1
|
Ren Y, Wu C, Zhou H, Hu X, Miao Z. Dual-extraction modeling: A multi-modal deep-learning architecture for phenotypic prediction and functional gene mining of complex traits. PLANT COMMUNICATIONS 2024; 5:101002. [PMID: 38872306 DOI: 10.1016/j.xplc.2024.101002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/15/2024]
Abstract
Despite considerable advances in extracting crucial insights from bio-omics data to unravel the intricate mechanisms underlying complex traits, the absence of a universal multi-modal computational tool with robust interpretability for accurate phenotype prediction and identification of trait-associated genes remains a challenge. This study introduces the dual-extraction modeling (DEM) approach, a multi-modal deep-learning architecture designed to extract representative features from heterogeneous omics datasets, enabling the prediction of complex trait phenotypes. Through comprehensive benchmarking experiments, we demonstrate the efficacy of DEM in classification and regression prediction of complex traits. DEM consistently exhibits superior accuracy, robustness, generalizability, and flexibility. Notably, we establish its effectiveness in predicting pleiotropic genes that influence both flowering time and rosette leaf number, underscoring its commendable interpretability. In addition, we have developed user-friendly software to facilitate seamless utilization of DEM's functions. In summary, this study presents a state-of-the-art approach with the ability to effectively predict qualitative and quantitative traits and identify functional genes, confirming its potential as a valuable tool for exploring the genetic basis of complex traits.
Collapse
Affiliation(s)
- Yanlin Ren
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Chenhua Wu
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - He Zhou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaona Hu
- College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shaanxi 712100, China.
| | - Zhenyan Miao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China; Key Laboratory of Biology and Genetics Improvement of Maize in Arid Area of Northwest Region, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
2
|
Kinmonth-Schultz H, Sønstebø JH, Croneberger AJ, Johnsen SS, Leder E, Lewandowska-Sabat A, Imaizumi T, Rognli OA, Vinje H, Ward JK, Fjellheim S. Responsiveness to long days for flowering is reduced in Arabidopsis by yearly variation in growing season temperatures. PLANT, CELL & ENVIRONMENT 2023; 46:3337-3352. [PMID: 37249162 DOI: 10.1111/pce.14632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 05/08/2023] [Accepted: 05/15/2023] [Indexed: 05/31/2023]
Abstract
Conservative flowering behaviours, such as flowering during long days in summer or late flowering at a high leaf number, are often proposed to protect against variable winter and spring temperatures which lead to frost damage if premature flowering occurs. Yet, due the many factors in natural environments relative to the number of individuals compared, assessing which climate characteristics drive these flowering traits has been difficult. We applied a multidisciplinary approach to 10 winter-annual Arabidopsis thaliana populations from a wide climactic gradient in Norway. We used a variable reduction strategy to assess which of 100 climate descriptors from their home sites correlated most to their flowering behaviours when tested for responsiveness to photoperiod after saturation of vernalization; then, assessed sequence variation of 19 known environmental-response flowering genes. Photoperiod responsiveness inversely correlated with interannual variation in timing of growing season onset. Time to flowering appeared driven by growing season length, curtailed by cold fall temperatures. The distribution of FLM, TFL2 and HOS1 haplotypes, genes involved in ambient temperature response, correlated with growing-season climate. We show that long-day responsiveness and late flowering may be driven not by risk of spring frosts, but by growing season temperature and length, perhaps to opportunistically maximize growth.
Collapse
Affiliation(s)
- Hannah Kinmonth-Schultz
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, Kansas, USA
- Department of Biology, Tennessee Technological University, Cookeville, Tennessee, USA
| | - Jørn H Sønstebø
- Faculty of Technology, Natural Sciences and Maritime Sciences, University of South-Eastern Norway, Notodden, Norway
| | | | - Sylvia S Johnsen
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Erica Leder
- Department of Marine Science, University of Gothenburg, Gothenburg, Sweden
- Natural History Museum, University of Oslo, Oslo, Norway
| | | | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, Washington, USA
| | - Odd Arne Rognli
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| | - Hilde Vinje
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, Aas, Norway
| | - Joy K Ward
- College of Arts and Science, Case Western Reserve University, Cleveland, Ohio, USA
| | - Siri Fjellheim
- Faculty of Biosciences, Norwegian University of Life Sciences, Aas, Norway
| |
Collapse
|
3
|
Zhang M, Qin S, Yan J, Li L, Xu M, Liu Y, Zhang W. Genome-wide identification and analysis of TCP family genes in Medicago sativa reveal their critical roles in Na +/K + homeostasis. BMC PLANT BIOLOGY 2023; 23:301. [PMID: 37280506 DOI: 10.1186/s12870-023-04318-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/26/2023] [Indexed: 06/08/2023]
Abstract
BACKGROUND Medicago sativa is the most important forage world widely, and is characterized by high quality and large biomass. While abiotic factors such as salt stress can negatively impact the growth and productivity of alfalfa. Maintaining Na+/K+ homeostasis in the cytoplasm helps reduce cell damage and nutritional deprivation, which increases a salt-tolerance of plant. Teosinte Branched1/ Cycloidea/ Proliferating cell factors (TCP) family genes, a group of plant-specific transcription factors (TFs), involved in regulating plant growth and development and abiotic stresses. Recent studies have shown TCPs control the Na+/K+ concentration of plants during salt stress. In order to improve alfalfa salt tolerance, it is important to identify alfalfa TCP genes and investigate if and how they regulate alfalfa Na+/K+ homeostasis. RESULTS Seventy-one MsTCPs including 23 non-redundant TCP genes were identified in the database of alfalfa genome (C.V XinJiangDaYe), they were classified into class I PCF (37 members) and class II: CIN (28 members) and CYC/TB1 (9 members). Their distribution on chromosome were unequally. MsTCPs belonging to PCF were expressed specifically in different organs without regularity, which belonging to CIN class were mainly expressed in mature leaves. MsTCPs belongs to CYC/TB1 clade had the highest expression level at meristem. Cis-elements in the promoter of MsTCPs were also predicted, the results indicated that most of the MsTCPs will be induced by phytohormone and stress treatments, especially by ABA-related stimulus including salinity stress. We found 20 out of 23 MsTCPs were up-regulated in 200 mM NaCl treatment, and MsTCP3/14/15/18 were significantly induced by 10 μM KCl, a K+ deficiency treatment. Fourteen non-redundant MsTCPs contained miR319 target site, 11 of them were upregulated in MIM319 transgenic alfalfa, and among them four (MsTCP3/4/10A/B) genes were directly degraded by miR319. MIM319 transgene alfalfa plants showed a salt sensitive phenotype, which caused by a lower content of potassium in alfalfa at least partly. The expression of potassium transported related genes showed significantly higher expression in MIM319 plants. CONCLUSIONS We systematically analyzes the MsTCP gene family at a genome-wide level and reported that miR319-TCPs model played a function in K+ up-taking and/ or transportation especially in salt stress. The study provide valuable information for future study of TCP genes in alfalfa and supplies candidate genes for salt-tolerance alfalfa molecular-assisted breeding.
Collapse
Affiliation(s)
- Mingxiao Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Shangqian Qin
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Jianping Yan
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Lin Li
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Mingzhi Xu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China
| | - Yanrong Liu
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| | - Wanjun Zhang
- College of Grassland Science and Technology, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
4
|
Morales A, de Boer HJ, Douma JC, Elsen S, Engels S, Glimmerveen T, Sajeev N, Huber M, Luimes M, Luitjens E, Raatjes K, Hsieh C, Teapal J, Wildenbeest T, Jiang Z, Pareek A, Singla-Pareek S, Yin X, Evers J, Anten NPR, van Zanten M, Sasidharan R. Effects of sublethal single, simultaneous and sequential abiotic stresses on phenotypic traits of Arabidopsis thaliana. AOB PLANTS 2022; 14:plac029. [PMID: 35854681 PMCID: PMC9291396 DOI: 10.1093/aobpla/plac029] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 06/21/2022] [Indexed: 05/24/2023]
Abstract
Plant responses to abiotic stresses are complex and dynamic, and involve changes in different traits, either as the direct consequence of the stress, or as an active acclimatory response. Abiotic stresses frequently occur simultaneously or in succession, rather than in isolation. Despite this, most studies have focused on a single stress and single or few plant traits. To address this gap, our study comprehensively and categorically quantified the individual and combined effects of three major abiotic stresses associated with climate change (flooding, progressive drought and high temperature) on 12 phenotypic traits related to morphology, development, growth and fitness, at different developmental stages in four Arabidopsis thaliana accessions. Combined sublethal stresses were applied either simultaneously (high temperature and drought) or sequentially (flooding followed by drought). In total, we analysed the phenotypic responses of 1782 individuals across these stresses and different developmental stages. Overall, abiotic stresses and their combinations resulted in distinct patterns of effects across the traits analysed, with both quantitative and qualitative differences across accessions. Stress combinations had additive effects on some traits, whereas clear positive and negative interactions were observed for other traits: 9 out of 12 traits for high temperature and drought, 6 out of 12 traits for post-submergence and drought showed significant interactions. In many cases where the stresses interacted, the strength of interactions varied across accessions. Hence, our results indicated a general pattern of response in most phenotypic traits to the different stresses and stress combinations, but it also indicated a natural genetic variation in the strength of these responses. This includes novel results regarding the lack of a response to drought after submergence and a decoupling between leaf number and flowering time after submergence. Overall, our study provides a rich characterization of trait responses of Arabidopsis plants to sublethal abiotic stresses at the phenotypic level and can serve as starting point for further in-depth physiological research and plant modelling efforts.
Collapse
Affiliation(s)
| | - Hugo J de Boer
- Copernicus Institute of Sustainable Development, Utrecht University, 3584CB Utrecht, The Netherlands
| | - Jacob C Douma
- Centre for Crop Systems Analysis, Wageningen University & Research, 6700AK Wageningen, The Netherlands
| | - Saskia Elsen
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Sophie Engels
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Tobias Glimmerveen
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Nikita Sajeev
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Martina Huber
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Mathijs Luimes
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Emma Luitjens
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Kevin Raatjes
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Chenyun Hsieh
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Juliane Teapal
- Developmental Biology, Institute of Biodynamics and Biocomplexity, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Tessa Wildenbeest
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Zhang Jiang
- Molecular Plant Physiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
- Plant Ecophysiology, Institute of Environmental Biology, Utrecht University, 3584CH Utrecht, The Netherlands
| | - Ashwani Pareek
- Stress Physiology and Molecular Biology Laboratory, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sneh Singla-Pareek
- Plant Stress Biology, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Xinyou Yin
- Centre for Crop Systems Analysis, Wageningen University & Research, 6700AK Wageningen, The Netherlands
| | - Jochem Evers
- Centre for Crop Systems Analysis, Wageningen University & Research, 6700AK Wageningen, The Netherlands
| | - Niels P R Anten
- Centre for Crop Systems Analysis, Wageningen University & Research, 6700AK Wageningen, The Netherlands
| | | | | |
Collapse
|
5
|
Shukla A, Pagán I, Crevillén P, Alonso‐Blanco C, García‐Arenal F. A role of flowering genes in the tolerance of Arabidopsis thaliana to cucumber mosaic virus. MOLECULAR PLANT PATHOLOGY 2022; 23:175-187. [PMID: 34672409 PMCID: PMC8743021 DOI: 10.1111/mpp.13151] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 09/27/2021] [Indexed: 06/13/2023]
Abstract
The genetic basis of plant tolerance to parasites is poorly understood. We have previously shown that tolerance of Arabidopsis thaliana to its pathogen cucumber mosaic virus is achieved through changes in host life-history traits on infection that result in delaying flowering and reallocating resources from vegetative growth to reproduction. In this system we analyse here genetic determinants of tolerance using a recombinant inbred line family derived from a cross of two accessions with extreme phenotypes. Three major quantitative trait loci for tolerance were identified, which co-located with three flowering repressor genes, FLC, FRI, and HUA2. The role of these genes in tolerance was further examined in genotypes carrying functional or nonfunctional alleles. Functional alleles of FLC together with FRI and/or HUA2 were required for both tolerance and resource reallocation from growth to reproduction. Analyses of FLC alleles from wild accessions that differentially modulate flowering time showed that they ranked differently for their effects on tolerance and flowering. These results pinpoint a role of FLC in A. thaliana tolerance to cucmber mosaic virus, which is a novel major finding, as FLC has not been recognized previously to be involved in plant defence. Although tolerance is associated with a delay in flowering that allows resource reallocation, our results indicate that FLC regulates tolerance and flowering initiation by different mechanisms. Thus, we open a new avenue of research on the interplay between defence and development in plants.
Collapse
Affiliation(s)
- Aayushi Shukla
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadridSpain
- Present address:
Department of Plant BiologyUppsala BioCenterSwedish University of Agricultural Sciences75007UppsalaSweden
| | - Israel Pagán
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadridSpain
- ETSI Agronómica, Alimentaria y de BiosistemasMadridSpain
| | - Pedro Crevillén
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadridSpain
| | - Carlos Alonso‐Blanco
- Departamento de Genética Molecular de PlantasCentro Nacional de BiotecnologíaConsejo Superior de Investigaciones CientíficasMadridSpain
| | - Fernando García‐Arenal
- Centro de Biotecnología y Genómica de PlantasUniversidad Politécnica de Madrid, Instituto Nacional de Investigación y Tecnología Agraria y AlimentariaMadridSpain
- ETSI Agronómica, Alimentaria y de BiosistemasMadridSpain
| |
Collapse
|
6
|
Kinmonth-Schultz H, Lewandowska-Sabat A, Imaizumi T, Ward JK, Rognli OA, Fjellheim S. Flowering Times of Wild Arabidopsis Accessions From Across Norway Correlate With Expression Levels of FT, CO, and FLC Genes. FRONTIERS IN PLANT SCIENCE 2021; 12:747740. [PMID: 34790213 PMCID: PMC8591261 DOI: 10.3389/fpls.2021.747740] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 09/30/2021] [Indexed: 06/12/2023]
Abstract
Temperate species often require or flower most rapidly in the long daylengths, or photoperiods, experienced in summer or after prolonged periods of cold temperatures, referred to as vernalization. Yet, even within species, plants vary in the degree of responsiveness to these cues. In Arabidopsis thaliana, CONSTANS (CO) and FLOWERING LOCUS C (FLC) genes are key to photoperiod and vernalization perception and antagonistically regulate FLOWERING LOCUS T (FT) to influence the flowering time of the plants. However, it is still an open question as to how these genes vary in their interactions among wild accessions with different flowering behaviors and adapted to different microclimates, yet this knowledge could improve our ability to predict plant responses in variable natural conditions. To assess the relationships among these genes and to flowering time, we exposed 10 winter-annual Arabidopsis accessions from throughout Norway, ranging from early to late flowering, along with two summer-annual accessions to 14 weeks of vernalization and either 8- or 19-h photoperiods to mimic Norwegian climate conditions, then assessed gene expression levels 3-, 5-, and 8-days post vernalization. CO and FLC explained both FT levels and flowering time (days) but not rosette leaf number at flowering. The correlation between FT and flowering time increased over time. Although vernalization suppresses FLC, FLC was high in the late-flowering accessions. Across accessions, FT was expressed only at low FLC levels and did not respond to CO in the late-flowering accessions. We proposed that FT may only be expressed below a threshold value of FLC and demonstrated that these three genes correlated to flowering times across genetically distinct accessions of Arabidopsis.
Collapse
Affiliation(s)
- Hannah Kinmonth-Schultz
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, KS, United States
| | | | - Takato Imaizumi
- Department of Biology, University of Washington, Seattle, WA, United States
| | - Joy K. Ward
- College of Arts and Sciences, Case Western Reserve University, Cleveland, OH, United States
| | - Odd Arne Rognli
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Siri Fjellheim
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
7
|
Jenkitkonchai J, Marriott P, Yang W, Sriden N, Jung J, Wigge PA, Charoensawan V. Exploring PIF4 's contribution to early flowering in plants under daily variable temperature and its tissue-specific flowering gene network. PLANT DIRECT 2021; 5:e339. [PMID: 34355114 PMCID: PMC8320686 DOI: 10.1002/pld3.339] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 06/20/2021] [Accepted: 06/24/2021] [Indexed: 05/22/2023]
Abstract
Molecular mechanisms of how constant temperatures affect flowering time have been largely characterized in the model plant Arabidopsis thaliana; however, the effect of natural daily variable temperature outside laboratories is only partly explored. Several flowering genes have been shown to play important roles in temperature responses, including PHYTOCHROME-INTERACTING FACTOR 4 (PIF4) and FLOWERING LOCUS C (FLC), the two genes encoding for the transcription factors (TFs) that act antagonistically to regulate flowering time by activating and repressing floral integrator FLOWERING LOCUS T (FT), respectively. In this study, we have taken a multidisciplinary approach to explore the contribution of PIF4 to the early flowering observed in the daily variable temperature (VAR) and to broaden its transcriptional network using publicly available transcriptomic data. We observed early flowering in the natural accessions Col-0, C24 and their late flowering hybrid C24xCol grown under VAR, as compared with a constant temperature (CON). The loss-of-function mutation of PIF4 exhibits later flowering in VAR in both the Col-0 parent and the C24xCol hybrid, suggesting that PIF4, at least in part, contributes to acceleration of flowering in the VAR condition. To investigate the interplay between PIF4 and its flowering regulator counterparts, FLC and FT, we performed transcriptional analyses and found that VAR increased PIF4 transcription at the end of the day when temperature peaked at 32°C, when FT transcription was also elevated. On the other hand, we observed a decrease in FLC transcription in the 4-week-old plants grown in VAR, as well as in the plants with PIF4 overexpression grown in CON. These results raise a possibility that PIF4 might also regulate FT indirectly through the repression of FLC, in addition to the well-characterized direct control of PIF4 over FT. To further expand our view on the PIF4-orientated flowering gene network in response to temperature changes, we have constructed a coexpression-transcriptional regulatory network by combining publicly available transcriptomic data and gene regulatory interactions of PIF4 and its closely related flowering genes, PIF5, FLC, and ELF3. The network model reveals conserved and tissue-specific regulatory functions, which are useful for confirming as well as predicting the functions and regulatory interactions between these key flowering genes.
Collapse
Affiliation(s)
| | - Poppy Marriott
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Weibing Yang
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
| | - Napaporn Sriden
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
| | - Jae‐Hoon Jung
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- Department of Biological SciencesSungkyunkwan UniversitySuwonSouth Korea
| | - Philip A. Wigge
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- Leibniz‐Institut für Gemüse‐ und ZierpflanzenbauGroßbeerenGermany
- Institute of Biochemistry and BiologyUniversity of PotsdamPotsdamGermany
| | - Varodom Charoensawan
- Department of Biochemistry, Faculty of ScienceMahidol UniversityBangkokThailand
- The Sainsbury LaboratoryUniversity of CambridgeCambridgeUK
- Integrative Computational BioScience (ICBS) CenterMahidol UniversityNakhon PathomThailand
- Systems Biology of Diseases Research Unit, Faculty of ScienceMahidol UniversityBangkokThailand
| |
Collapse
|
8
|
Muñoz A, Pillot JP, Cubas P, Rameau C. Methods for Phenotyping Shoot Branching and Testing Strigolactone Bioactivity for Shoot Branching in Arabidopsis and Pea. Methods Mol Biol 2021; 2309:115-127. [PMID: 34028683 DOI: 10.1007/978-1-0716-1429-7_10] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Shoot branching is a highly variable trait that evolves during plant development and is influenced by environmental and endogenous cues such as hormones. In particular, strigolactones (SLs) are hormones that play a key role in the control of shoot branching. Branch primordia, axillary buds formed in the leaf axils, display differential growth depending on their position in the plant and also respond to hormone signaling. In this chapter, we will describe how to quantify the degree of shoot branching in two plant model species, Arabidopsis and pea, commonly used to decipher the control of this complex trait. We will also propose several methods to perform treatments of SL or SL analogs, to investigate their bioactivity and effect on the shoot branching patterns of plants of different genotypes.
Collapse
Affiliation(s)
- Aitor Muñoz
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain
| | - Jean-Paul Pillot
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| | - Pilar Cubas
- Centro Nacional de Biotecnología-CSIC, Madrid, Spain.
| | - Catherine Rameau
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin, Versailles, France
| |
Collapse
|
9
|
González R, Butković A, Rivarez MPS, Elena SF. Natural variation in Arabidopsis thaliana rosette area unveils new genes involved in plant development. Sci Rep 2020; 10:17600. [PMID: 33077802 PMCID: PMC7788084 DOI: 10.1038/s41598-020-74723-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Accepted: 10/06/2020] [Indexed: 11/08/2022] Open
Abstract
Growth is a complex trait influenced by multiple genes that act at different moments during the development of an organism. This makes it difficult to spot its underlying genetic mechanisms. Since plant growth is intimately related to the effective leaf surface area (ELSA), identifying genes controlling this trait will shed light on our understanding of plant growth. To find new genes with a significant contribution to plant growth, here we used the natural variation in Arabidopsis thaliana to perform a genome-wide association study of ELSA. To do this, the projected rosette area of 710 worldwide distributed natural accessions was measured and analyzed using the genome-wide efficient mixed model association algorithm. From this analysis, ten genes were identified having SNPs with a significant association with ELSA. To validate the implication of these genes into A. thaliana growth, six of them were further studied by phenotyping knock-out mutant plants. It was observed that rem1.2, orc1a, ppd1, and mcm4 mutants showed different degrees of reduction in rosette size, thus confirming the role of these genes in plant growth. Our study identified genes already known to be involved in plant growth but also assigned this role, for the first time, to other genes.
Collapse
Affiliation(s)
- Rubén González
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain.
| | - Anamarija Butković
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
| | - Mark Paul Selda Rivarez
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
- Department of Biotechnology and Systems Biology, National Institute of Biology, Večna pot 111, 1000, Ljubljana, Slovenia
| | - Santiago F Elena
- Instituto de Biología Integrativa de Sistemas (I2SysBio), CSIC-Universitat de València, Parc Cientific UV, Catedrático Agustín Escardino 9, Paterna, 46980, Valencia, Spain
- The Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, NM, 87501, USA
| |
Collapse
|
10
|
Montes N, Vijayan V, Pagán I. Trade-offs between host tolerances to different pathogens in plant-virus interactions. Virus Evol 2020; 6:veaa019. [PMID: 32211198 PMCID: PMC7079720 DOI: 10.1093/ve/veaa019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Although accumulating evidence indicates that tolerance is a plant defence strategy against pathogens as widespread as resistance, how plants evolve tolerance is poorly understood. Theory predicts that hosts will evolve to maximize tolerance or resistance, but not both. Remarkably, most experimental works failed in finding this trade-off. We tested the hypothesis that the evolution of tolerance to one virus is traded-off against tolerance to others, rather than against resistance and identified the associated mechanisms. To do so, we challenged eighteen Arabidopsis thaliana genotypes with Turnip mosaic virus (TuMV) and Cucumber mosaic virus (CMV). We characterized plant life-history trait modifications associated with reduced effects of TuMV and CMV on plant seed production (fecundity tolerance) and life period (mortality tolerance), both measured as a norm of reaction across viral loads (range tolerance). Also, we analysed resistance-tolerance and tolerance-tolerance trade-offs. Results indicate that tolerance to TuMV is associated with changes in the length of the pre-reproductive and reproductive periods, and tolerance to CMV with resource reallocation from growth to reproduction; and that tolerance to TuMV is traded-off against tolerance to CMV in a virulence-dependent manner. Thus, this work provides novel insights on the mechanisms of plant tolerance and highlights the importance of considering the combined effect of different pathogens to understand how plant defences evolve.
Collapse
Affiliation(s)
- Nuria Montes
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Autopista M40, km.38, Pozuelo de Alarcón, Madrid 28223, Spain.,Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU universities, Boadilla del Monte, Madrid, Spain and Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Viji Vijayan
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Autopista M40, km.38, Pozuelo de Alarcón, Madrid 28223, Spain.,Fisiología Vegetal, Departamento Ciencias Farmacéuticas y de la Salud, Facultad de Farmacia, Universidad San Pablo-CEU universities, Boadilla del Monte, Madrid, Spain and Servicio de Reumatología, Hospital Universitario de la Princesa, Instituto de Investigación Sanitaria (IIS-IP), Madrid, Spain
| | - Israel Pagán
- Centro de Biotecnología y Genómica de Plantas UPM-INIA and E.T.S. Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, Autopista M40, km.38, Pozuelo de Alarcón, Madrid 28223, Spain
| |
Collapse
|
11
|
Lee KC, Chung KS, Lee HT, Park JH, Lee JH, Kim JK. Role of Arabidopsis Splicing factor SF1 in Temperature-Responsive Alternative Splicing of FLM pre-mRNA. FRONTIERS IN PLANT SCIENCE 2020; 11:596354. [PMID: 33335535 PMCID: PMC7735993 DOI: 10.3389/fpls.2020.596354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 11/11/2020] [Indexed: 05/04/2023]
Abstract
Small changes in temperature affect plant ecological and physiological factors that impact agricultural production. Hence, understanding how temperature affects flowering is crucial for decreasing the effects of climate change on crop yields. Recent reports have shown that FLM-β, the major spliced isoform of FLOWERING LOCUS M (FLM)-a flowering time gene, contributes to temperature-responsive flowering in Arabidopsis thaliana. However, the molecular mechanism linking pre-mRNA processing and temperature-responsive flowering is not well understood. Genetic and molecular analyses identified the role of an Arabidopsis splicing factor SF1 homolog, AtSF1, in regulating temperature-responsive flowering. The loss-of-function AtSF1 mutant shows temperature insensitivity at different temperatures and very low levels of FLM-β transcript, but a significantly increased transcript level of the alternative splicing (AS) isoform, FLM-δ. An RNA immunoprecipitation (RIP) assay revealed that AtSF1 is responsible for ambient temperature-dependent AS of FLM pre-mRNA, resulting in the temperature-dependent production of functional FLM-β transcripts. Moreover, alterations in other splicing factors such as ABA HYPERSENSITIVE1/CBP80 (ABH1/CBP80) and STABILIZED1 (STA1) did not impact the FLM-β/FLM-δ ratio at different temperatures. Taken together, our data suggest that a temperature-dependent interaction between AtSF1 and FLM pre-mRNA controls flowering time in response to temperature fluctuations.
Collapse
Affiliation(s)
- Keh Chien Lee
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Kyung Sook Chung
- Division of Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Hee Tae Lee
- Division of Life Sciences, Korea University, Seoul, South Korea
| | - Jae-Hyeok Park
- Division of Life Sciences, Jeonbuk National University, Jeonju, South Korea
| | - Jeong Hwan Lee
- Division of Life Sciences, Jeonbuk National University, Jeonju, South Korea
- *Correspondence: Jeong-Hwan Lee,
| | - Jeong-Kook Kim
- Division of Life Sciences, Korea University, Seoul, South Korea
- Jeong-Kook Kim,
| |
Collapse
|
12
|
Identification, Characterization, and Expression Patterns of TCP Genes and microRNA319 in Cotton. Int J Mol Sci 2018; 19:ijms19113655. [PMID: 30463287 PMCID: PMC6274894 DOI: 10.3390/ijms19113655] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 01/07/2023] Open
Abstract
The TEOSINTE BRANCHED 1, CYCLOIDEA, and PROLIFERATING CELL FACTORS (TCP) gene family is a group of plant-specific transcription factors that have versatile functions in developmental processes and stress responses. In this study, a total of 73 TCP genes in upland cotton were identified and characterizated. Phylogenetic analysis classified them into three subgroups: 50 belonged to PCF, 16 to CIN, and 7 to CYC/TB1. GhTCP genes are randomly distributed in 22 of the 26 chromosomes in cotton. Expression patterns of GhTCPs were analyzed in 10 tissues, including different developmental stages of ovule and fiber, as well as under heat, salt, and drought stresses. Transcriptome analysis showed that 44 GhTCP genes exhibited varied transcript accumulation patterns in the tested tissues and 41 GhTCP genes were differentially expressed in response to heat, salt, and drought stresses. Furthermore, three GhTCP genes of the CIN clade were found to contain miR319-binding sites. An anti-correlation expression of GhTCP21 and GhTCP54 was analyzed with miR319 under salt and drought stress. Our results lay the foundation for understanding the complex mechanisms of GhTCP-mediated developmental processes and abiotic stress-signaling transduction pathways in cotton.
Collapse
|
13
|
|
14
|
Hasan Y, Briggs W, Matschegewski C, Ordon F, Stützel H, Zetzsche H, Groen S, Uptmoor R. Quantitative trait loci controlling leaf appearance and curd initiation of cauliflower in relation to temperature. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2016; 129:1273-1288. [PMID: 26993486 DOI: 10.1007/s00122-016-2702-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 03/05/2016] [Indexed: 05/19/2023]
Abstract
QTL regions on chromosomes C06 and C09 are involved in temperature dependent time to curd induction in cauliflower. Temperature is the main environmental factor influencing curding time of cauliflower (Brassica oleracea var. botrytis). Temperatures above 20-22 °C inhibit development towards curding even in many summer cultivars. To identify quantitative trait loci (QTL) controlling curding time and its related traits in a wide range of different temperature regimes from 12 to 27 °C, a doubled haploid (DH) mapping population segregating for curding time was developed and days to curd initiation (DCI), leaf appearance rate (LAR), and final leaf number (FLN) were measured. The population was genotyped with 176 single nucleotide polymorphism (SNP) markers. Composite interval mapping (CIM) revealed repeatedly detected QTL for DCI on C06 and C09. The estimated additive effect increased at high temperatures. Significant QTL × environment interactions (Q × E) for FLN and DCI on C06 and C09 suggest that these hotspot regions have major influences on temperature mediated curd induction. 25 % of the DH lines did not induce curds at temperatures higher than 22 °C. Applying a binary model revealed a QTL with LOD >15 on C06. Nearly all lines carrying the allele of the reliable early maturing parental line (PL) on that locus induced curds at high temperatures while only half of the DH lines carrying the allele of the unreliable PL reached the generative phase during the experiment. Large variation in LAR was observed. QTL for LAR were detected repeatedly in several environments on C01, C04 and C06. Negative correlations between LAR and DCI and QTL co-localizations on C04 and C06 suggest that LAR has also effects on development towards curd induction.
Collapse
Affiliation(s)
- Yaser Hasan
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - William Briggs
- Syngenta Seeds BV, Westeinde 62, BK 1601, Enkhuizen, The Netherlands
| | - Claudia Matschegewski
- Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany
| | - Frank Ordon
- Julius Kuehn-Institute, Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Hartmut Stützel
- Institute of Horticultural Production Systems, Leibniz Universität Hannover, Herrenhäuser Str. 2, Hannover, 30419, Germany
| | - Holger Zetzsche
- Julius Kuehn-Institute, Federal Research Center for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Erwin-Baur-Str. 27, 06484, Quedlinburg, Germany
| | - Simon Groen
- Syngenta Seeds BV, Westeinde 62, BK 1601, Enkhuizen, The Netherlands
| | - Ralf Uptmoor
- Department of Agronomy, University of Rostock, Justus-von-Liebig-Weg 6, 18059, Rostock, Germany.
| |
Collapse
|
15
|
Nunes-Nesi A, Nascimento VDL, de Oliveira Silva FM, Zsögön A, Araújo WL, Sulpice R. Natural genetic variation for morphological and molecular determinants of plant growth and yield. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:2989-3001. [PMID: 27012286 DOI: 10.1093/jxb/erw124] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The rates of increase in yield of the main commercial crops have been steadily falling in many areas worldwide. This generates concerns because there is a growing demand for plant biomass due to the increasing population. Plant yield should thus be improved in the context of climate change and decreasing natural resources. It is a major challenge which could be tackled by improving and/or altering light-use efficiency, CO2 uptake and fixation, primary metabolism, plant architecture and leaf morphology, and developmental plant processes. In this review, we discuss some of the traits which could lead to yield increase, with a focus on how natural genetic variation could be harnessed. Moreover, we provide insights for advancing our understanding of the molecular aspects governing plant growth and yield, and propose future avenues for improvement of crop yield. We also suggest that knowledge accumulated over the last decade in the field of molecular physiology should be integrated into new ideotypes.
Collapse
Affiliation(s)
- Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Vitor de Laia Nascimento
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Franklin Magnum de Oliveira Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ronan Sulpice
- National University of Ireland, Galway, Plant Systems Biology Lab, Plant and AgriBiosciences Research Centre, School of Natural Sciences, Galway, Ireland
| |
Collapse
|
16
|
Méndez-Vigo B, Savic M, Ausín I, Ramiro M, Martín B, Picó FX, Alonso-Blanco C. Environmental and genetic interactions reveal FLOWERING LOCUS C as a modulator of the natural variation for the plasticity of flowering in Arabidopsis. PLANT, CELL & ENVIRONMENT 2016; 39:282-94. [PMID: 26173848 DOI: 10.1111/pce.12608] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Revised: 06/30/2015] [Accepted: 07/02/2015] [Indexed: 05/12/2023]
Abstract
The timing of flowering initiation depends strongly on the environment, a property termed as the plasticity of flowering. Such plasticity determines the adaptive potential of plants because it provides phenotypic buffer against environmental changes, and its natural variation contributes to evolutionary adaptation. We addressed the genetic mechanisms of the natural variation for this plasticity in Arabidopsis thaliana by analysing a population of recombinant inbred lines derived from Don-0 and Ler accessions collected from distinct climates. Quantitative trait locus (QTL) mapping in four environmental conditions differing in photoperiod, vernalization treatment and ambient temperature detected the folllowing: (i) FLOWERING LOCUS C (FLC) as a large effect QTL affecting flowering time differentially in all environments; (ii) numerous QTL displaying smaller effects specifically in some conditions; and (iii) significant genetic interactions between FLC and other loci. Hence, the variation for the plasticity of flowering is determined by a combination of environmentally sensitive and specific QTL, and epistasis. Analysis of FLC from Don identified a new and more active allele likely caused by a cis-regulatory deletion covering the non-coding RNA COLDAIR. Further characterization of four FLC natural alleles showed different environmental and genetic interactions. Thus, FLC appears as a major modulator of the natural variation for the plasticity of flowering to multiple environmental factors.
Collapse
Affiliation(s)
- Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Marija Savic
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Israel Ausín
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Mercedes Ramiro
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - Beatriz Martín
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Sevilla, 41092, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, 28049, Spain
| |
Collapse
|
17
|
del Pozo JC, Ramirez-Parra E. Whole genome duplications in plants: an overview from Arabidopsis. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6991-7003. [PMID: 26417017 DOI: 10.1093/jxb/erv432] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Polyploidy is a common event in plants that involves the acquisition of more than two complete sets of chromosomes. Allopolyploidy originates from interspecies hybrids while autopolyploidy originates from intraspecies whole genome duplication (WGD) events. In spite of inconveniences derived from chromosomic rearrangement during polyploidization, natural plant polyploids species often exhibit improved growth vigour and adaptation to adverse environments, conferring evolutionary advantages. These advantages have also been incorporated into crop breeding programmes. Many tetraploid crops show increased stress tolerance, although the molecular mechanisms underlying these different adaptation abilities are poorly known. Understanding the physiological, cellular, and molecular mechanisms coupled to WGD, in both allo- and autopolyploidy, is a major challenge. Over the last few years, several studies, many of them in Arabidopsis, are shedding light on the basis of genetic, genomic, and epigenomic changes linked to WGD. In this review we summarize and discuss the latest advances made in Arabidopsis polyploidy, but also in other agronomic plant species.
Collapse
Affiliation(s)
- Juan Carlos del Pozo
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| | - Elena Ramirez-Parra
- Centro de Biotecnología y Genómica de Plantas, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Universidad Politécnica de Madrid, Campus de Montegancedo, 28223 Pozuelo de Alarcón, Madrid, Spain
| |
Collapse
|
18
|
Heterochrony underpins natural variation in Cardamine hirsuta leaf form. Proc Natl Acad Sci U S A 2015; 112:10539-44. [PMID: 26243877 DOI: 10.1073/pnas.1419791112] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A key problem in biology is whether the same processes underlie morphological variation between and within species. Here, by using plant leaves as an example, we show that the causes of diversity at these two evolutionary scales can be divergent. Some species like the model plant Arabidopsis thaliana have simple leaves, whereas others like the A. thaliana relative Cardamine hirsuta bear complex leaves comprising leaflets. Previous work has shown that these interspecific differences result mostly from variation in local tissue growth and patterning. Now, by cloning and characterizing a quantitative trait locus (QTL) for C. hirsuta leaf shape, we find that a different process, age-dependent progression of leaf form, underlies variation in this trait within species. This QTL effect is caused by cis-regulatory variation in the floral repressor ChFLC, such that genotypes with low-expressing ChFLC alleles show both early flowering and accelerated age-dependent changes in leaf form, including faster leaflet production. We provide evidence that this mechanism coordinates leaf development with reproductive timing and may help to optimize resource allocation to the next generation.
Collapse
|
19
|
Choudhary P, Saha P, Ray T, Tang Y, Yang D, Cannon MC. EXTENSIN18 is required for full male fertility as well as normal vegetative growth in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2015; 6:553. [PMID: 26257758 PMCID: PMC4510346 DOI: 10.3389/fpls.2015.00553] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Accepted: 07/06/2015] [Indexed: 05/23/2023]
Abstract
EXTENSINS (EXTs) are a 65-member subfamily of hydroxyproline-rich glycoproteins (HRGPs) of which 20 putatively form crosslinking networks in the cell wall. These 20 classical EXTs are involved at the start of new wall assembly as evidenced by a requirement for EXT3 during cytokinesis, and the ability of some EXTs to polymerize in vitro into dendritic patterns. EXT3 was previously shown to form pulcherosine (three Tyrosines) cross-links. Little direct data exists on the other 19 classical EXTs. Here, we describe the phenotypes of ext18 mutants and rescued progeny as well as associated expression profiles of all 20 classical EXT genes. We found that EXT18 is required for full male fertility, as well as for normal vegetative growth. EXT18 has potential to form crosslinking networks via di-iso-di-tyrosine (four Tyrosines) covalent bonds, and not via pulcherosine due to deficit of lone Tyrosines. This together with ext18 defective pollen grains and pollen tubes, and reduced plant size, suggests that EXT18-type EXTs are important contributors to wall integrity, in pollen and other rapidly extending walls. The data also show that a knockout of EXT18 had a pleiotropic affect on the expression of several EXTs, as did the reintroduction of the native EXT18 gene, thus supporting the thesis that transcription of groups of EXTs are co-regulated and work in different combinations to make distinctive inputs into wall assembly of different cell types. These insights contribute to basic knowledge of cell wall self-assembly in different cell types, and potentially enable biotechnological advances in biomass increase and plant fertility control.
Collapse
Affiliation(s)
- Pratibha Choudhary
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, AmherstMA, USA
| | - Prasenjit Saha
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, AmherstMA, USA
| | - Tui Ray
- Plant Biology Division, The Samuel Roberts Noble Foundation, ArdmoreOK, USA
| | - Yuhong Tang
- Plant Biology Division, The Samuel Roberts Noble Foundation, ArdmoreOK, USA
| | - David Yang
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, AmherstMA, USA
| | - Maura C. Cannon
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, AmherstMA, USA
| |
Collapse
|
20
|
|
21
|
The genetic basis of natural variation in seed size and seed number and their trade-off using Arabidopsis thaliana MAGIC lines. Genetics 2014; 198:1751-8. [PMID: 25313128 DOI: 10.1534/genetics.114.170746] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Offspring number and size are key traits determining an individual's fitness and a crop's yield. Yet, extensive natural variation within species is observed for these traits. Such variation is typically explained by trade-offs between fecundity and quality, for which an optimal solution is environmentally dependent. Understanding the genetic basis of seed size and number, as well as any possible genetic constraints preventing the maximization of both, is crucial from both an evolutionary and applied perspective. We investigated the genetic basis of natural variation in seed size and number using a set of Arabidopsis thaliana multiparent advanced generation intercross (MAGIC) lines. We also tested whether life history affects seed size, number, and their trade-off. We found that both seed size and seed number are affected by a large number of mostly nonoverlapping QTL, suggesting that seed size and seed number can evolve independently. The allele that increases seed size at most identified QTL is from the same natural accession, indicating past occurrence of directional selection for seed size. Although a significant trade-off between seed size and number is observed, its expression depends on life-history characteristics, and generally explains little variance. We conclude that the trade-off between seed size and number might have a minor role in explaining the maintenance of variation in seed size and number, and that seed size could be a valid target for selection.
Collapse
|
22
|
Jali SS, Rosloski SM, Janakirama P, Steffen JG, Zhurov V, Berleth T, Clark RM, Grbic V. A plant-specific HUA2-LIKE (HULK) gene family in Arabidopsis thaliana is essential for development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2014; 80:242-54. [PMID: 25070081 PMCID: PMC4283595 DOI: 10.1111/tpj.12629] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 07/11/2014] [Accepted: 07/21/2014] [Indexed: 05/23/2023]
Abstract
In Arabidopsis thaliana, the HUA2 gene is required for proper expression of FLOWERING LOCUS C (FLC) and AGAMOUS, key regulators of flowering time and reproductive development, respectively. Although HUA2 is broadly expressed, plants lacking HUA2 function have only moderately reduced plant stature, leaf initiation rate and flowering time. To better understand HUA2 activity, and to test whether redundancy with similar genes underlies the absence of strong phenotypes in HUA2 mutant plants, we identified and subsequently characterized three additional HUA2-LIKE (HULK) genes in Arabidopsis. These genes form two clades (HUA2/HULK1 and HULK2/HULK3), with members broadly conserved in both vascular and non-vascular plants, but not present outside the plant kingdom. Plants with progressively reduced HULK activity had increasingly severe developmental defects, and plants homozygous for loss-of-function mutations in all four HULK genes were not recovered. Multiple mutants displayed reproductive, embryonic and post-embryonic abnormalities, and provide detailed insights into the overlapping and unique functions of individual HULK genes. With regard to flowering time, opposing influences were apparent: hua2 hulk1 plants were early-flowering, while hulk2 hulk3 mutants were late-flowering, and hua2 acted epistatically to cause early flowering in all combinations. Genome-wide expression profiling of mutant combinations using RNA-Seq revealed complex transcriptional changes in seedlings, with FLC, a known target of HUA2, among the most affected. Our studies, which include characterization of HULK expression patterns and subcellular localization, suggest that the HULK genes encode conserved nuclear factors with partially redundant but essential functions associated with diverse genetic pathways in plants.
Collapse
Affiliation(s)
- Sathya S Jali
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| | - Sarah M Rosloski
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| | | | - Joshua G Steffen
- Department of Biology, University of UtahSalt Lake City, UT, 84112, USA
- Center for Cell and Genome Science, University of UtahSalt Lake City, UT, 84112, USA
| | - Vladimir Zhurov
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| | - Thomas Berleth
- Department of Cell and Systems Biology, University of TorontoToronto, ON, M5S 3B2, Canada
| | - Richard M Clark
- Department of Biology, University of UtahSalt Lake City, UT, 84112, USA
- Center for Cell and Genome Science, University of UtahSalt Lake City, UT, 84112, USA
| | - Vojislava Grbic
- Department of Biology, Western UniversityLondon, ON, N6A 5B7, Canada
| |
Collapse
|
23
|
Chew YH, Wenden B, Flis A, Mengin V, Taylor J, Davey CL, Tindal C, Thomas H, Ougham HJ, de Reffye P, Stitt M, Williams M, Muetzelfeldt R, Halliday KJ, Millar AJ. Multiscale digital Arabidopsis predicts individual organ and whole-organism growth. Proc Natl Acad Sci U S A 2014; 111:E4127-36. [PMID: 25197087 PMCID: PMC4191812 DOI: 10.1073/pnas.1410238111] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Understanding how dynamic molecular networks affect whole-organism physiology, analogous to mapping genotype to phenotype, remains a key challenge in biology. Quantitative models that represent processes at multiple scales and link understanding from several research domains can help to tackle this problem. Such integrated models are more common in crop science and ecophysiology than in the research communities that elucidate molecular networks. Several laboratories have modeled particular aspects of growth in Arabidopsis thaliana, but it was unclear whether these existing models could productively be combined. We test this approach by constructing a multiscale model of Arabidopsis rosette growth. Four existing models were integrated with minimal parameter modification (leaf water content and one flowering parameter used measured data). The resulting framework model links genetic regulation and biochemical dynamics to events at the organ and whole-plant levels, helping to understand the combined effects of endogenous and environmental regulators on Arabidopsis growth. The framework model was validated and tested with metabolic, physiological, and biomass data from two laboratories, for five photoperiods, three accessions, and a transgenic line, highlighting the plasticity of plant growth strategies. The model was extended to include stochastic development. Model simulations gave insight into the developmental control of leaf production and provided a quantitative explanation for the pleiotropic developmental phenotype caused by overexpression of miR156, which was an open question. Modular, multiscale models, assembling knowledge from systems biology to ecophysiology, will help to understand and to engineer plant behavior from the genome to the field.
Collapse
Affiliation(s)
- Yin Hoon Chew
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - Bénédicte Wenden
- Institut National de la Recherche Agronomique and Université Bordeaux, Unité Mixte de Recherche 1332 de Biologie du Fruit et Pathologie, F-33140 Villenave d'Ornon, France
| | - Anna Flis
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Virginie Mengin
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | | | - Christopher L Davey
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2FG, United Kingdom
| | - Christopher Tindal
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - Howard Thomas
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2FG, United Kingdom
| | - Helen J Ougham
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth University, Aberystwyth SY23 2FG, United Kingdom
| | - Philippe de Reffye
- Cirad-Amis, Unité Mixte de Recherche, Association pour le Maintien d'une Agriculture Paysanne, F-34398 Montpellier Cedex 5, France; and
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam-Golm, Germany
| | - Mathew Williams
- School of GeoSciences, University of Edinburgh, Edinburgh EH9 3JN, United Kingdom
| | | | - Karen J Halliday
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom
| | - Andrew J Millar
- SynthSys and School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3JD, United Kingdom;
| |
Collapse
|
24
|
Granier C, Vile D. Phenotyping and beyond: modelling the relationships between traits. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:96-102. [PMID: 24637194 DOI: 10.1016/j.pbi.2014.02.009] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Revised: 02/05/2014] [Accepted: 02/14/2014] [Indexed: 05/04/2023]
Abstract
Plant phenotyping technology has become more advanced with the capacity to measure many morphological and physiological traits on a given individual. With increasing automation, getting access to various traits on a high number of genotypes over time raises the need to develop systems for data storage and analyses, all congregating into plant phenotyping pipelines. In this review, we highlight several studies that illustrate the latest advances in plant multi-trait phenotyping and discuss future needs to ensure the best use of all these quantitative data. We assert that the next challenge is to disentangle how plant traits are embedded in networks of dependencies (and independencies) by modelling the relationships between them and how these are affected by genetics and environment.
Collapse
Affiliation(s)
- Christine Granier
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA-Supagro 2 Place Viala, 34060 Montpellier, France.
| | - Denis Vile
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, INRA-Supagro 2 Place Viala, 34060 Montpellier, France.
| |
Collapse
|
25
|
Manzano-Piedras E, Marcer A, Alonso-Blanco C, Picó FX. Deciphering the adjustment between environment and life history in annuals: lessons from a geographically-explicit approach in Arabidopsis thaliana. PLoS One 2014; 9:e87836. [PMID: 24498381 PMCID: PMC3912251 DOI: 10.1371/journal.pone.0087836] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 12/30/2013] [Indexed: 11/20/2022] Open
Abstract
The role that different life-history traits may have in the process of adaptation caused by divergent selection can be assessed by using extensive collections of geographically-explicit populations. This is because adaptive phenotypic variation shifts gradually across space as a result of the geographic patterns of variation in environmental selective pressures. Hence, large-scale experiments are needed to identify relevant adaptive life-history traits as well as their relationships with putative selective agents. We conducted a field experiment with 279 geo-referenced accessions of the annual plant Arabidopsis thaliana collected across a native region of its distribution range, the Iberian Peninsula. We quantified variation in life-history traits throughout the entire life cycle. We built a geographic information system to generate an environmental data set encompassing climate, vegetation and soil data. We analysed the spatial autocorrelation patterns of environmental variables and life-history traits, as well as the relationship between environmental and phenotypic data. Almost all environmental variables were significantly spatially autocorrelated. By contrast, only two life-history traits, seed weight and flowering time, exhibited significant spatial autocorrelation. Flowering time, and to a lower extent seed weight, were the life-history traits with the highest significant correlation coefficients with environmental factors, in particular with annual mean temperature. In general, individual fitness was higher for accessions with more vigorous seed germination, higher recruitment and later flowering times. Variation in flowering time mediated by temperature appears to be the main life-history trait by which A. thaliana adjusts its life history to the varying Iberian environmental conditions. The use of extensive geographically-explicit data sets obtained from field experiments represents a powerful approach to unravel adaptive patterns of variation. In a context of current global warming, geographically-explicit approaches, evaluating the match between organisms and the environments where they live, may contribute to better assess and predict the consequences of global warming.
Collapse
Affiliation(s)
- Esperanza Manzano-Piedras
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| | - Arnald Marcer
- CREAF, Cerdanyola del Vallès, Spain
- Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - F. Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), Sevilla, Spain
| |
Collapse
|
26
|
Takahashi M, Morikawa H. Nitrogen dioxide accelerates flowering without changing the number of leaves at flowering in Arabidopsis thaliana. PLANT SIGNALING & BEHAVIOR 2014; 9:e970433. [PMID: 25482805 PMCID: PMC4623349 DOI: 10.4161/15592316.2014.970433] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 07/09/2014] [Indexed: 05/19/2023]
Abstract
A negative correlation has consistently been reported between the change in flowering time and the change in leaf number at flowering in response to environmental stimuli, such as the application of exogenous compounds, cold temperature, day length and light quality treatments in Arabidopsis thaliana (Arabidopsis). However, we show here that the application of exogenous nitrogen dioxide (NO2) did not change the number of rosette leaves at flowering, but actually accelerated flowering in Arabidopsis. Furthermore, NO2 treatment was found to increase the rate of leaf appearance. Based on these results, reaching the maximum rosette leaf number earlier in response to NO2 treatment resulted in earlier flowering relative to controls.
Collapse
Affiliation(s)
- Misa Takahashi
- Department of Mathematical and Life Sciences; Hiroshima University; Higashi-Hiroshima, Japan
- Correspondence to: Misa Takahashi;
| | - Hiromichi Morikawa
- Department of Mathematical and Life Sciences; Hiroshima University; Higashi-Hiroshima, Japan
| |
Collapse
|
27
|
Ceunen S, Geuns JMC. Steviol glycosides: chemical diversity, metabolism, and function. JOURNAL OF NATURAL PRODUCTS 2013; 76:1201-28. [PMID: 23713723 DOI: 10.1021/np400203b] [Citation(s) in RCA: 195] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Steviol glycosides are a group of highly sweet diterpene glycosides discovered in only a few plant species, most notably the Paraguayan shrub Stevia rebaudiana. During the past few decades, the nutritional and pharmacological benefits of these secondary metabolites have become increasingly apparent. While these properties are now widely recognized, many aspects related to their in vivo biochemistry and metabolism and their relationship to the overall plant physiology of S. rebaudiana are not yet understood. Furthermore, the large size of the steviol glycoside pool commonly found within S. rebaudiana leaves implies a significant metabolic investment and poses questions regarding the benefits S. rebaudiana might gain from their accumulation. The current review intends to thoroughly discuss the available knowledge on these issues.
Collapse
Affiliation(s)
- Stijn Ceunen
- Laboratory of Functional Biology, Katholieke Universiteit Leuven, Kasteelpark Arenberg 31, BP 2436, B-3001 Heverlee, Belgium
| | | |
Collapse
|
28
|
Lièvre M, Wuyts N, Cookson SJ, Bresson J, Dapp M, Vasseur F, Massonnet C, Tisné S, Bettembourg M, Balsera C, Bédiée A, Bouvery F, Dauzat M, Rolland G, Vile D, Granier C. Phenotyping the kinematics of leaf development in flowering plants: recommendations and pitfalls. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2013; 2:809-21. [PMID: 24123939 DOI: 10.1002/wdev.119] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Leaves of flowering plants are produced from the shoot apical meristem at regular intervals and they grow according to a developmental program that is determined by both genetic and environmental factors. Detailed frameworks for multiscale dynamic analyses of leaf growth have been developed in order to identify and interpret phenotypic differences caused by either genetic or environmental variations. They revealed that leaf growth dynamics are non-linearly and nonhomogeneously distributed over the lamina, in the leaf tissues and cells. The analysis of the variability in leaf growth, and its underlying processes, has recently gained momentum with the development of automated phenotyping platforms that use various technologies to record growth at different scales and at high throughput. These modern tools are likely to accelerate the characterization of gene function and the processes that underlie the control of shoot development. Combined with powerful statistical analyses, trends have emerged that may have been overlooked in low throughput analyses. However, in many examples, the increase in throughput allowed by automated platforms has led to a decrease in the spatial and/or temporal resolution of growth analyses. Concrete examples presented here indicate that simplification of the dynamic leaf system, without consideration of its spatial and temporal context, can lead to important misinterpretations of the growth phenotype.
Collapse
Affiliation(s)
- Maryline Lièvre
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, Montpellier, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Méndez-Vigo B, Martínez-Zapater JM, Alonso-Blanco C. The flowering repressor SVP underlies a novel Arabidopsis thaliana QTL interacting with the genetic background. PLoS Genet 2013; 9:e1003289. [PMID: 23382706 PMCID: PMC3561112 DOI: 10.1371/journal.pgen.1003289] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Accepted: 12/15/2012] [Indexed: 01/17/2023] Open
Abstract
The timing of flowering initiation is a fundamental trait for the adaptation of annual plants to different environments. Large amounts of intraspecific quantitative variation have been described for it among natural accessions of many species, but the molecular and evolutionary mechanisms underlying this genetic variation are mainly being determined in the model plant Arabidopsis thaliana. To find novel A. thaliana flowering QTL, we developed introgression lines from the Japanese accession Fuk, which was selected based on the substantial transgression observed in an F2 population with the reference strain Ler. Analysis of an early flowering line carrying a single Fuk introgression identified Flowering Arabidopsis QTL1 (FAQ1). We fine-mapped FAQ1 in an 11 kb genomic region containing the MADS transcription factor gene SHORT VEGETATIVE PHASE (SVP). Complementation of the early flowering phenotype of FAQ1-Fuk with a SVP-Ler transgen demonstrated that FAQ1 is SVP. We further proved by directed mutagenesis and transgenesis that a single amino acid substitution in SVP causes the loss-of-function and early flowering of Fuk allele. Analysis of a worldwide collection of accessions detected FAQ1/SVP-Fuk allele only in Asia, with the highest frequency appearing in Japan, where we could also detect a potential ancestral genotype of FAQ1/SVP-Fuk. In addition, we evaluated allelic and epistatic interactions of SVP natural alleles by analysing more than one hundred transgenic lines carrying Ler or Fuk SVP alleles in five genetic backgrounds. Quantitative analyses of these lines showed that FAQ1/SVP effects vary from large to small depending on the genetic background. These results support that the flowering repressor SVP has been recently selected in A. thaliana as a target for early flowering, and evidence the relevance of genetic interactions for the intraspecific evolution of FAQ1/SVP and flowering time. In many plant species, the timing of flowering initiation shows abundant quantitative variation among natural varieties, which reflects the importance of this trait for adaptation to different environments. Currently, a major goal in plant biology is to determine the molecular and evolutionary bases of this natural genetic variation. In this study we demonstrate that the central flowering regulator SHORT VEGETATIVE PHASE (SVP), encoding a MADS transcription factor, is involved in the flowering natural variation of the model organism Arabidopsis thaliana. In particular, we prove that a structural change caused by a single amino acid substitution generates a SVP early flowering allele that is distributed only in Asia. Furthermore, genetic interactions have been shown to be a component of the natural variation for many important adaptive traits. However, very few studies, either in animals or plants, have systematically addressed the extent of genetic interactions among specific alleles responsible for the natural variation of complex traits. Our study shows that the flowering effects of SVP natural alleles depend significantly on the genetic background; and, subsequently, we demonstrate the relevance of epistasis for the evolution of this crucial transcription factor and flowering time.
Collapse
Affiliation(s)
- Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - José M. Martínez-Zapater
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- Instituto de Ciencias de la Vid y del Vino (ICVV), Consejo Superior de Investigaciones Científicas (CSIC), Universidad de La Rioja, Gobierno de La Rioja, Logroño, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
- * E-mail:
| |
Collapse
|
30
|
Sánchez-Bermejo E, Méndez-Vigo B, Picó FX, Martínez-Zapater JM, Alonso-Blanco C. Novel natural alleles at FLC and LVR loci account for enhanced vernalization responses in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2012; 35:1672-84. [PMID: 22494398 DOI: 10.1111/j.1365-3040.2012.02518.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Vernalization, the induction of flowering by low winter temperatures, is likely to be involved in plant climatic adaptation. However, the genetic, molecular and ecological bases underlying the quantitative variation that tunes vernalization sensitivity to natural environments are largely unknown. To address these questions, we have studied the enhanced vernalization response shown by the Ll-0 accession of Arabidopsis thaliana. Quantitative trait locus (QTL) mapping for several flowering initiation traits in relation to vernalization, in a new Ler × Ll-0 recombinant inbred line (RIL) population, identified large effect alleles at FRI, FLC and HUA2, together with two small effect loci named as Llagostera vernalization response (LVR) 1 and 2. Phenotypic analyses of near isogenic lines validated LVR1 effect on flowering vernalization responses. To further characterize the FLC allele from Ll-0, we carried out genetic association analyses using a regional collection of wild genotypes. FLC-Ll-0 appeared as a low-frequency allele that is distinguished by polymorphism Del(-57), a 50-bp-deletion in the 5'-UTR. Del(-57) was significantly associated with enhanced vernalization responses and FLC RNA expression, as well as with altitude and minimum temperatures. These results are consistent with Del(-57) acting as a novel cis-regulatory FLC polymorphism that may confer climatic adaptation by increasing vernalization sensitivity.
Collapse
Affiliation(s)
- Eduardo Sánchez-Bermejo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049 Madrid, Spain
| | | | | | | | | |
Collapse
|
31
|
Vasseur F, Violle C, Enquist BJ, Granier C, Vile D. A common genetic basis to the origin of the leaf economics spectrum and metabolic scaling allometry. Ecol Lett 2012; 15:1149-57. [DOI: 10.1111/j.1461-0248.2012.01839.x] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/20/2012] [Accepted: 06/29/2012] [Indexed: 11/28/2022]
Affiliation(s)
- François Vasseur
- UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE); INRA, Montpellier SupAgro; F-34060 Montpellier France
| | - Cyrille Violle
- Department of Ecology and Evolutionary Biology; University of Arizona; 1041 E Lowell St Tucson Arizona 85721 USA
- Centre d'Ecologie Fonctionnelle et Evolutive; CNRS, UMR5175; F-34000 Montpellier France
| | - Brian J. Enquist
- Department of Ecology and Evolutionary Biology; University of Arizona; 1041 E Lowell St Tucson Arizona 85721 USA
- The Santa Fe Institute; 1399 Hyde Park Road Santa Fe New Mexico 87501 USA
| | - Christine Granier
- UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE); INRA, Montpellier SupAgro; F-34060 Montpellier France
| | - Denis Vile
- UMR759 Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux (LEPSE); INRA, Montpellier SupAgro; F-34060 Montpellier France
| |
Collapse
|
32
|
Madrigal P. Flowering and Plant Development at the 38th Spanish Society of Genetics Congress, Murcia, 2011. JOURNAL OF PLANT GROWTH REGULATION 2011; 31:136-138. [PMID: 26069394 PMCID: PMC4459658 DOI: 10.1007/s00344-011-9241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2011] [Accepted: 11/02/2011] [Indexed: 06/04/2023]
Affiliation(s)
- Pedro Madrigal
- Laboratory of Biometry, Institute of Plant Genetics, Polish Academy of Sciences, Strzeszyńska 34, 60-479 Poznań, Poland
| |
Collapse
|
33
|
Méndez-Vigo B, Picó FX, Ramiro M, Martínez-Zapater JM, Alonso-Blanco C. Altitudinal and climatic adaptation is mediated by flowering traits and FRI, FLC, and PHYC genes in Arabidopsis. PLANT PHYSIOLOGY 2011; 157:1942-55. [PMID: 21988878 PMCID: PMC3327218 DOI: 10.1104/pp.111.183426] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2011] [Accepted: 10/10/2011] [Indexed: 05/19/2023]
Abstract
Extensive natural variation has been described for the timing of flowering initiation in many annual plants, including the model wild species Arabidopsis (Arabidopsis thaliana), which is presumed to be involved in adaptation to different climates. However, the environmental factors that might shape this genetic variation, as well as the molecular bases of climatic adaptation by modifications of flowering time, remain mostly unknown. To approach both goals, we characterized the flowering behavior in relation to vernalization of 182 Arabidopsis wild genotypes collected in a native region spanning a broad climatic range. Phenotype-environment association analyses identified strong altitudinal clines (0-2600 m) in seven out of nine flowering-related traits. Altitudinal clines were dissected in terms of minimum winter temperature and precipitation, indicating that these are the main climatic factors that might act as selective pressures on flowering traits. In addition, we used an association analysis approach with four candidate genes, FRIGIDA (FRI), FLOWERING LOCUS C (FLC), PHYTOCHROME C (PHYC), and CRYPTOCHROME2, to decipher the genetic bases of this variation. Eleven different loss-of-function FRI alleles of low frequency accounted for up to 16% of the variation for most traits. Furthermore, an FLC allelic series of six novel putative loss- and change-of-function alleles, with low to moderate frequency, revealed that a broader FLC functional diversification might contribute to flowering variation. Finally, environment-genotype association analyses showed that the spatial patterns of FRI, FLC, and PHYC polymorphisms are significantly associated with winter temperatures and spring and winter precipitations, respectively. These results support that allelic variation in these genes is involved in climatic adaptation.
Collapse
Affiliation(s)
| | | | | | | | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid 28049, Spain (B.M.-V., M.R., J.M.M.-Z., C.A.-B.); Departamento de Ecología Integrativa, Estación Biológica de Doñana, Consejo Superior de Investigaciones Científicas, Seville 41092, Spain (F.X.P.); Instituto de Ciencias de la Vid y del Vino, Consejo Superior de Investigaciones Científicas, Universidad de La Rioja, Gobierno de La Rioja, Logrono 26006, Spain (J.M.M.-Z.)
| |
Collapse
|
34
|
Vasseur F, Pantin F, Vile D. Changes in light intensity reveal a major role for carbon balance in Arabidopsis responses to high temperature. PLANT, CELL & ENVIRONMENT 2011; 34:1563-76. [PMID: 21707647 DOI: 10.1111/j.1365-3040.2011.02353.x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
High temperature (HT) is a major limiting factor for plant productivity. Because some responses to HT, notably hyponasty, resemble those encountered in low light (LL), we hypothesized that plant responses to HT are under the control of carbon balance. We analysed the interactive effects of HT and irradiance level on hyponasty and a set of traits related to plant growth in natural accessions of Arabidopsis thaliana and mutants affected in heat dissipation through transpiration (NCED6-OE, ost2) and starch metabolism (pgm). HT induced hyponasty, reduced plant growth and modified leaf structure. LL worsened the effects of HT, while increasing light restored trait values close to levels observed at control temperature. Leaf temperature per se did not play a major role in the observed responses. By contrast, a major role of carbon balance was supported by hyponastic growth of pgm, as well as morphological, physiological (photosynthesis, sugar and starch contents) and transcriptional data. Carbon balance could be a common sensor of HT and LL, leading to responses specific of the shade avoidance syndrome. Hyponasty and associated changes in plant traits could be key traits conditioning plant performance under competition for light, particularly in warm environments.
Collapse
Affiliation(s)
- François Vasseur
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux, UMR 759, INRA-SUPAGRO, F-34060 Montpellier, France
| | | | | |
Collapse
|
35
|
Sarvepalli K, Nath U. Hyper-activation of the TCP4 transcription factor in Arabidopsis thaliana accelerates multiple aspects of plant maturation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2011; 67:595-607. [PMID: 21518050 DOI: 10.1111/j.1365-313x.2011.04616.x] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Plant organs are initiated as primordial outgrowths, and require controlled cell division and differentiation to achieve their final size and shape. Superimposed on this is another developmental program that orchestrates the switch from vegetative to reproductive to senescence stages in the life cycle. These require sequential function of heterochronic regulators. Little is known regarding the coordination between organ and organismal growth in plants. The TCP gene family encodes transcription factors that control diverse developmental traits, and a subgroup of class II TCP genes regulate leaf morphogenesis. Absence of these genes results in large, crinkly leaves due to excess division, mainly at margins. It has been suggested that these class II TCPs modulate the spatio-temporal control of differentiation in a growing leaf, rather than regulating cell proliferation per se. However, the link between class II TCP action and cell growth has not been established. As loss-of-function mutants of individual TCP genes in Arabidopsis are not very informative due to gene redundancy, we generated a transgenic line that expressed a hyper-activated form of TCP4 in its endogenous expression domain. This resulted in premature onset of maturation and decreased cell proliferation, leading to much smaller leaves, with cup-shaped lamina in extreme cases. Further, the transgenic line initiated leaves faster than wild-type and underwent precocious reproductive maturation due to a shortened adult vegetative phase. Early senescence and severe fertility defects were also observed. Thus, hyper-activation of TCP4 revealed its role in determining the timing of crucial developmental events, both at the organ and organism level.
Collapse
Affiliation(s)
- Kavitha Sarvepalli
- Department of Microbiology and Cell Biology, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | | |
Collapse
|
36
|
Tisné S, Schmalenbach I, Reymond M, Dauzat M, Pervent M, Vile D, Granier C. Keep on growing under drought: genetic and developmental bases of the response of rosette area using a recombinant inbred line population. PLANT, CELL & ENVIRONMENT 2010; 33:1875-87. [PMID: 20545881 DOI: 10.1111/j.1365-3040.2010.02191.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Variation in leaf development caused by water deficit was analysed in 120 recombinant inbred lines derived from two Arabidopsis thaliana accessions, Ler and An-1. Main effect quantitative trait loci (QTLs) and QTLs in epistatic interactions were mapped for the responses of rosette area, leaf number and leaf 6 area to water deficit. An epistatic interaction between two QTLs affected the response of whole rosette area and individual leaf area but only with effects in well-watered condition. A second epistatic interaction between two QTLs controlled the response of rosette area and leaf number with specific effects in the water deficit condition. These effects were validated by generating and phenotyping new appropriate lines. Accordingly, a low reduction of rosette area was observed for lines with a specific allelic combination at the two interacting QTLs. This low reduction was accompanied by an increase in leaf number with a lengthening of the vegetative phase and a low reduction in individual leaf area with low reductions in epidermal cell area and number. Statistical analyses suggested that responses of epidermal cell area and number to water deficit in individual leaves were partly caused by delay in flowering time and reduction in leaf emergence rate, respectively.
Collapse
Affiliation(s)
- Sébastien Tisné
- Laboratoire d'Ecophysiologie des Plantes sous Stress Environnementaux UMR 759, Institut National de la Recherche Agronomique/Ecole Nationale Supérieure d'Agronomie, Place Viala, F-34060 Montpellier, Cedex 1, France
| | | | | | | | | | | | | |
Collapse
|
37
|
Bentsink L, Hanson J, Hanhart CJ, Blankestijn-de Vries H, Coltrane C, Keizer P, El-Lithy M, Alonso-Blanco C, de Andrés MT, Reymond M, van Eeuwijk F, Smeekens S, Koornneef M. Natural variation for seed dormancy in Arabidopsis is regulated by additive genetic and molecular pathways. Proc Natl Acad Sci U S A 2010; 107:4264-9. [PMID: 20145108 PMCID: PMC2840098 DOI: 10.1073/pnas.1000410107] [Citation(s) in RCA: 135] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Timing of germination is presumably under strong natural selection as it determines the environmental conditions in which a plant germinates and initiates its postembryonic life cycle. To investigate how seed dormancy is controlled, quantitative trait loci (QTL) analyses has been performed in six Arabidopsis thaliana recombinant inbred line populations by analyzing them simultaneously using a mixed model QTL approach. The recombinant inbred line populations were derived from crosses between the reference accession Landsberg erecta (Ler) and accessions from different world regions. In total, 11 delay of germination (DOG) QTL have been identified, and nine of them have been confirmed by near isogenic lines (NILs). The absence of strong epistatic interactions between the different DOG loci suggests that they affect dormancy mainly by distinct genetic pathways. This was confirmed by analyzing the transcriptome of freshly harvested dry seeds of five different DOG NILs. All five DOG NILs showed discernible and different expression patterns compared with the expression of their genetic background Ler. The genes identified in the different DOG NILs represent largely different gene ontology profiles. It is proposed that natural variation for seed dormancy in Arabidopsis is mainly controlled by different additive genetic and molecular pathways rather than epistatic interactions, indicating the involvement of several independent pathways.
Collapse
Affiliation(s)
- Leónie Bentsink
- Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Johannes Hanson
- Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| | - Corrie J. Hanhart
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | | | - Colin Coltrane
- Biometris–Applied Statistics, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands
| | - Paul Keizer
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Biometris–Applied Statistics, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands
| | - Mohamed El-Lithy
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Carlos Alonso-Blanco
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB) and Consejo Superior de Investigaciones Científicas (CSIC), E-28049 Madrid, Spain; and
| | - M. Teresa de Andrés
- Department of Plant Molecular Genetics, Centro Nacional de Biotecnología (CNB) and Consejo Superior de Investigaciones Científicas (CSIC), E-28049 Madrid, Spain; and
| | - Matthieu Reymond
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| | - Fred van Eeuwijk
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
- Biometris–Applied Statistics, Wageningen University and Research Centre, 6708 PB Wageningen, The Netherlands
| | - Sjef Smeekens
- Department of Molecular Plant Physiology, Utrecht University, 3584 CH Utrecht, The Netherlands
- Centre for BioSystems Genomics, 6700 AB Wageningen, The Netherlands
| | - Maarten Koornneef
- Laboratory of Genetics, Wageningen University, 6708 PB Wageningen, The Netherlands
- Max Planck Institute for Plant Breeding Research, 50829 Cologne, Germany
| |
Collapse
|