1
|
Zhuang JL, Yu XH, Liu HG, Tang P, Deng HP, Li J, Zhou JQ, Zhang ZJ. Potential role of hemopexin in venous thromboembolism (VTE) mediated through effects on apoptosis-related proteins. Hematology 2025; 30:2475262. [PMID: 40067765 DOI: 10.1080/16078454.2025.2475262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 02/28/2025] [Indexed: 04/07/2025] Open
Abstract
OBJECTIVE The limited understanding of venous thromboembolism (VTE) has hindered the development of novel treatment approaches. This study aimed to identify critical factors underlying VTE. METHODS The isobaric tags for relative and absolute quantitation (iTRAQ) method was applied to identify differentially expressed proteins in plasma samples from patients with VTE and healthy volunteers. Gene overexpression and knockdown techniques were used for cultured human umbilical vein endothelial cells (HUVECs) and VTE mouse models. Thrombosis and apoptosis related to the identified proteins were verified using qRT-PCR, western blot, and flow cytometry analyses. RESULTS iTRAQ analysis revealed significant upregulation of keratin 1, pro-platelet basic protein, and hemopexin (HPX) in the plasma of VTE patients. HPX was highly expressed in both plasma and GSE19151 and GSE48000 datasets. qRT-PCR and western blot results for HPX overexpressing HUVECs and VTE mouse models revealed that HPX positively regulated the expression of platelet endothelium aggregation receptor 1 and von Willebrand factor, but negatively regulated the expression of serpin family D member 1 and alpha-2-macroglobulin. Flow cytometry revealed that HPX exhibited pro-apoptotic activity in HPX overexpressing HUVECs. Furthermore, HPX elevated cleaved caspase-3 expression and inhibited B-cell lymphoma-2 expression in HUVECs and VTE mouse models. CONCLUSION HPX exhibits possible prothrombotic activity by regulating thrombosis - apoptosis-related proteins.
Collapse
Affiliation(s)
- Jun-Li Zhuang
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Xiao-Hui Yu
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Hua-Gang Liu
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Peng Tang
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Hong-Ping Deng
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jie Li
- Department of Vascular Surgery, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Jiang-Qiao Zhou
- Department of Organ Transplantation, Renmin Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhong-Jun Zhang
- Department of Vascular Surgery, Renmin Hospital of Xishui, Huanggang, People's Republic of China
| |
Collapse
|
2
|
Gui X, Huang J, Ruan L, Wu Y, Guo X, Cao R, Zhou S, Tan F, Zhu H, Li M, Zhang G, Zhou H, Zhan L, Liu X, Tu S, Shao Z. zMAP toolset: model-based analysis of large-scale proteomic data via a variance stabilizing z-transformation. Genome Biol 2024; 25:267. [PMID: 39402594 PMCID: PMC11472442 DOI: 10.1186/s13059-024-03382-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 08/29/2024] [Indexed: 10/19/2024] Open
Abstract
Isobaric labeling-based mass spectrometry (ILMS) has been widely used to quantify, on a proteome-wide scale, the relative protein abundance in different biological conditions. However, large-scale ILMS data sets typically involve multiple runs of mass spectrometry, bringing great computational difficulty to the integration of ILMS samples. We present zMAP, a toolset that makes ILMS intensities comparable across mass spectrometry runs by modeling the associated mean-variance dependence and accordingly applying a variance stabilizing z-transformation. The practical utility of zMAP is demonstrated in several case studies involving the dynamics of cell differentiation and the heterogeneity across cancer patients.
Collapse
Affiliation(s)
- Xiuqi Gui
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jing Huang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Linjie Ruan
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yanjun Wu
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xuan Guo
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ruifang Cao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Shuhan Zhou
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Fengxiang Tan
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hongwen Zhu
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Mushan Li
- Department of Statistics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Guoqing Zhang
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Lixing Zhan
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xin Liu
- Key Laboratory of Epigenetic Regulation and Intervention, Shanghai Institute of Biochemistry and Cell Biology, CAS Center for Excellence in Molecular Cell Science, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Shiqi Tu
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhen Shao
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| |
Collapse
|
3
|
Tan P, Wei X, Huang H, Wang F, Wang Z, Xie J, Wang L, Liu D, Hu Z. Application of omics technologies in studies on antitumor effects of Traditional Chinese Medicine. Chin Med 2024; 19:123. [PMID: 39252074 PMCID: PMC11385818 DOI: 10.1186/s13020-024-00995-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/02/2024] [Indexed: 09/11/2024] Open
Abstract
Traditional Chinese medicine (TCM) is considered to be one of the most comprehensive and influential form of traditional medicine. It plays an important role in clinical treatment and adjuvant therapy for cancer. However, the complex composition of TCM presents challenges to the comprehensive and systematic understanding of its antitumor mechanisms, which hinders further development of TCM with antitumor effects. Omics technologies can immensely help in elucidating the mechanism of action of drugs. They utilize high-throughput sequencing and detection techniques to provide deeper insights into biological systems, revealing the intricate mechanisms through which TCM combats tumors. Multi-omics approaches can be used to elucidate the interrelationships among different omics layers by integrating data from various omics disciplines. By analyzing a large amount of data, these approaches further unravel the complex network of mechanisms underlying the antitumor effects of TCM and explain the mutual regulations across different molecular levels. In this study, we presented a comprehensive overview of the recent progress in single-omics and multi-omics research focused on elucidating the mechanisms underlying the antitumor effects of TCM. We discussed the significance of omics technologies in advancing research on the antitumor properties of TCM and also provided novel research perspectives and methodologies for further advancing this research field.
Collapse
Affiliation(s)
- Peng Tan
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Xuejiao Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Huiming Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Fei Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuguo Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Jinxin Xie
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Longyan Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dongxiao Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, 100029, China
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhongdong Hu
- Modern Research Center for Traditional Chinese Medicine, Beijing Research Institute of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China.
| |
Collapse
|
4
|
Zhao Y, Han Z, Zhu X, Chen B, Zhou L, Liu X, Liu H. Yeast Proteins: Proteomics, Extraction, Modification, Functional Characterization, and Structure: A Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18774-18793. [PMID: 39146464 DOI: 10.1021/acs.jafc.4c04821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Proteins are essential for human tissues and organs, and they require adequate intake for normal physiological functions. With a growing global population, protein demand rises annually. Traditional animal and plant protein sources rely heavily on land and water, making it difficult to meet the increasing demand. The high protein content of yeast and the complete range of amino acids in yeast proteins make it a high-quality source of supplemental protein. Screening of high-protein yeast strains using proteomics is essential to increase the value of yeast protein resources and to promote the yeast protein industry. However, current yeast extraction methods are mainly alkaline solubilization and acid precipitation; therefore, it is necessary to develop more efficient and environmentally friendly techniques. In addition, the functional properties of yeast proteins limit their application in the food industry. To improve these properties, methods must be selected to modify the secondary and tertiary structures of yeast proteins. This paper explores how proteomic analysis can be used to identify nutrient-rich yeast strains, compares the process of preparing yeast proteins, and investigates how modification methods affect the function and structure of yeast proteins. It provides a theoretical basis for solving the problem of inadequate protein intake in China and explores future prospects.
Collapse
Affiliation(s)
- Yan Zhao
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
| | - Zhaowei Han
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
| | - Xuchun Zhu
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
| | - Bingyu Chen
- Graduate School of Agriculture, Kyoto University, Kyoto606-8502, Japan
| | - Linyi Zhou
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
| | - Xiaoyong Liu
- Henan Agricultural University, Zhengzhou, Henan 450002, China
| | - Hongzhi Liu
- School of Food and Health, Beijing Technology and Business University, Beijing 100080, China
- College of Food and Pharmaceutical Engineering, Guizhou Institute of Technology, Guiyang, Guizhou 550025, China
| |
Collapse
|
5
|
Vanarsa K, Zhang T, Hutcheson J, Kumar SR, Nukala S, Inthavong H, Stanley B, Wu T, Mok CC, Saxena R, Mohan C. iTRAQ-based mass spectrometry screen to identify serum biomarkers in systemic lupus erythematosus. Lupus Sci Med 2024; 11:e000673. [PMID: 38782493 PMCID: PMC11116855 DOI: 10.1136/lupus-2022-000673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 09/15/2022] [Indexed: 05/25/2024]
Abstract
OBJECTIVE Systemic lupus erythematosus (SLE) is a complex systemic autoimmune disorder with no reliable serum biomarkers currently available other than autoantibodies. METHODS In the present study, isobaric tags for relative and absolute quantitation-based mass spectrometry was used to screen the sera of patients with SLE to uncover potential disease biomarkers. RESULTS 85 common proteins were identified, with 16 being elevated (≥1.3) and 23 being decreased (≤0.7) in SLE. Of the 16 elevated proteins, serum alpha-1-microglobulin/bikunin precursor (AMBP), zinc alpha-2 glycoprotein (AZGP) and retinol-binding protein 4 (RBP4) were validated in independent cross-sectional cohorts (Cohort I, N=52; Cohort II, N=117) using an orthogonal platform, ELISA. Serum AMBP, AZGP and RBP4 were validated to be significantly elevated in both patients with inactive SLE and patients with active SLE compared with healthy controls (HCs) (p<0.05, fold change >2.5) in Cohort I. All three proteins exhibited good discriminatory power for distinguishing active SLE and inactive SLE (area under the curve=0.82-0.96), from HCs. Serum AMBP exhibited the largest fold change in active SLE (5.96) compared with HCs and correlated with renal disease activity. The elevation in serum AMBP was validated in a second cohort of patients with SLE of different ethnic origins, correlating with serum creatinine (r=0.60, p<0.001). CONCLUSION Since serum AMBP is validated to be elevated in SLE and correlated with renal disease, the clinical utility of this novel biomarker warrants further analysis in longitudinal cohorts of patients with lupus and lupus nephritis.
Collapse
Affiliation(s)
- Kamala Vanarsa
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - Ting Zhang
- University of Houston, Houston, Texas, USA
- Rheumatology, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
| | | | - Sneha Ravi Kumar
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | | | - Haleigh Inthavong
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | | | - Tianfu Wu
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| | - C C Mok
- Medicine, Tuen Mun Hospital, Hong Kong
| | - Ramesh Saxena
- The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Chandra Mohan
- Department Biomedical Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
6
|
Shi F, Zhang X, Wang Z, Wang X, Zou C. Unveiling molecular mechanisms of pepper resistance to Phytophthora capsici through grafting using iTRAQ-based proteomic analysis. Sci Rep 2024; 14:4789. [PMID: 38413819 PMCID: PMC10899238 DOI: 10.1038/s41598-024-55596-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/26/2024] [Indexed: 02/29/2024] Open
Abstract
Phytophthora blight severely threatens global pepper production. Grafting bolsters plant disease resistance, but the underlying molecular mechanisms remain unclear. In this study, we used P. capsici-resistant strain 'ZCM334' and susceptible strain 'Early Calwonder' for grafting. Compared to self-rooted 'Early Calwonder' plants, 'ZCM334' grafts exhibited delayed disease onset, elevated resistance, and reduced leaf cell damage, showcasing the potential of grafting in enhancing pepper resistance to P. capsici. Proteomic analysis via the iTRAQ technology unveiled 478 and 349 differentially expressed proteins (DEPs) in the leaves and roots, respectively, between the grafts and self-rooted plants. These DEPs were linked to metabolism and cellular processes, stimulus responses, and catalytic activity and were significantly enriched in the biosynthesis of secondary metabolites, carbon fixation in photosynthetic organizations, and pyruvate metabolism pathways. Twelve DEPs exhibiting consistent expression trends in both leaves and roots, including seven related to P. capsici resistance, were screened. qRT-PCR analysis confirmed a significant correlation between the protein and transcript levels of DEPs after P. capsici inoculation. This study highlights the molecular mechanisms whereby grafting enhances pepper resistance to Phytophthora blight. Identification of key genes provides a foundation for studying the regulatory network governing the resistance of pepper to P. capsici.
Collapse
Affiliation(s)
- Fengyan Shi
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, 84 Dongling Road, Shenhe District, Shenyang, 110161, China
| | - Xi Zhang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, 84 Dongling Road, Shenhe District, Shenyang, 110161, China
| | - Zhidan Wang
- College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Xiuxue Wang
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, 84 Dongling Road, Shenhe District, Shenyang, 110161, China
| | - Chunlei Zou
- Vegetable Research Institute, Liaoning Academy of Agricultural Sciences, 84 Dongling Road, Shenhe District, Shenyang, 110161, China.
| |
Collapse
|
7
|
Porta EOJ, Isern JA, Kalesh K, Steel PG. Discovery of Leishmania Druggable Serine Proteases by Activity-Based Protein Profiling. Front Pharmacol 2022; 13:929493. [PMID: 35910377 PMCID: PMC9335491 DOI: 10.3389/fphar.2022.929493] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 06/21/2022] [Indexed: 11/13/2022] Open
Abstract
Leishmaniasis are a group of diseases caused by parasitic protozoa of the genus Leishmania. Current treatments are limited by difficult administration, high cost, poor efficacy, toxicity, and growing resistance. New agents, with new mechanisms of action, are urgently needed to treat the disease. Although extensively studied in other organisms, serine proteases (SPs) have not been widely explored as antileishmanial drug targets. Herein, we report for the first time an activity-based protein profiling (ABPP) strategy to investigate new therapeutic targets within the SPs of the Leishmania parasites. Active-site directed fluorophosphonate probes (rhodamine and biotin-conjugated) were used for the detection and identification of active Leishmania serine hydrolases (SHs). Significant differences were observed in the SHs expression levels throughout the Leishmania life cycle and between different Leishmania species. Using iTRAQ-labelling-based quantitative proteomic mass spectrometry, we identified two targetable SPs in Leishmania mexicana: carboxypeptidase LmxM.18.0450 and prolyl oligopeptidase LmxM.36.6750. Druggability was ascertained by selective inhibition using the commercial serine protease inhibitors chymostatin, lactacystin and ZPP, which represent templates for future anti-leishmanial drug discovery programs. Collectively, the use of ABPP method complements existing genetic methods for target identification and validation in Leishmania.
Collapse
Affiliation(s)
| | - Jaime A Isern
- Department of Chemistry, Durham University, Durham, United Kingdom
| | - Karunakaran Kalesh
- School of Health and Life Sciences, Teesside University, Middlesbrough, United Kingdom
- National Horizons Centre, Darlington, United Kingdom
| | - Patrick G Steel
- Department of Chemistry, Durham University, Durham, United Kingdom
| |
Collapse
|
8
|
Proteomic Analysis Reveals the Vital Role of Synaptic Plasticity in the Pathogenesis of Temporal Lobe Epilepsy. Neural Plast 2022; 2022:8511066. [PMID: 35860309 PMCID: PMC9293557 DOI: 10.1155/2022/8511066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 05/11/2022] [Accepted: 06/14/2022] [Indexed: 12/14/2022] Open
Abstract
Temporal lobe epilepsy (TLE) is a chronic neurological disorder that is often resistant to antiepileptic drugs. The pathogenesis of TLE is extremely complicated and remains elusive. Understanding the molecular mechanisms underlying TLE is crucial for its diagnosis and treatment. In the present study, a lithium-pilocarpine-induced TLE model was employed to reveal the pathological changes of hippocampus in rats. Hippocampal samples were taken for proteomic analysis at 2 weeks after the onset of spontaneous seizure (a chronic stage of epileptogenesis). Isobaric tag for relative and absolute quantization (iTRAQ) coupled with liquid chromatography-tandem mass spectrometry (LC–MS/MS) technique was applied for proteomic analysis of hippocampus. A total of 4173 proteins were identified from the hippocampi of epileptic rats and its control, of which 27 differentially expressed proteins (DEPs) were obtained with a fold change > 1.5 and P < 0.05. Bioinformatics analysis indicated 27 DEPs were mainly enriched in “regulation of synaptic plasticity and structure” and “calmodulin-dependent protein kinase activity,” which implicate synaptic remodeling may play a vital role in the pathogenesis of TLE. Consequently, the synaptic plasticity-related proteins and synaptic structure were investigated to verify it. It has been demonstrated that CaMKII-α, CaMKII-β, and GFAP were significant upregulated coincidently with proteomic analysis in the hippocampus of TLE rats. Moreover, the increased dendritic spines and hippocampal sclerosis further proved that synaptic plasticity involves in the development of TLE. The present study may help to understand the molecular mechanisms underlying epileptogenesis and provide a basis for further studies on synaptic plasticity in TLE.
Collapse
|
9
|
ITRAQ-based quantitative proteomic analysis reveals that VPS35 promotes the expression of MCM2-7 genes in HeLa cells. Sci Rep 2022; 12:9700. [PMID: 35690672 PMCID: PMC9188599 DOI: 10.1038/s41598-022-13934-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 05/13/2022] [Indexed: 11/25/2022] Open
Abstract
Vacuolar protein sorting 35 (VPS35) is a major component of the retromer complex that regulates endosomal trafficking in eukaryotic cells. Recent studies have shown that VPS35 promotes tumor cell proliferation and affects the nuclear accumulation of its interacting partner. In this study, isobaric tags for relative and absolute quantitation (iTRAQ)-based mass spectrometry were used to measure the changes in nuclear protein abundance in VPS35-depleted HeLa cells. A total of 47 differentially expressed proteins were identified, including 27 downregulated and 20 upregulated proteins. Gene ontology (GO) analysis showed that the downregulated proteins included several minichromosome maintenance (MCM) proteins described as cell proliferation markers, and these proteins were present in the MCM2-7 complex, which is essential for DNA replication. Moreover, we validated that loss of VPS35 reduced the mRNA and protein expression of MCM2-7 genes. Notably, re-expression of VPS35 in VPS35 knockout HeLa cells rescued the expression of these genes. Functionally, we showed that VPS35 contributes to cell proliferation and maintenance of genomic stability of HeLa cells. Therefore, these findings reveal that VPS35 is involved in the regulation of MCM2-7 gene expression and establish a link between VPS35 and cell proliferation.
Collapse
|
10
|
Tan YA, Zhao XD, Zhao J, Zhu-Salzman K, Ji QQ, Xiao LB, Hao DJ. iTRAQ Proteomic Analysis of Interactions Between 20E and Phospholipase C in Apolygus lucorum (Meyer-Dür). Front Physiol 2022; 13:845087. [PMID: 35250643 PMCID: PMC8894726 DOI: 10.3389/fphys.2022.845087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 01/31/2022] [Indexed: 11/13/2022] Open
Abstract
Polyphagous Apolygus lucorum has become the dominant insect in Bacillus thuringiensis (Bt) cotton fields. Hormone 20-hydroxyecdysone (20E) regulates multiple insect development and physiology events. 20E responses are controlled by pathways triggered by phospholipase C (PLC)-associated proteins. However, 20E-modulated genes and related proteins that can be affected by PLC still remain unknown. Here, isobaric tag for relative and absolute quantitation (iTRAQ) and immunoblotting techniques were used to compare differentially expressed proteins (DEPs) in A. lucorum in response to the treatment of 20E and the PLC inhibitor U73122 as well as their combination. A total of 1,624 non-redundant proteins and 97, 248, 266 DEPs were identified in the 20E/control, U73122/control, and 20E + U73122/control groups, respectively. Only 8 DEPs, including pathogenesis-related protein 5-like, cuticle protein 19.8, trans-sialidase, larval cuticle protein A2B-like, cathepsin L1, hemolymph juvenile hormone-binding protein, ATP-dependent RNA helicase p62-like, and myosin-9 isoform X1, were detected in all three groups. Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis showed that the DEPs were involved in diverse signaling pathways. The results were validated by immunoblotting, which highlighted the reliability of proteomics analysis. These findings provided novel insights into the function of PLC in 20E signaling pathway in A. lucorum.
Collapse
Affiliation(s)
- Yong-An Tan
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Xu-Dong Zhao
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jing Zhao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
| | - Keyan Zhu-Salzman
- Department of Entomology, College of Agriculture and Life Sciences, Texas A&M University, College Station, TX, United States
| | - Qin-Qin Ji
- Taizhou Customs of the People’s Republic of China, Taizhou, China
| | - Liu-Bin Xiao
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- *Correspondence: Liu-Bin Xiao,
| | - De-Jun Hao
- College of Forestry, Nanjing Forestry University, Nanjing, China
- De-Jun Hao,
| |
Collapse
|
11
|
Ogawa Y, Imamoto N. Methods to separate nuclear soluble fractions reflecting localizations in living cells. iScience 2021; 24:103503. [PMID: 34934922 DOI: 10.1016/j.isci.2021.103503] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 08/15/2021] [Accepted: 11/22/2021] [Indexed: 12/16/2022] Open
Abstract
To understand various intranuclear functions, it is important to know when, what, and how proteins enter the nucleus. Although many methods and commercial kits for nuclear fractionation have been developed, there are still no methods for obtaining a complete nuclear proteome. Soluble nuclear proteins are often lost during fractionation. We developed remarkably improved methods to obtain nuclear soluble fractions by optimizing the conditions of selective permeabilization of the plasma membrane. As a result, 10 million cells could be separated into the cytoplasmic and nuclear soluble fractions more precisely in a 1.5-mL test tube. Moreover, the addition of an inhibitor to prevent leakage from the nucleus retained small proteins in the nucleus. Because of the simple protocols and easy application for multiple samples, our methods are expected to be applied to various studies on spatiotemporal changes of dynamic nuclear proteins, such as signal transduction.
Collapse
Affiliation(s)
- Yutaka Ogawa
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Naoko Imamoto
- Cellular Dynamics Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
12
|
Tang X, Shi F, Wang Y, Huang S, Zhao Y, Feng H. Proteomic analysis of a plastid gene encoding RPS4 mutant in Chinese cabbage (Brassica campestris L. ssp. pekinensis). Funct Integr Genomics 2021; 22:113-130. [PMID: 34881421 DOI: 10.1007/s10142-021-00808-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/20/2021] [Accepted: 09/18/2021] [Indexed: 10/19/2022]
Abstract
Plastids are important plant cell organelles containing a genome and bacterial-type 70S ribosomes-primarily composed of plastid ribosomal proteins and ribosomal RNAs. In this study, a chlorophyll-deficient mutant (cdm) obtained from double-haploid Chinese cabbage 'FT' was identified as a plastome mutant with an A-to-C base substitution in the plastid gene encoding the ribosomal protein RPS4. To further elucidate the function and regulatory mechanisms of RPS4, a comparative proteomic analysis was conducted between cdm and its wild-type 'FT' plants by isobaric tags and a relative and absolute quantitation (iTRAQ)-based strategy. A total of 6,245 proteins were identified, 540 of which were differentially abundant proteins (DAPs) in the leaves of cdm as compared to those of 'FT'-including 233 upregulated and 307 downregulated proteins. Upregulated DAPs were mainly involved in translation, organonitrogen compound biosynthetic process, ribosomes, and spliceosomes. Meanwhile, downregulated DAPs were mainly involved in photosynthesis, photosynthetic reaction centres, photosynthetic light harvesting, carbon fixation, and chlorophyll binding. These results indicated an important role of RPS4 in the regulation of growth and development of Chinese cabbage, possibly by regulating plastid translation activity by affecting the expression of specific photosynthesis- and cold stress-related proteins. Moreover, a multiple reaction monitoring (MRM) test and quantitative real-time polymerase chain reaction analysis confirmed our iTRAQ results. Quantitative proteomic analysis allowed us to confirm diverse changes in the metabolic pathways between cdm and 'FT' plants. This work provides new insights into the regulation of chlorophyll biosynthesis and photosynthesis in Chinese cabbage.
Collapse
Affiliation(s)
- Xiaoyan Tang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.,Anhui Provincial Engineering Laboratory of Horticultural Crop Breeding College of Horticulture, Anhui Agricultural University, 130 Changjiang West Road, Shushan District, Hefei, China
| | - Fengyan Shi
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Yiheng Wang
- Biotechnology Research Institute, Xiqing District, Tianjin Academy of Agricultural Sciences, Jinjing Road 17 km, Tianjin, 300384, China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Ying Zhao
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, China.
| |
Collapse
|
13
|
The cellular prion protein interacts with and promotes the activity of Na,K-ATPases. PLoS One 2021; 16:e0258682. [PMID: 34847154 PMCID: PMC8631662 DOI: 10.1371/journal.pone.0258682] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 10/02/2021] [Indexed: 12/23/2022] Open
Abstract
The prion protein (PrP) is best known for its ability to cause fatal neurodegenerative diseases in humans and animals. Here, we revisited its molecular environment in the brain using a well-developed affinity-capture mass spectrometry workflow that offers robust relative quantitation. The analysis confirmed many previously reported interactions. It also pointed toward a profound enrichment of Na,K-ATPases (NKAs) in proximity to cellular PrP (PrPC). Follow-on work validated the interaction, demonstrated partial co-localization of the ATP1A1 and PrPC, and revealed that cells exposed to cardiac glycoside (CG) inhibitors of NKAs exhibit correlated changes to the steady-state levels of both proteins. Moreover, the presence of PrPC was observed to promote the ion uptake activity of NKAs in a human co-culture paradigm of differentiated neurons and glia cells, and in mouse neuroblastoma cells. Consistent with this finding, changes in the expression of 5’-nucleotidase that manifest in wild-type cells in response to CG exposure can also be observed in untreated PrPC-deficient cells. Finally, the endoproteolytic cleavage of the glial fibrillary acidic protein, a hallmark of late-stage prion disease, can also be induced by CGs, raising the prospect that a loss of NKA activity may contribute to the pathobiology of prion diseases.
Collapse
|
14
|
Liu J, Sun C, Zhai FF, Li Z, Qian Y, Gu L, Sun Z. Proteomic insights into the photosynthetic divergence between bark and leaf chloroplasts in Salix matsudana. TREE PHYSIOLOGY 2021; 41:2142-2152. [PMID: 33987679 DOI: 10.1093/treephys/tpab055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Accepted: 04/07/2021] [Indexed: 06/12/2023]
Abstract
Bark chloroplasts play important roles in carbon balancing by recycling internal stem CO2 into assimilated carbon. The photosynthetic response of bark chloroplasts to interior stem environments has been studied recently in woody plants. However, the molecular regulatory mechanisms underlying specific characteristics of bark photosynthesis remain unclear. To address this knowledge gap, differences in the structure, photosynthetic activity and protein expression profiles between bark and leaf chloroplasts were investigated in Salix matsudana in this study. Bark chloroplasts exhibited broader and lower grana stacks and higher levels of starch relative to leaf chloroplasts. Concomitantly, decreased oxygen evolution rates and decreased saturated radiation point were observed in bark chloroplasts. Furthermore, a total of 293 differentially expressed proteins (DEPs) were identified in bark and leaf chloroplast profile comparisons. These DEPs were significantly enriched in photosynthesis-related biological processes or Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways associated with photosynthesis. All 116 DEPs within the KEGG pathways associated with photosynthesis light reactions were downregulated in bark chloroplasts, including key proteins responsible for chlorophyll synthesis, light energy harvesting, nonphotochemical quenching, linear electron transport and photophosphorylation. Interestingly, seven upregulated proteins involved in dark reactions were identified in bark chloroplasts that comprised two kinds of malic enzymes typical of C4-type photosynthesis. These results provide comprehensive proteomic evidence to understand the low photochemical capability of bark chloroplasts and suggest that bark chloroplasts might fix CO2 derived from malate decarboxylation.
Collapse
Affiliation(s)
- Junxiang Liu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Chao Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Fei-Fei Zhai
- School of Architectural and Artistic Design, Henan Polytechnic University, Jiaozuo, Henan 454000, P.R. China
| | - Zhenjian Li
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Yongqiang Qian
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Lin Gu
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| | - Zhenyuan Sun
- State Key Laboratory of Tree Genetics and Breeding, Key Laboratory of Tree Breeding and Cultivation of the State Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, P.R. China
| |
Collapse
|
15
|
Chen C, Meng Y, Hu Z, Yang J, Zhang M. Identification of New Proteins and Potential Mitochondrial F1F0-ATPase Inhibitor Factor 1-Associated Mechanisms in Arabidopsis thaliana Using iTRAQ-Based Quantitative Proteomic Analysis. PLANTS 2021; 10:plants10112385. [PMID: 34834746 PMCID: PMC8619367 DOI: 10.3390/plants10112385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/11/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022]
Abstract
The mitochondrial synthesis of ATP makes a vital contribution to the growth and development of biological organisms, in which the enzyme mitochondrial F1F0-ATP synthase plays a pivotal role, in that it can either synthesize or hydrolyze cellular ATP. The finding of our previous study revealed that mitochondrial F1F0-ATPase inhibitor factor 1 (IF1) in Arabidopsis thaliana has a conserved function as an endogenous inhibitor affecting cellular energy status and plays an important role in plant growth and reproduction, particularly in fertility. In this study, to gain an insight into IF1-related traits, we performed isobaric tags for relative and absolute quantitation labeling analysis. In total, 67 of 4778 identified proteins were identified as differentially expressed proteins (DEPs; 59 up-regulated and 8 down-regulated) between wild-type and if1 mutant Arabidopsis thaliana seedlings. Gene ontology enrichment analysis revealed that these DEPs were the most significantly enriched in pathways such as “long-day photoperiodism, flowering,” “positive regulation of protein import into chloroplast stroma,” and “pollen sperm cell differentiation,” which are closely associated with reproductive development. Moreover, Kyoto Encyclopedia of Genes and Genomes enrichment analysis revealed that photosynthesis was the pathway most significantly enriched with DEPs. Collectively, our results revealed a global shift in protein abundance patterns corresponding to AtIF1 mutation, entailing changes in the abundance of multiple key proteins and metabolic processes, which will provide a valuable proteomic foundation for future studies.
Collapse
Affiliation(s)
- Cuiting Chen
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (C.C.); (Y.M.); (M.Z.)
| | - Yiqing Meng
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (C.C.); (Y.M.); (M.Z.)
| | - Zhongyuan Hu
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (C.C.); (Y.M.); (M.Z.)
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China
- Correspondence: (Z.H.); (J.Y.); Tel.: +86-571-88982123 (J.Y.)
| | - Jinghua Yang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (C.C.); (Y.M.); (M.Z.)
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China
- Correspondence: (Z.H.); (J.Y.); Tel.: +86-571-88982123 (J.Y.)
| | - Mingfang Zhang
- Laboratory of Germplasm Innovation and Molecular Breeding, Institute of Vegetable Science, Zhejiang University, Hangzhou 310058, China; (C.C.); (Y.M.); (M.Z.)
- Hainan Institute, Zhejiang University, Yazhou District, Sanya 572025, China
| |
Collapse
|
16
|
Current Analytical Strategies in Studying Chromatin-Associated-Proteome (Chromatome). Molecules 2021; 26:molecules26216694. [PMID: 34771102 PMCID: PMC8588255 DOI: 10.3390/molecules26216694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
Chromatin is a dynamic structure comprising of DNA and proteins. Its unique nature not only help to pack the DNA tightly within the cell but also is pivotal in regulating gene expression DNA replication. Furthermore it also protects the DNA from being damaged. Various proteins are involved in making a specific complex within a chromatin and the knowledge about these interacting partners is helpful to enhance our understanding about the pathophysiology of various chromatin associated diseases. Moreover, it could also help us to identify new drug targets and design more effective remedies. Due to the existence of chromatin in different forms under various physiological conditions it is hard to develop a single strategy to study chromatin associated proteins under all conditions. In our current review, we tried to provide an overview and comparative analysis of the strategies currently adopted to capture the DNA bounded protein complexes and their mass spectrometric identification and quantification. Precise information about the protein partners and their function in the DNA-protein complexes is crucial to design new and more effective therapeutic molecules against chromatin associated diseases.
Collapse
|
17
|
Global Proteomic Analysis of Listeria monocytogenes' Response to Linalool. Foods 2021; 10:foods10102449. [PMID: 34681498 PMCID: PMC8535586 DOI: 10.3390/foods10102449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 01/13/2023] Open
Abstract
Listeria monocytogenes (LM) is one of the most serious foodborne pathogens. Listeriosis, the disease caused by LM infection, has drawn attention worldwide because of its high hospitalization and mortality rates. Linalool is a vital constituent found in many essential oils; our previous studies have proved that linalool exhibits strong anti-Listeria activity. In this study, iTRAQ-based quantitative proteomics analysis was performed to explore the response of LM exposed to linalool, and to unravel the mode of action and drug targets of linalool against LM. A total of 445 differentially expressed proteins (DEPs) were screened out, including 211 up-regulated and 234 down-regulated proteins which participated in different biological functions and pathways. Thirty-one significantly enriched gene ontology (GO) functional categories were obtained, including 12 categories in “Biological Process”, 10 categories in “Cell Component”, and 9 categories in “Molecular Function”. Sixty significantly enriched biological pathways were classified, including 6 pathways in “Cell Process”, 6 pathways in “Environmental Information Processing”, 3 pathways in “Human Disease”, 40 pathways in “Metabolism”, and 2 pathways in “Organic System”. GO and Kyoto Encyclopedia of Genes (KEGG) enrichment analysis together with flow cytometry data implied that cell membranes, cell walls, nucleoids, and ribosomes might be the targets of linalool against LM. Our study provides good evidence for the proteomic analysis of bacteria, especially LM, exposed to antibacterial agents. Further, those drug targets discovered by proteomic analysis can provide theoretical support for the development of new drugs against LM.
Collapse
|
18
|
Zhang J, Zhang J, Zhang Z, Zheng Y, Zhong Z, Yao Z, Cai X, Lao L, Huang Y, Qu S. Dopaminergic signaling in prefrontal cortex contributes to the antidepressant effect of electroacupuncture: An iTRAQ-based proteomics analysis in a rat model of CUMS. Anat Rec (Hoboken) 2021; 304:2454-2469. [PMID: 34523244 DOI: 10.1002/ar.24732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 06/17/2021] [Accepted: 06/21/2021] [Indexed: 10/20/2022]
Abstract
Electroacupuncture (EA) is used as an adjunctive treatment for depression. This study was conducted to evaluate the efficacy and mechanisms of EA in the depressive rat model induced by chronic unpredictable mild stress (CUMS) in male adult Wistar rats. The underlying mechanisms were explored by using isobaric tags for relative and absolute quantitation (iTRAQ)-based proteomic analysis of the proteins in the prefrontal cortex (PFC), and observing the number of the PFC neurons stained with hematoxylin and eosin (H&E) and synaptic morphological changes under transmission electron microscopy (TEM). The results showed that EA plus paroxetine (EA + Par) for 1 week significantly relieved depression-like anhedonia symptoms and improved anxiety-like behavior, accompanied by the improvements in synaptic morphology and a significant increase of PFC neurons. Moreover, EA or paroxetine alone significantly alleviated anhedonia symptoms after 2 weeks of intervention. Additionally, iTRAQ analysis showed that dopaminergic signaling was significantly altered in CUMS rats after 1 week of EA treatment. As the critical enzyme of this pathway, aromatic-l-amino-acid decarboxylase (DDC) was significantly upregulated after the treatment with EA + Par for 1 week. These findings suggested that the dopaminergic signaling pathway in PFC may be involved in the antidepressant mechanisms of EA.
Collapse
Affiliation(s)
- Jialing Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Jiping Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zhinan Zhang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Yu Zheng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zheng Zhong
- Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Zengyu Yao
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Xiaowen Cai
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Lixing Lao
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yong Huang
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| | - Shanshan Qu
- School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong Province, China
| |
Collapse
|
19
|
Updates on the Functions and Molecular Mechanisms of the Genes Involved in Aspergillus flavus Development and Biosynthesis of Aflatoxins. J Fungi (Basel) 2021; 7:jof7080666. [PMID: 34436205 PMCID: PMC8401812 DOI: 10.3390/jof7080666] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 08/08/2021] [Accepted: 08/10/2021] [Indexed: 12/13/2022] Open
Abstract
Aspergillus flavus (A. flavus) is a ubiquitous and opportunistic fungal pathogen that causes invasive and non-invasive aspergillosis in humans and animals. This fungus is also capable of infecting a large number of agriculture crops (e.g., peanuts, maze, cotton seeds, rice, etc.), causing economic losses and posing serious food-safety concerns when these crops are contaminated with aflatoxins, the most potent naturally occurring carcinogens. In particular, A. flavus and aflatoxins are intensely studied, and they continue to receive considerable attention due to their detrimental effects on humans, animals, and crops. Although several studies have been published focusing on the biosynthesis of the aforementioned secondary metabolites, some of the molecular mechanisms (e.g., posttranslational modifications, transcription factors, transcriptome, proteomics, metabolomics and transcriptome, etc.) involved in the fungal development and aflatoxin biosynthesis in A. flavus are still not fully understood. In this study, a review of the recently published studies on the function of the genes and the molecular mechanisms involved in development of A. flavus and the production of its secondary metabolites is presented. It is hoped that the information provided in this review will help readers to develop effective strategies to reduce A. flavus infection and aflatoxin production.
Collapse
|
20
|
Bhukta S, Gopinath P, Dandela R. Target identification of anticancer natural products using a chemical proteomics approach. RSC Adv 2021; 11:27950-27964. [PMID: 35480761 PMCID: PMC9038044 DOI: 10.1039/d1ra04283a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 07/26/2021] [Indexed: 12/14/2022] Open
Abstract
In recent years, there has been a strong demand worldwide for the identification and development of potential anticancer drugs based on natural products. Natural products have been explored for their diverse biological and therapeutic applications from ancient time. In order to enhance the efficacy and selectivity and to minimize the undesired side effects of anti cancer natural products (ANPs), it is essential to understand their target proteins and their mechanistic pathway. Chemical proteomics is one of the most powerful tools to connect ANP target identification and quantification where labeling and non-labeling based approaches have been used. Herein, we have discussed the various strategies to systemically develop selective ANP based chemical probes to characterise their specific and non-specific target proteins using a chemical proteomic approach in various cancer cell lysates.
Collapse
Affiliation(s)
- Swadhapriya Bhukta
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Indianoil Odisha Campus, Samantpuri Bhubaneswar 751013 India
| | - Pushparathinam Gopinath
- Department of Chemistry, SRM-Institute of Science and Technology Kattankulathur 603203 Chennai Tamilnadu India
| | - Rambabu Dandela
- Department of Industrial and Engineering Chemistry, Institute of Chemical Technology Indianoil Odisha Campus, Samantpuri Bhubaneswar 751013 India
| |
Collapse
|
21
|
Lee SY, Wang TY, Lu RB, Wang LJ, Li SC, Tu CY, Chang CH, Chiang YC, Tsai KW. Identification of potential plasma protein biomarkers for bipolar II disorder: a preliminary/exploratory study. Sci Rep 2021; 11:9452. [PMID: 33947873 PMCID: PMC8097016 DOI: 10.1038/s41598-021-88450-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Accepted: 04/13/2021] [Indexed: 11/29/2022] Open
Abstract
The diagnostic peripheral biomarkers are still lacking for the bipolar II disorder (BD-II). We used isobaric tags for relative and absolute quantification technology to identify five upregulated candidate proteins [matrix metallopeptidase 9 (MMP9), phenylalanyl-tRNA synthetase subunit beta (FARSB), peroxiredoxin 2 (PRDX2), carbonic anhydrase 1 (CA-1), and proprotein convertase subtilisin/kexin type 9 (PCSK9)] for the diagnosis of BD-II. We analysed the differences in the plasma levels of these candidate proteins between BD-II patients and controls (BD-II, n = 185; Controls, n = 186) using ELISA. To establish a diagnostic model for the prediction of BD-II, the participants were divided randomly into a training group (BD-II, n = 149; Controls, n = 150) and a testing group (BD-II, n = 36; Controls, n = 36). Significant increases were found in all five protein levels between BD-II and controls in the training group. Logistic regression was analysed to form the composite probability score of the five proteins in the training group. Receiver-operating characteristic curve analysis revealed the diagnostic validity of the probability score [area under curve (AUC) = 0.89, P < 0.001]. The composite probability score of the testing group also showed good diagnostic validity (AUC = 0.86, P < 0.001). We propose that plasma levels of PRDX2, CA-1, FARSB, MMP9, and PCSK9 may be associated with BD-II as potential biomarkers.
Collapse
Affiliation(s)
- Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan.,Department of Psychiatry, Faculty of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Tzu-Yun Wang
- Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan
| | - Ru-Band Lu
- Department of Psychiatry, College of Medicine, National Cheng Kung University Hospital, National Cheng Kung University, Tainan, Taiwan.,Yanjiao Furen Hospital, Hebei, China
| | - Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Sung-Chou Li
- Genomics and Proteomics Core Laboratory, Department of Medical Research, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Chi-Ying Tu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Cheng-Ho Chang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yung-Chih Chiang
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, The Buddhist Tzu Chi Medical Foundation, New Taipei, 23142, Taiwan.
| |
Collapse
|
22
|
Liu GT, Wang BB, Lecourieux D, Li MJ, Liu MB, Liu RQ, Shang BX, Yin X, Wang LJ, Lecourieux F, Xu Y. Proteomic analysis of early-stage incompatible and compatible interactions between grapevine and P. viticola. HORTICULTURE RESEARCH 2021; 8:100. [PMID: 33931609 PMCID: PMC8087781 DOI: 10.1038/s41438-021-00533-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/16/2021] [Accepted: 02/24/2021] [Indexed: 05/04/2023]
Abstract
Wild grapevines can show strong resistance to the downy mildew pathogen P. viticola, but the associated mechanisms are poorly described, especially at early stages of infection. Here, we performed comparative proteomic analyses of grapevine leaves from the resistant genotype V. davidii "LiuBa-8" (LB) and susceptible V. vinifera "Pinot Noir" (PN) 12 h after inoculation with P. viticola. By employing the iTRAQ technique, a total of 444 and 349 differentially expressed proteins (DEPs) were identified in LB and PN, respectively. The majority of these DEPs were related to photosynthesis, respiration, cell wall modification, protein metabolism, stress, and redox homeostasis. Compared with PN, LB showed fewer downregulated proteins associated with photosynthesis and more upregulated proteins associated with metabolism. At least a subset of PR proteins (PR10.2 and PR10.3) was upregulated upon inoculation in both genotypes, whereas HSP (HSP70.2 and HSP90.6) and cell wall-related XTH and BXL1 proteins were specifically upregulated in LB and PN, respectively. In the incompatible interaction, ROS signaling was evident by the accumulation of H2O2, and multiple APX and GST proteins were upregulated. These DEPs may play crucial roles in the grapevine response to downy mildew. Our results provide new insights into molecular events associated with downy mildew resistance in grapevine, which may be exploited to develop novel protection strategies against this disease.
Collapse
Affiliation(s)
- Guo-Tian Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
| | - Bian-Bian Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - David Lecourieux
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France
| | - Mei-Jie Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Ming-Bo Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Rui-Qi Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Bo-Xing Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Xiao Yin
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China
| | - Li-Jun Wang
- Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Fatma Lecourieux
- UMR1287 EGFV, CNRS, Université de Bordeaux, INRAE, Bordeaux Sciences Agro, ISVV, Villenave d'Ornon, France.
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China.
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, China.
| |
Collapse
|
23
|
Wang B, Lu J, Zheng J, Yu Z. iTRAQ-facilitated proteomic analysis of Bacillus cereus via degradation of malachite green. J Microbiol 2021; 59:142-150. [PMID: 33527315 DOI: 10.1007/s12275-021-0441-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/01/2020] [Indexed: 01/13/2023]
Abstract
The wide use of malachite green (MG) as a dye has caused substantial concern owing to its toxicity. Bacillus cereus can against the toxic effect of MG and efficiently decolourise it. However, detailed information regarding its underlying adaptation and degradation mechanisms based on proteomic data is scarce. In this study, the isobaric tags for relative and absolute quantitation (iTRAQ)-facilitated quantitative method was applied to analyse the molecular mechanisms by which B. cereus degrades MG. Based on this analysis, 209 upregulated proteins and 198 downregulated proteins were identified with a false discovery rate of 1% or less during MG biodegradation. Gene ontology and KEGG analysis determined that the differentially expressed proteins were enriched in metabolic processes, catalytic activity, antioxidant activity, and responses to stimuli. Furthermore, real-time qPCR was utilised to further confirm the regulated proteins involved in benzoate degradation. The proteins BCE_4076 (Acetyl-CoA acetyltransferase), BCE_5143 (Acetyl-CoA acetyltransferase), BCE_5144 (3-hydroxyacyl-CoA dehydrogenase), BCE_4651 (Enoyl-CoA hydratase), and BCE_5474 (3-hydroxyacyl-CoA dehydrogenase) involved in the benzoate degradation pathway may play an important role in the biodegradation of MG by B. cereus. The results of this study not only provide a comprehensive view of proteomic changes in B. cereus upon MG loading but also shed light on the mechanism underlying MG biodegradation by B. cereus.
Collapse
Affiliation(s)
- Bobo Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Jing Lu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Junfang Zheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, P. R. China
| | - Zhisheng Yu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China.
| |
Collapse
|
24
|
Li J, Nadeem M, Chen L, Wang M, Wan M, Qiu L, Wang X. Differential proteomic analysis of soybean anthers by iTRAQ under high-temperature stress. J Proteomics 2020; 229:103968. [PMID: 32911126 DOI: 10.1016/j.jprot.2020.103968] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 08/14/2020] [Accepted: 08/31/2020] [Indexed: 02/07/2023]
Abstract
High-temperature has severe impacts on the functionality and development of soybean male reproductive organs. However, the molecular mechanism of thermo-tolerance in soybean remains unclear. In this study, a differential proteomic analysis was conducted between the anthers of heat-tolerant (JD21) and heat-sensitive (HD14) cultivars using an iTRAQ based approach. In total, 371, 479, and 417 differentially abundant proteins were identified between HD14 anthers treated with high-temperature stress vs HD14 anthers in the natural field conditions, JD21 anthers treated with high-temperature stress vs JD21 anthers in the natural field conditions, and HD14 vs JD21 anthers treated with high-temperature stress, respectively. The differentially abundant proteins associated with thermo-tolerance were predominantly involved in carbohydrate and energy metabolism, protein synthesis and degradation, nitrogen assimilation, and ROS detoxification. Sixteen common differentially abundant proteins were involved in known protein-protein interaction networks in three comparisons associated with heat, which may strongly influence anther growth and development. The qRT-PCR analysis validated the reliability of the iTRAQ results. In conclusion, the heat-tolerant cultivar performed better under stress than heat-sensitive cultivar through modulation of HSP family proteins, pectinesterase, profilin, S-adenosylmethionine synthase, peroxidase, GST, peptidylprolyl isomerase, and disulfide-isomerase. The results provide novel insight into the mechanism of high-temperature stress response of soybean. SIGNIFICANCE: In recent years, with the high temperature (HT) stress brought by climate change frequently occurs at anthesis and negatively affects soybean productivity. The molecular mechanism underlying the response of soybean anthers to HT is a relatively complex process and thus difficult to elucidate; however, it is possible to identify differentially expressed genes or proteins between heat-sensitive and heat-tolerant cultivars under HT stress. The potential candidate genes or proteins may then be utilized in elucidating the molecular mechanism underlying the response of soybean to HT stress, as well as provide genetic resource for the improvement of heat-tolerant characteristics in soybean. In present study, quantitative and qualitative proteomic changes occurring in anthers were compared between the heat-tolerant (JD21) and heat-sensitive (HD14) cultivars under HT stress using iTRAQ-based proteomics strategy. Our results provide new insight into translational alterations in HT-resistant and HT-sensitive soybean cultivars under HT stress, which helps to address the underlying molecular mechanism of soybean in response to HT stress.
Collapse
Affiliation(s)
- Jiajia Li
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Muhammad Nadeem
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Linying Chen
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Minghua Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Mingyue Wan
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China
| | - Lijuan Qiu
- The National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Key Laboratory of Crop Gene Resource and Germplasm Enhancement (MOA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| | - Xiaobo Wang
- School of Agronomy, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
25
|
Coombs KM. Update on Proteomic approaches to uncovering virus-induced protein alterations and virus -host protein interactions during the progression of viral infection. Expert Rev Proteomics 2020; 17:513-532. [PMID: 32910682 DOI: 10.1080/14789450.2020.1821656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Viruses induce profound changes in the cells they infect. Understanding these perturbations will assist in designing better therapeutics to combat viral infection. System-based proteomic assays now provide unprecedented opportunity to monitor large numbers of cellular proteins. AREAS COVERED This review will describe various quantitative and functional mass spectrometry-based methods, and complementary non-mass spectrometry-based methods, such as aptamer profiling and proximity extension assays, and examples of how each are used to delineate how viruses affect host cells, identify which viral proteins interact with which cellular proteins, and how these change during the course of a viral infection. PubMed was searched multiple times prior to manuscript submissions and revisions, using virus, viral, proteomics; in combination with each keyword. The most recent examples of published works from each search were then analyzed. EXPERT OPINION There has been exponential growth in numbers and types of proteomic analyses in recent years. Continued development of reagents that allow increased multiplexing and deeper proteomic probing of the cell, at quantitative and functional levels, enhancements that target more important protein modifications, and improved bioinformatics software tools and pathway prediction algorithms will accelerate this growth and usher in a new era of host proteome understanding.
Collapse
Affiliation(s)
- Kevin M Coombs
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba , Winnipeg, Manitoba, Canada.,Manitoba Centre for Proteomics and Systems Biology , Winnipeg, Manitoba, Canada.,Manitoba Institute of Child Health , Winnipeg, Manitoba, Canada
| |
Collapse
|
26
|
Xie Y, Zhang Y, Xie Y, Li X, Liu Y, Gao Z. Radio frequency treatment accelerates drying rates and improves vigor of corn seeds. Food Chem 2020; 319:126597. [PMID: 32187567 DOI: 10.1016/j.foodchem.2020.126597] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2019] [Revised: 03/05/2020] [Accepted: 03/09/2020] [Indexed: 11/30/2022]
Abstract
This research explored the application of combined radio frequency and hot air drying (RF-HAD) technology on corn seeds. Drying characteristics and seed vigor were investigated at different RF electrode gaps (140, 150 and 160 mm). To better demonstrate the feasibility of applying RF-HAD on corn seeds, tempering-intermittent hot air drying (HAD) was studied as a comparison. Reduced electrode gap corresponding to elevated average heating rate and power efficiency resulted in decreased seeds vigor and specific energy consumption. The assistance of RF significantly increased the drying rate of corn seeds and reduced drying duration by up to 70% compared with HAD. A higher dehydrogenase activity (DHA) but a lower germination percentage (GP) was observed in RF-HAD samples as compared with HAD ones. Corn seeds were promoted to be dormant by RF-HAD according to dormancy-breaking results and isobaric tags for relative and absolute quantification (iTRAQ) analysis.
Collapse
Affiliation(s)
- Yucen Xie
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yue Zhang
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yongkang Xie
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Xingyi Li
- College of Engineering, China Agricultural University, Beijing 100083, China
| | - Yanhong Liu
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhenjiang Gao
- College of Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
27
|
Wang Y, Bai X, Tang B, Zhang Y, Zhang L, Cai X, Lin J, Jia W, Boireau P, Liu M, Liu X. Comparative analysis of excretory-secretory products of muscle larvae of three isolates of Trichinella pseudospiralis by the iTRAQ method. Vet Parasitol 2020; 297:109119. [PMID: 32370915 DOI: 10.1016/j.vetpar.2020.109119] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 12/18/2022]
Abstract
Trichinella pseudospiralis is a non-encapsulated intracellular parasitic nematode that can possess a strong ability to modulate the host immune response. Here, we compared the differentially expressed proteins of excretory-secretory (ES) products in three isolates of T. pseudospiralis muscle larvae (ML) [from Russia (RUS), United States of America (USA) and Australia (AUS)] using isobaric tags for relative and absolute quantification (iTRAQ)-based technology. A total of 2591 nonredundant proteins were identified, of which 65 (146), 72 (98) and 43 (103) significantly upregulated (downregulated) differentially expressed proteins were detected among pairwise comparisons (T4RUS vs T4USA, T4AUS vs T4USA and T4RUS vs T4AUS). In addition, GO annotation, KEGG and STRING analyses were carried out on the screened differentially altered proteins. The main biological processes involved included carbohydrate metabolic processes, DNA metabolic processes, cellular protein modification processes and homeostatic processes. The majority of KEGG pathways were found to be related to the metabolic pathways, lysosome pathway and protein processing in endoplasmic reticulum. Moreover, all ES protein expression levels involved in the lysosome pathway were significantly higher in the T4USA isolate than in the other two isolates. We also found differences in the expression of some important immunoregulatory proteins, such as protein disulfide-isomerase, thioredoxin protein and deoxyribonuclease-2-alpha, between different isolates of T. pseudospiralis ML. Flow cytometry was used to detect the increase in the CD4+/CD8 + T-cell ratio in pig peripheral blood and to verify the effect of T. pseudospiralis on the Th1/Th2 polarization of the host. Quantitative real-time PCR analysis also confirmed that the changes in the transcriptional level of genes were consistent with those at the proteomic level. These findings reveal the possible role of significantly differentially expressed proteins in ES products of the different isolates of T. pseudospiralis in antagonizing and participating in the regulation of the host immune response and maintaining a stable growth environment.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xue Bai
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Bin Tang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Yulu Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Lixiao Zhang
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Jiaojiao Lin
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Animal Parasitology, Ministry of Agriculture, Shanghai, 200241, China.
| | - Wanzhong Jia
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, 730046, China.
| | - Pascal Boireau
- JRU BIPAR, ANSES, École Nationale Vétérinaire d'Alfort, INRA, Université Paris-Est, Animal Health Laboratory, Maisons-Alfort, France.
| | - Mingyuan Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, Jiangsu, China.
| | - Xiaolei Liu
- Key Laboratory of Zoonosis Research, Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, 130062, China.
| |
Collapse
|
28
|
Da Z, Gao L, Su G, Yao J, Fu W, Zhang J, Zhang X, Pei Z, Yue P, Bai B, Lin Y, Meng W, Li X. Bioinformatics combined with quantitative proteomics analyses and identification of potential biomarkers in cholangiocarcinoma. Cancer Cell Int 2020; 20:130. [PMID: 32336950 PMCID: PMC7178764 DOI: 10.1186/s12935-020-01212-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 04/15/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is an invasive malignancy arising from biliary epithelial cells; it is the most common primary tumour of the bile tract and has a poor prognosis. The aim of this study was to screen prognostic biomarkers for CCA by integrated multiomics analysis. METHODS The GSE32225 dataset was derived from the Gene Expression Omnibus (GEO) database and comprehensively analysed by using R software and The Cancer Genome Atlas (TCGA) database to obtain the differentially expressed RNAs (DERNAs) associated with CCA prognosis. Quantitative isobaric tags for relative and absolute quantification (iTRAQ) proteomics was used to screen differentially expressed proteins (DEPs) between CCA and nontumour tissues. Through integrated analysis of DERNA and DEP data, we obtained candidate proteins APOF, ITGAV and CASK, and immunohistochemistry was used to detect the expression of these proteins in CCA. The relationship between CASK expression and CCA prognosis was further analysed. RESULTS Through bioinformatics analysis, 875 DERNAs were identified, of which 10 were associated with the prognosis of the CCA patients. A total of 487 DEPs were obtained by using the iTRAQ technique. Comprehensive analysis of multiomics data showed that CASK, ITGAV and APOF expression at both the mRNA and protein levels were different in CCA compared with nontumour tissues. CASK was found to be expressed in the cytoplasm and nucleus of CCA cells in 38 (45%) of 84 patients with CCA. Our results suggested that patients with positive CASK expression had significantly better overall survival (OS) and recurrence-free survival (RFS) than those with negative CASK expression. Univariate and multivariate analyses demonstrated that negative expression of CASK was a significantly independent risk factor for OS and RFS in CCA patients. CONCLUSIONS CASK may be a tumour suppressor; its low expression is an independent risk factor for a poor prognosis in CCA patients, and so it could be used as a clinically valuable prognostic marker.
Collapse
Affiliation(s)
- Zijian Da
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China
| | - Long Gao
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
| | - Jia Yao
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China
- Division of Scientific Research and Development Planning, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| | - Wenkang Fu
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China
| | - Jinduo Zhang
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000 China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, 730000 China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000 China
| | - Xu Zhang
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China
| | - Zhaoji Pei
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China
| | - Ping Yue
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000 China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, 730000 China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000 China
| | - Bing Bai
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000 China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, 730000 China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000 China
| | - Yanyan Lin
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000 China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, 730000 China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000 China
| | - Wenbo Meng
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China
- Department of Special Minimally Invasive Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000 China
- Division of Scientific Research and Development Planning, The First Hospital of Lanzhou University, Lanzhou, 730000 China
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000 China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, 730000 China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000 China
| | - Xun Li
- The First Clinical Medical College, Lanzhou University, Lanzhou, 730000 China
- Gansu Province Institute of Hepatopancreatobiliary, Lanzhou, 730000 China
- Gansu Province Key Laboratory Biotherapy and Regenerative Medicine, Lanzhou, 730000 China
- The Second Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000 China
| |
Collapse
|
29
|
Kim J. Systematic approach to characterize the dynamics of protein adsorption on the surface of biomaterials using proteomics. Colloids Surf B Biointerfaces 2020; 188:110756. [DOI: 10.1016/j.colsurfb.2019.110756] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Revised: 12/03/2019] [Accepted: 12/23/2019] [Indexed: 01/08/2023]
|
30
|
Chen H, Wu M, Jiang W, Liu X, Zhang J, Yu C. iTRAQ‑based quantitative proteomics analysis of the potential application of secretoneurin gene therapy for cardiac hypertrophy induced by DL‑isoproterenol hydrochloride in mice. Int J Mol Med 2020; 45:793-804. [PMID: 31985029 PMCID: PMC7015125 DOI: 10.3892/ijmm.2020.4472] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 12/17/2019] [Indexed: 02/05/2023] Open
Abstract
A previous study by our group demonstrated a protective role of the neuropeptide secretoneurin (SN) in DL‑isoproterenol hydrochloride (ISO)‑induced cardiac hypertrophy in mice. To further characterize the molecular mechanism of SN treatment, an isobaric tags for relative and absolute quantification (iTRAQ)‑based quantitative proteomic analysis was applied to identify putative target proteins and molecular pathways. An SN expression vector was injected into the myocardial tissues of mice, and the animals were then subcutaneously injected with ISO (5 mg/kg/day) for 7 days to induce cardiac hypertrophy. The results of echocardiography and hemodynamic measurements indicated that the function of the heart impaired by ISO treatment was significantly ameliorated via SN gene injection. The investigation of heart proteomics was performed by iTRAQ‑based liquid chromatography‑tandem mass spectrometry analysis. A total of 2,044 quantified proteins and 15 differentially expressed proteins were associated with SN overexpression in mice with cardiac hypertrophy. Functional enrichment analysis demonstrated that these effects were possibly associated with metabolic processes. A protein‑protein interaction network analysis was constructed and the data indicated that apolipoprotein C‑III (Apoc3) was associated with the positive effect of SN on the induction of cardiac hypertrophy in mice. The present study proposed a potential mechanism of SN action on Apoc3 upregulation that may contribute to the amelioration of cardiac hypertrophy. These findings can aid the clinical application of SN in patients with cardiac hypertrophy.
Collapse
Affiliation(s)
| | - Mingjun Wu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016
| | - Wei Jiang
- State Key Laboratory of Biotherapy, Molecular Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Xiang Liu
- Institute of Life Science, Chongqing Medical University, Chongqing 400016
| | - Jun Zhang
- Institute of Life Science, Chongqing Medical University, Chongqing 400016
| | | |
Collapse
|
31
|
Identification of Differentially Expressed Proteins in Sugarcane in Response to Infection by Xanthomonas albilineans Using iTRAQ Quantitative Proteomics. Microorganisms 2020; 8:microorganisms8010076. [PMID: 31947808 PMCID: PMC7023244 DOI: 10.3390/microorganisms8010076] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 12/16/2019] [Accepted: 12/28/2019] [Indexed: 01/02/2023] Open
Abstract
Sugarcane can suffer severe yield losses when affected by leaf scald, a disease caused by Xanthomonas albilineans. This bacterial pathogen colonizes the vascular system of sugarcane, which can result in reduced plant growth and plant death. In order to better understand the molecular mechanisms involved in the resistance of sugarcane to leaf scald, a comparative proteomic study was performed with two sugarcane cultivars inoculated with X. albilineans: one resistant (LCP 85-384) and one susceptible (ROC20) to leaf scald. The iTRAQ (isobaric tags for relative and absolute quantification) approach at 0 and 48 h post-inoculation (hpi) was used to identify and annotate differentially expressed proteins (DEPs). A total of 4295 proteins were associated with 1099 gene ontology (GO) terms by GO analysis. Among those, 285 were DEPs during X. albilineans infection in cultivars LCP 85-384 and ROC20. One hundred seventy-two DEPs were identified in resistant cultivar LCP 85-384, and 113 of these proteins were upregulated and 59 were downregulated. One hundred ninety-two DEPs were found in susceptible cultivar ROC20 and half of these (92) were upregulated, whereas the other half corresponded to downregulated proteins. The significantly upregulated DEPs in LCP 85-384 were involved in metabolic pathways, the biosynthesis of secondary metabolites, and the phenylpropanoid biosynthesis pathway. Additionally, the expression of seven candidate genes related to photosynthesis and glycolytic pathways, plant innate immune system, glycosylation process, plant cytochrome P450, and non-specific lipid transfer protein was verified based on transcription levels in sugarcane during infection by X. albilineans. Our findings shed new light on the differential expression of proteins in sugarcane cultivars in response to infection by X. albilineans. The identification of these genes provides important information for sugarcane variety improvement programs using molecular breeding strategies.
Collapse
|
32
|
Meng X, Zhang M, Gao B, Lv J, Li J, Liu P. Integrative Proteomic and MicroRNA Analysis: Insights Into Mechanisms of Eyestalk Ablation-Induced Ovarian Maturation in the Swimming Crab Portunus trituberculatus. Front Endocrinol (Lausanne) 2020; 11:533. [PMID: 32922361 PMCID: PMC7456853 DOI: 10.3389/fendo.2020.00533] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 06/30/2020] [Indexed: 12/19/2022] Open
Abstract
Eyestalk ablation is the most common method to induce ovarian maturation in decapod crustacean aquaculture, but it jeopardizes broodstock survival and larvae production. It is important to understand the molecular basis underlying the maturation triggered by ablation and thereby develop an alternative measure for maturation manipulation. In this study, we investigate alterations of ovarian proteome and miRNA profile after ablation in a commercially important marine crab Portunus trituberculatus. Quantitative proteomic analysis using iTRAQ reveals that 163 proteins are differentially expressed following ablation, and modulation of methyl farnesoate metabolism and activation of calcium signaling may play important roles in the ovarian maturation induced by ablation. miRNA expression profiling identifies 31 miRNAs that show statistically significant changes. Integration of miRNA and proteome expression data with miRNA target prediction algorithms generates a potential regulatory network consisting of 26 miRNAs and 30 proteins linked by 71 possible functional associations. The miRNA-protein network analysis suggests that miRNAs are involved in promoting ovarian maturation by controlling expression of proteins related to methyl farnesoate synthesis, calcium signals, and energy metabolism. Experimental validation and temporal expression analysis indicate multiple miRNAs can act synergistically to regulate expression of Farnesoic acid O-methyltransferase and Calmodulin. Our findings provide new insights for elucidating the mechanisms underlying eyestalk ablation-induced ovarian maturation and could be useful for devising an alternative technique for manipulating reproduction in P. trituberculatus and other decapods.
Collapse
Affiliation(s)
- Xianliang Meng
- Key Laboratory of Aquatic Genomics, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Mengqian Zhang
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- College of Marine Life and Fisheries, Jiangsu Ocean University, Lianyungang, China
| | - Baoquan Gao
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jianjian Lv
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Jian Li
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
| | - Ping Liu
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- Key Laboratory of Sustainable Development of Marine Fisheries, Ministry of Agriculture and Rural Affairs, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, China
- *Correspondence: Ping Liu
| |
Collapse
|
33
|
Yang P, Li Y, He C, Yan J, Zhang W, Li X, Xiang F, Zuo Z, Li X, Zhu Y, Liu X, Zhao X. Phenotype and TMT-based quantitative proteomics analysis of Brassica napus reveals new insight into chlorophyll synthesis and chloroplast structure. J Proteomics 2019; 214:103621. [PMID: 31863931 DOI: 10.1016/j.jprot.2019.103621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 11/27/2019] [Accepted: 12/13/2019] [Indexed: 12/20/2022]
Abstract
The conversion of light energy into chemical energy in leaves is very important for plant growth and development. During this process, chlorophylls and their derivatives are indispensable as their fundamental role in the energy absorption and transduction activities. Chlorophyll variation mutants are important materials for studying chlorophyll metabolism, chloroplast biogenesis, photosynthesis and related physiological processes. Here, a chlorophyll-reduced mutant (crm1) was isolated from ethyl methanesulfonate (EMS) mutagenized Brassica napus. Compared to wild type, crm1 showed yellow leaves, reduced chlorophyll content, fewer thylakoid stacks and retarded growth. Quantitative mass spectrometry analysis with Tandem Mass Tag (TMT) isobaric labeling showed that totally 4575 proteins were identified from the chloroplast of Brassica napus leaves, and 466 of which displayed differential accumulations between wild type and crm1. The differential abundance proteins were found to be involved in chlorophyll metabolism, photosynthesis, phagosome and proteasome. Our results suggest that the decreased abundance of chlorophyll biosynthetic enzymes, proteins involved in photosynthesis might account for the reduced chlorophyll content, impaired thylakoid structure, and reduction of plant productivity. The increased abundance of proteins involved in phagosome and proteasome pathways might allow plants to adapt the proteome to environmental conditions to ensure growth and survival due to chlorophyll reduction. BIOLOGICAL SIGNIFICANCE: Photosynthesis, which consists of light and dark reactions, is fundamental to biomass production. Chloroplast is regarded as the main site for photosynthesis. During photosynthesis, the pigment chlorophyll is essential for light harvesting and energy transfer. This work provides new insights into protein expression patterns, and enables the identification of many attractive candidates for investigation of chlorophyll biosynthesis, chloroplast structure and photosynthesis in Brassica napus. These findings may be applied to improve the photosynthetic efficiency by genetic engineering in crops.
Collapse
Affiliation(s)
- Piao Yang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Yaxing Li
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Chongsheng He
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Jindong Yan
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Wei Zhang
- Hunan Agricultural University, College of Agronnomy, Changsha, Hunan 410128, China
| | - Xin Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Fujiang Xiang
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Zecheng Zuo
- Basic Forestry and Proteomics Research Center, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Xinmei Li
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China
| | - Yonghua Zhu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China
| | - Xuanming Liu
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China.
| | - Xiaoying Zhao
- College of Biology, Hunan Province Key Laboratory of Plant Functional Genomics and Developmental Regulation, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha 410082, China; Shenzhen Institute, Hunan University, Shenzhen 518057, China.
| |
Collapse
|
34
|
Cui Q, Li Y, He X, Li S, Zhong X, Liu B, Zhang D, Li Q. Physiological and iTRAQ based proteomics analyses reveal the mechanism of elevated CO 2 concentration alleviating drought stress in cucumber (Cucumis sativus L.) seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 143:142-153. [PMID: 31493674 DOI: 10.1016/j.plaphy.2019.08.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/26/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Carbon dioxide is one of the most important anthropogenic greenhouse gases. We previously confirmed that elevated [CO2] alleviated the negative consequences of drought stress to cucumber seedlings, but the physiological mechanism remains unknown. We investigated the morphological and physiological characteristics as well as iTRAQ-based proteomics analyses in this study under different combinations [CO2] (400 and (800 ± 20) μmol·mol-1) and water conditions (no, moderate and severe drought stress simulated by polyethylene glycol 6000). The results showed: (1) elevated [CO2] significantly increased plant height, stem diameter, leaf area and relative water content (RWC) under drought stress; (2) drought stress significantly increased J and K peaks of the chlorophyll a fluorescence transient, indicating the damage of photosynthetic electron transport chain, while elevated [CO2] decreased them especially under moderate drought condition; (3) iTRAQ-based proteomics analyses indicated that elevated [CO2] increased the abundance of psbJ and the PSI reaction center subunit VI-2 in seedlings exposed to moderate drought stress; (4) the abundance of uroporphyrinogen decarboxylase 2 and tetrapyrrole-binding protein decreased in response to elevated [CO2] under severe drought condition; (5) elevated [CO2] regulated the expression of chloroplast proteins such as those related to stress and defense response, redox homeostasis, metabolic pathways. In conclusion, elevated [CO2] enhanced the efficiency of photosynthetic electron transport, limited the absorption of excess light energy, enhanced the ability of antioxidant and osmotic adjustment, and alleviated the accumulation of toxic substances under drought stress. These findings provide new clues for understanding the molecular basis of elevated [CO2] alleviated plant drought stress.
Collapse
Affiliation(s)
- Qingqing Cui
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Bei'jing, 100081, China
| | - Yiman Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xinrui He
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Shuhao Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Xin Zhong
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China
| | - Binbin Liu
- State Key Laboratory of Crop Biology, Tai'an, 271018, China
| | - Dalong Zhang
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| | - Qingming Li
- College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, 271018, China; State Key Laboratory of Crop Biology, Tai'an, 271018, China.
| |
Collapse
|
35
|
Comparative Analysis of Proteomics and Transcriptomics during Fertility Transition in a Two-Line Hybrid Rice Line Wuxiang S. Int J Mol Sci 2019; 20:ijms20184542. [PMID: 31540278 PMCID: PMC6770272 DOI: 10.3390/ijms20184542] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Revised: 09/10/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022] Open
Abstract
The two-line hybrid rice is an important factor of a global crop, but its fertility transition mechanism is unclear. Here, a comparative proteomics and transcriptomics analysis was completed on the two-line hybrid rice line Wuxiang S (WXS) to explore its molecular mechanism and protein regulation during fertility transition. A total of 340 differentially abundant proteins (DAPs) were identified using iTRAQ between the pollen mother cell formation stage (P2) and the meiosis stage (P3). There were 3541 and 4247 differentially expressed genes (DEGs) in P2 and P3 between WXS (Sterile, S)-WXS(S) and WXS (Fertile, F)-WXS(F), respectively, of which 92 and 71 DEGs had corresponding DAPs. Among the DAPs and DEGs, 65 (SP2 vs. FP2) and 55 (SP3 vs. FP3) corresponding DEGs and DAPs (cor-DEGs-DAPs) showed the same expression trend, indicating the cor-DEGs-DAPs genes might play vital roles in WXS fertility transition. Further analysis indicated that cor-DEGs-DAPs proteins were related to energy metabolism-related proteins in anther development and were accompanied by the activation of the stress response pathway and modifications to the cell wall, which ultimately affected the fertility transition of the PTGMS rice line WXS.
Collapse
|
36
|
Lange S, Banerjee I, Carrion K, Serrano R, Habich L, Kameny R, Lengenfelder L, Dalton N, Meili R, Börgeson E, Peterson K, Ricci M, Lincoln J, Ghassemian M, Fineman J, del Álamo JC, Nigam V. miR-486 is modulated by stretch and increases ventricular growth. JCI Insight 2019; 4:125507. [PMID: 31513548 PMCID: PMC6795397 DOI: 10.1172/jci.insight.125507] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 09/04/2019] [Indexed: 12/24/2022] Open
Abstract
Perturbations in biomechanical stimuli during cardiac development contribute to congenital cardiac defects such as hypoplastic left heart syndrome (HLHS). This study sought to identify stretch-responsive pathways involved in cardiac development. miRNA-Seq identified miR-486 as being increased in cardiomyocytes exposed to cyclic stretch in vitro. The right ventricles (RVs) of patients with HLHS experienced increased stretch and had a trend toward higher miR-486 levels. Sheep RVs dilated from excessive pulmonary blood flow had 60% more miR-486 compared with control RVs. The left ventricles of newborn mice treated with miR-486 mimic were 16.9%-24.6% larger and displayed a 2.48-fold increase in cardiomyocyte proliferation. miR-486 treatment decreased FoxO1 and Smad signaling while increasing the protein levels of Stat1. Stat1 associated with Gata-4 and serum response factor (Srf), 2 key cardiac transcription factors with protein levels that increase in response to miR-486. This is the first report to our knowledge of a stretch-responsive miRNA that increases the growth of the ventricle in vivo.
Collapse
Affiliation(s)
- Stephan Lange
- Division of Cardiovascular Medicine, Department of Medicine, UCSD School of Medicine, San Diego, California, USA
- Institute of Medicine, Department of Molecular and Clinical Medicine, the Wallenberg Laboratory and Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Indroneal Banerjee
- Division of Cardiovascular Medicine, Department of Medicine, UCSD School of Medicine, San Diego, California, USA
| | - Katrina Carrion
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, San Diego, California, USA
| | - Ricardo Serrano
- Department of Mechanical and Aerospace Engineering, UCSD, San Diego, USA
| | - Louisa Habich
- Division of Cardiovascular Medicine, Department of Medicine, UCSD School of Medicine, San Diego, California, USA
| | - Rebecca Kameny
- Department of Pediatrics, UCSF School of Medicine, San Francisco, USA
| | - Luisa Lengenfelder
- Division of Cardiovascular Medicine, Department of Medicine, UCSD School of Medicine, San Diego, California, USA
| | - Nancy Dalton
- Division of Cardiovascular Medicine, Department of Medicine, UCSD School of Medicine, San Diego, California, USA
| | - Rudolph Meili
- Department of Mechanical and Aerospace Engineering, UCSD, San Diego, USA
| | - Emma Börgeson
- Institute of Medicine, Department of Molecular and Clinical Medicine, the Wallenberg Laboratory and Wallenberg Centre for Molecular and Translational Medicine, University of Gothenburg, Gothenburg, Sweden
| | - Kirk Peterson
- Division of Cardiovascular Medicine, Department of Medicine, UCSD School of Medicine, San Diego, California, USA
| | - Marco Ricci
- Division of Cardiothoracic Surgery and
- Division of Pediatric Surgery, Department of Surgery, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Joy Lincoln
- Center for Cardiovascular Research, Nationwide Children’s Hospital, Columbus, Ohio, USA
| | | | - Jeffery Fineman
- Department of Pediatrics, UCSF School of Medicine, San Francisco, USA
| | - Juan C. del Álamo
- Department of Mechanical and Aerospace Engineering, UCSD, San Diego, USA
| | - Vishal Nigam
- Division of Cardiology, Department of Pediatrics, UCSD School of Medicine, San Diego, California, USA
- Division of Cardiology, Department of Pediatrics, University of Washington School of Medicine, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
| |
Collapse
|
37
|
Yang GM, Yan K, Wang P, Zhang JL, Pan ZH, Pan Y. ITRAQ-Based Proteomics Analysis Reveals the Effect of Neoliensinine on KCl-Induced Vascular Smooth Muscle Contraction by Inhibiting Regulatory Light Chain Phosphorylation. Front Pharmacol 2019; 10:979. [PMID: 31572175 PMCID: PMC6749048 DOI: 10.3389/fphar.2019.00979] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/31/2019] [Indexed: 01/16/2023] Open
Abstract
Smooth muscle (SM) contraction is one of the important physiological functions of the human body, and SM abnormal contraction will induce many diseases. The phosphorylated regulatory light chains (p-RLC) play a decisive role in SM contraction, and dephosphorylation of p-RLC is an effective way to relax SM. Our previous study showed that the novel benzylisoquinoline alkaloid, neoliensinine (Neo), could relax microvascular SM contracted by KCl hyperpolarization. In this study, mesenteric capillaries isolated from 45 mice were divided into normal tension group (Control), 124 mM KCl induced contraction model group (Model), and KCl and Neo-treatment group (Drug). The dephosphorylation levels of RLC in the three groups were measured. Compared with the model group, the phosphorylation of RLC in the drug group was decreased dramatically as expected, suggesting that the relaxation effect of Neo was caused by downregulating p-RLC of microvessel SM. In order to fully understand its fundamental mechanism, our research focused on the identification of target proteins in mice with KCl-induced contractile mesenteric capillary. Isobaric tags for relative and absolute quantification (ITRAQ) tagging was carried out by nanospray liquid chromatography-tandem mass spectrometry. The results allowed the upregulation of 164 differential abundance proteins (DAPs) among the 3,474 protein abundance disturbances identified from the model/control samples. Further comparison showed that there were 16 DAP convergences associated with vascular SM contraction between the drug/model and the drug/control samples. Among them, two proteins with known function, PLCβ and RhoGEF12, were selected as target proteins of the relaxation effect of Neo. The two selective target DAPs were verified by Western blot at protein level. The results suggested that changes of the two proteins were consistent with that of the iTRAQ results. Our present work reveals that Neo relaxes vascular smooth muscle via inhibition of RLC phosphorylation, and PLCβ and RhoGEF12 may be potential biomarkers for evaluating the effects mediated by Neo.
Collapse
Affiliation(s)
- Guang-Ming Yang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ke Yan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Peng Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jun-Li Zhang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zi-Hao Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Yang Pan
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
38
|
Zeng L, Deng X, Zhong J, Yuan L, Tao X, Zhang S, Zeng Y, He G, Tan P, Tao Y. Prognostic value of biomarkers EpCAM and αB-crystallin associated with lymphatic metastasis in breast cancer by iTRAQ analysis. BMC Cancer 2019; 19:831. [PMID: 31443698 PMCID: PMC6708189 DOI: 10.1186/s12885-019-6016-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 08/05/2019] [Indexed: 02/08/2023] Open
Abstract
Background Metastasis is responsible for the majority of deaths in a variety of cancer types, including breast cancer. Although several factors or biomarkers have been identified to predict the outcome of patients with breast cancer, few studies have been conducted to identify metastasis-associated biomarkers. Methods Quantitative iTRAQ proteomics analysis was used to detect differentially expressed proteins between lymph node metastases and their paired primary tumor tissues from 23 patients with metastatic breast cancer. Immunohistochemistry was performed to validate the expression of two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins in 190 paraffin-embedded tissue samples. These four proteins were further analyzed for their correlation with clinicopathological features in 190 breast cancer patients. Results We identified 637 differentially regulated proteins (397 upregulated and 240 downregulated) in lymph node metastases compared with their paired primary tumor tissues. Data are available via ProteomeXchange with identifier PXD013931. Furthermore, bioinformatics analysis using GEO profiling confirmed the difference in the expression of EpCAM between metastases and primary tumors tissues. Two upregulated (EpCAM, FADD) and two downregulated (NDRG1, αB-crystallin) proteins were associated with the progression of breast cancer. Obviously, EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. We further identified αB-crystallin as an independent biomarker to predict lymph node metastasis and the outcome of breast cancer patients. Conclusion We have identified that EpCAM plays a role in the metastasis of breast cancer cells to the lymph node. αB-crystallin, a stress-related protein that has recently been shown to be important for cell invasion and survival, was identified as a potential prognostic biomarker to predict the outcome of breast cancer patients. Electronic supplementary material The online version of this article (10.1186/s12885-019-6016-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Liang Zeng
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiyun Deng
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China.
| | - Jingmin Zhong
- Department of Pathology, Union Hospital, Tongji Medical College, HuaZhong University of Science and Technology, WuHan, China
| | - Li Yuan
- Department of Pathology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaojun Tao
- Department of Pharmacy, Hunan Normal University School of Medicine, Changsha, Hunan, China
| | - Sai Zhang
- Department of Oncology, Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yong Zeng
- College of Life Science, Hunan Normal University, Changsha, Hunan, China
| | - Guangchun He
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Pingping Tan
- Department of Pathology, Hunan Cancer Hospital & The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Key Laboratory of Carcinogenesis, Ministry of Health, Cancer Research Institute, Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
39
|
Tang J, Wang Y, Li Y, Zhang Y, Zhang R, Xiao Z, Luo Y, Guo X, Tao L, Lou Y, Xue W, Zhu F. Recent Technological Advances in the Mass Spectrometry-based Nanomedicine Studies: An Insight from Nanoproteomics. Curr Pharm Des 2019; 25:1536-1553. [PMID: 31258068 DOI: 10.2174/1381612825666190618123306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 06/11/2019] [Indexed: 11/22/2022]
Abstract
Nanoscience becomes one of the most cutting-edge research directions in recent years since it is gradually matured from basic to applied science. Nanoparticles (NPs) and nanomaterials (NMs) play important roles in various aspects of biomedicine science, and their influences on the environment have caused a whole range of uncertainties which require extensive attention. Due to the quantitative and dynamic information provided for human proteome, mass spectrometry (MS)-based quantitative proteomic technique has been a powerful tool for nanomedicine study. In this article, recent trends of progress and development in the nanomedicine of proteomics were discussed from quantification techniques and publicly available resources or tools. First, a variety of popular protein quantification techniques including labeling and label-free strategies applied to nanomedicine studies are overviewed and systematically discussed. Then, numerous protein profiling tools for data processing and postbiological statistical analysis and publicly available data repositories for providing enrichment MS raw data information sources are also discussed.
Collapse
Affiliation(s)
- Jing Tang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Yunxia Wang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yi Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yang Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Runyuan Zhang
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Ziyu Xiao
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Yongchao Luo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Xueying Guo
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China
| | - Lin Tao
- Key Laboratory of Elemene Class Anti-cancer Chinese Medicine of Zhejiang Province, School of Medicine, Hangzhou Normal University, Hangzhou 310036, China
| | - Yan Lou
- Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, 79 QingChun Road, Hangzhou, Zhejiang 310000, China
| | - Weiwei Xue
- School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 401331, China.,School of Pharmaceutical Sciences and Collaborative Innovation Center for Brain Science, Chongqing University, Chongqing 401331, China
| |
Collapse
|
40
|
Zhou X, Shi F, Zhou L, Zhou Y, Liu Z, Ji R, Feng H. iTRAQ-based proteomic analysis of fertile and sterile flower buds from a genetic male sterile line ‘AB01’ in Chinese cabbage (Brassica campestris L. ssp. pekinensis). J Proteomics 2019; 204:103395. [DOI: 10.1016/j.jprot.2019.103395] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 05/06/2019] [Accepted: 05/24/2019] [Indexed: 02/06/2023]
|
41
|
Lee SH, Fujioka S, Takahashi R, Oe T. Angiotensin II-Induced Oxidative Stress in Human Endothelial Cells: Modification of Cellular Molecules through Lipid Peroxidation. Chem Res Toxicol 2019; 32:1412-1422. [PMID: 31144504 DOI: 10.1021/acs.chemrestox.9b00110] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Angiotensin (Ang) II is a major bioactive peptide of the renin/angiotensin system and is involved in various cardiovascular functions and diseases. Ang II type 1 (AT1) receptor mediates most of the physiological effects of Ang II. Previous studies have revealed that the lipid peroxidation products 4-oxo-2(E)-nonenal (ONE) and 4-hydroxy-2(E)-nonenal (HNE) readily modify the N-terminus and Asp1, Arg2, and His6 residues of Ang II, and these modifications alter the biological activities of Ang II. Ang II is known to stimulate the formation of reactive oxygen species (ROS) that mediate cardiovascular remodeling. Another major consequence of ROS-derived damage is lipid peroxidation, which generates genotoxic aldehydes such as ONE and HNE. This study demonstrated that Ang II induced lipid peroxidation-derived modifications of cellular molecules in EA.hy926 cells, a human vascular endothelial cell line. Ang P (ONE- and ROS-derived N-terminal pyruvamide Ang II) and [His6(HNE)]-Ang II were detected in the medium of EA.hy926 cells incubated with Ang II, and their concentrations increased dose-dependently upon the addition of ascorbic acid (AscA) and CuSO4. Cells were then subjected to metabolic labeling using SILFAC (stable isotope labeling by fatty acids in cell culture) with [13C18]-linoleic acid. Analysis of cellular phospholipids indicated over 90% labeling. [13C9]-Thiadiazabicyclo-ONE-glutathione adduct as well as Ang P and [His6([13C9]-HNE)]-Ang II was detected in the labeled cells upon treatment with Ang II and their concentrations increased in an Ang II dose-dependent manner. Incubation of the labeled cells with losartan, an AT1 receptor blocker, inhibited the formation of modified Ang IIs in a dose-dependent manner. These results indicate that Ang II induces lipid peroxidation and modification of various cellular molecules and these reactions are mediated by the activation of AT1 receptor. Therefore, lipid peroxidation could be one mechanism by which Ang II contributes to cardiovascular dysfunction.
Collapse
Affiliation(s)
- Seon Hwa Lee
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aobayama, Aoba-ku , Sendai , Miyagi 980-8578 , Japan
| | - Shuhei Fujioka
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aobayama, Aoba-ku , Sendai , Miyagi 980-8578 , Japan
| | - Ryo Takahashi
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aobayama, Aoba-ku , Sendai , Miyagi 980-8578 , Japan
| | - Tomoyuki Oe
- Department of Bio-analytical Chemistry, Graduate School of Pharmaceutical Sciences , Tohoku University , 6-3 Aobayama, Aoba-ku , Sendai , Miyagi 980-8578 , Japan
| |
Collapse
|
42
|
Tan Y, Zhang J, Sun Y, Tong Z, Peng C, Chang L, Guo A, Wang X. Comparative Proteomics of Phytase-transgenic Maize Seeds Indicates Environmental Influence is More Important than that of Gene Insertion. Sci Rep 2019; 9:8219. [PMID: 31160654 PMCID: PMC6547748 DOI: 10.1038/s41598-019-44748-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 04/23/2019] [Indexed: 12/30/2022] Open
Abstract
Proteomic differences were compared between phytase-transgenic (PT) maize seeds and nontransgenic (NT) maize seeds through two-dimensional electrophoresis (2-DE) with mass spectrometry (MS). When maize was grown under field conditions, 30 differentially accumulated proteins (DAPs) were successfully identified in PT seeds (PT/NT). Clusters of Orthologous Groups (COG) functional classification of these proteins showed that the largest group was associated with posttranslational modifications. To investigate the effects of environmental factors, we further compared the seed protein profiles of the same maize planted in a greenhouse or under field conditions. There were 76 DAPs between the greenhouse- and field-grown NT maize seeds and 77 DAPs between the greenhouse- and field-grown PT maize seeds However, under the same planting conditions, there were only 43 DAPs (planted in the greenhouse) or 37 DAPs (planted in the field) between PT and NT maize seeds. The results revealed that DAPs caused by environmental factors were more common than those caused by the insertion of exogenous genes, indicating that the environment has much more important effects on the seed protein profiles. Our maize seed proteomics results also indicated that the occurrence of unintended effects is not specific to genetically modified crops (GMCs); instead, such effects often occur in traditionally bred plants. Our data may be beneficial for biosafety assessments of GMCs at the protein profile level in the future.
Collapse
Affiliation(s)
- Yanhua Tan
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Jiaming Zhang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yong Sun
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.,College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China
| | - Zheng Tong
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Cunzhi Peng
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Lili Chang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Anping Guo
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China.
| | - Xuchu Wang
- Institute of Tropical Biosciences and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China. .,College of Life Sciences, Key Laboratory for Ecology of Tropical Islands, Ministry of Education, Hainan Normal University, Haikou, Hainan, 571158, China.
| |
Collapse
|
43
|
Solarski M, Williams D, Mehrabian M, Wang H, Wille H, Schmitt-Ulms G. The human brain somatostatin interactome: SST binds selectively to P-type family ATPases. PLoS One 2019; 14:e0217392. [PMID: 31136617 PMCID: PMC6538167 DOI: 10.1371/journal.pone.0217392] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 05/11/2019] [Indexed: 11/18/2022] Open
Abstract
Somatostatin (SST) is a cyclic peptide that is understood to inhibit the release of hormones and neurotransmitters from a variety of cells by binding to one of five canonical G protein-coupled SST receptors (SSTR1 to SSTR5). Recently, SST was also observed to interact with the amyloid beta (Aβ) peptide and affect its aggregation kinetics, raising the possibility that it may bind other brain proteins. Here we report on an SST interactome analysis that made use of human brain extracts as biological source material and incorporated advanced mass spectrometry workflows for the relative quantitation of SST binding proteins. The analysis revealed SST to predominantly bind several members of the P-type family of ATPases. Subsequent validation experiments confirmed an interaction between SST and the sodium-potassium pump (Na+/K+-ATPase) and identified a tryptophan residue within SST as critical for binding. Functional analyses in three different cell lines indicated that SST might negatively modulate the K+ uptake rate of the Na+/K+-ATPase.
Collapse
Affiliation(s)
- Michael Solarski
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
| | - Mohadeseh Mehrabian
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
| | - Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Alberta, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Krembil Discovery Centre, Toronto, Ontario, Canada
- Department of Laboratory Medicine & Pathobiology, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| |
Collapse
|
44
|
Wu X, Zhang ZX, Chen XY, Xu YL, Yin N, Yang J, Zhu DM, Li DC, Zhou J. A Panel of Three Biomarkers Identified by iTRAQ for the Early Diagnosis of Pancreatic Cancer. Proteomics Clin Appl 2019; 13:e1800195. [PMID: 31025496 DOI: 10.1002/prca.201800195] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 04/21/2019] [Indexed: 11/10/2022]
Abstract
PURPOSE Due to a lack of early diagnostic markers, pancreatic cancer (PC) remains a lethal disease. Proteomic approaches are now being applied to identify novel PC biomarkers. EXPERIMENTAL DESIGN In this study, iTRAQ and LC-MS/MS are used to perform comparative analyses of serum from PC patients and healthy controls (HC), to identify specific serum biomarkers for PC. Serum levels of candidate proteins are determined using ELISA. RESULTS Among 869 proteins identified, 55 are potential biomarkers; Vitamin K-dependent protein Z (PROZ) and tumor necrosis factor receptor superfamily member 6b (TNFRSF6B) are selected for further analysis. Serum levels of PROZ and TNFRSF6B are significantly higher in PC patients than in HC or pancreatic benign controls (BC) (p < 0.01). The AUCs range from 0.816 to 0.971 for PROZ, TNFRSF6B, and carbohydrate antigen 19-9, either individually or in combination, in PC versus HC+BC, and from 0.711 to 0.932 in PC Stage I versus HC+BC. CONCLUSIONS AND CLINICAL RELEVANCE It is demonstrated that PROZ and TNFRSF6B are novel serum biomarkers for detecting early stage PC, and for distinguishing PC from pancreatic benign tumor and healthy individuals. Additional large cohort studies are needed to develop PROZ and TNFRSF6B as clinical PC biomarkers.
Collapse
Affiliation(s)
- Xing Wu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Zi-Xiang Zhang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.,Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Xing-Yu Chen
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Ya-Ling Xu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Ni Yin
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Yang
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.,Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Dong-Ming Zhu
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.,Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - De-Chun Li
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.,Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| | - Jian Zhou
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China.,Pancreatic Disease Research Centre, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, 215006, China
| |
Collapse
|
45
|
Quantitative Proteomic Analysis Reveals Unfolded-Protein Response Involved in Severe Fever with Thrombocytopenia Syndrome Virus Infection. J Virol 2019; 93:JVI.00308-19. [PMID: 30842332 PMCID: PMC6498065 DOI: 10.1128/jvi.00308-19] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 02/27/2019] [Indexed: 12/23/2022] Open
Abstract
Severe fever with thrombocytopenia syndrome (SFTS) is an emerging, highly pathogenic, infectious disease caused by infection with a newly discovered tick-borne phlebovirus, SFTS virus (SFTSV). Limited information on the molecular mechanism of SFTSV infection and pathogenesis impedes the development of effective vaccines and drugs for SFTS prevention and treatment. In this study, an isobaric tag for relative and absolute quantification (iTRAQ)-based quantitative proteomic analysis of SFTSV-infected HEK 293 cells was performed to explore dynamic host cellular protein responses toward SFTSV infection. A total of 433 of 5,606 host proteins involved in different biological processes were differentially regulated by SFTSV infection. The proteomic results highlighted a potential role of endoplasmic reticular stress-triggered unfolded-protein response (UPR) in SFTSV infection. Further functional studies confirmed that all three major branches of the UPR, including the PKR-like endoplasmic reticulum kinase (PERK), the activating transcription factor-6 (ATF6), and the inositol-requiring protein-1 (IRE1)/X-box-binding protein 1 (XBP1) pathways, were activated by SFTSV. However, only the former two pathways play a crucial role in SFTSV infection. Furthermore, expression of SFTSV glycoprotein (GP) alone was sufficient to stimulate the UPR, whereas suppression of PERK and ATF6 notably decreased GP expression. Interestingly, two other newly discovered phleboviruses, Heartland virus and Guertu virus, also stimulated the UPR, suggesting a common mechanism shared by these genetically related phleboviruses. This study provides a global view to our knowledge on how host cells respond to SFTSV infection and highlights that host cell UPR plays an important role in phlebovirus infection.IMPORTANCE Severe fever with thrombocytopenia syndrome virus (SFTSV) is an emerging tick-borne bunyavirus that causes severe fever with thrombocytopenia syndrome in humans, with a mortality rate reaching up to 30% in some outbreaks. There are currently no U.S. Food and Drug Administration-approved vaccines or specific antivirals available against SFTSV. To comprehensively understand the molecular interactions occurring between SFTSV and the host cell, we exploit quantitative proteomic approach to investigate the dynamic host cellular responses to SFTSV infection. The results highlight multiple biological processes being regulated by SFTSV infection. Among these, we focused on exploration of the mechanism of how SFTSV infection stimulates the host cell's unfolded-protein response (UPR) and identified the UPR as a common feature shared by SFTSV-related new emerging phleboviruses. This study, for the first time to our knowledge, provides a global map for host cellular responses to SFTSV infection and highlighted potential host targets for further research.
Collapse
|
46
|
Wang YH, Que F, Wang GL, Hao JN, Li T, Xu ZS, Xiong AS. iTRAQ-Based Quantitative Proteomics and Transcriptomics Provide Insights Into the Importance of Expansins During Root Development in Carrot. Front Genet 2019; 10:247. [PMID: 30984239 PMCID: PMC6449468 DOI: 10.3389/fgene.2019.00247] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 03/05/2019] [Indexed: 11/13/2022] Open
Abstract
Carrot is an important root vegetable crop with a variety of nutrients. As the main product of carrots, the growth and development of fleshy roots directly determine the yield and quality of carrots. However, molecular mechanism underlying the carrot root formation and expansion is still limited. In our study, isobaric tags for relative and absolute quantification (iTRAQ) was utilized to explore the differentially expressed proteins (DEPs) during different developmental stages of carrot roots. Overall, 2,845 proteins were detected, of which 118 were significantly expressed in all three stages. DEPs that participated in several growth metabolisms were identified, including energy metabolism, defense metabolism, cell growth and shape regulation. Among them, two expansin proteins were obtained. A total of 30 expansin genes were identified based on the carrot genome database. Structure analysis showed that carrot expansin gene family was relatively conserved. Based on the expression analysis, we found that the expression profile of expansins genes was up-regulated during the vigorous growing period of carrot root. Furthermore, there was a consistent relationship between the expression patterns of mRNA and protein. The results indicated that expansin proteins might play important roles during root development in carrot. Our work provided useful information for understanding molecular mechanism of carrot root development.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Feng Que
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Guang-Long Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China.,School of Life Sciences and Food Engineering, Huaiyin Institute of Technology, Huai'an, China
| | - Jian-Nan Hao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
47
|
Transcriptomic-Proteomic Correlation in the Predation-Evoked Venom of the Cone Snail, Conus imperialis. Mar Drugs 2019; 17:md17030177. [PMID: 30893765 PMCID: PMC6471084 DOI: 10.3390/md17030177] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 12/23/2022] Open
Abstract
Individual variation in animal venom has been linked to geographical location, feeding habit, season, size, and gender. Uniquely, cone snails possess the remarkable ability to change venom composition in response to predatory or defensive stimuli. To date, correlations between the venom gland transcriptome and proteome within and between individual cone snails have not been reported. In this study, we use 454 pyrosequencing and mass spectrometry to decipher the transcriptomes and proteomes of the venom gland and corresponding predation-evoked venom of two specimens of Conus imperialis. Transcriptomic analyses revealed 17 conotoxin gene superfamilies common to both animals, including 5 novel superfamilies and two novel cysteine frameworks. While highly expressed transcripts were common to both specimens, variation of moderately and weakly expressed precursor sequences was surprisingly diverse, with one specimen expressing two unique gene superfamilies and consistently producing more paralogs within each conotoxin gene superfamily. Using a quantitative labelling method, conotoxin variability was compared quantitatively, with highly expressed peptides showing a strong correlation between transcription and translation, whereas peptides expressed at lower levels showed a poor correlation. These results suggest that major transcripts are subject to stabilizing selection, while minor transcripts are subject to diversifying selection.
Collapse
|
48
|
Du C, Weng Y, Lou J, Zeng G, Liu X, Jin H, Lin S, Tang L. Isobaric tags for relative and absolute quantitation‑based proteomics reveals potential novel biomarkers for the early diagnosis of acute myocardial infarction within 3 h. Int J Mol Med 2019; 43:1991-2004. [PMID: 30896787 PMCID: PMC6443345 DOI: 10.3892/ijmm.2019.4137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Acute myocardial infarction (AMI) is one of the most common and life-threatening cardiovascular diseases. However, the ability to diagnose AMI within 3 h is currently lacking. The present study aimed to identify the differentially expressed proteins of AMI within 3 h and to investigate novel biomarkers using isobaric tags for relative and absolute quantitation (ITRAQ) technology. A total of 30 beagle dogs were used for establishing the MI models successfully by injecting thrombin powder and a polyethylene microsphere suspension. Serum samples were collected prior to (0 h) and following MI (1, 2 and 3 h). ITRAQ-coupled liquid chromatography-mass spectrometry (LC-MS) technology was used to identify the differentially expressed proteins. The bioinformatics analysis selected several key proteins in the initiation of MI. Further analysis was performed using STRING software. Finally, western blot analysis was used to evaluate the results obtained from ITRAQ. In total, 28 proteins were upregulated and 23 were downregulated in the 1 h/0 h group, 28 proteins were upregulated and 26 were downregulated in the 2 h/0 h group, and 24 proteins were upregulated and 19 were downregulated in the 3 h/0 h group. The Gene Ontology (GO) annotation and functional enrichment analysis identified 19 key proteins. Protein-protein interactions (PPIs) were investigated using the STRING database. GO enrichment analysis revealed that a number of key proteins, including ATP synthase F1 subunit β (ATP5B), cytochrome c oxidase subunit 2 and cytochrome c, were components of the electron transport chain and were involved in energy metabolism. The western blot analysis demonstrated that the expression of ATP5B decreased significantly at all three time points (P<0.01), which was consistent with the ITRAQ results, whereas the expression of fibrinogen γ chain increased at 2 and 3 h (P<0.01) and the expression of integrator complex subunit 4 increased at all three time points (P<0.01), which differed from the ITRAQ results. According to the proteomics of the beagle dog MI model, ATP5B may serve as the potential biomarkers of AMI. Mitochondrial dysfunction and disruption of the electron transport chain may be critical indicators of early MI within 3 h. These finding may provide a novel direction for the diagnosis of AMI.
Collapse
Affiliation(s)
- Changqing Du
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Yingzheng Weng
- Department of Medicine, School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Jiangjie Lou
- Department of Medicine, School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Guangzhong Zeng
- Department of Cardiology, Pingxiang City People's Hospital, Pingxiang, Jiangxi 337055, P.R. China
| | - Xiaowei Liu
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Hongfeng Jin
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| | - Senna Lin
- Department of Medicine, The Second College of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310053, P.R. China
| | - Lijiang Tang
- Department of Cardiology, Zhejiang Hospital, Hangzhou, Zhejiang 310013, P.R. China
| |
Collapse
|
49
|
Yu C, Wu Q, Sun C, Tang M, Sun J, Zhan Y. The Phosphoproteomic Response of Okra ( Abelmoschus esculentus L.) Seedlings to Salt Stress. Int J Mol Sci 2019; 20:ijms20061262. [PMID: 30871161 PMCID: PMC6470868 DOI: 10.3390/ijms20061262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Revised: 03/05/2019] [Accepted: 03/09/2019] [Indexed: 01/30/2023] Open
Abstract
Soil salinization is a major environmental stresses that seriously threatens land use efficiency and crop yields worldwide. Although the overall response of plants to NaCl has been well studied, the contribution of protein phosphorylation to the detoxification and tolerance of NaCl in okra (Abelmoschus esculentus L.) seedlings is unclear. The molecular bases of okra seedlings’ responses to 300 mM NaCl stress are discussed in this study. Using a combination of affinity enrichment, tandem mass tag (TMT) labeling and high-performance liquid chromatography–tandem mass spectrometry analysis, a large-scale phosphoproteome analysis was performed in okra. A total of 4341 phosphorylation sites were identified on 2550 proteins, of which 3453 sites of 2268 proteins provided quantitative information. We found that 91 sites were upregulated and 307 sites were downregulated in the NaCl/control comparison group. Subsequently, we performed a systematic bioinformatics analysis including gene ontology annotation, domain annotation, subcellular localization, and Kyoto Encyclopedia of Genes and Genomes pathway annotation. The latter revealed that the differentially expressed proteins were most strongly associated with ‘photosynthesis antenna proteins’ and ‘RNA degradation’. These differentially expressed proteins probably play important roles in salt stress responses in okra. The results should help to increase our understanding of the molecular mechanisms of plant post-translational modifications in response to salt stress.
Collapse
Affiliation(s)
- Chenliang Yu
- Institute of Agricultural Equipment, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Qinqfei Wu
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Chendong Sun
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou 311300, China.
| | - Mengling Tang
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, School of Agriculture and Food Science, Zhejiang A&F University, Linan, Hangzhou 311300, China.
| | - Junwei Sun
- College of modern science and technology, China Jiliang University, Hangzhou 310018, China.
| | - Yihua Zhan
- State Key Laboratory of Plant Physiology and Biochemistry, College of Life Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
50
|
Tan M, Liang Y, Huang W, Cheng Y, Jiang Z, He G, Gao Y, Pan M. [Galectin-3 induces differentiation of rat bone marrow mesenchymal stem cells into hepatocyte-like cells]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2019; 38:1076-1082. [PMID: 30377104 DOI: 10.12122/j.issn.1673-4254.2018.09.09] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To investigate the effect of galectin-3 in inducing the differentiation of rat bone marrow mesenchymal stem cells (BMSCs) into hepatocyte- like cells and explore the involvement of the signaling pathways in the induced cell differentiation. METHODS The third passage of cultured rat femoral BMSCs were treated with 0.5 μg/mL galectin-3, 20 ng/mL hepatocyte growth factor (HGF) or both to induce their differentiation, with untreated rat BMSCs and hepatocytes as controls. At 7, 14, 21 and 28 days of induction, the cells were examined for morphological changes followed by glycogen staining, quantitative real-time PCR and Western blotting. Gene microarray technique was used to examine the mRNA expression profile of the BMSCs induced with galectin-3. The BMSCs were also induced with galectin-3 in combination with XMU-MP-1, a Hippo signaling pathway inhibitor, after which Western blotting was performed to detect the expressions of YAP, P-YAP, ALB, AFP and CK-18 in the cells. RESULTS The cells isolated from the femoral bone marrow of SD rats showed a consistent surface marker phenotype with the BMSCs. Induction with galectin-3, HGF, or both all resulted in gradual morphological changes of the BMSCs into hepatocyte-like cells, and the cells with a combined induction for 28 days showed the highest morphological similarity with hepatocytes. The cells induced with galectin-3, HGF, or their combination for 28 days all showed increased positivity rate of glycogen staining, which was the highest in the cells with combined induction (P < 0.05) without significant difference between the cells induced with galectin-3 and HGF alone (P > 0.05). Induction with galectin-3 and HGF alone both increased the expressions of AFP, ALB and CK-18 mRNAs in the cells, and their expression levels were similar between the cells at 28 days (P > 0.05). Galectin-3 and HGF did not show an interactive effect on the mRNA expressions of AFP (F=0.236, P=0.640) or ALB (F=50.639, P=0.000), but had a synergistic effect on CK-18 mRNA expression (F=50.639, P=0.000). The protein expressions of AFP, ALB and CK18 were also increased in the induced cells but not detected in the cells without induction. Gene microarray results revealed 27 up-regulated genes and 62 down-regulated genes in galectin-3-induced BMSCs involving TGF-β, PI3K-Akt and Hippo signal pathways. Induction with galectin-3 and galectin-3+XMU-MP-1 increased YAP expression in the cells, and galectin-3+XMU-MP-1 was more efficient to induce the differentiation of the BMSCs. CONCLUSIONS Galectin-3 can induce the differentiation of rat BMSCs into hepatocyte-like cells, and the combination with HGF increases the efficiency of induced differentiation of the cells. TGF-β, PI3K-Akt and Hippo pathways are involved in the induced differentiation of the BMSCs, and inhibiting Hippo pathway can improve the induction efficiency.
Collapse
Affiliation(s)
- Minghui Tan
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China.,First Department of General Surgery, Nanhai People's Hospital, Foshan 528000, China
| | - Yuling Liang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Wenbin Huang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yuan Cheng
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Zesheng Jiang
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Guolin He
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Yi Gao
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Mingxin Pan
- Second Department of Hepatobiliary Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| |
Collapse
|