1
|
Richardson TE, Orr ME, Orr TC, Rohde SK, Ehrenberg AJ, Thorn EL, Christie TD, Flores-Almazan V, Afzal R, De Sanctis C, Maldonado-Díaz C, Hiya S, Canbeldek L, Kulumani Mahadevan LS, Slocum C, Samanamud J, Clare K, Scibetta N, Yokoda RT, Koenigsberg D, Marx GA, Kauffman J, Goldstein A, Selmanovic E, Drummond E, Wisniewski T, White CL, Goate AM, Crary JF, Farrell K, Alosco ML, Mez J, McKee AC, Stein TD, Bieniek KF, Kautz TF, Daoud EV, Walker JM. Spatial proteomic differences in chronic traumatic encephalopathy, Alzheimer's disease, and primary age-related tauopathy hippocampi. Alzheimers Dement 2024. [PMID: 39737785 DOI: 10.1002/alz.14487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 11/25/2024] [Accepted: 11/27/2024] [Indexed: 01/01/2025]
Abstract
INTRODUCTION Alzheimer's disease (AD), primary age-related tauopathy (PART), and chronic traumatic encephalopathy (CTE) all feature hyperphosphorylated tau (p-tau)-immunoreactive neurofibrillary degeneration, but differ in neuroanatomical distribution and progression of neurofibrillary degeneration and amyloid beta (Aβ) deposition. METHODS We used Nanostring GeoMx Digital Spatial Profiling to compare the expression of 70 proteins in neurofibrillary tangle (NFT)-bearing and non-NFT-bearing neurons in hippocampal CA1, CA2, and CA4 subregions and entorhinal cortex of cases with autopsy-confirmed AD (n = 8), PART (n = 7), and CTE (n = 5). RESULTS There were numerous subregion-specific differences related to Aβ processing, autophagy/proteostasis, inflammation, gliosis, oxidative stress, neuronal/synaptic integrity, and p-tau epitopes among these different disorders. DISCUSSION These results suggest that there are subregion-specific proteomic differences among the neurons of these disorders, which appear to be influenced to a large degree by the presence of hippocampal Aβ. These proteomic differences may play a role in the differing hippocampal p-tau distribution and pathogenesis of these disorders. HIGHLIGHTS Alzheimer's disease neuropathologic change (ADNC), possible primary age-related tauopathy (PART), definite PART, and chronic traumatic encephalopathy (CTE) can be differentiated based on the proteomic composition of their neurofibrillary tangle (NFT)- and non-NFT-bearing neurons. The proteome of these NFT- and non-NFT-bearing neurons is largely correlated with the presence or absence of amyloid beta (Aβ). Neurons in CTE and definite PART (Aβ-independent pathologies) share numerous proteomic similarities that distinguish them from ADNC and possible PART (Aβ-positive pathologies).
Collapse
Affiliation(s)
- Timothy E Richardson
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Miranda E Orr
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- St. Louis VA Medical Center, St. Louis, Missouri, USA
| | - Timothy C Orr
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Susan K Rohde
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Human Genetics, Genomics of Neurodegenerative Diseases and Aging, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
- Department of Neurology, Alzheimer Center Amsterdam, Neuroscience, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Alexander J Ehrenberg
- Memory and Aging Center, Weill Institute for Neurosciences, University of California, San Francisco, California, USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, California, USA
- Innovative Genomics Institute, University of California, Berkeley, California, USA
| | - Emma L Thorn
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thomas D Christie
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Victoria Flores-Almazan
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Robina Afzal
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Claudia De Sanctis
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carolina Maldonado-Díaz
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Satomi Hiya
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Leyla Canbeldek
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | | | - Cheyanne Slocum
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jorge Samanamud
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kevin Clare
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Nicholas Scibetta
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Raquel T Yokoda
- Department of Pathology, Albert Einstein College of Medicine, Montefiore Medical Center, Bronx, New York, USA
| | - Daniel Koenigsberg
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Gabriel A Marx
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Justin Kauffman
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Adam Goldstein
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Enna Selmanovic
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Eleanor Drummond
- Brain & Mind Center and School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Camperdown, New South Wales, Australia
| | - Thomas Wisniewski
- Department of Pathology, New York University Grossman School of Medicine, New York, New York, USA
- Department of Psychiatry, New York University Grossman School of Medicine, New York, New York, USA
- Center for Cognitive Neurology, Department of Neurology, New York University Grossman School of Medicine, New York, New York, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Alison M Goate
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F Crary
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kurt Farrell
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Michael L Alosco
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Jesse Mez
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
| | - Ann C McKee
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Thor D Stein
- Department of Neurology, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- Boston University Alzheimer's Disease Research Center and BU CTE Center, Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- VA Bedford Healthcare System, Bedford, Massachusetts, USA
| | - Kevin F Bieniek
- Department of Pathology & Laboratory Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Tiffany F Kautz
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Elena V Daoud
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jamie M Walker
- Department of Pathology, Molecular, and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|
2
|
Yoshida K, Forrest SL, Ichimata S, Tanaka H, Kon T, Kovacs GG. Co-pathologies modify hippocampal protein accumulation patterns in neurodegenerative diseases. Alzheimers Dement 2024. [PMID: 39711489 DOI: 10.1002/alz.14355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/23/2024] [Accepted: 09/17/2024] [Indexed: 12/24/2024]
Abstract
INTRODUCTION Limited research has extensively analyzed neurodegenerative disease-related protein deposition patterns in the hippocampus. METHODS This study examined the distribution of proteins in hippocampal subregions across major neurodegenerative diseases and explored their relation to each other. The area density of phosphorylated tau (p-tau), amyloid beta (Aβ), α-synuclein, and phosphorylated TDP-43 protein deposits together with pyramidal cell density in each hippocampal subregion, including CA1-4, prosubiculum (ProS), and subiculum was assessed in 166 cases encompassing various neurodegenerative diseases. RESULTS Alzheimer's disease-associated p-tau predominated in ProS, Aβ in the CA1, and Lewy body-related α-synuclein in the CA2. The area density of protein deposits increased with the pathological stage until a peak, then decreased in cases with high pathology stages along with pyramidal cell density. Comorbid protein pathology influenced protein deposition patterns. DISCUSSION This comprehensive evaluation reveals characteristic neurodegenerative disease-related protein accumulation patterns in hippocampal subregions modified by co-pathologies. HIGHLIGHTS Alzheimer's disease-related phosphorylated tau predominates in the prosubiculum. Amyloid beta predominates in the CA1 and Lewy body-related α-synuclein in the CA2. The area density of protein deposition increases with the disease stage up to a peak. In the high pathology stage, protein deposition and pyramidal cell density decreases. Comorbid protein pathology affects the pattern of protein accumulation.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
- Department of Legal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Shelley L Forrest
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Neurology, Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| | - Shojiro Ichimata
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
- Department of Legal Medicine, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hidetomo Tanaka
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
| | - Tomoya Kon
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
- Graduate School of Medicine, Hirosaki University, Hirosaki, Japan
| | - Gabor G Kovacs
- Department of Laboratory Medicine and Pathobiology and Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Tanz Centre for Research in Neurodegenerative Disease, Krembil Discovery Tower, University of Toronto, Toronto, Ontario, Canada
- Laboratory Medicine Program & Krembil Brain Institute, University Health Network, Toronto, Ontario, Canada
- Department of Neurology, Dementia Research Centre, Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, Australia
| |
Collapse
|
3
|
Goldberg D, Wadhwani AR, Dehghani N, Sreepada LP, Fu H, De Jager PL, Bennett DA, Wolk DA, Lee EB, Farrell K, Crary JF, Zhou W, McMillan CT. Epigenetic signatures of regional tau pathology and cognition in the aging and pathological brain. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.11.07.24316933. [PMID: 39606399 PMCID: PMC11601699 DOI: 10.1101/2024.11.07.24316933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Primary age-related tauopathy (PART) and Alzheimer's disease (AD) share hippocampal phospho-tau (p-tau) pathology but differ in p-tau extent and amyloid presence. As a result, PART uniquely enables investigation of amyloid-independent p-tau mechanisms during brain aging. We conducted the first epigenome-wide association (EWAS) study of PART, which yielded 13 new and robust p-tau/methylation associations. We then jointly analyzed PART and AD epigenomes to develop "TauAge", novel epigenetic clocks that predict p-tau severity in region-specific, age-, and amyloid-independent manners. Integrative transcriptomic analyses revealed that genes involved in synaptic transmission are related to hippocampal p-tau severity in both PART and AD, while neuroinflammatory genes are related to frontal cortex p-tau severity in AD only. Further, a machine learning classifier based on PART-vs-AD epigenetic differences discriminates neuropathological diagnoses and stratifies indeterminate cases into subgroups with disparity in cognitive impairment. Together, these findings demonstrate the brain epigenome's substantial role in linking tau pathology to cognitive outcomes in aging and AD.
Collapse
|
4
|
Oltmer J, Williams EM, Groha S, Rosenblum EW, Roy J, Llamas-Rodriguez J, Perosa V, Champion SN, Frosch MP, Augustinack JC. Neuron collinearity differentiates human hippocampal subregions: a validated deep learning approach. Brain Commun 2024; 6:fcae296. [PMID: 39262825 PMCID: PMC11389610 DOI: 10.1093/braincomms/fcae296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/28/2024] [Accepted: 08/30/2024] [Indexed: 09/13/2024] Open
Abstract
The hippocampus is heterogeneous in its architecture. It contributes to cognitive processes such as memory and spatial navigation and is susceptible to neurodegenerative disease. Cytoarchitectural features such as neuron size and neuronal collinearity have been used to parcellate the hippocampal subregions. Moreover, pyramidal neuron orientation (orientation of one individual neuron) and collinearity (how neurons align) have been investigated as a measure of disease in schizophrenia. However, a comprehensive quantitative study of pyramidal neuron orientation and collinearity within the hippocampal subregions has not yet been conducted. In this study, we present a high-throughput deep learning approach for the automated extraction of pyramidal neuron orientation in the hippocampal subregions. Based on the pretrained Cellpose algorithm for cellular segmentation, we measured 479 873 pyramidal neurons in 168 hippocampal partitions. We corrected the neuron orientation estimates to account for the curvature of the hippocampus and generated collinearity measures suitable for inter- and intra-individual comparisons. Our deep learning results were validated with manual orientation assessment. This study presents a quantitative metric of pyramidal neuron collinearity within the hippocampus. It reveals significant differences among the individual hippocampal subregions (P < 0.001), with cornu ammonis 3 being the most collinear, followed by cornu ammonis 2, cornu ammonis 1, the medial/uncal subregions and subiculum. Our data establishes pyramidal neuron collinearity as a quantitative parameter for hippocampal subregion segmentation, including the differentiation of cornu ammonis 2 and cornu ammonis 3. This novel deep learning approach could facilitate large-scale multicentric analyses in subregion parcellation and lays groundwork for the investigation of mental illnesses at the cellular level.
Collapse
Affiliation(s)
- Jan Oltmer
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
- Department of Digital Health and Innovation, Vivantes Netzwerk für Gesundheit GmbH, 13407 Berlin, Germany
| | - Emily M Williams
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Stefan Groha
- Harvard Medical School, Boston, MA 02115, USA
- Division of Population Sciences, Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Emma W Rosenblum
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Jessica Roy
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Josue Llamas-Rodriguez
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
| | - Valentina Perosa
- J. Philip Kistler Stroke Research Center, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| | - Samantha N Champion
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Matthew P Frosch
- C.S. Kubik Laboratory for Neuropathology, Massachusetts General Hospital, Boston, MA 02129, USA
| | - Jean C Augustinack
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA 02129, USA
- Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
5
|
Yoshida K, Hata Y, Ichimata S, Tanaka R, Nishida N. Prevalence and clinicopathological features of primary age-related tauopathy (PART): A large forensic autopsy study. Alzheimers Dement 2024; 20:5411-5420. [PMID: 38938196 PMCID: PMC11350034 DOI: 10.1002/alz.14037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/15/2024] [Accepted: 05/06/2024] [Indexed: 06/29/2024]
Abstract
INTRODUCTION Primary age-related tauopathy (PART), often regarded as a minimally symptomatic pathology of old age, lacks comprehensive cohorts across various age groups. METHODS We examined PART prevalence and clinicopathologic features in 1589 forensic autopsy cases (≥40 years old, mean age ± SD 70.2 ± 14.2 years). RESULTS PART cases meeting criteria for argyrophilic grain diseases (AGD) were AGD+PART (n = 181). The remaining PART cases (n = 719, 45.2%) were classified as comorbid conditions (PART-C, n = 90) or no comorbid conditions (pure PART, n = 629). Compared to controls (n = 208), Alzheimer's disease (n = 133), and AGD+PART, PART prevalence peaked in the individuals in their 60s (65.5%) and declined in the 80s (21.5%). No significant clinical background differences were found (excluding controls). However, PART-C in patients inclusive of age 80 had a higher suicide rate than pure PART (p < 0.05), and AGD+PART showed more dementia (p < 0.01) and suicide (p < 0.05) than pure PART. DISCUSSION Our results advocate a reevaluation of the PART concept and its diagnostic criteria. HIGHLIGHTS We investigated 1589 forensic autopsy cases to investigate the features of primary age-related tauopathy (PART). PART peaked in people in their 60s in our study. Many PART cases over 80s had comorbid pathologies in addition to neurofibrillary tangles pathology. Argyrophilic grain disease and Lewy pathology significantly affected dementia and suicide rates in PART. Our results suggest that the diagnostic criteria of PART need to be reconsidered.
Collapse
Affiliation(s)
- Koji Yoshida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
- Tanz Centre for Research in Neurodegenerative DiseaseKrembil Discovery TowerUniversity of TorontoTorontoOntarioCanada
- Department of Laboratory Medicine and Pathobiology and Department of MedicineUniversity of TorontoTorontoOntarioCanada
| | - Yukiko Hata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Shojiro Ichimata
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| | - Ryo Tanaka
- Department of NeurologyToyama University HospitalToyamaJapan
| | - Naoki Nishida
- Department of Legal MedicineFaculty of MedicineUniversity of ToyamaToyamaJapan
| |
Collapse
|
6
|
Sárkány B, Dávid C, Hortobágyi T, Gombás P, Somogyi P, Acsády L, Viney TJ. Early and selective localization of tau filaments to glutamatergic subcellular domains within the human anterodorsal thalamus. Acta Neuropathol 2024; 147:98. [PMID: 38861157 PMCID: PMC11166832 DOI: 10.1007/s00401-024-02749-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/21/2024] [Accepted: 06/01/2024] [Indexed: 06/12/2024]
Abstract
Widespread cortical accumulation of misfolded pathological tau proteins (ptau) in the form of paired helical filaments is a major hallmark of Alzheimer's disease. Subcellular localization of ptau at various stages of disease progression is likely to be informative of the cellular mechanisms involving its spread. Here, we found that the density of ptau within several distinct rostral thalamic nuclei in post-mortem human tissue (n = 25 cases) increased with the disease stage, with the anterodorsal nucleus (ADn) consistently being the most affected. In the ADn, ptau-positive elements were present already in the pre-cortical (Braak 0) stage. Tau pathology preferentially affected the calretinin-expressing subpopulation of glutamatergic neurons in the ADn. At the subcellular level, we detected ptau immunoreactivity in ADn cell bodies, dendrites, and in a specialized type of presynaptic terminal that expresses vesicular glutamate transporter 2 (vGLUT2) and likely originates from the mammillary body. The ptau-containing terminals displayed signs of degeneration, including endosomal/lysosomal organelles. In contrast, corticothalamic axon terminals lacked ptau. The data demonstrate the involvement of a specific cell population in ADn at the onset of the disease. The presence of ptau in subcortical glutamatergic presynaptic terminals supports hypotheses about the transsynaptic spread of tau selectively affecting specialized axonal pathways.
Collapse
Affiliation(s)
- Barbara Sárkány
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| | - Csaba Dávid
- Lendület Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, 1083, Hungary
- Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, 1094, Hungary
| | - Tibor Hortobágyi
- Department of Neurology, Faculty of Medicine, University of Debrecen, Debrecen, 4032, Hungary
| | - Péter Gombás
- Department of Pathology, Szt. Borbála Hospital, Tatabánya, 2800, Hungary
| | - Peter Somogyi
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK
| | - László Acsády
- Lendület Laboratory of Thalamus Research, Institute of Experimental Medicine, Budapest, 1083, Hungary.
| | - Tim J Viney
- Department of Pharmacology, University of Oxford, Oxford, OX1 3QT, UK.
| |
Collapse
|
7
|
Maldonado-Díaz C, Hiya S, Yokoda RT, Farrell K, Marx GA, Kauffman J, Daoud EV, Gonzales MM, Parker AS, Canbeldek L, Kulumani Mahadevan LS, Crary JF, White CL, Walker JM, Richardson TE. Disentangling and quantifying the relative cognitive impact of concurrent mixed neurodegenerative pathologies. Acta Neuropathol 2024; 147:58. [PMID: 38520489 PMCID: PMC10960766 DOI: 10.1007/s00401-024-02716-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Neurodegenerative pathologies such as Alzheimer disease neuropathologic change (ADNC), Lewy body disease (LBD), limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and cerebrovascular disease (CVD) frequently coexist, but little is known about the exact contribution of each pathology to cognitive decline and dementia in subjects with mixed pathologies. We explored the relative cognitive impact of concurrent common and rare neurodegenerative pathologies employing multivariate logistic regression analysis adjusted for age, gender, and level of education. We analyzed a cohort of 6,262 subjects from the National Alzheimer's Coordinating Center database, ranging from 0 to 6 comorbid neuropathologic findings per individual, where 95.7% of individuals had at least 1 neurodegenerative finding at autopsy and 75.5% had at least 2 neurodegenerative findings. We identified which neuropathologic entities correlate most frequently with one another and demonstrated that the total number of pathologies per individual was directly correlated with cognitive performance as assessed by Clinical Dementia Rating (CDR®) and Mini-Mental State Examination (MMSE). We show that ADNC, LBD, LATE-NC, CVD, hippocampal sclerosis, Pick disease, and FTLD-TDP significantly impact overall cognition as independent variables. More specifically, ADNC significantly affected all assessed cognitive domains, LBD affected attention, processing speed, and language, LATE-NC primarily affected tests related to logical memory and language, while CVD and other less common pathologies (including Pick disease, progressive supranuclear palsy, and corticobasal degeneration) had more variable neurocognitive effects. Additionally, ADNC, LBD, and higher numbers of comorbid neuropathologies were associated with the presence of at least one APOE ε4 allele, and ADNC and higher numbers of neuropathologies were inversely correlated with APOE ε2 alleles. Understanding the mechanisms by which individual and concomitant neuropathologies affect cognition and the degree to which each contributes is an imperative step in the development of biomarkers and disease-modifying therapeutics, particularly as these medical interventions become more targeted and personalized.
Collapse
Affiliation(s)
- Carolina Maldonado-Díaz
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Satomi Hiya
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Raquel T Yokoda
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Gabriel A Marx
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Justin Kauffman
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Elena V Daoud
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mitzi M Gonzales
- Department of Neurology, Cedars Sinai Medical Center, Los Angeles, CA, 90048, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Alicia S Parker
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Leyla Canbeldek
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - Lakshmi Shree Kulumani Mahadevan
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
| | - John F Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Ronal M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, 78229, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, Annenberg Building, 15.238, 1468 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
8
|
Walker JM, Orr ME, Orr TC, Thorn EL, Christie TD, Yokoda RT, Vij M, Ehrenberg AJ, Marx GA, McKenzie AT, Kauffman J, Selmanovic E, Wisniewski T, Drummond E, White CL, Crary JF, Farrell K, Kautz TF, Daoud EV, Richardson TE. Spatial proteomics of hippocampal subfield-specific pathology in Alzheimer's disease and primary age-related tauopathy. Alzheimers Dement 2024; 20:783-797. [PMID: 37777848 PMCID: PMC10916977 DOI: 10.1002/alz.13484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/25/2023] [Accepted: 08/29/2023] [Indexed: 10/02/2023]
Abstract
INTRODUCTION Alzheimer's disease (AD) and primary age-related tauopathy (PART) both harbor 3R/4R hyperphosphorylated-tau (p-tau)-positive neurofibrillary tangles (NFTs) but differ in the spatial p-tau development in the hippocampus. METHODS Using Nanostring GeoMx Digital Spatial Profiling, we compared protein expression within hippocampal subregions in NFT-bearing and non-NFT-bearing neurons in AD (n = 7) and PART (n = 7) subjects. RESULTS Proteomic measures of synaptic health were inversely correlated with the subregional p-tau burden in AD and PART, and there were numerous differences in proteins involved in proteostasis, amyloid beta (Aβ) processing, inflammation, microglia, oxidative stress, and neuronal/synaptic health between AD and PART and between definite PART and possible PART. DISCUSSION These results suggest subfield-specific proteome differences that may explain some of the differences in Aβ and p-tau distribution and apparent pathogenicity. In addition, hippocampal neurons in possible PART may have more in common with AD than with definite PART, highlighting the importance of Aβ in the pathologic process. HIGHLIGHTS Synaptic health is inversely correlated with local p-tau burden. The proteome of NFT- and non-NFT-bearing neurons is influenced by the presence of Aβ in the hippocampus. Neurons in possible PART cases share more proteomic similarities with neurons in ADNC than they do with neurons in definite PART cases.
Collapse
|
9
|
Youssef H, Gatto RG, Pham NTT, Petersen RC, Machulda MM, Reichard RR, Dickson DW, Jack CR, Whitwell JL, Josephs KA. TDP-43 Is Associated with Subiculum and Cornu Ammonis 1 Hippocampal Subfield Atrophy in Primary Age-Related Tauopathy. J Alzheimers Dis 2024; 99:1023-1032. [PMID: 38728190 PMCID: PMC11265226 DOI: 10.3233/jad-240136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Abstract
Background TAR DNA binding protein 43 (TDP-43) has been shown to be associated with whole hippocampal atrophy in primary age-related tauopathy (PART). It is currently unknown which subregions of the hippocampus are contributing to TDP-43 associated whole hippocampal atrophy in PART. Objective To identify which specific hippocampal subfield regions are contributing to TDP-43-associated whole hippocampal atrophy in PART. Methods A total of 115 autopsied cases from the Mayo Clinic Alzheimer Disease Research Center, Neurodegenerative Research Group, and the Mayo Clinic Study of Aging were analyzed. All cases underwent antemortem brain volumetric MRI, neuropathological assessment of the distribution of Aβ (Thal phase), and neurofibrillary tangle (Braak stage) to diagnose PART, as well as assessment of TDP-43 presence/absence in the amygdala, hippocampus and beyond. Hippocampal subfield segmentation was performed using FreeSurfer version 7.4.1. Statistical analyses using logistic regression were performed to assess for associations between TDP-43 and hippocampal subfield volumes, accounting for potential confounders. Results TDP-43 positive patients (n = 37, 32%), of which 15/15 were type-α, had significantly smaller whole hippocampal volumes, and smaller volumes of the body and tail of the hippocampus compared to TDP-43 negative patients. Subfield analyses revealed an association between TDP-43 and the molecular layer of hippocampal body and the body of cornu ammonis 1 (CA1), subiculum, and presubiculum regions. There was no association between TDP-43 stage and subfield volumes. Conclusions Whole hippocampal volume loss linked to TDP-43 in PART is mainly due to volume loss occurring in the molecular layer, CA1, subiculum and presubiculum of the hippocampal body.
Collapse
Affiliation(s)
- Hossam Youssef
- Department of Neurology, Mayo Clinic, Rochester, MN, USA
| | | | | | | | - Mary M. Machulda
- Department of Psychiatry & Psychology, Mayo Clinic, Rochester, MN, USA
| | - R. Ross Reichard
- Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - Dennis W. Dickson
- Department of Neuroscience (Neuropathology), Mayo Clinic, Jacksonville, FL, USA
| | | | | | | |
Collapse
|
10
|
Del Tredici K, Schön M, Feldengut S, Ghebremedhin E, Kaufman SK, Wiesner D, Roselli F, Mayer B, Amunts K, Braak H. Early CA2 Tau Inclusions Do Not Distinguish an Age-Related Tauopathy from Early Alzheimer's Disease. J Alzheimers Dis 2024; 101:1333-1353. [PMID: 39302368 DOI: 10.3233/jad-240483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Background Neuropathologic studies of brains from autopsy series show tau inclusions (pretangles, neuropils threads, neurofibrillary tangles) are detectable more than a decade before amyloid-β (Aβ) deposition in Alzheimer's disease (AD) and develop in a characteristic manner that forms the basis for AD staging. An alternative position views pathological tau without Aβ deposition as a 'primary age-related tauopathy' (PART) rather than prodromal AD. Recently, an early focus of tau inclusions in the Ammon's horn second sector (CA2) with relative sparing of CA1 that occurs before tau inclusions develop in the entorhinal cortex (EC) was proposed as an additional feature of PART. Objective To test the 'definite PART' hypothesis. Methods We used AT8-immunohistochemistry in 100μm sections to examine the EC, transentorhinal cortex (TRE), and Ammon's horn in 325 brains with tau inclusions lacking Aβ deposits (average age at death 66.7 years for females, 66.4 years for males). Results 100% of cases displayed tau inclusions in the TRE. In 89% of cases, the CA1 tau rating was greater than or equal to that in CA2. In 25%, CA2 was devoid of tau inclusions. Only 4% displayed a higher tau score in CA2 than in the TRE, EC, and CA1. The perforant path also displayed early tau changes. APOE genotyping was available for 199/325 individuals. Of these, 44% had an ɛ4 allele that placed them at greater risk for developing later NFT stages and, therefore, clinical AD. Conclusions Our new findings call into question the PART hypothesis and are consistent with the idea that our cases represent prodromal AD.
Collapse
Affiliation(s)
- Kelly Del Tredici
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Michael Schön
- Institute for Anatomy and Cell Biology, University of Ulm, Ulm, Germany
| | - Simone Feldengut
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Estifanos Ghebremedhin
- Institute of Clinical Neuroanatomy, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Sarah K Kaufman
- Department of Neurology, Memory and Aging Center, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA
| | - Diana Wiesner
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Francesco Roselli
- Department of Neurology, Ulm University, Ulm, Germany
- German Center for Neurodegenerative Diseases (DZNE), Ulm, Germany
| | - Benjamin Mayer
- Institute of Epidemiology and Medical Biometry, University of Ulm, Ulm, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
- Cécile and Oskar Vogt Institute for Brain Research, University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Heiko Braak
- Clinical Neuroanatomy/Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
11
|
Nader S, Karlovich E, Cortes EP, Insausti R, Meloni G, Jacobs M, Crary JF, Morgello S. Predictors of hippocampal tauopathy in people with and at risk for human immunodeficiency virus infection. J Neurovirol 2023; 29:647-657. [PMID: 37926797 DOI: 10.1007/s13365-023-01181-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 09/13/2023] [Accepted: 10/12/2023] [Indexed: 11/07/2023]
Abstract
Combination antiretroviral therapy (cART) has extended lifespans of people living with HIV (PWH), increasing both the risk for age-related neuropathologies and the importance of distinguishing effects of HIV and its comorbidities from neurodegenerative disorders. The accumulation of hyperphosphorylated tau (p-tau) in hippocampus is a common degenerative change, with specific patterns of hippocampal subfield vulnerability observed in different disease contexts. Currently, associations between chronic HIV, its comorbidities, and p-tau burden and distribution in the hippocampus are unexplored. We used immunohistochemistry with antibody AT8 to analyze hippocampal p-tau in brain tissues of PWH (n = 71) and HIV negative controls (n = 25), for whom comprehensive clinical data were available. Using a morphology-based neuroanatomical segmentation protocol, we annotated digital slide images to measure percentage p-tau areas in the hippocampus and its subfields. Factors predicting p-tau burden and distribution were identified in univariate analyses, and those with significance at p ≤ 0.100 were advanced to multivariable regression. The patient sample had a mean age of 61.5 years. Age predicted overall hippocampal p-tau burden. Subfield p-tau predictors were for Cornu Ammonis (CA)1, age; for CA2 and subiculum, seizure history; for CA3, seizure history and head trauma; and for CA4/dentate, history of hepatitis C virus (HCV) infection. In this autopsy sample, hippocampal p-tau burden and distribution were not predicted by HIV, viral load, or immunologic status, with viral effects limited to associations between HCV and CA4/dentate vulnerability. Hippocampal p-tau pathologies in cART-era PWH appear to reflect age and comorbidities, but not direct effects of HIV infection.
Collapse
Affiliation(s)
- Sophie Nader
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Esma Karlovich
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Etty P Cortes
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo Insausti
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA
| | - Gregory Meloni
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Michelle Jacobs
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Susan Morgello
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, 10029, New York, NY, USA.
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
12
|
Marx GA, Kauffman J, McKenzie AT, Koenigsberg DG, McMillan CT, Morgello S, Karlovich E, Insausti R, Richardson TE, Walker JM, White CL, Babrowicz BM, Shen L, McKee AC, Stein TD, Farrell K, Crary JF. Histopathologic brain age estimation via multiple instance learning. Acta Neuropathol 2023; 146:785-802. [PMID: 37815677 PMCID: PMC10627911 DOI: 10.1007/s00401-023-02636-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/14/2023] [Accepted: 09/18/2023] [Indexed: 10/11/2023]
Abstract
Understanding age acceleration, the discordance between biological and chronological age, in the brain can reveal mechanistic insights into normal physiology as well as elucidate pathological determinants of age-related functional decline and identify early disease changes in the context of Alzheimer's and other disorders. Histopathological whole slide images provide a wealth of pathologic data on the cellular level that can be leveraged to build deep learning models to assess age acceleration. Here, we used a collection of digitized human post-mortem hippocampal sections to develop a histological brain age estimation model. Our model predicted brain age within a mean absolute error of 5.45 ± 0.22 years, with attention weights corresponding to neuroanatomical regions vulnerable to age-related changes. We found that histopathologic brain age acceleration had significant associations with clinical and pathologic outcomes that were not found with epigenetic based measures. Our results indicate that histopathologic brain age is a powerful, independent metric for understanding factors that contribute to brain aging.
Collapse
Affiliation(s)
- Gabriel A Marx
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Justin Kauffman
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Andrew T McKenzie
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel G Koenigsberg
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Cory T McMillan
- Frontotemporal Degeneration Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan Morgello
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Esma Karlovich
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Timothy E Richardson
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Jamie M Walker
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bergan M Babrowicz
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Li Shen
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Ann C McKee
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, MA, USA
- Department of Veterans Affairs Medical Center, Bedford, MA, USA
- VA Boston Healthcare System, Boston, MA, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA.
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA.
| |
Collapse
|
13
|
Morris M, Coste GI, Redding-Ochoa J, Guo H, Graves AR, Troncoso JC, Huganir RL. Hippocampal synaptic alterations associated with tau pathology in primary age-related tauopathy. J Neuropathol Exp Neurol 2023; 82:836-844. [PMID: 37595576 PMCID: PMC10516464 DOI: 10.1093/jnen/nlad064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2023] Open
Abstract
Primary age-related tauopathy (PART) is characterized by aggregation of tau in the mesial temporal lobe in older individuals. High pathologic tau stage (Braak stage) or a high burden of hippocampal tau pathology has been associated with cognitive impairment in PART. However, the potential underlying mechanisms are not well understood. Cognitive impairment in many neurodegenerative diseases correlates with synaptic loss, raising the question of whether synaptic loss also occurs in PART. To address this, we investigated synaptic changes associated with tau Braak stage and high tau pathology burden in PART using synaptophysin and phospho-tau immunofluorescence. We compared 12 cases of definite PART with 6 controls and 6 Alzheimer disease cases. In this study, the hippocampal CA2 region showed loss of synaptophysin puncta and intensity in cases of PART with either a high stage (Braak IV) or a high burden of neuritic tau pathology. There was also loss of synaptophysin intensity in CA3 associated with a high stage or high burden of tau pathology. Loss of synaptophysin was present in Alzheimer disease, but the pattern appeared distinct. These novel findings suggest the presence of synaptic loss associated with either a high hippocampal tau burden or a Braak stage IV in PART.
Collapse
Affiliation(s)
- Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Gabrielle I Coste
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Austin R Graves
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Engineering, Baltimore, Maryland, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, USA
| |
Collapse
|
14
|
Stein-O’Brien GL, Palaganas R, Meyer EM, Redding-Ochoa J, Pletnikova O, Guo H, Bell WR, Troncoso JC, Huganir RL, Morris M. Transcriptional Signatures of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer's Disease. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.09.12.23295440. [PMID: 37745408 PMCID: PMC10516095 DOI: 10.1101/2023.09.12.23295440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Background Tau pathology is common in age-related neurodegenerative diseases. Tau pathology in primary age-related tauopathy (PART) and in Alzheimer's disease (AD) has a similar biochemical structure and anatomic distribution, which is distinct from tau pathology in other diseases. However, the molecular changes associated with intraneuronal tau pathology in PART and AD, and whether these changes are similar in the two diseases, is largely unexplored. Methods Using GeoMx spatial transcriptomics, mRNA was quantified in CA1 pyramidal neurons with tau pathology and adjacent neurons without tau pathology in 6 cases of PART and 6 cases of AD, and compared to 4 control cases without pathology. Transcriptional changes were analyzed for differential gene expression and for coordinated patterns of gene expression associated with both disease state and intraneuronal tau pathology. Results Synaptic gene changes and two novel gene expression signatures associated with intraneuronal tau were identified in PART and AD. Overall, gene expression changes associated with intraneuronal tau pathology were similar in PART and AD. Synaptic gene expression was decreased overall in neurons in AD and PART compared to control cases. However, this decrease was largely driven by neurons lacking tau pathology. Synaptic gene expression was increased in tau-positive neurons compared to tau-negative neurons in disease. Two novel gene expression signatures associated with intraneuronal tau were identified by examining coordinated patterns of gene expression. Genes in the up-regulated expression pattern were enriched in calcium regulation and synaptic function pathways, specifically in synaptic exocytosis. These synaptic gene changes and intraneuronal tau expression signatures were confirmed in a published transcriptional dataset of cortical neurons with tau pathology in AD. Conclusions PART and AD show similar transcriptional changes associated with intraneuronal tau pathology in CA1 pyramidal neurons, raising the possibility of a mechanistic relationship between the tau pathology in the two diseases. Intraneuronal tau pathology was also associated with increased expression of genes associated with synaptic function and calcium regulation compared to tau-negative disease neurons. The findings highlight the power of molecular analysis stratified by pathology in neurodegenerative disease and provide novel insight into common molecular pathways associated with intraneuronal tau in PART and AD.
Collapse
Affiliation(s)
- Genevieve L Stein-O’Brien
- McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Single Cell Training and Analysis Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| | - Ryan Palaganas
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ernest M. Meyer
- UPMC Hillman Cancer Center Cytometry Facility, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletnikova
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Pathology and Anatomical Sciences, University at Buffalo, Buffalo, NY
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - William R Bell
- Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| | - Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
15
|
Walker JM, Goette W, Farrell K, Iida MA, Karlovich E, White CL, Crary JF, Richardson TE. The relationship between hippocampal amyloid beta burden and spatial distribution of neurofibrillary degeneration. Alzheimers Dement 2023; 19:3158-3170. [PMID: 36738450 PMCID: PMC11100308 DOI: 10.1002/alz.12966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/30/2022] [Accepted: 01/04/2023] [Indexed: 02/05/2023]
Abstract
INTRODUCTION Neurofibrillary degeneration in Alzheimer's disease (AD) typically involves the entorhinal cortex and CA1 subregion of the hippocampus early in the disease process, whereas in primary age-related tauopathy (PART), there is an early selective vulnerability of the CA2 subregion. METHODS Image analysis-based quantitative pixel assessments were used to objectively evaluate amyloid beta (Aβ) burden in the medial temporal lobe in relation to the distribution of hyperphosphorylated-tau (p-tau) in 142 cases of PART and AD. RESULTS Entorhinal, CA1, CA3, and CA4 p-tau deposition levels are significantly correlated with Aβ burden, while CA2 p-tau is not. Furthermore, the CA2/CA1 p-tau ratio is inversely correlated with Aβ burden and distribution. In addition, cognitive impairment is correlated with overall p-tau burden. DISCUSSION These data indicate that the presence and extent of medial temporal lobe Aβ may determine the distribution and spread of neurofibrillary degeneration. The resulting p-tau distribution patterns may discriminate between PART and AD. HIGHLIGHTS Subregional hyperphosphorylated-tau (p-tau) distribution is influenced by hippocampal amyloid beta burden. Higher CA2/CA1 p-tau ratio is predictive of primary age-related tauopathy-like neuropathology. Cognitive function is correlated with the overall hippocampal p-tau burden.
Collapse
Affiliation(s)
- Jamie M. Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - William Goette
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan A. Iida
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Esma Karlovich
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Pathology and Cell Biology, Columbia University, New York, New York, USA
| | - The PART Working Group
- The PART working group is a multi-institutional collaboration. PART working group investigators are listed in the acknowledgments section
| | - Charles L. White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John F. Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E. Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
16
|
Morris M, Coste GI, Redding-Ochoa J, Guo H, Graves AR, Troncoso JC, Huganir RL. Hippocampal Synaptic Alterations Associated with Tau Pathology in Primary Age-Related Tauopathy. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.22.23286323. [PMID: 36865237 PMCID: PMC9980270 DOI: 10.1101/2023.02.22.23286323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
Primary Age-Related Tauopathy (PART) is characterized by the aggregation of tau in the mesial temporal lobe in older individuals. High pathologic tau stage (Braak stage) or a high burden of hippocampal tau pathology have been associated with cognitive impairment in PART. However, the underlying mechanisms of cognitive impairment in PART are not well understood. Cognitive impairment in many neurodegenerative diseases correlates with synaptic loss, raising the question of whether synaptic loss occurs in PART. To address this, we investigated synaptic changes associated with tau Braak stage and a high tau pathology burden in PART using synaptophysin and phospho-tau immunofluorescence. We compared twelve cases of definite PART with six young controls and six Alzheimer's disease cases. In this study, we identified loss of synaptophysin puncta and intensity in the CA2 region of the hippocampus in cases of PART with either a high stage (Braak IV) or a high burden of neuritic tau pathology. There was also loss of synaptophysin intensity in CA3 associated with a high stage or high burden of tau pathology. Loss of synaptophysin signal was present in AD, but the pattern was distinct from that seen in PART. These novel findings suggest the presence of synaptic loss in PART associated with either a high hippocampal tau burden or a Braak stage IV. These synaptic changes raise the possibility that synaptic loss in PART could contribute to cognitive impairment, though future studies including cognitive assessments are needed to address this question.
Collapse
Affiliation(s)
- Meaghan Morris
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Gabrielle I Coste
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Javier Redding-Ochoa
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Haidan Guo
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Austin R Graves
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Baltimore, MD
- Department of Biomedical Engineering, Johns Hopkins University School of Engineering, Baltimore, MD
| | - Juan C Troncoso
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Richard L Huganir
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD
- Kavli Neuroscience Discovery Institute, Baltimore, MD
| |
Collapse
|
17
|
Oltmer J, Rosenblum EW, Williams EM, Roy J, Llamas-Rodriguez J, Perosa V, Champion SN, Frosch MP, Augustinack JC. Stereology neuron counts correlate with deep learning estimates in the human hippocampal subregions. Sci Rep 2023; 13:5884. [PMID: 37041300 PMCID: PMC10090178 DOI: 10.1038/s41598-023-32903-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/04/2023] [Indexed: 04/13/2023] Open
Abstract
Hippocampal subregions differ in specialization and vulnerability to cell death. Neuron death and hippocampal atrophy have been a marker for the progression of Alzheimer's disease. Relatively few studies have examined neuronal loss in the human brain using stereology. We characterize an automated high-throughput deep learning pipeline to segment hippocampal pyramidal neurons, generate pyramidal neuron estimates within the human hippocampal subfields, and relate our results to stereology neuron counts. Based on seven cases and 168 partitions, we vet deep learning parameters to segment hippocampal pyramidal neurons from the background using the open-source CellPose algorithm, and show the automated removal of false-positive segmentations. There was no difference in Dice scores between neurons segmented by the deep learning pipeline and manual segmentations (Independent Samples t-Test: t(28) = 0.33, p = 0.742). Deep-learning neuron estimates strongly correlate with manual stereological counts per subregion (Spearman's correlation (n = 9): r(7) = 0.97, p < 0.001), and for each partition individually (Spearman's correlation (n = 168): r(166) = 0.90, p <0 .001). The high-throughput deep-learning pipeline provides validation to existing standards. This deep learning approach may benefit future studies in tracking baseline and resilient healthy aging to the earliest disease progression.
Collapse
Affiliation(s)
- Jan Oltmer
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Emma W Rosenblum
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Emily M Williams
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Jessica Roy
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Josué Llamas-Rodriguez
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Valentina Perosa
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, J. Philip Kistler Stroke Research Center, Cambridge Str. 175, Suite 300, Boston, MA, 02114, USA
- Department of Neurology, Otto-Von-Guericke University, Magdeburg, Germany
| | - Samantha N Champion
- Department of Neuropathology, Massachusetts General Hospital, Boston, MA, USA
| | - Matthew P Frosch
- Department of Neuropathology, Massachusetts General Hospital, Boston, MA, USA
| | - Jean C Augustinack
- Department of Radiology, Athinoula A. Martinos Center, Massachusetts General Hospital, Charlestown, MA, USA.
- Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
18
|
Iwase T, Yoshida M, Hashizume Y, Inagaki T, Iwasaki Y. Severe cerebrovascular pathology of the first supercentenarian to be autopsied in the world. Neuropathology 2023; 43:181-189. [PMID: 36321363 DOI: 10.1111/neup.12874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 10/07/2022] [Accepted: 10/11/2022] [Indexed: 04/04/2023]
Abstract
We report on a 116-year-old Japanese woman who was the first officially documented supercentenarian to be autopsied in the world. She lived a remarkably healthy life until suffering cerebral infarction at 109 years of age. She became Japan's oldest person at 113 years and died in 1995 from colon cancer at 116 years 175 days. Her medical records show the delayed onset of stroke, cancer, dementia, and heart disease and the importance of appropriate medical treatment and intensive dedicated care provided during the last stage of her life. She was the longest-lived person in Japan for 21 years from 1993 until 2014. The neuropathological findings of her autopsied brain were briefly reported in the Japanese literature in 1997. In this study, we reinvestigated her brain and spinal cord in more detail. Severe cerebrovascular lesions and cervical spondylotic myelopathy were found to be the main causes of her disability. Although the density of senile plaques was relatively high, the distribution of neurofibrillary tangles was limited. Ghost tangles and argyrophilic grains were mild. The mildness of tau pathological changes in her neurons, in other words the resistance of neurons to tau pathology, may be a factor responsible for her longevity.
Collapse
Affiliation(s)
- Tamaki Iwase
- Department of Neurology, Nagoya City Koseiin Medical Welfare Center, Aichi, Japan
| | - Mari Yoshida
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| | - Yoshio Hashizume
- Institute for Neuropathology, Fukushimura Hospital, Aichi, Japan
| | - Toshiaki Inagaki
- Department of Rehabilitation, Tosei General Hospital, Aichi, Japan
| | - Yasushi Iwasaki
- Department of Neuropathology, Institute for Medical Science of Aging, Aichi Medical University, Aichi, Japan
| |
Collapse
|
19
|
Bienkowski MS. Further refining the boundaries of the hippocampus CA2 with gene expression and connectivity: Potential subregions and heterogeneous cell types. Hippocampus 2023; 33:150-160. [PMID: 36786207 PMCID: PMC9987718 DOI: 10.1002/hipo.23508] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 02/15/2023]
Abstract
Over the last two decades, the definition of hippocampal area CA2 has evolved from Lorente de Nó's original Golgi-based morphological description with the discovery of specific CA2 gene expression markers. Exploiting the specificity of these molecules has allowed for the genetic dissection of CA2 structure and function in transgenic mice. With this change in criteria, the anatomical boundaries of the CA2 have expanded across the hippocampal axis but the CA2's full rostrocaudal extent is not consistently delineated across atlases. The Hippocampus Gene Expression Atlas (HGEA) provides a comprehensive map of 20 gene expression domains across the entire mouse hippocampus including the CA2. In this commentary, I will review the consensus gene expression patterns that demarcate the expanded CA2 boundaries in the HGEA. Using DropViz single-cell transcriptomics and Mouse Connectome Project connectomics data, I will then suggest potential differences in CA2 cell type heterogeneity and connectivity that may identify and characterize further CA2 subregions.
Collapse
Affiliation(s)
- Michael S Bienkowski
- USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, California, USA
- Zilkha Neurogenetic Institute, Keck School of Medicine of University of Southern California, Los Angeles, California, USA
- USC Center for Integrative Connectomics, Keck School of Medicine of University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
20
|
Walker JM, Richardson TE. Cognitive resistance to and resilience against multiple comorbid neurodegenerative pathologies and the impact of APOE status. J Neuropathol Exp Neurol 2023; 82:110-119. [PMID: 36458951 PMCID: PMC9852945 DOI: 10.1093/jnen/nlac115] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Alzheimer disease (AD) is currently the leading cause of cognitive decline and dementia worldwide. Recently, studies have suggested that other neurodegenerative comorbidities such as limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), Lewy body disease (LBD), and cerebrovascular disease frequently co-occur with Alzheimer disease neuropathologic change (ADNC) and may have significant cognitive effects both in isolation and synergistically with ADNC. Herein, we study the relative clinical impact of these multiple neurodegenerative pathologies in 704 subjects. Each of these pathologies is relatively common in the cognitively impaired population, while cerebrovascular pathology and ADNC are the most common in cognitively normal individuals. Moreover, while the number of concurrent neuropathologic entities rises with age and has a progressively deleterious effect on cognition, 44.3% of cognitively intact individuals are resistant to having any neurodegenerative proteinopathy (compared to 15.2% of cognitively impaired individuals) and 83.5% are resistant to having multiple concurrent proteinopathies (compared to 64.6% of cognitively impaired individuals). The presence of at least 1 APOE ε4 allele was associated with impaired cognition and the presence of multiple proteinopathies, while APOE ε2 was protective against cumulative proteinopathies. These results indicate that maintenance of normal cognition may depend on resistance to the development of multiple concurrent proteinopathies.
Collapse
Affiliation(s)
- Jamie M Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
21
|
Walker JM, Gonzales MM, Goette W, Farrell K, White CL, Crary JF, Richardson TE. Cognitive and Neuropsychological Profiles in Alzheimer's Disease and Primary Age-Related Tauopathy and the Influence of Comorbid Neuropathologies. J Alzheimers Dis 2023; 92:1037-1049. [PMID: 36847012 PMCID: PMC11138480 DOI: 10.3233/jad-230022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
BACKGROUND Alzheimer's disease neuropathologic change (ADNC) is defined by the progression of both hyperphosphorylated-tau (p-tau) and amyloid-β (Aβ) and is the most common underlying cause of dementia worldwide. Primary age-related tauopathy (PART), an Aβ-negative tauopathy largely confined to the medial temporal lobe, is increasingly being recognized as an entity separate from ADNC with diverging clinical, genetic, neuroanatomic, and radiologic profiles. OBJECTIVE The specific clinical correlates of PART are largely unknown; we aimed to identify cognitive and neuropsychological differences between PART, ADNC, and subjects with no tauopathy (NT). METHODS We compared 2,884 subjects with autopsy-confirmed intermediate-high stage ADNC to 208 subjects with definite PART (Braak stage I-IV, Thal phase 0, CERAD NP score "absent") and 178 NT subjects from the National Alzheimer's Coordinating Center dataset. RESULTS PART subjects were older than either ADNC or NT patients. The ADNC cohort had more frequent neuropathological comorbidities as well as APOE ɛ4 alleles than the PART or NT cohort, and less frequent APOE ɛ2 alleles than either group. Clinically, ADNC patients performed significantly worse than NT or PART subjects across cognitive measures, but PART subjects had selective deficits in measures of processing speed, executive function, and visuospatial function, although additional cognitive measures were further impaired in the presence of neuropathologic comorbidities. In isolated cases of PART with Braak stage III-IV, there are additional deficits in measures of language. CONCLUSION Overall, these findings demonstrate underlying cognitive features specifically associated with PART, and reinforce the concept that PART is a distinct entity from ADNC.
Collapse
Affiliation(s)
- Jamie M. Walker
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Mitzi M. Gonzales
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
- Department of Neurology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - William Goette
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kurt Farrell
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles L. White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - John F. Crary
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy E. Richardson
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
22
|
Leiby AMC, Scambray KA, Nguyen HL, Basith F, Fakhraee S, Melikyan ZA, Bukhari SA, Montine TJ, Corrada MM, Kawas CH, Sajjadi SA. Characterizing Limbic-Predominant Age-Related TDP-43 Encephalopathy Without Alzheimer's Disease and Lewy Body Dementia in the Oldest Old: A Case Series. J Alzheimers Dis 2023; 96:113-124. [PMID: 37742640 PMCID: PMC10615772 DOI: 10.3233/jad-230238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
BACKGROUND Limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) is a clinicopathological construct proposed to facilitate studying TDP-43 pathology in older individuals. OBJECTIVE Our aim was to describe clinical and cognitive characteristics of LATE-NC without Alzheimer's disease neuropathologic change (ADNC) and Lewy body (LB) and to compare this with ADNC and primary age related tauopathy (PART). METHODS In 364 autopsies of the oldest old of The 90+ Study, we identified those with LATE-NC without ADNC and LB. Control groups were participants with ADNC and PART. RESULTS Of 31% of participants who had LATE-NC, only 5 (1.4%) had LATE-NC without ADNC and LB, all of whom had tau. These participants had a gradual and progressive cognitive decline. Four (80%) had dementia at death, a rate that was higher than ADNC (50%) and PART (21.7%). Mean duration of cognitive impairment was twice as long in LATE-NC without ADNC and LB (6.2 years) compared to ADNC (2.9 years) and PART (3 years). LATE-NC without ADNC and LB group had a higher prevalence of syncope, depression, and extrapyramidal signs than the ADNC and PART groups. CONCLUSIONS Despite the high prevalence of LATE-NC, LATE-NC without ADNC and LB was rare in this large oldest-old cohort, highlighting the very high prevalence of multiple pathologic changes in the oldest old. Slowly progressive cognitive decline, ubiquitous memory impairment, history of syncope and depression, and extrapyramidal signs were prominent features among our LATE-NC without ADNC and LB group.
Collapse
Affiliation(s)
| | | | - Hannah L. Nguyen
- Department of Neurology, University of California, Irvine, CA, USA
| | - Farheen Basith
- Department of Neurology, University of California, Irvine, CA, USA
| | | | - Zarui A. Melikyan
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Syed A. Bukhari
- Department of Pathology, Stanford University, Palo Alto, CA, USA
| | | | - María M. Corrada
- Department of Neurology, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Claudia H. Kawas
- Department of Neurology, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Pathology, University of California, Irvine, CA, USA
| | - S. Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, CA, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| |
Collapse
|
23
|
Walker JM, Dehkordi SK, Schaffert J, Goette W, White CL, Richardson TE, Zare H. The Spectrum of Alzheimer-Type Pathology in Cognitively Normal Individuals. J Alzheimers Dis 2023; 91:683-695. [PMID: 36502330 PMCID: PMC11184733 DOI: 10.3233/jad-220898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
BACKGROUND The strongest risk factor for the development of Alzheimer's disease (AD) is age. The progression of Braak stage and Thal phase with age has been demonstrated. However, prior studies did not include cognitive status. OBJECTIVE We set out to define normative values for Alzheimer-type pathologic changes in individuals without cognitive decline, and then define levels that would qualify them to be resistant to or resilient against these changes. METHODS Utilizing neuropathology data obtained from the National Alzheimer's Coordinating Center (NACC), we demonstrate the age-related progression of Alzheimer-type pathologic changes in cognitively normal individuals (CDR = 0, n = 542). With plots generated from these data, we establish standard lines that may be utilized to measure the extent to which an individual's Alzheimer-type pathology varies from the estimated normal range of pathology. RESULTS Although Braak stage and Thal phase progressively increase with age in cognitively normal individuals, the Consortium to Establish a Registry for Alzheimer's Disease neuritic plaque score and Alzheimer's disease neuropathologic change remain at low levels. CONCLUSION These findings suggest that an increasing burden of neuritic plaques is a strong predictor of cognitive decline, whereas, neurofibrillary degeneration and amyloid-β (diffuse) plaque deposition, both to some degree, are normal pathologic changes of aging that occur in almost all individuals regardless of cognitive status. Furthermore, we have defined the amount of neuropathologic change in cognitively normal individuals that would qualify them to be "resilient" against the pathology (significantly above the normative values for age, but still cognitively normal) or "resistant" to the development of pathology (significantly below the normative values for age).
Collapse
Affiliation(s)
- Jamie M. Walker
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Shiva Kazempour Dehkordi
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| | - Jeff Schaffert
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - William Goette
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Charles L. White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Timothy E. Richardson
- Department of Pathology, Molecular and Cell Based Medicine, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Habil Zare
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, TX, USA
- Department of Cell Systems and Anatomy, University of Texas Health San Antonio, San Antonio, TX, USA
| |
Collapse
|
24
|
Marx GA, Koenigsberg DG, McKenzie AT, Kauffman J, Hanson RW, Whitney K, Signaevsky M, Prastawa M, Iida MA, White CL, Walker JM, Richardson TE, Koll J, Fernandez G, Zeineh J, Cordon-Cardo C, Crary JF, Farrell K. Artificial intelligence-derived neurofibrillary tangle burden is associated with antemortem cognitive impairment. Acta Neuropathol Commun 2022; 10:157. [PMID: 36316708 PMCID: PMC9620665 DOI: 10.1186/s40478-022-01457-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/06/2022] [Indexed: 11/10/2022] Open
Abstract
Tauopathies are a category of neurodegenerative diseases characterized by the presence of abnormal tau protein-containing neurofibrillary tangles (NFTs). NFTs are universally observed in aging, occurring with or without the concomitant accumulation of amyloid-beta peptide (Aβ) in plaques that typifies Alzheimer disease (AD), the most common tauopathy. Primary age-related tauopathy (PART) is an Aβ-independent process that affects the medial temporal lobe in both cognitively normal and impaired subjects. Determinants of symptomology in subjects with PART are poorly understood and require clinicopathologic correlation; however, classical approaches to staging tau pathology have limited quantitative reproducibility. As such, there is a critical need for unbiased methods to quantitatively analyze tau pathology on the histological level. Artificial intelligence (AI)-based convolutional neural networks (CNNs) generate highly accurate and precise computer vision assessments of digitized pathology slides, yielding novel histology metrics at scale. Here, we performed a retrospective autopsy study of a large cohort (n = 706) of human post-mortem brain tissues from normal and cognitively impaired elderly individuals with mild or no Aβ plaques (average age of death of 83.1 yr, range 55-110). We utilized a CNN trained to segment NFTs on hippocampus sections immunohistochemically stained with antisera recognizing abnormal hyperphosphorylated tau (p-tau), which yielded metrics of regional NFT counts, NFT positive pixel density, as well as a novel graph-theory based metric measuring the spatial distribution of NFTs. We found that several AI-derived NFT metrics significantly predicted the presence of cognitive impairment in both the hippocampus proper and entorhinal cortex (p < 0.0001). When controlling for age, AI-derived NFT counts still significantly predicted the presence of cognitive impairment (p = 0.04 in the entorhinal cortex; p = 0.04 overall). In contrast, Braak stage did not predict cognitive impairment in either age-adjusted or unadjusted models. These findings support the hypothesis that NFT burden correlates with cognitive impairment in PART. Furthermore, our analysis strongly suggests that AI-derived metrics of tau pathology provide a powerful tool that can deepen our understanding of the role of neurofibrillary degeneration in cognitive impairment.
Collapse
Affiliation(s)
- Gabriel A Marx
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Daniel G Koenigsberg
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Andrew T McKenzie
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Justin Kauffman
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Russell W Hanson
- New York University McSilver Institute for Poverty Policy and Research, New York, NY, USA
| | - Kristen Whitney
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Maxim Signaevsky
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcel Prastawa
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan A Iida
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jamie M Walker
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - Timothy E Richardson
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
| | - John Koll
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gerardo Fernandez
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Zeineh
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carlos Cordon-Cardo
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA
- Center for Computational and Systems Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA.
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, New York, NY, 10029, USA.
- Department of Artificial Intelligence and Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place, Box 1194, New York, NY, 10029, USA.
| |
Collapse
|
25
|
McKenzie AT, Marx GA, Koenigsberg D, Sawyer M, Iida MA, Walker JM, Richardson TE, Campanella G, Attems J, McKee AC, Stein TD, Fuchs TJ, White CL, Farrell K, Crary JF. Interpretable deep learning of myelin histopathology in age-related cognitive impairment. Acta Neuropathol Commun 2022; 10:131. [PMID: 36127723 PMCID: PMC9490907 DOI: 10.1186/s40478-022-01425-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 08/09/2022] [Indexed: 02/08/2023] Open
Abstract
Age-related cognitive impairment is multifactorial, with numerous underlying and frequently co-morbid pathological correlates. Amyloid beta (Aβ) plays a major role in Alzheimer's type age-related cognitive impairment, in addition to other etiopathologies such as Aβ-independent hyperphosphorylated tau, cerebrovascular disease, and myelin damage, which also warrant further investigation. Classical methods, even in the setting of the gold standard of postmortem brain assessment, involve semi-quantitative ordinal staging systems that often correlate poorly with clinical outcomes, due to imperfect cognitive measurements and preconceived notions regarding the neuropathologic features that should be chosen for study. Improved approaches are needed to identify histopathological changes correlated with cognition in an unbiased way. We used a weakly supervised multiple instance learning algorithm on whole slide images of human brain autopsy tissue sections from a group of elderly donors to predict the presence or absence of cognitive impairment (n = 367 with cognitive impairment, n = 349 without). Attention analysis allowed us to pinpoint the underlying subregional architecture and cellular features that the models used for the prediction in both brain regions studied, the medial temporal lobe and frontal cortex. Despite noisy labels of cognition, our trained models were able to predict the presence of cognitive impairment with a modest accuracy that was significantly greater than chance. Attention-based interpretation studies of the features most associated with cognitive impairment in the top performing models suggest that they identified myelin pallor in the white matter. Our results demonstrate a scalable platform with interpretable deep learning to identify unexpected aspects of pathology in cognitive impairment that can be translated to the study of other neurobiological disorders.
Collapse
Affiliation(s)
- Andrew T McKenzie
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gabriel A Marx
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Daniel Koenigsberg
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Sawyer
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan A Iida
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jamie M Walker
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| | - Timothy E Richardson
- Department of Pathology, University of Texas Health Science Center, San Antonio, TX, USA
- Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, TX, USA
| | - Gabriele Campanella
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Johannes Attems
- Translation and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, NE4 5PL, UK
| | - Ann C McKee
- Department of Pathology, VA Medical Center &, Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology, VA Medical Center &, Boston University School of Medicine, Boston, MA, USA
| | - Thomas J Fuchs
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kurt Farrell
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, L9-02C, 1425 Madison Avenue, New York, NY, USA.
| | - John F Crary
- Departments of Pathology, Neuroscience, and Artificial Intelligence & Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Neuropathology Brain Bank & Research Core, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Pathology, Icahn School of Medicine at Mount Sinai, Icahn Building 9th Floor, Room 20A, 1425 Madison Avenue, New York, NY, 10029, USA.
| |
Collapse
|
26
|
Farrell K, Iida MA, Cherry JD, Casella A, Stein TD, Bieniek KF, Walker JM, Richardson TE, White CL, Alvarez VE, Huber BR, Dickson DW, Insausti R, Dams-O'Connor K, McKee AC, Crary JF. Differential Vulnerability of Hippocampal Subfields in Primary Age-Related Tauopathy and Chronic Traumatic Encephalopathy. J Neuropathol Exp Neurol 2022; 81:781-789. [PMID: 36004533 PMCID: PMC9487677 DOI: 10.1093/jnen/nlac066] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a tauopathy associated with repetitive mild head impacts characterized by perivascular hyperphosphorylated tau (p-tau) in neurofibrillary tangles (NFTs) and neurites in the depths of the neocortical sulci. In moderate to advanced CTE, NFTs accumulate in the hippocampus, potentially overlapping neuroanatomically with primary age-related tauopathy (PART), an age-related tauopathy characterized by Alzheimer disease-like tau pathology in the hippocampus devoid of amyloid plaques. We measured p-tau burden using positive-pixel counts on immunohistochemically stained and neuroanatomically segmented hippocampal tissue. Subjects with CTE had a higher total p-tau burden than PART subjects in all sectors (p = 0.005). Within groups, PART had significantly higher total p-tau burden in CA1/subiculum compared to CA3 (p = 0.02) and CA4 (p = 0.01) and total p-tau burden in CA2 trended higher than CA4 (p = 0.06). In CTE, total p-tau burden in CA1/subiculum was significantly higher than in the dentate gyrus; and CA2 also trended higher than dentate gyrus (p = 0.01, p = 0.06). When controlling for p-tau burden across the entire hippocampus, CA3 and CA4 had significantly higher p-tau burden in CTE than PART (p < 0.0001). These data demonstrate differences in hippocampal p-tau burden and regional distribution in CTE compared to PART that might be helpful in differential diagnosis and reveal insights into disease pathogenesis.
Collapse
Affiliation(s)
- Kurt Farrell
- Departments of Pathology, Artificial Intelligence & Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan A Iida
- Departments of Pathology, Artificial Intelligence & Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jonathan D Cherry
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Alicia Casella
- Departments of Pathology, Artificial Intelligence & Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Thor D Stein
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
| | - Kevin F Bieniek
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Jamie M Walker
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Timothy E Richardson
- Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Pathology, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Victor E Alvarez
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Bertrand R Huber
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - Dennis W Dickson
- Departments of Pathology and Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Ricardo Insausti
- Human Neuroanatomy Laboratory, School of Medicine, University of Castilla-La Mancha, Albacete, Spain
| | - Kristen Dams-O'Connor
- Department of Rehabilitation and Human Performance, Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ann C McKee
- Department of Pathology, Alzheimer's Disease and CTE Center, Boston University School of Medicine, Boston, Massachusetts, USA
- Department of Veterans Affairs Medical Center, Bedford, Massachusetts, USA
- VA Boston Healthcare System, Boston, Massachusetts, USA
- Department of Neurology, Boston University School of Medicine, Boston, Massachusetts, USA
| | - John F Crary
- Departments of Pathology, Artificial Intelligence & Human Health, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
27
|
Smirnov DS, Salmon DP, Galasko D, Edland SD, Pizzo DP, Goodwill V, Hiniker A. TDP-43 Pathology Exacerbates Cognitive Decline in Primary Age-Related Tauopathy. Ann Neurol 2022; 92:425-438. [PMID: 35696592 PMCID: PMC9391297 DOI: 10.1002/ana.26438] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/09/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Primary age-related tauopathy (PART) refers to tau neurofibrillary tangles restricted largely to the medial temporal lobe in the absence of significant beta-amyloid plaques. PART has been associated with cognitive impairment, but contributions from concomitant limbic age-related TDP-43 encephalopathy neuropathologic change (LATE-NC) are underappreciated. METHODS We compare prevalence of LATE-NC and vascular copathologies in age- and Braak-matched patients with PART (n = 45, Braak stage I-IV, Thal phase 0-2) or early stage Alzheimer disease neuropathologic change (ADNC; n = 51, Braak I-IV, Thal 3-5), and examine their influence on clinical and cognitive decline. RESULTS Concomitant LATE-NC and vascular pathology were equally common, and cognition was equally impaired, in PART (Mini-Mental State Examination [MMSE] = 24.8 ± 6.9) and ADNC (MMSE = 24.2 ± 6.0). Patients with LATE-NC were more impaired than those without LATE-NC on the MMSE (by 5.8 points, 95% confidence interval [CI] = 3.0-8.6), Mattis Dementia Rating Scale (DRS; 17.5 points, 95% CI = 7.1-27.9), Clinical Dementia Rating, sum of boxes scale (CDR-sob; 5.2 points, 95% CI = 2.1-8.2), memory composite (0.8 standard deviations [SD], 95% CI = 0.1-1.6), and language composite (1.1 SD, 95% CI = 0.2-2.0), and more likely to receive a dementia diagnosis (odds ratio = 4.8, 95% CI = 1.5-18.0). Those with vascular pathology performed worse than those without on the DRS (by 10.2 points, 95% CI = 0.1-20.3) and executive composite (1.3 SD, 95% CI = 0.3-2.3). Cognition declined similarly in PART and ADNC over the 5 years preceding death; however, LATE-NC was associated with more rapid decline on the MMSE (β = 1.9, 95% CI = 0.9-3.0), DRS (β = 7.8, 95% CI = 3.4-12.7), CDR-sob (β = 1.9, 95% CI = 0.4-3.7), language composite (β = 0.5 SD, 95% CI = 0.1-0.8), and vascular pathology with more rapid decline on the DRS (β = 5.2, 95% CI = 0.6-10.2). INTERPRETATION LATE-NC, and to a lesser extent vascular copathology, exacerbate cognitive impairment and decline in PART and early stage ADNC. ANN NEUROL 2022;92:425-438.
Collapse
Affiliation(s)
- Denis S. Smirnov
- Department of Neurosciences, University of California, San Diego
| | - David P. Salmon
- Department of Neurosciences, University of California, San Diego
| | - Douglas Galasko
- Department of Neurosciences, University of California, San Diego
- Veterans Affairs San Diego Healthcare System
| | - Steven D. Edland
- Department of Neurosciences, University of California, San Diego
- School of Public Health, University of California, San Diego
| | - Donald P. Pizzo
- Department of Pathology, University of California, San Diego
| | | | - Annie Hiniker
- Department of Pathology, University of California, San Diego
| |
Collapse
|
28
|
Jiang J, Yang C, Ai JQ, Zhang QL, Cai XL, Tu T, Wan L, Wang XS, Wang H, Pan A, Manavis J, Gai WP, Che C, Tu E, Wang XP, Li ZY, Yan XX. Intraneuronal sortilin aggregation relative to granulovacuolar degeneration, tau pathogenesis and sorfra plaque formation in human hippocampal formation. Front Aging Neurosci 2022; 14:926904. [PMID: 35978952 PMCID: PMC9376392 DOI: 10.3389/fnagi.2022.926904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/06/2022] [Indexed: 11/30/2022] Open
Abstract
Extracellular β-amyloid (Aβ) deposition and intraneuronal phosphorylated-tau (pTau) accumulation are the hallmark lesions of Alzheimer’s disease (AD). Recently, “sorfra” plaques, named for the extracellular deposition of sortilin c-terminal fragments, are reported as a new AD-related proteopathy, which develop in the human cerebrum resembling the spatiotemporal trajectory of tauopathy. Here, we identified intraneuronal sortilin aggregation as a change related to the development of granulovacuolar degeneration (GVD), tauopathy, and sorfra plaques in the human hippocampal formation. Intraneuronal sortilin aggregation occurred as cytoplasmic inclusions among the pyramidal neurons, co-labeled by antibodies to the extracellular domain and intracellular C-terminal of sortilin. They existed infrequently in the brains of adults, while their density as quantified in the subiculum/CA1 areas increased in the brains from elderly lacking Aβ/pTau, with pTau (i.e., primary age-related tauopathy, PART cases), and with Aβ/pTau (probably/definitive AD, pAD/AD cases) pathologies. In PART and pAD/AD cases, the intraneuronal sortilin aggregates colocalized partially with various GVD markers including casein kinase 1 delta (Ck1δ) and charged multivesicular body protein 2B (CHMP2B). Single-cell densitometry established an inverse correlation between sortilin immunoreactivity and that of Ck1δ, CHMP2B, p62, and pTau among pyramidal neurons. In pAD/AD cases, the sortilin aggregates were reduced in density as moving from the subiculum to CA subregions, wherein sorfra plaques became fewer and absent. Taken together, we consider intraneuronal sortilin aggregation an aging/stress-related change implicating protein sorting deficit, which can activate protein clearance responses including via enhanced phosphorylation and hydrolysis, thereby promoting GVD, sorfra, and Tau pathogenesis, and ultimately, neuronal destruction and death.
Collapse
Affiliation(s)
- Juan Jiang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chen Yang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jia-Qi Ai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Qi-Lei Zhang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Xiao-Lu Cai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Tian Tu
- Department of Neurology, Xiangya Hospital, Changsha, China
| | - Lily Wan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Xiao-Sheng Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Hui Wang
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Aihua Pan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Jim Manavis
- Faculty of Health and Medical Sciences, The University of Adelaide, Adelaide, SA, Australia
| | - Wei-Ping Gai
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
| | - Chong Che
- GeneScience Pharmaceuticals Co., Ltd., Changchun High-Tech Dev. Zone, Changchun, China
| | - Ewen Tu
- Department of Neurology, Brain Hospital of Hunan Province, Changsha, China
| | - Xiao-Ping Wang
- Department of Psychiatry, The Second Xiangya Hospital, Changsha, China
| | - Zhen-Yan Li
- Department of Neurosurgery, Xiangya Hospital, Changsha, China
- *Correspondence: Zhen-Yan Li,
| | - Xiao-Xin Yan
- Department of Anatomy and Neurobiology, Central South University Xiangya School of Medicine, Changsha, China
- Xiao-Xin Yan,
| |
Collapse
|
29
|
Walker JM, Richardson TE, Farrell K, White, III CL, Crary JF. The Frequency of Cerebral Amyloid Angiopathy in Primary Age-Related Tauopathy. J Neuropathol Exp Neurol 2022; 81:246-248. [PMID: 34981120 PMCID: PMC9020475 DOI: 10.1093/jnen/nlab131] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Affiliation(s)
- Jamie M Walker
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Timothy E Richardson
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Charles L White, III
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
30
|
Wennström M, Janelidze S, Nilsson KPR, Serrano GE, Beach TG, Dage JL, Hansson O. Cellular localization of p-tau217 in brain and its association with p-tau217 plasma levels. Acta Neuropathol Commun 2022; 10:3. [PMID: 34991721 PMCID: PMC8734209 DOI: 10.1186/s40478-021-01307-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 12/22/2021] [Indexed: 01/04/2023] Open
Abstract
Recent studies highlight phosphorylated tau (p-tau) at threonine tau 217 (p-tau217) as a new promising plasma biomarker for pathological changes implicated in Alzheimer's disease (AD), but the specific brain pathological events related to the alteration in p-tau217 plasma levels are still largely unknown. Using immunostaining techniques of postmortem AD brain tissue, we show that p-tau217 is found in neurofibrillary tangles (NFTs) and neuropil threads that are also positive for p-tau181, 202, 202/205, 231, and 369/404. The p-tau217, but not the other five p-tau variants, was also prominently seen in vesicles structure positive for markers of granulovacuolar degeneration bodies and multi-vesicular bodies. Further, individuals with a high likelihood of AD showed significantly higher p-tau217 area fraction in 4 different brain areas (entorhinal cortex, inferior temporal gyrus, and superior frontal gyrus) compared to those with Primary age related tauopathy or other non-AD tauopathies. The p-tau217 area fraction correlated strongly with total amyloid-beta (Aβ) and NFT brain load when the whole group was analyzed. Finally, the mean p-tau217 area fraction correlated significantly with p-tau217 concentrations in antemortem collected plasma specifically in individuals with amyloid plaques and not in those without amyloid plaques. These studies highlight differences in cellular localization of different p-tau variants and suggest that plasma levels of p-tau217 reflect an accumulation of p-tau217 in presence of Aβ plaque load.
Collapse
Affiliation(s)
- Malin Wennström
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Inga Marie Nilssons gata 53, 214 28, Malmö, Sweden.
| | - Shorena Janelidze
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Inga Marie Nilssons gata 53, 214 28, Malmö, Sweden
| | - K Peter R Nilsson
- Department of Physics, Chemistry and Biology IFM, Linköping University, 581 83, Linköping, Sweden
| | | | | | - Jeffrey L Dage
- Eli Lilly and Company, Indianapolis, IN, USA
- Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Oskar Hansson
- Clinical Memory Research Unit, Department of Clinical Sciences Malmö, Lund University, Inga Marie Nilssons gata 53, 214 28, Malmö, Sweden.
- Memory Clinic, Skåne University Hospital, Malmö, Sweden.
| |
Collapse
|
31
|
Abstract
The key pathological hallmarks-extracellular plaques and intracellular neurofibrillary tangles (NFT)-described by Alois Alzheimer in his seminal 1907 article are still central to the postmortem diagnosis of Alzheimer's disease (AD), but major advances in our understanding of the underlying pathophysiology as well as significant progress in clinical diagnosis and therapy have changed the perspective and importance of neuropathologic evaluation of the brain. The notion that the pathological processes underlying AD already start decades before symptoms are apparent in patients has brought a major change reflected in the current neuropathological classification of AD neuropathological changes (ADNC). The predictable progression of beta-amyloid (Aβ) plaque pathology from neocortex, over limbic structures, diencephalon, and basal ganglia, to brainstem and cerebellum is captured in phases described by Thal and colleagues. The progression of NFT pathology from the transentorhinal region to the limbic system and ultimately the neocortex is described in stages proposed by Braak and colleagues. The density of neuritic plaque pathology is determined by criteria defined by the Consortium to establish a registry for Alzheimer's diseases (CERAD). While these changes neuropathologically define AD, it becomes more and more apparent that the majority of patients present with a multitude of additional pathological changes which are possible contributing factors to the clinical presentation and disease progression. The impact of co-existing Lewy body pathology has been well studied, but the importance of more recently described pathologies including limbic-predominant age-related TDP-43 encephalopathy (LATE), chronic traumatic encephalopathy (CTE), and aging-related tau astrogliopathy (ARTAG) still needs to be evaluated in large cohort studies. In addition, it is apparent that vascular pathology plays an important role in the AD patient population, but a lack of standardized reporting criteria has hampered progress in elucidating the importance of these changes for clinical presentation and disease progression. More recently a key role was ascribed to the immune response to pathological protein aggregates, and it will be important to analyze these changes systematically to better understand the temporal and spatial distribution of the immune response in AD and elucidate their importance for the disease process. Advances in digital pathology and technologies such as single cell sequencing and digital spatial profiling have opened novel avenues for improvement of neuropathological diagnosis and advancing our understanding of underlying molecular processes. Finally, major strides in biomarker-based diagnosis of AD and recent advances in targeted therapeutic approaches may have shifted the perspective but also highlight the continuous importance of postmortem analysis of the brain in neurodegenerative diseases.
Collapse
Affiliation(s)
- Jorge A Trejo-Lopez
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55905, USA
| | - Anthony T Yachnis
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA
| | - Stefan Prokop
- Department of Pathology, Immunology, and Laboratory Medicine, University of Florida, Gainesville, FL, 32610, USA.
- Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL, 32610, USA.
- McKnight Brain Institute, University of Florida, Gainesville, FL, 32610, USA.
- Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL, 32610, USA.
| |
Collapse
|
32
|
Farrell K, Kim S, Han N, Iida MA, Gonzalez EM, Otero-Garcia M, Walker JM, Richardson TE, Renton AE, Andrews SJ, Fulton-Howard B, Humphrey J, Vialle RA, Bowles KR, de Paiva Lopes K, Whitney K, Dangoor DK, Walsh H, Marcora E, Hefti MM, Casella A, Sissoko CT, Kapoor M, Novikova G, Udine E, Wong G, Tang W, Bhangale T, Hunkapiller J, Ayalon G, Graham RR, Cherry JD, Cortes EP, Borukov VY, McKee AC, Stein TD, Vonsattel JP, Teich AF, Gearing M, Glass J, Troncoso JC, Frosch MP, Hyman BT, Dickson DW, Murray ME, Attems J, Flanagan ME, Mao Q, Mesulam MM, Weintraub S, Woltjer RL, Pham T, Kofler J, Schneider JA, Yu L, Purohit DP, Haroutunian V, Hof PR, Gandy S, Sano M, Beach TG, Poon W, Kawas CH, Corrada MM, Rissman RA, Metcalf J, Shuldberg S, Salehi B, Nelson PT, Trojanowski JQ, Lee EB, Wolk DA, McMillan CT, Keene CD, Latimer CS, Montine TJ, Kovacs GG, Lutz MI, Fischer P, Perrin RJ, Cairns NJ, Franklin EE, Cohen HT, Raj T, Cobos I, Frost B, Goate A, White Iii CL, Crary JF. Genome-wide association study and functional validation implicates JADE1 in tauopathy. Acta Neuropathol 2022; 143:33-53. [PMID: 34719765 PMCID: PMC8786260 DOI: 10.1007/s00401-021-02379-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 10/13/2021] [Accepted: 10/24/2021] [Indexed: 01/07/2023]
Abstract
Primary age-related tauopathy (PART) is a neurodegenerative pathology with features distinct from but also overlapping with Alzheimer disease (AD). While both exhibit Alzheimer-type temporal lobe neurofibrillary degeneration alongside amnestic cognitive impairment, PART develops independently of amyloid-β (Aβ) plaques. The pathogenesis of PART is not known, but evidence suggests an association with genes that promote tau pathology and others that protect from Aβ toxicity. Here, we performed a genetic association study in an autopsy cohort of individuals with PART (n = 647) using Braak neurofibrillary tangle stage as a quantitative trait. We found some significant associations with candidate loci associated with AD (SLC24A4, MS4A6A, HS3ST1) and progressive supranuclear palsy (MAPT and EIF2AK3). Genome-wide association analysis revealed a novel significant association with a single nucleotide polymorphism on chromosome 4 (rs56405341) in a locus containing three genes, including JADE1 which was significantly upregulated in tangle-bearing neurons by single-soma RNA-seq. Immunohistochemical studies using antisera targeting JADE1 protein revealed localization within tau aggregates in autopsy brains with four microtubule-binding domain repeats (4R) isoforms and mixed 3R/4R, but not with 3R exclusively. Co-immunoprecipitation in post-mortem human PART brain tissue revealed a specific binding of JADE1 protein to four repeat tau lacking N-terminal inserts (0N4R). Finally, knockdown of the Drosophila JADE1 homolog rhinoceros (rno) enhanced tau-induced toxicity and apoptosis in vivo in a humanized 0N4R mutant tau knock-in model, as quantified by rough eye phenotype and terminal deoxynucleotidyl transferase dUTP nick end-labeling (TUNEL) in the fly brain. Together, these findings indicate that PART has a genetic architecture that partially overlaps with AD and other tauopathies and suggests a novel role for JADE1 as a modifier of neurofibrillary degeneration.
Collapse
Affiliation(s)
- Kurt Farrell
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - SoongHo Kim
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Natalia Han
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan A Iida
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Elias M Gonzalez
- Department of Cell Systems and Anatomy, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, the Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Marcos Otero-Garcia
- Department of Pathology and Laboratory Medicine, Division of Neuropathology, University of California, Los Angeles, CA, USA
| | - Jamie M Walker
- Department of Pathology and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Timothy E Richardson
- Department of Pathology and Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Alan E Renton
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shea J Andrews
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Brian Fulton-Howard
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jack Humphrey
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ricardo A Vialle
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kathryn R Bowles
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Katia de Paiva Lopes
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kristen Whitney
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Diana K Dangoor
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Hadley Walsh
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Edoardo Marcora
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marco M Hefti
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Alicia Casella
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Cheick T Sissoko
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manav Kapoor
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gloriia Novikova
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Evan Udine
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Garrett Wong
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Weijing Tang
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Tushar Bhangale
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Julie Hunkapiller
- Department of Human Genetics, Genentech, South San Francisco, CA, USA
| | - Gai Ayalon
- Neumora Therapeutics, South San Francisco, CA, USA
| | | | - Jonathan D Cherry
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Etty P Cortes
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Valeriy Y Borukov
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ann C McKee
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology (Neuropathology), VA Medical Center, Boston University School of Medicine, Boston, MA, USA
| | - Jean-Paul Vonsattel
- Department of Pathology and Cell Biology, Department of Neurology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Andy F Teich
- Department of Pathology and Cell Biology, Department of Neurology, and the Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, New York, NY, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine (Neuropathology) and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathan Glass
- Department of Pathology and Laboratory Medicine (Neuropathology) and Neurology, Emory University School of Medicine, Atlanta, GA, USA
| | - Juan C Troncoso
- Department of Pathology, Division of Neuropathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Matthew P Frosch
- Department of Neurology and Pathology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| | - Bradley T Hyman
- Department of Neurology and Pathology, Harvard Medical School and Massachusetts General Hospital, Charlestown, MA, USA
| | | | | | - Johannes Attems
- Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Margaret E Flanagan
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Qinwen Mao
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - M-Marsel Mesulam
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Sandra Weintraub
- Department of Pathology (Neuropathology), Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Randy L Woltjer
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Thao Pham
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Julia Kofler
- Department of Pathology (Neuropathology), University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Julie A Schneider
- Departments of Pathology (Neuropathology) and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Lei Yu
- Departments of Pathology (Neuropathology) and Neurological Sciences, Rush University Medical Center, Chicago, IL, USA
| | - Dushyant P Purohit
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Vahram Haroutunian
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Patrick R Hof
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sam Gandy
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Neurology, Center for Cognitive Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mary Sano
- Department of Psychiatry, Alzheimer's Disease Research Center, James J. Peters VA Medical Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Thomas G Beach
- Department of Neuropathology, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Wayne Poon
- Department of Neurology, Department of Epidemiology, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - Claudia H Kawas
- Department of Neurology, Department of Neurobiology and Behavior, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - María M Corrada
- Department of Neurology, Department of Epidemiology, Institute for Memory Impairments and Neurological Disorders, UC Irvine, Irvine, CA, USA
| | - Robert A Rissman
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Jeff Metcalf
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Sara Shuldberg
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Bahar Salehi
- Department of Neurosciences University of California and the Veterans Affairs San Diego Healthcare System, La Jolla, San Diego, California, USA
| | - Peter T Nelson
- Department of Pathology (Neuropathology) and Sanders-Brown Center on Aging, University of Kentucky, Lexington, KY, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - David A Wolk
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - C Dirk Keene
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
| | - Caitlin S Latimer
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
| | - Thomas J Montine
- Department of Laboratory Medicine and Pathology, University of f Medicine, Seattle, WA, USA
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Gabor G Kovacs
- Laboratory Medicine Program, Krembil Brain Institute, University Health Network, Toronto, ON, Canada
- Tanz Centre for Research in Neurodegenerative Disease and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Mirjam I Lutz
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Peter Fischer
- Department of Psychiatry, Danube Hospital, Vienna, Austria
| | - Richard J Perrin
- Department of Pathology and Immunology, Department of Neurology, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Nigel J Cairns
- College of Medicine and Health, University of Exeter, Exeter, UK
| | - Erin E Franklin
- Department of Pathology and Immunology, Department of Neurology, Knight Alzheimer Disease Research Center, Washington University School of Medicine, St. Louis, MO, USA
| | - Herbert T Cohen
- Departments of Medicine, Pathology, and Pharmacology, Boston University School of Medicine and Boston Medical Center, Boston, MA, USA
| | - Towfique Raj
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Inma Cobos
- Department of Pathology, Stanford University, Palo Alto, USA
| | - Bess Frost
- Department of Cell Systems and Anatomy, Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, the Sam and Ann Barshop Institute for Longevity and Aging Studies, University of Texas Health San Antonio, San Antonio, TX, 78229, USA
| | - Alison Goate
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Charles L White Iii
- Department of Pathology (Neuropathology), University of Texas Southwestern Medical School, Dallas, TX, USA
| | - John F Crary
- Department of Pathology, Neuropathology Brain Bank and Research CoRE, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
- Nash Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Department of Artificial Intelligence and Human Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
33
|
Savola S, Kaivola K, Raunio A, Kero M, Mäkelä M, Pärn K, Palta P, Tanskanen M, Tuimala J, Polvikoski T, Tienari PJ, Paetau A, Myllykangas L. Primary Age‐Related Tauopathy (PART) in a Finnish Population‐Based Study of the Oldest Old (Vantaa 85+). Neuropathol Appl Neurobiol 2021; 48:e12788. [PMID: 34927275 PMCID: PMC9305229 DOI: 10.1111/nan.12788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 11/16/2021] [Accepted: 12/12/2021] [Indexed: 11/26/2022]
Abstract
Aims Few studies have investigated primary age‐related tauopathy (PART) in a population‐based setting. Here, we assessed its prevalence, genetic background, comorbidities and features of cognitive decline in an unselected elderly population. Methods The population‐based Vantaa 85+ study includes all 601 inhabitants of Vantaa aged ≥ 85 years in 1991. Neuropathological assessment was possible in 301. Dementia (DSM IIIR criteria) and Mini‐Mental State Examination (MMSE) scores were assessed at the baseline of the study and follow‐ups. PART subjects were identified according to the criteria by Crary et al and were compared with subjects with mild and severe Alzheimer's disease (AD) neuropathological changes. The effects of other neuropathologies were taken into account using multivariate and sensitivity assays. Genetic analyses included APOE genotypes and 29 polymorphisms of the MAPT 3′ untranslated region (3′UTR region). Results The frequency of PART was 20% (n = 61/301, definite PART 5%). When PART subjects were compared with those with severe AD pathology, dementia was less common, its age at onset was higher and duration shorter. No such differences were seen when compared with those with milder AD pathology. However, both AD groups showed a steeper decline in MMSE scores in follow‐ups compared with PART. APOE ε4 frequency was lower, and APOE ε2 frequency higher in the PART group compared with each AD group. The detected nominally significant associations between PART and two MAPT 3′UTR polymorphisms and haplotypes did not survive Bonferroni correction. Conclusions PART is common among very elderly. PART subjects differ from individuals with AD‐type changes in the pattern of cognitive decline, associated genetic and neuropathological features.
Collapse
Affiliation(s)
- Sara Savola
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Karri Kaivola
- Translational Immunology, Research Programs Unit University of Helsinki Helsinki Finland
- Department of Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Anna Raunio
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Mia Kero
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Mira Mäkelä
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Kalle Pärn
- Institute for Molecular Medicine Finland (FIMM), HiLIFE University of Helsinki Helsinki Finland
| | - Priit Palta
- Institute for Molecular Medicine Finland (FIMM), HiLIFE University of Helsinki Helsinki Finland
| | - Maarit Tanskanen
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Jarno Tuimala
- Department of Pathology University of Helsinki Helsinki Finland
| | - Tuomo Polvikoski
- Translational and Clinical Research Institute Newcastle University Newcastle upon Tyne United Kingdom
| | - Pentti J. Tienari
- Translational Immunology, Research Programs Unit University of Helsinki Helsinki Finland
- Department of Neurology University of Helsinki and Helsinki University Hospital Helsinki Finland
| | - Anders Paetau
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| | - Liisa Myllykangas
- Department of Pathology University of Helsinki Helsinki Finland
- Department of Pathology, HUS Diagnostic Center Helsinki University Hospital Helsinki Finland
| |
Collapse
|
34
|
Jellinger KA. Recent update on the heterogeneity of the Alzheimer’s disease spectrum. J Neural Transm (Vienna) 2021; 129:1-24. [DOI: 10.1007/s00702-021-02449-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/25/2021] [Indexed: 02/03/2023]
|
35
|
Walker JM, White CL, Farrell K, Crary JF, Richardson TE. Neocortical Neurofibrillary Degeneration in Primary Age-Related Tauopathy. J Neuropathol Exp Neurol 2021; 81:146-148. [PMID: 34865093 DOI: 10.1093/jnen/nlab113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Jamie M Walker
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA.,Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA.,Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- Department of Pathology and Laboratory Medicine, University of Texas Health San Antonio, San Antonio, Texas, USA.,Glenn Biggs Institute for Alzheimer's & Neurodegenerative Diseases, University of Texas Health San Antonio, San Antonio, Texas, USA
| |
Collapse
|
36
|
Iida MA, Farrell K, Walker JM, Richardson TE, Marx GA, Bryce CH, Purohit D, Ayalon G, Beach TG, Bigio EH, Cortes EP, Gearing M, Haroutunian V, McMillan CT, Lee EB, Dickson DW, McKee AC, Stein TD, Trojanowski JQ, Woltjer RL, Kovacs GG, Kofler JK, Kaye J, White CL, Crary JF. Predictors of cognitive impairment in primary age-related tauopathy: an autopsy study. Acta Neuropathol Commun 2021; 9:134. [PMID: 34353357 PMCID: PMC8340493 DOI: 10.1186/s40478-021-01233-3] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/16/2021] [Indexed: 12/14/2022] Open
Abstract
Primary age-related tauopathy (PART) is a form of Alzheimer-type neurofibrillary degeneration occurring in the absence of amyloid-beta (Aβ) plaques. While PART shares some features with Alzheimer disease (AD), such as progressive accumulation of neurofibrillary tangle pathology in the medial temporal lobe and other brain regions, it does not progress extensively to neocortical regions. Given this restricted pathoanatomical pattern and variable symptomatology, there is a need to reexamine and improve upon how PART is neuropathologically assessed and staged. We performed a retrospective autopsy study in a collection (n = 174) of post-mortem PART brains and used logistic regression to determine the extent to which a set of clinical and neuropathological features predict cognitive impairment. We compared Braak staging, which focuses on hierarchical neuroanatomical progression of AD tau and Aβ pathology, with quantitative assessments of neurofibrillary burden using computer-derived positive pixel counts on digitized whole slide images of sections stained immunohistochemically with antibodies targeting abnormal hyperphosphorylated tau (p-tau) in the entorhinal region and hippocampus. We also assessed other factors affecting cognition, including aging-related tau astrogliopathy (ARTAG) and atrophy. We found no association between Braak stage and cognitive impairment when controlling for age (p = 0.76). In contrast, p-tau burden was significantly correlated with cognitive impairment even when adjusting for age (p = 0.03). The strongest correlate of cognitive impairment was cerebrovascular disease, a well-known risk factor (p < 0.0001), but other features including ARTAG (p = 0.03) and hippocampal atrophy (p = 0.04) were also associated. In contrast, sex, APOE, psychiatric illness, education, argyrophilic grains, and incidental Lewy bodies were not. These findings support the hypothesis that comorbid pathologies contribute to cognitive impairment in subjects with PART. Quantitative approaches beyond Braak staging are critical for advancing our understanding of the extent to which age-related tauopathy changes impact cognitive function.
Collapse
Affiliation(s)
- Megan A Iida
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Kurt Farrell
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Jamie M Walker
- Department of Pathology and Laboratory Medicine and The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Timothy E Richardson
- Department of Pathology and Laboratory Medicine and The Glenn Biggs Institute for Alzheimer's and Neurodegenerative Diseases, UT Health San Antonio, San Antonio, TX, USA
| | - Gabriel A Marx
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Clare H Bryce
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Dushyant Purohit
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Gai Ayalon
- Ultragenyx Pharmaceuticals, Novato, CA, USA
| | | | - Eileen H Bigio
- Department of Pathology, Northwestern Cognitive Neurology and Alzheimer Disease Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Etty P Cortes
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA
| | - Marla Gearing
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Vahram Haroutunian
- Departments of Psychiatry and Neuroscience, Alzheimer's Disease Research Center, Icahn School of Medicine At Mount Sinai, New York, NY, USA
- JJ Peters VA Medical Center (MIRECC), Bronx, NY, USA
| | - Corey T McMillan
- Department of Neurology, Perelman School of Medicine, Penn FTD Center, Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, PA, USA
| | - Edward B Lee
- Department of Pathology and Laboratory Medicine, Translational Neuropathology Research Laboratory, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | | | - Ann C McKee
- Department of Pathology, VA Medical Center & Boston University School of Medicine, Boston, MA, USA
| | - Thor D Stein
- Department of Pathology, VA Medical Center & Boston University School of Medicine, Boston, MA, USA
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Randall L Woltjer
- Department of Pathology, Oregon Health Sciences University, Portland, OR, USA
| | - Gabor G Kovacs
- Laboratory Medicine Program, Krembil Brain Institute University Health Network Toronto Ontario, Ontario, Canada
- Department of Laboratory Medicine and Pathobiology, Tanz Centre for Research in Neurodegenerative Disease, University of Toronto, Toronto, ON, Canada
- Institute of Neurology, Medical University of Vienna, Vienna, Austria
| | - Julia K Kofler
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Jeffrey Kaye
- Department of Neurology, Oregon Health & Science University, Portland, USA
| | - Charles L White
- Neuropathology Laboratory, Department of Pathology, University of Texas Southwestern Medical Center, Dallas, USA
| | - John F Crary
- Department of Pathology, Nash Family Department of Neuroscience, Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine At Mount Sinai, Friedman Brain Institute, Neuropathology Brain Bank & Research CoRE, 1 Gustave L. Levy Place Box 1194, New York, NY, 10029, USA.
| |
Collapse
|
37
|
Cherry JD, Esnault CD, Baucom ZH, Tripodis Y, Huber BR, Alvarez VE, Stein TD, Dickson DW, McKee AC. Tau isoforms are differentially expressed across the hippocampus in chronic traumatic encephalopathy and Alzheimer's disease. Acta Neuropathol Commun 2021; 9:86. [PMID: 33980303 PMCID: PMC8114683 DOI: 10.1186/s40478-021-01189-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 05/03/2021] [Indexed: 01/14/2023] Open
Abstract
Chronic traumatic encephalopathy (CTE) is a progressive neurodegenerative disease, characterized by hyperphosphorylated tau, found in individuals with a history of exposure to repetitive head impacts. While the neuropathologic hallmark of CTE is found in the cortex, hippocampal tau has proven to be an important neuropathologic feature to examine the extent of disease severity. However, the hippocampus is also heavily affected in many other tauopathies, such as Alzheimer's disease (AD). How CTE and AD differentially affect the hippocampus is unclear. Using immunofluorescent analysis, a detailed histologic characterization of 3R and 4R tau isoforms and their differential accumulation in the temporal cortex in CTE and AD was performed. CTE and AD were both observed to contain mixed 3R and 4R tau isoforms, with 4R predominating in mild disease and 3R increasing proportionally as pathological severity increased. CTE demonstrated high levels of tau in hippocampal subfields CA2 and CA3 compared to CA1. There were also low levels of tau in the subiculum compared to CA1 in CTE. In contrast, AD had higher levels of tau in CA1 and subiculum compared to CA2/3. Direct comparison of the tau burden between AD and CTE demonstrated that CTE had higher tau densities in CA4 and CA2/3, while AD had elevated tau in the subiculum. Amyloid beta pathology did not contribute to tau isoform levels. Finally, it was demonstrated that higher levels of 3R tau correlated to more severe extracellular tau (ghost tangles) pathology. These findings suggest that mixed 3R/4R tauopathies begin as 4R predominant then transition to 3R predominant as pathological severity increases and ghost tangles develop. Overall, this work demonstrates that the relative deposition of tau isoforms among hippocampal subfields can aid in differential diagnosis of AD and CTE, and might help improve specificity of biomarkers for in vivo diagnosis.
Collapse
Affiliation(s)
- Jonathan D Cherry
- VA Boston Healthcare System, 150 S. Huntington Ave, Boston, MA, 02130, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 20118, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA.
- Boston University Alzheimer's Disease Research and CTE Center, Boston University School of Medicine, Boston, MA, 20118, USA.
| | - Camille D Esnault
- VA Boston Healthcare System, 150 S. Huntington Ave, Boston, MA, 02130, USA
- Boston University Alzheimer's Disease Research and CTE Center, Boston University School of Medicine, Boston, MA, 20118, USA
| | - Zachary H Baucom
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 20118, USA
| | - Yorghos Tripodis
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 20118, USA
| | - Bertrand R Huber
- VA Boston Healthcare System, 150 S. Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Boston University Alzheimer's Disease Research and CTE Center, Boston University School of Medicine, Boston, MA, 20118, USA
- National Center for PTSD, VA Boston Healthcare System, 150 S. Huntington Ave, Boston, MA, 02130, USA
| | - Victor E Alvarez
- VA Boston Healthcare System, 150 S. Huntington Ave, Boston, MA, 02130, USA
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA
- Boston University Alzheimer's Disease Research and CTE Center, Boston University School of Medicine, Boston, MA, 20118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Thor D Stein
- VA Boston Healthcare System, 150 S. Huntington Ave, Boston, MA, 02130, USA
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 20118, USA
- Boston University Alzheimer's Disease Research and CTE Center, Boston University School of Medicine, Boston, MA, 20118, USA
- VA Bedford Healthcare System, Bedford, MA, 01730, USA
| | - Dennis W Dickson
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Ann C McKee
- VA Boston Healthcare System, 150 S. Huntington Ave, Boston, MA, 02130, USA.
- Department of Pathology and Laboratory Medicine, Boston University School of Medicine, Boston, MA, 20118, USA.
- Department of Neurology, Boston University School of Medicine, Boston, MA, 20118, USA.
- Boston University Alzheimer's Disease Research and CTE Center, Boston University School of Medicine, Boston, MA, 20118, USA.
- VA Bedford Healthcare System, Bedford, MA, 01730, USA.
| |
Collapse
|
38
|
Walker JM, Fudym Y, Farrell K, Iida MA, Bieniek KF, Seshadri S, White CL, Crary JF, Richardson TE. Asymmetry of Hippocampal Tau Pathology in Primary Age-Related Tauopathy and Alzheimer Disease. J Neuropathol Exp Neurol 2021; 80:436-445. [PMID: 33860327 PMCID: PMC8054137 DOI: 10.1093/jnen/nlab032] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Primary age-related tauopathy (PART) is a neurodegenerative entity defined as neurofibrillary degeneration generally restricted to the medial temporal region (Braak stage I-IV) with complete or near absence of diffuse and neuritic plaques. Symptoms range in severity but are generally milder and later in onset than in Alzheimer disease (AD). Recently, an early predilection for neurofibrillary degeneration in the hippocampal CA2 subregion has been demonstrated in PART, whereas AD neuropathologic change (ADNC) typically displays relative sparing of CA2 until later stages. In this study, we utilized a semiquantitative scoring system to evaluate asymmetry of neurofibrillary degeneration between left and right hippocampi in 67 PART cases and 17 ADNC cases. 49% of PART cases demonstrated asymmetric findings in at least one hippocampal subregion, and 79% of the asymmetric cases displayed some degree of CA2 asymmetry. Additionally, 19% of cases revealed a difference in Braak score between the right and left hippocampi. There was a significant difference in CA2 neurofibrillary degeneration (p = 0.0006) and CA2/CA1 ratio (p < 0.0001) when comparing the contralateral sides, but neither right nor left was more consistently affected. These data show the importance of analyzing bilateral hippocampi in the diagnostic evaluation of PART and potentially of other neurodegenerative diseases.
Collapse
Affiliation(s)
- Jamie M Walker
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
| | - Yelena Fudym
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kurt Farrell
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Megan A Iida
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- School of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Kevin F Bieniek
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Neuroscience, Mayo Clinic, Jacksonville, Florida, USA
| | - Sudha Seshadri
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
- Department of Neurology, University of Texas Health Science Center, San Antonio, Texas, USA
- The Framingham Heart Study, Framingham, Massachusetts, USA
| | - Charles L White
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - John F Crary
- Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, New York, USA
- Ronald M. Loeb Center for Alzheimer’s Disease, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Timothy E Richardson
- From the Department of Pathology and Laboratory Medicine, Upstate Medical University, Syracuse, New York, USA
- Department of Pathology, State University of New York, Upstate Medical University, Syracuse, New York, USA
- Glenn Biggs Institute for Alzheimer’s & Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio, Texas, USA
| |
Collapse
|
39
|
Rábano A, Guerrero Márquez C, Juste RA, Geijo MV, Calero M. Medial Temporal Lobe Involvement in Human Prion Diseases: Implications for the Study of Focal Non Prion Neurodegenerative Pathology. Biomolecules 2021; 11:biom11030413. [PMID: 33802224 PMCID: PMC7998497 DOI: 10.3390/biom11030413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 03/07/2021] [Accepted: 03/08/2021] [Indexed: 01/29/2023] Open
Abstract
Human prion and non-prion neurodegenerative diseases share pathogenic mechanisms and neuropathological features. The lesion profile of a particular entity results from specific involvement of vulnerable neuron populations and connectivity circuits by a pathogenic protein isoform with strain-like properties. The lesion profile of the medial temporal lobe (MTL) was studied in postmortem tissue of 143 patients with human prion disease (HPD) including sporadic, genetic, and acquired forms. Most cases (90%) were classified according to PrPres type and/or PRNP codon 129 status, in addition to a full neuropathological profile. Mixed histotypes represented 29.4% of total sporadic Creutzfeldt-Jakob disease (sCJD) cases. An intensity score of involvement including spongiosis and astrogliosis was determined for the amygdala, presubiculum, subiculum, entorhinal cortex, CA1 to CA4 sectors of the hippocampal cortex, and dentate gyrus. Connectivity hubs within the MTL presented the highest scores. Diverse lesion profiles were obtained for different types and subtypes of HPD. Impact of mixed PrPres types on the MTL lesion profile was higher for sCJDMV2K cases than in other histotypes. Differences between MTL profiles was globally consistent with current evidence on specific strains in HPD. These results may be relevant for the analysis of possible strain effects in focal non-prion neurodegenerative conditions limited to the MTL.
Collapse
Affiliation(s)
- Alberto Rábano
- Neuropathology Department, Alzheimer’s Disease Research Unit, CIEN Foundation, Institute of Health Carlos III, Queen Sofía Foundation Alzheimer Research Center, 28031 Madrid, Spain
- CIEN Foundation and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, 28031 Madrid, Spain;
- Correspondence:
| | - Carmen Guerrero Márquez
- Neurological Tissue Bank—HUFA Biobank, Hospital Universitario Fundación Alcorcón, 28922 Madrid, Spain;
| | - Ramón A. Juste
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia P812, 48160 Derio, Spain; (R.A.J.); (M.V.G.)
| | - María V. Geijo
- Department of Animal Health, NEIKER-Basque Institute for Agricultural Research and Development, Basque Research and Technology Alliance (BRTA), Parque Científico y Tecnológico de Bizkaia P812, 48160 Derio, Spain; (R.A.J.); (M.V.G.)
| | - Miguel Calero
- CIEN Foundation and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Institute of Health Carlos III, 28031 Madrid, Spain;
- Chronic Disease Program, Institute of Health Carlos III, 28222 Madrid, Spain
| |
Collapse
|