1
|
Fan Z, Song H, Qi M, Wang M, Bai Y, Sun Y, Yu H. Impact of High-Temperature Stress on Maize Seed Setting: Cellular and Molecular Insights of Thermotolerance. Int J Mol Sci 2025; 26:1283. [PMID: 39941051 PMCID: PMC11818821 DOI: 10.3390/ijms26031283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/24/2025] [Accepted: 01/29/2025] [Indexed: 02/16/2025] Open
Abstract
Global warming poses a significant threat to crop production and food security, with maize (Zay mays L.) particularly vulnerable to high-temperature stress (HTS). This review explores the detrimental impacts of elevated temperatures on maize development across various growth stages, analyzed within the source-sink framework, with a particular focus on seed setting and yield reduction. It provides a broad analysis of maize cellular and molecular responses to HTS, highlighting the key roles of plant hormone abscisic acid (ABA) signaling, calcium signaling, chloroplast, and the DNA damage repair (DDR) system in maize. HTS disrupts ABA signaling pathways, impairing stomatal regulation and reducing water-use efficiency, while calcium signaling orchestrates stress responses by activating heat shock proteins and other protective mechanisms. Chloroplasts, as central to photosynthesis, are particularly sensitive to HTS, often exhibiting photosystem II damage and chlorophyll degradation. Recent studies also highlight the significance of the DDR system, with genes like ZmRAD51C playing crucial roles in maintaining genomic stability during reproductive organ development. DNA damage under HTS conditions emerges as a key factor contributing to reduced seed set, although the precise molecular mechanisms remain to be fully elucidated. Furthermore, the review examines cutting-edge genetic improvement strategies, aimed at developing thermotolerant maize cultivars. These recent research advances underscore the need for further investigation into the molecular basis of thermotolerance and open the door for future advancements in breeding thermotolerant crops.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haidong Yu
- College of Life Sciences, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
2
|
Yan X, Liu Q, Yang Q, Wang K, Zhai X, Kou M, Liu J, Li S, Deng S, Li M, Duan H. Single-cell transcriptomic profiling of maize cell heterogeneity and systemic immune responses against Puccinia polysora Underw. PLANT BIOTECHNOLOGY JOURNAL 2025; 23:549-563. [PMID: 39612313 PMCID: PMC11772323 DOI: 10.1111/pbi.14519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 12/01/2024]
Abstract
Southern corn rust (SCR), caused by Puccinia polysora Underw (P. polysora), is a catastrophic disease affecting maize, leading to significant global yield losses. The disease manifests primarily as pustules on the upper surface of corn leaves, obscuring our understanding of its cellular heterogeneity, the maize's response to its infection and the underlying gene expression regulatory mechanisms. In this study, we dissected the heterogeneity of maize's response to P. polysora infection using single-cell RNA sequencing. We delineated cell-type-specific gene expression alterations in six leaf cell types, creating the inaugural single-cell atlas of a maize leaf under fungal assault. Crucially, by reconstructing cellular trajectories in susceptible line N110 and resistant line R99 during infection, we identified diverse regulatory programs that fortify R99's resistance across different leaf cell types. This research uncovers an immune-like state in R99 leaves, characterized by the expression of various fungi-induced genes in the absence of fungal infection, particularly in guard and epidermal cells. Our findings also highlight the role of the fungi-induced glycoside hydrolase family 18 chitinase 7 protein (ZmChit7) in conferring resistance to P. polysora. Collectively, our results shed light on the mechanisms of maize resistance to fungal pathogens through comparative single-cell transcriptomics, offering a valuable resource for pinpointing novel genes that bolster resistance to P. polysora.
Collapse
Affiliation(s)
- Xiao‐Cui Yan
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of AgronomyHebei Agricultural UniversityBaodingHebeiChina
| | - Qing Liu
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, College of Life SciencesHebei Agricultural UniversityBaodingChina
| | - Qian Yang
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of AgronomyHebei Agricultural UniversityBaodingHebeiChina
| | | | - Xiu‐Zhen Zhai
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of AgronomyHebei Agricultural UniversityBaodingHebeiChina
| | - Meng‐Yun Kou
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of AgronomyHebei Agricultural UniversityBaodingHebeiChina
| | - Jia‐Long Liu
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of AgronomyHebei Agricultural UniversityBaodingHebeiChina
| | | | | | - Miao‐Miao Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijingChina
| | - Hui‐Jun Duan
- State Key Laboratory of North China Crop Improvement and Regulation Key Laboratory of Crop Germplasm Resources in North China, Ministry of Education, College of AgronomyHebei Agricultural UniversityBaodingHebeiChina
| |
Collapse
|
3
|
Yuan B, Li C, Wang Q, Yao Q, Guo X, Zhang Y, Wang Z. Identification and functional characterization of the RPP13 gene family in potato ( Solanum tuberosum L.) for disease resistance. FRONTIERS IN PLANT SCIENCE 2025; 15:1515060. [PMID: 39902205 PMCID: PMC11788377 DOI: 10.3389/fpls.2024.1515060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Accepted: 12/27/2024] [Indexed: 02/05/2025]
Abstract
Potato (Solanum tuberosum L.), as the world's fourth largest food crop, plays a crucial role in ensuring food security through its disease resistance. The RPP13 gene family is known to play a pivotal role in plant disease resistance responses; however, its specific functions in potato remain unclear. In this study, we conducted the first comprehensive identification and analysis of 28 RPP13 gene family members in potato, examining their gene structures, chromosomal locations, expression patterns, and functional characteristics. Gene structure analysis revealed that most members contain the typical CC-NBS-LRR domains, with exon numbers ranging from 1 to 6. Phylogenetic analysis grouped these genes into four evolutionary clades, indicating a high level of conservation. Cis-regulatory element analysis identified that the promoter region of StRPP13-26 is enriched with pathogen-responsive elements such as the WUN-motif and MYC, suggesting its potential role in disease defense. Expression pattern analysis showed that StRPP13-8, StRPP13-10, and StRPP13-23 are highly expressed in various tissues, indicating their involvement in basic physiological functions, whereas StRPP13-6 and StRPP13-25 are mainly induced under specific pathogen infection conditions. Transcriptome and qRT-PCR analyses further revealed functional divergence of the RPP13 gene family in response to potato scab disease. Notably, StRPP13-11 was significantly downregulated in both resistant and susceptible cultivars, suggesting its crucial role in the early stages of pathogen recognition. Subcellular localization experiments showed that the StRPP13-11 protein is localized in the chloroplast. Combined with transcriptome-based functional enrichment analysis, this finding implies that StRPP13-11 may participate in disease defense by regulating photosynthesis-related genes and the dynamic balance of reactive oxygen species within the chloroplast. This study provides new insights into the potential functions of the RPP13 gene family in potato disease resistance mechanisms, offering valuable genetic resources and theoretical support for future disease-resistant breeding programs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhongwei Wang
- Institute of Economic Plants, Jilin Academy of Agricultural Sciences (Northeast Agricultural Research Center of China), Changchun, China
| |
Collapse
|
4
|
Li T, Jia W, Peng S, Guo Y, Liu J, Zhang X, Li P, Zhang H, Xu R. Endogenous cAMP elevation in Brassica napus causes changes in phytohormone levels. PLANT SIGNALING & BEHAVIOR 2024; 19:2310963. [PMID: 38314783 PMCID: PMC10854363 DOI: 10.1080/15592324.2024.2310963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
In higher plants, the regulatory roles of cAMP (cyclic adenosine 3',5'-monophosphate) signaling remain elusive until now. Cellular cAMP levels are generally much lower in higher plants than in animals and transiently elevated for triggering downstream signaling events. Moreover, plant adenylate cyclase (AC) activities are found in different moonlighting multifunctional proteins, which may pose additional complications in distinguishing a specific signaling role for cAMP. Here, we have developed rapeseed (Brassica napus L.) transgenic plants that overexpress an inducible plant-origin AC activity for generating high AC levels much like that in animal cells, which served the genetic model disturbing native cAMP signaling as a whole in plants. We found that overexpression of the soluble AC activity had significant impacts on the contents of indole-3-acetic acid (IAA) and stress phytohormones, i.e. jasmonic acid (JA), abscisic acid (ABA), and salicylic acid (SA) in the transgenic plants. Acute induction of the AC activity caused IAA overaccumulation, and upregulation of TAA1 and CYP83B1 in the IAA biosynthesis pathways, but also simultaneously the hyper-induction of PR4 and KIN2 expression indicating activation of JA and ABA signaling pathways. We observed typical overgrowth phenotypes related to IAA excess in the transgenic plants, including significant increases in plant height, internode length, width of leaf blade, petiole length, root length, and fresh shoot biomass, as well as the precocious seed development, as compared to wild-type plants. In addition, we identified a set of 1465 cAMP-responsive genes (CRGs), which are most significantly enriched in plant hormone signal transduction pathway, and function mainly in relevance to hormonal, abiotic and biotic stress responses, as well as growth and development. Collectively, our results support that cAMP elevation impacts phytohormone homeostasis and signaling, and modulates plant growth and development. We proposed that cAMP signaling may be critical in configuring the coordinated regulation of growth and development in higher plants.
Collapse
Affiliation(s)
- Tianming Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Wenjing Jia
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Song Peng
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yanhui Guo
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Jinrui Liu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Xue Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Panyu Li
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Hanfeng Zhang
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Ruqiang Xu
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, Henan, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
5
|
Feng X, Chen X, Meng Q, Song Z, Zeng J, He X, Wu F, Ma W, Liu W. Comparative Long Non-Coding Transcriptome Analysis of Three Contrasting Barley Varieties in Response to Aluminum Stress. Int J Mol Sci 2024; 25:9181. [PMID: 39273130 PMCID: PMC11395258 DOI: 10.3390/ijms25179181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 08/21/2024] [Accepted: 08/21/2024] [Indexed: 09/15/2024] Open
Abstract
Aluminum toxicity is a major abiotic stress on acidic soils, leading to restricted root growth and reduced plant yield. Long non-coding RNAs are crucial signaling molecules regulating the expression of downstream genes, particularly under abiotic stress conditions. However, the extent to which lncRNAs participate in the response to aluminum (Al) stress in barley remains largely unknown. Here, we conducted RNA sequencing of root samples under aluminum stress and compared the lncRNA transcriptomes of two Tibetan wild barley genotypes, XZ16 (Al-tolerant) and XZ61 (Al-sensitive), as well as the aluminum-tolerant cultivar Dayton. In total, 268 lncRNAs were identified as aluminum-responsive genes on the basis of their differential expression profiles under aluminum treatment. Through target gene prediction analysis, we identified 938 candidate lncRNA-messenger RNA (mRNA) pairs that function in a cis-acting manner. Subsequently, enrichment analysis showed that the genes targeted by aluminum-responsive lncRNAs were involved in diterpenoid biosynthesis, peroxisome function, and starch/sucrose metabolism. Further analysis of genotype differences in the transcriptome led to the identification of 15 aluminum-responsive lncRNAs specifically altered by aluminum stress in XZ16. The RNA sequencing data were further validated by RT-qPCR. The functional roles of lncRNA-mRNA interactions demonstrated that these lncRNAs are involved in the signal transduction of secondary messengers, and a disease resistance protein, such as RPP13-like protein 4, is probably involved in aluminum tolerance in XZ16. The current findings significantly contribute to our understanding of the regulatory roles of lncRNAs in aluminum tolerance and extend our knowledge of their importance in plant responses to aluminum stress.
Collapse
Affiliation(s)
- Xue Feng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaoya Chen
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Quan Meng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Ziyan Song
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Jianbin Zeng
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Xiaoyan He
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Feibo Wu
- Department of Agronomy, College of Agriculture and Biotechnology, Zijingang Campus, Zhejiang University, Hangzhou 310058, China
| | - Wujun Ma
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
| | - Wenxing Liu
- The Characteristic Laboratory of Crop Germplasm Innovation and Application, Provincial Department of Education, College of Agronomy, Qingdao Agricultural University, Qingdao 266109, China
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao 266237, China
| |
Collapse
|
6
|
Kwiatkowski M, Zhang J, Zhou W, Gehring C, Wong A. Cyclic nucleotides - the rise of a family. TRENDS IN PLANT SCIENCE 2024; 29:915-924. [PMID: 38480090 DOI: 10.1016/j.tplants.2024.02.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 01/30/2024] [Accepted: 02/19/2024] [Indexed: 08/10/2024]
Abstract
Cyclic nucleotides 3',5'-cAMP and 3',5'-cGMP are now established signaling components of the plant cell while their 2',3' positional isomers are increasingly recognized as such. 3',5'-cAMP/cGMP is generated by adenylate cyclases (ACs) or guanylate cyclases (GCs) from ATP or GTP, respectively, whereas 2',3'-cAMP/cGMP is produced through the hydrolysis of double-stranded DNA or RNA by synthetases. Recent evidence suggests that the cyclic nucleotide generating and inactivating enzymes moonlight in proteins with diverse domain architecture operating as molecular tuners to enable dynamic and compartmentalized regulation of cellular signals. Further characterization of such moonlighting enzymes and extending the studies to noncanonical cyclic nucleotides promises new insights into the complex regulatory networks that underlie plant development and responses, thus offering exciting opportunities for crop improvement.
Collapse
Affiliation(s)
- Mateusz Kwiatkowski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland
| | - Jinwen Zhang
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou 325060, Zhejiang Province, China
| | - Wei Zhou
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou 325060, Zhejiang Province, China
| | - Chris Gehring
- Department of Chemistry, Biology, and Biotechnology, University of Perugia, Perugia 06121, Italy.
| | - Aloysius Wong
- Department of Biology, College of Science, Mathematics, and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou 325060, Zhejiang Province, China; Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou 325060, Zhejiang Province, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou 325060, Zhejiang Province, China.
| |
Collapse
|
7
|
Niu L, Wang W, Li Y, Wu X, Wang W. Maize multi-omics reveal leaf water status controlling of differential transcriptomes, proteomes and hormones as mechanisms of age-dependent osmotic stress response in leaves. STRESS BIOLOGY 2024; 4:19. [PMID: 38498254 PMCID: PMC10948690 DOI: 10.1007/s44154-024-00159-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
Drought-induced osmotic stress severely affects the growth and yield of maize. However, the mechanisms underlying the different responses of young and old maize leaves to osmotic stress remain unclear. To gain a systematic understanding of age-related stress responses, we compared osmotic-stress-induced changes in maize leaves of different ages using multi-omics approaches. After short-term osmotic stress, old leaves suffered more severe water deficits than young leaves. The adjustments of transcriptomes, proteomes, and hormones in response to osmotic stress were more dynamic in old leaves. Metabolic activities, stress signaling pathways, and hormones (especially abscisic acid) responded to osmotic stress in an age-dependent manner. We identified multiple functional clusters of genes and proteins with potential roles in stress adaptation. Old leaves significantly accumulated stress proteins such as dehydrin, aquaporin, and chaperones to cope with osmotic stress, accompanied by senescence-like cellular events, whereas young leaves exhibited an effective water conservation strategy mainly by hydrolyzing transitory starch and increasing proline production. The stress responses of individual leaves are primarily determined by their intracellular water status, resulting in differential transcriptomes, proteomes, and hormones. This study extends our understanding of the mechanisms underlying plant responses to osmotic stress.
Collapse
Affiliation(s)
- Liangjie Niu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wenkang Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yingxue Li
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiaolin Wu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
8
|
Xue M, Han X, Zhang L, Chen S. Heat-Resistant Inbred Lines Coordinate the Heat Response Gene Expression Remarkably in Maize ( Zea mays L.). Genes (Basel) 2024; 15:289. [PMID: 38540348 PMCID: PMC10970198 DOI: 10.3390/genes15030289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/10/2024] [Accepted: 02/18/2024] [Indexed: 06/14/2024] Open
Abstract
High temperatures are increasingly becoming a prominent environmental factor accelerating the adverse influence on the growth and development of maize (Zea mays L.). Therefore, it is critical to identify the key genes and pathways related to heat stress (HS) tolerance in maize. Great challenges have been faced in dissecting genetic mechanisms and uncovering master genes for HS tolerance. Here, Z58D showed more thermotolerance than AF171 at the seedling stage with a lower wilted leaf rate and H2O2 accumulation under HS conditions. Transcriptomic analysis identified 3006 differentially expressed genes (DEGs) in AF171 and 4273 DEGs in Z58D under HS treatments, respectively. Subsequently, GO enrichment analysis showed that commonly upregulated genes in AF171 and Z58D were significantly enriched in the following biological processes, including protein folding, response to heat, response to temperature stimulus and response to hydrogen peroxide. Moreover, the comparison between the two inbred lines under HS showed that response to heat and response to temperature stimulus were significantly over-represented for the 1234 upregulated genes in Z58D. Furthermore, more commonly upregulated genes exhibited higher expression levels in Z58D than AF171. In addition, maize inbred CIMBL55 was verified to be more tolerant than B73, and more commonly upregulated genes also showed higher expression levels in CIMBL55 than B73 under HS. These consistent results indicate that heat-resistant inbred lines may coordinate the remarkable expression of genes in order to recover from HS. Additionally, 35 DEGs were conserved among five inbred lines via comparative transcriptomic analysis. Most of them were more pronounced in Z58D than AF171 at the expression levels. These candidate genes may confer thermotolerance in maize.
Collapse
Affiliation(s)
- Ming Xue
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China (L.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| | - Xiaoyue Han
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China (L.Z.)
| | - Luyao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China (L.Z.)
| | - Saihua Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou 225009, China (L.Z.)
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Jiang W, He J, Babla M, Wu T, Tong T, Riaz A, Zeng F, Qin Y, Chen G, Deng F, Chen ZH. Molecular evolution and interaction of 14-3-3 proteins with H+-ATPases in plant abiotic stresses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:689-707. [PMID: 37864845 DOI: 10.1093/jxb/erad414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/20/2023] [Indexed: 10/23/2023]
Abstract
Environmental stresses severely affect plant growth and crop productivity. Regulated by 14-3-3 proteins (14-3-3s), H+-ATPases (AHAs) are important proton pumps that can induce diverse secondary transport via channels and co-transporters for the abiotic stress response of plants. Many studies demonstrated the roles of 14-3-3s and AHAs in coordinating the processes of plant growth, phytohormone signaling, and stress responses. However, the molecular evolution of 14-3-3s and AHAs has not been summarized in parallel with evolutionary insights across multiple plant species. Here, we comprehensively review the roles of 14-3-3s and AHAs in cell signaling to enhance plant responses to diverse environmental stresses. We analyzed the molecular evolution of key proteins and functional domains that are associated with 14-3-3s and AHAs in plant growth and hormone signaling. The results revealed evolution, duplication, contraction, and expansion of 14-3-3s and AHAs in green plants. We also discussed the stress-specific expression of those 14-3-3and AHA genes in a eudicotyledon (Arabidopsis thaliana), a monocotyledon (Hordeum vulgare), and a moss (Physcomitrium patens) under abiotic stresses. We propose that 14-3-3s and AHAs respond to abiotic stresses through many important targets and signaling components of phytohormones, which could be promising to improve plant tolerance to single or multiple environmental stresses.
Collapse
Affiliation(s)
- Wei Jiang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Jing He
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Mohammad Babla
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Ting Wu
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| | - Tao Tong
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Adeel Riaz
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Fanrong Zeng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Yuan Qin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
| | - Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Fenglin Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou, 434025, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
10
|
Wang R, Chen P, Han M, Wang W, Hu X, He R, Tai F. Calcineurin B-like protein ZmCBL8-1 promotes salt stress resistance in Arabidopsis. PLANTA 2024; 259:49. [PMID: 38285217 DOI: 10.1007/s00425-024-04330-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Accepted: 01/02/2024] [Indexed: 01/30/2024]
Abstract
MAIN CONCLUSION ZmCBL8-1 enhances salt stress tolerance in maize by improving the antioxidant system to neutralize ROS homeostasis and inducing Na+/H+ antiporter gene expressions of leaves. Calcineurin B-like proteins (CBLs) as plant-specific calcium sensors have been explored for their roles in the regulation of abiotic stress tolerance. Further, the functional variations in ZmCBL8, encoding a component of the salt overly sensitive pathway, conferred the salt stress tolerance in maize. ZmCBL8-1 is a transcript of ZmCBL8 found in maize, but its function in the salt stress response is still unclear. The present study aimed to characterize the protein ZmCBL8-1 that was determined to be composed of 194 amino acids (aa) with three conserved EF hands responsible for binding Ca2+. However, a 20-aa fragment was found to be missing from its C-terminus relative to another transcript of ZmCBL8. Results indicated that it harbored a dual-lipid modification motif MGCXXS at its N-terminus and was located on the cell membrane. The accumulation of ZmCBL8-1 transcripts was high in the roots but relatively lower in the leaves of maize under normal condition. In contrast, its expression was significantly decreased in the roots, while increased in the leaves under NaCl treatment. The overexpression of ZmCBL8-1 resulted in higher salt stress resistance of transgenic Arabidopsis in a Ca2+-dependent manner relative to that of the wild type (WT). In ZmCBL8-1-overexpressing plants exposed to NaCl, the contents of malondialdehyde and hydrogen peroxide were decreased in comparison with those in the WT, and the expression of key genes involved in the antioxidant defense system and Na+/H+ antiporter were upregulated. These results suggested that ZmCBL8-1 played a positive role in the response of leaves to salt stress by inducing the expression of Na+/H+ antiporter genes and enhancing the antioxidant system to neutralize the accumulation of reactive oxygen species. These observations further indicate that ZmCBL8-1 confers salt stress tolerance, suggesting that transcriptional regulation of the ZmCBL8 gene is important for salt tolerance.
Collapse
Affiliation(s)
- Ruilin Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Peimei Chen
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Minglei Han
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China
| | - Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China.
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
11
|
Kan Y, Mu XR, Gao J, Lin HX, Lin Y. The molecular basis of heat stress responses in plants. MOLECULAR PLANT 2023; 16:1612-1634. [PMID: 37740489 DOI: 10.1016/j.molp.2023.09.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 08/30/2023] [Accepted: 09/19/2023] [Indexed: 09/24/2023]
Abstract
Global warming impacts crop production and threatens food security. Elevated temperatures are sensed by different cell components. Temperature increases are classified as either mild warm temperatures or excessively hot temperatures, which are perceived by distinct signaling pathways in plants. Warm temperatures induce thermomorphogenesis, while high-temperature stress triggers heat acclimation and has destructive effects on plant growth and development. In this review, we systematically summarize the heat-responsive genetic networks in Arabidopsis and crop plants based on recent studies. In addition, we highlight the strategies used to improve grain yield under heat stress from a source-sink perspective. We also discuss the remaining issues regarding the characteristics of thermosensors and the urgency required to explore the basis of acclimation under multifactorial stress combination.
Collapse
Affiliation(s)
- Yi Kan
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
| | - Xiao-Rui Mu
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jin Gao
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Hong-Xuan Lin
- National Key Laboratory of Plant Molecular Genetics, CAS Centre for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China; University of the Chinese Academy of Sciences, Beijing 100049, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China.
| | - Youshun Lin
- Joint Center for Single Cell Biology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Yuan S, Ke D, Liu B, Zhang M, Li X, Chen H, Zhang C, Huang Y, Sun S, Shen J, Yang S, Zhou S, Leng P, Guan Y, Zhou X. The Bax inhibitor GmBI-1α interacts with a Nod factor receptor and plays a dual role in the legume-rhizobia symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5820-5839. [PMID: 37470327 DOI: 10.1093/jxb/erad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
The gene networks surrounding Nod factor receptors that govern the symbiotic process between legumes and rhizobia remain largely unexplored. Here, we identify 13 novel GmNFR1α-associated proteins by yeast two-hybrid screening, and describe a potential interacting protein, GmBI-1α. GmBI-1α had the highest positive correlation with GmNFR1α in a co-expression network analysis, and its expression at the mRNA level in roots was enhanced by rhizobial infection. Moreover, GmBI-1α-GmNFR1α interaction was shown to occur in vitro and in vivo. The GmBI-1α protein was localized to multiple subcellular locations, including the endoplasmic reticulum and plasma membrane. Overexpression of GmBI-1α increased the nodule number in transgenic hairy roots or transgenic soybean, whereas down-regulation of GmBI-1α transcripts by RNA interference reduced the nodule number. In addition, the nodules in GmBI-1α-overexpressing plants became smaller in size and infected area with reduced nitrogenase activity. In GmBI-1α-overexpressing transgenic soybean, the elevated GmBI-1α also promoted plant growth and suppressed the expression of defense signaling-related genes. Infection thread analysis of GmBI-1α-overexpressing plants showed that GmBI-1α promoted rhizobial infection. Collectively, our findings support a GmNFR1α-associated protein in the Nod factor signaling pathway and shed new light on the regulatory mechanism of GmNFR1α in rhizobial symbiosis.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Danxia Ke
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Bo Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Mengke Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Xiangyong Li
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jiafang Shen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shuqi Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shunxin Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Piao Leng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
13
|
Wong A, Chi W, Yu J, Bi C, Tian X, Yang Y, Gehring C. Plant adenylate cyclases have come full circle. NATURE PLANTS 2023; 9:1389-1397. [PMID: 37709954 DOI: 10.1038/s41477-023-01486-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Accepted: 07/07/2023] [Indexed: 09/16/2023]
Abstract
In bacteria, fungi and animals, 3'-5'-cyclic adenosine monophosphate (cAMP) and adenylate cyclases (ACs), enzymes that catalyse the formation of 3',5'-cAMP from ATP, are recognized as key signalling components. In contrast, the presence of cAMP and its biological roles in higher plants have long been a matter of controversy due to the generally lower amounts in plant tissues compared with that in animal and bacterial cells, and a lack of clarity on the molecular nature of the generating and degrading enzymes, as well as downstream effectors. While treatment with 3',5'-cAMP elicited many plant responses, ACs were, however, somewhat elusive. This changed when systematic searches with amino acid motifs deduced from the conserved catalytic centres of annotated ACs from animals and bacteria identified candidate proteins in higher plants that were subsequently shown to have AC activities in vitro and in vivo. The identification of active ACs moonlighting within complex multifunctional proteins is consistent with their roles as molecular tuners and regulators of cellular and physiological functions. Furthermore, the increasing number of ACs identified as part of proteins with different domain architectures suggests that there are many more hidden ACs in plant proteomes and they may affect a multitude of mechanisms and processes at the molecular and systems levels.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China.
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China.
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China.
| | - Wei Chi
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Jia Yu
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
| | - Chuyun Bi
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Xuechen Tian
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Yixin Yang
- Department of Biology, College of Science, Mathematics and Technology, Wenzhou-Kean University, Wenzhou, Zhejiang Province, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou, Zhejiang Province, China
- Zhejiang Bioinformatics Internatiosnal Science and Technology Cooperation Center, Wenzhou, Zhejiang Province, China
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Perugia, Italy.
| |
Collapse
|
14
|
Xing C, Chen Q, Qiao Q, Gu S, Cheng X, Dong H, Lin L, Zhang F, Han C, Zhang Z, Yin H, Qi K, Xie Z, Huang X, Zhang S. PbrWRKY70 increases pear (Pyrus bretschneideri Rehd) black spot disease tolerance by negatively regulating ethylene synthesis via PbrERF1B-2. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 334:111773. [PMID: 37328074 DOI: 10.1016/j.plantsci.2023.111773] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/12/2023] [Accepted: 06/12/2023] [Indexed: 06/18/2023]
Abstract
Various pear plant cultivars exhibit diverse abilities to resist pear black spot disease (BSD), while the precise molecular mechanisms of resistance against pear BSD remain unclear. This study proposed a profound expression of a WRKY gene, namely PbrWRKY70, derived from Pyrus bretschneideri Rehd, within a BSD-resistant pear cultivar. Comparative analysis against the wild-type revealed that the overexpression of PbrWRKY70 engendered augmented BSD resistance of transgenic Arabidopsis thaliana and pear calli. Notably, the transgenic plants exhibited higher activities of superoxide dismutase and peroxidase, along with an elevated capacity to counteract superoxide anions via increased anti-O2-. Additionally, these plants displayed diminished lesion diameter, as well as reduced levels of hydrogen peroxide, malondialdehyde and 1-aminocyclopropane-1-carboxylic acid (ACC) contents. We subsequently demonstrated that PbrWRKY70 selectively bound to the promoter region of ethylene-responsive transcription factor 1B-2 (PbrERF1B-2), a potential negative regulator of ACC, thereby downregulating the expression of ACC synthase gene (PbrACS3). Consequently, we confirmed that PbrWRKY70 could enhance pear resistance against BSD by reducing ethylene production via modulation of the PbrERF1B-2-PbrACS3 pathway. This study established the pivotal relationship among PbrWRKY70, ethylene synthesis and pear BSD resistance, fostering the development of novel BSD-resistant cultivars. Furthermore, this breakthrough holds the potential to enhance pear fruit yield and optimize storage and processing during the later stages of fruit maturation.
Collapse
Affiliation(s)
- Caihua Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Qiming Chen
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Qinghai Qiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Shenao Gu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Xiangyu Cheng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Likun Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Feng Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Chenyang Han
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Zan Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Hao Yin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China; The Sanya Institute of Nanjing Agricultural University, China
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China; The Sanya Institute of Nanjing Agricultural University, China
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Centre of Pear Engineering Technology Research, Nanjing Agricultural University, Nanjing, China; The Sanya Institute of Nanjing Agricultural University, China.
| |
Collapse
|
15
|
Liu Z, Yuan Y, Wang L, Cao H, Wang C, Zhao X, Wang L, Liu M. Establishment and characterization of a new class of adenylate cyclases (class VII ACs) in plants. Heliyon 2023; 9:e18612. [PMID: 37593644 PMCID: PMC10427991 DOI: 10.1016/j.heliyon.2023.e18612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/14/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
Adenylate cyclase is the key enzyme in the synthesis of cAMP. Now, more and more plant genes which possessing AC function are being identified, but the classification of plant ACs has not yet been systematically studied and the relationship of plant ACs with other existing six classes ACs in animals and microorganisms is still unclear. In this study, we found that 7 of the 15 reported plant ACs with conserved CYTH-like_AC_Ⅳ-like domain were clustered into a group with high confidence (Group Ⅳ), while the other plant ACs were clustered into other three groups with no common domain. In addition, we also found that the Group Ⅳ plant ACs were grouped into an independent and specific class (Class VII), separated from the existing six classes of ACs. The Group Ⅳ plant ACs, compared to the existing six classes of ACs, own unique CYTH-like_AC_Ⅳ-like conserved domain and EXEXK signature motif, characteristic protein tertiary structures, specific subcellular localization and catalytic conditions. In view of the above, we regarded the Group Ⅳ plant ACs as the seventh class of AC (VII AC). This study does the systematic classification of plant ACs which could lay a foundation for further identification and study of the biological functions of the plant-specific VII ACs.
Collapse
Affiliation(s)
- Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071001, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
- Jujube Industry Technology Research Institute of Hebei, Baoding, Hebei, 071001, China
| | - Ye Yuan
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Haonan Cao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Chenyu Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Xuan Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071001, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei, 071001, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei, 071001, China
- Jujube Industry Technology Research Institute of Hebei, Baoding, Hebei, 071001, China
| |
Collapse
|
16
|
Liang B, Cao J, Wang R, Fan C, Wang W, Hu X, He R, Tai F. ZmCIPK32 positively regulates germination of stressed seeds via gibberellin signal. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107716. [PMID: 37116226 DOI: 10.1016/j.plaphy.2023.107716] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/15/2023] [Accepted: 04/19/2023] [Indexed: 05/23/2023]
Abstract
Calcineurin B-like proteins (CBLs) as specific calcium sensors that interact with CBL-interacting protein kinases (CIPKs) play a key role in the regulation of plant development and abiotic stress tolerance. In this study, we isolated and characterized the CIPK32 gene from Zea mays. ZmCIPK32 showed that it comprised 440 amino acids and a conserved NAF motif responsible for the interaction with CBLs localized in the cytoplasm and cell membrane. The interaction of ZmCIPK32 with ZmCBL1 and ZmCBL9 demonstrated using yeast two-hybrid system and bimolecular fluorescence complementation assay required the presence of the NAF domain. Overexpression of ZmCIPK32 promoted early germination in transgenic Arabidopsis seeds relative to that observed in wild-type (WT) plants under mannitol treatment. In addition, ZmCIPK32-overexpressing plants were insensitive to treatments with exogenous abscisic acid and paclobutrazol (PBZ) at seed germination and early seedling stages. Expression levels of the key genes GA20ox and GA3ox involved in the synthesis of gibberellin (GA) were increased, whereas expression levels of genes involved in the conversion of active GA to inactive forms and GA signaling were reduced in ZmCIPK32-overexpressing plants relative to those in WT plants under mannitol and PBZ treatments. Furthermore, overexpression of ZmCIPK32 increased GA level but decreased abscisic acid level in transgenic lines compared to the respective levels in WT plants under PBZ or mannitol treatments. Our results suggest that ZmCIPK32 positively regulates seed germination under stressed conditions by modulating GA signals.
Collapse
Affiliation(s)
- Benshuai Liang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jiahui Cao
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Ruilin Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Chenjie Fan
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei Wang
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiuli Hu
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China
| | - Rui He
- NanoAgro Center, College of Plant Protection, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Fuju Tai
- National Key Laboratory of Wheat and Maize Crop Science, College of Life Science, Henan Agricultural University, Zhengzhou, 450002, China.
| |
Collapse
|
17
|
Świeżawska-Boniecka B, Szmidt-Jaworska A. Phytohormones and cyclic nucleotides - Long-awaited couples? JOURNAL OF PLANT PHYSIOLOGY 2023; 286:154005. [PMID: 37186984 DOI: 10.1016/j.jplph.2023.154005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/09/2023] [Indexed: 05/17/2023]
Affiliation(s)
- Brygida Świeżawska-Boniecka
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100, Torun, Poland.
| | - Adriana Szmidt-Jaworska
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Plant Physiology and Biotechnology, Lwowska St. 1, PL 87-100, Torun, Poland.
| |
Collapse
|
18
|
Campos C, Coito JL, Cardoso H, Marques da Silva J, Pereira HS, Viegas W, Nogales A. Dynamic Regulation of Grapevine's microRNAs in Response to Mycorrhizal Symbiosis and High Temperature. PLANTS (BASEL, SWITZERLAND) 2023; 12:982. [PMID: 36903843 PMCID: PMC10005052 DOI: 10.3390/plants12050982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
MicroRNAs (miRNAs) are non-coding small RNAs that play crucial roles in plant development and stress responses and can regulate plant interactions with beneficial soil microorganisms such as arbuscular mycorrhizal fungi (AMF). To determine if root inoculation with distinct AMF species affected miRNA expression in grapevines subjected to high temperatures, RNA-seq was conducted in leaves of grapevines inoculated with either Rhizoglomus irregulare or Funneliformis mosseae and exposed to a high-temperature treatment (HTT) of 40 °C for 4 h per day for one week. Our results showed that mycorrhizal inoculation resulted in a better plant physiological response to HTT. Amongst the 195 identified miRNAs, 83 were considered isomiRs, suggesting that isomiRs can be biologically functional in plants. The number of differentially expressed miRNAs between temperatures was higher in mycorrhizal (28) than in non-inoculated plants (17). Several miR396 family members, which target homeobox-leucine zipper proteins, were only upregulated by HTT in mycorrhizal plants. Predicted targets of HTT-induced miRNAs in mycorrhizal plants queried to STRING DB formed networks for Cox complex, and growth and stress-related transcription factors such as SQUAMOSA promoter-binding-like-proteins, homeobox-leucine zipper proteins and auxin receptors. A further cluster related to DNA polymerase was found in R. irregulare inoculated plants. The results presented herein provide new insights into miRNA regulation in mycorrhizal grapevines under heat stress and can be the basis for functional studies of plant-AMF-stress interactions.
Collapse
Affiliation(s)
- Catarina Campos
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - João Lucas Coito
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Hélia Cardoso
- MED—Mediterranean Institute for Agriculture, Environment and Development & CHANGE—Global Change and Sustainability Institute, Institute for Advanced Studies and Research, Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554 Évora, Portugal
| | - Jorge Marques da Silva
- Department of Plant Biology/BioISI—Biosystems and Integrative Sciences Institute, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| | - Helena Sofia Pereira
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Wanda Viegas
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| | - Amaia Nogales
- LEAF—Linking Landscape, Environment, Agriculture and Food Research Center, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017 Lisboa, Portugal
| |
Collapse
|
19
|
Yin T, Han P, Xi D, Yu W, Zhu L, Du C, Yang N, Liu X, Zhang H. Genome-wide identification, characterization, and expression profile ofNBS-LRRgene family in sweet orange (Citrussinensis). Gene 2023; 854:147117. [PMID: 36526123 DOI: 10.1016/j.gene.2022.147117] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 12/05/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
BACKGROUND The NBS-LRR (nucleotide-binding site-leucine-rich repeat gene) gene family, known as the plant R (resistance) gene family with the most members, plays a significant role in plant resistance to various external adversity stresses. The NBS-LRR gene family has been researched in many plant species. Citrus is one of the most vital global cash crops, the number one fruit group, and the third most traded agricultural product world wild. However, as one of the largest citrus species, a comprehensive study of the NBS-LRR gene family has not been reported on sweet oranges. METHODS In this study, NBS-LRR genes were identified from the Citrus sinensis genome (v3.0), with a comprehensive analysis of this gene family performed, including phylogenetic analysis, gene structure, cis-acting element of a promoter, and chromosomal localization, among others. The expression pattern of NBS-LRR genes was analyzed when sweet orange fruits were infected by Penicillium digitatum, employing experimental data from our research group. It first reported the expression patterns of NBS-LRR genes under abiotic stresses, using three transcript data from NCBI (National Center for Biotechnology Information). RESULTS In this study, 111 NBS-LRR genes were identified in the C. sinensis genome (v3.0) and classified into seven subfamilies according to their N-terminal and C-terminal domains. The phylogenetic tree results indicate that genes containing only the NBS structural domain are more ancient in the sweet orange NBS-LRR gene family. The chromosome localization results showed that 111 NBS-LRR genes were distributed unevenly on nine chromosomes, with the most genes distributed on chromosome 1. In addition, we identified a total of 18 tandem duplication gene pairs in the sweet orange NBS-LRR gene family, and based on the Ka/Ks ratio, all of the tandem duplication genes underwent purifying selection. Transcriptome data analysis showed a significant number of NBS-LRR genes expressed under biotic and abiotic stresses, and some reached significantly different levels of expression. It indicates that the NBS-LRR gene family is vital in resistance to biotic and abiotic stresses in sweet oranges. CONCLUSION Our study provides the first comprehensive framework on the NBS-LRR family of genes, which provides a basis for further in-depth studies on the biological functions of NBS-LRR in growth, development, and response to abiotic stresses in sweet orange.
Collapse
Affiliation(s)
- Tuo Yin
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Peichen Han
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Dengxian Xi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Wencai Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Ling Zhu
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Chaojin Du
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Na Yang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| | - Xiaozhen Liu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China.
| | - Hanyao Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
20
|
Liu Z, Yuan Y, Wang L, Zhao X, Wang L, Wang L, Zhao Z, Zhao X, Chu Y, Gao Y, Yang F, Wang Y, Zhang Q, Zhao J, Liu M. Three Novel Adenylate Cyclase Genes Show Significant Biological Functions in Plant. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1149-1161. [PMID: 36601683 DOI: 10.1021/acs.jafc.2c07683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Adenylate cyclase is the key enzyme solely synthesizing cAMP which participates in cell metabolism regulations and functions as an intracellular second messenger. However, the biological functions of plant ACs have not been elucidated clearly for their poor conservative sequences and low detectable cAMP. We performed a systematic study of plant ACs by using Chinese jujube, whose fruit exhibits the highest cAMP content among plants. Three novel ACs were identified from Chinese jujube, and two types of methods including in vitro and in vivo were used to certificate ZjAC1-3 which can catalyze the conversion of ATP into cAMP. The biological functions of significant accelerations of seed germination, root growth, and flowering were found via overexpression of these AC genes in Arabidopsis, and these functions of ACs were further demonstrated by treating the AC-overexpressing transgenic lines and wild type Arabidopsis with bithionol and dibutyryl-cAMP. At last, transcriptome data revealed that the underlying mechanism of the biological functions of ACs might be regulation of the key genes involved in the circadian rhythm pathway and the hormone signal transduction pathway. This research established a foundation for further investigating plant AC genes and provided strong evidence for cAMP serving as a signaling molecule in plants.
Collapse
Affiliation(s)
- Zhiguo Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
- Jujube Industry Technology Research Institute of Hebei, Baoding, Hebei 071001, China
| | - Ye Yuan
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lili Wang
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xuan Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
- "Dongzao" Research Institute of Zhanhua District, Binzhou, Shandong 256800, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Lihu Wang
- College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Zhihui Zhao
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Xin Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yuetong Chu
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yaning Gao
- Beijing Pharma and Biotech Center, Beijing 100176, China
| | - Fangyuan Yang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Yulu Wang
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Qiong Zhang
- Shandong Institute of Pomology, Tai'an, Shandong 271000, China
| | - Jin Zhao
- College of Life Science, Hebei Agricultural University, Baoding, Hebei 071001, China
| | - Mengjun Liu
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, Hebei 071001, China
- College of Horticulture, Hebei Agricultural University, Baoding, Hebei 071001, China
- Jujube Industry Technology Research Institute of Hebei, Baoding, Hebei 071001, China
| |
Collapse
|
21
|
Wong A, Bi C, Chi W, Hu N, Gehring C. Amino acid motifs for the identification of novel protein interactants. Comput Struct Biotechnol J 2022; 21:326-334. [PMID: 36582434 PMCID: PMC9791077 DOI: 10.1016/j.csbj.2022.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 12/06/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022] Open
Abstract
Biological systems consist of multiple components of different physical and chemical properties that require complex and dynamic regulatory loops to function efficiently. The discovery of ever more novel interacting sites in complex proteins suggests that we are only beginning to understand how cellular and biological functions are integrated and tuned at the molecular and systems levels. Here we review recently discovered interacting sites which have been identified through rationally designed amino acid motifs diagnostic for specific molecular functions, including enzymatic activities and ligand-binding properties. We specifically discuss the nature of the latter using as examples, novel hormone recognition and gas sensing sites that occur in moonlighting protein complexes. Drawing evidence from the current literature, we discuss the potential implications at the cellular, tissue, and/or organismal levels of such non-catalytic interacting sites and provide several promising avenues for the expansion of amino acid motif searches to discover hitherto unknown protein interactants and interaction networks. We believe this knowledge will unearth unexpected functions in both new and well-characterized proteins, thus filling existing conceptual gaps or opening new avenues for applications either as drug targets or tools in pharmacology, cell biology and bio-catalysis. Beyond this, motif searches may also support the design of novel, effective and sustainable approaches to crop improvements and the development of new therapeutics.
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Ouhai, Wenzhou, Zhejiang Province 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Wei Chi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Ningxin Hu
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Ouhai, Wenzhou, Zhejiang Province 325060, China
| | - Chris Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Perugia 06121, Italy
| |
Collapse
|
22
|
Kwiatkowski M, Wong A, Bi C, Gehring C, Jaworski K. Twin cyclic mononucleotide cyclase and phosphodiesterase domain architecture as a common feature in complex plant proteins. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 325:111493. [PMID: 36216295 DOI: 10.1016/j.plantsci.2022.111493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
The majority of proteins in both prokaryote and eukaryote proteomes consist of two or more functional centers, which allows for intramolecular tuning of protein functions. Such architecture, as opposed to animal orthologs, applies to the plant cyclases (CNC) and phosphodiesterases (PDEs), the vast majority of which are part of larger multifunctional proteins. In plants, until recently, only two cases of combinations of CNC-PDE in one protein were reported. Here we propose that in plants, multifunctional proteins in which the PDE motif has been identified, the presence of the additional CNC center is common. Searching the Arabidopsis thaliana proteome with a combined PDE-CNC motif allowed the creation of a database of proteins with both activities. One such example is methylenetetrahydrofolate dehydrogenase, in which we determined the activities of adenylate cyclase (AC) and PDE. Based on biochemical and mutagenesis analyses we assessed the impact of the AC and PDE catalytic centers on the dehydrogenase activity. This allowed us to propose additional regulatory mechanism that govern folate metabolism by cAMP. It is therefore conceivable that the combined CNC-PDE architecture is a common regulatory configuration, where control of the level of cyclic nucleotides (cNMP) influences other catalytic activities of the protein.
Collapse
Affiliation(s)
- Mateusz Kwiatkowski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland.
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, Zhejiang Province, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, Zhejiang Province, China; Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, Zhejiang Province, China.
| | - Chuyun Bi
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, Zhejiang Province, China; Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, Zhejiang Province, China; Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, Zhejiang Province, China
| | - Chris Gehring
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy.
| | - Krzysztof Jaworski
- Department of Plant Physiology and Biotechnology, Nicolaus Copernicus University in Toruń, Lwowska St. 1, 87-100 Toruń, Poland
| |
Collapse
|
23
|
Yuan Y, Liu Z, Wang L, Wang L, Chen S, Niu Y, Zhao X, Liu P, Liu M. Two triphosphate tunnel metalloenzymes from apple exhibit adenylyl cyclase activity. FRONTIERS IN PLANT SCIENCE 2022; 13:992488. [PMID: 36275530 PMCID: PMC9582125 DOI: 10.3389/fpls.2022.992488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Adenylyl cyclase (AC) is the key catalytic enzyme for the synthesis of 3',5'-cyclic adenosine monophosphate. Various ACs have been identified in microorganisms and mammals, but studies on plant ACs are still limited. No AC in woody plants has been reported until now. Based on the information on HpAC1, three enzymes were screened out from the woody fruit tree apple, and two of them (MdTTM1 and MdTTM2) were verified and confirmed to display AC activity. Interestingly, in the apple genome, these two genes were annotated as triphosphate tunnel metalloenzymes (TTMs) which were widely found in three superkingdoms of life with multiple substrate specificities and enzymatic activities, especially triphosphate hydrolase. In addition, the predicted structures of these two proteins were parallel, especially of the catalytic tunnel, including conserved domains, motifs, and folded structures. Their tertiary structures exhibited classic TTM properties, like the characteristic EXEXK motif and β-stranded anti-parallel tunnel capable of coordinating divalent cations. Moreover, MdTTM2 and HpAC1 displayed powerful hydrolase activity to triphosphate and restricted AC activity. All of these findings showed that MdTTMs had hydrolysis and AC activity, which could provide new solid evidence for AC distribution in woody plants as well as insights into the relationship between ACs and TTMs.
Collapse
Affiliation(s)
- Ye Yuan
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Zhiguo Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Lili Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Lixin Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Shuangjiang Chen
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Yahong Niu
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xin Zhao
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Ping Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| | - Mengjun Liu
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Research Center of Chinese Jujube, Hebei Agricultural University, Baoding, China
| |
Collapse
|
24
|
cAMP Is a Promising Regulatory Molecule for Plant Adaptation to Heat Stress. Life (Basel) 2022; 12:life12060885. [PMID: 35743916 PMCID: PMC9225146 DOI: 10.3390/life12060885] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 11/16/2022] Open
Abstract
With gradual warming or increased frequency and magnitude of high temperature, heat stress adversely affects plant growth and eventually reduces plant productivity and quality. Plants have evolved complex mechanisms to sense and respond to heat stress which are crucial to avoiding cell damage and maintaining cellular homeostasis. Recently, 33″,55″-cyclic adenosine monophosphate (cAMP) has been proved to be an important signaling molecule participating in plant adaptation to heat stress by affecting multi-level regulatory networks. Significant progress has been made on many fronts of cAMP research, particularly in understanding the downstream signaling events that culminate in the activation of stress-responsive genes, mRNA translation initiation, vesicle trafficking, the ubiquitin-proteasome system, autophagy, HSPs-assisted protein processing, and cellular ion homeostasis to prevent heat-related damage and to preserve cellular and metabolic functions. In this present review, we summarize recent works on the genetic and molecular mechanisms of cAMP in plant response to heat stress which could be useful in finding thermotolerant key genes to develop heat stress-resistant varieties and that have the potential for utilizing cAMP as a chemical regulator to improve plant thermotolerance. New directions for future studies on cAMP are discussed.
Collapse
|
25
|
Wong A, Gehring C. New Horizons in Plant Cell Signaling. Int J Mol Sci 2022; 23:5826. [PMID: 35628641 PMCID: PMC9147848 DOI: 10.3390/ijms23105826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 05/13/2022] [Indexed: 12/04/2022] Open
Abstract
Responding to environmental stimuli with appropriate molecular mechanisms is essential to all life forms and particularly so in sessile organisms such as plants [...].
Collapse
Affiliation(s)
- Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, 88 Daxue Road, Wenzhou 325060, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center, Wenzhou 325060, China
- Wenzhou Municipal Key Lab for Applied Biomedical and Biopharmaceutical Informatics, Wenzhou 325060, China
| | - Christoph Gehring
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Borgo XX Giugno, 74, 06121 Perugia, Italy
| |
Collapse
|
26
|
Zhang X, Wang G, Qu X, Wang M, Guo H, Zhang L, Li T, Wang Y, Zhang H, Ji W. A truncated CC-NB-ARC gene TaRPP13L1-3D positively regulates powdery mildew resistance in wheat via the RanGAP-WPP complex-mediated nucleocytoplasmic shuttle. PLANTA 2022; 255:60. [PMID: 35133503 DOI: 10.1007/s00425-022-03843-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 01/26/2022] [Indexed: 06/14/2023]
Abstract
A wheat RPP13-like isoform interacting with WPP1 contributes to quantitative and/or basal resistance to powdery mildew (Blumeria graminis f. sp. tritici) by restricting the development of Bgt conidia. Plant disease resistance (R) genes confer an ability to resist infection by pathogens expressing specific avirulence genes. Recognition of Peronospora parasitica 13-like (RPP13-like) genes belong to the nucleotide-binding site and leucine-rich repeat (NBS-LRR) superfamily and play important roles in resistance to various plant diseases. Previously, we detected a TaRPP13-like gene located on chromosome 3D (TaRPP13L1-3D) in the TaSpl1 resided region, which is strongly induced by the cell death phenotype (Zhang et al. 2021). Here, we investigated the expression and functional role of TaRPP13L1-3D in wheat responding to fungal stress. TaRPP13L1-3D encoded a typical NB-ARC structure characterized by Rx-N and P-loop NTPase domains. TaRPP13L1-3D transcripts were strongly upregulated in wheat by powdery mildew (Blumeria graminis f. sp. tritici; Bgt) and stripe rust (Puccinia striiformis f. sp. tritici; Pst) infection although opposing expression patterns were observed in response to wheat-Bgt in incompatible and compatible backgrounds. Overexpression of TaRPP13L1-3D enhanced disease resistance to Bgt, accompanied by upregulation of the defense-related marker genes encoding phytoalexin-deficient4 (PAD4), thaumatin-like protein (TLP) and chitinase 8-like protein (Chi8L), while silencing of TaRPP13L1-3D disrupted the resistance to Bgt infection. Subcellular localization studies showed that TaRPP13L1-3D is located in both the plasma membrane and nucleus, while yeast-two-hybrid (Y2H) assays indicated that TaRPP13L1-3D interacts with WPP domain-containing protein 1 (TaWPP1). This indicates that TaRPP13L1-3D shuttles between the nucleus and cytoplasm membrane via a mechanism that is mediated by the RanGAP-WPP complex in nuclear pores. This insight into TaRPP13L1-3D will be useful in dissecting the mechanism of fungal resistance in wheat, and understanding the interaction between R gene expression and pathogen defense.
Collapse
Affiliation(s)
- Xiangyu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Guanghao Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xiaojian Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Mengmeng Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Huan Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Lu Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Tingdong Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yajuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China
| | - Hong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Wanquan Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Agronomy, Northwest A and F University, Yangling, Shaanxi, 712100, People's Republic of China.
- Shaanxi Research Station of Crop Gene Resources and Germplasm Enhancement, Ministry of Agriculture, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
27
|
Peng J, Wang P, Fang H, Zheng J, Zhong C, Yang Y, Yu W. Weighted Gene Co-Expression Analysis Network-Based Analysis on the Candidate Pathways and Hub Genes in Eggplant Bacterial Wilt-Resistance: A Plant Research Study. Int J Mol Sci 2021; 22:ijms222413279. [PMID: 34948076 PMCID: PMC8706084 DOI: 10.3390/ijms222413279] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/07/2021] [Accepted: 12/08/2021] [Indexed: 12/23/2022] Open
Abstract
Solanum melongena L. (eggplant) bacterial wilt is a severe soil borne disease. Here, this study aimed to explore the regulation mechanism of eggplant bacterial wilt-resistance by transcriptomics with weighted gene co-expression analysis network (WGCNA). The different expression genes (DEGs) of roots and stems were divided into 21 modules. The module of interest (root: indianred4, stem: coral3) with the highest correlation with the target traits was selected to elucidate resistance genes and pathways. The selected module of roots and stems co-enriched the pathways of MAPK signalling pathway, plant pathogen interaction, and glutathione metabolism. Each top 30 hub genes of the roots and stems co-enriched a large number of receptor kinase genes. A total of 14 interesting resistance-related genes were selected and verified with quantitative polymerase chain reaction (qPCR). The qPCR results were consistent with those of WGCNA. The hub gene of EGP00814 (namely SmRPP13L4) was further functionally verified; SmRPP13L4 positively regulated the resistance of eggplant to bacterial wilt by qPCR and virus-induced gene silencing (VIGS). Our study provides a reference for the interaction between eggplants and bacterial wilt and the breeding of broad-spectrum and specific eggplant varieties that are bacterial wilt-resistant.
Collapse
|
28
|
Al-Younis I, Moosa B, Kwiatkowski M, Jaworski K, Wong A, Gehring C. Functional Crypto-Adenylate Cyclases Operate in Complex Plant Proteins. FRONTIERS IN PLANT SCIENCE 2021; 12:711749. [PMID: 34456950 PMCID: PMC8387589 DOI: 10.3389/fpls.2021.711749] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/21/2021] [Indexed: 05/08/2023]
Abstract
Adenylyl cyclases (ACs) and their catalytic product cAMP are regulatory components of many plant responses. Here, we show that an amino acid search motif based on annotated adenylate cyclases (ACs) identifies 12 unique Arabidopsis thaliana candidate ACs, four of which have a role in the biosynthesis of the stress hormone abscisic acid (ABA). One of these, the 9-cis-epoxycarotenoid dioxygenase (NCED3 and At3g14440), was identified by sequence and structural analysis as a putative AC and then tested experimentally with two different methods. Given that the in vitro activity is low (fmoles cAMP pmol-1 protein min-1), but highly reproducible, we term the enzyme a crypto-AC. Our results are consistent with a role for ACs with low activities in multi-domain moonlighting proteins that have at least one other distinct molecular function, such as catalysis or ion channel activation. We propose that crypto-ACs be examined from the perspective that considers their low activities as an innate feature of regulatory ACs embedded within multi-domain moonlighting proteins. It is therefore conceivable that crypto-ACs form integral components of complex plant proteins participating in intra-molecular regulatory mechanisms, and in this case, potentially linking cAMP to ABA synthesis.
Collapse
Affiliation(s)
- Inas Al-Younis
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Basem Moosa
- Physical Science and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mateusz Kwiatkowski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Krzysztof Jaworski
- Chair of Plant Physiology and Biotechnology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University in Toruń, Toruń, Poland
| | - Aloysius Wong
- Department of Biology, College of Science and Technology, Wenzhou-Kean University, Wenzhou, China
- Zhejiang Bioinformatics International Science and Technology Cooperation Center of Wenzhou-Kean University, Wenzhou, China
| | - Chris Gehring
- Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- Department of Chemistry, Biology & Biotechnology, University of Perugia, Perugia, Italy
| |
Collapse
|
29
|
Zhao Y, Liu Y, Ji X, Sun J, Lv S, Yang H, Zhao X, Hu X. Physiological and proteomic analyses reveal cAMP‐regulated key factors in maize root tolerance to heat stress. Food Energy Secur 2021. [DOI: 10.1002/fes3.309] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Yulong Zhao
- State Key Laboratory of Wheat & Maize Crop Science College of Agronomy Henan Agricultural University Zhengzhou China
| | - Yanpei Liu
- State Key Laboratory of Wheat & Maize Crop Science College of Life Science Henan Agricultural University Zhengzhou China
| | - Xiaoming Ji
- College of Tobacco Henan Agricultural University Zhengzhou China
| | - Jinfeng Sun
- State Key Laboratory of Crop Stress Adaptation and Improvement Key Laboratory of Plant Stress Biology School of Life Sciences Henan University Kaifeng China
| | - Shanshan Lv
- State Key Laboratory of Wheat & Maize Crop Science College of Life Science Henan Agricultural University Zhengzhou China
| | - Hao Yang
- State Key Laboratory of Wheat & Maize Crop Science College of Life Science Henan Agricultural University Zhengzhou China
| | - Xia Zhao
- Cereal institute Henan Academy of Agricultural Sciences Zhengzhou China
| | - Xiuli Hu
- State Key Laboratory of Wheat & Maize Crop Science College of Life Science Henan Agricultural University Zhengzhou China
| |
Collapse
|
30
|
Hayes S, Schachtschabel J, Mishkind M, Munnik T, Arisz SA. Hot topic: Thermosensing in plants. PLANT, CELL & ENVIRONMENT 2021; 44:2018-2033. [PMID: 33314270 PMCID: PMC8358962 DOI: 10.1111/pce.13979] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 11/26/2020] [Accepted: 12/02/2020] [Indexed: 05/13/2023]
Abstract
Plants alter their morphology and cellular homeostasis to promote resilience under a variety of heat regimes. Molecular processes that underlie these responses have been intensively studied and found to encompass diverse mechanisms operating across a broad range of cellular components, timescales and temperatures. This review explores recent progress throughout this landscape with a particular focus on thermosensing in the model plant Arabidopsis. Direct temperature sensors include the photosensors phytochrome B and phototropin, the clock component ELF3 and an RNA switch. In addition, there are heat-regulated processes mediated by ion channels, lipids and lipid-modifying enzymes, taking place at the plasma membrane and the chloroplast. In some cases, the mechanism of temperature perception is well understood but in others, this remains an open question. Potential novel thermosensing mechanisms are based on lipid and liquid-liquid phase separation. Finally, future research directions of high temperature perception and signalling pathways are discussed.
Collapse
Affiliation(s)
- Scott Hayes
- Laboratory of Plant PhysiologyWageningen University & ResearchWageningenThe Netherlands
| | - Joëlle Schachtschabel
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
| | - Michael Mishkind
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
- IOSNational Science FoundationAlexandriaVirginiaUSA
| | - Teun Munnik
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
| | - Steven A. Arisz
- Research Cluster Green Life Sciences, Section Plant Cell BiologySwammerdam Institute for Life Sciences, University of AmsterdamAmsterdamThe Netherlands
| |
Collapse
|
31
|
Yang H, You C, Yang S, Zhang Y, Yang F, Li X, Chen N, Luo Y, Hu X. The Role of Calcium/Calcium-Dependent Protein Kinases Signal Pathway in Pollen Tube Growth. FRONTIERS IN PLANT SCIENCE 2021; 12:633293. [PMID: 33767718 PMCID: PMC7985351 DOI: 10.3389/fpls.2021.633293] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 02/15/2021] [Indexed: 05/21/2023]
Abstract
Pollen tube (PT) growth as a key step for successful fertilization is essential for angiosperm survival and especially vital for grain yield in cereals. The process of PT growth is regulated by many complex and delicate signaling pathways. Among them, the calcium/calcium-dependent protein kinases (Ca2+/CPKs) signal pathway has become one research focus, as Ca2+ ion is a well-known essential signal molecule for PT growth, which can be instantly sensed and transduced by CPKs to control myriad biological processes. In this review, we summarize the recent progress in understanding the Ca2+/CPKs signal pathway governing PT growth. We also discuss how this pathway regulates PT growth and how reactive oxygen species (ROS) and cyclic nucleotide are integrated by Ca2+ signaling networks.
Collapse
Affiliation(s)
- Hao Yang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Chen You
- College of Life Science, Henan Normal University, Xinxiang, China
| | - Shaoyu Yang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yuping Zhang
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Fan Yang
- Department of Biology, Taiyuan Normal University, Jinzhong, China
| | - Xue Li
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Ning Chen
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Yanmin Luo
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| | - Xiuli Hu
- State Key Laboratory of Wheat & Maize Crop Science, Henan Agricultural University, Zhengzhou, China
| |
Collapse
|