1
|
Ji W, Osbourn A, Liu Z. Understanding metabolic diversification in plants: branchpoints in the evolution of specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230359. [PMID: 39343032 PMCID: PMC11439499 DOI: 10.1098/rstb.2023.0359] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/30/2024] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Plants are chemical engineers par excellence. Collectively they make a vast array of structurally diverse specialized metabolites. The raw materials for building new pathways (genes encoding biosynthetic enzymes) are commonly recruited directly or indirectly from primary metabolism. Little is known about how new metabolic pathways and networks evolve in plants, or what key nodes contribute to branches that lead to the biosynthesis of diverse chemicals. Here we review the molecular mechanisms underlying the generation of biosynthetic branchpoints. We also consider examples in which new metabolites are formed through the joining of precursor molecules arising from different biosynthetic routes, a scenario that greatly increases both the diversity and complexity of specialized metabolism. Given the emerging importance of metabolic gene clustering in helping to identify new enzymes and pathways, we further cover the significance of biosynthetic gene clusters in relation to metabolic networks and dedicated biosynthetic pathways. In conclusion, an improved understanding of the branchpoints between metabolic pathways will be key in order to be able to predict and illustrate the complex structure of metabolic networks and to better understand the plasticity of plant metabolism. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Wenjuan Ji
- Joint Center for Single Cell Biology; Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| | - Anne Osbourn
- Department of Biochemistry and Metabolism, John Innes Centre, NorwichNR4 7UH, UK
| | - Zhenhua Liu
- Joint Center for Single Cell Biology; Shanghai Collaborative Innovation Center of Agri-Seeds, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai200240, People’s Republic of China
| |
Collapse
|
2
|
Naake T, D'Auria JC, Fernie AR, Scossa F. Phylogenomic and synteny analysis of BAHD and SCP/SCPL gene families reveal their evolutionary histories in plant specialized metabolism. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230349. [PMID: 39343028 PMCID: PMC11449225 DOI: 10.1098/rstb.2023.0349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 06/12/2024] [Accepted: 07/22/2024] [Indexed: 10/01/2024] Open
Abstract
Plant chemical diversity is largely owing to a number of enzymes which catalyse reactions involved in the assembly, and in the subsequent chemical modifications, of the core structures of major classes of plant specialized metabolites. One such reaction is acylation. With this in mind, to study the deep evolutionary history of BAHD and the serine-carboxypeptidase-like (SCPL) acyltransferase genes, we assembled phylogenomic synteny networks based on a large-scale inference analysis of orthologues across whole-genome sequences of 126 species spanning Stramenopiles and Archaeplastida, including Arabidopsis thaliana, tomato (Solanum lycopersicum) and maize (Zea mays). As such, this study combined the study of genomic location with changes in gene sequences. Our analyses revealed that serine-carboxypeptidase (SCP)/serine-carboxypeptidase-like (SCPL) genes had a deeper evolutionary origin than BAHD genes, which expanded massively on the transition to land and with the development of the vascular system. The two gene families additionally display quite distinct patterns of copy number variation across phylogenies as well as differences in cross-phylogenetic syntenic network components. In unlocking the above observations, our analyses demonstrate the possibilities afforded by modern phylogenomic (syntenic) networks, but also highlight their current limitations, as demonstrated by the inability of phylogenetic methods to separate authentic SCPL acyltransferases from standard SCP peptide hydrolases.This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Thomas Naake
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
- European Molecular Biology Laboratory (EMBL), Hamburg, Germany
| | - John C D'Auria
- Leibniz Institute of Crop Plant Genetics and Crop Plant Research (IPK) OT Gatersleben, Seeland, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Federico Scossa
- Max Planck Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
- Council for Agricultural Research and Economics, Research Center for Genomics and Bioinformatics, Rome, Italy
| |
Collapse
|
3
|
Yang J, Zhang Z, Li X, Guo L, Li C, Lai J, Han Y, Ye W, Miao Y, Deng M, Cao P, Zhang Y, Ding X, Zhang J, Yang J, Wang S. A gene cluster for polyamine transport and modification improves salt tolerance in tomato. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39401077 DOI: 10.1111/tpj.17074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 08/11/2024] [Accepted: 09/25/2024] [Indexed: 10/15/2024]
Abstract
Polyamines act as protective compounds directly protecting plants from stress-related damage, while also acting as signaling molecules to participate in serious abiotic stresses. However, the molecular mechanisms underlying these effects are poorly understood. Here, we utilized metabolome genome-wide association study to investigate the polyamine content of wild and cultivated tomato accessions, and we discovered a new gene cluster that drove polyamine content during tomato domestication. The gene cluster contains two polyphenol oxidases (SlPPOE and SlPPOF), two BAHD acyltransferases (SlAT4 and SlAT5), a coumaroyl-CoA ligase (Sl4CL6), and a polyamine uptake transporter (SlPUT3). SlPUT3 mediates polyamine uptake and transport, while the five other genes are involved in polyamine modification. Further salt tolerance assays demonstrated that SlPPOE, SlPPOF, and SlAT5 overexpression lines showed greater phenolamide accumulation and salt tolerance as compared with wild-type (WT). Meanwhile, the exogenous application of Spm to SlPUT3-OE lines displayed salt tolerance compared with WT, while having the opposite effect in slput3 lines, confirms that the polyamine and phenolamide can play a protective role by alleviating cell damage. SlPUT3 interacted with SlPIP2;4, a H2O2 transport protein, to maintain H2O2 homeostasis. Polyamine-derived H2O2 linked Spm to stress responses, suggesting that Spm signaling activates stress response pathways. Collectively, our finding reveals that the H2O2-polyamine-phenolamide module coordinately enhanced tomato salt stress tolerance and provide a foundation for tomato stress-resistance breeding.
Collapse
Affiliation(s)
- Jie Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Zhonghui Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xianggui Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Langchen Guo
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Chun Li
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Lai
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yige Han
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Weizhen Ye
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yuanyuan Miao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Meng Deng
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Peng Cao
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Yueran Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Xiangyu Ding
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jianing Zhang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Jun Yang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| | - Shouchuang Wang
- National Key Laboratory for Tropical Crop Breeding, School of Breeding and Multiplication (Sanya Institute Breeding and Multiplication), Hainan University, Sanya, 572025, China
- National Key Laboratory for Tropical Crop Breeding, College of Tropical Agriculture and Forestry, Hainan University, Sanya, 572025, China
| |
Collapse
|
4
|
Roumani M, Besseau S, Hehn A, Larbat R. Functional characterization of a small gene family coding for putrescine hydroxycinnamoyltransferases, involved in phenolamide accumulation, in tomato. PHYTOCHEMISTRY 2024; 229:114271. [PMID: 39260586 DOI: 10.1016/j.phytochem.2024.114271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/13/2024]
Abstract
Phenolamides are specialized metabolites widely distributed in the plant kingdom. Their structure is composed by the association of hydroxycinnamic acid derivatives to mono-/poly-amine through an amination catalyzed by N-hydroxycinnamoyltransferases enzymes. Tomato plants accumulate putrescine-derived phenolamides in their vegetative parts. Recently, two first genes coding for putrescine-hydroxycinnamoyltransferase (PHT, Solyc11g071470 and Solyc11g071480) were identified in tomato and demonstrated to control the leaf accumulation of caffeoylputrescine in response to leafminer infestation. In this study, two additional genes (Solyc06g074710 and Solyc11g066640) were functionally characterized as new tomato PHT. The substrate specificity and the expression pattern in planta were determined for the four tomato PHT. Taken together the results give a comprehensive view of the control of the putrescine-derived phenolamide accumulation in tomato plant through the biochemical specificity and the spatial expression of this small family of PHT.
Collapse
Affiliation(s)
- Marwa Roumani
- Université de Lorraine, INRAE, UMR1121 Laboratoire Agronomie et Environnement (LAE), F-54000, Nancy, France.
| | - Sébastien Besseau
- EA 2106, Biomolécules et Biotechnologies Végétales (BBV), Université de Tours, Tours, France.
| | - Alain Hehn
- Université de Lorraine, INRAE, UMR1121 Laboratoire Agronomie et Environnement (LAE), F-54000, Nancy, France.
| | - Romain Larbat
- Université de Lorraine, INRAE, UMR1121 Laboratoire Agronomie et Environnement (LAE), F-54000, Nancy, France; Institut Agro, University of Angers, INRAE, IRHS, SFR QUASAV, F-49000, Angers, France.
| |
Collapse
|
5
|
Ćavar Zeljković S, De Diego N, Drašar L, Nisler J, Havlíček L, Spíchal L, Tarkowski P. Comprehensive LC-MS/MS analysis of nitrogen-related plant metabolites. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:5390-5411. [PMID: 38526483 PMCID: PMC11389842 DOI: 10.1093/jxb/erae129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/23/2024] [Indexed: 03/26/2024]
Abstract
We have developed and validated a novel LC-MS/MS method for simultaneously analyzing amino acids, biogenic amines, and their acetylated and methylated derivatives in plants. This method involves a one-step extraction of 2-5 mg of lyophilized plant material followed by fractionation of different biogenic amine forms, and exploits an efficient combination of hydrophilic interaction liquid chromatography (HILIC), reversed phase (RP) chromatography with pre-column derivatization, and tandem mass spectrometry (MS). This approach enables high-throughput processing of plant samples, significantly reducing the time needed for analysis and its cost. We also present a new synthetic route for deuterium-labeled polyamines. The LC-MS/MS method was rigorously validated by quantifying levels of nitrogen-related metabolites in seedlings of seven plant species, including Arabidopsis, maize, and barley, all of which are commonly used model organisms in plant science research. Our results revealed substantial variations in the abundance of these metabolites between species, developmental stages, and growth conditions, particularly for the acetylated and methylated derivatives and the various polyamine fractions. However, the biological relevance of these plant metabolites is currently unclear. Overall, this work contributes significantly to plant science by providing a powerful analytical tool and setting the stage for future investigations into the functions of these nitrogen-related metabolites in plants.
Collapse
Affiliation(s)
- Sanja Ćavar Zeljković
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| | - Nuria De Diego
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Lukáš Drašar
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - Jaroslav Nisler
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Libor Havlíček
- Isotope Laboratory, Institute of Experimental Botany, The Czech Academy of Sciences, Vídeňská 1083, CZ-14220, Prague, Czech Republic
| | - Lukáš Spíchal
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Petr Tarkowski
- Czech Advanced Technology and Research Institute, Palacky University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
- Centre of the Region Haná for Biotechnological and Agricultural Research, Department of Genetic Resources for Vegetables, Medicinal and Special Plants, Crop Research Institute, Šlechtitelů 29, 78371 Olomouc, Czech Republic
| |
Collapse
|
6
|
Mankoo RK, Kaur J, Chahal GK. Characterization of rice straw lignin phenolics and evaluation of their role in pollen tube growth in Cucurbita pepo L. Nat Prod Res 2024; 38:1844-1849. [PMID: 37322891 DOI: 10.1080/14786419.2023.2225126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
Rice straw lignin was extracted via alkaline hydrolysis and structurally characterized using FT-IR and 1H NMR spectra. Ethyl acetate extract of acid solubilized lignin was found to contain p-coumaric acid, ferulic acid and caffeic acid as major phenolic acids which were isolated and characterized using spectral data. Amides of isolated phenolic acids were synthesized by their reaction with propyl and butyl amines using microwave irradiation and analysed using spectral studies. Phenolic acids and amides were evaluated for their effect on pollen germination and tube growth in pumpkin. Pollen tube length was significantly increased with N-butyl-3-(3, 4-dihydroxyphenyl) acrylamide and N-butyl-3-(4-hydroxyphenyl) acrylamide at 5 ppm concentration than the control. These results could be utilised in increasing pollen tube length of Cucurbita pepo while making interspecific cross between C. moschata and C. pepo in order to transfer hull-less character of C. pepo to virus resistant C. moschata genotypes.
Collapse
Affiliation(s)
| | - Jasleen Kaur
- Department of Chemistry, Punjab Agricultural University, Ludhiana, India
| | | |
Collapse
|
7
|
Li SY, Wang GQ, Long L, Gao JL, Zhou ZQ, Wang YH, Lv JM, Chen GD, Hu D, Abe I, Gao H. Functional and structural dissection of glycosyltransferases underlying the glycodiversity of wolfberry-derived bioactive ingredients lycibarbarspermidines. Nat Commun 2024; 15:4588. [PMID: 38816433 PMCID: PMC11139883 DOI: 10.1038/s41467-024-49010-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 05/20/2024] [Indexed: 06/01/2024] Open
Abstract
Lycibarbarspermidines are unusual phenolamide glycosides characterized by a dicaffeoylspermidine core with multiple glycosyl substitutions, and serve as a major class of bioactive ingredients in the wolfberry. So far, little is known about the enzymatic basis of the glycosylation of phenolamides including dicaffeoylspermidine. Here, we identify five lycibarbarspermidine glycosyltransferases, LbUGT1-5, which are the first phenolamide-type glycosyltransferases and catalyze regioselective glycosylation of dicaffeoylspermidines to form structurally diverse lycibarbarspermidines in wolfberry. Notably, LbUGT3 acts as a distinctive enzyme that catalyzes a tandem sugar transfer to the ortho-dihydroxy group on the caffeoyl moiety to form the unusual ortho-diglucosylated product, while LbUGT1 accurately discriminates caffeoyl and dihydrocaffeoyl groups to catalyze a site-selective sugar transfer. Crystal structure analysis of the complexes of LbUGT1 and LbUGT3 with UDP, combined with molecular dynamics simulations, revealed the structural basis of the difference in glycosylation selectivity between LbUGT1 and LbUGT3. Site-directed mutagenesis illuminates a conserved tyrosine residue (Y389 in LbUGT1 and Y390 in LbUGT3) in PSPG box that plays a crucial role in regulating the regioselectivity of LbUGT1 and LbUGT3. Our study thus sheds light on the enzymatic underpinnings of the chemical diversity of lycibarbarspermidines in wolfberry, and expands the repertoire of glycosyltransferases in nature.
Collapse
Affiliation(s)
- Shao-Yang Li
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
- Department of Radiology, The First Affiliated Hospital, Jinan University, Guangzhou, 510632, China
| | - Gao-Qian Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Liang Long
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jia-Ling Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Zheng-Qun Zhou
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Yong-Heng Wang
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Jian-Ming Lv
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Guo-Dong Chen
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China
| | - Dan Hu
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| | - Ikuro Abe
- Graduate School of Pharmaceutical Sciences, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan.
| | - Hao Gao
- Institute of Traditional Chinese Medicine and Natural Products, College of Pharmacy/Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research/International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
8
|
Mano NA, Shaikh MA, Widhalm JR, Yoo CY, Mickelbart MV. Transcriptional repression of GTL1 under water-deficit stress promotes anthocyanin biosynthesis to enhance drought tolerance. PLANT DIRECT 2024; 8:e594. [PMID: 38799417 PMCID: PMC11117050 DOI: 10.1002/pld3.594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024]
Abstract
The transcription factor GT2-LIKE 1 (GTL1) has been implicated in orchestrating a transcriptional network of diverse physiological, biochemical, and developmental processes. In response to water-limiting conditions, GTL1 is a negative regulator of stomatal development, but its potential rolein other water-deficit responses is unknown. We hypothesized that GTL1 regulates transcriptome changes associated with drought tolerance over leaf developmental stages. To test the hypothesis, gene expression was profiled by RNA-seq analysis in emerging and expanding leaves of wild-type and a drought-tolerant gtl1-4 knockout mutant under well-watered and water-deficit conditions. Our comparative analysis of genotype-treatment combinations within leaf developmental age identified 459 and 1073 differentially expressed genes in emerging and expanding leaves, respectively, as water-deficit responsive GTL1-regulated genes. Transcriptional profiling identified a potential role of GTL1 in two important pathways previously linked to drought tolerance: flavonoid and polyamine biosynthesis. In expanding leaves, negative regulation of GTL1 under water-deficit conditions promotes biosynthesis of flavonoids and anthocyanins that may contribute to drought tolerance. Quantification of polyamines did not support a role for GTL1 in these drought-responsive pathways, but this is likely due to the complex nature of polyamine synthesis and turnover. Our global transcriptome analysis suggests that transcriptional repression of GTL1 by water deficit allows plants to activate diverse pathways that collectively contribute to drought tolerance.
Collapse
Affiliation(s)
- Noel Anthony Mano
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Biological and Environmental SciencesHeidelberg UniversityTiffinOhioUSA
- Present address:
School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Mearaj A. Shaikh
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| | - Joshua R. Widhalm
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| | - Chan Yul Yoo
- Present address:
School of Biological SciencesThe University of UtahSalt Lake CityUtahUSA
| | - Michael V. Mickelbart
- Department of Botany and Plant PathologyPurdue UniversityWest LafayetteIndianaUSA
- Center for Plant BiologyPurdue UniversityWest LafayetteIndianaUSA
- Department of Horticulture and Landscape ArchitecturePurdue UniversityWest LafayetteIndianaUSA
| |
Collapse
|
9
|
Deng M, Zeng Q, Liu S, Jin M, Luo H, Luo J. Combining association with linkage mapping to dissect the phenolamides metabolism of the maize kernel. FRONTIERS IN PLANT SCIENCE 2024; 15:1376405. [PMID: 38681218 PMCID: PMC11047430 DOI: 10.3389/fpls.2024.1376405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 04/02/2024] [Indexed: 05/01/2024]
Abstract
Phenolamides are important secondary metabolites in plant species. They play important roles in plant defense responses against pathogens and insect herbivores, protection against UV irradiation and floral induction and development. However, the accumulation and variation in phenolamides content in diverse maize lines and the genes responsible for their biosynthesis remain largely unknown. Here, we combined genetic mapping, protein regulatory network and bioinformatics analysis to further enhance the understanding of maize phenolamides biosynthesis. Sixteen phenolamides were identified in multiple populations, and they were all significantly correlated with one or several of 19 phenotypic traits. By linkage mapping, 58, 58, 39 and 67 QTLs, with an average of 3.9, 3.6, 3.6 and 4.2 QTLs for each trait were mapped in BBE1, BBE2, ZYE1 and ZYE2, explaining 9.47%, 10.78%, 9.51% and 11.40% phenotypic variation for each QTL on average, respectively. By GWAS, 39 and 36 significant loci were detected in two different environments, 3.3 and 2.8 loci for each trait, explaining 10.00% and 9.97% phenotypic variation for each locus on average, respectively. Totally, 58 unique candidate genes were identified, 31% of them encoding enzymes involved in amine and derivative metabolic processes. Gene Ontology term analysis of the 358 protein-protein interrelated genes revealed significant enrichment in terms relating to cellular nitrogen metabolism, amine metabolism. GRMZM2G066142, GRMZM2G066049, GRMZM2G165390 and GRMZM2G159587 were further validated involvement in phenolamides biosynthesis. Our results provide insights into the genetic basis of phenolamides biosynthesis in maize kernels, understanding phenolamides biosynthesis and its nutritional content and ability to withstand biotic and abiotic stress.
Collapse
Affiliation(s)
- Min Deng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Qingping Zeng
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Songqin Liu
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Min Jin
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| | - Hongbing Luo
- College of Agronomy, Hunan Agricultural University, Changsha, China
| | - Jingyun Luo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Qiao J, Cai W, Wang K, Haubruge E, Dong J, El-Seedi HR, Xu X, Zhang H. New Insights into Identification, Distribution, and Health Benefits of Polyamines and Their Derivatives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5089-5106. [PMID: 38416110 DOI: 10.1021/acs.jafc.3c08556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Polyamines and their derivatives are ubiquitously present in free or conjugated forms in various foods from animal, plant, and microbial origins. The current knowledge of free polyamines in foods and their contents is readily available; furthermore, conjugated polyamines generate considerable recent research interest due to their potential health benefits. The structural diversity of conjugated polyamines results in challenging their qualitative and quantitative analysis in food. Herein, we review and summarize the knowledge published on polyamines and their derivatives in foods, including their identification, sources, quantities, and health benefits. Particularly, facing the inherent challenges of isomer identification in conjugated polyamines, this paper provides a comprehensive overview of conjugated polyamines' structural characteristics, including the cleavage patterns and characteristic ion fragments of MS/MS for isomer identification. Free polyamines are present in all types of food, while conjugated polyamines are limited to plant-derived foods. Spermidine is renowned for antiaging properties, acclaimed as antiaging vitamins. Conjugated polyamines highlight their anti-inflammatory properties and have emerged as the mainstream drugs for antiprostatitis. This paper will likely help us gain better insight into polyamines and their derivatives to further develop functional foods and personalized nutraceuticals.
Collapse
Affiliation(s)
- Jiangtao Qiao
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Wenwen Cai
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- College of Food Engineering, Harbin University of Commerce, Harbin 155023, China
| | - Kai Wang
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Eric Haubruge
- Terra Research Center, Gembloux Agro-Bio Tech, University of Liege, Gembloux 5030, Belgium
| | - Jie Dong
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE 75124 Uppsala, Sweden
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Xiang Xu
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Hongcheng Zhang
- Key Laboratory of Bee Products for Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Beijing 100093, China
| |
Collapse
|
11
|
Shawky E, Bassam SM, Marzouk HS, Ghareeb DA, El Sohafy SM. Exploring the dynamics of bioactive metabolites changes in barley grains (Hordeum vulgare L.) during roasting: Insights from UPLC-QqQ-MS/MS analysis combined to chemometrics. Food Res Int 2024; 178:113961. [PMID: 38309915 DOI: 10.1016/j.foodres.2024.113961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 12/22/2023] [Accepted: 01/02/2024] [Indexed: 02/05/2024]
Abstract
This investigation delves into the dynamic metabolic shifts within barley grains during the roasting process, employing UPLC-QqQ-MS/MS analysis. The complex spectrum of metabolites before and after roasting is revealed. The resulting data, unveils substantial transformations in chemical composition during roasting. A total of 62 chromatographic peaks spanning phenolic compounds, flavones, Millard Reaction Products, amino acids, lignans, vitamins, folates, and anthocyanins were annotated. Leveraging UPLC-QqQ-MS/MS analysis, we scrutinized the intricate metabolite profile before and after roasting where the roasting process was found to trigger dynamic changes across diverse metabolite classes particularly Millard Reaction Products, produced through the Maillard reaction, with dihydro-5-methyl-5H-cyclopentapyrazine, maltol and hydroxy maltol emerging as discerning markers of roasting progression. Amino acids and sugars showed degradation, while beta-glucan, a signature barley sugar, experienced notable decline. Folate derivatives witnessed pronounced reduction, aligning with the heat sensitivity of folates. Harnessing the power of multivariate data analysis, the consequences of roasting materialize through distinct clusters in PCA and OPLS-DA plots. Noteworthy, roasting duration governs the trajectory of metabolic divergence, culminating in the identification of roasting-specific markers. Epigallocatechin, procyanidin B, 10-HCO-H4 folate, and hordatine A emerge as pivotal discriminators. Orthogonal Projection to Latent Structure (OPLS) analysis linked anti-inflammatory activity with 30-min, 1-hour, and 1.5-hour roasted samples, with hordatine B in addition to some Millard Reaction Products being correlated with pro-inflammatory marker downregulation.. This study encapsulates the intricate metabolic metamorphosis ignited by roasting in barley grains, offering a holistic comprehension of their potential health-enhancing attributes. Key metabolites act as poignant indicators of these transformations, substantiating the complex interplay between roasting and the barley grain metabolome.
Collapse
Affiliation(s)
- Eman Shawky
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt.
| | - Samar M Bassam
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University in Alexandria, Egypt
| | - Hanan S Marzouk
- Pharmacognosy and Natural Products Department, Faculty of Pharmacy, Pharos University in Alexandria, Egypt
| | - Doaa A Ghareeb
- Bio‑Screening and Preclinical Trial Lab, Biochemistry Department, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Samah M El Sohafy
- Department of Pharmacognosy, Faculty of Pharmacy, Alexandria University, Egypt
| |
Collapse
|
12
|
Shin SY, Lee JH, Kim JW, Im WR, Damodar K, Woo HR, Kim WK, Lee JT, Jeon SH. Evaluation of the Antiviral Activity of Tabamide A and Its Structural Derivatives against Influenza Virus. Int J Mol Sci 2023; 24:17296. [PMID: 38139128 PMCID: PMC10744247 DOI: 10.3390/ijms242417296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/07/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Influenza viruses cause severe endemic respiratory infections in both humans and animals worldwide. The emergence of drug-resistant viral strains requires the development of new influenza therapeutics. Tabamide A (TA0), a phenolic compound isolated from tobacco leaves, is known to have antiviral activity. We investigated whether synthetic TA0 and its derivatives exhibit anti-influenza virus activity. Analysis of structure-activity relationship revealed that two hydroxyl groups and a double bond between C7 and C8 in TA0 are crucial for maintaining its antiviral action. Among its derivatives, TA25 showed seven-fold higher activity than TA0. Administration of TA0 or TA25 effectively increased survival rate and reduced weight loss of virus-infected mice. TA25 appears to act early in the viral infection cycle by inhibiting viral mRNA synthesis on the template-negative strand. Thus, the anti-influenza virus activity of TA0 can be expanded by application of its synthetic derivatives, which may aid in the development of novel antiviral therapeutics.
Collapse
Affiliation(s)
- Soo Yong Shin
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.S.); (J.H.L.); (J.W.K.); (W.R.I.)
| | - Joo Hee Lee
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.S.); (J.H.L.); (J.W.K.); (W.R.I.)
| | - Jin Woo Kim
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.S.); (J.H.L.); (J.W.K.); (W.R.I.)
| | - Wonkyun Ronny Im
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.S.); (J.H.L.); (J.W.K.); (W.R.I.)
| | - Kongara Damodar
- Department of Chemistry and Institute of Applied Chemistry, Hallym University, Chuncheon 24252, Republic of Korea; (K.D.); (H.R.W.)
| | - Hyung Ryeol Woo
- Department of Chemistry and Institute of Applied Chemistry, Hallym University, Chuncheon 24252, Republic of Korea; (K.D.); (H.R.W.)
| | - Won-Keun Kim
- Department of Microbiology and Institute of Medical Science, College of Medicine, Hallym University, Chuncheon 24252, Republic of Korea;
| | - Jeong Tae Lee
- Department of Chemistry and Institute of Applied Chemistry, Hallym University, Chuncheon 24252, Republic of Korea; (K.D.); (H.R.W.)
| | - Sung Ho Jeon
- Department of Life Science and Multidisciplinary Genome Institute, Hallym University, Chuncheon 24252, Republic of Korea; (S.Y.S.); (J.H.L.); (J.W.K.); (W.R.I.)
| |
Collapse
|
13
|
Gekière A, Vanderplanck M, Hettiarachchi A, Semay I, Gerbaux P, Michez D, Joossens M, Vandamme P. A case study of the diet-microbiota-parasite interplay in bumble bees. J Appl Microbiol 2023; 134:lxad303. [PMID: 38066692 DOI: 10.1093/jambio/lxad303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/05/2023] [Accepted: 12/07/2023] [Indexed: 12/20/2023]
Abstract
AIMS Diets and parasites influence the gut bacterial symbionts of bumble bees, but potential interactive effects remain overlooked. The main objective of this study was to assess the isolated and interactive effects of sunflower pollen, its phenolamides, and the widespread trypanosomatid Crithidia sp. on the gut bacterial symbionts of Bombus terrestris males. METHODS AND RESULTS Bumble bee males emerged in microcolonies fed on either (i) willow pollen (control), (ii) sunflower pollen, or (iii) willow pollen spiked with phenolamide extracts from sunflower pollen. These microcolonies were infected by Crithidia sp. or were pathogen-free. Using 16S rRNA amplicon sequencing (V3-V4 region), we observed a significant alteration of the beta diversity but not of the alpha diversity in the gut microbial communities of males fed on sunflower pollen compared to males fed on control pollen. Similarly, infection by the gut parasite Crithidia sp. altered the beta diversity but not the alpha diversity in the gut microbial communities of males, irrespective of the diet. By contrast, we did not observe any significant alteration of the beta or alpha diversity in the gut microbial communities of males fed on phenolamide-enriched pollen compared to males fed on control pollen. Changes in the beta diversity indicate significant dissimilarities of the bacterial taxa between the treatment groups, while the lack of difference in alpha diversity demonstrates no significant changes within each treatment group. CONCLUSIONS Bumble bees harbour consistent gut microbiota worldwide, but our results suggest that the gut bacterial communities of bumble bees are somewhat shaped by their diets and gut parasites as well as by the interaction of these two factors. This study confirms that bumble bees are suitable biological surrogates to assess the effect of diet and parasite infections on gut microbial communities.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium, 20 Place du Parc, 7000 Mons, Belgium
| | - Maryse Vanderplanck
- CEFE, CNRS, Univ Montpellier, EPHE, IRD, Montpellier, France, 1919 Route de Mende, 34293 Montpellier, France
| | - Amanda Hettiarachchi
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 35 K.L. Ledeganckstraat, 9000 Ghent, Belgium
| | - Irène Semay
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium, 20 Place du Parc, 7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Biosciences, University of Mons, Mons, Belgium, 20 Place du Parc, 7000 Mons, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons, Mons, Belgium, 20 Place du Parc, 7000 Mons, Belgium
| | - Marie Joossens
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 35 K.L. Ledeganckstraat, 9000 Ghent, Belgium
| | - Peter Vandamme
- Laboratory of Microbiology, Department of Biochemistry and Microbiology, Faculty of Sciences, Ghent University, 35 K.L. Ledeganckstraat, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Wei J, Chahel AA, Ni Y, Wei X, Zhao Y, Wang Y, Zeng S. Lycium RIN negatively modulate the biosynthesis of kukoamine A in hairy roots through decreasing thermospermine synthase expression. Int J Biol Macromol 2023; 252:126246. [PMID: 37567520 DOI: 10.1016/j.ijbiomac.2023.126246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 08/05/2023] [Accepted: 08/07/2023] [Indexed: 08/13/2023]
Abstract
Root bark (Lycii cortex) of Lycium contains high contents of characteristic bioactive compounds, including kukoamine A (KuA) and kukoamine B (KuB). RIPENING INHIBITOR (RIN) is well known as a master regulator of Solanaceaous fruit ripening. However, the role of RIN in the biosynthetic pathway of KuA in Lycium remains unclear. In this study, integrated transcriptomic, metabolomic analyses and hairy root system are used to characterize the role of RIN in KuA biosynthesis in Lycium. The ultra performance liquid chromatography electrospray ionization tandem mass spectrometry analysis revealed that KuA was significantly induced in LrRIN1 RNAi lines and not detected in overexpression lines. A total of 20,913 differentially expressed genes (DEGs) and 60 differentially accumulated metabolites (DAMs) were detected in LrRIN1 transgenic hairy roots, which were used for weighted gene co-expression network analysis. Our result reveals a high association between KuA and structural genes in the phenolamide pathway, which shows a negative correlation with LrRIN1. In addition, overexpression of the polyamine pathway gene thermospermine synthase LcTSPMS, a potential target gene of Lycium RIN, increased the contents of both KuA and KuB in L. chinense hairy root, indicating that TSPMS is responsible for KuA biosynthesis and is also the common upstream biosynthetic gene for both KuA and KuB. Our results lay a solid foundation for uncovering the biosynthetic pathway of KuA, which will facilitate the molecular breeding and genetic improvement of Lycium species.
Collapse
Affiliation(s)
- Jinrong Wei
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Aysha Arif Chahel
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China
| | - Yuan Ni
- College of Horticulture and Landscape Architecture, Tianjin Agricultural University, Tianjin 300000, PR China
| | - Xiaoyi Wei
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China
| | - Yuling Zhao
- Jinghe County Goji Industrial Development Center, Jinghe County, the Xinjiang Uygur Autonomous Region, 833300, PR China
| | - Ying Wang
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China; College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Shaohua Zeng
- Guangdong Provincial Key Laboratory of Applied Botany, Key Laboratory of South China Agricultural Plant Molecular Analysis and Genetic Improvement, Guangdong Provincial Key Laboratory of Digital Botanical Garden and Popular Science, South China Botanical Garden, Chinese Academy of Sciences, South China National Botanical Garden, Guangzhou 510650, PR China; College of Life Sciences, Gannan Normal University, Ganzhou, Jiangxi 341000, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
15
|
Xu D, Wang Z, Zhuang W, Wang T, Xie Y. Family characteristics, phylogenetic reconstruction, and potential applications of the plant BAHD acyltransferase family. FRONTIERS IN PLANT SCIENCE 2023; 14:1218914. [PMID: 37868312 PMCID: PMC10585174 DOI: 10.3389/fpls.2023.1218914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 09/14/2023] [Indexed: 10/24/2023]
Abstract
The BAHD acyltransferase family is a class of proteins in plants that can acylate a variety of primary and specialized secondary metabolites. The typically acylated products have greatly improved stability, lipid solubility, and bioavailability and thus show significant differences in their physicochemical properties and pharmacological activities. Here, we review the protein structure, catalytic mechanism, and phylogenetic reconstruction of plant BAHD acyltransferases to describe their family characteristics, acylation reactions, and the processes of potential functional differentiation. Moreover, the potential applications of the BAHD family in human activities are discussed from the perspectives of improving the quality of economic plants, enhancing the efficacy of medicinal plants, improving plant biomass for use in biofuel, and promoting stress resistance of land plants. This review provides a reference for the research and production of plant BAHD acyltransferases.
Collapse
Affiliation(s)
- Donghuan Xu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, China
| | - Yinfeng Xie
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Life Sciences, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
16
|
Wang W, Xie X, Lv Y, Guan H, Liu L, Huang Q, Bao Y, Zhou J, Bao L, Gong C, Yu Y. Identification and profile of phenolamides with anthracnose resistance potential in tea ( Camellia sinensis). HORTICULTURE RESEARCH 2023; 10:uhad154. [PMID: 37719276 PMCID: PMC10500153 DOI: 10.1093/hr/uhad154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 07/25/2023] [Indexed: 09/19/2023]
Abstract
Tea anthracnose is a prevalent disease in China that can lead to reduced tea production and lower quality, yet there is currently a lack of effective means for controlling this disease. In this study, we identified 46 phenolamides (including 27 isomers) in different tissues and organs of tea plants based on a developed workflow, and the secondary mass spectra of all these compounds have been documented. It was revealed that tea plants predominantly accumulate protonated aliphatic phenolamides, rather than aromatic phenolamides. The profile of phenolamides indicate that their buildup in tea plants is specific to certain tissues and acyl-acceptors, and this distribution is associated with the extent of phenolamide acyl-modification. Additionally, it was observed that N-Feruloylputrescine (Fer-Put, a type of phenolamides) was responsive to the stimulated accumulation of the tea anthracnose pathogen. The findings of anti-anthracnose experiments in vitro and on tea leaf demonstrated that Fer-Put was capable of significantly inhibiting the growth of anthracnose pathogen colony, effectively prevented tea leaf disease. Furthermore, it was observed that Fer-Put treatment can enhance the antioxidant enzyme activity of tea leaves. TEA002780.1 and TEA013165.1 gene may be responsible for the biosynthesis of Fer-Put in the disease resistance process in tea plants. Through these studies, the types and distribution of phenolamides in tea plants have been elucidated, and Fer-Put's ability to resist anthracnose has been established, providing new insights into the resistance of tea anthracnose.
Collapse
Affiliation(s)
- Wenzhao Wang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Xingcui Xie
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Yuanyuan Lv
- College of Tropical Crops, Hainan University, Haikou 570228 Hainan, China
| | - Haonan Guan
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Lu Liu
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Qian Huang
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Yumeng Bao
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Jie Zhou
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Lu Bao
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Chunmei Gong
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| | - Youben Yu
- College of Horticulture, Northwest A&F University, Yangling 712100 Shaanxi, China
| |
Collapse
|
17
|
Allario T, Fourquez A, Magnin-Robert M, Siah A, Maia-Grondard A, Gaucher M, Brisset MN, Hugueney P, Reignault P, Baltenweck R, Randoux B. Analysis of Defense-Related Gene Expression and Leaf Metabolome in Wheat During the Early Infection Stages of Blumeria graminis f. sp. tritici. PHYTOPATHOLOGY 2023; 113:1537-1547. [PMID: 37147741 DOI: 10.1094/phyto-10-22-0364-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Blumeria graminis f. sp. tritici (Bgt) is an obligate biotrophic fungal pathogen responsible for powdery mildew in bread wheat (Triticum aestivum). Upon Bgt infection, the wheat plant activates basal defense mechanisms, namely PAMP-triggered immunity, in the leaves during the first few days. Understanding this early stage of quantitative resistance is crucial for developing new breeding tools and evaluating plant resistance inducers for sustainable agricultural practices. In this sense, we used a combination of transcriptomic and metabolomic approaches to analyze the early steps of the interaction between Bgt and the moderately susceptible wheat cultivar Pakito. Bgt infection resulted in an increasing expression of genes encoding pathogenesis-related (PR) proteins (PR1, PR4, PR5, and PR8) known to target the pathogen, during the first 48 h postinoculation. Moreover, RT-qPCR and metabolomic analyses pointed out the importance of the phenylpropanoid pathway in quantitative resistance against Bgt. Among metabolites linked to this pathway, hydroxycinnamic acid amides containing agmatine and putrescine as amine components accumulated from the second to the fourth day after inoculation. This suggests their involvement in quantitative resistance via cross-linking processes in cell walls for reinforcement, which is supported by the up-regulation of PAL (phenylalanine ammonia-lyase), PR15 (oxalate oxidase) and POX (peroxidase) after inoculation. Finally, pipecolic acid, which is considered a signal involved in systemic acquired resistance, accumulated after inoculation. These new insights lead to a better understanding of basal defense in wheat leaves after Bgt infection.
Collapse
Affiliation(s)
- Thierry Allario
- Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais cedex, France
| | - Alice Fourquez
- Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais cedex, France
| | - Maryline Magnin-Robert
- Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais cedex, France
| | - Ali Siah
- Joint Research Unit 1158 BioEcoAgro, Junia, Univ. Lille, Univ. Liège, UPJV, ULCO, Univ. Artois, INRAE, 2 Rue Norbert Ségard, F-59014, Lille, France
| | | | - Matthieu Gaucher
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, F-49071, F-49071 Beaucouzé cedex, France
| | - Marie-Noelle Brisset
- IRHS-UMR1345, Université d'Angers, INRAE, Institut Agro, SFR 4207 QuaSaV, F-49071, F-49071 Beaucouzé cedex, France
| | - Philippe Hugueney
- Université de Strasbourg, INRAE, SVQV UMR-A 1131, F-68000 Colmar, France
| | - Philippe Reignault
- Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais cedex, France
| | | | - Béatrice Randoux
- Univ. Littoral Côte d'Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV-UR 4492), SFR Condorcet FR CNRS 3417, CS 80699, F-62228, Calais cedex, France
| |
Collapse
|
18
|
Liu L, Xu H, Zhang W, Xing J, Zhu M, Zhang Y, Wang Y. Genome-Wide Analysis of the BAHD Family in Welsh Onion and CER2-LIKEs Involved in Wax Metabolism. Genes (Basel) 2023; 14:1286. [PMID: 37372466 DOI: 10.3390/genes14061286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/12/2023] [Accepted: 06/15/2023] [Indexed: 06/29/2023] Open
Abstract
BAHD acyltransferases (BAHDs), especially those present in plant epidermal wax metabolism, are crucial for environmental adaptation. Epidermal waxes primarily comprise very-long-chain fatty acids (VLCFAs) and their derivatives, serving as significant components of aboveground plant organs. These waxes play an essential role in resisting biotic and abiotic stresses. In this study, we identified the BAHD family in Welsh onion (Allium fistulosum). Our analysis revealed the presence of AfBAHDs in all chromosomes, with a distinct concentration in Chr3. Furthermore, the cis-acting elements of AfBAHDs were associated with abiotic/biotic stress, hormones, and light. The motif of Welsh onion BAHDs indicated the presence of a specific BAHDs motif. We also established the phylogenetic relationships of AfBAHDs, identifying three homologous genes of CER2. Subsequently, we characterized the expression of AfCER2-LIKEs in a Welsh onion mutant deficient in wax and found that AfCER2-LIKE1 plays a critical role in leaf wax metabolism, while all AfCER2-LIKEs respond to abiotic stress. Our findings provide new insights into the BAHD family and lay a foundation for future studies on the regulation of wax metabolism in Welsh onion.
Collapse
Affiliation(s)
- Lecheng Liu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
| | - Huanhuan Xu
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Wanyue Zhang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Jiayi Xing
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
- Department of Horticulture, Agricultural College, Shihezi University, Shihezi 832003, China
| | - Mingzhao Zhu
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Yuchen Zhang
- College of Horticulture and Gardening, Yangtze University, Jingzhou 434025, China
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| | - Yongqin Wang
- Beijing Vegetable Research Center, Beijing Academy of Agricultural and Forestry Sciences, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Key Laboratory of Vegetable Germplasm Improvement, National Engineering Research Center for Vegetables, Beijing 100097, China
| |
Collapse
|
19
|
Liu H, Liu Y, Han H, Lu C, Chen H, Chai Y. Identification and characterization of phenolamides in tea (Camellia sinensis) flowers using ultra-high-performance liquid chromatography/Q-Exactive orbitrap mass spectrometry. Food Chem 2023; 424:136402. [PMID: 37216782 DOI: 10.1016/j.foodchem.2023.136402] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 05/24/2023]
Abstract
Phenolamides (PAs) are important secondary metabolites present in plants with multiple bioactivities. This study aims to comprehensively identify and characterize PAs in tea (Camellia sinensis) flowers using ultra-high-performance liquid chromatography/Q-Exactive orbitrap mass spectrometry based on a lab-developed in-silico accurate-mass database. The PAs found in tea flowers were conjugates of Z/E-hydroxycinnamic acids (p-coumaric, caffeic and ferulic acids) with polyamines (putrescine, spermidine and agmatine). The positional and Z/E isomers were distinguished through characteristic MS2 fragmentation rules and chromatographic retention behavior summarized from some synthetic PAs. 21 types of PAs consisting of over 80 isomers were identified, and the majority of them were found in tea flowers for the first time. Among 12 tea flower varieties studied, they all possessed tris-(p-coumaroyl)-spermidine with the highest relative content, and C. sinensis 'Huangjinya' had the highest total relative contents of PAs. This study shows the richness and structural diversity of PAs in tea flowers.
Collapse
Affiliation(s)
- Hongxia Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yingying Liu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Haolei Han
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengyin Lu
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China
| | - Hongping Chen
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| | - Yunfeng Chai
- Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; Key Laboratory of Tea Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China.
| |
Collapse
|
20
|
Semay I, Lemaur V, Gekière A, Vanderplanck M, Duez P, Michez D, Gerbaux P. Evaluation of Tandem Mass Spectrometry Experiments in the Negative Ionization Mode for Phenolamide Regioisomer Characterization. JOURNAL OF NATURAL PRODUCTS 2023; 86:1274-1283. [PMID: 37133415 DOI: 10.1021/acs.jnatprod.3c00047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Phenolamides are abundant specialized metabolites found in nature and consist of hydroxycinnamic acids mono- or polyconjugated with polyamines. Their participation in flower development is well-documented, and their presence in pollen raises the question of their role in pollen/pollinator interactions. The structural characterization of phenolamides is complicated by the presence of positional isomers and stereoisomers. Liquid chromatography coupled to tandem mass spectrometry in the positive ionization mode is becoming very popular in phenolamide structural characterization. However, collision-induced transamidation processes that cause the swapping of side chains have been detected, making it difficult to distinguish regioisomers with this technique. In the present report, we explore the dissociation processes undergone by the [M - H]- ions of spermidine-based phenolamides as model compounds. We describe two original competitive dissociation routes, namely, the phenolate and imidate pathways, to account for the observed fragmentation reactions undergone by collisional activated standard phenolamide anions. Whereas the phenolate pathway is regioselective at the central position for spermidine, the imidate pathway, requiring a deprotonated amide, only occurs at the extremities. Tandem mass spectrometry experiments on negatively charged phenolamide ions may then outperform their positive ionization mode counterparts for the distinction between phenolamide regioisomers and globally for the identification of phenolamides in natural extracts.
Collapse
Affiliation(s)
- Irène Semay
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000 Mons, Belgium
| | - Vincent Lemaur
- Laboratory for Chemistry of Novel Materials, Materials Research Institute, University of Mons - UMONS, Place du Parc 20, Mons B-7000, Belgium
| | - Antoine Gekière
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000 Mons, Belgium
| | - Maryse Vanderplanck
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000 Mons, Belgium
- CEFE, University of Montpellier, CNRS, EPHE, IRD, 34090 Montpellier, France
| | - Pierre Duez
- Unit of Therapeutic Chemistry and Pharmacognosy, Faculty of Medicine and Pharmacy, University of Mons - UMONS, 23 Place du Parc, B-7000 Mons, Belgium
| | - Denis Michez
- Laboratory of Zoology, Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000 Mons, Belgium
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory (S2MOs), Research Institute for Biosciences, University of Mons - UMONS, 23 Place du Parc, B-7000 Mons, Belgium
| |
Collapse
|
21
|
Yang H, Chen M, Hu J, Lan M, He J. Lateral metabolome study reveals the molecular mechanism of cytoplasmic male sterility (CMS) in Chinese cabbage. BMC PLANT BIOLOGY 2023; 23:128. [PMID: 36882696 PMCID: PMC9990347 DOI: 10.1186/s12870-023-04142-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND Chinese cabbage is one of the most widely grown leafy vegetables in China. Cytoplasmic male sterility (CMS) is a maternally inherited trait that produces abnormal pollen during anther development, which is commonly seen in cruciferous vegetables. However, the molecular mechanism of Chinese cabbage CMS is not clear. In this study, the metabolome and hormone profiles of Chinese cabbage male sterile line (CCR20000) and sterile maintainer line (CCR20001) were analyzed in flower buds during normal stamen development and abnormal stamen development, respectively. RESULTS A total of 556 metabolites were detected based on UPLC-MS/MS detection platform and database search, and the changes of hormones such as auxin, cytokinins, abscisic acid, jasmonates, salicylic acid, gibberellin acid and ethylene were analyzed. The results showed that compared with the male fertile line (MF), the male sterile line (MS) significantly decreased the content of flavonoids and phenolamides metabolites in the stamen dysplasia stage, accompanied by a large accumulation of glucosinolate metabolites. Meanwhile, the contents of GA9, GA20, IBA, tZ and other hormones in MS were significantly lower than those in MF strains. Further, by comparing the metabolome changes of MF and MS during stamen dysplasia, it was found that flavonoid metabolites and amino acid metabolites were distinctly different. CONCLUSIONS These results suggest that flavonoids, phenolamides and glucosinolate metabolites may be closely related to the sterility of MS strains. This study provides an effective basis for further research on the molecular mechanism of CMS in Chinese cabbage.
Collapse
Affiliation(s)
- Huiju Yang
- Lijiang Teachers College, Lijiang, 674199, China
| | - Mingwei Chen
- Lijiang Teachers College, Lijiang, 674199, China
| | - Jingfeng Hu
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Mei Lan
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China
| | - Jiangming He
- Institute of Horticultural Crops, Yunnan Academy of Agricultural Sciences, Kunming, 650205, China.
| |
Collapse
|
22
|
Kruse LH, Fehr B, Chobirko JD, Moghe GD. Phylogenomic analyses across land plants reveals motifs and coexpression patterns useful for functional prediction in the BAHD acyltransferase family. FRONTIERS IN PLANT SCIENCE 2023; 14:1067613. [PMID: 36844084 PMCID: PMC9950517 DOI: 10.3389/fpls.2023.1067613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/12/2023] [Indexed: 06/18/2023]
Abstract
The BAHD acyltransferase family is one of the largest enzyme families in flowering plants, containing dozens to hundreds of genes in individual genomes. Highly prevalent in angiosperm genomes, members of this family contribute to several pathways in primary and specialized metabolism. In this study, we performed a phylogenomic analysis of the family using 52 genomes across the plant kingdom to gain deeper insights into its functional evolution and enable function prediction. We found that BAHD expansion in land plants was associated with significant changes in various gene features. Using pre-defined BAHD clades, we identified clade expansions in different plant groups. In some groups, these expansions coincided with the prominence of metabolite classes such as anthocyanins (flowering plants) and hydroxycinnamic acid amides (monocots). Clade-wise motif-enrichment analysis revealed that some clades have novel motifs fixed on either the acceptor or the donor side, potentially reflecting historical routes of functional evolution. Co-expression analysis in rice and Arabidopsis further identified BAHDs with similar expression patterns, however, most co-expressed BAHDs belonged to different clades. Comparing BAHD paralogs, we found that gene expression diverges rapidly after duplication, suggesting that sub/neo-functionalization of duplicate genes occurs quickly via expression diversification. Analyzing co-expression patterns in Arabidopsis in conjunction with orthology-based substrate class predictions and metabolic pathway models led to the recovery of metabolic processes of most of the already-characterized BAHDs as well as definition of novel functional predictions for some uncharacterized BAHDs. Overall, this study provides new insights into the evolution of BAHD acyltransferases and sets up a foundation for their functional characterization.
Collapse
Affiliation(s)
- Lars H. Kruse
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC, Canada
| | - Benjamin Fehr
- Computational Biology Department, Cornell University, Ithaca, NY, United States
| | - Jason D. Chobirko
- Molecular Biology and Genetics Department, Cornell University, Ithaca, NY, United States
| | - Gaurav D. Moghe
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, United States
| |
Collapse
|
23
|
Characterization of Biological Properties of Individual Phenolamides and Phenolamide-Enriched Leaf Tomato Extracts. Molecules 2023; 28:molecules28041552. [PMID: 36838541 PMCID: PMC9966281 DOI: 10.3390/molecules28041552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/23/2023] [Accepted: 01/31/2023] [Indexed: 02/08/2023] Open
Abstract
Resistance to conventional treatments renders urgent the discovery of new therapeutic molecules. Plant specialized metabolites such as phenolamides, a subclass of phenolic compounds, whose accumulation in tomato plants is mediated by the biotic and abiotic environment, constitute a source of natural molecules endowed with potential antioxidant, antimicrobial as well as anti-inflammatory properties. The aim of our study was to investigate whether three major phenolamides found in Tuta absoluta-infested tomato leaves exhibit antimicrobial, cytotoxic and/or anti-inflammatory properties. One of them, N1,N5,N14-tris(dihydrocaffeoyl)spermine, was specifically synthesized for this study. The three phenolamides showed low to moderate antibacterial activities but were able to counteract the LPS pro-inflammatory effect on THP-1 cells differentiated into macrophages. Extracts made from healthy but not T. absoluta-infested tomato leaf extracts were also able to reduce inflammation using the same cellular approach. Taken together, these results show that phenolamides from tomato leaves could be interesting alternatives to conventional drugs.
Collapse
|
24
|
Wu L, Sun M, Chen X, Si D, Si J. Hormonal and Metabolomic Responses of Dendrobium catenatum to Infection with the Southern Blight Pathogen Sclerotium delphinii. PHYTOPATHOLOGY 2023; 113:70-79. [PMID: 35876764 DOI: 10.1094/phyto-05-22-0178-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Southern blight caused by Sclerotium delphinii has a devastating effect on Dendrobium catenatum (an extremely valuable medicinal and food homologous Orchidaceae plant). However, the mechanisms underlying S. delphinii infection and D. catenatum response are far from known. Here, we investigated the infection process and mode of S. delphinii through microscopic observations of detached leaves and living plantlets and further explored the hormonal and metabolomic responses of D. catenatum during S. delphinii infection by using the widely targeted metabolome method. The results showed that S. delphinii infection involves two stages: a contact phase (12 to 16 h after inoculation) and a penetration stage (20 h after inoculation). S. delphinii hyphae could penetrate leaves directly (via swollen hyphae and the formation of an infection cushion) or indirectly (via stomatal penetration), causing water-soaked lesions on leaves within 24 to 28 h after inoculation and expanded thereafter. The content of jasmonates increased after the hyphal contact and remained at high levels during S. delphinii infection, whereas the ethylene precursor (1-aminocyclopropanecarboxylic acid) accumulated significantly after penetration. Furthermore, metabolites of the phenylpropanoid and flavonoid pathways were enriched after pathogen penetration, whereas several amino acids accumulated in significant amounts at the late stage of infection. Moreover, some other associated metabolites were significantly altered during pathogen infection. Therefore, the jasmonate, phenylpropanoid, flavonoid, and amino acid pathways could play crucial roles in D. catenatum resistance to S. delphinii infection. This study provides insight into the prevention and control of southern blight disease of D. catenatum.
Collapse
Affiliation(s)
- Lingshang Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P.R. China
| | - Meichen Sun
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P.R. China
| | - Xueliang Chen
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P.R. China
| | - Dun Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P.R. China
| | - Jinping Si
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, Hangzhou, 311300, P.R. China
| |
Collapse
|
25
|
Fuentes-Cardenas IS, Cuba-Puma R, Marcilla-Truyenque S, Begazo-Gutiérrez H, Zolla G, Fuentealba C, Shetty K, Ranilla LG. Diversity of the Peruvian Andean maize ( Zea mays L.) race Cabanita: Polyphenols, carotenoids, in vitro antioxidant capacity, and physical characteristics. Front Nutr 2022; 9:983208. [PMID: 36225880 PMCID: PMC9549777 DOI: 10.3389/fnut.2022.983208] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/29/2022] [Indexed: 12/03/2022] Open
Abstract
The high diversity of the Peruvian Andean maize (Zea mays L.) represents a biological and genetic heritage relevant for food security, but few studies are targeted toward its characterization and consequent valorization and preservation. The objective of this study was to evaluate the potential of the Peruvian Andean maize race Cabanita with respect to its bioactive profiles (free and bound phenolic and carotenoid composition), physical characteristics, and in vitro antioxidant properties. Maize landraces with variable kernel pigmentation were collected from two provinces (Caylloma and Castilla) within the Arequipa region (among ten Andean sites) and the phytochemical profile was evaluated by Ultra High-Performance Liquid Chromatography with diode array detector (UHPLC-DAD). All maize samples were important sources of phenolic compounds mainly soluble p-coumaric and ferulic acid derivatives whereas anthocyanins were only detected in maize with partially red pigmented kernels. Major phenolic compounds in the bound phenolic fractions were ferulic acid and its derivatives along with p-coumaric acid. Carotenoid compounds including xanthophylls such as lutein, lutein isomers, and zeaxanthin were only detected in orange and white-yellow pigmented maize and are reported for the first time in Peruvian landraces. The multivariate analysis using Principal Components Analysis (PCA) revealed low variability of all data which may indicate a level of similarity among maize samples based on evaluated variables. However, maize grown in Caylloma province showed more homogeneous physical characteristics and higher yield, whereas higher phenolic contents and antioxidant capacity were observed in maize from Castilla. Samples CAY (yellow-pigmented kernel, Castilla) and COM (orange-pigmented kernel, Caylloma) had the highest total phenolic (246.7 mg/100 g dried weight basis, DW) and carotenoid (1.95 μg/g DW) contents among all samples. The variable Andean environmental conditions along with differences in farming practices may play a role and should be confirmed with further studies. Current results provide the metabolomic basis for future research using integrated omics platforms targeted toward the complete characterization of the ethnic-relevant maize race Cabanita.
Collapse
Affiliation(s)
| | - Rody Cuba-Puma
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Arequipa, Perú
| | | | - Huber Begazo-Gutiérrez
- Estación Experimental Agraria Arequipa, Instituto Nacional de Innovación Agraria (INIA), Arequipa, Perú
| | - Gastón Zolla
- Laboratorio de Fisiologia Molecular de Plantas, PIPS de Cereales y Granos Nativos, Facultad de Agronomia, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Claudia Fuentealba
- Escuela de Alimentos, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Kalidas Shetty
- Department of Plant Sciences, North Dakota State University, Fargo, ND, United States
| | - Lena Gálvez Ranilla
- Laboratory of Research in Food Science, Universidad Catolica de Santa Maria, Arequipa, Perú
- Escuela Profesional de Ingeniería de Industria Alimentaria, Facultad de Ciencias e Ingenierías Biológicas y Químicas, Universidad Catolica de Santa Maria, Arequipa, Perú
| |
Collapse
|
26
|
Bernard G, Buges J, Delporte M, Molinié R, Besseau S, Bouchereau A, Watrin A, Fontaine JX, Mathiron D, Berardocco S, Bassard S, Quéro A, Hilbert JL, Rambaud C, Gagneul D. Consecutive action of two BAHD acyltransferases promotes tetracoumaroyl spermine accumulation in chicory. PLANT PHYSIOLOGY 2022; 189:2029-2043. [PMID: 35604091 PMCID: PMC9343010 DOI: 10.1093/plphys/kiac234] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Fully substituted phenolamide accumulation in the pollen coat of Eudicotyledons is a conserved evolutionary chemical trait. Interestingly, spermidine derivatives are replaced by spermine derivatives as the main phenolamide accumulated in the Asteraceae family. Here, we show that the full substitution of spermine in chicory (Cichorium intybus) requires the successive action of two enzymes, that is spermidine hydroxycinnamoyl transferase-like proteins 1 and 2 (CiSHT1 and CiSHT2), two members of the BAHD enzyme family. Deletion of these genes in chicory using CRISPR/Cas9 gene editing technology evidenced that CiSHT2 catalyzes the first N-acylation steps, whereas CiSHT1 fulfills the substitution to give rise to tetracoumaroyl spermine. Additional experiments using Nicotiana benthamiana confirmed these findings. Expression of CiSHT2 alone promoted partially substituted spermine accumulation, and coexpression of CiSHT2 and CiSHT1 promoted synthesis and accumulation of the fully substituted spermine. Structural characterization of the main product of CiSHT2 using nuclear magnetic resonance revealed that CiSHT2 preferentially catalyzed N-acylation of secondary amines to form N5,N10-dicoumaroyl spermine, whereas CiSHT1 used this substrate to synthesize tetracoumaroyl spermine. We showed that spermine availability may be a key determinant toward preferential accumulation of spermine derivatives over spermidine derivatives in chicory. Our results reveal a subfunctionalization among the spermidine hydroxycinnamoyl transferase that was accompanied by a modification of free polyamine metabolism that has resulted in the accumulation of this new phenolamide in chicory and most probably in all Asteraceae. Finally, genetically engineered yeast (Saccharomyces cerevisiae) was shown to be a promising host platform to produce these compounds.
Collapse
Affiliation(s)
- Guillaume Bernard
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Julie Buges
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Marianne Delporte
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Roland Molinié
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - Sébastien Besseau
- Biomolécules et Biotechnologies Végétales, EA2106, Université de Tours, Tours 37200, France
| | - Alain Bouchereau
- UMR 1349 IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu 35650, France
| | - Amandine Watrin
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Jean-Xavier Fontaine
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - David Mathiron
- Plateforme Analytique (PFA), Université de Picardie Jules Verne, Amiens 80039, France
| | - Solenne Berardocco
- UMR 1349 IGEPP, INRA, Agrocampus Ouest, Université de Rennes 1, Le Rheu 35650, France
| | - Solène Bassard
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - Anthony Quéro
- UMR Transfontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417-BIOlogie des Plantes et Innovation (BIOPI), Amiens 80025, France
| | - Jean-Louis Hilbert
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - Caroline Rambaud
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| | - David Gagneul
- UMR Transfrontalière BioEcoAgro No. 1158, Univ. Lille, INRAE, Univ. Liège, UPJV, ISA, Univ. Artois, Univ. Littoral Côte d’Opale, ICV, SFR Condorcet FR CNRS 3417–Institut Charles Viollette, Joint Laboratory CHIC41H University of Lille-Florimond-Desprez, Villeneuve d’Ascq 59655, France
| |
Collapse
|
27
|
Isolation and Characterisation of Hordatine-Rich Fractions from Brewer’s Spent Grain and Their Biological Activity on α-Glucosidase and Glycogen Phosphorylase α. SUSTAINABILITY 2022. [DOI: 10.3390/su14148421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Hordatines are a characteristic class of secondary metabolites found in barley which have been reported to be present in barley malt, beer and, recently, brewer´s spent grain (BSG). However, little is known about their biological activities such as antioxidative effects in beer or antifungal activity as their main task within the plants. We conducted an in vitro investigation of the activity of hordatines isolated from BSG towards enzymes of glucose metabolism. Hordatine-rich fractions from BSG were prepared by solid-liquid extraction (SLE) with 60% acetone followed by purification and fractionation. The fractions were characterised and investigated for their in vitro inhibitory potential on α-glucosidase and glycogen phosphorylase α (GPα). Both enzymes are relevant within the human glucose metabolism regarding the digestion of carbohydrates as well as the liberation of glucose from the liver. In total, 10 hordatine-rich fractions varying in the composition of different hordatines were separated and analysed by mass spectrometry. Hordatine A, B and C, as well as hydroxylated aglycons and many glycosides, were detected in the fractions. The total hordatine content was analysed by HPLC-DAD using a semi-quantitative approach and ranged from 60.7 ± 3.1 to 259.6 ± 6.1 µg p-coumaric acid equivalents/mg fraction. Regarding the biological activity of fractions, no inhibitory effect on GPα was observed, whereas an inhibitory effect on α-glucosidase was detected (IC50 values: 77.5 ± 6.5–194.1 ± 2.6 µg/mL). Overall, the results confirmed that hordatines are present in BSG in relatively high amounts and provided evidence that they are potent inhibitors of α-glucosidase. Further research is needed to confirm these results and identify the active hordatine structure.
Collapse
|
28
|
Liu S, Jiang J, Ma Z, Xiao M, Yang L, Tian B, Yu Y, Bi C, Fang A, Yang Y. The Role of Hydroxycinnamic Acid Amide Pathway in Plant Immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:922119. [PMID: 35812905 PMCID: PMC9257175 DOI: 10.3389/fpls.2022.922119] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
The compounds involved in the hydroxycinnamic acid amide (HCAA) pathway are an important class of metabolites in plants. Extensive studies have reported that a variety of plant hydroxycinnamamides exhibit pivotal roles in plant-pathogen interactions, such as p-coumaroylagmatine and ferulic acid. The aim of this review is to discuss the emerging findings on the functions of hydroxycinnamic acid amides (HCAAs) accumulation associated with plant defenses against plant pathologies, antimicrobial activity of HCAAs, and the mechanism of HCAAs involved in plant immune responses (such as reactive oxygen species (ROS), cell wall response, plant defense hormones, and stomatal immunity). However, these advances have also revealed the complexity of HCAAs participation in plant defense reactions, and many mysteries remain to be revealed. This review provides an overview of the mechanistic and conceptual insights obtained so far and highlights areas for future exploration of phytochemical defense metabolites.
Collapse
Affiliation(s)
- Saifei Liu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Jincheng Jiang
- Committee on Agriculture and Rural Affairs of Yongchuan District, Chongqing, China
| | - Zihui Ma
- College of Plant Protection, Southwest University, Chongqing, China
| | - Muye Xiao
- College of Plant Protection, Southwest University, Chongqing, China
| | - Lan Yang
- Analytical and Testing Center, Southwest University, Chongqing, China
| | - Binnian Tian
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yang Yu
- College of Plant Protection, Southwest University, Chongqing, China
| | - Chaowei Bi
- College of Plant Protection, Southwest University, Chongqing, China
| | - Anfei Fang
- College of Plant Protection, Southwest University, Chongqing, China
| | - Yuheng Yang
- College of Plant Protection, Southwest University, Chongqing, China
| |
Collapse
|
29
|
Transcriptomics and Metabolomics Analyses Reveal High Induction of the Phenolamide Pathway in Tomato Plants Attacked by the Leafminer Tuta absoluta. Metabolites 2022; 12:metabo12060484. [PMID: 35736416 PMCID: PMC9230075 DOI: 10.3390/metabo12060484] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 05/11/2022] [Accepted: 05/24/2022] [Indexed: 12/10/2022] Open
Abstract
Tomato plants are attacked by a variety of herbivore pests and among them, the leafminer Tuta absoluta, which is currently a major threat to global tomato production. Although the commercial tomato is susceptible to T. absoluta attacks, a better understanding of the defensive plant responses to this pest will help in defining plant resistance traits and broaden the range of agronomic levers that can be used for an effective integrated pest management strategy over the crop cycle. In this study, we developed an integrative approach combining untargeted metabolomic and transcriptomic analyses to characterize the local and systemic metabolic responses of young tomato plants to T. absoluta larvae herbivory. From metabolomic analyses, the tomato response appeared to be both local and systemic, with a local response in infested leaves being much more intense than in other parts of the plant. The main response was a massive accumulation of phenolamides with great structural diversity, including rare derivatives composed of spermine and dihydrocinnamic acids. The accumulation of this family of specialized metabolites was supported by transcriptomic data, which showed induction of both phenylpropanoid and polyamine precursor pathways. Moreover, our transcriptomic data identified two genes strongly induced by T. absoluta herbivory, that we functionally characterized as putrescine hydroxycinnamoyl transferases. They catalyze the biosynthesis of several phenolamides, among which is caffeoylputrescine. Overall, this study provided new mechanistic clues of the tomato/T. absoluta interaction.
Collapse
|
30
|
Pujari I, Babu VS. Rhizobium rhizogenes infection in threatened Indian orchid Dendrobium ovatum mobilises 'Moscatilin' to enhance plant defensins. 3 Biotech 2022; 12:119. [PMID: 35530740 PMCID: PMC9035196 DOI: 10.1007/s13205-022-03180-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 04/03/2022] [Indexed: 11/02/2022] Open
Abstract
The present study illustrates the transformation ability of two wild-type bacterial strains of Rhizobium rhizogenes (MTCC 532 and MTCC 2364) on the embryogenic callus and callus-derived plantlets of a threatened Indian orchid, Dendrobium ovatum. Co-culture of the bacterium with the explants gave marginal hairy root phenotype that failed to multiply in the culture medium. Some primary and secondary metabolites were subdued in infected explants. Moscatilin, the stilbenoid active principle in D. ovatum, was found below the detection limit. The presence of two metabolites viz., Laudanosine, a benzyltetrahydroisoquinoline alkaloid and Lyciumin B, a cyclic peptide, were detected exclusively in the infected explants. The subjugated amino acids and phenolics in the infected plantlets were routed to produce phytoanticipins, and phenanthrenes, strengthening the defence mechanism in infected tissues. This research implies that the plant's defence mechanism activation could have prevented the extensive hairy root formation in the explants, even though nodulations and phenotype transitions were witnessed. Moscatilin has a structural resemblance with Resveratrol, a phytoalexin that combats bacterial and fungal pathogens. The study favours the possibility of Moscatlin being a precursor for phenanthrene compounds, thereby serving as a 'phytoanticipin' during the infection phase. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-022-03180-9.
Collapse
Affiliation(s)
- Ipsita Pujari
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104 India
| | - Vidhu Sankar Babu
- Department of Plant Sciences, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Udupi, Karnataka 576104 India
| |
Collapse
|
31
|
Gekière A, Semay I, Gérard M, Michez D, Gerbaux P, Vanderplanck M. Poison or Potion: Effects of Sunflower Phenolamides on Bumble Bees and Their Gut Parasite. BIOLOGY 2022; 11:545. [PMID: 35453744 PMCID: PMC9030180 DOI: 10.3390/biology11040545] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Specific floral resources may help bees to face environmental challenges such as parasite infection, as recently shown for sunflower pollen. Whereas this pollen diet is known to be unsuitable for the larval development of bumble bees, it has been shown to reduce the load of a trypanosomatid parasite (Crithidia bombi) in the bumble bee gut. Recent studies suggested it could be due to phenolamides, a group of compounds commonly found in flowering plants. We, therefore, decided to assess separately the impacts of sunflower pollen and its phenolamides on a bumble bee and its gut parasite. We fed Crithidia-infected and -uninfected microcolonies of Bombus terrestris either with a diet of willow pollen (control), a diet of sunflower pollen (natural diet) or a diet of willow pollen supplemented with sunflower phenolamides (supplemented diet). We measured several parameters at both microcolony (i.e., food collection, parasite load, brood development and stress responses) and individual (i.e., fat body content and phenotypic variation) levels. As expected, the natural diet had detrimental effects on bumble bees but surprisingly, we did not observe any reduction in parasite load, probably because of bee species-specific outcomes. The supplemented diet also induced detrimental effects but by contrast to our a priori hypothesis, it led to an increase in parasite load in infected microcolonies. We hypothesised that it could be due to physiological distress or gut microbiota alteration induced by phenolamide bioactivities. We further challenged the definition of medicinal effects and questioned the way to assess them in controlled conditions, underlining the necessity to clearly define the experimental framework in this research field.
Collapse
Affiliation(s)
- Antoine Gekière
- Laboratoire de Zoologie, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium;
| | - Irène Semay
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium; (I.S.); (P.G.)
| | - Maxence Gérard
- Insect Lab., Division of Functional Morphology, Department of Zoology, Stockholm University, 11418 Stockholm, Sweden;
| | - Denis Michez
- Laboratoire de Zoologie, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium;
| | - Pascal Gerbaux
- Organic Synthesis and Mass Spectrometry Laboratory, Research Institute for Biosciences, University of Mons, 7000 Mons, Belgium; (I.S.); (P.G.)
| | | |
Collapse
|
32
|
Hamany Djande CY, Steenkamp PA, Piater LA, Tugizimana F, Dubery IA. Hordatines and Associated Precursors Dominate Metabolite Profiles of Barley (Hordeum vulgare L.) Seedlings: A Metabolomics Study of Five Cultivars. Metabolites 2022; 12:metabo12040310. [PMID: 35448497 PMCID: PMC9030721 DOI: 10.3390/metabo12040310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/28/2022] [Accepted: 03/29/2022] [Indexed: 02/06/2023] Open
Abstract
In the process of enhancing crop potential, metabolomics offers a unique opportunity to biochemically describe plant metabolism and to elucidate metabolite profiles that govern specific phenotypic characteristics. In this study we report an untargeted metabolomic profiling of shoots and roots of barley seedlings performed to reveal the chemical makeup therein at an early growth stage. The study was conducted on five cultivars of barley: ‘Overture’, ‘Cristalia’, ‘Deveron’, ‘LE7′ and ‘Genie’. Seedlings were grown for 16 days post germination under identical controlled conditions, and methanolic extracts were analysed on an ultra-high performance liquid chromatography coupled to high-resolution mass spectrometry (UHPLC–HRMS) system. In addition, an unsupervised pattern identification technique, principal component analysis (PCA), was performed to process the generated multidimensional data. Following annotation of specific metabolites, several classes were revealed, among which phenolic acids represented the largest group in extracts from both shoot and root tissues. Interestingly, hordatines, barley-specific metabolites, were not found in the root tissue. In addition, metabolomic profiling revealed metabolites potentially associated with the plants’ natural protection system against potential pathogens. The study sheds light on the chemical composition of barley at a young developmental stage and the information gathered could be useful in plant research and biomarker-based breeding programs.
Collapse
|
33
|
van Zadelhoff A, Vincken JP, de Bruijn WJC. Facile Amidation of Non-Protected Hydroxycinnamic Acids for the Synthesis of Natural Phenol Amides. Molecules 2022; 27:molecules27072203. [PMID: 35408599 PMCID: PMC9000787 DOI: 10.3390/molecules27072203] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/25/2022] [Accepted: 03/27/2022] [Indexed: 01/15/2023] Open
Abstract
Phenol amides are bioactive compounds naturally present in many plants. This class of compounds is known for antioxidant, anti-inflammatory, and anticancer activities. To better understand the reactivity and structure-bioactivity relationships of phenol amides, a large set of structurally diverse pure compounds are needed, however purification from plants is inefficient and laborious. Existing syntheses require multiple steps, including protection of functional groups and are generally overly complicated and only suitable for specific combinations of hydroxycinnamic acid and amine. Thus, to facilitate further studies on these promising compounds, we aimed to develop a facile general synthetic route to obtain phenol amides with a wide structural diversity. The result is a protocol for straightforward one-pot synthesis of phenol amides at room temperature within 25 h using equimolar amounts of N,N'-dicyclohexylcarbodiimide (DCC), amine, hydroxycinnamic acid, and sodium bicarbonate in aqueous acetone. Eight structurally diverse phenol amides were synthesized and fully chemically characterized. The facile synthetic route described in this work is suitable for a wide variety of biologically relevant phenol amides, consisting of different hydroxycinnamic acid subunits (coumaric acid, ferulic acid, and sinapic acid) and amine subunits (agmatine, anthranilic acid, putrescine, serotonin, tyramine, and tryptamine) with yields ranging between 14% and 24%.
Collapse
|
34
|
Marquis V, Smirnova E, Graindorge S, Delcros P, Villette C, Zumsteg J, Heintz D, Heitz T. Broad-spectrum stress tolerance conferred by suppressing jasmonate signaling attenuation in Arabidopsis JASMONIC ACID OXIDASE mutants. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:856-872. [PMID: 34808024 DOI: 10.1111/tpj.15598] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 11/02/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Jasmonate signaling for adaptative or developmental responses generally relies on an increased synthesis of the bioactive hormone jasmonoyl-isoleucine (JA-Ile), triggered by environmental or internal cues. JA-Ile is embedded in a complex metabolic network whose upstream and downstream components strongly contribute to hormone homeostasis and activity. We previously showed that JAO2, an isoform of four Arabidopsis JASMONIC ACID OXIDASES, diverts the precursor jasmonic acid (JA) to its hydroxylated form HO-JA to attenuate JA-Ile formation and signaling. Consequently, JAO2-deficient lines have elevated defenses and display improved tolerance to biotic stress. Here we further explored the organization and regulatory functions of the JAO pathway. Suppression of JAO2 enhances the basal expression of nearly 400 JA-regulated genes in unstimulated leaves, many of which being related to biotic and abiotic stress responses. Consistently, non-targeted metabolomic analysis revealed the constitutive accumulation of several classes of defensive compounds in jao2-1 mutant, including indole glucosinolates and breakdown products. The most differential compounds were agmatine phenolamides, but their genetic suppression did not alleviate the strong resistance of jao2-1 to Botrytis infection. Furthermore, jao2 alleles and a triple jao mutant exhibit elevated survival capacity upon severe drought stress. This latter phenotype occurs without recruiting stronger abscisic acid responses, but relies on enhanced JA-Ile signaling directing a distinct survival pathway with MYB47 transcription factor as a candidate mediator. Our findings reveal the selected spectrum of JA responses controlled by the JAO2 regulatory node and highlight the potential of modulating basal JA turnover to pre-activate mild transcriptional programs for multiple stress resilience.
Collapse
Affiliation(s)
- Valentin Marquis
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Ekaterina Smirnova
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Stéfanie Graindorge
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Pauline Delcros
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Claire Villette
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Julie Zumsteg
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Dimitri Heintz
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| | - Thierry Heitz
- Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
35
|
Zhang H, Lu Q, Liu R. Widely targeted metabolomics analysis reveals the effect of fermentation on the chemical composition of bee pollen. Food Chem 2021; 375:131908. [PMID: 34959145 DOI: 10.1016/j.foodchem.2021.131908] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 12/06/2021] [Accepted: 12/18/2021] [Indexed: 01/28/2023]
Abstract
Microbial fermentation can break the bee pollen wall. However, the global profiling of bee pollen metabolites under fermentation remains unclear. This study aims to comprehensively elucidate the changes in the composition of bee pollen after microbial fermentation. Ultra-performance liquid chromatography-electron spray ionization-mass spectrometry (UPLC-ESI-MS) based on widely targeted metabolomics analysis was used to compare the chemical composition of unfermented bee pollen (UBP) and fermented bee pollen (FBP). Among the 890 metabolites detected, a total of 668 differential metabolites (classified into 17 categories) were identified between UBP and FBP. Fermentation significantly increased the contents of primary metabolites such as 74 amino acids and derivatives, 42 polyunsaturated fatty acids and 66 organic acids, as well as some secondary metabolites such as 38 phenolic acids, 80 flavone aglycones and 22 phenolamides. The results indicate that fermentation is a promising strategy to improve the nutritional value of bee pollen.
Collapse
Affiliation(s)
- Huifang Zhang
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Qun Lu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China.
| | - Rui Liu
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, China; Wuhan Engineering Research Center of Bee Products on Quality and Safety Control, Wuhan 430070, China; Key Laboratory of Environment Correlative Dietology (Huazhong Agricultural University), Ministry of Education, Wuhan 430070, China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan, 430070, China.
| |
Collapse
|
36
|
Nucleoside 5'-Phosphoramidates Control the Phenylpropanoid Pathway in Vitis vinifera Suspension-Cultured Cells. Int J Mol Sci 2021; 22:ijms222413567. [PMID: 34948365 PMCID: PMC8704414 DOI: 10.3390/ijms222413567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/12/2021] [Accepted: 12/16/2021] [Indexed: 11/29/2022] Open
Abstract
It is known that cells contain various uncommon nucleotides such as dinucleoside polyphosphates (NpnN’s) and adenosine 5′-phosphoramidate (NH2-pA) belonging to nucleoside 5′-phosphoramidates (NH2-pNs). Their cellular levels are enzymatically controlled. Some of them are accumulated in cells under stress, and therefore, they could act as signal molecules. Our previous research carried out in Arabidopsis thaliana and grape (Vitis vinifera) showed that NpnN’s induced the expression of genes in the phenylpropanoid pathway and favored the accumulation of their products, which protect plants against stress. Moreover, we found that NH2-pA could play a signaling role in Arabidopsis seedlings. Data presented in this paper show that exogenously applied purine (NH2-pA, NH2-pG) and pyrimidine (NH2-pU, NH2-pC) nucleoside 5′-phosphoramidates can modify the expression of genes that control the biosynthesis of both stilbenes and lignin in Vitis vinifera cv. Monastrell suspension-cultured cells. We investigated the expression of genes encoding for phenylalanine ammonia-lyase (PAL1), cinnamate-4-hydroxylase (C4H1), 4-coumarate:coenzyme A ligase (4CL1), chalcone synthase (CHS1), stilbene synthase (STS1), cinnamoyl-coenzyme A:NADP oxidoreductase (CCR2), and cinnamyl alcohol dehydrogenase (CAD1). Each of the tested NH2-pNs also induced the expression of the trans-resveratrol cell membrane transporter VvABCG44 gene and caused the accumulation of trans-resveratrol and trans-piceid in grape cells as well as in the culture medium. NH2-pC, however, evoked the most effective induction of phenylpropanoid pathway genes such as PAL1, C4H1, 4CL1, and STS1. Moreover, this nucleotide also induced at short times the accumulation of N-benzoylputrescine (BenPut), one of the phenylamides that are derivatives of phenylpropanoid and polyamines. The investigated nucleotides did not change either the lignin content or the cell dry weight, nor did they affect the cell viability throughout the experiment. The results suggest that nucleoside 5′-phosphoramidates could be considered as new signaling molecules.
Collapse
|