1
|
Hussain M, Khan I, Chaudhary MN, Ali K, Mushtaq A, Jiang B, Zheng L, Pan Y, Hu J, Zou X. Phosphatidylserine: A comprehensive overview of synthesis, metabolism, and nutrition. Chem Phys Lipids 2024; 264:105422. [PMID: 39097133 DOI: 10.1016/j.chemphyslip.2024.105422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/21/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024]
Abstract
Phosphatidylserine (PtdS) is classified as a glycerophospholipid and a primary anionic phospholipid and is particularly abundant in the inner leaflet of the plasma membrane in neural tissues. It is synthesized from phosphatidylcholine or phosphatidylethanolamine by exchanging the base head group with serine, and this reaction is catalyzed by PtdS synthase-1 and PtdS synthase-2 located in the endoplasmic reticulum. PtdS exposure on the outside surface of the cell is essential for eliminating apoptotic cells and initiating the blood clotting cascade. It is also a precursor of phosphatidylethanolamine, produced by PtdS decarboxylase in bacteria, yeast, and mammalian cells. Furthermore, PtdS acts as a cofactor for several necessary enzymes that participate in signaling pathways. Beyond these functions, several studies indicate that PtdS plays a role in various cerebral functions, including activating membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement associated with the central nervous system (CNS). This review discusses the occurrence of PtdS in nature and biosynthesis via enzymes and genes in plants, yeast, prokaryotes, mammalian cells, and the brain, and enzymatic synthesis through phospholipase D (PLD). Furthermore, we discuss metabolism, its role in the CNS, the fortification of foods, and supplementation for improving some memory functions, the results of which remain unclear. PtdS can be a potentially beneficial addition to foods for kids, seniors, athletes, and others, especially with the rising consumer trend favoring functional foods over conventional pills and capsules. Clinical studies have shown that PtdS is safe and well tolerated by patients.
Collapse
Affiliation(s)
- Mudassar Hussain
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Imad Khan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Muneeba Naseer Chaudhary
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City/College of Food Science, Southwest University, Chongqing, 400715, China
| | - Khubaib Ali
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Anam Mushtaq
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Bangzhi Jiang
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Lei Zheng
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Yuechao Pan
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jijie Hu
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaoqiang Zou
- State Key Laboratory of Food Science and Resources, National Engineering Research Center for Functional Food, National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Collaborative Innovation Center of Food Safety and Quality Control in Jiangsu Province, School of Food Science and Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
2
|
Yamaga M, Kawabe H, Tani H, Yamaki A. Enhanced absorption of prenylated cinnamic acid derivatives from Brazilian green propolis by turmeric in humans and rats. Food Sci Nutr 2024; 12:4680-4691. [PMID: 39055207 PMCID: PMC11266932 DOI: 10.1002/fsn3.4116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 07/27/2024] Open
Abstract
Prenylated cinnamic acid derivatives are the bioactive components of Brazilian green propolis (BGP). The effect of other botanical components on the pharmacokinetic profiles of these derivatives remains relatively unexplored. In the present study, we investigated the influence of several herbal extracts (turmeric, ginkgo leaf, coffee fruit, soybean, and gotu kola) on the plasma concentrations of cinnamic acid derivatives after BGP consumption. When the herbal extracts were co-administered with BGP in the clinical study, the area under the curve (AUC) values of artepillin C and drupanin, the major BGP components in plasma, were significantly increased by 1.7- and 1.5-fold, respectively, compared to those after BGP administration alone. Among the herbal extracts administered to rats, turmeric extract increased the AUC. Furthermore, a bidirectional transport assay suggested that artepillin C and drupanin are substrates of breast cancer resistance protein (BCRP), a drug elimination transporter. These results suggest that curcumin-containing turmeric extract may increase the plasma concentrations of artepillin C and drupanin via BCRP. Our findings enabled us to estimate the food-herb and herb-herb interactions in vivo in foods and herbal medicines containing cinnamic acid derivatives and prenylated compounds.
Collapse
Affiliation(s)
- Masayuki Yamaga
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Hiroshi Kawabe
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Hiroko Tani
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| | - Ayanori Yamaki
- Institute for Bee Products and Health Science, Yamada Bee Company, Inc.Tamata‐gunOkayamaJapan
| |
Collapse
|
3
|
Gui S, Ni J, Mizutani S, Shigematsu N, Nakanishi H, Kashiwazaki H, Wu Z. A mixture of extracts from natural ingredients reduces the neurotoxic polarization of microglia via modulating NF-κB/NF-E2-related factor 2 activation. Food Sci Nutr 2024; 12:3745-3758. [PMID: 38726426 PMCID: PMC11077187 DOI: 10.1002/fsn3.4045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 01/09/2024] [Accepted: 02/07/2024] [Indexed: 05/12/2024] Open
Abstract
Neurotoxic microglia-provoked neuroinflammation is implicated in cognitive decline in Alzheimer's disease (AD). Supplementation with Ginkgo biloba, phosphatidylserine, Curcuma longa, and propolis is reported to improve the cognitive functions of elderly people; however, the underlying mechanisms of this combination of natural ingredients are unknown. We investigated the effects of a mixture of extracts from propolis, Coffea arabica, Gotu kola, phosphatidylserine, Ginkgo biloba, and Curcuma longa (mixture) on microglia polarization after exposure to amyloid β1-42 (Aβ1-42, 1 μM) and lipopolysaccharide from Porphyromonas gingivalis (PgLPS, 1 μg/mL), using MG6 and BV2 microglial cells. Exposure to Aβ1-42 and PgLPS (AL) raised the mRNA expression of IL-1β, TNF-α, and IL-6, nuclear translocation of p65 NF-κB in MG6 cells and BV2 cells, and mitochondrial reactive oxygen species (ROS) production in MG6 cells. The mixture dramatically suppressed the mRNA expression of IL-1β, TNF-α, and IL-6, but significantly promoted that of IL-10, TGFβ1, and BDNF in AL-exposed MG6 and BV2 cells. Furthermore, the mixture significantly suppressed the nuclear translocation of p65 NF-κB but significantly promoted that of NF-E2-related factor 2 (Nrf2) in AL-exposed MG6 and BV2 cells. Furthermore, the mixture significantly ameliorated mitochondrial ROS production but increased mitochondrial membrane potential in MG6 cells. These observations strongly suggest that the mixture demotes the neuropathic polarization of microglia by modulating NF-κB/Nrf2 activation and improving mitochondrial functions. This study supplies the potential mechanisms of the efficacy of a combination of natural ingredients that can be applied in the prevention of cognitive decline in AD and aging by targeting microglia-mediated neuroinflammation.
Collapse
Affiliation(s)
- Shuge Gui
- Department of Oral and Maxillofacial Surgery, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Junjun Ni
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life ScienceBeijing Institute of TechnologyBeijingChina
| | - Shinsuke Mizutani
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Norihiro Shigematsu
- Yamada Institute for Health Science, R & D DepartmentYamada Bee Company, Inc.OkayamaJapan
| | - Hiroshi Nakanishi
- Department of Pharmacology, Faculty of PharmacyYasuda Women's UniversityHiroshimaJapan
| | - Haruhiko Kashiwazaki
- Section of Geriatric Dentistry and Perioperative Medicine in Dentistry, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| | - Zhou Wu
- Department of Aging Science and Pharmacology, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
- OBT Research Center, Faculty of Dental ScienceKyushu UniversityFukuokaJapan
| |
Collapse
|
4
|
Morrison V, Houpert M, Trapani J, Brockman A, Kingsley P, Katdare K, Layden H, Nguena-Jones G, Trevisan A, Maguire-Zeiss K, Marnett L, Bix G, Ihrie R, Carter B. Jedi-1/MEGF12-mediated phagocytosis controls the pro-neurogenic properties of microglia in the ventricular-subventricular zone. Cell Rep 2023; 42:113423. [PMID: 37952151 PMCID: PMC10842823 DOI: 10.1016/j.celrep.2023.113423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
Microglia are the primary phagocytes in the central nervous system and clear dead cells generated during development or disease. The phagocytic process shapes the microglia phenotype, which affects the local environment. A unique population of microglia resides in the ventricular-subventricular zone (V-SVZ) of neonatal mice, but how they influence the neurogenic niche is not well understood. Here, we demonstrate that phagocytosis contributes to a pro-neurogenic microglial phenotype in the V-SVZ and that these microglia phagocytose apoptotic cells via the engulfment receptor Jedi-1. Deletion of Jedi-1 decreases apoptotic cell clearance, triggering a neuroinflammatory microglia phenotype that resembles dysfunctional microglia in neurodegeneration and aging and that reduces neural precursor proliferation via elevated interleukin-1β signaling; interleukin-1 receptor inhibition rescues precursor proliferation in vivo. Together, these results reveal a critical role for Jedi-1 in connecting microglial phagocytic activity to the maintenance of a pro-neurogenic phenotype in the developing V-SVZ.
Collapse
Affiliation(s)
- Vivianne Morrison
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA; Department of Cell and Molecular Biology, Tulane University, New Orleans, LA 70118, USA
| | - Matthew Houpert
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Jonathan Trapani
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Asa Brockman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Philip Kingsley
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Ketaki Katdare
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Hillary Layden
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA
| | - Gabriela Nguena-Jones
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Alexandra Trevisan
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | | - Lawrence Marnett
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Department of Chemistry, Vanderbilt University, Nashville, TN 37235, USA; Department of Pharmacology, Vanderbilt University, Nashville, TN 37235, USA; A.B. Hancock Jr. Memorial Laboratory for Cancer Research, Vanderbilt-Ingram Cancer Center, Nashville, TN 37232, USA
| | - Gregory Bix
- Center for Clinical Neuroscience Research, Tulane University, New Orleans, LA 70118, USA
| | - Rebecca Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA
| | - Bruce Carter
- Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA; Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
5
|
Morrison VE, Houpert MG, Trapani JB, Brockman AA, Kingsley PJ, Katdare KA, Layden HM, Nguena-Jones G, Trevisan AJ, Maguire-Zeiss KA, Marnett LJ, Bix GJ, Ihrie RA, Carter BD. Jedi-1/MEGF12-mediated phagocytosis controls the pro-neurogenic properties of microglia in the ventricular-subventricular zone. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.03.531012. [PMID: 36945622 PMCID: PMC10028845 DOI: 10.1101/2023.03.03.531012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Microglia are the primary phagocytes in the central nervous system and are responsible for clearing dead cells generated during development or disease. The phagocytic process shapes the phenotype of the microglia, which affects the local environment. A unique population of microglia reside in the ventricular-subventricular zone (V-SVZ) of neonatal mice, but how they influence this neurogenic niche is not well-understood. Here, we demonstrate that phagocytosis creates a pro-neurogenic microglial phenotype in the V-SVZ and that these microglia phagocytose apoptotic cells via the engulfment receptor Jedi-1. Deletion of Jedi-1 decreases apoptotic cell clearance, triggering the development of a neuroinflammatory phenotype, reminiscent of neurodegenerative and-age-associated microglia, that reduces neural precursor proliferation via elevated interleukin (IL)-1β signaling; inhibition of IL-1 receptor rescues precursor proliferation in vivo. Together, these results reveal a critical role for Jedi-1 in connecting microglial phagocytic activity to a phenotype that promotes neurogenesis in the developing V-SVZ.
Collapse
Affiliation(s)
- Vivianne E Morrison
- Vanderbilt University Department of Biochemistry
- Vanderbilt Brain Institute
- Tulane University Center for Clinical Neuroscience Research
| | - Matthew G Houpert
- Vanderbilt University Department of Biochemistry
- Vanderbilt Brain Institute
| | - Jonathan B Trapani
- Vanderbilt University Department of Biochemistry
- Vanderbilt Brain Institute
| | - Asa A Brockman
- Vanderbilt University Department of Cell and Developmental Biology
- Vanderbilt Brain Institute
| | | | | | | | | | - Alexandra J Trevisan
- Vanderbilt University Department of Biochemistry
- St. Jude Children's Research Hospital
| | | | - Lawrence J Marnett
- Vanderbilt University Department of Biochemistry
- Vanderbilt University Department of Chemistry
- Vanderbilt University Department of Pharmacology
- A.B. Hancock Jr. Memorial Laboratory for Cancer Research
| | - Gregory J Bix
- Tulane University Center for Clinical Neuroscience Research
| | - Rebecca A Ihrie
- Vanderbilt University Department of Cell and Developmental Biology
- Vanderbilt Brain Institute
| | - Bruce D Carter
- Vanderbilt University Department of Biochemistry
- Vanderbilt Brain Institute
| |
Collapse
|
6
|
Morrison VE, Bix GJ. The meal Maketh the Microglia: Why studying microglial phagocytosis is critical to stroke research. Neurochem Int 2023; 164:105488. [PMID: 36707032 DOI: 10.1016/j.neuint.2023.105488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/15/2023] [Accepted: 01/15/2023] [Indexed: 01/25/2023]
Affiliation(s)
- Vivianne E Morrison
- Tulane University School of Medicine Center for Clinical Neuroscience Research Center, United States
| | - Gregory J Bix
- Tulane University School of Medicine Center for Clinical Neuroscience Research Center, United States.
| |
Collapse
|
7
|
Ma X, Li X, Wang W, Zhang M, Yang B, Miao Z. Phosphatidylserine, inflammation, and central nervous system diseases. Front Aging Neurosci 2022; 14:975176. [PMID: 35992593 PMCID: PMC9382310 DOI: 10.3389/fnagi.2022.975176] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 07/15/2022] [Indexed: 11/13/2022] Open
Abstract
Phosphatidylserine (PS) is an anionic phospholipid in the eukaryotic membrane and is abundant in the brain. Accumulated studies have revealed that PS is involved in the multiple functions of the brain, such as activation of membrane signaling pathways, neuroinflammation, neurotransmission, and synaptic refinement. Those functions of PS are related to central nervous system (CNS) diseases. In this review, we discuss the metabolism of PS, the anti-inflammation function of PS in the brain; the alterations of PS in different CNS diseases, and the possibility of PS to serve as a therapeutic agent for diseases. Clinical studies have showed that PS has no side effects and is well tolerated. Therefore, PS and PS liposome could be a promising supplementation for these neurodegenerative and neurodevelopmental diseases.
Collapse
Affiliation(s)
- Xiaohua Ma
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xiaojing Li
- Suzhou Science and Technology Town Hospital, Suzhou, China
| | - Wenjuan Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Meng Zhang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Bo Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Bo Yang,
| | - Zhigang Miao
- Department of Neurology and Clinical Research Center of Neurological Disease, The Second Affiliated Hospital of Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Zhigang Miao,
| |
Collapse
|
8
|
Jaffa AA, Jaffa MA, Moussa M, Ahmed IA, Karam M, Aldeen KS, Al Sayegh R, El-Achkar GA, Nasrallah L, Yehya Y, Habib A, Ziyadeh FN, Eid AH, Kobeissy FH, Jaffa AA. Modulation of Neuro-Inflammatory Signals in Microglia by Plasma Prekallikrein and Neuronal Cell Debris. Front Pharmacol 2021; 12:743059. [PMID: 34867349 PMCID: PMC8636058 DOI: 10.3389/fphar.2021.743059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 10/28/2021] [Indexed: 11/13/2022] Open
Abstract
Microglia, the resident phagocytes of the central nervous system and one of the key modulators of the innate immune system, have been shown to play a major role in brain insults. Upon activation in response to neuroinflammation, microglia promote the release of inflammatory mediators as well as promote phagocytosis. Plasma prekallikrein (PKall) has been recently implicated as a mediator of neuroinflammation; nevertheless, its role in mediating microglial activation has not been investigated yet. In the current study, we evaluate the mechanisms through which PKall contributes to microglial activation and release of inflammatory cytokines assessing PKall-related receptors and their dynamics. Murine N9-microglial cells were exposed to PKall (2.5 ng/ml), lipopolysaccharide (100 ng/ml), bradykinin (BK, 0.1 μM), and neuronal cell debris (16.5 μg protein/ml). Gene expression of bradykinin 2 receptor (B2KR), protease-activated receptor 2 (PAR-2), along with cytokines and fibrotic mediators were studied. Bioinformatic analysis was conducted to correlate altered protein changes with microglial activation. To assess receptor dynamics, HOE-140 (1 μM) and GB-83 (2 μM) were used to antagonize the B2KR and PAR-2 receptors, respectively. Also, the role of autophagy in modulating microglial response was evaluated. Data from our work indicate that PKall, LPS, BK, and neuronal cell debris resulted in the activation of microglia and enhanced expression/secretion of inflammatory mediators. Elevated increase in inflammatory mediators was attenuated in the presence of HOE-140 and GB-83, implicating the engagement of these receptors in the activation process coupled with an increase in the expression of B2KR and PAR-2. Finally, the inhibition of autophagy significantly enhanced the release of the cytokine IL-6 which were validated via bioinformatics analysis demonstrating the role of PKall in systematic and brain inflammatory processes. Taken together, we demonstrated that PKall can modulate microglial activation via the engagement of PAR-2 and B2KR where PKall acts as a neuromodulator of inflammatory processes.
Collapse
Affiliation(s)
- Aneese A Jaffa
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon
| | - Miran A Jaffa
- Epidemiology and Population Health Department, Faculty of Health Sciences, American University of Beirut, Beirut, Lebanon
| | - Mayssam Moussa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ibrahim A Ahmed
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Mia Karam
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Kawthar Sharaf Aldeen
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Rola Al Sayegh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,INSERM-UMR1149, Centre de Recherche sur l'Inflammation, and Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Universite de Paris, Paris, France
| | - Ghewa A El-Achkar
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Leila Nasrallah
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Yara Yehya
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Aida Habib
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,INSERM-UMR1149, Centre de Recherche sur l'Inflammation, and Sorbonne Paris Cité, Laboratoire d'Excellence Inflamex, Faculté de Médecine, Universite de Paris, Paris, France
| | - Fuad N Ziyadeh
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon.,Department of Internal Medicine, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ali H Eid
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Firas H Kobeissy
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Ayad A Jaffa
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Soares NL, Vieira HLA. Microglia at the Centre of Brain Research: Accomplishments and Challenges for the Future. Neurochem Res 2021; 47:218-233. [PMID: 34586585 DOI: 10.1007/s11064-021-03456-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/17/2021] [Accepted: 09/20/2021] [Indexed: 02/08/2023]
Abstract
Microglia are the immune guardians of the central nervous system (CNS), with critical functions in development, maintenance of homeostatic tissue balance, injury and repair. For a long time considered a forgotten 'third element' with basic phagocytic functions, a recent surge in interest, accompanied by technological progress, has demonstrated that these distinct myeloid cells have a wide-ranging importance for brain function. This review reports microglial origins, development, and function in the healthy brain. Moreover, it also targets microglia dysfunction and how it contributes to the progression of several neurological disorders, focusing on particular molecular mechanisms and whether these may present themselves as opportunities for novel, microglia-targeted therapeutic approaches, an ever-enticing prospect. Finally, as it has been recently celebrated 100 years of microglia research, the review highlights key landmarks from the past century and looked into the future. Many challenging problems have arisen, thus it points out some of the most pressing questions and experimental challenges for the ensuing century.
Collapse
Affiliation(s)
- Nuno L Soares
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.
| | - Helena L A Vieira
- Chronic Diseases Research Center (CEDOC) - Faculdade de Ciências Médicas/NOVA Medical School, Universidade Nova de Lisboa, Campo dos Mártires da Pátria 130, 1169-056, Lisboa, Portugal.,Department of Chemistry, UCIBIO, Applied Molecular Biosciences Unit, NOVA School of Science and Technology, Universidade Nova de Lisboa, Lisboa, Portugal.,Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Lisboa, Portugal
| |
Collapse
|
10
|
Komeili M, Noorbakhsh F, Esmaili J, Muhammadnejad A, Hassanzadeh G, Dehpour AR, Goudarzi R, Partoazar A. Combination therapy of phosphatidylserine liposome with cyclosporine A improves nephrotoxicity and attenuates delayed-type hypersensitivity response. Life Sci 2020; 265:118780. [PMID: 33217444 DOI: 10.1016/j.lfs.2020.118780] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 11/15/2020] [Accepted: 11/15/2020] [Indexed: 01/06/2023]
Abstract
This study aimed to evaluate the antioxidant capacity of phosphatidylserine liposome (PS) against oxidative stress due to cyclosporine A (CsA) and concurrent administration of PS and CsA on the attenuation of immune response. The effect of oral PS was evaluated on biochemical and oxidative renal markers and histopathology of nephrotic rats receiving CsA. The effect of co-administration of PS with CsA was also assessed on DTH (delayed-type hypersensitivity) reaction of immunized rats. The cytokines production level of IL-2 (Interleukin-2) and IFN-γ (Interferon gamma) was measured in immunized rat's splenocytes. PS treatment significantly (P < 0.05) reduced Cr and BUN of serum and MDA (malondialdehyde) in kidney tissue, and increased SOD (superoxide dismutase) and CAT (Catalase) of kidney tissue in CsA-nephrotic rats. Histopathology data indicated significantly (P < 0.05) nephrotoxicity improvement after 25-day treatment with PS. Furthermore, CsA plus PS administration significantly reduced DTH response and cytokines production of IL-2 and IFN-γ in immunized rats. In conclusion, coadministration of CsA plus PS may overcome oxidative stress and improve the performance of organ transplantation or autoimmune therapy.
Collapse
Affiliation(s)
- Monika Komeili
- Department of Pharmacy, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Farshid Noorbakhsh
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Jamileh Esmaili
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahad Muhammadnejad
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Goudarzi
- Division of Research and Development, Pharmin USA, LLC, San Jose, USA
| | - Alireza Partoazar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
11
|
Márquez-Ropero M, Benito E, Plaza-Zabala A, Sierra A. Microglial Corpse Clearance: Lessons From Macrophages. Front Immunol 2020; 11:506. [PMID: 32292406 PMCID: PMC7135884 DOI: 10.3389/fimmu.2020.00506] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/05/2020] [Indexed: 12/11/2022] Open
Abstract
From development to aging and disease, the brain parenchyma is under the constant threat of debris accumulation, in the form of dead cells and protein aggregates. To prevent garbage buildup, the brain is equipped with efficient phagocytes: the microglia. Microglia are similar, but not identical to other tissue macrophages, and in this review, we will first summarize the differences in the origin, lineage and population maintenance of microglia and macrophages. Then, we will discuss several principles that govern macrophage phagocytosis of apoptotic cells (efferocytosis), including the existence of redundant recognition mechanisms ("find-me" and "eat-me") that lead to a tight coupling between apoptosis and phagocytosis. We will then describe that resulting from engulfment and degradation of apoptotic cargo, phagocytes undergo an epigenetic, transcriptional and metabolic rewiring that leads to trained immunity, and discuss its relevance for microglia and brain function. In summary, we will show that neuroimmunologists can learn many lessons from the well-developed field of macrophage phagocytosis biology.
Collapse
Affiliation(s)
- Mar Márquez-Ropero
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Eva Benito
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Ainhoa Plaza-Zabala
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Parque Científico, University of the Basque Country (UPV/EHU), Leioa, Spain
- Department of Neuroscience, University of the Basque Country (UPV/EHU), Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|
12
|
Maciel E, Neves BM, Martins J, Colombo S, Cruz MT, Domingues P, Domingues MRM. Oxidized phosphatidylserine mitigates LPS-triggered macrophage inflammatory status through modulation of JNK and NF-kB signaling cascades. Cell Signal 2019; 61:30-38. [DOI: 10.1016/j.cellsig.2019.04.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 04/14/2019] [Accepted: 04/29/2019] [Indexed: 01/17/2023]
|
13
|
Nakagawa Y, Yano Y, Lee J, Anraku Y, Nakakido M, Tsumoto K, Cabral H, Ebara M. Apoptotic Cell-Inspired Polymeric Particles for Controlling Microglial Inflammation toward Neurodegenerative Disease Treatment. ACS Biomater Sci Eng 2019; 5:5705-5713. [PMID: 33405702 DOI: 10.1021/acsbiomaterials.8b01510] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Apoptotic cells are known to suppress microglial inflammation in the brain by presenting phosphatidylserine. In this study, we newly designed polymeric particles that expose the anti-inflammatory site of phosphatidylserine to serve as an apoptotic cell-mimetic anti-inflammatory platform. The prepared anti-inflammatory particles showed no cytotoxicity and significantly inhibited the production of the inflammatory cytokine interleukin-6 against lipopolysaccharide stimulation in the microglia cell line MG6. This novel polymeric particle has potential for establishing a "cell-free" apoptotic cell-mimetic treatment for intracerebral inflammation.
Collapse
Affiliation(s)
- Yasuhiro Nakagawa
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Yuto Yano
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan
| | - Jeonggyu Lee
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| | - Yasutaka Anraku
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Makoto Nakakido
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kouhei Tsumoto
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Horacio Cabral
- Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.,Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, 3-25-14, Tonomachi, Kawasaki-ku, Kanagawa 210-0821, Japan
| | - Mitsuhiro Ebara
- International Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1, Namiki, Tsukuba, Ibaraki 305-0044, Japan.,Graduate School of Industrial Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo 125-8585, Japan.,Graduate School of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
14
|
Nazmi A, Field RH, Griffin EW, Haugh O, Hennessy E, Cox D, Reis R, Tortorelli L, Murray CL, Lopez-Rodriguez AB, Jin L, Lavelle EC, Dunne A, Cunningham C. Chronic neurodegeneration induces type I interferon synthesis via STING, shaping microglial phenotype and accelerating disease progression. Glia 2019; 67:1254-1276. [PMID: 30680794 PMCID: PMC6520218 DOI: 10.1002/glia.23592] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 12/21/2018] [Accepted: 12/28/2018] [Indexed: 12/13/2022]
Abstract
Type I interferons (IFN‐I) are the principal antiviral molecules of the innate immune system and can be made by most cell types, including central nervous system cells. IFN‐I has been implicated in neuroinflammation during neurodegeneration, but its mechanism of induction and its consequences remain unclear. In the current study, we assessed expression of IFN‐I in murine prion disease (ME7) and examined the contribution of the IFN‐I receptor IFNAR1 to disease progression. The data indicate a robust IFNβ response, specifically in microglia, with evidence of IFN‐dependent genes in both microglia and astrocytes. This IFN‐I response was absent in stimulator of interferon genes (STING−/−) mice. Microglia showed increased numbers and activated morphology independent of genotype, but transcriptional signatures indicated an IFNAR1‐dependent neuroinflammatory phenotype. Isolation of microglia and astrocytes demonstrated disease‐associated microglial induction of Tnfα, Tgfb1, and of phagolysosomal system transcripts including those for cathepsins, Cd68, C1qa, C3, and Trem2, which were diminished in IFNAR1 and STING deficient mice. Microglial increases in activated cathepsin D, and CD68 were significantly reduced in IFNAR1−/− mice, particularly in white matter, and increases in COX‐1 expression, and prostaglandin synthesis were significantly mitigated. Disease progressed more slowly in IFNAR1−/− mice, with diminished synaptic and neuronal loss and delayed onset of neurological signs and death but without effect on proteinase K‐resistant PrP levels. Therefore, STING‐dependent IFN‐I influences microglial phenotype and influences neurodegenerative progression despite occurring secondary to initial degenerative changes. These data expand our mechanistic understanding of IFN‐I induction and its impact on microglial function during chronic neurodegeneration.
Collapse
Affiliation(s)
- Arshed Nazmi
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Robert H Field
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Eadaoin W Griffin
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Orla Haugh
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Edel Hennessy
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Donal Cox
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Renata Reis
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Lucas Tortorelli
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Carol L Murray
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Ana Belen Lopez-Rodriguez
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Lei Jin
- Department of Medicine, Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Gainesville, Florida
| | - Ed C Lavelle
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Aisling Dunne
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| | - Colm Cunningham
- School of Biochemistry and Immunology, Trinity College Institute of Neuroscience & Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Republic of Ireland
| |
Collapse
|
15
|
Firmino M, Weis SN, Souza JMF, Gomes BRB, Mól AR, Mortari MR, Souza GEP, Coca GC, Williams TCR, Fontes W, Ricart CAO, de Sousa MV, Veiga-Souza FH. Label-free quantitative proteomics of rat hypothalamus under fever induced by LPS and PGE 2. J Proteomics 2018; 187:182-199. [PMID: 30056254 DOI: 10.1016/j.jprot.2018.07.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/13/2018] [Accepted: 07/24/2018] [Indexed: 12/21/2022]
Abstract
Fever is a brain-mediated increase in body temperature mainly during inflammatory or infectious challenges. Although there is considerable data regarding the inflammation pathways involved in fever, metabolic alterations necessary to orchestrate the complex inflammatory response are not totally understood. We performed proteomic analysis of rat hypothalamus using label-free LC-MS/MS in a model of fever induced by lipopolysaccharide (LPS) or prostaglandin E2 (PGE2). In total, 7021 proteins were identified. As far as we know, this is the largest rat hypothalamus proteome dataset available to date. Pathway analysis showed proteins from both stimuli associated with inflammatory and metabolic pathways. Concerning metabolic pathways, rats exposed to LPS or PGE2 presented lower relative abundance of proteins involved in glycolysis, pentose phosphate pathway and tricarboxylic acid cycle. Mitochondrial function may also be altered by both stimuli because significant downregulation of several proteins was found, mainly in complexes I and IV. LPS was able to induce downregulation of important proteins in the enzymatic antioxidant system, thereby contributing to oxidative stress. The results offered comprehensive information about fever responses and helped to reveal new insights into proteins potentially involved in inflammatory signaling and metabolic changes in the hypothalamus during systemic LPS and central PGE2 administration. SIGNIFICANCE The evolutionary persistence of fever, despite the elevated cost for maintenance of this response, suggests that elevation in core temperature may represent an interesting strategy for survival. Fever response is achieved through the integrated behavioral, physiological, immunological and biochemical processes that determine the balance between heat generation and elimination. The development of such complex response arouses interest in studying how the cell metabolism responds or even contributes to promote fever. Our results offered comprehensive information about fever responses, including metabolic and inflammatory pathways, providing new insights into candidate proteins potentially involved in inflammatory signaling and metabolic changes in the hypothalamus during fever induced by systemic LPS and central PGE2 perturbation.
Collapse
Affiliation(s)
- Marina Firmino
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Simone N Weis
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Jaques M F Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Bruna R B Gomes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Alan R Mól
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Márcia R Mortari
- Laboratory of Neuropharmacology, Department of Physiological Sciences, Institute of Biological Sciences, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Gloria E P Souza
- Laboratory of Pharmacology, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP 14040-903, Brazil
| | - Guilherme C Coca
- Laboratory of Plant Biochemistry, Department of Botany, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Thomas C R Williams
- Laboratory of Plant Biochemistry, Department of Botany, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Wagner Fontes
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Carlos André O Ricart
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil
| | - Marcelo V de Sousa
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil.
| | - Fabiane H Veiga-Souza
- Laboratory of Protein Chemistry and Biochemistry, Department of Cell Biology, Institute of Biology, University of Brasilia, Brasília, DF 70910-900, Brazil; School of Ceilandia, University of Brasilia, Brasília, DF 72220-275, Brazil.
| |
Collapse
|
16
|
Lin TM, Chen WS, Sheu JJ, Chen YH, Chen JH, Chang CC. Autoimmune rheumatic diseases increase dementia risk in middle-aged patients: A nationwide cohort study. PLoS One 2018; 13:e0186475. [PMID: 29304089 PMCID: PMC5755737 DOI: 10.1371/journal.pone.0186475] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 10/02/2017] [Indexed: 11/25/2022] Open
Abstract
Objective Dementia is a common neurological disease that substantially affects public health. A previous study revealed that dementia occurs when the body’s immune system attacks the cells of the brain, indicating that dementia may be similar to autoimmune rheumatic diseases (ARDs). In the current retrospective cohort study, we focused on middle-aged ARD patients (45 years or older) to investigate the association between ARDs in middle-aged people and dementia by using a nationwide population-based database in Taiwan. Method Our study analyzed the medical data of the Taiwanese population from 2001 to 2012, with a follow-up period extending until the end of 2011. We identified middle-aged patients with ARDs by using the Taiwan National Health Insurance Research Database. We selected a comparison cohort from the general population that was randomly frequency-matched by age (in 5-year increments), sex, and index year and further analyzed the dementia risk by using a Cox regression model that considers sex, age, and comorbidities. Results The study enrolled 34,660 middle-aged ARD patients (77% female, mean age = 59.8 years) and 138,640 controls. The risk of developing dementia was 1.18 times higher for middle-aged patients with ARDs compared with patients without ARDs after adjustment for age, sex, and comorbidities. Among the patients with ARDs, the subgroups with rheumatoid arthritis, systemic lupus erythematosus, and Sjögren syndrome (SS) were associated with a significantly higher dementia risk (adjusted hazard ratio [HR] 1.14, 95% confidence index [CI] 1.06–1.32; adjusted HR 1.07, 95% CI 0.86–1.34; adjusted HR 1.46, 95% CI 1.32–1.63, respectively). Furthermore, primary SS and secondary SS patients had the highest risks of dementia among all the ADR subgroups (adjusted HR 1.35, 95% CI 1.18–1.54; adjusted HR 1.67, 95% CI 1.43–1.95 respectively). Conclusion This nationwide retrospective cohort study demonstrated that dementia risk is significantly higher in middle-aged patients with ARDs compared with the general population.
Collapse
Affiliation(s)
- Tzu-Min Lin
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Wei-Sheng Chen
- Division of Allergy, Immunology, and Rheumatology, Department of Internal Medicine, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, Taiwan
| | - Jau-Jiuan Sheu
- Department of Neurology, Taipei Medical University Hospital, Taipei, Taiwan
- Department of Neurology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Yi-Hsuan Chen
- Biostatistics Center, College of Management, Taipei Medical University, Taipei, Taiwan
| | - Jin-Hua Chen
- Biostatistics Center and School of Health Care Administration, College of Management, Taipei Medical University, Taipei, Taiwan
- * E-mail: (CCC); (JHC)
| | - Chi-Ching Chang
- Division of Rheumatology, Immunology and Allergy, Department of Internal Medicine, Taipei Medical University Hospital, Taipei, Taiwan
- Division of Allergy, Immunology and Rheumatology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- * E-mail: (CCC); (JHC)
| |
Collapse
|
17
|
Peña-Ortega F. Pharmacological Tools to Activate Microglia and their Possible use to Study Neural Network Patho-physiology. Curr Neuropharmacol 2017; 15:595-619. [PMID: 27697040 PMCID: PMC5543677 DOI: 10.2174/1570159x14666160928151546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 08/05/2016] [Accepted: 09/26/2016] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Microglia are the resident immunocompetent cells of the CNS and also constitute a unique cell type that contributes to neural network homeostasis and function. Understanding microglia cell-signaling not only will reveal their diverse functions but also will help to identify pharmacological and non-pharmacological tools to modulate the activity of these cells. METHODS We undertook a search of bibliographic databases for peer-reviewed research literature to identify microglial activators and their cell-specificity. We also looked for their effects on neural network function and dysfunction. RESULTS We identified several pharmacological targets to modulate microglial function, which are more or less specific (with the proper control experiments). We also identified pharmacological targets that would require the development of new potent and specific modulators. We identified a wealth of evidence about the participation of microglia in neural network function and their alterations in pathological conditions. CONCLUSION The identification of specific microglia-activating signals provides experimental tools to modulate the activity of this heterogeneous cell type in order to evaluate its impact on other components of the nervous system, and it also helps to identify therapeutic approaches to ease some pathological conditions related to microglial dysfunction.
Collapse
Affiliation(s)
- Fernando Peña-Ortega
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, UNAM-Campus Juriquilla, México
| |
Collapse
|
18
|
Zhao L, Zabel MK, Wang X, Ma W, Shah P, Fariss RN, Qian H, Parkhurst CN, Gan WB, Wong WT. Microglial phagocytosis of living photoreceptors contributes to inherited retinal degeneration. EMBO Mol Med 2016; 7:1179-97. [PMID: 26139610 PMCID: PMC4568951 DOI: 10.15252/emmm.201505298] [Citation(s) in RCA: 306] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Retinitis pigmentosa, caused predominantly by mutations in photoreceptor genes, currently lacks comprehensive treatment. We discover that retinal microglia contribute non-cell autonomously to rod photoreceptor degeneration by primary phagocytosis of living rods. Using rd10 mice, we found that the initiation of rod degeneration is accompanied by early infiltration of microglia, upregulation of phagocytic molecules in microglia, and presentation of “eat-me” signals on mutated rods. On live-cell imaging, infiltrating microglia interact dynamically with photoreceptors via motile processes and engage in rapid phagocytic engulfment of non-apoptotic rods. Microglial contribution to rod demise is evidenced by morphological and functional amelioration of photoreceptor degeneration following genetic ablation of retinal microglia. Molecular inhibition of microglial phagocytosis using the vitronectin receptor antagonist cRGD also improved morphological and functional parameters of degeneration. Our findings highlight primary microglial phagocytosis as a contributing mechanism underlying cell death in retinitis pigmentosa and implicate microglia as a potential cellular target for therapy.
Collapse
Affiliation(s)
- Lian Zhao
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Matthew K Zabel
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Xu Wang
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Wenxin Ma
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Parth Shah
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Robert N Fariss
- Biological Imaging Core, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Haohua Qian
- Visual Function Core, National Eye institute National Institutes of Health, Bethesda, MD, USA
| | - Christopher N Parkhurst
- Department of Neuroscience and Physiology, Skirball Institute New York University School of Medicine, New York, NY, USA
| | - Wen-Biao Gan
- Department of Neuroscience and Physiology, Skirball Institute New York University School of Medicine, New York, NY, USA
| | - Wai T Wong
- Unit on Neuron-Glia Interactions in Retinal Disease, National Eye institute National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
19
|
Abiega O, Beccari S, Diaz-Aparicio I, Nadjar A, Layé S, Leyrolle Q, Gómez-Nicola D, Domercq M, Pérez-Samartín A, Sánchez-Zafra V, Paris I, Valero J, Savage JC, Hui CW, Tremblay MÈ, Deudero JJP, Brewster AL, Anderson AE, Zaldumbide L, Galbarriatu L, Marinas A, Vivanco MDM, Matute C, Maletic-Savatic M, Encinas JM, Sierra A. Neuronal Hyperactivity Disturbs ATP Microgradients, Impairs Microglial Motility, and Reduces Phagocytic Receptor Expression Triggering Apoptosis/Microglial Phagocytosis Uncoupling. PLoS Biol 2016; 14:e1002466. [PMID: 27228556 PMCID: PMC4881984 DOI: 10.1371/journal.pbio.1002466] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 04/21/2016] [Indexed: 12/24/2022] Open
Abstract
Phagocytosis is essential to maintain tissue homeostasis in a large number of inflammatory and autoimmune diseases, but its role in the diseased brain is poorly explored. Recent findings suggest that in the adult hippocampal neurogenic niche, where the excess of newborn cells undergo apoptosis in physiological conditions, phagocytosis is efficiently executed by surveillant, ramified microglia. To test whether microglia are efficient phagocytes in the diseased brain as well, we confronted them with a series of apoptotic challenges and discovered a generalized response. When challenged with excitotoxicity in vitro (via the glutamate agonist NMDA) or inflammation in vivo (via systemic administration of bacterial lipopolysaccharides or by omega 3 fatty acid deficient diets), microglia resorted to different strategies to boost their phagocytic efficiency and compensate for the increased number of apoptotic cells, thus maintaining phagocytosis and apoptosis tightly coupled. Unexpectedly, this coupling was chronically lost in a mouse model of mesial temporal lobe epilepsy (MTLE) as well as in hippocampal tissue resected from individuals with MTLE, a major neurological disorder characterized by seizures, excitotoxicity, and inflammation. Importantly, the loss of phagocytosis/apoptosis coupling correlated with the expression of microglial proinflammatory, epileptogenic cytokines, suggesting its contribution to the pathophysiology of epilepsy. The phagocytic blockade resulted from reduced microglial surveillance and apoptotic cell recognition receptor expression and was not directly mediated by signaling through microglial glutamate receptors. Instead, it was related to the disruption of local ATP microgradients caused by the hyperactivity of the hippocampal network, at least in the acute phase of epilepsy. Finally, the uncoupling led to an accumulation of apoptotic newborn cells in the neurogenic niche that was due not to decreased survival but to delayed cell clearance after seizures. These results demonstrate that the efficiency of microglial phagocytosis critically affects the dynamics of apoptosis and urge to routinely assess the microglial phagocytic efficiency in neurodegenerative disorders. Phagocytosis by microglia is tightly coupled to apoptosis, swiftly removing apoptotic cells and actively maintaining tissue homeostasis, but the neuronal hyperactivity associated with epilepsy disrupts the ATP gradients that drive phagocytosis, leading to the accumulation of apoptotic cells and inflammation. Phagocytosis, the engulfment and digestion of cellular debris, is at the core of the regenerative response of the damaged tissue, because it prevents the spillover of toxic intracellular contents and is actively anti-inflammatory. In the brain, the professional phagocytes are microglia, whose dynamic processes rapidly engulf and degrade cells undergoing apoptosis—programmed cell death—in physiological conditions. Thus, microglia hold the key to brain regeneration, but their efficiency as phagocytes in the diseased brain is only presumed. Here, we have discovered a generalized response of microglia to apoptotic challenge induced by excitotoxicity and inflammation, in which they boost their phagocytic efficiency to account for the increase in apoptosis. To our surprise, this apoptosis/microglial phagocytosis coupling was lost in the hippocampus from human and experimental mesial temporal lobe epilepsy (MTLE), a major neurodegenerative disorder characterized by excitotoxicity, inflammation, and seizures. This uncoupling was due to widespread ATP release during neuronal hyperactivity, which “blinded” microglia to the ATP microgradients released by apoptotic cells as “find-me” signals. The impairment of phagocytosis led to the accumulation of apoptotic cells and the build-up of a detrimental inflammatory reaction. Our data advocates for systematic assessment of the efficiency of microglial phagocytosis in brain disorders.
Collapse
Affiliation(s)
- Oihane Abiega
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Sol Beccari
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Irune Diaz-Aparicio
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | | | - Sophie Layé
- Université Bordeaux Segalen, Bordeaux, France
| | | | - Diego Gómez-Nicola
- Centre for Biological Sciences, University of Southampton, Southampton, United Kingdom
| | - María Domercq
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Alberto Pérez-Samartín
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Víctor Sánchez-Zafra
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Iñaki Paris
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | - Jorge Valero
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
- Ikerbasque Foundation, Bilbao, Spain
| | - Julie C. Savage
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada
- Université Laval, Département de médecine moléculaire, Québec, Canada
| | - Chin-Wai Hui
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada
- Université Laval, Département de médecine moléculaire, Québec, Canada
| | - Marie-Ève Tremblay
- Centre de recherche du CHU de Québec, Axe Neurosciences, Québec, Canada
- Université Laval, Département de médecine moléculaire, Québec, Canada
| | - Juan J. P. Deudero
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
| | - Amy L. Brewster
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
| | - Anne E. Anderson
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
| | | | | | | | | | - Carlos Matute
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
| | | | - Juan M. Encinas
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain
- University of the Basque Country, Leioa, Spain
- Baylor College of Medicine, The Jan and Dan Duncan Neurological Research Institute at Texas Children’s Hospital, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
20
|
Diaz-Aparicio I, Beccari S, Abiega O, Sierra A. Clearing the corpses: regulatory mechanisms, novel tools, and therapeutic potential of harnessing microglial phagocytosis in the diseased brain. Neural Regen Res 2016; 11:1533-1539. [PMID: 27904472 PMCID: PMC5116820 DOI: 10.4103/1673-5374.193220] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Apoptosis is a widespread phenomenon that occurs in the brain in both physiological and pathological conditions. Dead cells must be quickly removed to avoid the further toxic effects they exert in the parenchyma, a process executed by microglia, the brain professional phagocytes. Although phagocytosis is critical to maintain tissue homeostasis, it has long been either overlooked or indirectly assessed based on microglial morphology, expression of classical activation markers, or engulfment of artificial phagocytic targets in vitro. Nevertheless, these indirect methods present several limitations and, thus, direct observation and quantification of microglial phagocytosis is still necessary to fully grasp its relevance in the diseased brain. To overcome these caveats and obtain a comprehensive, quantitative picture of microglial phagocytosis we have developed a novel set of parameters. These parameters have allowed us to identify the different strategies utilized by microglia to cope with apoptotic challenges induced by excitotoxicity or inflammation. In contrast, we discovered that in mouse and human epilepsy microglia failed to find and engulf apoptotic cells, resulting in accumulation of debris and inflammation. Herein, we advocate that the efficiency of microglial phagocytosis should be routinely tested in neurodegenerative and neurological disorders, in order to determine the extent to which it contributes to apoptosis and inflammation found in these conditions. Finally, our findings point towards enhancing microglial phagocytosis as a novel therapeutic strategy to control tissue damage and inflammation, and accelerate recovery in brain diseases.
Collapse
Affiliation(s)
- Irune Diaz-Aparicio
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain; University of the Basque Country, Leioa, Spain
| | - Sol Beccari
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain; University of the Basque Country, Leioa, Spain
| | - Oihane Abiega
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain; University of the Basque Country, Leioa, Spain
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, Zamudio, Spain; University of the Basque Country, Leioa, Spain; Ikerbasque Foundation, Bilbao, Spain
| |
Collapse
|
21
|
Spittau B, Rilka J, Steinfath E, Zöller T, Krieglstein K. TGFβ1 increases microglia-mediated engulfment of apoptotic cells via upregulation of the milk fat globule-EGF factor 8. Glia 2014; 63:142-53. [PMID: 25130376 DOI: 10.1002/glia.22740] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 07/29/2014] [Indexed: 12/18/2022]
Abstract
Milk fat globule-epidermal growth factor-factor 8 (Mfge8) has been described as an essential molecule during microglia-mediated clearance of apoptotic cells via binding to phosphatidylserine residues and subsequent phagocytosis. Impaired uptake of apoptotic cells by microglia results in prolonged inflammatory responses and damage of healthy cells. Although the mechanisms of Mfge8-mediated engulfment of apoptotic cells are well understood, endogenous or exogenous factors that regulate Mfge8 expression remain elusive. Here, we describe that TGFβ1 increases the expression of Mfge8 and enhances the engulfment of apoptotic cells by primary mouse microglia in a Mfge8-dependent manner. Further, apoptotic cells are capable of increasing microglial TGFβ expression and release and shift the microglia phenotype toward alternative activation. Moreover, we provide evidence that Mfge8 expression is differentially regulated in microglia after classical and alternative activation and that Mfge8 is not able to exert direct antiinflammatory effects on LPS-treated primary microglia. Together, these results underline the importance of TGFβ1 as a regulatory factor for microglia and suggest that increased TGFβ1 expression in models of neurodegeneration might be involved in clearance of apoptotic cells via regulation of Mfge8 expression.
Collapse
Affiliation(s)
- Björn Spittau
- Department of Molecular Embryology, Institute for Anatomy and Cell Biology, Albert-Ludwigs-University, Freiburg, Germany
| | | | | | | | | |
Collapse
|
22
|
Saas P, Kaminski S, Perruche S. Prospects of apoptotic cell-based therapies for transplantation and inflammatory diseases. Immunotherapy 2014; 5:1055-73. [PMID: 24088076 DOI: 10.2217/imt.13.103] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Apoptotic cell removal or interactions of early-stage apoptotic cells with immune cells are associated with an immunomodulatory microenvironment that can be harnessed to exert therapeutic effects. While the involved immune mechanisms are still being deciphered, apoptotic cell infusion has been tested in different experimental models where inflammation is deregulated. This includes chronic and acute inflammatory disorders such as arthritis, contact hypersensitivity and acute myocardial infarction. Apoptotic cell infusion has also been used in transplantation settings to prevent or treat acute and chronic rejection, as well as to limit acute graft-versus-host disease associated with allogeneic hematopoietic cell transplantation. Here, we review the mechanisms involved in apoptotic cell-induced immunomodulation and data obtained in preclinical models of transplantation and inflammatory diseases.
Collapse
|
23
|
Bénardais K, Gudi V, Gai L, Neßler J, Singh V, Prajeeth CK, Skripuletz T, Stangel M. Long-term impact of neonatal inflammation on demyelination and remyelination in the central nervous system. Glia 2014; 62:1659-70. [PMID: 24909143 DOI: 10.1002/glia.22706] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/21/2014] [Accepted: 05/23/2014] [Indexed: 12/12/2022]
Abstract
Perinatal inflammation causes immediate changes of the blood-brain barrier (BBB) and thus may have different consequences in adult life including an impact on neurological diseases such as demyelinating disorders. In order to determine if such a perinatal insult affects the course of demyelination in adulthood as "second hit," we simulated perinatal bacterial inflammation by systemic administration of lipopolysaccharide (LPS) to either pregnant mice or newborn animals. Demyelination was later induced in adult animals by cuprizone [bis(cyclohexylidenehydrazide)], which causes oligodendrocyte death with subsequent demyelination accompanied by strong microgliosis and astrogliosis. A single LPS injection at embryonic day 13.5 did not have an impact on demyelination in adulthood. In contrast, serial postnatal LPS injections (P0-P8) caused an early delay of myelin removal in the corpus callosum, which was paralleled by reduced numbers of activated microglia. During remyelination, postnatal LPS treatment enhanced early remyelination with a concomitant increase of mature oligodendrocytes. Furthermore, the postnatal LPS challenge impacts the phenotype of microglia since an elevated mRNA expression of microglia related genes such as TREM 2, CD11b, TNF-α, TGF-β1, HGF, FGF-2, and IGF-1 was found in these preconditioned mice during early demyelination. These data demonstrate that postnatal inflammation has long-lasting effects on microglia functions and modifies the course of demyelination and remyelination in adulthood.
Collapse
Affiliation(s)
- Karelle Bénardais
- Department of Neurology, Hannover Medical School, Hannover, Germany; Center for Systems Neuroscience, Hannover, Germany
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Sierra A, Beccari S, Diaz-Aparicio I, Encinas JM, Comeau S, Tremblay MÈ. Surveillance, phagocytosis, and inflammation: how never-resting microglia influence adult hippocampal neurogenesis. Neural Plast 2014; 2014:610343. [PMID: 24772353 PMCID: PMC3977558 DOI: 10.1155/2014/610343] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2013] [Accepted: 02/11/2014] [Indexed: 12/27/2022] Open
Abstract
Microglia cells are the major orchestrator of the brain inflammatory response. As such, they are traditionally studied in various contexts of trauma, injury, and disease, where they are well-known for regulating a wide range of physiological processes by their release of proinflammatory cytokines, reactive oxygen species, and trophic factors, among other crucial mediators. In the last few years, however, this classical view of microglia was challenged by a series of discoveries showing their active and positive contribution to normal brain functions. In light of these discoveries, surveillant microglia are now emerging as an important effector of cellular plasticity in the healthy brain, alongside astrocytes and other types of inflammatory cells. Here, we will review the roles of microglia in adult hippocampal neurogenesis and their regulation by inflammation during chronic stress, aging, and neurodegenerative diseases, with a particular emphasis on their underlying molecular mechanisms and their functional consequences for learning and memory.
Collapse
Affiliation(s)
- Amanda Sierra
- Ikerbasque Foundation, 48011 Bilbao, Spain
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, Spain
| | - Sol Beccari
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, Spain
| | - Irune Diaz-Aparicio
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, Spain
| | - Juan M. Encinas
- Ikerbasque Foundation, 48011 Bilbao, Spain
- Achucarro Basque Center for Neuroscience, Bizkaia Science and Technology Park, 48170 Zamudio, Spain
- Department of Neurosciences, University of the Basque Country, 48940 Leioa, Spain
| | - Samuel Comeau
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Canada G1P 4C7
- Département de Médecine Moléculaire, Université Laval, Canada G1V 4G2
| | - Marie-Ève Tremblay
- Centre de Recherche du CHU de Québec, Axe Neurosciences, Canada G1P 4C7
- Département de Médecine Moléculaire, Université Laval, Canada G1V 4G2
| |
Collapse
|
25
|
Sun Y, Liu C, Liu Y, Hosokawa T, Saito T, Kurasaki M. Changes in the expression of epigenetic factors during copper-induced apoptosis in PC12 cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2014; 49:1023-1028. [PMID: 24798901 DOI: 10.1080/10934529.2014.894847] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Despite extensive research on copper toxicity the mechanisms involved are not fully characterized. There have been many recent reports concerning the relationship between epigenetic factors and cell metabolism, but the effects of copper exposure on epigenetic factors have not been investigated. In this study, an in vitro culture system was employed to study the influence of copper on apoptosis and epigenetic factors in PC12 cells. When PC12 cells were exposed to copper, DNA damage was observed as DNA fragmentation. In addition, cytosolic cytochrome c levels were increased by copper treatment. These results suggested that copper induced apoptosis via an oxidative stress pathway. This was consistent with the observation that copper-induced apoptosis was enhanced by further oxidative stress induced by exposing cells to H₂O₂. In addition, the epigenetic factors were significantly increased in apoptotic cells following exposure to copper and oxidative stress.
Collapse
Affiliation(s)
- Yongkun Sun
- a Group of Environmental Adaptation Science, Faculty of Environmental Earth Science, Hokkaido University , Sapporo , Japan
| | | | | | | | | | | |
Collapse
|
26
|
Bogie JFJ, Jorissen W, Mailleux J, Nijland PG, Zelcer N, Vanmierlo T, Van Horssen J, Stinissen P, Hellings N, Hendriks JJA. Myelin alters the inflammatory phenotype of macrophages by activating PPARs. Acta Neuropathol Commun 2013; 1:43. [PMID: 24252308 PMCID: PMC3893408 DOI: 10.1186/2051-5960-1-43] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2013] [Accepted: 07/09/2013] [Indexed: 01/14/2023] Open
Abstract
Background Foamy macrophages, containing myelin degradation products, are abundantly found in active multiple sclerosis (MS) lesions. Recent studies have described an altered phenotype of macrophages after myelin internalization. However, mechanisms by which myelin affects the phenotype of macrophages and how this phenotype influences lesion progression remain unclear. Results We demonstrate that myelin as well as phosphatidylserine (PS), a phospholipid found in myelin, reduce nitric oxide production by macrophages through activation of peroxisome proliferator-activated receptor β/δ (PPARβ/δ). Furthermore, uptake of PS by macrophages, after intravenous injection of PS-containing liposomes (PSLs), suppresses the production of inflammatory mediators and ameliorates experimental autoimmune encephalomyelitis (EAE), an animal model of MS. The protective effect of PSLs in EAE animals is associated with a reduced immune cell infiltration into the central nervous system and decreased splenic cognate antigen specific proliferation. Interestingly, PPARβ/δ is activated in foamy macrophages in active MS lesions, indicating that myelin also activates PPARβ/δ in macrophages in the human brain. Conclusion Our data show that myelin modulates the phenotype of macrophages by PPAR activation, which may subsequently dampen MS lesion progression. Moreover, our results suggest that myelin-derived PS mediates PPARβ/δ activation in macrophages after myelin uptake. The immunoregulatory impact of naturally-occurring myelin lipids may hold promise for future MS therapeutics.
Collapse
|
27
|
Enciu AM, Popescu BO. Is there a causal link between inflammation and dementia? BIOMED RESEARCH INTERNATIONAL 2013; 2013:316495. [PMID: 23841061 PMCID: PMC3690213 DOI: 10.1155/2013/316495] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 05/20/2013] [Indexed: 12/22/2022]
Abstract
Neuroinflammation is a constant event in Alzheimer's disease (AD), but the current knowledge is insufficient to state whether inflammation is a cause, a promoter, or simply a secondary phenomenon in this inexorably progressive ailment. In the current paper, we review research data showing that inflammation is not a prerequisite for onset of dementia, and, although it may worsen the course of the disease, recent evidence shows that chronic inhibition of inflammatory pathways is not necessarily beneficial for patients. Prospective clinical trials with anti-inflammatory drugs failed to stop disease progression, measurements of inflammatory markers in serum and cerebrospinal fluid of patients yielded contradictory results, and recent bench research proved undoubtedly that neuroinflammation has a protective side as well. Knockout animal models for TNFRs or ILRs do not seem to prevent the pathology or the cognitive decline, but quite the contrary. In AD, the therapeutic intervention on inflammatory pathways still has a research future, but its targets probably need reevaluation.
Collapse
Affiliation(s)
- Ana-Maria Enciu
- Department of Cellular and Molecular Medicine, School of Medicine, “Carol Davila” University of Medicine and Pharmacy, 8 Eroilor Sanitari, District 5, Bucharest 050474, Romania
| | - Bogdan O. Popescu
- Department of Neurology, Colentina Clinical Hospital (CDPC), School of Medicine, “Carol Davila” University of Medicine and Pharmacy, 19-21 Soseaua Stefan cel Mare, District 2, Bucharest 020125, Romania
- Laboratory of Molecular Medicine, “Victor Babeş” National Institute of Pathology, 99-101 Splaiul Independenţei, District 5, Bucharest 050096, Romania
| |
Collapse
|
28
|
Sierra A, Abiega O, Shahraz A, Neumann H. Janus-faced microglia: beneficial and detrimental consequences of microglial phagocytosis. Front Cell Neurosci 2013; 7:6. [PMID: 23386811 PMCID: PMC3558702 DOI: 10.3389/fncel.2013.00006] [Citation(s) in RCA: 394] [Impact Index Per Article: 35.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2012] [Accepted: 01/09/2013] [Indexed: 02/04/2023] Open
Abstract
Microglia are the resident brain macrophages and they have been traditionally studied as orchestrators of the brain inflammatory response during infections and disease. In addition, microglia has a more benign, less explored role as the brain professional phagocytes. Phagocytosis is a term coined from the Greek to describe the receptor-mediated engulfment and degradation of dead cells and microbes. In addition, microglia phagocytoses brain-specific cargo, such as axonal and myelin debris in spinal cord injury or multiple sclerosis, amyloid-β deposits in Alzheimer's disease, and supernumerary synapses in postnatal development. Common mechanisms of recognition, engulfment, and degradation of the different types of cargo are assumed, but very little is known about the shared and specific molecules involved in the phagocytosis of each target by microglia. More importantly, the functional consequences of microglial phagocytosis remain largely unexplored. Overall, phagocytosis is considered a beneficial phenomenon, since it eliminates dead cells and induces an anti-inflammatory response. However, phagocytosis can also activate the respiratory burst, which produces toxic reactive oxygen species (ROS). Phagocytosis has been traditionally studied in pathological conditions, leading to the assumption that microglia have to be activated in order to become efficient phagocytes. Recent data, however, has shown that unchallenged microglia phagocytose apoptotic cells during development and in adult neurogenic niches, suggesting an overlooked role in brain remodeling throughout the normal lifespan. The present review will summarize the current state of the literature regarding the role of microglial phagocytosis in maintaining tissue homeostasis in health as in disease.
Collapse
Affiliation(s)
- Amanda Sierra
- Achucarro-Basque Center for Neuroscience Zamudio, Spain ; Department of Neuroscience, University of the Basque Country EHU/UPV Leioa, Spain ; Ikerbasque-Basque Foundation for Science Bilbao, Spain
| | | | | | | |
Collapse
|
29
|
Sun Y, Guo Z, Iku S, Saito T, Kurasaki M. Diethyl phthalate enhances expression of SIRT1 and DNMT3a during apoptosis in PC12 cells. J Appl Toxicol 2012; 33:1484-92. [DOI: 10.1002/jat.2816] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/02/2012] [Accepted: 08/02/2012] [Indexed: 12/21/2022]
Affiliation(s)
- Yongkun Sun
- Environmental Adaptation Science, Division of Environmental Science Development, Graduate School of Environmental Science; Hokkaido University; 060-0810 Sapporo Japan
| | - Zhikun Guo
- Key Laboratory for Medical Tissue Regeneration of Henan Province; Xinxiang Medical University, Department of Basic Medicine Xinxiang Medical University; 453003 Xinxiang China
| | - Shouhei Iku
- Key Laboratory for Medical Tissue Regeneration of Henan Province; Xinxiang Medical University, Department of Basic Medicine Xinxiang Medical University; 453003 Xinxiang China
- Beijing Academy of Science and Technology; 100089 Beijing China
- Jiangsu Alphay Biological Technology Co., Ltd; 226009 Nantong China
| | - Takeshi Saito
- Division of Health Sciences, Faculty of Health Sciences; Hokkaido University; 060-0812 Sapporo Japan
| | - Masaaki Kurasaki
- Environmental Adaptation Science, Division of Environmental Science Development, Graduate School of Environmental Science; Hokkaido University; 060-0810 Sapporo Japan
- Group of Environmental Adaptation Science, Faculty of Environmental Earth Science; Hokkaido University; 060-0810 Sapporo Japan
| |
Collapse
|
30
|
Neniskyte U, Neher JJ, Brown GC. Neuronal death induced by nanomolar amyloid β is mediated by primary phagocytosis of neurons by microglia. J Biol Chem 2011; 286:39904-13. [PMID: 21903584 PMCID: PMC3220594 DOI: 10.1074/jbc.m111.267583] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Alzheimer disease is characterized by neuronal loss and brain plaques of extracellular amyloid β (Aβ), but the means by which Aβ may induce neuronal loss is not entirely clear. Although high concentrations of Aβ (μm) can induce direct toxicity to neurons, we find that low concentration (nm) induce neuronal loss through a microglia-mediated mechanism. In mixed neuronal-glial cultures from rat cerebellum, 250 nm Aβ1–42 (added as monomers, oligomers or fibers) induced about 30% loss of neurons between 2 and 3 days. This neuronal loss occurred without any increase in neuronal apoptosis or necrosis, and no neuronal loss occurred with Aβ42–1. Aβ greatly increased the phagocytic capacity of microglia and induced phosphatidylserine exposure (an “eat-me” signal) on neuronal processes. Blocking exposed phosphatidylserine by adding annexin V or an antibody to phosphatidylserine or inhibiting microglial phagocytosis by adding either cytochalasin D (to block actin polymerization) or cyclo(RGDfV) (to block vitronectin receptors) significantly prevented neuronal loss. Loss of neuronal synapses occurred in parallel with loss of cell bodies and was also prevented by blocking phagocytosis. Inhibition of phagocytosis prevented neuronal loss with no increase in neuronal death, even after 7 days, suggesting that microglial phagocytosis was the primary cause of neuronal death induced by nanomolar Aβ.
Collapse
Affiliation(s)
- Urte Neniskyte
- Department of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom.
| | | | | |
Collapse
|
31
|
Gras G, Samah B, Hubert A, Léone C, Porcheray F, Rimaniol AC. EAAT expression by macrophages and microglia: still more questions than answers. Amino Acids 2011; 42:221-9. [PMID: 21373769 DOI: 10.1007/s00726-011-0866-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 02/17/2011] [Indexed: 01/07/2023]
Abstract
Glutamate is the main excitatory amino acid, but its presence in the extracellular milieu has deleterious consequences. It may induce excitotoxicity and also compete with cystine for the use of the cystine-glutamate exchanger, blocking glutathione neosynthesis and inducing an oxidative stress-induced cell death. Both mechanisms are critical in the brain where up to 20% of total body oxygen consumption occurs. In normal conditions, the astrocytes ensure that extracellular concentration of glutamate is kept in the micromolar range, thanks to their coexpression of high-affinity glutamate transporters (EAATs) and glutamine synthetase (GS). Their protective function is nevertheless sensitive to situations such as oxidative stress or inflammatory processes. On the other hand, macrophages and microglia do not express EAATs and GS in physiological conditions and are the principal effector cells of brain inflammation. Since the late 1990s, a number of studies have now shown that both microglia and macrophages display inducible EAAT and GS expression, but the precise significance of this still remains poorly understood. Brain macrophages and microglia are sister cells but yet display differences. Both are highly sensitive to their microenvironment and can perform a variety of functions that may oppose each other. However, in the very particular environment of the healthy brain, they are maintained in a repressed state. The aim of this review is to present the current state of knowledge on brain macrophages and microglial cells activation, in order to help clarify their role in the regulation of glutamate under pathological conditions as well as its outcome.
Collapse
Affiliation(s)
- Gabriel Gras
- Division of Immuno-Virology, Institute of Emerging Diseases and Innovative Therapies, UMR E1 CEA DSV/IMETI/SIV and University Paris South-Paris 11, 18, route du Panorama, 92265, Fontenay-aux Roses, France.
| | | | | | | | | | | |
Collapse
|
32
|
Hughes MM, Field RH, Perry VH, Murray CL, Cunningham C. Microglia in the degenerating brain are capable of phagocytosis of beads and of apoptotic cells, but do not efficiently remove PrPSc, even upon LPS stimulation. Glia 2011; 58:2017-30. [PMID: 20878768 PMCID: PMC3498730 DOI: 10.1002/glia.21070] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Despite the phagocytic machinery available to microglia the aberrant amyloid proteins produced during Alzheimer's and prion disease, amyloid-β and PrP(Sc), are inefficiently cleared. We have shown that microglia in the ME7 model of prion disease show morphological evidence of activation, synthesize low levels of pro-inflammatory cytokines and are primed to produce exaggerated responses to subsequent inflammatory challenges. Whether these microglia engage in significant phagocytic activity in the disease per se, or upon subsequent inflammatory challenge is not clear. In the present study we show transcriptional activation of a large number of scavenger receptors (SRs), matrix metalloproteinases (MMPs), oxidative enzymes, and cathepsins in ME7 animals. Hippocampally-injected inert latex beads (6 μm) are efficiently phagocytosed by microglia of ME7 prion-diseased animals, but not by microglia in normal animals. Stimulation of ME7 animals with systemic bacterial endotoxin (lipopolysaccharide, LPS) induced further increases in SR-A2, MMP3, and urokinase plasminogen activator receptor (uPAR) but decreased, or did not alter, transcription of most phagocytosis-related genes examined and did not enhance clearance of deposited PrP(Sc). Furthermore, intracerebral injection with LPS (0.5 μg) induced marked microglial production of IL-1β, robust cellular infiltration and marked apoptosis but also did not induce further clearance of PrP(Sc). These data indicate that microglia in the prion-diseased brain are capable of phagocytosis per se, but show limited efficacy in removing PrP(Sc) even upon marked escalation of CNS inflammation. Furthermore, microglia/macrophages remain IL-1β-negative during phagocytosis of apoptotic cells. The data demonstrate that phagocytic activity and pro-inflammatory microglial phenotype do not necessarily correlate.
Collapse
Affiliation(s)
- Martina M Hughes
- Trinity College Institute of Neuroscience and School of Biochemistry and Immunology, Trinity College Dublin, Dublin 2, Republic of Ireland
| | | | | | | | | |
Collapse
|
33
|
Lichtenstein MP, Carriba P, Masgrau R, Pujol A, Galea E. Staging anti-inflammatory therapy in Alzheimer's disease. Front Aging Neurosci 2010; 2:142. [PMID: 21152343 PMCID: PMC2998033 DOI: 10.3389/fnagi.2010.00142] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Accepted: 09/16/2010] [Indexed: 01/25/2023] Open
Abstract
The use of non-steroidal anti-inflammatory drugs (NSAIDs) in Alzheimer's disease (AD) is controversial because conclusions from numerous epidemiological studies reporting delayed onset of AD in NSAID users have not been corroborated in clinical trials. The purpose of this personal view is to revise the case for NSAIDs in AD therapeutics in light of: (i) the last report from the only primary prevention trial in AD, ADAPT, which, although incomplete, points to significant protection in long-term naproxen users, and (ii) the recently proposed dynamic model of AD evolution. The model contends that there is a clinical silent phase in AD that can last up to 20 years, the duration depending on life style habits, genetic factors, or cognitive reserve. The failure of many purported disease-modifying drugs in AD clinical trials is forcing the view that treatments will only be efficacious if administered pre-clinically. Here we will argue that NSAIDs failed in clinical trials because they are disease-modifying drugs, and they should be administered in early stages of the disease. A complete prevention trial in cognitively normal individuals is thus called for. Further, the shift of anti-inflammatory treatment to early stages uncovers a knowledge void about the targets of NSAIDs in asymptomatic individuals. AD researchers have mostly relied on post-mortem analysis of Aβ plaque-laden brains from demented patients or animal models, thus drawing conclusions about AD pathogenesis based on late symptoms. We will discuss evidence in support that defective, not excessive, inflammation underlies AD pathogenesis, that NSAIDs are multifunctional drugs acting on inflammatory and non-inflammatory targets, and that astrocytes and microglia may play differing roles in disease progression, with an emphasis of ApoEε4 as a key, undervalued target of NSAIDs. According to a meta-analysis of epidemiological data, NSAIDs afford an average protection of 58%. If this figure is true, and translated into patient numbers, NSAID treatment may revive as a worth pursuing strategy to significantly reduce the socio-economical burden imposed by AD.
Collapse
|
34
|
De Simone R, Niturad CE, De Nuccio C, Ajmone-Cat MA, Visentin S, Minghetti L. TGF-β and LPS modulate ADP-induced migration of microglial cells through P2Y1 and P2Y12 receptor expression. J Neurochem 2010; 115:450-9. [PMID: 20681951 DOI: 10.1111/j.1471-4159.2010.06937.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nucleotides act as early signals for microglial recruitment to sites of CNS injury. As microglial motility and activation can be influenced by several local factors at the site of the lesion, we investigated the effects of interferon-gamma, lipopolysaccharide (LPS) or transforming growth factor-β (TGF-β) addition to mixed glial cell cultures, on microglial migration in response to ADP, P2Y12 and P2Y1 mRNA expression as well as on the expression of an array of genes associated with the process of microglial activation. First, we demonstrated, by pharmacological inhibition and by using small interfering RNAs, that in addition to P2Y12, P2Y1 is involved in ADP-stimulated microglial migration. The ability of specific agonists to induce Ca(2+) mobilization further confirmed the expression of functional P2Y receptors in microglia. Then, we found that migratory capability and expression of both P2Y receptors were abrogated in microglial cells from LPS-stimulated mixed glial cultures, while TGF-β increased ADP-induced migration and the expression of P2Y12 and P2Y1 receptors. Interferon-gamma did not influence receptor expression or microglial migration. Finally, the patterns of gene expression induced in microglia by LPS or TGF-β treatment of mixed glial cultures were clearly distinct. LPS induced a set of classical pro-inflammatory genes, whereas TGF-β increased the expression of genes associated with atypical microglial phenotype, namely arginase-1 and TGF-β genes. These results imply that both P2Y1 and P2Y12 may guide microglia toward the lesion. They also suggest that the modulation of microglial purinergic receptors expression by local factors, through direct and/or astrocyte-mediated actions, may represent a novel mechanism affecting neuroinflammatory response.
Collapse
Affiliation(s)
- Roberta De Simone
- Department of Cell Biology and Neurosciences, Istituto Superiore di Sanità, Rome, Italy.
| | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Minocycline reduces neuronal death and attenuates microglial response after pediatric asphyxial cardiac arrest. J Cereb Blood Flow Metab 2010; 30:119-29. [PMID: 19756023 PMCID: PMC2949095 DOI: 10.1038/jcbfm.2009.194] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The mechanisms leading to delayed neuronal death after asphyxial cardiac arrest (ACA) in the developing brain are unknown. This study aimed at investigating the possible role of microglial activation in neuronal death in developing brain after ACA. Postnatal day-17 rats were subjected to 9 mins of ACA followed by resuscitation. Rats were randomized to treatment with minocycline, (90 mg/kg, intraperitoneally (i.p.)) or vehicle (saline, i.p.) at 1 h after return of spontaneous circulation. Thereafter, minocycline (22.5 mg/kg, i.p.) was administrated every 12 h until sacrifice. Microglial activation (evaluated by immunohistochemistry using ionized calcium-binding adapter molecule-1 (Iba1) antibody) coincided with DNA fragmentation and neurodegeneration in CA1 hippocampus and cortex (assessed by deoxynucleotidyltransferase-mediated dUTP nick-end labeling (TUNEL), Fluoro-Jade-B and Nissl stain). Minocycline significantly decreased both the microglial response and neuronal degeneration compared with the vehicle. Asphyxial CA significantly enhanced proinflammatory cytokine and chemokine levels in hippocampus versus control (assessed by multiplex bead array assay), specifically tumor necrosis factor-alpha (TNF-alpha), macrophage inflammatory protein-1alpha (MIP-1alpha), regulated upon activation, normal T-cell expressed and secreted (RANTES), and growth-related oncogene (GRO-KC) (P<0.05). Minocycline attenuated ACA-induced increases in MIP-1alpha and RANTES (P<0.05). These data show that microglial activation and cytokine production are increased in immature brain after ACA. The beneficial effect of minocycline suggests an important role for microglia in selective neuronal death after pediatric ACA, and a possible therapeutic target.
Collapse
|
37
|
Fraser DA, Pisalyaput K, Tenner AJ. C1q enhances microglial clearance of apoptotic neurons and neuronal blebs, and modulates subsequent inflammatory cytokine production. J Neurochem 2009; 112:733-43. [PMID: 19919576 DOI: 10.1111/j.1471-4159.2009.06494.x] [Citation(s) in RCA: 147] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The expression of C1q, a recognition molecule of the complement system, is up-regulated following neuronal injury and is detected early in neurodegenerative disorders such as Alzheimer's disease. This multimeric protein triggers an enhancement of phagocytosis of suboptimally opsonized targets by microglia, the phagocytic cells of the CNS, similar to other phagocytes, enhances the uptake of apoptotic cells in peripheral phagocytes, and suppresses inflammatory cytokine production in human monocytes, macrophages and dendritic cells in the absence of activation of the entire complement cascade. The goal of this study was to determine if C1q could influence the inflammatory response to injury in the CNS, using primary rat microglia and neurons. The data show that microglia preferentially ingest apoptotic cells in comparison to live cells, like other professional phagocytes, that microglial ingestion of apoptotic neurons and neuronal blebs is enhanced by the presence of normal serum and that these enhanced levels of uptake are diminished in serum depleted of C1q. In addition, purified C1q bound to apoptotic neurons and neuronal blebs in a dose dependent manner, and alone triggered a significant enhancement of uptake by microglia. Microglia added to C1q coated wells or fed apoptotic neurons or neuronal blebs coated with C1q suppressed the lipopolysaccharide-induced production of proinflammatory cytokines interleukin (IL)-1alpha, IL-1beta, IL-6 and TNF-alpha, while the presence of C1q enhanced levels of the chemokine MCP-1/CCL2. The data are consistent with a protective role for C1q in the CNS during early stages of cell death by enhancing microglial clearance of apoptotic cells and suppressing proinflammatory cytokines.
Collapse
Affiliation(s)
- Deborah A Fraser
- Department of Molecular Biology and Biochemistry, University of California, Irvine, California 92697-3900, USA.
| | | | | |
Collapse
|
38
|
Chaudhry U, Zhuang H, Doré S. Microsomal prostaglandin E synthase-2: cellular distribution and expression in Alzheimer's disease. Exp Neurol 2009; 223:359-65. [PMID: 19664621 DOI: 10.1016/j.expneurol.2009.07.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2009] [Revised: 06/23/2009] [Accepted: 07/24/2009] [Indexed: 12/31/2022]
Abstract
Nonsteroidal anti-inflammatory drugs, such as cyclooxygenase (COX)-2 inhibitors, have been unsuccessful in slowing or reversing Alzheimer's disease (AD). Thus, understanding the expression patterns of the downstream effectors for the regulation of prostaglandin synthesis may be important for understanding the pathological processes involved in AD and formulating more effective pharmacotherapeutics for this disease. In this study, we used immunofluorescence, immunohistochemistry, and Western blot analysis to compare patterns of microsomal prostaglandin E synthase (mPGES)-2 expression in the middle frontal gyrus (MFG) of AD patients and age-matched controls. In control human brain sections, mPGES-2 immunoreactivity was observed in neurons, activated microglia, and endothelium, but not in resting microglia, astrocytes, or smooth muscle cells. Microsomal PGES-2 immunoreactivity was particularly elevated in the pyramidal neurons of brains from three of five sporadic and four of five familial AD patients compared with four of five age-matched control brains that showed minimal immunoreactivity. In contrast, Western blot analysis revealed no difference in mPGES-2 levels between end-stage AD brain tissue and control brain tissue. These results suggest that in human cortex, mPGES-2 is constitutive in neurons and endothelium and induced in activated microglia. Furthermore, the high immunoreactivity of mPGES-2 in pyramidal neurons of AD brains indicates that it might have a potential role in the functional replacement of cytosolic PGES or inactive mPGES-1 in later stages of AD.
Collapse
Affiliation(s)
- Uzma Chaudhry
- Department of Anesthesiology/Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | | |
Collapse
|
39
|
Ducruet AF, Zacharia BE, Hickman ZL, Grobelny BT, Yeh ML, Sosunov SA, Connolly ES. The complement cascade as a therapeutic target in intracerebral hemorrhage. Exp Neurol 2009; 219:398-403. [PMID: 19632224 DOI: 10.1016/j.expneurol.2009.07.018] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2009] [Accepted: 07/15/2009] [Indexed: 12/12/2022]
Abstract
Intracerebral hemorrhage (ICH) is the second most common and deadliest form of stroke. Currently, no pharmacologic treatment strategies exist for this devastating disease. Following the initial mechanical injury suffered at hemorrhage onset, secondary brain injury proceeds through both direct cellular injury and inflammatory cascades, which trigger infiltration of granulocytes and monocytes, activation of microglia, and disruption of the blood-brain barrier with resulting cerebral edema. The complement cascade has been shown to play a central role in the pathogenesis of secondary injury following ICH, although the specific mechanisms responsible for the proximal activation of complement remain incompletely understood. Cerebral injury following cleavage of complement component 3 (C3) proceeds through parallel but interrelated pathways of anaphylatoxin-mediated inflammation and direct toxicity secondary to membrane attack complex-driven erythrocyte lysis. Complement activation also likely plays an important physiologic role in recovery following ICH. As such, a detailed understanding of the variation in functional effects of complement activation over time is critical to exploiting this target as an exciting translational strategy for intracerebral hemorrhage.
Collapse
Affiliation(s)
- Andrew F Ducruet
- Department of Neurological Surgery, Columbia University, 630 West 168th Street, New York, NY 10032, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
The multifaceted profile of activated microglia. Mol Neurobiol 2009; 40:139-56. [PMID: 19629762 DOI: 10.1007/s12035-009-8077-9] [Citation(s) in RCA: 244] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 06/17/2009] [Indexed: 12/17/2022]
Abstract
Although relatively neglected previously, research efforts in the past decade or so have identified a pivotal role for glial cells in regulating neuronal function. Particular emphasis has been placed on increasing our understanding of the function of microglia because a change from the ramified "resting" state of these cells has been associated with the pathogenesis of several neurodegenerative diseases, notably Alzheimer's disease. However, it is not clear whether activation of microglia and the associated inflammatory changes play a part in triggering disease processes or whether cell activation is a response to the early changes associated with the disease. In either case, the possibility exists that modulation of microglial activation may be beneficial in some circumstances, underlying the need to pursue research in this area. The original morphological categorization of microglia by Del Rio Hortega into ameboid, ramified, and intermediate forms, must now be elaborated to encompass a functional description. The evidence which has been generated recently suggests that microglia are probably never in a "resting" state and that several intermediate transitional states, based on function and morphology, probably exist. A more complete understanding of these states and the triggers which lead to a change from one to another state, and the factors which modulate the molecular switch that determines the persistence of the "activated" state remain to be identified.
Collapse
|
41
|
|
42
|
Yang MS, Min KJ, Joe E. Multiple mechanisms that prevent excessive brain inflammation. J Neurosci Res 2007; 85:2298-305. [PMID: 17348044 DOI: 10.1002/jnr.21254] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Inflammation of the injured brain has a double-edged effect. Inflammation protects the brain from infection, but it aggravates injury. Furthermore, brain inflammation is considered a risk factor for neurodegenerative disorders, such as Alzheimer's and Parkinson's diseases. Emerging evidence supports the activation of negative regulatory mechanisms during this process to prevent prolonged and extensive inflammation. The inflammatory stimulators themselves or products of inflammatory cells may induce the expression of negative feedback regulators, such as suppressor of cytokine signaling (SOCS)-family proteins, antioxidant enzymes, and antiinflammatory cytokines. Furthermore, death of activated microglia (major inflammatory cells in the brain) may regulate brain inflammation. Astrocytes, the most abundant cells in the brain, may also act in preventing microglial overactivation. Therefore, we propose that the extent and duration of brain inflammation is tightly regulated through the cooperation of multiple mechanisms to maximize antipathogenic effects and minimize tissue damage.
Collapse
Affiliation(s)
- Myung-Soon Yang
- Department of Pharmacology, Ajou University School of Medicine, Suwon, Kyunggi-do, Korea
| | | | | |
Collapse
|
43
|
De Simone R, Ambrosini E, Carnevale D, Ajmone-Cat MA, Minghetti L. NGF promotes microglial migration through the activation of its high affinity receptor: modulation by TGF-beta. J Neuroimmunol 2007; 190:53-60. [PMID: 17868907 DOI: 10.1016/j.jneuroim.2007.07.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2007] [Revised: 07/27/2007] [Accepted: 07/27/2007] [Indexed: 11/27/2022]
Abstract
Activation and mobilization of microglia are early events in the majority of brain pathologies. Among the signalling molecules that can affect microglial behaviour, we investigated whether nerve growth factor (NGF) was able to influence microglial motility. We found that NGF induced chemotaxis of microglial cells through the activation of TrkA receptor. In addition, NGF chemotactic activity was increased in the presence of low concentrations (< or =0.2 ng/ml) of transforming growth factor-beta (TGF-beta), which at this concentration showed chemotactic activity per se. On the contrary, NGF-induced microglial migration was reduced in the presence of chemokinetic concentration of TGF-beta (> or =2 ng/ml). Finally, both basal and NGF-induced migratory activity of microglial cells was increased after a long-term exposure of primary mixed glial cultures to 2 ng/ml of TGF-beta. Our observations suggest that both NGF and TGF-beta contribute to microglial recruitment. The chemotactic activities of these two pleiotropic factors could be particularly relevant during chronic diseases in which recruited microglia remove apoptotic neurons in the absence of a typical inflammatory reaction.
Collapse
Affiliation(s)
- R De Simone
- Department of Cell Biology and Neurosciences, Section of Degenerative Inflammatory and Neurological Diseases, Istituto Superiore di Sanità, Viale Regina Elena 299, Rome, Italy.
| | | | | | | | | |
Collapse
|
44
|
Esposito E, Di Matteo V, Benigno A, Pierucci M, Crescimanno G, Di Giovanni G. Non-steroidal anti-inflammatory drugs in Parkinson's disease. Exp Neurol 2007; 205:295-312. [PMID: 17433296 DOI: 10.1016/j.expneurol.2007.02.008] [Citation(s) in RCA: 176] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2006] [Revised: 02/05/2007] [Accepted: 02/13/2007] [Indexed: 01/04/2023]
Abstract
Parkinson's disease (PD) is known to be a chronic and progressive neurodegenerative disease caused by a selective degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta (SNc). A large body of experimental evidence indicates that the factors involved in the pathogenesis of this disease are several, occurring inside and outside the DAergic neuron. Recently, the role of the neuron-glia interaction and the inflammatory process, in particular, has been the object of intense study by the research community. It seems to represent a new therapeutic approach opportunity for this neurological disorder. Indeed, it has been demonstrated that the cyclooxygenase type 2 (COX-2) is up-regulated in SNc DAergic neurons in both PD patients and animal models of PD and, furthermore, non-steroidal anti-inflammatory drugs (NSAIDs) pre-treatment protects against 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6 hydroxydopamine (6-OHDA)-induced nigro-striatal dopamine degeneration. Moreover, recent epidemiological studies have revealed that the risk of developing PD is reduced in humans who make therapeutical use of NSAIDs. Consequently, it is hypothesized that they might delay or prevent the onset of PD. However, whether or not these common drugs may also be of benefit to those individuals who already have Parkinson's disease has not as yet been shown. In this paper, evidence relating to the protective effects of aspirin or other NSAIDs on DAergic neurons in animal models of Parkinson's disease will be discussed. In addition, the pharmacological mechanisms by which these molecules can exert their neuroprotective effects will be reviewed. Finally, epidemiological data exploring the effectiveness of NSAIDs in the prevention of PD and their possible use as adjuvants in the therapy of this neurodegenerative disease will also be examined.
Collapse
Affiliation(s)
- Ennio Esposito
- Istituto di Ricerche Farmacologiche Mario Negri, Consorzio Mario Negri Sud, Santa Maria Imbaro (Chieti), Italy
| | | | | | | | | | | |
Collapse
|
45
|
Ovanesov MV, Sauder C, Rubin SA, Richt J, Nath A, Carbone KM, Pletnikov MV. Activation of microglia by borna disease virus infection: in vitro study. J Virol 2006; 80:12141-8. [PMID: 17020949 PMCID: PMC1676289 DOI: 10.1128/jvi.01648-06] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Neonatal Borna disease virus (BDV) infection of the rat brain is associated with microglial activation and damage to the certain neuronal populations. Since persistent BDV infection of neurons in vitro is noncytolytic and noncytopathic, activated microglia have been suggested to be responsible for neuronal cell death in vivo. However, the mechanisms of activation of microglia in neonatally BDV-infected rat brain have not been investigated. To address these issues, activation of primary rat microglial cells was studied following exposure to purified BDV or to persistently BDV-infected primary cortical neurons or after BDV infection of primary mixed neuron-glial cultures. Neither purified virus nor BDV-infected neurons alone activated primary microglia as assessed by the changes in cell shape or production of the proinflammatory cytokines. In contrast, in the BDV-infected primary mixed cultures, we observed proliferation of microglia cells that acquired the round morphology and expressed major histocompatibility complex molecules of classes I and II. These manifestations of microglia activation were observed in the absence of direct BDV infection of microglia or overt neuronal toxicity. In addition, compared to uninfected mixed cultures, activation of microglia in BDV-infected mixed cultures was associated with a significantly greater lipopolysaccharide-induced release of tumor necrosis factor alpha, interleukin 1beta, and interleukin 10. Taken together, the present data are the first in vitro evidence that persistent BDV infection of neurons and astrocytes rather than direct exposure to the virus or dying neurons is critical for activating microglia.
Collapse
Affiliation(s)
- Mikhail V Ovanesov
- Division of Neurobiology, Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, CMSC 8-121, Baltimore, MD 21287, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
McNeill-Blue C, Wetmore BA, Sanchez JF, Freed WJ, Merrick BA. Apoptosis mediated by p53 in rat neural AF5 cells following treatment with hydrogen peroxide and staurosporine. Brain Res 2006; 1112:1-15. [PMID: 16901471 DOI: 10.1016/j.brainres.2006.07.024] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2005] [Revised: 06/26/2006] [Accepted: 07/04/2006] [Indexed: 12/14/2022]
Abstract
AF5 neural cells derived from fetal rat mesencephalic tissue were immortalized with a truncated SV40 LT vector lacking the p53-inactivating domain to maintain long-term cultures with a p53-responsive phenotype. This study examined p53 function in producing programmed cell death in propagating AF5 neural cells after exposure to hydrogen peroxide (H2O2) and the kinase inhibitor staurosporine (STSP). Concentration-dependent exposure of AF5 cells to 0-800 mM H2O2 and STSP at 0-1000 nM revealed increasing cytotoxicity from MTS cell viability assays. Apoptosis occurred at 400 mM H2O2 as evidenced by subG1 DNA and Annexin V flow cytometry analyses and cellular immunofluorescence staining with propidium iodide, anti-Annexin V and DAPI. DNA fragmentation, caspase-3/7 activity and cytochrome c release into cytosol also confirmed H2O2-mediated apoptotic events. p53 protein levels were increased over 24 h by H2O2 in a coordinated fashion with mdm2 expression. p53 activation by H2O2 was evidenced by elevated Ser15 phosphorylation, increased luciferase p53 reporter activity and upregulation of the downstream p53 targets p21(waf1) and apoptotic proteins, bax, Noxa and PUMA. STSP exposure produced apoptosis demonstrated by DNA fragmentation, caspase-3/7 activity, cytochrome c release and over 24 h was accompanied by sustained increase in p53 and Ser15 phosphorylation, rise in p21(waf1) and bax and a transient increase in p53 reporter activity but without Annexin V binding. These findings demonstrate that AF5 cells undergo apoptosis in response to H2O2-mediated oxidative stress and signal pathway disruption by STSP that therefore would be useful in studies related to p53-dependent neuronal cell death and neurodegeneration.
Collapse
Affiliation(s)
- Charlesene McNeill-Blue
- Proteomics Group, National Center for Toxicogenomics, National Institute of Environmental Health Sciences, National Institute of Health, Department of Health and Human Services, D2-04, P.O. Box 12233, Research Triangle Park, NC 27709, USA
| | | | | | | | | |
Collapse
|
47
|
Bravo JA, Parra CS, Arancibia S, Andrés S, Morales P, Herrera-Marschitz M, Herrera L, Lara HE, Fiedler JL. Adrenalectomy promotes a permanent decrease of plasma corticoid levels and a transient increase of apoptosis and the expression of Transforming Growth Factor beta1 (TGF-beta1) in hippocampus: effect of a TGF-beta1 oligo-antisense. BMC Neurosci 2006; 7:40. [PMID: 16712723 PMCID: PMC1481618 DOI: 10.1186/1471-2202-7-40] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2006] [Accepted: 05/19/2006] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Corticosterone reduction produced by adrenalectomy (ADX) induces apoptosis in dentate gyrus (DG) of the hippocampus, an effect related to an increase in the expression of the pro-apoptotic gene bax. However it has been reported that there is also an increase of the anti-apoptotic gene bcl-2, suggesting the promotion of a neuroprotective phenomenon, perhaps related to the expression of transforming growth factor beta1 (TGF-beta1). Thus, we have investigated whether TGF-beta1 levels are induced by ADX, and whether apoptosis is increased by blocking the expression of TGF-beta1 with an antisense oligonucleotide (ASO) administered intracerebrally in corticosterone depleted rats. RESULTS It was observed an increase of apoptosis in DG, 2 and 5 days after ADX, in agreement with a reduction of corticosterone levels. However, the effect of ADX on the number of apoptotic positive cells in DG was decreased 5 days after the lesion. In CA1-CA3 regions, the effect was only observed 2 days after ADX. TGF-beta1 mRNA levels were increased 2 days after ADX. The sustained intracerebro-ventricular administration of a TGF-beta1 ASO via an osmotic mini pump increased apoptosis levels in CA and DG regions 5 days after ADX as well as sham-operated control animals. No significant effect was observed following a scrambled-oligodeoxynucleotide treatment. CONCLUSION The changes in both the pattern and the magnitude of apoptotic-cell morphology observed 2 and 5 days after ADX suggest that, as a consequence of the reduction of corticosteroids, some trophic mechanisms restricting cell death to a particular time window are elicited. Sustained intracerebral administration of TGF-beta1 ASO increased the apoptosis promoted by ADX, suggesting that TGF-beta1 plays an anti-apoptotic role in vivo in hippocampus.
Collapse
Affiliation(s)
- Javier A Bravo
- Department of Biochemistry and Molecular Biology. Laboratory of Neurobiochemistry. Faculty of Chemical and Pharmaceutical Sciences. Universidad de Chile, Chile
| | - Claudio S Parra
- Department of Biochemistry and Molecular Biology. Laboratory of Neurobiochemistry. Faculty of Chemical and Pharmaceutical Sciences. Universidad de Chile, Chile
| | - Sandor Arancibia
- Laboratory of Molecular Mechanisms of Neurodegenerative Diseases, Université de Montpellier, Montpellier, France
| | - Sergio Andrés
- Department of Biochemistry and Molecular Biology. Laboratory of Neurobiochemistry. Faculty of Chemical and Pharmaceutical Sciences. Universidad de Chile, Chile
| | - Paola Morales
- Programmes of Molecular & Clinical Pharmacology ICBM, Faculty of Medicine, Universidad de Chile, Chile
| | - Mario Herrera-Marschitz
- Programmes of Molecular & Clinical Pharmacology ICBM, Faculty of Medicine, Universidad de Chile, Chile
| | - Luisa Herrera
- Human Genetics, ICBM, Faculty of Medicine, Universidad de Chile, Chile
| | - Hernán E Lara
- Department of Biochemistry and Molecular Biology. Laboratory of Neurobiochemistry. Faculty of Chemical and Pharmaceutical Sciences. Universidad de Chile, Chile
| | - Jenny L Fiedler
- Department of Biochemistry and Molecular Biology. Laboratory of Neurobiochemistry. Faculty of Chemical and Pharmaceutical Sciences. Universidad de Chile, Chile
| |
Collapse
|
48
|
Mocco J, Sughrue ME, Ducruet AF, Komotar RJ, Sosunov SA, Connolly ES. The complement system: a potential target for stroke therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2006; 586:189-201. [PMID: 16893073 DOI: 10.1007/0-387-34134-x_13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- J Mocco
- Department of Neurological Surgery, Columbia University, College of Physicians & Surgeons, New York, New York 10032, USA
| | | | | | | | | | | |
Collapse
|
49
|
Zhang J, Fujii S, Wu Z, Hashioka S, Tanaka Y, Shiratsuchi A, Nakanishi Y, Nakanishi H. Involvement of COX-1 and up-regulated prostaglandin E synthases in phosphatidylserine liposome-induced prostaglandin E2 production by microglia. J Neuroimmunol 2005; 172:112-20. [PMID: 16371234 DOI: 10.1016/j.jneuroim.2005.11.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Accepted: 11/09/2005] [Indexed: 10/25/2022]
Abstract
After engulfment of apoptotic cells through phosphatidylserine (PS)-mediated recognition, microglia secrete prostaglandin E2 (PGE2), a potent anti-inflammatory molecule in the central nervous system. Despite the clinical significance, the mechanism underlying PGE2 production by phagocytosis of apoptotic cells is poorly understood. In the present study, we used PS liposomes to elucidate the phagocytic pathway for PGE2 production in microglia, because PS liposomes mimic the effects of apoptotic cells on microglia/macrophages. The level of PGE2 in the culture medium of primary cultured rat microglia was significantly increased by PS liposomes treatment but not by phosphatidylcholine liposomes treatment. The specific ligand for class B scavenger receptor (SR-B), high density lipoprotein, significantly suppressed PS liposome-induced PGE2 production. PS liposomes were immediately phagocytosed by microglia and sorted to endosomes/lysosomes. Cyclooxygenase (COX)-2 and membrane-bound prostaglandin E synthase-1 (mPGES-1) were induced by treatment with lipopolysaccharide (LPS) but not with PS liposomes. On the other hand, mPGES-2 and cytosolic PGES (cPGES) that are functionally coupled with COX-1 were upregulated after treatment with PS liposomes or LPS. Furthermore, PS liposome-induced PGE2 production was significantly suppressed by indomethacin, a preferential COX-1 inhibitor, but not by NS-398, a selective COX-2 inhibitor. PS liposomes induced activation of p44/p42 extracellular signal-regulated kinase (ERK) but not p38 mitogen-activated protein kinase in SR-BI independent manner. These observations strongly suggest that the up-regulation of terminal PGESs that are preferentially coupled with COX-1, especially mPGES-2, plays the pivotal role in PS liposome-induced PGE2 production by microglia. Although SR-BI plays an essential role in PS liposome-induced PGE2 production, other PS-recognizing receptors, possibly PS-specific receptor, could also promote PGE2 production by transducing intracellular signals including p44/p42 ERK after PS liposomes treatment.
Collapse
Affiliation(s)
- Jian Zhang
- Laboratory of Oral Aging Science, Faculty of Dental Sciences, Kyushu University, Fukuoka 812-8582, Japan
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Rozenfeld C, Martinez R, Seabra S, Sant'anna C, Gonçalves JGR, Bozza M, Moura-Neto V, De Souza W. Toxoplasma gondii prevents neuron degeneration by interferon-gamma-activated microglia in a mechanism involving inhibition of inducible nitric oxide synthase and transforming growth factor-beta1 production by infected microglia. THE AMERICAN JOURNAL OF PATHOLOGY 2005; 167:1021-31. [PMID: 16192637 PMCID: PMC1603680 DOI: 10.1016/s0002-9440(10)61191-1] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Interferon (IFN)-gamma, the main cytokine responsible for immunological defense against Toxoplasma gondii, is essential in all infected tissues, including the central nervous system. However, IFN-gamma-activated microglia may cause tissue injury through production of toxic metabolites such as nitric oxide (NO), a potent inducer of central nervous system pathologies related to inflammatory neuronal disturbances. Despite potential NO toxicity, neurodegeneration is not commonly found during chronic T. gondii infection. In this study, we describe decreased NO production by IFN-gamma-activated microglial cells infected by T. gondii. This effect involved strong inhibition of iNOS expression in IFN-gamma-activated, infected microglia but not in uninfected neighboring cells. The inhibition of NO production and iNOS expression were parallel with recovery of neurite outgrowth when neurons were co-cultured with T. gondii-infected, IFN-gamma-activated microglia. In the presence of transforming growth factor (TGF)-beta1-neutralizing antibodies, the beneficial effect of the parasite on neurons was abrogated, and NO production reverted to levels similar to IFN-gamma-activated uninfected co-cultures. In addition, we observed Smad-2 nuclear translocation, a hallmark of TGF-beta1 downstream signaling, in infected microglial cultures, emphasizing an autocrine effect restricted to infected cells. Together, these data may explain a neuropreservation pattern observed during immunocompetent host infection that is dependent on T. gondii-triggered TGF-beta1 secretion by infected microglia.
Collapse
Affiliation(s)
- Claudia Rozenfeld
- Laboratório de Ultraestrutura Celular Hertha Meyer, Instituto de Biofísica Carlos Chagas Filho, CCS, Bloco G, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21944-590, Brazil.
| | | | | | | | | | | | | | | |
Collapse
|