanced TNFα-induced Nfkb activity. PPARβ/δ activation induced expression of several anti-inflammatory genes in a dose-dependent manner, and GW501516 inhibited Mcp1 promoter-driven luciferase in a BCL6-dependent manner. Several pro-inflammatory genes were suppressed in a BCL6-dependent manner. Conditioned media from GW501516-treated pancreatic cancer cells suppressed pro-inflammatory expression in THP-1 macrophages as well as reduced invasiveness across a basement membrane. These results demonstrate that PPARβ/δ and BCL6 regulate anti-inflammatory signaling in human pancreatic cancer cells by inhibiting NFκB and pro-inflammatory gene expression, and via induction of anti-inflammatory target genes. Activation of PPARβ/δ may be a useful target in pancreatic cancer therapeutics.
Collapse
Affiliation(s)
| | | | | | - John P. Vanden Heuvel
- Department of Veterinary and Biomedical Sciences, Penn State University, University Park, PA, United States
| |
Collapse
|
38
|
Rao CV, Sanghera S, Zhang Y, Biddick L, Reddy A, Lightfoot S, Janakiram NB, Mohammed A, Dai W, Yamada HY. Systemic Chromosome Instability Resulted in Colonic Transcriptomic Changes in Metabolic, Proliferation, and Stem Cell Regulators in Sgo1-/+ Mice. Cancer Res 2016; 76:630-42. [PMID: 26833665 DOI: 10.1158/0008-5472.can-15-0940] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Colon cancer is the second most lethal cancer and is predicted to claim 49,700 lives in the United States this year. Chromosome instability (CIN) is observed in 80% to 90% of colon cancers and is thought to contribute to colon cancer progression and recurrence. To investigate the impact of CIN on colon cancer development, we developed shugoshin-1 (Sgo1) haploinsufficient (-/+) mice, an animal model focusing on mitotic error-induced CIN. In this study, we analyzed signature changes in the colonic transcriptome of Sgo1(-/+) mice to examine the molecular events underlying the altered carcinogenesis profiles in Sgo1(-/+) mice. We performed next-generation sequencing of normal-looking colonic mucosal tissue from mice treated with the carcinogen azoxymethane after 24 weeks. Transcriptome profiling revealed 349 hits with a 2-fold expression difference threshold (217 upregulated genes, 132 downregulated genes, P < 0.05). Pathway analyses indicated that the Sgo1-CIN tissues upregulated pathways known to be activated in colon cancer, including lipid metabolism (z score 4.47), Notch signaling (4.47), insulin signaling (3.81), and PPAR pathways (3.75), and downregulated pathways involved in immune responses including allograft rejection (6.69) and graft-versus-host disease (6.54). Notably, stem cell markers were also misregulated. Collectively, our findings demonstrate that systemic CIN results in transcriptomic changes in metabolism, proliferation, cell fate, and immune responses in the colon, which may foster a microenvironment amenable to cancer development. Therefore, therapeutic approaches focusing on these identified pathways may be valuable for colon cancer prevention and treatment.
Collapse
Affiliation(s)
- Chinthalapally V Rao
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Saira Sanghera
- College of Arts & Sciences, Baylor University, Waco, Texas
| | - Yuting Zhang
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Laura Biddick
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Arun Reddy
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Stan Lightfoot
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Naveena B Janakiram
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Altaf Mohammed
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wei Dai
- Department of Environmental Medicine, New York University Langone Medical Center, Tuxedo, New York
| | - Hiroshi Y Yamada
- Center for Cancer Prevention and Drug Development, Department of Medicine, Hematology/Oncology Section, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma.
| |
Collapse
|
39
|
Increase of human prostate cancer cell (DU145) apoptosis by telmisartan through PPAR-delta pathway. Eur J Pharmacol 2016; 775:35-42. [PMID: 26852954 DOI: 10.1016/j.ejphar.2016.02.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 02/03/2016] [Accepted: 02/03/2016] [Indexed: 12/23/2022]
Abstract
The effect of telmisartan on prostate cancer DU145 cell survival and the underlying mechanism of apoptosis involving peroxisome proliferator-activated receptor (PPAR) pathway were investigated. Cultured DU145 cells were treated pharmacologically with telmisartan and GSK0660 (a PPAR-delta antagonist); or by RNA interference with siRNA of PPAR-delta. The treatment effects on cell survival were evaluated with cell viability assay, life and dead cell staining and flow cytometry. Western blot analysis for PPAR-delta protein expression was also performed. The results showed that telmisartan (0-80 µm) dose-dependently reduced DU145 cell survival. Flow cytometry demonstrated cancer cell cycle arrest with increase of sub-G1 phase. GSK0660 partially but significantly restored the telmisartan-treated cell viability. Similarly, siRNA of PPAR-delta significantly reversed the telmisartan-induced apoptosis. Western blot showed that telmisartan significantly increased DU145 cell PPAR-delta protein expression. Co-incubation with siRNA of PPAR-delta inhibited the telmisartan effect of PPAR-delta up-regulation. In conclusion, telmisartan induces prostate cancer DU145 cells apoptosis through the up-regulation of PPAR-delta protein expression. Pharmacological inhibition or genetic silencing of PPAR-delta activity can both reverse the telmisartan-induced apoptotic effect. Thus the PPAR-delta pathway might be a potential target for the treatment of prostate cancer.
Collapse
|
40
|
Peters JM, Gonzalez FJ, Müller R. Establishing the Role of PPARβ/δ in Carcinogenesis. Trends Endocrinol Metab 2015; 26:595-607. [PMID: 26490384 PMCID: PMC4631629 DOI: 10.1016/j.tem.2015.09.004] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 09/10/2015] [Accepted: 09/12/2015] [Indexed: 12/16/2022]
Abstract
The role of the nuclear hormone receptor peroxisome proliferator-activated receptor β/δ (PPARβ/δ) in carcinogenesis is controversial because conflicting studies indicate that it both inhibits and promotes tumorigenesis. In this review, we focus on recent studies on PPARβ/δ including the significance of increased or decreased PPARβ/δ expression in cancers; a range of opposing mechanisms describing how PPARβ/δ agonists, antagonists, and inverse agonists regulate tumorigenesis and/or whether there may be cell context-specific mechanisms; and whether activating or inhibiting PPARβ/δ is feasible for cancer chemoprevention and/or therapy. Research questions that need to be addressed are highlighted to establish whether PPARβ/δ can be effectively targeted for cancer chemoprevention.
Collapse
Affiliation(s)
- Jeffrey M Peters
- Department of Veterinary and Biomedical Sciences and The Center of Molecular Toxicology and Carcinogenesis, The Pennsylvania State University, University Park, PA 16802, USA.
| | - Frank J Gonzalez
- Laboratory of Metabolism, National Cancer Institute, Bethesda, MD 20892, USA
| | - Rolf Müller
- Institute of Molecular Biology and Tumor Research, Center for Tumor Biology and Immunology, Philipps University, Hans-Meerwein-Straße 3, 35043 Marburg, Germany
| |
Collapse
|
41
|
Mao F, Xu M, Zuo X, Yu J, Xu W, Moussalli MJ, Elias E, Li HS, Watowich SS, Shureiqi I. 15-Lipoxygenase-1 suppression of colitis-associated colon cancer through inhibition of the IL-6/STAT3 signaling pathway. FASEB J 2015; 29:2359-70. [PMID: 25713055 DOI: 10.1096/fj.14-264515] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 02/03/2015] [Indexed: 12/24/2022]
Abstract
The IL-6/signal transducer and activator of transcription 3 (STAT3) pathway is a critical signaling pathway for colitis-associated colorectal cancer (CAC). Peroxisome proliferator-activated receptor (PPAR)-δ, a lipid nuclear receptor, up-regulates IL-6. 15-Lipoxygenase-1 (15-LOX-1), which is crucial to production of lipid signaling mediators to terminate inflammation, down-regulates PPAR-δ. 15-LOX-1 effects on IL-6/STAT3 signaling and CAC tumorigenesis have not been determined. We report that intestinally targeted transgenic 15-LOX-1 expression in mice inhibited azoxymethane- and dextran sodium sulfate-induced CAC, IL-6 expression, STAT3 phosphorylation, and IL-6/STAT3 downstream target (Notch3 and MUC1) expression. 15-LOX-1 down-regulation was associated with IL-6 up-regulation in human colon cancer mucosa. Reexpression of 15-LOX-1 in human colon cancer cells suppressed IL-6 mRNA expression, STAT3 phosphorylation, IL-6 promoter activity, and PPAR-δ mRNA and protein expression. PPAR-δ overexpression in colonic epithelial cells promoted CAC tumorigenesis in mice and increased IL-6 expression and STAT3 phosphorylation, whereas concomitant 15-LOX-1 expression in colonic epithelial cells (15-LOX-1-PPAR-δ-Gut mice) suppressed these effects: the number of tumors per mouse (mean ± sem) was 4.22 ± 0.68 in wild-type littermates, 6.67 ± 0.83 in PPAR-δ-Gut mice (P = 0.026), and 2.25 ± 0.25 in 15-LOX-1-PPAR-δ-Gut mice (P = 0.0006). Identification of 15-LOX-1 suppression of PPAR-δ to inhibit IL-6/STAT3 signaling-driven CAC tumorigenesis provides mechanistic insights that can be used to molecularly target CAC.
Collapse
Affiliation(s)
- Fei Mao
- Departments of *Gastrointestinal Medical Oncology, Pathology, and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Min Xu
- Departments of *Gastrointestinal Medical Oncology, Pathology, and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Xiangsheng Zuo
- Departments of *Gastrointestinal Medical Oncology, Pathology, and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Jiang Yu
- Departments of *Gastrointestinal Medical Oncology, Pathology, and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Weiguo Xu
- Departments of *Gastrointestinal Medical Oncology, Pathology, and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Micheline J Moussalli
- Departments of *Gastrointestinal Medical Oncology, Pathology, and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Elias Elias
- Departments of *Gastrointestinal Medical Oncology, Pathology, and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Haiyan S Li
- Departments of *Gastrointestinal Medical Oncology, Pathology, and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Stephanie S Watowich
- Departments of *Gastrointestinal Medical Oncology, Pathology, and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| | - Imad Shureiqi
- Departments of *Gastrointestinal Medical Oncology, Pathology, and Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA; and School of Medical Science and Laboratory Medicine, Jiangsu University, Zhenjiang, Jiangsu, People's Republic of China
| |
Collapse
|
42
|
Wang D, DuBois RN. PPARδ and PGE 2 signaling pathways communicate and connect inflammation to colorectal cancer. INFLAMMATION AND CELL SIGNALING 2014; 1. [PMID: 26290896 DOI: 10.14800/ics.338] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The nuclear hormone receptor peroxisome proliferator-activated receptor δ (PPARδ) is a ligand-dependent transcription factor that is involved in fatty acid metabolism, obesity, wound healing, inflammation, and cancer. Despite decades of research, the role of PPARδ in inflammation and colorectal cancer remains unclear and somewhat controversial. Our recent work presented the first genetic evidence demonstrating that PPARδ is required for chronic colonic inflammation and colitis-associated carcinogenesis. We also found that a PPARδ downstream pathway, namely the COX-2-derived PGE2 signaling, mediated crosstalk between tumor epithelial cells and macrophages to promote chronic inflammation and colitis-associated tumor genesis. In this brief review, we summarize recent studies on the role of PPARδ in inflammatory bowel disease (IBD) and colorectal cancer (CRC) and highlight recent advances in our understanding of how PPARδ and COX-2-drevided PGE2 signaling coordinately promote chronic colonic inflammation and colitis-associate tumorigenesis. Elucidating the role of PPARδ in inflammation and CRC may provide a rationale for development of PPARδ antagonists as new therapeutic agents in treatment of IBD and CRC.
Collapse
Affiliation(s)
- Dingzhi Wang
- Laboratory for Inflammation and Cancer, the Biodesign Institute at Arizona State University, Tempe, AZ 85287
| | - Raymond N DuBois
- Laboratory for Inflammation and Cancer, the Biodesign Institute at Arizona State University, Tempe, AZ 85287 ; Department of Chemistry and Biochemistry, Arizona State University, Tempe, AZ 85287 ; Department of Research and Division of Gastroenterology, Mayo Clinic, Scottsdale, AZ 85259
| |
Collapse
|