1
|
Thangavelu RM, da Silva WL, Zuverza-Mena N, Dimkpa CO, White JC. Nano-sized metal oxide fertilizers for sustainable agriculture: balancing benefits, risks, and risk management strategies. NANOSCALE 2024; 16:19998-20026. [PMID: 39417765 DOI: 10.1039/d4nr01354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
This critical review comprehensively analyses nano-sized metal oxide fertilizers (NMOFs) and their transformative potential in sustainable agriculture. It examines the characteristics and benefits of different NMOFs, such as zinc, copper, iron, magnesium, manganese, nickel, calcium, titanium, cerium, and silicon oxide nanoparticles. NMOFs offer unique advantages such as increased reactivity, controlled-release mechanisms, and targeted nutrient delivery to address micronutrient deficiencies, enhance crop resilience, and improve nutrient efficiency. The review underscores the essential role of micronutrients in plant metabolism, crop growth, and ecosystem health, highlighting their importance alongside macronutrients. NMOFs present significant benefits over traditional fertilizers, including enhanced plant uptake, reduced nutrient losses, and decreased environmental impact. However, the review also critically examines potential risks associated with NMOFs, such as nanoparticle toxicity and environmental persistence. A comparative analysis of different metal types used in nanofertilizers is provided, detailing their primary advantages and potential drawbacks. The review emphasizes the need for cautious management of NMOFs to ensure their safe and effective use in agriculture. It calls for comprehensive research to understand the long-term effects of NMOFs on plant health, soil ecosystems, and human health. By integrating insights from material science, plant biology, and environmental science, this review offers a holistic perspective on the potential of NMOFs to address global food security challenges amid resource constraints and climate change. The study concludes by outlining future research directions and advocating for interdisciplinary collaboration to advance sustainable agricultural practices and optimize the benefits of NMOFs.
Collapse
Affiliation(s)
| | | | | | | | - Jason C White
- Connecticut Agricultural Experiment Station, New Haven, CT 06511, USA.
| |
Collapse
|
2
|
Lowry GV, Giraldo JP, Steinmetz NF, Avellan A, Demirer GS, Ristroph KD, Wang GJ, Hendren CO, Alabi CA, Caparco A, da Silva W, González-Gamboa I, Grieger KD, Jeon SJ, Khodakovskaya MV, Kohay H, Kumar V, Muthuramalingam R, Poffenbarger H, Santra S, Tilton RD, White JC. Towards realizing nano-enabled precision delivery in plants. NATURE NANOTECHNOLOGY 2024; 19:1255-1269. [PMID: 38844663 DOI: 10.1038/s41565-024-01667-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 03/27/2024] [Indexed: 09/18/2024]
Abstract
Nanocarriers (NCs) that can precisely deliver active agents, nutrients and genetic materials into plants will make crop agriculture more resilient to climate change and sustainable. As a research field, nano-agriculture is still developing, with significant scientific and societal barriers to overcome. In this Review, we argue that lessons can be learned from mammalian nanomedicine. In particular, it may be possible to enhance efficiency and efficacy by improving our understanding of how NC properties affect their interactions with plant surfaces and biomolecules, and their ability to carry and deliver cargo to specific locations. New tools are required to rapidly assess NC-plant interactions and to explore and verify the range of viable targeting approaches in plants. Elucidating these interactions can lead to the creation of computer-generated in silico models (digital twins) to predict the impact of different NC and plant properties, biological responses, and environmental conditions on the efficiency and efficacy of nanotechnology approaches. Finally, we highlight the need for nano-agriculture researchers and social scientists to converge in order to develop sustainable, safe and socially acceptable NCs.
Collapse
Affiliation(s)
- Gregory V Lowry
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA.
| | - Juan Pablo Giraldo
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA.
| | - Nicole F Steinmetz
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
- Department of Bioengineering, University of California San Diego, San Diego, CA, USA
- Department of Radiology, University of California San Diego, San Diego, CA, USA
- Center for Nano-ImmunoEngineering, University of California San Diego, San Diego, CA, USA
- Shu and K.C. Chien and Peter Farrell Collaboratory, University of California San Diego, San Diego, CA, USA
- Center for Engineering in Cancer, Institute of Engineering in Medicine, University of California San Diego, San Diego, CA, USA
- Moores Cancer Center, University of California, University of California San Diego, San Diego, CA, USA
- Institute for Materials Discovery and Design, University of California San Diego, San Diego, CA, USA
| | | | - Gozde S Demirer
- Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kurt D Ristroph
- Agricultural and Biological Engineering, Purdue University, West Lafayette, IN, USA
| | - Gerald J Wang
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Christine O Hendren
- Geological and Environmental Sciences, Appalachian State University, Boone, NC, USA
| | | | - Adam Caparco
- Department of NanoEngineering, University of California San Diego, San Diego, CA, USA
| | | | | | - Khara D Grieger
- Applied Ecology, North Carolina State University, Raleigh, NC, USA
| | - Su-Ji Jeon
- Botany and Plant Sciences, University of California, Riverside, Riverside, CA, USA
| | | | - Hagay Kohay
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Vivek Kumar
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | | | - Swadeshmukul Santra
- Department of Chemistry and Burnett School of Biomedical Sciences, University of Central Florida, Orlando, FL, USA
| | - Robert D Tilton
- Chemical Engineering and Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | - Jason C White
- The Connecticut Agricultural Research Station, New Haven, CT, USA
| |
Collapse
|
3
|
Kumar R, Iswanto ABB, Kumar D, Shuwei W, Oh K, Moon J, Son GH, Oh ES, Vu MH, Lee J, Lee KW, Oh MH, Kwon C, Chung WS, Kim JY, Kim SH. C-Type LECTIN receptor-like kinase 1 and ACTIN DEPOLYMERIZING FACTOR 3 are key components of plasmodesmata callose modulation. PLANT, CELL & ENVIRONMENT 2024. [PMID: 38780063 DOI: 10.1111/pce.14957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 04/02/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024]
Abstract
Plasmodesmata (PDs) are intercellular organelles carrying multiple membranous nanochannels that allow the trafficking of cellular signalling molecules. The channel regulation of PDs occurs dynamically and is required in various developmental and physiological processes. It is well known that callose is a critical component in regulating PD permeability or symplasmic connectivity, but the understanding of the signalling pathways and mechanisms of its regulation is limited. Here, we used the reverse genetic approach to investigate the role of C-type lectin receptor-like kinase 1 (CLRLK1) in the aspect of PD callose-modulated symplasmic continuity. Here, we found that loss-of-function mutations in CLRLK1 resulted in excessive PD callose deposits and reduced symplasmic continuity, resulting in an accelerated gravitropic response. The protein interactome study also found that CLRLK1 interacted with actin depolymerizing factor 3 (ADF3) in vitro and in plants. Moreover, mutations in ADF3 result in elevated PD callose deposits and faster gravitropic response. Our results indicate that CLRLK1 and ADF3 negatively regulate PD callose accumulation, contributing to fine-tuning symplasmic opening apertures. Overall, our studies identified two key components involved in the deposits of PD callose and provided new insights into how symplasmic connectivity is maintained by the control of PD callose homoeostasis.
Collapse
Affiliation(s)
- Ritesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Arya B B Iswanto
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Dhinesh Kumar
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Wu Shuwei
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyujin Oh
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jiyun Moon
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Geon H Son
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Minh H Vu
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Jinsu Lee
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
| | - Keun W Lee
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon, Republic of Korea
| | - Chian Kwon
- Department of Molecular Biology, Dankook University, Cheonan, Korea
| | - Woo S Chung
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Sang H Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, Republic of Korea
- Division of Life Science, Gyeongsang National University, Jinju, Republic of Korea
| |
Collapse
|
4
|
Tsipinana S, Husseiny S, Alayande KA, Raslan M, Amoo S, Adeleke R. Contribution of endophytes towards improving plant bioactive metabolites: a rescue option against red-taping of medicinal plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1248319. [PMID: 37771494 PMCID: PMC10522919 DOI: 10.3389/fpls.2023.1248319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 08/11/2023] [Indexed: 09/30/2023]
Abstract
Medicinal plants remain a valuable source for natural drug bioprospecting owing to their multi-target spectrum. However, their use as raw materials for novel drug synthesis has been greatly limited by unsustainable harvesting leading to decimation of their wild populations coupled with inherent low concentrations of constituent secondary metabolites per unit mass. Thus, adding value to the medicinal plants research dynamics calls for adequate attention. In light of this, medicinal plants harbour endophytes which are believed to be contributing towards the host plant survival and bioactive metabolites through series of physiological interference. Stimulating secondary metabolite production in medicinal plants by using endophytes as plant growth regulators has been demonstrated to be one of the most effective methods for increasing metabolite syntheses. Use of endophytes as plant growth promotors could help to ensure continuous supply of medicinal plants, and mitigate issues with fear of extinction. Endophytes minimize heavy metal toxicity in medicinal plants. It has been hypothesized that when medicinal plants are exposed to harsh conditions, associated endophytes are the primary signalling channels that induce defensive reactions. Endophytes go through different biochemical processes which lead to activation of defence mechanisms in the host plants. Thus, through signal transduction pathways, endophytic microorganisms influence genes involved in the generation of secondary metabolites by plant cells. Additionally, elucidating the role of gene clusters in production of secondary metabolites could expose factors associated with low secondary metabolites by medicinal plants. Promising endophyte strains can be manipulated for enhanced production of metabolites, hence, better probability of novel bioactive metabolites through strain improvement, mutagenesis, co-cultivation, and media adjustment.
Collapse
Affiliation(s)
- Sinawo Tsipinana
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Samah Husseiny
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Kazeem A. Alayande
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Mai Raslan
- Department of Biotechnology and Life Sciences, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni-Suef, Egypt
| | - Stephen Amoo
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
- Agricultural Research Council – Vegetables, Industrial and Medicinal Plants, Roodeplaat, Pretoria, South Africa
| | - Rasheed Adeleke
- Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
5
|
Yan J, Su P, Meng X, Liu P. Phylogeny of the plant receptor-like kinase (RLK) gene family and expression analysis of wheat RLK genes in response to biotic and abiotic stresses. BMC Genomics 2023; 24:224. [PMID: 37127571 PMCID: PMC10152718 DOI: 10.1186/s12864-023-09303-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 04/10/2023] [Indexed: 05/03/2023] Open
Abstract
BACKGROUND The receptor-like kinase (RLK) gene families in plants contains a large number of members. They are membrane proteins with an extracellular receptor domain and participate in biotic and abiotic stress responses. RESULTS In this study, we identified RLKs in 15 representative plant genomes, including wheat, and classified them into 64 subfamilies by using four types of phylogenetic trees and HMM models. Conserved exon‒intron structures with conserved exon phases in the kinase domain were found in many RLK subfamilies from Physcomitrella patens to Triticum aestivum. Domain distributions of RLKs were also diagrammed. Collinearity events and tandem gene clusters suggested that polyploidization and tandem duplication events contributed to the member expansions of T. aestivum RLKs. Global expression pattern analysis was performed by using public transcriptome data. These analyses were involved in T. aestivum, Aegilops tauschii and Brachypodium distachyon RLKs under biotic and abiotic stresses. We also selected 9 RLKs to validate the transcriptome prediction by using qRT‒PCR under drought treatment and with Fusarium graminearum infection. The expression trends of these 9 wheat RLKs from public transcriptome data were consistent with the results of qRT‒PCR, indicating that they might be stress response genes under drought or F. graminearum treatments. CONCLUSION In this study, we identified, classified, evolved, and expressed RLKs in wheat and related plants. Thus, our results will provide insights into the evolutionary history and molecular mechanisms of wheat RLKs.
Collapse
Affiliation(s)
- Jun Yan
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| | - Peisen Su
- College of Agronomy, Liaocheng University, Liaocheng, 252059, People's Republic of China.
| | - Xianyong Meng
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - Pingzeng Liu
- Key Laboratory of Huang-Huai-Hai Smart Agricultural Technology of the Ministry of Agriculture and Rural Affairs, College of Information Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China.
| |
Collapse
|
6
|
Xiao Z, Fan N, Zhu W, Qian HL, Yan XP, Wang Z, Rasmann S. Silicon Nanodots Increase Plant Resistance against Herbivores by Simultaneously Activating Physical and Chemical Defenses. ACS NANO 2023; 17:3107-3118. [PMID: 36705522 DOI: 10.1021/acsnano.2c12070] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nanosilicon applications have been shown to increase plant defenses against both abiotic and biotic stresses. Silicon quantum nanodots (Si NDs), a form of nanosilicon, possess excellent biological and physiochemical properties (e.g., minimal size, high water solubility, stability, and biocompatibility), potentially making them more efficient in regulating plant responses to stress than other forms of silicon. However, to date, we still lack mechanistic evidence for how soil-applied Si NDs alter the regulation of plant physical and chemical defenses against insect herbivores. To address this gap, we compared the effect of fluorescent amine-functionalized Si NDs (5 nm) and the conventional fertilizer sodium silicate on maize (Zea mays L.) physical and chemical defenses against the oriental armyworm (Mythimna separata, Walker) caterpillars. We found that 50 mg/kg Si NDs and sodium silicate additions inhibited the growth of caterpillars the most (35.7% and 22.8%, respectively) as compared to other application doses (0, 10, and 150 mg/kg). Both Si NDs and silicate addition activated biosynthesis genes responsible for chemical (benzoxazinoids) and physical (lignin) defense production. Moreover, Si NDs upregulated the gene expression of antioxidant enzymes (SOD, CAT, and POD) and promoted the antioxidant metabolism (flavonoids) in maize leaves under M. separata attack. Finally, we show that, under field conditions, Si ND addition increased maize cob weight (28.7%), cob grain weight (40.8%), and 100-grain weight (26.5%) as compared to the control, and more so than the conventional silicon fertilizer. Altogether, our findings highlight the potential for Si NDs to be used as an effective and ecofriendly crop protection strategy in agroecosystems.
Collapse
Affiliation(s)
- Zhenggao Xiao
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ningke Fan
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Wenqing Zhu
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Hai-Long Qian
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xiu-Ping Yan
- Institute of Analytical Food Safety, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Sergio Rasmann
- Institute of Biology, University of Neuchâtel, Neuchatel 2000, Switzerland
| |
Collapse
|
7
|
Tör M, Wood T, Webb A, Göl D, McDowell JM. Recent developments in plant-downy mildew interactions. Semin Cell Dev Biol 2023; 148-149:42-50. [PMID: 36670035 DOI: 10.1016/j.semcdb.2023.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023]
Abstract
Downy mildews are obligate oomycete pathogens that attack a wide range of plants and can cause significant economic impacts on commercial crops and ornamental plants. Traditionally, downy mildew disease control relied on an integrated strategies, that incorporate cultural practices, deployment of resistant cultivars, crop rotation, application of contact and systemic pesticides, and biopesticides. Recent advances in genomics provided data that significantly advanced understanding of downy mildew evolution, taxonomy and classification. In addition, downy mildew genomics also revealed that these obligate oomycetes have reduced numbers of virulence factor genes in comparison to hemibiotrophic and necrotrophic oomycetes. However, downy mildews do deploy significant arrays of virulence proteins, including so-called RXLR proteins that promote virulence or are recognized as avirulence factors. Pathogenomics are being applied to downy mildew population studies to determine the genetic diversity within the downy mildew populations and manage disease by selection of appropriate varieties and management strategies. Genome editing technologies have been used to manipulate host disease susceptibility genes in different plants including grapevine and sweet basil and thereby provide new soucres of resistance genes against downy mildews. Previously, it has proved difficult to transform and manipulate downy mildews because of their obligate lifestyle. However, recent exploitation of RNA interference machinery through Host-Induced Gene Silencing (HIGS) and Spray-Induced Gene Silencing (SIGS) indicate that functional genomics in downy mildews is now possible. Altogether, these breakthrough technologies and attendant fundamental understanding will advance our ability to mitigate downy mildew diseases.
Collapse
Affiliation(s)
- Mahmut Tör
- Department of Biology, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK.
| | | | | | - Deniz Göl
- Department of Biology, School of Science and the Environment, University of Worcester, Henwick Grove, Worcester WR2 6AJ, UK
| | - John M McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA 24061-0329, USA
| |
Collapse
|
8
|
Feng X, Meng Q, Zeng J, Yu Q, Xu D, Dai X, Ge L, Ma W, Liu W. Genome-wide identification of sucrose non-fermenting-1-related protein kinase genes in maize and their responses to abiotic stresses. FRONTIERS IN PLANT SCIENCE 2022; 13:1087839. [PMID: 36618673 PMCID: PMC9815513 DOI: 10.3389/fpls.2022.1087839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Introduction Protein kinases play an important role in plants in response to environmental changes through signal transduction. As a large family of protein kinases, sucrose non-fermenting-1 (SNF1)-related kinases (SnRKs) were found and functionally verified in many plants. Nevertheless, little is known about the SnRK family of Zea mays. Methods Evolutionary relationships, chromosome locations, gene structures, conserved motifs, and cis-elements in promoter regions were systematically analyzed. Besides, tissue-specific and stress-induced expression patterns of ZmSnRKs were determined. Finally, functional regulatory networks between ZmSnRKs and other proteins or miRNAs were constructed. Results and Discussion In total, 60 SnRK genes located on 10 chromosomes were discovered in maize. ZmSnRKs were classified into three subfamilies (ZmSnRK1, ZmSnRK2, and ZmSnRK3), consisting of 4, 14, and 42 genes, respectively. Gene structure analysis showed that 33 of the 42 ZmSnRK3 genes contained only one exon. Most ZmSnRK genes contained at least one ABRE, MBS, and LTR cis-element and a few ZmSnRK genes had AuxRR-core, P-box, MBSI, and SARE ciselements in their promoter regions. The Ka:Ks ratio of 22 paralogous ZmSnRK gene pairs revealed that the ZmSnRK gene family had experienced a purifying selection. Meanwhile, we analyzed the expression profiles of ZmSnRKs, and they exhibited significant differences in various tissues and abiotic stresses. In addition, A total of eight ZmPP2Cs, which can interact with ZmSnRK proteins, and 46 miRNAs, which can target 24 ZmSnRKs, were identified. Generally, these results provide valuable information for further function verification of ZmSnRKs, and improve our understanding of the role of ZmSnRKs in the climate resilience of maize.
Collapse
Affiliation(s)
- Xue Feng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Quan Meng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Jianbin Zeng
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Qian Yu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dengan Xu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xuehuan Dai
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Lei Ge
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Wujun Ma
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- State Agricultural Biotechnology Centre, College of Science, Health, Engineering and Education, Murdoch University, Perth, WA, Australia
| | - Wenxing Liu
- College of Agronomy, Qingdao Agricultural University, Qingdao, China
- The Key Laboratory of the Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong, China
| |
Collapse
|
9
|
Midzi J, Jeffery DW, Baumann U, Rogiers S, Tyerman SD, Pagay V. Stress-Induced Volatile Emissions and Signalling in Inter-Plant Communication. PLANTS (BASEL, SWITZERLAND) 2022; 11:2566. [PMID: 36235439 PMCID: PMC9573647 DOI: 10.3390/plants11192566] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/12/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
The sessile plant has developed mechanisms to survive the "rough and tumble" of its natural surroundings, aided by its evolved innate immune system. Precise perception and rapid response to stress stimuli confer a fitness edge to the plant against its competitors, guaranteeing greater chances of survival and productivity. Plants can "eavesdrop" on volatile chemical cues from their stressed neighbours and have adapted to use these airborne signals to prepare for impending danger without having to experience the actual stress themselves. The role of volatile organic compounds (VOCs) in plant-plant communication has gained significant attention over the past decade, particularly with regard to the potential of VOCs to prime non-stressed plants for more robust defence responses to future stress challenges. The ecological relevance of such interactions under various environmental stresses has been much debated, and there is a nascent understanding of the mechanisms involved. This review discusses the significance of VOC-mediated inter-plant interactions under both biotic and abiotic stresses and highlights the potential to manipulate outcomes in agricultural systems for sustainable crop protection via enhanced defence. The need to integrate physiological, biochemical, and molecular approaches in understanding the underlying mechanisms and signalling pathways involved in volatile signalling is emphasised.
Collapse
Affiliation(s)
- Joanah Midzi
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - David W. Jeffery
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Ute Baumann
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
| | - Suzy Rogiers
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
- New South Wales Department of Primary Industries, Wollongbar, NSW 2477, Australia
| | - Stephen D. Tyerman
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| | - Vinay Pagay
- School of Agriculture, Food and Wine, The University of Adelaide, Glen Osmond, SA 5064, Australia
- Australian Research Council Training Centre for Innovative Wine Production, Urrbrae, SA 5064, Australia
| |
Collapse
|
10
|
Bilir Ö, Göl D, Hong Y, McDowell JM, Tör M. Small RNA-based plant protection against diseases. FRONTIERS IN PLANT SCIENCE 2022; 13:951097. [PMID: 36061762 PMCID: PMC9434005 DOI: 10.3389/fpls.2022.951097] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
Plant diseases cause significant decreases in yield and quality of crops and consequently pose a very substantial threat to food security. In the continuous search for environmentally friendly crop protection, exploitation of RNA interferance machinery is showing promising results. It is well established that small RNAs (sRNAs) including microRNA (miRNA) and small interfering RNA (siRNA) are involved in the regulation of gene expression via both transcriptional and post-transcriptional RNA silencing. sRNAs from host plants can enter into pathogen cells during invasion and silence pathogen genes. This process has been exploited through Host-Induced Gene Silencing (HIGS), in which plant transgenes that produce sRNAs are engineered to silence pest and pathogen genes. Similarly, exogenously applied sRNAs can enter pest and pathogen cells, either directly or via the hosts, and silence target genes. This process has been exploited in Spray-Induced Gene Silencing (SIGS). Here, we focus on the role of sRNAs and review how they have recently been used against various plant pathogens through HIGS or SIGS-based methods and discuss advantages and drawbacks of these approaches.
Collapse
Affiliation(s)
- Özlem Bilir
- Department of Biotechnology, Trakya Agricultural Research Institute, Edirne, Turkey
| | - Deniz Göl
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - Yiguo Hong
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - John M. McDowell
- School of Plant and Environmental Sciences, Virginia Tech, Blacksburg, VA, United States
| | - Mahmut Tör
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
11
|
Leibman-Markus M, Schuster S, Vasquez-Soto B, Bar M, Avni A, Pizarro L. Dynamin-Related Proteins Enhance Tomato Immunity by Mediating Pattern Recognition Receptor Trafficking. MEMBRANES 2022; 12:membranes12080760. [PMID: 36005675 PMCID: PMC9415932 DOI: 10.3390/membranes12080760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 07/24/2022] [Accepted: 07/28/2022] [Indexed: 02/05/2023]
Abstract
Pattern recognition receptor (PRR) trafficking to the plasma membrane and endocytosis plays a crucial role in pattern triggered immunity (PTI). Dynamin-related proteins (DRPs) participate in endocytosis and recycling. In Arabidopsis, DRP1 and DRP2 are involved in plasma membrane scission during endocytosis. They are required for the PRR FLS2 endocytosis induction and PTI activation after elicitation with flg22, the MAMP recognized by FLS2. In tomato, SlDRP2A regulates the PRR LeEIX2 endocytosis and PTI activation in response to EIX, the MAMP recognized by LeEIX2. However, it is unknown if other DRPs participate in these processes. Taking advantage of bioinformatics tools, we selected SlDRP2B among the eight DRP2 tomato orthologues to study its functionality in trafficking and plant immunity. Through transient expression of SlDRP1B and its dominant-negative mutant on Nicotiana benthamiana and Nicotiana tabacum, we analyzed SlDRP1B function. We observed that SlDRP1B is physically associated with the LeEIX2 and modifies LeEIX2 trafficking, increasing its presence in endosomes. An enhancement of EIX-elicitated defense responses accompanies the role of SlDRP1B on LeEIX endocytosis. In addition, SlDRP1B overexpression enhanced flg22-elicited defense response. With these results, we conclude that SlDRP1B regulates PRR trafficking and, therefore, plant immunity, similarly to the SlDRP2A role.
Collapse
Affiliation(s)
- Meirav Leibman-Markus
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
| | - Beatriz Vasquez-Soto
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Adi Avni
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
| | - Lorena Pizarro
- School of Plant Sciences and Food Security, Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel; (M.L.-M.); (S.S.); (A.A.)
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, ARO, Volcani Institute, Rishon LeZion 7505101, Israel;
- Institute of Agri-Food, Animal and Environmental Sciences, Universidad de O’Higgins, Rancagua 2820000, Chile;
- Correspondence: ; Tel.: +56-233-286-050
| |
Collapse
|
12
|
Cortaga CQ, Latina RA, Habunal RR, Lantican DV. Identification and characterization of genome-wide resistance gene analogs (RGAs) of durian (Durio zibethinus L.). JOURNAL OF GENETIC ENGINEERING AND BIOTECHNOLOGY 2022; 20:29. [PMID: 35157163 PMCID: PMC8844316 DOI: 10.1186/s43141-022-00313-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 02/04/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND Durian (Durio zibethinus L.) is a tropical fruit crop which is popular in Southeast Asia but recently gaining popularity in other parts of the world. In this study, we analyzed the resistance gene analogs (RGAs) of durian through mining of the currently available reference genome of its 'Musang King' cultivar (PRJNA400310). RESULTS A total of 2586 RGAs were identified in the durian genome consisting of 47 nucleotide binding site proteins (NBS), 158 NBS-leucine rich repeat proteins (NL), 400 coiled-coil NBS-LRR (CNL), 72 toll/interleukin-1 receptor NBS-LRR (TNL), 54 coiled-coil NBS (CN), 10 toll/interleukin-1 receptor NBS (TN), 19 toll/interleukin-1 receptor with unknown domain (TX), 246 receptor-like proteins (RLP), 1,377 receptor-like kinases (RLK), 185 TM-CC, and 18 other NBS-containing proteins with other domains. These RGAs were functionally annotated and characterized via gene ontology (GO) analysis. Among the RGAs with the highest copies in durian genome include the putative disease resistance RPP13-like protein 1, disease resistance protein At4g27190, disease resistance protein RPS6, Probable disease resistance protein At4g27220, and putative disease resistance protein RGA3, while 35 RGAs were found to be novel. Phylogenetic analyses revealed that the genome-wide RGAs were broadly clustered into four major clades based on their domain classification. CONCLUSION To our knowledge, this is the most comprehensive analysis of durian RGAs which provides a valuable resource for genetic, agronomic, and other biological research of this important tropical fruit crop.
Collapse
Affiliation(s)
- Cris Q Cortaga
- Institute of Plant Breeding (IPB), College of Agriculture, University of the Philippines Los Baños, 4031, College, Laguna, Philippines
| | - Romnick A Latina
- Institute of Weed Science, Entomology, and Plant Pathology (IWEP), College of Agriculture and Food Science, University of the Philippines Los Baños, 4031, College, Laguna, Philippines
| | - Rosteo R Habunal
- Institute of Plant Breeding (IPB), College of Agriculture, University of the Philippines Los Baños, 4031, College, Laguna, Philippines
| | - Darlon V Lantican
- Institute of Plant Breeding (IPB), College of Agriculture, University of the Philippines Los Baños, 4031, College, Laguna, Philippines.
| |
Collapse
|
13
|
Zhang F, Huang J, Guo H, Yang C, Li Y, Shen S, Zhan C, Qu L, Liu X, Wang S, Chen W, Luo J. OsRLCK160 contributes to flavonoid accumulation and UV-B tolerance by regulating OsbZIP48 in rice. SCIENCE CHINA. LIFE SCIENCES 2022; 65:1380-1394. [PMID: 35079956 DOI: 10.1007/s11427-021-2036-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 12/12/2021] [Indexed: 12/23/2022]
Abstract
Plants produce specialized metabolites to adapt to the ever-changing environments. Flavonoids are antioxidants essential for growth, development, and breeding with increased stress resistance in crops. However, the mechanism of the involvement of flavonoids in ultraviolet-B (UV-B) stress in rice (Oryza sativa) is largely unknown. In this study, we cloned and functionally identified a receptor-like kinase (OsRLCK160) and a bZIP transcription factor (OsbZIP48) positively regulating flavonoid accumulation through metabolite-based genome-wide association study of the flavonoid content in rice. Meanwhile, OsRLCK160 interacted with and phosphorylated OsbZIP48 to regulate the flavonoid accumulation and participate in UV-B tolerance in rice. Our study indicates the importance of applying OsRLCK160 and OsbZIP48 to advance the fundamental understanding of stable rice production and breed UV-B-tolerant rice varieties, which may contribute to breeding high-yield rice varieties.
Collapse
Affiliation(s)
- Feng Zhang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiacheng Huang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Hao Guo
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Chenkun Yang
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Yufei Li
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Shuangqian Shen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuansong Zhan
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Lianghuan Qu
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China
| | - Xianqing Liu
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Shouchuang Wang
- College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China
| | - Wei Chen
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China.,College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jie Luo
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan, 430070, China. .,College of Tropical Crops, Hainan University, Haikou, Hainan, 570288, China.
| |
Collapse
|
14
|
Gupta GD, Bansal R, Mistry H, Pandey B, Mukherjee PK. Structure-function analysis reveals Trichoderma virens Tsp1 to be a novel fungal effector protein modulating plant defence. Int J Biol Macromol 2021; 191:267-276. [PMID: 34547313 DOI: 10.1016/j.ijbiomac.2021.09.085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/03/2021] [Accepted: 09/13/2021] [Indexed: 11/17/2022]
Abstract
Trichoderma virens colonizes roots and develops a symbiotic relationship with plants where the fungal partner derives nutrients from plants and offers defence, in return. Tsp1, a small secreted cysteine-rich protein, was earlier found to be upregulated in co-cultivation of T. virens with maize roots. Tsp1 is well conserved in Ascomycota division of fungi, but none of its homologs have been studied yet. We have expressed and purified recombinant Tsp1, and resolved its structure to 1.25 Å resolutions, from two crystal forms, using Se-SAD methods. The Tsp1 adopts a β barrel fold and forms dimer in structure as well as in solution form. DALI based structure analysis revealed the structure similarity with two known fungal effector proteins: Alt a1 and PevD1. Structure and evolutionary analysis suggested that Tsp1 belongs to a novel effector protein family. Tsp1 acted as an inducer of salicylic acid mediated susceptibility in plants, rendering maize plants more susceptible to a necrotrophic pathogen Cochliobolus heterostrophus, as observed using plant defence assay and RT-qPCR analysis.
Collapse
Affiliation(s)
- Gagan D Gupta
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India.
| | - Ravindra Bansal
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Hiral Mistry
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India; Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India
| | - Bharati Pandey
- Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Prasun K Mukherjee
- Homi Bhabha National Institute, Training School Complex, Anushaktinagar, Mumbai, India; Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India.
| |
Collapse
|
15
|
Kahveci E, Devran Z, Özkaynak E, Hong Y, Studholme DJ, Tör M. Genomic-Assisted Marker Development Suitable for CsCvy-1 Selection in Cucumber Breeding. FRONTIERS IN PLANT SCIENCE 2021; 12:691576. [PMID: 34489994 PMCID: PMC8416629 DOI: 10.3389/fpls.2021.691576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 06/22/2021] [Indexed: 06/02/2023]
Abstract
Cucumber is a widely grown vegetable crop plant and a host to many different plant pathogens. Cucumber vein yellowing virus (CVYV) causes economic losses on cucumber crops in Mediterranean countries and in some part of India such as West Bengal and in African countries such as Sudan. CVYV is an RNA potyvirus transmitted mechanically and by whitefly (Bemisia tabaci) in a semipersistent manner. Control of this virus is heavily dependent on the management of the insect vector and breeding virus-resistant lines. DNA markers have been used widely in conventional plant breeding programs via marker-assisted selection (MAS). However, very few resistance sources against CVYV in cucumber exist, and also the lack of tightly linked molecular markers to these sources restricts the rapid generation of resistant lines. In this work, we used genomics coupled with the bulked segregant analysis method and generated the MAS-friendly Kompetitive allele specific PCR (KASP) markers suitable for CsCvy-1 selection in cucumber breeding using a segregating F2 mapping population and commercial plant lines. Variant analysis was performed to generate single-nucleotide polymorphism (SNP)-based markers for mapping the population and genotyping the commercial lines. We fine-mapped the region by generating new markers down to 101 kb with eight genes. We provided SNP data for this interval, which could be useful for breeding programs and cloning the candidate genes.
Collapse
Affiliation(s)
- Erdem Kahveci
- M.Y. Genetik Tarim Tek. Lab. Tic. Ltd. Sti., Antalya, Turkey
| | - Zübeyir Devran
- Department of Plant Protection, Faculty of Agriculture, University of Akdeniz, Antalya, Turkey
| | | | - Yiguo Hong
- Research Centre for Plant RNA Signaling, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| | - David J. Studholme
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Mahmut Tör
- Department of Biology, School of Science and the Environment, University of Worcester, Worcester, United Kingdom
| |
Collapse
|
16
|
Plant-Growth Endophytic Bacteria Improve Nutrient Use Efficiency and Modulate Foliar N-Metabolites in Sugarcane Seedling. Microorganisms 2021; 9:microorganisms9030479. [PMID: 33669086 PMCID: PMC7996552 DOI: 10.3390/microorganisms9030479] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/03/2022] Open
Abstract
Beneficial plant–microbe interactions lead to physiological and biochemical changes that may result in plant-growth promotion. This study evaluated the effect of the interaction between sugarcane and endophytic bacterial strains on plant physiological and biochemical responses under two levels of nitrogen (N) fertilization. Six strains of endophytic bacteria, previously selected as plant growth-promoting bacteria (PGPB), were used to inoculate sugarcane mini stalks, with and without N fertilization. After 45 days, biomass production; shoot nutrient concentrations; foliar polyamine and free amino acid profiles; activities of nitrate reductase and glutamine synthase; and the relative transcript levels of the GS1, GS2, and SHR5 genes in sugarcane leaves were determined. All six endophytic strains promoted sugarcane growth, increasing shoot and root biomass, plant nutritional status, and the use efficiency of most nutrients. The inoculation-induced changes at the biochemical level altered the foliar free amino acid and polyamine profiles, mainly regarding the relative concentrations of citrulline, putrescine, glycine, alanine, glutamate, glutamine, proline, and aspartate. The transcription of GS1, GS2, and SHR5 was higher in the N fertilized seedlings, and almost not altered by endophytic bacterial strains. The endophytic strains promoted sugarcane seedlings growth mainly by improving nutrient efficiency. This improvement could not be explained by their ability to induce the production of amino acid and polyamine composts, or GS1, GS2, and SHR5, showing that complex interactions may be associated with enhancement of the sugarcane seedlings’ performance by endophytic bacteria. The strains demonstrated biotechnological potential for sugarcane seedling production.
Collapse
|
17
|
Restrepo-Montoya D, McClean PE, Osorno JM. Orthology and synteny analysis of receptor-like kinases "RLK" and receptor-like proteins "RLP" in legumes. BMC Genomics 2021; 22:113. [PMID: 33568053 PMCID: PMC7874474 DOI: 10.1186/s12864-021-07384-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 01/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Legume species are an important plant model because of their protein-rich physiology. The adaptability and productivity of legumes are limited by major biotic and abiotic stresses. Responses to these stresses directly involve plasma membrane receptor proteins known as receptor-like kinases and receptor-like proteins. Evaluating the homology relations among RLK and RLP for seven legume species, and exploring their presence among synteny blocks allow an increased understanding of evolutionary relations, physical position, and chromosomal distribution in related species and their shared roles in stress responses. RESULTS Typically, a high proportion of RLK and RLP legume proteins belong to orthologous clusters, which is confirmed in this study, where between 66 to 90% of the RLKs and RLPs per legume species were classified in orthologous clusters. One-third of the evaluated syntenic blocks had shared RLK/RLP genes among both legumes and non-legumes. Among the legumes, between 75 and 98% of the RLK/RLP were present in syntenic blocks. The distribution of chromosomal segments between Phaseolus vulgaris and Vigna unguiculata, two species that diverged ~ 8 mya, were highly similar. Among the RLK/RLP synteny clusters, seven experimentally validated resistance RLK/RLP genes were identified in syntenic blocks. The RLK resistant genes FLS2, BIR2, ERECTA, IOS1, and AtSERK1 from Arabidopsis and SLSERK1 from Solanum lycopersicum were present in different pairwise syntenic blocks among the legume species. Meanwhile, only the LYM1- RLP resistant gene from Arabidopsis shared a syntenic blocks with Glycine max. CONCLUSIONS The orthology analysis of the RLK and RLP suggests a dynamic evolution in the legume family, with between 66 to 85% of RLK and 83 to 88% of RLP belonging to orthologous clusters among the species evaluated. In fact, for the 10-species comparison, a lower number of singleton proteins were reported among RLP compared to RLK, suggesting that RLP positions are more physically conserved compared to RLK. The identification of RLK and RLP genes among the synteny blocks in legumes revealed multiple highly conserved syntenic blocks on multiple chromosomes. Additionally, the analysis suggests that P. vulgaris is an appropriate anchor species for comparative genomics among legumes.
Collapse
Affiliation(s)
- Daniel Restrepo-Montoya
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58108-6050, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Phillip E McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58108-6050, USA.
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, 58108-6050, USA.
| |
Collapse
|
18
|
Keyster M, Niekerk LA, Basson G, Carelse M, Bakare O, Ludidi N, Klein A, Mekuto L, Gokul A. Decoding Heavy Metal Stress Signalling in Plants: Towards Improved Food Security and Safety. PLANTS (BASEL, SWITZERLAND) 2020; 9:E1781. [PMID: 33339160 PMCID: PMC7765602 DOI: 10.3390/plants9121781] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 11/20/2020] [Accepted: 11/30/2020] [Indexed: 12/12/2022]
Abstract
The mining of heavy metals from the environment leads to an increase in soil pollution, leading to the uptake of heavy metals into plant tissue. The build-up of toxic metals in plant cells often leads to cellular damage and senescence. Therefore, it is of utmost importance to produce plants with improved tolerance to heavy metals for food security, as well as to limit heavy metal uptake for improved food safety purposes. To achieve this goal, our understanding of the signaling mechanisms which regulate toxic heavy metal uptake and tolerance in plants requires extensive improvement. In this review, we summarize recent literature and data on heavy metal toxicity (oral reference doses) and the impact of the metals on food safety and food security. Furthermore, we discuss some of the key events (reception, transduction, and response) in the heavy metal signaling cascades in the cell wall, plasma membrane, and cytoplasm. Our future perspectives provide an outlook of the exciting advances that will shape the plant heavy metal signaling field in the near future.
Collapse
Affiliation(s)
- Marshall Keyster
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville 7530, South Africa;
| | - Lee-Ann Niekerk
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Gerhard Basson
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Mogamat Carelse
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Olalekan Bakare
- Environmental Biotechnology Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa; (L.-A.N.); (M.C.); (O.B.)
| | - Ndiko Ludidi
- DST-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville 7530, South Africa;
- Plant Biotechnology Research Group, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Ashwil Klein
- Plant Omics Laboratory, Department of Biotechnology, University of the Western Cape, Bellville 7535, South Africa;
| | - Lukhanyo Mekuto
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa;
| | - Arun Gokul
- Department of Chemical Engineering, University of Johannesburg, Johannesburg 2028, South Africa;
| |
Collapse
|
19
|
Bentham AR, De la Concepcion JC, Mukhi N, Zdrzałek R, Draeger M, Gorenkin D, Hughes RK, Banfield MJ. A molecular roadmap to the plant immune system. J Biol Chem 2020; 295:14916-14935. [PMID: 32816993 PMCID: PMC7606695 DOI: 10.1074/jbc.rev120.010852] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Plant diseases caused by pathogens and pests are a constant threat to global food security. Direct crop losses and the measures used to control disease (e.g. application of pesticides) have significant agricultural, economic, and societal impacts. Therefore, it is essential that we understand the molecular mechanisms of the plant immune system, a system that allows plants to resist attack from a wide variety of organisms ranging from viruses to insects. Here, we provide a roadmap to plant immunity, with a focus on cell-surface and intracellular immune receptors. We describe how these receptors perceive signatures of pathogens and pests and initiate immune pathways. We merge existing concepts with new insights gained from recent breakthroughs on the structure and function of plant immune receptors, which have generated a shift in our understanding of cell-surface and intracellular immunity and the interplay between the two. Finally, we use our current understanding of plant immunity as context to discuss the potential of engineering the plant immune system with the aim of bolstering plant defenses against disease.
Collapse
Affiliation(s)
- Adam R Bentham
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | | | - Nitika Mukhi
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Rafał Zdrzałek
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Markus Draeger
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Danylo Gorenkin
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Richard K Hughes
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom
| | - Mark J Banfield
- Department of Biological Chemistry, John Innes Centre, Norwich, United Kingdom.
| |
Collapse
|
20
|
Cadavid IC, da Fonseca GC, Margis R. HDAC inhibitor affects soybean miRNA482bd expression under salt and osmotic stress. JOURNAL OF PLANT PHYSIOLOGY 2020; 253:153261. [PMID: 32947244 DOI: 10.1016/j.jplph.2020.153261] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Revised: 08/07/2020] [Accepted: 08/07/2020] [Indexed: 06/11/2023]
Abstract
MicroRNAs (miRNAs) are small non-coding molecules that modulate gene expression through targeting mRNA by specific-sequence cleavage, translation inhibition, or transcriptional regulation. miRNAs are key molecules in regulatory networks in abiotic stresses such as salt stress and water deficit in plants. Throughout the world, soybean is a critical crop, the production of which is affected by environmental stress conditions. In this study, RNA-Seq libraries from leaves of soybean under salt treatment were analyzed. 17 miRNAs and 31 putative target genes were identified with inverse differential expression patterns, indicating miRNA-target interaction. The differential expression of six miRNAs, including miR482bd-5p, and their potential targets, were confirmed by RT-qPCR. The miR482bd-5p expression was repressed, while its potential HEC1 and BAK1 targets were increased. Polyethylene glycol experiment was used to simulate drought stress, and miR482bd-5p, HEC1, and BAK1 presented a similar expression pattern, as found in salt stress. Histone modifications occur in response to abiotic stress, where histone deacetylases (HDACs) can lead to gene repression and silencing. The miR482bd-5p epigenetic regulation by histone deacetylation was evaluated by using the SAHA-HDAC inhibitor. The miR482bd-5p was up-regulated, and HEC1 was down-regulated under SAHA-salt treatment. It suggests an epigenetic regulation, where the miRNA gene is repressed by HDAC under salt stress, reducing its transcription, with an associated increase in the HEC1 target expression.
Collapse
Affiliation(s)
- Isabel Cristina Cadavid
- Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil
| | | | - Rogerio Margis
- Programa de Pós-graduação em Biologia Celular e Molecular (PPGBCM), Centro de Biotecnologia, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil; Departamento de Biofisica, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
21
|
Restrepo-Montoya D, Brueggeman R, McClean PE, Osorno JM. Computational identification of receptor-like kinases "RLK" and receptor-like proteins "RLP" in legumes. BMC Genomics 2020; 21:459. [PMID: 32620079 PMCID: PMC7333395 DOI: 10.1186/s12864-020-06844-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Background In plants, the plasma membrane is enclosed by the cell wall and anchors RLK and RLP proteins, which play a fundamental role in perception of developmental and environmental cues and are crucial in plant development and immunity. These plasma membrane receptors belong to large gene/protein families that are not easily classified computationally. This detailed analysis of these plasma membrane proteins brings a new source of information to the legume genetic, physiology and breeding research communities. Results A computational approach to identify and classify RLK and RLP proteins is presented. The strategy was evaluated using experimentally-validated RLK and RLP proteins and was determined to have a sensitivity of over 0.85, a specificity of 1.00, and a Matthews correlation coefficient of 0.91. The computational approach can be used to develop a detailed catalog of plasma membrane receptors (by type and domains) in several legume/crop species. The exclusive domains identified in legumes for RLKs are WaaY, APH Pkinase_C, LRR_2, and EGF, and for RLP are L-lectin LPRY and PAN_4. The RLK-nonRD and RLCK subclasses are also discovered by the methodology. In both classes, less than 20% of the total RLK predicted for each species belong to this class. Among the 10-species evaluated ~ 40% of the proteins in the kinome are RLKs. The exclusive legume domain combinations identified are B-Lectin/PR5K domains in G. max, M. truncatula, V. angularis, and V. unguiculata and a three-domain combination B-lectin/S-locus/WAK in C. cajan, M. truncatula, P. vulgaris, V. angularis. and V. unguiculata. Conclusions The analysis suggests that about 2% of the proteins of each genome belong to the RLK family and less than 1% belong to RLP family. Domain diversity combinations are greater for RLKs compared with the RLP proteins and LRR domains, and the dual domain combination LRR/Malectin were the most frequent domain for both groups of plasma membrane receptors among legume and non-legume species. Legumes exclusively show Pkinase extracellular domains, and atypical domain combinations in RLK and RLP compared with the non-legumes evaluated. The computational logic approach is statistically well supported and can be used with the proteomes of other plant species.
Collapse
Affiliation(s)
- Daniel Restrepo-Montoya
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58105-6050, USA. .,Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| | - Robert Brueggeman
- Department of Plant Pathology, North Dakota State University, PO Box 6050, Dept. 7660, Fargo, ND, 58108, USA
| | - Phillip E McClean
- Genomics and Bioinformatics Program, North Dakota State University, Fargo, ND, 58105-6050, USA. .,Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| | - Juan M Osorno
- Department of Plant Sciences, North Dakota State University, Fargo, ND, USA.
| |
Collapse
|
22
|
Emami H, Kumar A, Kempken F. Transcriptomic analysis of poco1, a mitochondrial pentatricopeptide repeat protein mutant in Arabidopsis thaliana. BMC PLANT BIOLOGY 2020; 20:209. [PMID: 32397956 PMCID: PMC7216612 DOI: 10.1186/s12870-020-02418-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 04/29/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Flowering is a crucial stage during plant development. Plants may respond to unfavorable conditions by accelerating reproductive processes like flowering. In a recent study, we showed that PRECOCIOUS1 (POCO1) is a mitochondrial pentatricopeptide repeat (PPR) protein involved in flowering time and abscisic acid (ABA) signaling in Arabidopsis thaliana. Here, we use RNA-seq data to investigate global gene expression alteration in the poco1 mutant. RESULTS RNA-seq analysis was performed during different developmental stages for wild-type and poco1 plants. The most profound differences in gene expression were found when wild-type and poco1 plants of the same developmental stage were compared. Coverage analysis confirmed the T-DNA insertion in POCO1, which was concomitant with truncated transcripts. Many biological processes were found to be enriched. Several flowering-related genes such as FLOWERING LOCUS T (FT), which may be involved in the early-flowering phenotype of poco1, were differentially regulated. Numerous ABA-associated genes, including the core components of ABA signaling such as ABA receptors, protein phosphatases, protein kinases, and ABA-responsive element (ABRE) binding proteins (AREBs)/ABRE-binding factors (ABFs) as well as important genes for stomatal function, were mostly down-regulated in poco1. Drought and oxidative stress-related genes, including ABA-induced stress genes, were differentially regulated. RNA-seq analysis also uncovered differentially regulated genes encoding various classes of transcription factors and genes involved in cellular signaling. Furthermore, the expression of stress-associated nuclear genes encoding mitochondrial proteins (NGEMPs) was found to be altered in poco1. Redox-related genes were affected, suggesting that the redox state in poco1 might be altered. CONCLUSION The identification of various enriched biological processes indicates that complex regulatory mechanisms underlie poco1 development. Differentially regulated genes associated with flowering may contribute to the early-flowering phenotype of poco1. Our data suggest the involvement of POCO1 in the early ABA signaling process. The down-regulation of many ABA-related genes suggests an association of poco1 mutation with the ABA signaling deficiency. This condition further affects the expression of many stress-related, especially drought-associated genes in poco1, consistent with the drought sensitivity of poco1. poco1 mutation also affects the expression of genes associated with the cellular regulation, redox, and mitochondrial perturbation.
Collapse
Affiliation(s)
- Hossein Emami
- Department of Botany, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany
| | - Abhishek Kumar
- Present address: Institute of Bioinformatics, International Technology Park, Bangalore, 560066, India
- Present address: Manipal Academy of Higher Education (MAHE), Manipal, Karnataka, 576104, India
| | - Frank Kempken
- Department of Botany, Christian-Albrechts-University, Olshausenstr. 40, 24098, Kiel, Germany.
| |
Collapse
|
23
|
Vu MH, Iswanto ABB, Lee J, Kim JY. The Role of Plasmodesmata-Associated Receptor in Plant Development and Environmental Response. PLANTS 2020; 9:plants9020216. [PMID: 32046090 PMCID: PMC7076680 DOI: 10.3390/plants9020216] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/28/2019] [Revised: 01/28/2020] [Accepted: 02/04/2020] [Indexed: 12/28/2022]
Abstract
Over the last decade, plasmodesmata (PD) symplasmic nano-channels were reported to be involved in various cell biology activities to prop up within plant growth and development as well as environmental stresses. Indeed, this is highly influenced by their native structure, which is lined with the plasma membrane (PM), conferring a suitable biological landscape for numerous plant receptors that correspond to signaling pathways. However, there are more than six hundred members of Arabidopsis thaliana membrane-localized receptors and over one thousand receptors in rice have been identified, many of which are likely to respond to the external stimuli. This review focuses on the class of plasmodesmal-receptor like proteins (PD-RLPs)/plasmodesmal-receptor-like kinases (PD-RLKs) found in planta. We summarize and discuss the current knowledge regarding RLPs/RLKs that reside at PD-PM channels in response to plant growth, development, and stress adaptation.
Collapse
Affiliation(s)
- Minh Huy Vu
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (M.H.V.); (J.L.)
| | - Arya Bagus Boedi Iswanto
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (M.H.V.); (J.L.)
- Correspondence: (A.B.B.I.); (J.-Y.K.)
| | - Jinsu Lee
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (M.H.V.); (J.L.)
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Plus Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 660-701, Korea; (M.H.V.); (J.L.)
- Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea
- Correspondence: (A.B.B.I.); (J.-Y.K.)
| |
Collapse
|
24
|
Yadav V, Lekkala MMVSN, Surekha C, Neelapu NRR. Global Scenario of Advance Fungal Research in Crop Protection. Fungal Biol 2020. [DOI: 10.1007/978-3-030-48474-3_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
25
|
Han J, Lotze MT. The Adaptome as Biomarker for Assessing Cancer Immunity and Immunotherapy. Methods Mol Biol 2020; 2055:369-397. [PMID: 31502161 DOI: 10.1007/978-1-4939-9773-2_17] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In terms of diagnosing and treating diseases, our adaptive immune system is the "best doctor." It carries out these tasks with unmatched precision, with the help of both T and B cell receptors, our most diverse set of genes, distinguishing one individual from another. It does this by generating autologous extraordinary diversity in the receptors, ranging from 1015 to 1025 for each chain of the rearranged receptors. By combining multiplex PCR and next-generation sequencing (NGS), we have developed high throughput methods to study adaptive immunity. The adaptome is the sum-total of expressed T and B cell receptor genes in a sample, composed of seven chains, including the alpha/beta and gamma/delta chains for T cells, and heavy/lambda or kappa chains for B cells. Immune repertoire is the sum-total of the individual clonotypes within one chain, including individual complementarity-determining regions (CDR) 3 sequences. In order to reflect the breadth and depth of the true adaptome, the following criteria assessing any method needs to be ascertained: (1) Methods need to be inclusive and quantitative; (2) Analysis should consider what questions need to be addressed and whether bulk or single cell sequencing provide the best tools for assessing the underlying biology and addressing important questions; (3) Measures of clonal diversity are key to understand the underlying structure and providence of the repertoire; and (4) Convergent evolution may allow a surprising degree of homologous or identical CDR3s associated with individual disease entities, creating hope for novel diagnostics and/or disease burden assessments. Integrating studies of the peripheral blood, lymph nodes, and tumor allows dynamic interrogation of the alterations occurring with age, treatment, and response to emergent and established therapies.
Collapse
Affiliation(s)
- Jian Han
- iRepertoire, Inc., Huntsville, AL, USA.,Hudson Alpha Institute, Huntsville, AL, USA
| | - Michael T Lotze
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA.
| |
Collapse
|
26
|
Batkhishig D, Bilguun K, Enkhbayar P, Miyashita H, Kretsinger RH, Matsushima N. Super Secondary Structure Consisting of a Polyproline II Helix and a β-Turn in Leucine Rich Repeats in Bacterial Type III Secretion System Effectors. Protein J 2019; 37:223-236. [PMID: 29651716 PMCID: PMC5976695 DOI: 10.1007/s10930-018-9767-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Leucine rich repeats (LRRs) are present in over 100,000 proteins from viruses to eukaryotes. The LRRs are 20–30 residues long and occur in tandem. LRRs form parallel stacks of short β-strands and then assume a super helical arrangement called a solenoid structure. Individual LRRs are separated into highly conserved segment (HCS) with the consensus of LxxLxLxxNxL and variable segment (VS). Eight classes have been recognized. Bacterial LRRs are short and characterized by two prolines in the VS; the consensus is xxLPxLPxx with Nine residues (N-subtype) and xxLPxxLPxx with Ten residues (T-subtype). Bacterial LRRs are contained in type III secretion system effectors such as YopM, IpaH3/9.8, SspH1/2, and SlrP from bacteria. Some LRRs in decorin, fribromodulin, TLR8/9, and FLRT2/3 from vertebrate also contain the motifs. In order to understand structural features of bacterial LRRs, we performed both secondary structures assignments using four programs—DSSP-PPII, PROSS, SEGNO, and XTLSSTR—and HELFIT analyses (calculating helix axis, pitch, radius, residues per turn, and handedness), based on the atomic coordinates of their crystal structures. The N-subtype VS adopts a left handed polyproline II helix (PPII) with four, five or six residues and a type I β-turn at the C-terminal side. Thus, the N-subtype is characterized by a super secondary structure consisting of a PPII and a β-turn. In contrast, the T-subtype VS prefers two separate PPIIs with two or three and two residues. The HELFIT analysis indicates that the type I β-turn is a right handed helix. The HELFIT analysis determines three unit vectors of the helix axes of PPII (P), β-turn (B), and LRR domain (A). Three structural parameters using these three helix axes are suggested to characterize the super secondary structure and the LRR domain.
Collapse
Affiliation(s)
- Dashdavaa Batkhishig
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia.,Department of Physics, School of Mathematics and Natural Sciences, Mongolian National University of Education, Ulaanbaatar, 210648, Mongolia
| | - Khurelbaatar Bilguun
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia.,Institute of Physics and Technology, Mongolian Academy of Sciences, Enkhtaivan avenue 54B, Ulaanbaatar, 210651, Mongolia
| | - Purevjav Enkhbayar
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia.
| | - Hiroki Miyashita
- Hokubu Rinsho Co., Ltd, Sapporo, 060-0061, Japan.,Institute of Tandem Repeats, Sapporo, 004-0882, Japan
| | | | - Norio Matsushima
- Laboratory of Bioinformatics and Systems Biology, Department of Information and Computer Science, School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar, 14201, Mongolia. .,Institute of Tandem Repeats, Sapporo, 004-0882, Japan. .,Sapporo Medical University, Sapporo, 060-8556, Japan.
| |
Collapse
|
27
|
Wang Y, Yan H, Qiu Z, Hu B, Zeng B, Zhong C, Fan C. Comprehensive Analysis of SnRK Gene Family and their Responses to Salt Stress in Eucalyptus grandis. Int J Mol Sci 2019; 20:E2786. [PMID: 31174407 PMCID: PMC6600528 DOI: 10.3390/ijms20112786] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/04/2019] [Indexed: 11/17/2022] Open
Abstract
The sucrose non-fermentation-related protein kinase (SnRK) is a kind of Ser/Thr protein kinase, which plays a crucial role in plant stress response by phosphorylating the target protein to regulate the interconnection of various signaling pathways. However, little is known about the SnRK family in Eucalyptus grandis. Thirty-four putative SnRK sequences were identified in E. grandis and divided into three subgroups (SnRK1, SnRK2 and SnRK3) based on phylogenetic analysis and the type of domain. Chromosome localization showed that SnRK family members are unevenly distributed in the remaining 10 chromosomes, with the notable exception of chromosome 11. Gene structure analysis reveal that 10 of the 24 SnRK3 genes contained no introns. Moreover, conserved motif analyses showed that SnRK sequences belonged to the same subgroup that contained the same motif type of motif. The Ka/Ks ratio of 17 paralogues suggested that the EgrSnRK gene family underwent a purifying selection. The upstream region of EgrSnRK genes enriched with different type and numbers of cis-elements indicated that EgrSnRK genes are likely to play a role in the response to diverse stresses. Quantitative real-time PCR showed that the majority of the SnRK genes were induced by salt treatment. Genome-wide analyses and expression pattern analyses provided further understanding on the function of the SnRK family in the stress response to different environmental salt concentrations.
Collapse
Affiliation(s)
- Yujiao Wang
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
- .Key Laboratory of Forest Genetics and Biotechnology, Ministry of Education of China, Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China.
| | - Huifang Yan
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Zhenfei Qiu
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Bing Hu
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Bingshan Zeng
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Chonglu Zhong
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| | - Chunjie Fan
- Key Laboratory of State Forestry Administration on Tropical Forest Research, Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou 510520, China.
| |
Collapse
|
28
|
Malook SU, Qi J, Hettenhausen C, Xu Y, Zhang C, Zhang J, Lu C, Li J, Wang L, Wu J. The oriental armyworm ( Mythimna separata) feeding induces systemic defence responses within and between maize leaves. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180307. [PMID: 30967023 PMCID: PMC6367157 DOI: 10.1098/rstb.2018.0307] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2018] [Indexed: 11/12/2022] Open
Abstract
Maize ( Zea mays) is a staple cereal crop cultivated all over the world but that is threatened by various insects. Feeding of the lepidopteran insect Mythimna separata triggers defence signalling and increases anti-herbivore benzoxazinoids (Bxs) in the insect-damaged maize leaves. However, the herbivory-elicited within-leaf and leaf-to-leaf systemic signalling in maize remains largely unexplored. Here, we show that simulated M. separata herbivory and mechanical wounding elicited increased levels of jasmonic acid (JA), JA-Ile (JA-isoleucine conjugate) and Bxs in the damaged areas and in specific systemic regions within a leaf. Importantly, increased contents of Bxs were detected in a systemic leaf, and consistently, this leaf exhibited increased defence against M. separata. Increased JA/JA-Ile and altered transcriptome, including Bx biosynthesis genes, were detected in systemic leaves after wounding or simulated herbivory treatments, although only simulated herbivory induced increase of the contents of Bxs systemically. Promoter and co-expression analysis revealed that transcription factors bHLH57 and WRKY34 may regulate Bx biosynthesis genes in systemic leaves. Moreover, leaf ablation experiment indicated that the systemic signal rapidly exited the local leaves within 30 min after elicitation. This study provides new insight into the temporal and spatial regulation of defence responses of maize against lepidopteran insects. This article is part of the theme issue 'Biotic signalling sheds light on smart pest management'.
Collapse
Affiliation(s)
- Saif ul Malook
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Christian Hettenhausen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Yuxing Xu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jingxiong Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Chengkai Lu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, People's Republic of China
| |
Collapse
|
29
|
Pizarro L, Leibman-Markus M, Schuster S, Bar M, Avni A. Tomato Dynamin Related Protein 2A Associates With LeEIX2 and Enhances PRR Mediated Defense by Modulating Receptor Trafficking. FRONTIERS IN PLANT SCIENCE 2019; 10:936. [PMID: 31379912 PMCID: PMC6658876 DOI: 10.3389/fpls.2019.00936] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 07/04/2019] [Indexed: 05/17/2023]
Abstract
The endocytic trafficking pathway is employed by the plant to regulate immune responses, and is often targeted by pathogen effectors to promote virulence. The model system of the tomato receptor-like protein (RLP) LeEIX2 and its ligand, the elicitor EIX, employs endocytosis to transmit receptor-mediated signals, with some of the signaling events occurring directly from endosomal compartments. Here, to explore the trafficking mechanism of LeEIX2-mediated immune signaling, we used a proteomic approach to identify LeEIX2-associating proteins. We report the identification of SlDRP2A, a dynamin related protein, as an associating partner for LeEIX2. SlDRP2A localizes at the plasma membrane. Overexpression of SlDRP2A increases the sub-population of LeEIX2 in VHAa1 endosomes, and enhances LeEIX2- and FLS2-mediated defense. The effect of SlDRP2A on induction of plant immunity highlights the importance of endomembrane components and endocytosis in signal propagation during plant immune responses.
Collapse
Affiliation(s)
- Lorena Pizarro
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon, Israel
| | - Meirav Leibman-Markus
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon, Israel
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, Volcani Center, Rishon, Israel
- *Correspondence: Maya Bar,
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- *Correspondence: Adi Avni,
| |
Collapse
|
30
|
Kang WH, Yeom SI. Genome-wide Identification, Classification, and Expression Analysis of the Receptor-Like Protein Family in Tomato. THE PLANT PATHOLOGY JOURNAL 2018; 34:435-444. [PMID: 30369853 PMCID: PMC6200040 DOI: 10.5423/ppj.oa.02.2018.0032] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 05/21/2018] [Accepted: 06/01/2018] [Indexed: 05/20/2023]
Abstract
Receptor-like proteins (RLPs) are involved in plant development and disease resistance. Only some of the RLPs in tomato (Solanum lycopersicum L.) have been functionally characterized though 176 genes encoding RLPs, which have been identified in the tomato genome. To further understand the role of RLPs in tomato, we performed genome-guided classification and transcriptome analysis of these genes. Phylogenic comparisons revealed that the tomato RLP members could be divided into eight subgroups and that the genes evolved independently compared to similar genes in Arabidopsis. Based on location and physical clustering analyses, we conclude that tomato RLPs likely expanded primarily through tandem duplication events. According to tissue specific RNA-seq data, 71 RLPs were expressed in at least one of the following tissues: root, leaf, bud, flower, or fruit. Several genes had expression patterns that were tissue specific. In addition, tomato RLP expression profiles after infection with different pathogens showed distinguish gene regulations according to disease induction and resistance response as well as infection by bacteria and virus. Notably, Some RLPs were highly and/or unique expressed in susceptible tomato to pathogen, suggesting that the RLP could be involved in disease response, possibly as a host-susceptibility factor. Our study could provide an important clues for further investigations into the function of tomato RLPs involved in developmental and response to pathogens.
Collapse
Affiliation(s)
- Won-Hee Kang
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
| | - Seon-In Yeom
- Institute of Agriculture & Life Science, Gyeongsang National University, Jinju 52828,
Korea
- Department of Agricultural Plant Science, Division of Applied Life Science (BK21 Plus program), Gyeongsang National University, Jinju 52828,
Korea
- Corresponding author: Phone) +82-55-772-1917, FAX) +82-55-772-1919, E-mail)
| |
Collapse
|
31
|
Leibman-Markus M, Pizarro L, Schuster S, Lin ZD, Gershony O, Bar M, Coaker G, Avni A. The intracellular nucleotide-binding leucine-rich repeat receptor (SlNRC4a) enhances immune signalling elicited by extracellular perception. PLANT, CELL & ENVIRONMENT 2018; 41:2313-2327. [PMID: 29790585 PMCID: PMC7266068 DOI: 10.1111/pce.13347] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 05/04/2023]
Abstract
Plant recognition and defence against pathogens employs a two-tiered perception system. Surface-localized pattern recognition receptors (PRRs) act to recognize microbial features, whereas intracellular nucleotide-binding leucine-rich repeat receptors (NLRs) directly or indirectly recognize pathogen effectors inside host cells. Employing the tomato PRR LeEIX2/EIX model system, we explored the molecular mechanism of signalling pathways. We identified an NLR that can associate with LeEIX2, termed SlNRC4a (NB-LRR required for hypersensitive response-associated cell death-4). Co-immunoprecipitation demonstrates that SlNRC4a is able to associate with different PRRs. Physiological assays with specific elicitors revealed that SlNRC4a generally alters PRR-mediated responses. SlNRC4a overexpression enhances defence responses, whereas silencing SlNRC4 reduces plant immunity. Moreover, the coiled-coil domain of SlNRC4a is able to associate with LeEIX2 and is sufficient to enhance responses upon EIX perception. On the basis of these findings, we propose that SlNRC4a acts as a noncanonical positive regulator of immunity mediated by diverse PRRs. Thus, SlNRC4a could link both intracellular and extracellular immune perceptions.
Collapse
Affiliation(s)
| | - Lorena Pizarro
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Silvia Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Z.J. Daniel Lin
- Department of Plant Pathology, University of California, Davis, California
| | - Ofir Gershony
- Department of Plant Pathology and Weed Research ARO, The Volcani Center, Rishon LeZion, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research ARO, The Volcani Center, Rishon LeZion, Israel
| | - Gitta Coaker
- Department of Plant Pathology, University of California, Davis, California
| | - Adi Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
32
|
Hu L, Ye M, Kuai P, Ye M, Erb M, Lou Y. OsLRR-RLK1, an early responsive leucine-rich repeat receptor-like kinase, initiates rice defense responses against a chewing herbivore. THE NEW PHYTOLOGIST 2018; 219:1097-1111. [PMID: 29878383 DOI: 10.1111/nph.15247] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/01/2018] [Indexed: 05/20/2023]
Abstract
Plants are constantly exposed to a variety of environmental stresses, including herbivory. How plants perceive herbivores on a molecular level is poorly understood. Leucine-rich repeat receptor-like kinases (LRR-RLKs), the largest subfamily of RLKs, are essential for plants to detect external stress signals, and may therefore also be involved in herbivore perception. Here, we employed RNA interference silencing, phytohormone profiling and complementation, as well as herbivore resistance assays, to investigate the requirement of an LRR-RLK for the initiation of rice (Oryza sativa) defenses against the chewing herbivore striped stem borer (SSB) Chilo suppressalis. We discovered a plasma membrane-localized LRR-RLK, OsLRR-RLK1, whose transcription is strongly up-regulated by SSB attack and treatment with oral secretions of Spodoptera frugiperda. OsLRR-RLK1 acts upstream of mitogen-activated protein kinase (MPK) cascades, and positively regulates defense-related MPKs and WRKY transcription factors. Moreover, OsLRR-RLK1 is a positive regulator of SSB-elicited, but not wound-elicited, levels of jasmonic acid and ethylene, trypsin protease inhibitor activity and plant resistance towards SSB. OsLRR-RLK1 therefore plays an important role in herbivory-induced defenses of rice. Given the well-documented role of LRR-RLKs in the perception of stress-related molecules, we speculate that OsLRR-RLK1 may be involved in the perception of herbivory-associated molecular patterns.
Collapse
Affiliation(s)
- Lingfei Hu
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Meng Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Peng Kuai
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Miaofen Ye
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013, Bern, Switzerland
| | - Yonggen Lou
- State Key Laboratory of Rice Biology & Ministry of Agriculture Key Lab of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, 310058, Hangzhou, China
| |
Collapse
|
33
|
AtPep3 is a hormone-like peptide that plays a role in the salinity stress tolerance of plants. Proc Natl Acad Sci U S A 2018; 115:5810-5815. [PMID: 29760074 DOI: 10.1073/pnas.1719491115] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Peptides encoded by small coding genes play an important role in plant development, acting in a similar manner as phytohormones. Few hormone-like peptides, however, have been shown to play a role in abiotic stress tolerance. In the current study, 17 Arabidopsis genes coding for small peptides were found to be up-regulated in response to salinity stress. To identify peptides leading salinity stress tolerance, we generated transgenic Arabidopsis plants overexpressing these small coding genes and assessed survivability and root growth under salinity stress conditions. Results indicated that 4 of the 17 overexpressed genes increased salinity stress tolerance. Further studies focused on AtPROPEP3, which was the most highly up-regulated gene under salinity stress. Treatment of plants with synthetic peptides encoded by AtPROPEP3 revealed that a C-terminal peptide fragment (AtPep3) inhibited the salt-induced bleaching of chlorophyll in seedlings. Conversely, knockdown AtPROPEP3 transgenic plants exhibited a hypersensitive phenotype under salinity stress, which was complemented by the AtPep3 peptide. This functional AtPep3 peptide region overlaps with an AtPep3 elicitor peptide that is related to the immune response of plants. Functional analyses with a receptor mutant of AtPep3 revealed that AtPep3 was recognized by the PEPR1 receptor and that it functions to increase salinity stress tolerance in plants. Collectively, these data indicate that AtPep3 plays a significant role in both salinity stress tolerance and immune response in Arabidopsis.
Collapse
|
34
|
Li B, Tunc-Ozdemir M, Urano D, Jia H, Werth EG, Mowrey DD, Hicks LM, Dokholyan NV, Torres MP, Jones AM. Tyrosine phosphorylation switching of a G protein. J Biol Chem 2018; 293:4752-4766. [PMID: 29382719 DOI: 10.1074/jbc.ra117.000163] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 01/26/2018] [Indexed: 01/08/2023] Open
Abstract
Heterotrimeric G protein complexes are molecular switches relaying extracellular signals sensed by G protein-coupled receptors (GPCRs) to downstream targets in the cytoplasm, which effect cellular responses. In the plant heterotrimeric GTPase cycle, GTP hydrolysis, rather than nucleotide exchange, is the rate-limiting reaction and is accelerated by a receptor-like regulator of G signaling (RGS) protein. We hypothesized that posttranslational modification of the Gα subunit in the G protein complex regulates the RGS-dependent GTPase cycle. Our structural analyses identified an invariant phosphorylated tyrosine residue (Tyr166 in the Arabidopsis Gα subunit AtGPA1) located in the intramolecular domain interface where nucleotide binding and hydrolysis occur. We also identified a receptor-like kinase that phosphorylates AtGPA1 in a Tyr166-dependent manner. Discrete molecular dynamics simulations predicted that phosphorylated Tyr166 forms a salt bridge in this interface and potentially affects the RGS protein-accelerated GTPase cycle. Using a Tyr166 phosphomimetic substitution, we found that the cognate RGS protein binds more tightly to the GDP-bound Gα substrate, consequently reducing its ability to accelerate GTPase activity. In conclusion, we propose that phosphorylation of Tyr166 in AtGPA1 changes the binding pattern with AtRGS1 and thereby attenuates the steady-state rate of the GTPase cycle. We coin this newly identified mechanism "substrate phosphoswitching."
Collapse
Affiliation(s)
- Bo Li
- Departments of Biology, Chapel Hill, North Carolina 27599
| | | | - Daisuke Urano
- Departments of Biology, Chapel Hill, North Carolina 27599; Temasek Life Sciences Laboratory, 1 Research Link, National University of Singapore, 117604, Singapore
| | - Haiyan Jia
- Departments of Biology, Chapel Hill, North Carolina 27599
| | - Emily G Werth
- Department of Chemistry, Chapel Hill, North Carolina 27599
| | - David D Mowrey
- Biochemistry/Biophysics, Chapel Hill, North Carolina 27599
| | - Leslie M Hicks
- Department of Chemistry, Chapel Hill, North Carolina 27599
| | | | - Matthew P Torres
- Department of Biological Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Alan M Jones
- Departments of Biology, Chapel Hill, North Carolina 27599; Pharmacology, University of North Carolina, Chapel Hill, North Carolina 27599.
| |
Collapse
|
35
|
Oh ES, Lee Y, Chae WB, Rameneni JJ, Park YS, Lim YP, Oh MH. Biochemical Analysis of the Role of Leucine-Rich Repeat Receptor-Like Kinases and the Carboxy-Terminus of Receptor Kinases in Regulating Kinase Activity in Arabidopsis thaliana and Brassica oleracea. Molecules 2018; 23:molecules23010236. [PMID: 29361797 PMCID: PMC6017770 DOI: 10.3390/molecules23010236] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 01/08/2018] [Accepted: 01/15/2018] [Indexed: 12/28/2022] Open
Abstract
Protein post-translational modification by phosphorylation is essential for the activity and stability of proteins in higher plants and underlies their responses to diverse stimuli. There are more than 300 leucine-rich repeat receptor-like kinases (LRR-RLKs), a major group of receptor-like kinases (RLKs) that plays an important role in growth, development, and biotic stress responses in higher plants. To analyze auto- and transphosphorylation patterns and kinase activities in vitro, 43 full-length complementary DNA (cDNA) sequences were cloned from genes encoding LRR-RLKs. Autophosphorylation activity was found in the cytoplasmic domains (CDs) of 18 LRR-RLKs; 13 of these LRR-RLKs with autophosphorylation activity showed transphosphorylation in Escherichia coli. BRI1-Associated Receptor Kinase (BAK1), which is critically involved in the brassinosteroid and plant innate immunity signal transduction pathways, showed strong auto- and transphosphorylation with multi-specific kinase activity within 2 h of induction of Brassica oleraceae BAK1-CD (BoBAK1-CD) in E. coli; moreover, the carboxy-terminus of LRR-RLKs regulated phosphorylation and kinase activity in Arabidopsis thaliana and vegetative crops.
Collapse
Affiliation(s)
- Eun-Seok Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Korea.
| | - Yeon Lee
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Korea.
| | - Won Byoung Chae
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, RDA, Wanju 55365, Korea.
| | - Jana Jeevan Rameneni
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea.
| | - Yong-Soon Park
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Korea.
| | - Yong Pyo Lim
- Department of Horticulture, College of Agriculture and Life Science, Chungnam National University, Daejeon 34134, Korea.
| | - Man-Ho Oh
- Department of Biological Sciences, College of Biological Sciences and Biotechnology, Chungnam National University, Daejeon 34134, Korea.
| |
Collapse
|
36
|
Islam MT, Hussain HI, Rookes JE, Cahill DM. Transcriptome analysis, using RNA-Seq of Lomandra longifolia roots infected with Phytophthora cinnamomi reveals the complexity of the resistance response. PLANT BIOLOGY (STUTTGART, GERMANY) 2018; 20:130-142. [PMID: 28881083 DOI: 10.1111/plb.12624] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/30/2017] [Indexed: 05/05/2023]
Abstract
The plant pathogen Phytophthora cinnamon the causal agent of disease in numerous species, is a major threat to natural vegetation and has economic impacts in agriculture. The pathogen principally invades the root system, which, in susceptible species, is rapidly colonised and functionally destroyed. Few species are resistant, however, where resistance is expressed the pathogen is restricted to small, localised lesions. The molecular mechanisms that underpin this response in resistant species are not well understood. Lomandra longifolia, an Australian native species, is highly resistant to P. cinnamomi. In an earlier study, we showed induction of resistance-related components such as callose, lignin and hydrogen peroxide (H2 O2 ) in L. longifolia roots that had been inoculated with P. cinnamomi. Here, in order to further identify, during the very early stages of infection, the molecular components and regulatory networks that may trigger resistance, a comprehensive root transcriptome analysis was performed using next generation sequencing. Overall, 18 cDNA libraries were produced generating 52.8 GB 126 base pair reads, which were de novo assembled into contigs. Differentially expressed genes (DEGs) were identified allowing the identification of infection-responsive candidate genes that were putatively related to resistance, and from this set ten were selected for qRT-PCR to validate the RNA-Seq expression value. Further analysis of individual candidates revealed that many were involved in PAMP-triggered immunity (PTI; pattern recognition receptors, glutathione S-transferase, callose synthases, pathogenesis-related protein-1, mitogen activated protein kinases) and effector-triggered immunity (ETI) (NBS-LRR, signalling genes, transcription factors and anti-pathogenic compound synthase genes). As these candidate genes or mediated components activate different defence signalling systems, they may have potential for investigation of novel approaches to disease control and in transgenic approaches for improvement, in susceptible species, of resistance to P. cinnamomi.
Collapse
Affiliation(s)
- M T Islam
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Vic., Australia
- Department of Plant Pathology, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Sher-e-Bangla Nagar, Dhaka, Bangladesh
| | - H I Hussain
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Vic., Australia
| | - J E Rookes
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Vic., Australia
| | - D M Cahill
- School of Life and Environmental Sciences, Centre for Chemistry and Biotechnology, Deakin University, Geelong, Vic., Australia
| |
Collapse
|
37
|
Pizarro L, Leibman-Markus M, Schuster S, Bar M, Avni A. SlPRA1A/RAB attenuate EIX immune responses via degradation of LeEIX2 pattern recognition receptor. PLANT SIGNALING & BEHAVIOR 2018; 13:e1467689. [PMID: 29944445 PMCID: PMC6103275 DOI: 10.1080/15592324.2018.1467689] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Pattern recognition receptors (PRR) are plasma membrane (PM) proteins that recognize microbe-associated molecular patterns (MAMPs), triggering an immune response. PRR are classified as receptor like kinases (RLKs) or receptor like proteins (RLPs). The PM localization of PRRs, which is crucial for their availability to sense MAMPs, depends on their appropriate trafficking through the endomembrane system. Recently, we have identified SlPRA1A, a prenylated RAB acceptor type-1 (PRA1) from S. lycopersicum, as a regulator of RLP-PRR localization and protein levels. SlPRA1A overexpression strongly decreases RLP-PRR protein levels, particularly those of LeEIX2, redirecting it to the vacuole for degradation. Interestingly, SlPRA1A does not affect RLK-PRRs, indicating its activity to be specific to RLP-PRR systems. As PRA1 proteins stabilize RABs on membranes, promoting RABs activity, we aimed to identify a RAB target of SlPRA1A. Screening of a set of A. thaliana RABs revealed that AtRABA1e is able to mimic SlPRA1A activity. Through live cell imaging, we observed that SlPRA1A enhances AtRABA1e localization on SlPRA1A positive punctuated structures. These results indicate that AtRABA1e is a putative target of SlPRA1, and a co-regulator of LeEIX2 trafficking and degradation.
Collapse
Affiliation(s)
- L. Pizarro
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - M. Leibman-Markus
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - S. Schuster
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - M. Bar
- Department of Plant Pathology and Weed Research, ARO, The Volcani Center, Rishon LeZion, Israel
| | - A. Avni
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
- CONTACT A. Avni School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
38
|
Thapa G, Gunupuru LR, Hehir JG, Kahla A, Mullins E, Doohan FM. A Pathogen-Responsive Leucine Rich Receptor Like Kinase Contributes to Fusarium Resistance in Cereals. FRONTIERS IN PLANT SCIENCE 2018; 9:867. [PMID: 29997638 PMCID: PMC6029142 DOI: 10.3389/fpls.2018.00867] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 06/04/2018] [Indexed: 05/19/2023]
Abstract
Receptor-like kinases form the largest family of receptors in plants and play an important role in recognizing pathogen-associated molecular patterns and modulating the plant immune responses to invasive fungi, including cereal defenses against fungal diseases. But hitherto, none have been shown to modulate the wheat response to the economically important Fusarium head blight (FHB) disease of small-grain cereals. Homologous genes were identified on barley chromosome 6H (HvLRRK-6H) and wheat chromosome 6DL (TaLRRK-6D), which encode the characteristic domains of surface-localized receptor like kinases. Gene expression studies validated that the wheat TaLRRK-6D is highly induced in heads as an early response to both the causal pathogen of FHB disease, Fusarium graminearum, and its' mycotoxic virulence factor deoxynivalenol. The transcription of other wheat homeologs of this gene, located on chromosomes 6A and 6B, was also up-regulated in response to F. graminearum. Virus-induced gene silencing (VIGS) of the barley HvLRRK-6H compromised leaf defense against F. graminearum. VIGS of TaLRRK-6D in two wheat cultivars, CM82036 (resistant to FHB disease) and cv. Remus (susceptible to FHB), confirmed that TaLRRK-6D contributes to basal resistance to FHB disease in both genotypes. Although the effect of VIGS did not generally reduce grain losses due to FHB, this experiment did reveal that TaLRRK-6D positively contributes to grain development. Further gene expression studies in wheat cv. Remus indicated that VIGS of TaLRRK-6D suppressed the expression of genes involved in salicylic acid signaling, which is a key hormonal pathway involved in defense. Thus, this study provides the first evidence of receptor like kinases as an important component of cereal defense against Fusarium and highlights this gene as a target for enhancing cereal resistance to FHB disease.
Collapse
Affiliation(s)
- Ganesh Thapa
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Belfield, Ireland
| | - Lokanadha R. Gunupuru
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Belfield, Ireland
| | - James G. Hehir
- Crop Science Department, Oak Park Crops Research Centre, Teagasc, Carlow, Ireland
| | - Amal Kahla
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Belfield, Ireland
| | - Ewen Mullins
- Crop Science Department, Oak Park Crops Research Centre, Teagasc, Carlow, Ireland
| | - Fiona M. Doohan
- UCD School of Biology and Environmental Science, UCD Earth Institute and UCD Institute of Food and Health, University College of Dublin, Belfield, Ireland
- *Correspondence: Fiona M. Doohan,
| |
Collapse
|
39
|
Li TG, Zhang DD, Zhou L, Kong ZQ, Hussaini AS, Wang D, Li JJ, Short DPG, Dhar N, Klosterman SJ, Wang BL, Yin CM, Subbarao KV, Chen JY, Dai XF. Genome-Wide Identification and Functional Analyses of the CRK Gene Family in Cotton Reveals GbCRK18 Confers Verticillium Wilt Resistance in Gossypium barbadense. FRONTIERS IN PLANT SCIENCE 2018; 9:1266. [PMID: 30254650 PMCID: PMC6141769 DOI: 10.3389/fpls.2018.01266] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 08/10/2018] [Indexed: 05/07/2023]
Abstract
Cysteine-rich receptor-like kinases (CRKs) are a large subfamily of plant receptor-like kinases that play a critical role in disease resistance in plants. However, knowledge about the CRK gene family in cotton and its function against Verticillium wilt (VW), a destructive disease caused by Verticillium dahliae that significantly reduces cotton yields is lacking. In this study, we identified a total of 30 typical CRKs in a Gossypium barbadense genome (GbCRKs). Eleven of these (>30%) are located on the A06 and D06 chromosomes, and 18 consisted of 9 paralogous pairs encoded in the A and D subgenomes. Phylogenetic analysis showed that the GbCRKs could be classified into four broad groups, the expansion of which has probably been driven by tandem duplication. Gene expression profiling of the GbCRKs in resistant and susceptible cotton cultivars revealed that a phylogenetic cluster of nine of the GbCRK genes were up-regulated in response to V. dahliae infection. Virus-induced gene silencing of each of these nine GbCRKs independently revealed that the silencing of GbCRK18 was sufficient to compromise VW resistance in G. barbadense. GbCRK18 expression could be induced by V. dahliae infection or jasmonic acid, and displayed plasma membrane localization. Therefore, our expression analyses indicated that the CRK gene family is differentially regulated in response to Verticillium infection, while gene silencing experiments revealed that GbCRK18 in particular confers VW resistance in G. barbadense.
Collapse
Affiliation(s)
- Ting-Gang Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan-Dan Zhang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Lei Zhou
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhi-Qiang Kong
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Adamu S. Hussaini
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dan Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jun-Jiao Li
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dylan P. G. Short
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- U.S. Agricultural Research Station, Salinas, CA, United States
| | - Nikhilesh Dhar
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- U.S. Agricultural Research Station, Salinas, CA, United States
| | - Steven J. Klosterman
- Crop Improvement and Protection Research Unit, United States Department of Agriculture, Agricultural Research Service, Salinas, CA, United States
| | - Bao-Li Wang
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chun-Mei Yin
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Krishna V. Subbarao
- Department of Plant Pathology, University of California, Davis, Davis, CA, United States
- U.S. Agricultural Research Station, Salinas, CA, United States
- *Correspondence: Krishna V. Subbarao, Jie-Yin Chen, Xiao-Feng Dai,
| | - Jie-Yin Chen
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Krishna V. Subbarao, Jie-Yin Chen, Xiao-Feng Dai,
| | - Xiao-Feng Dai
- Laboratory of Cotton Disease, Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, China
- *Correspondence: Krishna V. Subbarao, Jie-Yin Chen, Xiao-Feng Dai,
| |
Collapse
|
40
|
Hong JK, Hwang IS, Hwang BK. Functional roles of the pepper leucine-rich repeat protein and its interactions with pathogenesis-related and hypersensitive-induced proteins in plant cell death and immunity. PLANTA 2017; 246:351-364. [PMID: 28508261 DOI: 10.1007/s00425-017-2709-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 05/06/2017] [Indexed: 05/25/2023]
Abstract
Pepper leucine-rich repeat protein (CaLRR1) interacts with defense response proteins to regulate plant cell death and immunity. This review highlights the current understanding of the molecular functions of CaLRR1 and its interactor proteins. Plant cell death and immune responses to microbial pathogens are controlled by complex and tightly regulated molecular signaling networks. Xanthomonas campestris pv. vesicatoria (Xcv)-inducible pepper (Capsicum annuum) leucine-rich repeat protein 1 (CaLRR1) serves as a molecular marker for plant cell death and immunity signaling. In this review, we discuss recent advances in elucidating the functional roles of CaLRR1 and its interacting plant proteins, and understanding how they are involved in the cell death and defense responses. CaLRR1 physically interacts with pepper pathogenesis-related proteins (CaPR10 and CaPR4b) and hypersensitive-induced reaction protein (CaHIR1) to regulate plant cell death and defense responses. CaLRR1 is produced in the cytoplasm and trafficked to the extracellular matrix. CaLRR1 binds to CaPR10 in the cytoplasm and CaPR4b and CaHIR1 at the plasma membrane. CaLRR1 synergistically accelerates CaPR10-triggered hypersensitive cell death, but negatively regulates CaPR4b- and CaHIR1-triggered cell death. CaHIR1 interacts with Xcv filamentous hemagglutinin (Fha1) to trigger disease-associated cell death. The subcellular localization and cellular function of these CaLRR1 interactors during plant cell death and defense responses were elucidated by Agrobacterium-mediated transient expression, virus-induced gene silencing, and transgenic overexpression studies. CaPR10, CaPR4b, and CaHIR1 positively regulate defense signaling mediated by salicylic acid and reactive oxygen species, thereby activating hypersensitive cell death and disease resistance. A comprehensive understanding of the molecular functions of CaLRR1 and its interacting protein partners in cell death and defense responses will provide valuable information for the molecular genetics of plant disease resistance, which could be exploited as a sustainable disease management strategy.
Collapse
Affiliation(s)
- Jeum Kyu Hong
- Laboratory of Plant Pathology and Protection, Department of Horticultural Science, College of Biosciences, Gyeongnam National University of Science and Technology, Jinju, 52725, Republic of Korea
| | - In Sun Hwang
- Department of Horticultural Biotechnology, Kyung Hee University, Yongin, 17104, Republic of Korea
| | - Byung Kook Hwang
- Laboratory of Molecular Plant Pathology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
41
|
Lin F, Williams BJ, Thangella PAV, Ladak A, Schepmoes AA, Olivos HJ, Zhao K, Callister SJ, Bartley LE. Proteomics Coupled with Metabolite and Cell Wall Profiling Reveal Metabolic Processes of a Developing Rice Stem Internode. FRONTIERS IN PLANT SCIENCE 2017; 8:1134. [PMID: 28751896 PMCID: PMC5507963 DOI: 10.3389/fpls.2017.01134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Accepted: 06/13/2017] [Indexed: 05/27/2023]
Abstract
Internodes of grass stems function in mechanical support, transport, and, in some species, are a major sink organ for carbon in the form of cell wall polymers. This study reports cell wall composition, proteomic, and metabolite analyses of the rice elongating internode. Cellulose, lignin, and xylose increase as a percentage of cell wall material along eight segments of the second rice internode (internode II) at booting stage, from the younger to the older internode segments, indicating active cell wall synthesis. Liquid-chromatography tandem mass spectrometry (LC-MS/MS) of trypsin-digested proteins from this internode at booting reveals 2,547 proteins with at least two unique peptides in two biological replicates. The dataset includes many glycosyltransferases, acyltransferases, glycosyl hydrolases, cell wall-localized proteins, and protein kinases that have or may have functions in cell wall biosynthesis or remodeling. Phospho-enrichment of internode II peptides identified 21 unique phosphopeptides belonging to 20 phosphoproteins including a leucine rich repeat-III family receptor like kinase. GO over-representation and KEGG pathway analyses highlight the abundances of proteins involved in biosynthetic processes, especially the synthesis of secondary metabolites such as phenylpropanoids and flavonoids. LC-MS/MS of hot methanol-extracted secondary metabolites from internode II at four stages (booting/elongation, early mature, mature, and post mature) indicates that internode secondary metabolites are distinct from those of roots and leaves, and differ across stem maturation. This work fills a void of in-depth proteomics and metabolomics data for grass stems, specifically for rice, and provides baseline knowledge for more detailed studies of cell wall synthesis and other biological processes characteristic of internode development, toward improving grass agronomic properties.
Collapse
Affiliation(s)
- Fan Lin
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | | | | | - Adam Ladak
- Waters CorporationBeverly, MA, United States
| | - Athena A. Schepmoes
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | | | - Kangmei Zhao
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| | - Stephen J. Callister
- Biological Sciences Division, Pacific Northwest National LaboratoryRichland, WA, United States
| | - Laura E. Bartley
- Department of Microbiology and Plant Biology, University of OklahomaNorman, OK, United States
| |
Collapse
|
42
|
Plant cell wall signalling and receptor-like kinases. Biochem J 2017; 474:471-492. [PMID: 28159895 DOI: 10.1042/bcj20160238] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/12/2016] [Accepted: 12/20/2016] [Indexed: 12/12/2022]
Abstract
Communication between the extracellular matrix and the cell interior is essential for all organisms as intrinsic and extrinsic cues have to be integrated to co-ordinate development, growth, and behaviour. This applies in particular to plants, the growth and shape of which is governed by deposition and remodelling of the cell wall, a rigid, yet dynamic, extracellular network. It is thus generally assumed that cell wall surveillance pathways exist to monitor the state of the wall and, if needed, elicit compensatory responses such as altered expression of cell wall remodelling and biosynthesis genes. Here, I highlight recent advances in the field of cell wall signalling in plants, with emphasis on the role of plasma membrane receptor-like kinase complexes. In addition, possible roles for cell wall-mediated signalling beyond the maintenance of cell wall integrity are discussed.
Collapse
|
43
|
Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection. Sci Rep 2017; 7:2527. [PMID: 28559545 PMCID: PMC5449397 DOI: 10.1038/s41598-017-02556-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 04/13/2017] [Indexed: 01/24/2023] Open
Abstract
Sound vibration (SV), a mechanical stimulus, can trigger various molecular and physiological changes in plants like gene expression, hormonal modulation, induced antioxidant activity and calcium spiking. It also alters the seed germination and growth of plants. In this study, we investigated the effects of SV on the resistance of Arabidopsis thaliana against Botrytis cinerea infection. The microarray analysis was performed on infected Arabidopsis plants pre-exposed to SV of 1000 Hertz with 100 decibels. Broadly, the transcriptomic analysis revealed up-regulation of several defense and SA-responsive and/or signaling genes. Quantitative real-time PCR (qRT-PCR) analysis of selected genes also validated the induction of SA-mediated response in the infected Arabidopsis plants pre-exposed to SV. Corroboratively, hormonal analysis identified the increased concentration of salicylic acid (SA) in the SV-treated plants after pathogen inoculation. In contrast, jasmonic acid (JA) level in the SV-treated plants remained stable but lower than control plants during the infection. Based on these findings, we propose that SV treatment invigorates the plant defense system by regulating the SA-mediated priming effect, consequently promoting the SV-induced resistance in Arabidopsis against B. cinerea.
Collapse
|
44
|
Huh SU, Cevik V, Ding P, Duxbury Z, Ma Y, Tomlinson L, Sarris PF, Jones JDG. Protein-protein interactions in the RPS4/RRS1 immune receptor complex. PLoS Pathog 2017; 13:e1006376. [PMID: 28475615 PMCID: PMC5435354 DOI: 10.1371/journal.ppat.1006376] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 05/17/2017] [Accepted: 04/25/2017] [Indexed: 11/18/2022] Open
Abstract
Plant NLR (Nucleotide-binding domain and Leucine-rich Repeat) immune receptor proteins are encoded by Resistance (R) genes and confer specific resistance to pathogen races that carry the corresponding recognized effectors. Some NLR proteins function in pairs, forming receptor complexes for the perception of specific effectors. We show here that the Arabidopsis RPS4 and RRS1 NLR proteins are both required to make an authentic immune complex. Over-expression of RPS4 in tobacco or in Arabidopsis results in constitutive defense activation; this phenotype is suppressed in the presence of RRS1. RRS1 protein co-immunoprecipitates (co-IPs) with itself in the presence or absence of RPS4, but in contrast, RPS4 does not associate with itself in the absence of RRS1. In the presence of RRS1, RPS4 associates with defense signaling regulator EDS1 solely in the nucleus, in contrast to the extra-nuclear location found in the absence of RRS1. The AvrRps4 effector does not disrupt RPS4-EDS1 association in the presence of RRS1. In the absence of RRS1, AvrRps4 interacts with EDS1, forming nucleocytoplasmic aggregates, the formation of which is disturbed by the co-expression of PAD4 but not by SAG101. These data indicate that the study of an immune receptor protein complex in the absence of all components can result in misleading inferences, and reveals an NLR complex that dynamically interacts with the immune regulators EDS1/PAD4 or EDS1/SAG101, and with effectors, during the process by which effector recognition is converted to defense activation.
Collapse
Affiliation(s)
- Sung Un Huh
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Volkan Cevik
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
- Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Pingtao Ding
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Zane Duxbury
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Yan Ma
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Laurence Tomlinson
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| | - Panagiotis F. Sarris
- Department of Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter, United Kingdom
| | - Jonathan D. G. Jones
- The Sainsbury Laboratory, Norwich Research Park, Colney Lane, Norwich, United Kingdom
| |
Collapse
|
45
|
Smith CM, Gedling CR, Wiebe KF, Cassone BJ. A sweet story: Bean pod mottle virus transmission dynamics by Mexican bean beetles (Epilachna varivestis). Genome Biol Evol 2017; 9:714-725. [PMID: 28204501 PMCID: PMC5499813 DOI: 10.1093/gbe/evx033] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Revised: 01/23/2017] [Accepted: 02/08/2017] [Indexed: 12/25/2022] Open
Abstract
Worldwide crop losses due to plant diseases exceed $60 billion annually. Next to fungi, viruses represent the greatest contributor to those losses, and these are transmitted in nature primarily by insects. Mexican bean beetles (Epilachna varivestis ) are formidable pests of soybean, as well as efficient vectors of several soybean-infecting viruses, including Bean pod mottle virus (BPMV). Beetle-borne viruses have a unique mode of transmission, though their interactions with host plants and vectors remain poorly understood. In these studies, we implemented targeted metabolite profiling and high throughput RNA sequencing approaches to explore metabolic and molecular changes in soybean leaves infected with BPMV. The virus-infected plants showed altered defence signaling and amino acid concentrations—and most strikingly—had dramatically higher sucrose levels. Based on the results, we performed a series of E. varivestis behavioral bioassays using near-isogenic soybean lines of differing foliar sucrose levels in an attempt to more directly associate sucrose content and E. varivestis feeding preferences. Choice assays revealed E. varivestis is more attracted to BPMV-infected soybean than to healthy plants. Moreover, no-choice assays indicated that beetles consume less foliage per plant but ultimately feed on more plants in a given time period if they are higher in sucrose. Importantly, these virus-driven changes to beetle feeding preferences are likely to increase BPMV spread in natural environments.
Collapse
Affiliation(s)
| | | | - Kiana F. Wiebe
- Department of Biology, Brandon University, Manitoba, Canada
| | | |
Collapse
|
46
|
Santa Brigida AB, Rojas CA, Grativol C, de Armas EM, Entenza JOP, Thiebaut F, Lima MDF, Farrinelli L, Hemerly AS, Lifschitz S, Ferreira PCG. Sugarcane transcriptome analysis in response to infection caused by Acidovorax avenae subsp. avenae. PLoS One 2016; 11:e0166473. [PMID: 27936012 PMCID: PMC5147822 DOI: 10.1371/journal.pone.0166473] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Accepted: 10/28/2016] [Indexed: 12/22/2022] Open
Abstract
Sugarcane is an important tropical crop mainly cultivated to produce ethanol and sugar. Crop productivity is negatively affected by Acidovorax avenae subsp avenae (Aaa), which causes the red stripe disease. Little is known about the molecular mechanisms triggered in response to the infection. We have investigated the molecular mechanism activated in sugarcane using a RNA-seq approach. We have produced a de novo transcriptome assembly (TR7) from sugarcane RNA-seq libraries submitted to drought and infection with Aaa. Together, these libraries present 247 million of raw reads and resulted in 168,767 reference transcripts. Mapping in TR7 of reads obtained from infected libraries, revealed 798 differentially expressed transcripts, of which 723 were annotated, corresponding to 467 genes. GO and KEGG enrichment analysis showed that several metabolic pathways, such as code for proteins response to stress, metabolism of carbohydrates, processes of transcription and translation of proteins, amino acid metabolism and biosynthesis of secondary metabolites were significantly regulated in sugarcane. Differential analysis revealed that genes in the biosynthetic pathways of ET and JA PRRs, oxidative burst genes, NBS-LRR genes, cell wall fortification genes, SAR induced genes and pathogenesis-related genes (PR) were upregulated. In addition, 20 genes were validated by RT-qPCR. Together, these data contribute to a better understanding of the molecular mechanisms triggered by the Aaa in sugarcane and opens the opportunity for the development of molecular markers associated with disease tolerance in breeding programs.
Collapse
Affiliation(s)
- Ailton B. Santa Brigida
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Cristian A. Rojas
- Instituto Latino-Americano de Ciências da Vida e da Natureza, Universidade Federal da Integração Latino-Americana, Foz do Iguaçu, Paraná, Brasil
| | - Clícia Grativol
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brasil
| | - Elvismary M. de Armas
- Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Júlio O. P. Entenza
- Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Flávia Thiebaut
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Marcelo de F. Lima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal Rural do Rio de Janeiro, Seropédica, Rio de Janeiro, Brasil
| | | | - Adriana S. Hemerly
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Sérgio Lifschitz
- Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| | - Paulo C. G. Ferreira
- Laboratório de Biologia Molecular de Plantas, Instituto de Bioquímica Médica Leopoldo de Meis, Centro de Ciências da Saúde, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brasil
| |
Collapse
|
47
|
Heil M, Land WG, Tör M. Editorial: Wound Recognition across the Tree of Life. FRONTIERS IN PLANT SCIENCE 2016; 7:1319. [PMID: 27635126 PMCID: PMC5007721 DOI: 10.3389/fpls.2016.01319] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 08/17/2016] [Indexed: 05/29/2023]
Affiliation(s)
- Martin Heil
- Departamento de Ingeniería Genética, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional - Unidad IrapuatoIrapuato, Mexico
| | - Walter G. Land
- Laboratoire d'Immuno Rhumatologie Moléculaire, INSERM UMR_S1109, Faculté de Médecine, Université de StrasbourgStrasbourg, France
| | - Mahmut Tör
- Institute of Science and the Environment, University of WorcesterWorcester, UK
| |
Collapse
|
48
|
Larskaya IA, Gorshkova TA. Plant oligosaccharides - outsiders among elicitors? BIOCHEMISTRY (MOSCOW) 2016; 80:881-900. [PMID: 26542002 DOI: 10.1134/s0006297915070081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review substantiates the need to study the plant oligoglycome. The available information on oligosaccharins - physiologically active fragments of plant cell wall polysaccharides - is summarized. The diversity of such compounds in chemical composition, origin, and proved biological activity is highlighted. At the same time, plant oligosaccharides can be considered as outsiders among elicitors of various natures in research intensity of recent decades. This review discusses the reasons for such attitude towards these regulators, which are largely connected with difficulties in isolation and identification. Together with that, approaches are suggested whose potentials can be used to study oligosaccharins. The topics of oligosaccharide metabolism in plants, including the ways of formation, transport, and inactivation are presented, together with data on biological activity and interaction with plant hormones. The current viewpoints on the mode of oligosaccharin action - perception, signal transduction, and possible "targets" - are considered. The potential uses of such compounds in medicine, food industry, agriculture, and biotechnology are discussed.
Collapse
Affiliation(s)
- I A Larskaya
- Kazan Institute of Biochemistry and Biophysics, Kazan Scientific Center, Russian Academy of Sciences, Kazan, 420111, Russia.
| | | |
Collapse
|
49
|
Li L, Yu Y, Zhou Z, Zhou JM. Plant pattern-recognition receptors controlling innate immunity. SCIENCE CHINA-LIFE SCIENCES 2016; 59:878-88. [DOI: 10.1007/s11427-016-0115-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/02/2016] [Indexed: 11/24/2022]
|
50
|
Wu J, Liu Z, Zhang Z, Lv Y, Yang N, Zhang G, Wu M, Lv S, Pan L, Joosten MHAJ, Wang G. Transcriptional regulation of receptor-like protein genes by environmental stresses and hormones and their overexpression activities in Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3339-51. [PMID: 27099374 PMCID: PMC4892725 DOI: 10.1093/jxb/erw152] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Receptor-like proteins (RLPs) have been implicated in multiple biological processes, including plant development and immunity to microbial infection. Fifty-seven AtRLP genes have been identified in Arabidopsis, whereas only a few have been functionally characterized. This is due to the lack of suitable physiological screening conditions and the high degree of functional redundancy among AtRLP genes. To overcome the functional redundancy and further understand the role of AtRLP genes, we studied the evolution of AtRLP genes and compiled a comprehensive profile of the transcriptional regulation of AtRLP genes upon exposure to a range of environmental stresses and different hormones. These results indicate that the majority of AtRLP genes are differentially expressed under various conditions that were tested, an observation that will help to select certain AtRLP genes involved in a specific biological process for further experimental studies to eventually dissect their function. A large number of AtRLP genes were found to respond to more than one treatment, suggesting that one single AtRLP gene may be involved in multiple physiological processes. In addition, we performed a genome-wide cloning of the AtRLP genes, and generated and characterized transgenic Arabidopsis plants overexpressing the individual AtRLP genes, presenting new insight into the roles of AtRLP genes, as exemplified by AtRLP3, AtRLP11 and AtRLP28 Our study provides an overview of biological processes in which AtRLP genes may be involved, and presents valuable resources for future investigations into the function of these genes.
Collapse
Affiliation(s)
- Jinbin Wu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhijun Liu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Zhao Zhang
- Beijing Key Laboratory of Development and Quality Control of Ornamental Horticulture and Landscape Architecture, China Agricultural University, Beijing 100193, China
| | - Yanting Lv
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Nan Yang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Guohua Zhang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Menyao Wu
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Shuo Lv
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Lixia Pan
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| | - Matthieu H A J Joosten
- Laboratory of Phytopathology, Wageningen University, Droevendaalsesteeg 1, 6708 PB Wageningen, the Netherlands
| | - Guodong Wang
- Key Laboratory of Ministry of Education for Medicinal Plant Resource and Natural Pharmaceutical Chemistry, National Engineering Laboratory for Resource Developing of Endangered Chinese Crude Drugs in Northwest of China, College of Life Sciences, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|