1
|
Willems P, Sterck L, Dard A, Huang J, De Smet I, Gevaert K, Van Breusegem F. The Plant PTM Viewer 2.0: in-depth exploration of plant protein modification landscapes. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4611-4624. [PMID: 38872385 DOI: 10.1093/jxb/erae270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Accepted: 06/13/2024] [Indexed: 06/15/2024]
Abstract
Post-translational modifications (PTMs) greatly increase protein diversity and functionality. To help the plant research community interpret the ever-increasing number of reported PTMs, the Plant PTM Viewer (https://www.psb.ugent.be/PlantPTMViewer) provides an intuitive overview of plant protein PTMs and the tools to assess it. This update includes 62 novel PTM profiling studies, adding a total of 112 000 modified peptides reporting plant PTMs, including 14 additional PTM types and three species (moss, tomato, and soybean). Furthermore, an open modification re-analysis of a large-scale Arabidopsis thaliana mass spectrometry tissue atlas identified previously uncharted landscapes of lysine acylations predominant in seed and flower tissues and 3-phosphoglycerylation on glycolytic enzymes in plants. An extra 'Protein list analysis' tool was developed for retrieval and assessing the enrichment of PTMs in a protein list of interest. We conducted a protein list analysis on nuclear proteins, revealing a substantial number of redox modifications in the nucleus, confirming previous assumptions regarding the redox regulation of transcription. We encourage the plant research community to use PTM Viewer 2.0 for hypothesis testing and new target discovery, and also to submit new data to expand the coverage of conditions, plant species, and PTM types, thereby enriching our understanding of plant biology.
Collapse
Affiliation(s)
- Patrick Willems
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Lieven Sterck
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Avilien Dard
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Jingjing Huang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Ive De Smet
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| | - Kris Gevaert
- Department of Biomolecular Medicine, Ghent University, 9052 Ghent, Belgium
- VIB Center for Medical Biotechnology, VIB, 9052 Ghent, Belgium
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052 Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052 Ghent, Belgium
| |
Collapse
|
2
|
Wang Q, Cang X, Yan H, Zhang Z, Li W, He J, Zhang M, Lou L, Wang R, Chang M. Activating plant immunity: the hidden dance of intracellular Ca 2+ stores. THE NEW PHYTOLOGIST 2024; 242:2430-2439. [PMID: 38586981 DOI: 10.1111/nph.19717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 03/14/2024] [Indexed: 04/09/2024]
Abstract
Calcium ion (Ca2+) serves as a versatile and conserved second messenger in orchestrating immune responses. In plants, plasma membrane-localized Ca2+-permeable channels can be activated to induce Ca2+ influx from extracellular space to cytosol upon pathogen infection. Notably, different immune elicitors can induce dynamic Ca2+ signatures in the cytosol. During pattern-triggered immunity, there is a rapid and transient increase in cytosolic Ca2+, whereas in effector-triggered immunity, the elevation of cytosolic Ca2+ is strong and sustained. Numerous Ca2+ sensors are localized in the cytosol or different intracellular organelles, which are responsible for detecting and converting Ca2+ signals. In fact, Ca2+ signaling coordinated by cytosol and subcellular compartments plays a crucial role in activating plant immune responses. However, the complete Ca2+ signaling network in plant cells is still largely ambiguous. This review offers a comprehensive insight into the collaborative role of intracellular Ca2+ stores in shaping the Ca2+ signaling network during plant immunity, and several intriguing questions for future research are highlighted.
Collapse
Affiliation(s)
- Qi Wang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xiaoyan Cang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base of Ministry of Science and Technology, Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Haiqiao Yan
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zilu Zhang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wei Li
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jinyu He
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Meixiang Zhang
- College of Life Sciences, Shaanxi Normal University, Xi'an, 710119, China
| | - Laiqing Lou
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ran Wang
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ming Chang
- Key Laboratory of Soybean Disease and Pest Control (Ministry of Agriculture and Rural Affairs), Key Laboratory of Plant Immunity, College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Qin H, Yang W, Liu Z, Ouyang Y, Wang X, Duan H, Zhao B, Wang S, Zhang J, Chang Y, Jiang K, Yu K, Zhang X. Mitochondrial VOLTAGE-DEPENDENT ANION CHANNEL 3 regulates stomatal closure by abscisic acid signaling. PLANT PHYSIOLOGY 2024; 194:1041-1058. [PMID: 37772952 DOI: 10.1093/plphys/kiad516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/30/2023]
Abstract
In Arabidopsis (Arabidopsis thaliana), stomatal closure mediated by abscisic acid (ABA) is redundantly controlled by ABA receptor family proteins (PYRABACTIN RESISTANCE 1 [PYR1]/PYR1-LIKE [PYLs]) and subclass III SUCROSE NONFERMENTING 1 (SNF1)-RELATED PROTEIN KINASES 2 (SnRK2s). Among these proteins, the roles of PYR1, PYL2, and SnRK2.6 are more dominant. A recent discovery showed that ABA-induced accumulation of reactive oxygen species (ROS) in mitochondria promotes stomatal closure. By analyzing stomatal movements in an array of single and higher order mutants, we revealed that the mitochondrial protein VOLTAGE-DEPENDENT ANION CHANNEL 3 (VDAC3) jointly regulates ABA-mediated stomatal closure with a specialized set of PYLs and SnRK2s by affecting cellular and mitochondrial ROS accumulation. VDAC3 interacted with 9 PYLs and all 3 subclass III SnRK2s. Single mutation in VDAC3, PYLs (except PYR1 and PYL2), or SnRK2.2/2.3 had little effect on ABA-mediated stomatal closure. However, knocking out PYR1, PYL1/2/4/8, or SnRK2.2/2.3 in vdac3 mutants resulted in significantly delayed or attenuated ABA-mediated stomatal closure, despite the presence of other PYLs or SnRK2s conferring redundant functions. We found that cellular and mitochondrial accumulation of ROS induced by ABA was altered in vdac3pyl1 mutants. Moreover, H2O2 treatment restored ABA-induced stomatal closure in mutants with decreased stomatal sensitivity to ABA. Our work reveals that VDAC3 ensures redundant control of ABA-mediated stomatal closure by canonical ABA signaling components.
Collapse
Affiliation(s)
- Haixia Qin
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Wenqi Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Zile Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yi Ouyang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xiao Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Haiyang Duan
- State Key Laboratory of Wheat and Maize Crops Science, College of Agronomy, Henan Agricultural University, Zhengzhou 450002, China
| | - Bing Zhao
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Shujie Wang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Junli Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yuankai Chang
- School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Kun Jiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ke Yu
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Xuebin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, Henan Joint International Laboratory for Crop Multi-Omics Research, School of Life Sciences, Henan University, Kaifeng 475004, China
| |
Collapse
|
4
|
Singh N, Ravi B, Saini LK, Pandey GK. Voltage-dependent anion channel 3 (VDAC3) mediates P. syringae induced ABA-SA signaling crosstalk in Arabidopsis thaliana. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 206:108237. [PMID: 38109831 DOI: 10.1016/j.plaphy.2023.108237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/04/2023] [Accepted: 11/23/2023] [Indexed: 12/20/2023]
Abstract
Pathogen severely affects plant mitochondrial processes including respiration, however, the roles and mechanism of mitochondrial protein during the immune response remain largely unexplored. The interplay of plant hormone signaling during defense is an outcome of plant pathogen interaction. We recently discovered that the Arabidopsis calcineurin B-like interacting protein kinase 9 (AtCIPK9) interacts with the voltage-dependent anion channel 3 (AtVDAC3) and inhibits MV-induced oxidative damage. Here we report the characterization of AtVDAC3 in an antagonistic interaction pathway between abscisic acid (ABA) and salicylic acid (SA) signaling in Pseudomonas syringae -Arabidopsis interaction. In this study, we observed that mutants of AtVDAC3 were highly susceptible to Pseudomonas syringae infection as compared to the wild type (WT) Arabidopsis plants. Transcripts of VDAC3 and CIPK9 were inducible upon ABA application. Following pathogen exposure, expression analyses of ABA and SA biosynthesis genes indicated that the function of VDAC3 is required for isochorisimate synthase 1 (ICS1) expression but not for Nine-cis-epoxycaotenoid dioxygenase 3 (NCED3) expression. Despite the fact that vdac3 mutants had increased NCED3 expression in response to pathogen challenge, transcripts of ABA sensitive genes such as AtRD22 and AtRAB18 were downregulated even after exogenous ABA application. VDAC3 is required for ABA responsive genes expression upon exogenous ABA application. We also found that Pseudomonas syringae-induced SA signaling is downregulated in vdac3 mutants since overexpression of VDAC3 resulted in hyperaccumulation of Pathogenesis related gene1 (PR1) transcript. Interestingly, ABA application prior to P. syringae inoculation resulted in the upregulation of ABA responsive genes like Responsive to ABA18 (RAB18) and Responsive to dehydration 22 (RD22). Intriguingly, in the absence of AtVDAC3, Pst challenge can dramatically increase ABA-induced RD22 and RAB18 expression. Altogether our results reveal a novel Pathogen-SA-ABA interaction pathway in plants. Our findings show that ABA plays a significant role in modifying plant-pathogen interactions, owing to cross-talk with the biotic stress signaling pathways of ABA and SA.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Barkha Ravi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Lokesh K Saini
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India.
| |
Collapse
|
5
|
Rodríguez-Saavedra C, García-Ortiz DA, Burgos-Palacios A, Morgado-Martínez LE, King-Díaz B, Guevara-García ÁA, Sánchez-Nieto S. Identification and Characterization of VDAC Family in Maize. PLANTS (BASEL, SWITZERLAND) 2023; 12:2542. [PMID: 37447103 DOI: 10.3390/plants12132542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023]
Abstract
The voltage-dependent anion channel (VDAC) is the most abundant protein in the outer mitochondrial membrane (OMM) of all eukaryotes, having an important role in the communication between mitochondria and cytosol. The plant VDAC family consists of a wide variety of members that may participate in cell responses to several environmental stresses. However, there is no experimental information about the members comprising the maize VDAC (ZmVDAC) family. In this study, the ZmVDAC family was identified, and described, and its gene transcription profile was explored during the first six days of germination and under different biotic stress stimuli. Nine members were proposed as bona fide VDAC genes with a high potential to code functional VDAC proteins. Each member of the ZmVDAC family was characterized in silico, and nomenclature was proposed according to phylogenetic relationships. Transcript levels in coleoptiles showed a different pattern of expression for each ZmVDAC gene, suggesting specific roles for each one during seedling development. This expression profile changed under Fusarium verticillioides infection and salicylic acid, methyl jasmonate, and gibberellic acid treatments, suggesting no redundancy for the nine ZmVDAC genes and, thus, probably specific and diverse functions according to plant needs and environmental conditions. Nevertheless, ZmVDAC4b was significantly upregulated upon biotic stress signals, suggesting this gene's potential role during the biotic stress response.
Collapse
Affiliation(s)
- Carolina Rodríguez-Saavedra
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Donají Azucena García-Ortiz
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Andrés Burgos-Palacios
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Luis Enrique Morgado-Martínez
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Beatriz King-Díaz
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| | - Ángel Arturo Guevara-García
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca C.P. 62209, Mexico
| | - Sobeida Sánchez-Nieto
- Laboratorio de Transporte y Percepción de Azúcares en Plantas, Departamento de Bioquímica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México C.P. 04510, Mexico
| |
Collapse
|
6
|
Wang J, Xu G, Ning Y, Wang X, Wang GL. Mitochondrial functions in plant immunity. TRENDS IN PLANT SCIENCE 2022; 27:1063-1076. [PMID: 35659746 DOI: 10.1016/j.tplants.2022.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 03/21/2022] [Accepted: 04/25/2022] [Indexed: 06/15/2023]
Abstract
Mitochondria are energy factories of cells and are important for intracellular interactions with other organelles. Emerging evidence indicates that mitochondria play essential roles in the response to pathogen infection. During infection, pathogens deliver numerous enzymes and effectors into host cells, and some of these effectors target mitochondria, altering mitochondrial morphology, metabolism, and functions. To defend against pathogen attack, mitochondria are actively involved in changing intracellular metabolism, hormone-mediated signaling, and signal transduction, producing reactive oxygen species and reactive nitrogen species and triggering programmed cell death. Additionally, mitochondria coordinate with other organelles to integrate and amplify diverse immune signals. In this review, we summarize recent advances in understanding how mitochondria function in plant immunity and how pathogens target mitochondria for host defense suppression.
Collapse
Affiliation(s)
- Jiyang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA; State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Guojuan Xu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China; Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Yuese Ning
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuli Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| | - Guo-Liang Wang
- Department of Plant Pathology, Ohio State University, Columbus, OH 43210, USA.
| |
Collapse
|
7
|
Tarasenko TA, Koulintchenko MV. Heterogeneity of the Mitochondrial Population in Cells of Plants and Other Organisms. Mol Biol 2022. [DOI: 10.1134/s0026893322020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Siqueira JA, Silva MF, Wakin T, Nunes-Nesi A, Araújo WL. Metabolic and DNA checkpoints for the enhancement of Al tolerance. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128366. [PMID: 35168102 DOI: 10.1016/j.jhazmat.2022.128366] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/04/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Acidic soils are a major limiting factor for food production in many developing countries. High concentrations of soluble Al cations, particularly Al3+, inhibit cell division and root elongation in plants. Al3+ damages several biomolecules, including DNA, impairing gene expression and cell cycle progression. Notably, the loss-of-function mutants of DNA checkpoints may mediate Al tolerance. Furthermore, mitochondrial organic acids play key roles in neutralizing Al3+ within the cell and around the rhizosphere. Here, we provide knowledge synthesis on interactions between checkpoints related to mitochondrial organic acid homeostasis and DNA integrity mediating Al tolerance in land plants. These interactions, coupled with remarkable advances in tools related to metabolism and cell cycle, may facilitate the development of next-generation productive crops under Al toxicity.
Collapse
Affiliation(s)
- João Antonio Siqueira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Marcelle Ferreira Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Thiago Wakin
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil
| | - Wagner L Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, 36570-900 Viçosa, MG, Brazil.
| |
Collapse
|
9
|
Lee HC, Huang YP, Huang YW, Hu CC, Lee CW, Chang CH, Lin NS, Hsu YH. Voltage-dependent anion channel proteins associate with dynamic Bamboo mosaic virus-induced complexes. PLANT PHYSIOLOGY 2022; 188:1061-1080. [PMID: 34747475 PMCID: PMC8825239 DOI: 10.1093/plphys/kiab519] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Infection cycles of viruses are highly dependent on membrane-associated host factors. To uncover the infection cycle of Bamboo mosaic virus (BaMV) in detail, we purified the membrane-associated viral complexes from infected Nicotiana benthamiana plants and analyzed the involved host factors. Four isoforms of voltage-dependent anion channel (VDAC) proteins on the outer membrane of mitochondria were identified due to their upregulated expression in the BaMV complex-enriched membranous fraction. Results from loss- and gain-of-function experiments indicated that NbVDAC2, -3, and -4 are essential for efficient BaMV accumulation. During BaMV infection, all NbVDACs concentrated into larger aggregates, which overlapped and trafficked with BaMV virions to the structure designated as the "dynamic BaMV-induced complex." Besides the endoplasmic reticulum and mitochondria, BaMV replicase and double-stranded RNAs were also found in this complex, suggesting the dynamic BaMV-induced complex is a replication complex. Yeast two-hybrid and pull-down assays confirmed that BaMV triple gene block protein 1 (TGBp1) could interact with NbVDACs. Confocal microscopy revealed that TGBp1 is sufficient to induce NbVDAC aggregates, which suggests that TGBp1 may play a pivotal role in the NbVDAC-virion complex. Collectively, these findings indicate that NbVDACs may associate with the dynamic BaMV-induced complex via TGBp1 and NbVDAC2, -3, or -4 and can promote BaMV accumulation. This study reveals the involvement of mitochondrial proteins in a viral complex and virus infection.
Collapse
Affiliation(s)
- Hsiang-Chi Lee
- PhD Program in Microbial Genomics, National Chung Hsing University and Academia Sinica, Taichung 40227, Taiwan
| | - Ying-Ping Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ying-Wen Huang
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chung-Chi Hu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chin-Wei Lee
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
| | - Chih-Hao Chang
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Na-Sheng Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei 11529, Taiwan
| | - Yau-Heiu Hsu
- Graduate Institute of Biotechnology, National Chung Hsing University, Taichung 40227, Taiwan
- Advanced Plant Biotechnology Center, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
10
|
Yu M, Yu Y, Song T, Zhang Y, Wei F, Cheng J, Zhang B, Zhang X. Characterization of the voltage-dependent anion channel (VDAC) gene family in wheat (Triticum aestivum L.) and its potential mechanism in response to drought and salinity stresses. Gene 2022; 809:146031. [PMID: 34678428 DOI: 10.1016/j.gene.2021.146031] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/11/2021] [Accepted: 10/14/2021] [Indexed: 11/04/2022]
Abstract
Voltage-dependent anion channels (VDACs) are major transport proteins localized in the outer membrane of mitochondria and play critical roles in regulating plant growth and responding to stress. In this study, a total of 26 VDAC genes in common wheat (Triticum aestivum L.) were identified. TaVDACs that contained β-barrel structures were classified into three groups with phylogenetic and sequence alignment. Additionally, the gene structure and protein conserved motif composition varied among diverse subfamilies but were relatively conserved within the same subfamily. The basic elements that were stress- and hormone-related, including TATA-box, CAAT-box, MBS, LTR, TC-rich repeats, ABRE, P-box and TATC-box, were predicted within the promoter region of TaVDAC genes. TaVDAC expression patterns differed among tissues, organs and abiotic stress conditions. Overexpression (OE) of TaVDAC1-B conferred high tolerance to salinity and less resistance to drought stress in Arabidopsis thaliana. TaVDAC1-B interacted with Nucleoredoxin-D1 (TaNRX-D1) protein. Furthermore, compared with WT lines, salinity stress further upregulated the level of AtNRX1 (homologous gene of TaNRX-D1 in Arabidopsis) expression and the activity of superoxide dismutase in TaVDAC1-B OE lines, which led to a decrease in superoxide radical accumulation; drought stress further downregulated AtNRX1 expression and superoxide dismutase activity in TaVDAC1-B OE lines, resulting in the accumulation of superoxide radicals. Our study not only presents comprehensive information for understanding the VDAC gene family in wheat but also proposes a potential mechanism in response to drought and salinity stress.
Collapse
Affiliation(s)
- Ming Yu
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yang Yu
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Tianqi Song
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yunrui Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fan Wei
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jie Cheng
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Bo Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China.
| | - Xiaoke Zhang
- College of Agronomy, Northwest A & F University, Yangling 712100, Shaanxi, China.
| |
Collapse
|
11
|
Kanwar P, Sanyal SK, Mahiwal S, Ravi B, Kaur K, Fernandes JL, Yadav AK, Tokas I, Srivastava AK, Suprasanna P, Pandey GK. CIPK9 targets VDAC3 and modulates oxidative stress responses in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:241-260. [PMID: 34748255 DOI: 10.1111/tpj.15572] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/22/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Calcium (Ca2+ ) is widely recognized as a key second messenger in mediating various plant adaptive responses. Here we show that calcineurin B-like interacting protein kinase CIPK9 along with its interacting partner VDAC3 identified in the present study are involved in mediating plant responses to methyl viologen (MV). CIPK9 physically interacts with and phosphorylates VDAC3. Co-localization, co-immunoprecipitation, and fluorescence resonance energy transfer experiments proved their physical interaction in planta. Both cipk9 and vdac3 mutants exhibited a tolerant phenotype against MV-induced oxidative stress, which coincided with the lower-level accumulation of reactive oxygen species in their roots. In addition, the analysis of cipk9vdac3 double mutant and VDAC3 overexpressing plants revealed that CIPK9 and VDAC3 were involved in the same pathway for inducing MV-dependent oxidative stress. The response to MV was suppressed by the addition of lanthanum chloride, a non-specific Ca2+ channel blocker indicating the role of Ca2+ in this pathway. Our study suggest that CIPK9-VDAC3 module may act as a key component in mediating oxidative stress responses in Arabidopsis.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Barkha Ravi
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Kanwaljeet Kaur
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Joel L Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Akhilesh K Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Indu Tokas
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
- Homi Bhabha National Institute, Mumbai, 400094, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, 400085, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021, India
| |
Collapse
|
12
|
Ashraf M, Mao Q, Hong J, Shi L, Ran X, Liaquat F, Uzair M, Liang W, Fernie AR, Shi J. HSP70-16 and VDAC3 jointly inhibit seed germination under cold stress in Arabidopsis. PLANT, CELL & ENVIRONMENT 2021; 44:3616-3627. [PMID: 34173257 DOI: 10.1111/pce.14138] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 06/09/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Abscisic acid (ABA) transport plays a crucial role in seed germination under unfavourable conditions such as cold stress. Both heat shock protein 70 (HSP70) and voltage-dependent anion channel (VDAC) protein are involved in cold stress responses in Arabidopsis. However, their roles in seed germination with regard to ABA signaling remain unknown. Here we demonstrated that Arabidopsis HSP70-16 and VDAC3 jointly suppress seed germination under cold stress conditions. At 4°C, both HSP70-16 and VDAC3 facilitated the efflux of ABA from the endosperm to the embryo and thus inhibited seed germination. HSP70-16 interacted with VDAC3 on the plasma membrane and in the nucleus, and the interplay between HSP70-16 and VDAC3 activated the opening of the VDAC3 ion channel. Our work established a novel function of HSP70-16 in seed germination under cold stress and a possible association of VDAC3 activity with ABA transportation from endosperm to embryo under cold stress conditions. This study reveals that HSP70-16 interacts with VDAC3 and facilitates the opening of the VDAC3 ion channel, which influences ABA efflux from endosperm to embryo, thus negatively regulates seed germination under cold stress.
Collapse
Affiliation(s)
- Muhammad Ashraf
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Qionglei Mao
- CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jun Hong
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Xiaoruo Ran
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Fiza Liaquat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Muhammad Uzair
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Wanqi Liang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Alisdair R Fernie
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam-Golm, Germany
| | - Jianxin Shi
- Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
13
|
Yang M, Duan X, Wang Z, Yin H, Zang J, Zhu K, Wang Y, Zhang P. Overexpression of a Voltage-Dependent Anion-Selective Channel (VDAC) Protein-Encoding Gene, MsVDAC, from Medicago sativa Confers Cold and Drought Tolerance to Transgenic Tobacco. Genes (Basel) 2021; 12:1706. [PMID: 34828312 PMCID: PMC8617925 DOI: 10.3390/genes12111706] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 10/23/2021] [Accepted: 10/26/2021] [Indexed: 11/22/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) are highly conserved proteins that are involved in the translocation of tRNA and play a key role in modulating plant senescence and multiple pathways. However, the functions of VDACs in plants are still poorly understood. Here, a novel VDAC gene was isolated and identified from alfalfa (Medicago sativa L.). MsVDAC localized to the mitochondria, and its expression was highest in alfalfa roots and was induced in response to cold, drought and salt treatment. Overexpression of MsVDAC in tobacco significantly increased MDA, GSH, soluble sugars, soluble protein and proline contents under cold and drought stress. However, the activities of SOD and POD decreased in transgenic tobacco under cold stress, while the O2- content increased. Stress-responsive genes including LTP1, ERD10B and Hxk3 were upregulated in the transgenic plants under cold and drought stress. However, GAPC, CBL1, BI-1, Cu/ZnSOD and MnSOD were upregulated only in the transgenic tobacco plants under cold stress, and GAPC, CBL1, and BI-1 were downregulated under drought stress. These results suggest that MsVDAC provides cold tolerance by regulating ROS scavenging, osmotic homeostasis and stress-responsive gene expression in plants, but the improved drought tolerance via MsVDAC may be mainly due to osmotic homeostasis and stress-responsive genes.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Pan Zhang
- Department of Grassland Science, College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, China; (M.Y.); (X.D.); (Z.W.); (H.Y.); (J.Z.); (K.Z.); (Y.W.)
| |
Collapse
|
14
|
VDAC1 Negatively Regulates Floral Transition in Arabidopsis thaliana. Int J Mol Sci 2021; 22:ijms222111603. [PMID: 34769031 PMCID: PMC8584032 DOI: 10.3390/ijms222111603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/24/2021] [Accepted: 10/25/2021] [Indexed: 11/17/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) are the most important proteins in mitochondria. They localize to the outer mitochondrial membrane and contribute to the metabolite transport between the mitochondria and cytoplasm, which aids plant growth regulation. Here, we report that Arabidopsis thaliana VDAC1 is involved in the floral transition, with the loss of AtVDAC1 function, resulting in an early-flowering phenotype. AtVDAC1 is expressed ubiquitously in Arabidopsis. To identify the flowering pathway integrators that may be responsible for AtVDAC1′s function during the floral transition, an RNA-seq analysis was performed. In total, 106 differentially expressed genes (DEGs) were identified between wild-type and atvdac1-5 mutant seedlings. However, none were involved in flowering-related pathways. In contrast, AtVDAC1 physically associated with FLOWERING LOCUS T. Thus, in the floral transition, AtVDAC1 may function partly through the FLOWERING LOCUS T protein.
Collapse
|
15
|
Benz R. Historical Perspective of Pore-Forming Activity Studies of Voltage-Dependent Anion Channel (Eukaryotic or Mitochondrial Porin) Since Its Discovery in the 70th of the Last Century. Front Physiol 2021; 12:734226. [PMID: 35547863 PMCID: PMC9083909 DOI: 10.3389/fphys.2021.734226] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/24/2021] [Indexed: 01/07/2023] Open
Abstract
Eukaryotic porin, also known as Voltage-Dependent Anion Channel (VDAC), is the most frequent protein in the outer membrane of mitochondria that are responsible for cellular respiration. Mitochondria are most likely descendants of strictly aerobic Gram-negative bacteria from the α-proteobacterial lineage. In accordance with the presumed ancestor, mitochondria are surrounded by two membranes. The mitochondrial outer membrane contains besides the eukaryotic porins responsible for its major permeability properties a variety of other not fully identified channels. It encloses also the TOM apparatus together with the sorting mechanism SAM, responsible for the uptake and assembly of many mitochondrial proteins that are encoded in the nucleus and synthesized in the cytoplasm at free ribosomes. The recognition and the study of electrophysiological properties of eukaryotic porin or VDAC started in the late seventies of the last century by a study of Schein et al., who reconstituted the pore from crude extracts of Paramecium mitochondria into planar lipid bilayer membranes. Whereas the literature about structure and function of eukaryotic porins was comparatively rare during the first 10years after the first study, the number of publications started to explode with the first sequencing of human Porin 31HL and the recognition of the important function of eukaryotic porins in mitochondrial metabolism. Many genomes contain more than one gene coding for homologs of eukaryotic porins. More than 100 sequences of eukaryotic porins are known to date. Although the sequence identity between them is relatively low, the polypeptide length and in particular, the electrophysiological characteristics are highly preserved. This means that all eukaryotic porins studied to date are anion selective in the open state. They are voltage-dependent and switch into cation-selective substates at voltages in the physiological relevant range. A major breakthrough was also the elucidation of the 3D structure of the eukaryotic pore, which is formed by 19 β-strands similar to those of bacterial porin channels. The function of the presumed gate an α-helical stretch of 20 amino acids allowed further studies with respect to voltage dependence and function, but its exact role in channel gating is still not fully understood.
Collapse
Affiliation(s)
- Roland Benz
- Department of Life Sciences and Chemistry, Jacobs University Bremen, Bremen, Germany
| |
Collapse
|
16
|
Wang R, Deng M, Yang C, Yu Q, Zhang L, Zhu Q, Guo X. A Qa-SNARE complex contributes to soybean cyst nematode resistance via regulation of mitochondria-mediated cell death. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7145-7162. [PMID: 34165531 DOI: 10.1093/jxb/erab301] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 06/23/2021] [Indexed: 05/27/2023]
Abstract
The resistance to Heterodera glycines 1 (Rhg1) locus is widely used by soybean breeders to reduce yield loss caused by soybean cyst nematode (SCN). α-SNAP (α-soluble NSF attachment protein) within Rhg1 locus contributes to SCN resistance by modulation of cell status at the SCN feeding site; however, the underlying mechanism is largely unclear. Here, we identified an α-SNAP-interacting protein, GmSYP31A, a Qa-SNARE (soluble NSF attachment protein receptor) protein from soybean. Expression of GmSYP31A significantly induced cell death in Nicotiana benthamiana leaves, and co-expression of α-SNAP and GmSYP31A could accelerate cell death. Overexpression of GmSYP31A increased SCN resistance, while silencing or overexpression of a dominant-negative form of GmSYP31A increased SCN sensitivity. GmSYP31A expression also disrupted endoplasmic reticulum-Golgi trafficking, and the exocytosis pathway. Moreover, α-SNAP was also found to interact with GmVDAC1D (voltage-dependent anion channel). The cytotoxicity induced by the expression of GmSYP31A could be relieved either with the addition of an inhibitor of VDAC protein, or by silencing the VDAC gene. Taken together, our data not only demonstrate that α-SNAP works together with GmSYP31A to increase SCN resistance through triggering cell death, but also highlight the unexplored link between the mitochondrial apoptosis pathway and vesicle trafficking.
Collapse
Affiliation(s)
- Rui Wang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Miaomiao Deng
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Chao Yang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qianqian Yu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lei Zhang
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qun Zhu
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xiaoli Guo
- State Key Laboratory of Agricultural Microbiology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
17
|
Ravi B, Kanwar P, Sanyal SK, Bheri M, Pandey GK. VDACs: An Outlook on Biochemical Regulation and Function in Animal and Plant Systems. Front Physiol 2021; 12:683920. [PMID: 34421635 PMCID: PMC8375762 DOI: 10.3389/fphys.2021.683920] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/30/2021] [Indexed: 12/12/2022] Open
Abstract
The voltage-dependent anion channels (VDACs) are the most abundant proteins present on the outer mitochondrial membrane. They serve a myriad of functions ranging from energy and metabolite exchange to highly debatable roles in apoptosis. Their role in molecular transport puts them on the center stage as communicators between cytoplasmic and mitochondrial signaling events. Beyond their general role as interchangeable pores, members of this family may exhibit specific functions. Even after nearly five decades of their discovery, their role in plant systems is still a new and rapidly emerging field. The information on biochemical regulation of VDACs is limited. Various interacting proteins and post-translational modifications (PTMs) modulate VDAC functions, amongst these, phosphorylation is quite noticeable. In this review, we have tried to give a glimpse of the recent advancements in the biochemical/interactional regulation of plant VDACs. We also cover a critical analysis on the importance of PTMs in the functional regulation of VDACs. Besides, the review also encompasses numerous studies which can identify VDACs as a connecting link between Ca2+ and reactive oxygen species signaling in special reference to the plant systems.
Collapse
Affiliation(s)
| | | | | | | | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi, New Delhi, India
| |
Collapse
|
18
|
Pivato M, Ballottari M. Chlamydomonas reinhardtii cellular compartments and their contribution to intracellular calcium signalling. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:5312-5335. [PMID: 34077536 PMCID: PMC8318260 DOI: 10.1093/jxb/erab212] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 05/11/2021] [Indexed: 05/12/2023]
Abstract
Calcium (Ca2+)-dependent signalling plays a well-characterized role in the response to different environmental stimuli, in both plant and animal cells. In the model organism for green algae, Chlamydomonas reinhardtii, Ca2+ signals were reported to have a crucial role in different physiological processes, such as stress responses, photosynthesis, and flagella functions. Recent reports identified the underlying components of the Ca2+ signalling machinery at the level of specific subcellular compartments and reported in vivo imaging of cytosolic Ca2+ concentration in response to environmental stimuli. The characterization of these Ca2+-related mechanisms and proteins in C. reinhardtii is providing knowledge on how microalgae can perceive and respond to environmental stimuli, but also on how this Ca2+ signalling machinery has evolved. Here, we review current knowledge on the cellular mechanisms underlying the generation, shaping, and decoding of Ca2+ signals in C. reinhardtii, providing an overview of the known and possible molecular players involved in the Ca2+ signalling of its different subcellular compartments. The advanced toolkits recently developed to measure time-resolved Ca2+ signalling in living C. reinhardtii cells are also discussed, suggesting how they can improve the study of the role of Ca2+ signals in the cellular response of microalgae to environmental stimuli.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matteo Ballottari
- Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
19
|
Tarasenko TA, Klimenko ES, Tarasenko VI, Koulintchenko MV, Dietrich A, Weber-Lotfi F, Konstantinov YM. Plant mitochondria import DNA via alternative membrane complexes involving various VDAC isoforms. Mitochondrion 2021; 60:43-58. [PMID: 34303006 DOI: 10.1016/j.mito.2021.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/17/2021] [Accepted: 07/19/2021] [Indexed: 12/23/2022]
Abstract
Mitochondria possess transport mechanisms for import of RNA and DNA. Based on import into isolated Solanum tuberosum mitochondria in the presence of competitors, inhibitors or effectors, we show that DNA fragments of different size classes are taken up into plant organelles through distinct channels. Alternative channels can also be activated according to the amount of DNA substrate of a given size class. Analyses of Arabidopsis thaliana knockout lines pointed out a differential involvement of individual voltage-dependent anion channel (VDAC) isoforms in the formation of alternative channels. We propose several outer and inner membrane proteins as VDAC partners in these pathways.
Collapse
Affiliation(s)
- Tatiana A Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Ekaterina S Klimenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Vladislav I Tarasenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia
| | - Milana V Koulintchenko
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia.
| | - André Dietrich
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Frédérique Weber-Lotfi
- Institut de Biologie Moléculaire des Plantes, CNRS and Université de Strasbourg, 12 Rue du Général Zimmer, 67084 Strasbourg, France
| | - Yuri M Konstantinov
- Siberian Institute of Plant Physiology and Biochemistry, SB RAS, 132 Lermontov St, Irkutsk 664033, Russia; Irkutsk State University, 1 Karl Marx St, Irkutsk 664003, Russia
| |
Collapse
|
20
|
Xu T, Wang X, Ma H, Su L, Wang W, Meng J, Xu Y. Functional Characterization of VDACs in Grape and Its Putative Role in Response to Pathogen Stress. FRONTIERS IN PLANT SCIENCE 2021; 12:670505. [PMID: 34220892 PMCID: PMC8242593 DOI: 10.3389/fpls.2021.670505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Accepted: 05/14/2021] [Indexed: 06/13/2023]
Abstract
Voltage-dependent anion channels (VDACs) are the most abundant proteins in the mitochondrial outer membranes of all eukaryotic cells. They participate in mitochondrial energy metabolism, mitochondria-mediated apoptosis, and cell growth and reproduction. Here, the chromosomal localizations, gene structure, conserved domains, and phylogenetic relationships were analyzed. The amino acid sequences of VDACs were found to be highly conserved. The tissue-specific transcript analysis from transcriptome data and qRT-PCR demonstrated that grapevine VDACs might play an important role in plant growth and development. It was also speculated that VDAC3 might be a regulator of modulated leaf and berry development as the expression patterns during these developmental stages are up-regulated. Further, we screened the role of all grape VDACs' response to pathogen stress and found that VDAC3 from downy mildew Plasmopara viticola-resistant Chinese wild grapevine species Vitis piasezkii "Liuba-8" had a higher expression than the downy mildew susceptible species Vitis vinifera cv. "Thompson Seedless" after inoculation with P. viticola. Overexpression of VpVDAC3 resulted in increased resistance to pathogens, which was found to prevent VpVDAC3 protein accumulation through protein post-transcriptional regulation. Taken together, these data indicate that VpVDAC3 plays a role in P. viticola defense and provides the evidence with which to understand the mechanism of grape response to pathogen stress.
Collapse
Affiliation(s)
- Tengfei Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaowei Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Hui Ma
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Li Su
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Wenyuan Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Jiangfei Meng
- College of Enology, Northwest A&F University, Yangling, China
| | - Yan Xu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
21
|
Liu J, Liao W, Nie B, Zhang J, Xu W. OsUEV1B, an Ubc enzyme variant protein, is required for phosphate homeostasis in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:706-719. [PMID: 33570751 DOI: 10.1111/tpj.15193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Phosphorus is a crucial macronutrient for plant growth and development. The mechanisms for maintaining inorganic phosphate (Pi) homeostasis in rice are not well understood. The ubiquitin-conjugating enzyme variant protein OsUEV1B was previously found to interact with OsUbc13 and mediate lysine63-linked polyubiquitination. In the present study, we found OsUEV1B was specifically inhibited by Pi deficiency, and was localized in the nucleus and cytoplasm. Both osuev1b mutant and OsUEV1B-RNA interference (RNAi) lines displayed serious symptoms of toxicity due to Pi overaccumulation. Some Pi starvation inducible and phosphate transporter genes were upregulated in osuev1b mutant and OsUEV1B-RNAi plants in association with enhanced Pi acquisition, and representative Pi starvation responses, including stimulation of acid phosphatase activity and root hair growth, were also activated in the presence of sufficient Pi. A yeast two-hybrid screen revealed an interaction between OsUEV1B and OsVDAC1, which was confirmed by bimolecular fluorescence complementation and firefly split-luciferase complementation assays. OsVDAC1 encoded a voltage-dependent anion channel protein localized in the mitochondria, and OsUbc13 was shown to interact with OsVDAC1 via yeast two-hybrid and bimolecular fluorescence complementation assays. Under sufficient Pi conditions, similar to osuev1b, a mutation in OsVDAC1 resulted in significantly greater Pi concentrations in the roots and second leaves, improved acid phosphatase activity, and enhanced expression of the Pi starvation inducible and phosphate transporter genes compared with wild-type DongJin, whereas overexpression of OsVDAC1 had the opposite effects. OsUEV1B or OsVDAC1 knockout reduced the mitochondrial membrane potential and adenosine triphosphate levels. Moreover, overexpression of OsVDAC1 in osuev1b partially restored its high Pi concentration to a level between those of osuev1b and DongJin. Our results indicate that OsUEV1B is required for rice phosphate homeostasis.
Collapse
Affiliation(s)
- Jianping Liu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wencheng Liao
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bo Nie
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jianhua Zhang
- College of Agriculture, Yangzhou University, Yangzhou, China
- Department of Biology, Hong Kong Baptist University, Hong Kong, China
| | - Weifeng Xu
- Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Joint International Research Laboratory of Water and Nutrient in Crop, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
22
|
Ren K, Feng L, Sun S, Zhuang X. Plant Mitophagy in Comparison to Mammals: What Is Still Missing? Int J Mol Sci 2021; 22:1236. [PMID: 33513816 PMCID: PMC7865480 DOI: 10.3390/ijms22031236] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/20/2021] [Indexed: 12/21/2022] Open
Abstract
Mitochondrial homeostasis refers to the balance of mitochondrial number and quality in a cell. It is maintained by mitochondrial biogenesis, mitochondrial fusion/fission, and the clearance of unwanted/damaged mitochondria. Mitophagy represents a selective form of autophagy by sequestration of the potentially harmful mitochondrial materials into a double-membrane autophagosome, thus preventing the release of death inducers, which can trigger programmed cell death (PCD). Recent advances have also unveiled a close interconnection between mitophagy and mitochondrial dynamics, as well as PCD in both mammalian and plant cells. In this review, we will summarize and discuss recent findings on the interplay between mitophagy and mitochondrial dynamics, with a focus on the molecular evidence for mitophagy crosstalk with mitochondrial dynamics and PCD.
Collapse
Affiliation(s)
| | | | | | - Xiaohong Zhuang
- Centre for Cell and Developmental Biology, State Key Laboratory of Agrobiotechnology, School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (K.R.); (L.F.); (S.S.)
| |
Collapse
|
23
|
Mencia R, Céccoli G, Fabro G, Torti P, Colombatti F, Ludwig-Müller J, Alvarez ME, Welchen E. OXR2 Increases Plant Defense against a Hemibiotrophic Pathogen via the Salicylic Acid Pathway. PLANT PHYSIOLOGY 2020; 184:1112-1127. [PMID: 32727912 PMCID: PMC7536703 DOI: 10.1104/pp.19.01351] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 07/21/2020] [Indexed: 05/03/2023]
Abstract
Arabidopsis (Arabidopsis thaliana) OXIDATION RESISTANCE2 (AtOXR2) is a mitochondrial protein belonging to the Oxidation Resistance (OXR) protein family, recently described in plants. We analyzed the impact of AtOXR2 in Arabidopsis defense mechanisms against the hemibiotrophic bacterial pathogen Pseudomonas syringae oxr2 mutant plants are more susceptible to infection by the pathogen and, conversely, plants overexpressing AtOXR2 (oeOXR2 plants) show enhanced disease resistance. Resistance in these plants is accompanied by higher expression of WRKY transcription factors, induction of genes involved in salicylic acid (SA) synthesis, accumulation of free SA, and overall activation of the SA signaling pathway. Accordingly, defense phenotypes are dependent on SA synthesis and SA perception pathways, since they are lost in isochorismate synthase1/salicylic acid induction deficient2 and nonexpressor of pathogenesis-related genes1 (npr1) mutant backgrounds. Overexpression of AtOXR2 leads to faster and stronger oxidative burst in response to the bacterial flagellin peptide flg22 Moreover, AtOXR2 affects the nuclear localization of the transcriptional coactivator NPR1, a master regulator of SA signaling. oeOXR2 plants have increased levels of total glutathione and a more oxidized cytosolic redox cellular environment under normal growth conditions. Therefore, AtOXR2 contributes to establishing plant protection against infection by P. syringae acting on the activity of the SA pathway.
Collapse
Affiliation(s)
- Regina Mencia
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Gabriel Céccoli
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Georgina Fabro
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Pablo Torti
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | - Francisco Colombatti
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| | | | - Maria Elena Alvarez
- Centro de Investigaciones en Química Biológica de Córdoba, Consejo Nacional de Investigaciones Científicas y Técnicas, Departamento de Química Biológica Ranwel Caputto, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, X5000HUA Córdoba, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral, Consejo Nacional de Investigaciones Científicas y Técnicas, Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, 3000 Santa Fe, Argentina
| |
Collapse
|
24
|
Rodríguez-Alvarez CI, López-Vidriero I, Franco-Zorrilla JM, Nombela G. Basal differences in the transcriptional profiles of tomato leaves associated with the presence/absence of the resistance gene Mi-1 and changes in these differences after infestation by the whitefly Bemisia tabaci. BULLETIN OF ENTOMOLOGICAL RESEARCH 2020; 110:463-479. [PMID: 31813394 DOI: 10.1017/s0007485319000828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The tomato Mi-1 gene mediates plant resistance to whitefly Bemisia tabaci, nematodes, and aphids. Other genes are also required for this resistance, and a model of interaction between the proteins encoded by these genes was proposed. Microarray analyses were used previously to identify genes involved in plant resistance to pests or pathogens, but scarcely in resistance to insects. In the present work, the GeneChip™ Tomato Genome Array (Affymetrix®) was used to compare the transcriptional profiles of Motelle (bearing Mi-1) and Moneymaker (lacking Mi-1) cultivars, both before and after B. tabaci infestation. Ten transcripts were expressed at least twofold in uninfested Motelle than in Moneymaker, while other eight were expressed half or less. After whitefly infestation, differences between cultivars increased to 14 transcripts expressed more in Motelle than in Moneymaker and 14 transcripts less expressed. Half of these transcripts showed no differential expression before infestation. These results show the baseline differences in the tomato transcriptomic profile associated with the presence or absence of the Mi-1 gene and provide us with valuable information on candidate genes to intervene in either compatible or incompatible tomato-whitefly interactions.
Collapse
Affiliation(s)
- Clara I Rodríguez-Alvarez
- Department of Plant Protection Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., Madrid28006, Spain
| | - Irene López-Vidriero
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, Madrid28049, Spain
| | - José M Franco-Zorrilla
- Genomics Unit, Centro Nacional de Biotecnología (CNB), Spanish National Research Council (CSIC), Darwin 3, Madrid28049, Spain
| | - Gloria Nombela
- Department of Plant Protection Institute for Agricultural Sciences (ICA), Spanish National Research Council (CSIC), Serrano 115 Dpdo., Madrid28006, Spain
| |
Collapse
|
25
|
Kanwar P, Samtani H, Sanyal SK, Srivastava AK, Suprasanna P, Pandey GK. VDAC and its interacting partners in plant and animal systems: an overview. Crit Rev Biotechnol 2020; 40:715-732. [PMID: 32338074 DOI: 10.1080/07388551.2020.1756214] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Molecular trafficking between different subcellular compartments is the key for normal cellular functioning. Voltage-dependent anion channels (VDACs) are small-sized proteins present in the outer mitochondrial membrane, which mediate molecular trafficking between mitochondria and cytoplasm. The conductivity of VDAC is dependent on the transmembrane voltage, its oligomeric state and membrane lipids. VDAC acts as a convergence point to a diverse variety of mitochondrial functions as well as cell survival. This functional diversity is attained due to their interaction with a plethora of proteins inside the cell. Although, there are hints toward functional conservation/divergence between animals and plants; knowledge about the functional role of the VDACs in plants is still limited. We present here a comparative overview to provide an integrative picture of the interactions of VDAC with different proteins in both animals and plants. Also discussed are their physiological functions from the perspective of cellular movements, signal transduction, cellular fate, disease and development. This in-depth knowledge of the biological importance of VDAC and its interacting partner(s) will assist us to explore their function in the applied context in both plant and animal.
Collapse
Affiliation(s)
- Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Sibaji K Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Ashish K Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Girdhar K Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
26
|
Hemono M, Ubrig É, Azeredo K, Salinas-Giegé T, Drouard L, Duchêne AM. Arabidopsis Voltage-Dependent Anion Channels (VDACs): Overlapping and Specific Functions in Mitochondria. Cells 2020; 9:cells9041023. [PMID: 32326174 PMCID: PMC7226135 DOI: 10.3390/cells9041023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 04/02/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022] Open
Abstract
Voltage-dependent anion channels (VDACs) are essential components of the mitochondrial outer membrane. VDACs are involved in the exchange of numerous ions and molecules, from ATP to larger molecules such as tRNAs, and are supposed to adjust exchanges in response to cell signals and stresses. Four major VDACs have been identified in Arabidopsis thaliana. The goal of this study was to explore the specific functions of these proteins, in particular, in tRNA import into mitochondria and stress response. The main results were: (i) VDACs appeared to differentially interact with tRNAs, and VDAC4 could be the major tRNA channel on the outer membrane, (ii) a VDAC3 mRNA isoform was found induced by different stresses, suggesting that VDAC3 might be specifically involved in early steps of stress response and (iii) an analysis of vdac3 and vdac1 mutant lines showed that VDAC3 and VDAC1 shared some, but not all functions. In conclusion, this work brings new knowledge on VDACs, which do not appear as interchangeable pores of the outer membrane and each VDAC has its own specificity.
Collapse
|
27
|
McWhite CD, Papoulas O, Drew K, Cox RM, June V, Dong OX, Kwon T, Wan C, Salmi ML, Roux SJ, Browning KS, Chen ZJ, Ronald PC, Marcotte EM. A Pan-plant Protein Complex Map Reveals Deep Conservation and Novel Assemblies. Cell 2020; 181:460-474.e14. [PMID: 32191846 PMCID: PMC7297045 DOI: 10.1016/j.cell.2020.02.049] [Citation(s) in RCA: 108] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 01/08/2020] [Accepted: 02/21/2020] [Indexed: 01/11/2023]
Abstract
Plants are foundational for global ecological and economic systems, but most plant proteins remain uncharacterized. Protein interaction networks often suggest protein functions and open new avenues to characterize genes and proteins. We therefore systematically determined protein complexes from 13 plant species of scientific and agricultural importance, greatly expanding the known repertoire of stable protein complexes in plants. By using co-fractionation mass spectrometry, we recovered known complexes, confirmed complexes predicted to occur in plants, and identified previously unknown interactions conserved over 1.1 billion years of green plant evolution. Several novel complexes are involved in vernalization and pathogen defense, traits critical for agriculture. We also observed plant analogs of animal complexes with distinct molecular assemblies, including a megadalton-scale tRNA multi-synthetase complex. The resulting map offers a cross-species view of conserved, stable protein assemblies shared across plant cells and provides a mechanistic, biochemical framework for interpreting plant genetics and mutant phenotypes.
Collapse
Affiliation(s)
- Claire D McWhite
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Ophelia Papoulas
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Kevin Drew
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Rachael M Cox
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Viviana June
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Oliver Xiaoou Dong
- Department of Plant Pathology and The Genome Center, University of California, Davis, Davis, CA 95616, USA; Joint Bioenergy Institute, Emeryville, CA 94608, USA
| | - Taejoon Kwon
- Department of Biomedical Engineering, School of Life Sciences, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Cuihong Wan
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA; Hubei Key Lab of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, No. 152 Luoyu Road, Wuhan 430079, P.R. China
| | - Mari L Salmi
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Stanley J Roux
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Karen S Browning
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Z Jeffrey Chen
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA
| | - Pamela C Ronald
- Department of Plant Pathology and The Genome Center, University of California, Davis, Davis, CA 95616, USA; Joint Bioenergy Institute, Emeryville, CA 94608, USA
| | - Edward M Marcotte
- Department of Molecular Biosciences, Center for Systems and Synthetic Biology, University of Texas, Austin, TX 78712, USA.
| |
Collapse
|
28
|
Sanyal SK, Kanwar P, Fernandes JL, Mahiwal S, Yadav AK, Samtani H, Srivastava AK, Suprasanna P, Pandey GK. Arabidopsis Mitochondrial Voltage-Dependent Anion Channels Are Involved in Maintaining Reactive Oxygen Species Homeostasis, Oxidative and Salt Stress Tolerance in Yeast. FRONTIERS IN PLANT SCIENCE 2020; 11:50. [PMID: 32184792 PMCID: PMC7058595 DOI: 10.3389/fpls.2020.00050] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Accepted: 01/14/2020] [Indexed: 06/10/2023]
Abstract
Voltage-dependent anion channels (VDACs) are conserved proteins of the mitochondria. We have functionally compared Arabidopsis VDACs using Saccharomyces cerevisiae Δpor1 and M3 yeast system. VDAC (1, 2, and 4) were able to restore Δpor1 growth in elevated temperature, in oxidative and salt stresses, whereas VDAC3 only partially rescued Δpor1 in these conditions. The ectopic expression of VDAC (1, 2, 3, and 4) in mutant yeast recapitulated the mitochondrial membrane potential thus, enabled it to maintain reactive oxygen species homeostasis. Overexpression of these VDACs (AtVDACs) in M3 strain did not display any synergistic or antagonistic activity with the native yeast VDAC1 (ScVDAC1). Collectively, our data suggest that Arabidopsis VDACs are involved in regulating respiration, reactive oxygen species homeostasis, and stress tolerance in yeast.
Collapse
Affiliation(s)
- Sibaji K. Sanyal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Poonam Kanwar
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Joel Lars Fernandes
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Swati Mahiwal
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Akhilesh K. Yadav
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Harsha Samtani
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| | - Ashish K. Srivastava
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Penna Suprasanna
- Nuclear Agriculture and Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, New Delhi, India
| |
Collapse
|
29
|
Stavrinides AK, Dussert S, Combes MC, Fock-Bastide I, Severac D, Minier J, Bastos-Siqueira A, Demolombe V, Hem S, Lashermes P, Joët T. Seed comparative genomics in three coffee species identify desiccation tolerance mechanisms in intermediate seeds. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:1418-1433. [PMID: 31790120 PMCID: PMC7031068 DOI: 10.1093/jxb/erz508] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 11/10/2019] [Indexed: 05/13/2023]
Abstract
In contrast to desiccation-tolerant 'orthodox' seeds, so-called 'intermediate' seeds cannot survive complete drying and are short-lived. All species of the genus Coffea produce intermediate seeds, but they show a considerable variability in seed desiccation tolerance (DT), which may help to decipher the molecular basis of seed DT in plants. We performed a comparative transcriptome analysis of developing seeds in three coffee species with contrasting desiccation tolerance. Seeds of all species shared a major transcriptional switch during late maturation that governs a general slow-down of metabolism. However, numerous key stress-related genes, including those coding for the late embryogenesis abundant protein EM6 and the osmosensitive calcium channel ERD4, were up-regulated during DT acquisition in the two species with high seed DT, C. arabica and C. eugenioides. By contrast, we detected up-regulation of numerous genes involved in the metabolism, transport, and perception of auxin in C. canephora seeds with low DT. Moreover, species with high DT showed a stronger down-regulation of the mitochondrial machinery dedicated to the tricarboxylic acid cycle and oxidative phosphorylation. Accordingly, respiration measurements during seed dehydration demonstrated that intermediate seeds with the highest DT are better prepared to cease respiration and avoid oxidative stresses.
Collapse
Affiliation(s)
| | | | | | | | - Dany Severac
- MGX-Montpellier GenomiX, c/o Institut de Génomique Fonctionnelle, Montpellier Cedex 5, France
| | | | | | - Vincent Demolombe
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | - Sonia Hem
- BPMP, CNRS, INRA, Montpellier SupAgro, Univ Montpellier, Montpellier, France
| | | | - Thierry Joët
- IRD, Université Montpellier, UMR DIADE, Montpellier, France
| |
Collapse
|
30
|
Colombatti F, Mencia R, Garcia L, Mansilla N, Alemano S, Andrade AM, Gonzalez DH, Welchen E. The mitochondrial oxidation resistance protein AtOXR2 increases plant biomass and tolerance to oxidative stress. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:3177-3195. [PMID: 30945737 DOI: 10.1093/jxb/erz147] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 03/20/2019] [Indexed: 06/09/2023]
Abstract
This study demonstrates the existence of the oxidation resistance (OXR) protein family in plants. There are six OXR members in Arabidopsis that contain the highly conserved TLDc domain that is characteristic of this eukaryotic protein family. AtOXR2 is a mitochondrial protein able to alleviate the stress sensitivity of a yeast oxr1 mutant. It was induced by oxidative stress and its overexpression in Arabidopsis (oeOXR2) increased leaf ascorbate, photosynthesis, biomass, and seed production, as well as conferring tolerance to methyl viologen, antimycin A, and high light intensities. The oeOXR2 plants also showed higher ABA content, changes in ABA sensitivity, and modified expression of ABA- and stress-regulated genes. While the oxr2 mutants had a similar shoot phenotype to the wild-type, they exhibited increased sensitivity to stress. We propose that by influencing the levels of reactive oxygen species (ROS), AtOXR2 improves the efficiency of photosynthesis and elicits basal tolerance to environmental challenges that increase oxidative stress, allowing improved plant growth and biomass production.
Collapse
Affiliation(s)
- Francisco Colombatti
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Regina Mencia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Lucila Garcia
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Instituto de Biología Molecular y Celular de Rosario (IBR-CONICET), Rosario, Argentina
| | - Natanael Mansilla
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Sergio Alemano
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
| | - Andrea M Andrade
- Laboratorio de Fisiología Vegetal, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Daniel H Gonzalez
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Elina Welchen
- Instituto de Agrobiotecnología del Litoral (CONICET-UNL), Cátedra de Biología Celular y Molecular, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| |
Collapse
|
31
|
Lyu L, Bi Y, Li S, Xue H, Zhang Z, Prusky DB. Early Defense Responses Involved in Mitochondrial Energy Metabolism and Reactive Oxygen Species Accumulation in Harvested Muskmelons Infected by Trichothecium roseum. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2019; 67:4337-4345. [PMID: 30865450 DOI: 10.1021/acs.jafc.8b06333] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Mitochondria play an essential part in fighting against pathogen infection in the defense responses of fruits. In this study, we investigated the reactive oxygen species (ROS) production, energy metabolism, and changes of mitochondrial proteins in harvested muskmelon fruits ( Cucumis melo cv. Yujinxiang) inoculated with Trichothecium roseum. The results indicated that the fungal infection obviously induced the H2O2 accumulation in mitochondria. Enzyme activities were inhibited in the first 6 h postinoculation (hpi), including succinic dehydrogenase, cytochrome c oxidase, H+-ATPase, and Ca2+-ATPase. However, the activities of Ca2+-ATPase and H+-ATPase and the contents of intracellular adenosine triphosphate (ATP) were improved to a higher level at 12 hpi. A total of 42 differentially expressed proteins were identified through tandem mass tags-based proteomic analyses, which are mainly involved in energy metabolism, stress responses and redox homeostasis, glycolysis and tricarboxylic acid cycle, and transporter and mitochondria dysfunction. Taken together, our results suggest that mitochondria play crucial roles in the early defense responses of muskmelons against T. roseum infection through regulation of ROS production and energy metabolism.
Collapse
Affiliation(s)
| | | | | | | | | | - Dov B Prusky
- Department of Postharvest Science of Fresh Produce , Agricultural Research Organization, The Volcani Center , Beit Dagan 50250 , Israel
| |
Collapse
|
32
|
Lekklar C, Chadchawan S, Boon-Long P, Pfeiffer W, Chaidee A. Salt stress in rice: multivariate analysis separates four components of beneficial silicon action. PROTOPLASMA 2019; 256:331-347. [PMID: 30097762 DOI: 10.1007/s00709-018-1293-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
How many subcellular targets of the beneficial silicon effect do exist in salt-stressed rice? Here, we investigate the effects of silicon on the different components of salt stress, i.e., osmotic stress, sodium, and chloride toxicity. These components are separated by multivariate analysis of 18 variables measured in rice seedlings (Oryza sativa L.). Multivariate analysis can dissect vectors and extract targets as principal components, given the regressions between all variables are known. Consequently, the exploration of 153 correlations and 306 regression models between all variables is essential, and regression parameters for variables of shoot (silicon, sodium, chloride, carotenoids, chlorophylls a and b, and relative growth rate) and variables of shoot and root (hydrogen peroxide, ascorbate peroxidase (APX), catalase (CAT), fresh weight, dry weight, root-to-shoot ratio) are determined. The regression models [log (y) = y0 + a × log (x)] are confirmed by variance analysis of global goodness of fits (p < 0.0001). Thereby, logarithmic transformation yields linearization for multivariate analysis by Pearson's correlation. Four principal components are extracted: two targets of osmotic stress, one target of sodium toxicity, and one target of chloride toxicity. Thereby, silicon improves salt tolerance by increasing APX and CAT activities and decreasing hydrogen peroxide, salt ion accumulation, photosynthetic pigment losses, and growth inhibition. Salt stress increases silicon uptake pointing to a physiological regulation of plant salt stress in the presence of silicon. This mechanism and its four components are promising targets for further agricultural application.
Collapse
Affiliation(s)
- Chakkree Lekklar
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Supachitra Chadchawan
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Preeda Boon-Long
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand
| | - Wolfgang Pfeiffer
- Fachbereich Biowissenschaften, Abteilung Pflanzenphysiologie, Universität Salzburg, 5020, Salzburg, Austria
| | - Anchalee Chaidee
- Center of Excellence in Environment and Plant Physiology, Department of Botany, Faculty of Science, Chulalongkorn University, Bangkok, 10330, Thailand.
| |
Collapse
|
33
|
Zhang M, Liu S, Takano T, Zhang X. The interaction between AtMT2b and AtVDAC3 affects the mitochondrial membrane potential and reactive oxygen species generation under NaCl stress in Arabidopsis. PLANTA 2019; 249:417-429. [PMID: 30225672 DOI: 10.1007/s00425-018-3010-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
AtMT2b interacts with AtVDAC3 in mitochondria in Arabidopsis. The overexpression of the AtMT2b and AtVDAC3 T-DNA insertion mutant confers tolerance to NaCl stress in Arabidopsis. Both AtMT2b and AtVDAC3 are involved in the regulation of the mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) under NaCl stress. Metallothioneins (MTs) are small, cysteine rich, metal-binding proteins that perform multiple functions, such as heavy metal detoxification and reactive oxygen species (ROS) scavenging. MTs have been reported to be involved in mitochondrial function in mammals. However, whether a direct relationship exists between MTs and mitochondrial proteins remains unclear. In the present study, we used yeast two-hybrid and bimolecular fluorescence complementation assays to demonstrate that AtMT2b, which is a type 2 MT in Arabidopsis, interacts with the outer mitochondrial membrane voltage-dependent anion channel AtVDAC3. AtMT2b bound AtVDAC3, leading to its co-localization in mitochondria. AtMT2b transgenic seedlings exhibited increased tolerance to salt stress, and the atvdac3 mutant showed a similar phenotype. The mitochondrial membrane potential (MMP) was maintained, and ROS generation was reduced following AtMT2b overexpression and AtVDAC3 knockout under NaCl stress. Both AtMT2b and AtVDAC3 were shown to be involved in MMP regulation and ROS production under NaCl stress but showed opposite effects. We conclude that AtMT2b might negatively interact with AtVDAC3 in mitochondria, and both proteins are involved in the regulation of MMP and ROS under NaCl stress.
Collapse
Affiliation(s)
- Min Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China
- School of Medicine, He University, Shenyang, 110163, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, 311300, China
| | - Tetsuo Takano
- Asian Natural Environment Science Center (ANESC), The University of Tokyo, 1-1-1 Midori Cho, Nishitokyo-shi, Tokyo, 188-0002, Japan
| | - Xinxin Zhang
- Key Laboratory of Saline-alkali Vegetation Ecology Restoration (SAVER), Ministry of Education, Alkali Soil Natural Environmental Science Center (ASNESC), Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
34
|
Almonte AA, Borevitz JO. Adaptation genomics: The angel is in the details. PLANT, CELL & ENVIRONMENT 2018; 41:2244-2246. [PMID: 29777598 DOI: 10.1111/pce.13344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 05/10/2018] [Accepted: 05/10/2018] [Indexed: 06/08/2023]
Abstract
This article comments on: Genome-wide signatures of flowering adaptation to climate temperature: Regional analyses in a highly diverse native range of Arabidopsis thaliana.
Collapse
Affiliation(s)
- Andrew A Almonte
- ARC Centre of Excellence for Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| | - Justin O Borevitz
- ARC Centre of Excellence for Plant Energy Biology, Australian National University, Canberra, Australian Capital Territory, 2601, Australia
| |
Collapse
|
35
|
Tabas-Madrid D, Méndez-Vigo B, Arteaga N, Marcer A, Pascual-Montano A, Weigel D, Xavier Picó F, Alonso-Blanco C. Genome-wide signatures of flowering adaptation to climate temperature: Regional analyses in a highly diverse native range of Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2018; 41:1806-1820. [PMID: 29520809 DOI: 10.1111/pce.13189] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 05/25/2023]
Abstract
Current global change is fueling an interest to understand the genetic and molecular mechanisms of plant adaptation to climate. In particular, altered flowering time is a common strategy for escape from unfavourable climate temperature. In order to determine the genomic bases underlying flowering time adaptation to this climatic factor, we have systematically analysed a collection of 174 highly diverse Arabidopsis thaliana accessions from the Iberian Peninsula. Analyses of 1.88 million single nucleotide polymorphisms provide evidence for a spatially heterogeneous contribution of demographic and adaptive processes to geographic patterns of genetic variation. Mountains appear to be allele dispersal barriers, whereas the relationship between flowering time and temperature depended on the precise temperature range. Environmental genome-wide associations supported an overall genome adaptation to temperature, with 9.4% of the genes showing significant associations. Furthermore, phenotypic genome-wide associations provided a catalogue of candidate genes underlying flowering time variation. Finally, comparison of environmental and phenotypic genome-wide associations identified known (Twin Sister of FT, FRIGIDA-like 1, and Casein Kinase II Beta chain 1) and new (Epithiospecifer Modifier 1 and Voltage-Dependent Anion Channel 5) genes as candidates for adaptation to climate temperature by altered flowering time. Thus, this regional collection provides an excellent resource to address the spatial complexity of climate adaptation in annual plants.
Collapse
Affiliation(s)
- Daniel Tabas-Madrid
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Belén Méndez-Vigo
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Noelia Arteaga
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Arnald Marcer
- CREAF, 08193, Cerdanyola del Vallès, Spain
- Universitat Autònoma de Barcelona, 08193, Cerdanyola del Vallès, Spain
| | - Alberto Pascual-Montano
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| | - Detlef Weigel
- Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076, Tübingen, Germany
| | - F Xavier Picó
- Departamento de Ecología Integrativa, Estación Biológica de Doñana (EBD), Consejo Superior de Investigaciones Científicas (CSIC), 41092, Sevilla, Spain
| | - Carlos Alonso-Blanco
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología (CNB), Consejo Superior de Investigaciones Científicas (CSIC), 28049, Madrid, Spain
| |
Collapse
|
36
|
Poschenrieder C, Fernández JA, Rubio L, Pérez L, Terés J, Barceló J. Transport and Use of Bicarbonate in Plants: Current Knowledge and Challenges Ahead. Int J Mol Sci 2018; 19:E1352. [PMID: 29751549 PMCID: PMC5983714 DOI: 10.3390/ijms19051352] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 04/27/2018] [Accepted: 04/28/2018] [Indexed: 01/09/2023] Open
Abstract
Bicarbonate plays a fundamental role in the cell pH status in all organisms. In autotrophs, HCO₃− may further contribute to carbon concentration mechanisms (CCM). This is especially relevant in the CO₂-poor habitats of cyanobacteria, aquatic microalgae, and macrophytes. Photosynthesis of terrestrial plants can also benefit from CCM as evidenced by the evolution of C₄ and Crassulacean Acid Metabolism (CAM). The presence of HCO₃− in all organisms leads to more questions regarding the mechanisms of uptake and membrane transport in these different biological systems. This review aims to provide an overview of the transport and metabolic processes related to HCO₃− in microalgae, macroalgae, seagrasses, and terrestrial plants. HCO₃− transport in cyanobacteria and human cells is much better documented and is included for comparison. We further comment on the metabolic roles of HCO₃− in plants by focusing on the diversity and functions of carbonic anhydrases and PEP carboxylases as well as on the signaling role of CO₂/HCO₃− in stomatal guard cells. Plant responses to excess soil HCO₃− is briefly addressed. In conclusion, there are still considerable gaps in our knowledge of HCO₃− uptake and transport in plants that hamper the development of breeding strategies for both more efficient CCM and better HCO₃− tolerance in crop plants.
Collapse
Affiliation(s)
- Charlotte Poschenrieder
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - José Antonio Fernández
- Department Biologia. Vegetal, Campus Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | - Lourdes Rubio
- Department Biologia. Vegetal, Campus Teatinos, Universidad de Málaga, 29071 Málaga, Spain.
| | - Laura Pérez
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Joana Terés
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| | - Juan Barceló
- Plant Physiology Lab., Bioscience Faculty, Universidad Autónoma de Barcelona, 08193 Barcelona, Spain.
| |
Collapse
|
37
|
Singh N, Swain S, Singh A, Nandi AK. AtOZF1 Positively Regulates Defense Against Bacterial Pathogens and NPR1-Independent Salicylic Acid Signaling. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2018; 31:323-333. [PMID: 29327969 DOI: 10.1094/mpmi-08-17-0208-r] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Plant hormone salicylic acid (SA) plays critical roles in defense signaling against biotrophic pathogens. Pathogen inoculation leads to SA accumulation in plants. SA activates a transactivator protein NPR1, which, in turn, transcriptionally activates many defense response genes. Reports also suggest the presence of NPR1-independent pathways for SA signaling in Arabidopsis. Here, we report the characterization of a zinc-finger protein-coding gene AtOZF1 that positively influences NPR1-independent SA signaling. Mutants of AtOZF1 are compromised, whereas AtOZF1-overexpressing plants are hyperactive for defense against virulent and avirulent pathogens. AtOZF1 expression is SA-inducible. AtOZF1 function is not required for pathogenesis-associated biosynthesis and accumulation of SA. However, it is required for SA responsiveness. By generating atozf1npr1 double mutant, we show that contributions of these two genes are additive in terms of defense. We identified AtOZF1-interacting proteins by a yeast-two-hybrid screening of an Arabidopsis cDNA library. VDAC2 and NHL3 are two AtOZF1-interacting proteins, which are positive regulators of basal defense. AtOZF1 interacts with NHL3 and VDAC2 in plasma membrane and mitochondria, respectively. Our results demonstrate that AtOZF1 coordinates multiple steps of plant-pathogen interaction.
Collapse
Affiliation(s)
- Nidhi Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Swadhin Swain
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Anupriya Singh
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ashis Kumar Nandi
- School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| |
Collapse
|
38
|
Canales J, Henriquez-Valencia C, Brauchi S. The Integration of Electrical Signals Originating in the Root of Vascular Plants. FRONTIERS IN PLANT SCIENCE 2018; 8:2173. [PMID: 29375591 PMCID: PMC5767606 DOI: 10.3389/fpls.2017.02173] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 12/12/2017] [Indexed: 05/07/2023]
Abstract
Plants have developed different signaling systems allowing for the integration of environmental cues to coordinate molecular processes associated to both early development and the physiology of the adult plant. Research on systemic signaling in plants has traditionally focused on the role of phytohormones as long-distance signaling molecules, and more recently the importance of peptides and miRNAs in building up this communication process has also been described. However, it is well-known that plants have the ability to generate different types of long-range electrical signals in response to different stimuli such as light, temperature variations, wounding, salt stress, or gravitropic stimulation. Presently, it is unclear whether short or long-distance electrical communication in plants is linked to nutrient uptake. This review deals with aspects of sensory input in plant roots and the propagation of discrete signals to the plant body. We discuss the physiological role of electrical signaling in nutrient uptake and how nutrient variations may become an electrical signal propagating along the plant.
Collapse
Affiliation(s)
- Javier Canales
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Institute for Integrative Systems and Synthetic Biology, Santiago, Chile
| | - Carlos Henriquez-Valencia
- Facultad de Ciencias, Instituto de Bioquimica y Microbiologia, Universidad Austral de Chile, Valdivia, Chile
| | - Sebastian Brauchi
- Facultad de Medicina, Instituto de Fisiologia, Universidad Austral de Chile, Valdivia, Chile
- Millennium Nucleus of Ion Channels-Associated Diseases, Valdivia, Chile
| |
Collapse
|
39
|
Behr M, Sergeant K, Leclercq CC, Planchon S, Guignard C, Lenouvel A, Renaut J, Hausman JF, Lutts S, Guerriero G. Insights into the molecular regulation of monolignol-derived product biosynthesis in the growing hemp hypocotyl. BMC PLANT BIOLOGY 2018; 18:1. [PMID: 29291729 PMCID: PMC5749015 DOI: 10.1186/s12870-017-1213-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 12/12/2017] [Indexed: 05/18/2023]
Abstract
BACKGROUND Lignin and lignans are both derived from the monolignol pathway. Despite the similarity of their building blocks, they fulfil different functions in planta. Lignin strengthens the tissues of the plant, while lignans are involved in plant defence and growth regulation. Their biosyntheses are tuned both spatially and temporally to suit the development of the plant (water conduction, reaction to stresses). We propose to study the general molecular events related to monolignol-derived product biosynthesis, especially lignin. It was previously shown that the growing hemp hypocotyl (between 6 and 20 days after sowing) is a valid system to study secondary growth and the molecular events accompanying lignification. The present work confirms the validity of this system, by using it to study the regulation of lignin and lignan biosynthesis. Microscopic observations, lignin analysis, proteomics, together with in situ laccase and peroxidase activity assays were carried out to understand the dynamics of lignin synthesis during the development of the hemp hypocotyl. RESULTS Based on phylogenetic analysis and targeted gene expression, we suggest a role for the hemp dirigent and dirigent-like proteins in lignan biosynthesis. The transdisciplinary approach adopted resulted in the gene- and protein-level quantification of the main enzymes involved in the biosynthesis of monolignols and their oxidative coupling (laccases and class III peroxidases), in lignin deposition (dirigent-like proteins) and in the determination of the stereoconformation of lignans (dirigent proteins). CONCLUSIONS Our work sheds light on how, in the growing hemp hypocotyl, the provision of the precursors needed to synthesize the aromatic biomolecules lignin and lignans is regulated at the transcriptional and proteomic level.
Collapse
Affiliation(s)
- Marc Behr
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain (UcL), 1348 Louvain-la-Neuve, Belgium
| | - Kjell Sergeant
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Céline C. Leclercq
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Sébastien Planchon
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Cédric Guignard
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Audrey Lenouvel
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Jenny Renaut
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Jean-Francois Hausman
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale (GRPV), Earth and Life Institute - Agronomy (ELI-A), Université catholique de Louvain (UcL), 1348 Louvain-la-Neuve, Belgium
| | - Gea Guerriero
- Environmental Research and Innovation Department (ERIN), Luxembourg Institute of Science and Technology (LIST), L-4362 Esch/Alzette, Luxembourg
| |
Collapse
|
40
|
Versaw WK, Garcia LR. Intracellular transport and compartmentation of phosphate in plants. CURRENT OPINION IN PLANT BIOLOGY 2017; 39:25-30. [PMID: 28570954 DOI: 10.1016/j.pbi.2017.04.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/10/2017] [Accepted: 04/16/2017] [Indexed: 05/21/2023]
Abstract
Phosphate (Pi) is an essential macronutrient with structural and metabolic roles within every compartment of the plant cell. Intracellular Pi transporters direct Pi to each organelle and also control its exchange between subcellular compartments thereby providing the means to coordinate compartmented metabolic processes, including glycolysis, photosynthesis, and respiration. In this review we summarize recent advances in the identification and functional analysis of Pi transporters that localize to vacuoles, chloroplasts, non-photosynthetic plastids, mitochondria, and the Golgi apparatus. Electrical potentials across intracellular membranes and the pH of subcellular environments will also be highlighted as key factors influencing the energetics of Pi transport, and therefore pose limits for Pi compartmentation.
Collapse
Affiliation(s)
- Wayne K Versaw
- Texas A&M University, Department of Biology, College Station, TX 77843, USA.
| | - L Rene Garcia
- Texas A&M University, Department of Biology, College Station, TX 77843, USA
| |
Collapse
|
41
|
Environmental stress is the major cause of transcriptomic and proteomic changes in GM and non-GM plants. Sci Rep 2017; 7:10624. [PMID: 28878216 PMCID: PMC5587699 DOI: 10.1038/s41598-017-09646-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/27/2017] [Indexed: 11/08/2022] Open
Abstract
The approval of genetically modified (GM) crops is preceded by years of intensive research to demonstrate safety to humans and environment. We recently showed that in vitro culture stress is the major factor influencing proteomic differences of GM vs. non-GM plants. This made us question the number of generations needed to erase such "memory". We also wondered about the relevance of alterations promoted by transgenesis as compared to environment-induced ones. Here we followed three rice lines (1-control, 1-transgenic and 1-negative segregant) throughout eight generations after transgenesis combining proteomics and transcriptomics, and further analyzed their response to salinity stress on the F6 generation. Our results show that: (a) differences promoted during genetic modification are mainly short-term physiological changes, attenuating throughout generations, and (b) environmental stress may cause far more proteomic/transcriptomic alterations than transgenesis. Based on our data, we question what is really relevant in risk assessment design for GM food crops.
Collapse
|
42
|
Zhang Z, Tateda C, Jiang SC, Shrestha J, Jelenska J, Speed DJ, Greenberg JT. A Suite of Receptor-Like Kinases and a Putative Mechano-Sensitive Channel Are Involved in Autoimmunity and Plasma Membrane-Based Defenses in Arabidopsis. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2017; 30:150-160. [PMID: 28051349 DOI: 10.1094/mpmi-09-16-0184-r] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In plants, cell surface pattern recognition receptors (PRRs) provide a first line of defense against pathogens. Although each PRR recognizes a specific ligand, they share common signaling outputs, such as callose and other cell wall-based defenses. Several PRRs are also important for callose induction in response to the defense signal salicylic acid (SA). The extent to which common components are needed for PRR signaling outputs is not known. The gain-of-function Arabidopsis mutant of ACCELERATED CELL DEATH6 (ACD6) acd6-1 shows constitutive callose production that partially depends on PRRs. ACD6-1 (and ACD6) forms complexes with the PRR FLAGELLIN SENSING2, and ACD6 is needed for responses to several PRR ligands. Thus, ACD6-1 could serve as a probe to identify additional proteins important for PRR-mediated signaling. Candidate signaling proteins (CSPs), identified in our proteomic screen after immunoprecipitation of hemagglutinin (HA)-tagged ACD6-1, include several subfamilies of receptor-like kinase (RLK) proteins and a MECHANO-SENSITIVE CHANNEL OF SMALL CONDUCTANCE-LIKE 4 (MSL4). In acd6-1, CSPs contribute to autoimmunity. In wild type, CSPs are needed for defense against bacteria and callose responses to two or more microbial-derived patterns and an SA agonist. CSPs may function to either i) promote the assembly of signaling complexes, ii) regulate the output of known PRRs, or both.
Collapse
Affiliation(s)
- Zhongqin Zhang
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | - Chika Tateda
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | - Shang-Chuan Jiang
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | - Jay Shrestha
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | - Joanna Jelenska
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| | | | - Jean T Greenberg
- Department of Molecular Genetics and Cell Biology, The University of Chicago
| |
Collapse
|
43
|
Thoen MPM, Davila Olivas NH, Kloth KJ, Coolen S, Huang P, Aarts MGM, Bac‐Molenaar JA, Bakker J, Bouwmeester HJ, Broekgaarden C, Bucher J, Busscher‐Lange J, Cheng X, Fradin EF, Jongsma MA, Julkowska MM, Keurentjes JJB, Ligterink W, Pieterse CMJ, Ruyter‐Spira C, Smant G, Testerink C, Usadel B, van Loon JJA, van Pelt JA, van Schaik CC, van Wees SCM, Visser RGF, Voorrips R, Vosman B, Vreugdenhil D, Warmerdam S, Wiegers GL, van Heerwaarden J, Kruijer W, van Eeuwijk FA, Dicke M. Genetic architecture of plant stress resistance: multi-trait genome-wide association mapping. THE NEW PHYTOLOGIST 2017; 213:1346-1362. [PMID: 27699793 PMCID: PMC5248600 DOI: 10.1111/nph.14220] [Citation(s) in RCA: 95] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Accepted: 08/17/2016] [Indexed: 05/19/2023]
Abstract
Plants are exposed to combinations of various biotic and abiotic stresses, but stress responses are usually investigated for single stresses only. Here, we investigated the genetic architecture underlying plant responses to 11 single stresses and several of their combinations by phenotyping 350 Arabidopsis thaliana accessions. A set of 214 000 single nucleotide polymorphisms (SNPs) was screened for marker-trait associations in genome-wide association (GWA) analyses using tailored multi-trait mixed models. Stress responses that share phytohormonal signaling pathways also share genetic architecture underlying these responses. After removing the effects of general robustness, for the 30 most significant SNPs, average quantitative trait locus (QTL) effect sizes were larger for dual stresses than for single stresses. Plants appear to deploy broad-spectrum defensive mechanisms influencing multiple traits in response to combined stresses. Association analyses identified QTLs with contrasting and with similar responses to biotic vs abiotic stresses, and below-ground vs above-ground stresses. Our approach allowed for an unprecedented comprehensive genetic analysis of how plants deal with a wide spectrum of stress conditions.
Collapse
|
44
|
Li L, Kubiszewski-Jakubiak S, Radomiljac J, Wang Y, Law SR, Keech O, Narsai R, Berkowitz O, Duncan O, Murcha MW, Whelan J. Characterization of a novel β-barrel protein (AtOM47) from the mitochondrial outer membrane of Arabidopsis thaliana. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:6061-6075. [PMID: 27811077 PMCID: PMC5100019 DOI: 10.1093/jxb/erw366] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
In plant cells, mitochondria are major providers of energy and building blocks for growth and development as well as abiotic and biotic stress responses. They are encircled by two lipid membranes containing proteins that control mitochondrial function through the import of macromolecules and metabolites. Characterization of a novel β-barrel protein, OUTER MEMBRANE PROTEIN 47 (OM47), unique to the green lineage and related to the voltage-dependent anion channel (VDAC) protein family, showed that OM47 can complement a VDAC mutant in yeast. Mutation of OM47 in Arabidopsis thaliana by T-DNA insertion had no effect on the import of proteins, such as the β-barrel proteins translocase of the outer membrane 40 (TOM40) or sorting and assembly machinery 50 (SAM50), into mitochondria. Molecular and physiological analyses revealed a delay in chlorophyll breakdown, higher levels of starch, and a delay in the induction of senescence marker genes in the mutant lines. While there was a reduction of >90% in OM47 protein in mitochondria isolated from 3-week-old om47 mutants, in mitochondria isolated from 8-week-old plants OM47 levels were similar to that of the wild type. This recovery was achieved by an up-regulation of OM47 transcript abundance in the mutants. Combined, these results highlight a role in leaf senescence for this plant-specific β-barrel protein, probably mediating the recovery and recycling of chloroplast breakdown products by transporting metabolic intermediates into and out of mitochondria.
Collapse
Affiliation(s)
- Lu Li
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Szymon Kubiszewski-Jakubiak
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 Australia
| | - Jordan Radomiljac
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Yan Wang
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Simon R Law
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Olivier Keech
- Department of Plant Physiology, Umeå Plant Science Centre, Umeå University, S-90187 Umeå, Sweden
| | - Reena Narsai
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Oliver Berkowitz
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| | - Owen Duncan
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 Australia
| | - Monika W Murcha
- Australian Research Council Centre of Excellence in Plant Energy Biology, University of Western Australia, 35 Stirling Highway, Crawley, Western Australia, 6009 Australia
| | - James Whelan
- Australian Research Council Centre of Excellence in Plant Energy Biology, Department of Animal, Plant and Soil Science, School of Life Science, La Trobe University, Bundoora, Victoria, 3086, Australia
| |
Collapse
|
45
|
The multiple assemblies of VDAC: from conformational heterogeneity to β-aggregation and amyloid formation. Biochem Soc Trans 2016; 44:1531-1540. [PMID: 27911736 DOI: 10.1042/bst20160114] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 06/22/2016] [Accepted: 06/28/2016] [Indexed: 01/10/2023]
Abstract
From their cellular localisation, to their atomic structure and their involvement in mitochondrial-driven cell death, voltage-dependent anion channels (VDACs) have challenged the scientific community with enigmas and paradoxes for over four decades. VDACs form active monomer channels in lipid bilayers, but they can also organise in multimeric assemblies. What induces, regulates and/or controls the monomer-multimer dynamics at the cellular level is not known. However, these state transitions appear to be relevant for mitochondria in making life or death decisions and for driving developmental processes. This review starts with a general introduction on VDACs and continues by examining VDAC oligomerisation/aggregation in light of recent discussions on VDAC-β-amyloid interactions and their involvement in Alzheimer's disease.
Collapse
|
46
|
Kwon T. Mitochondrial Porin Isoform AtVDAC1 Regulates the Competence of Arabidopsis thaliana to Agrobacterium-Mediated Genetic Transformation. Mol Cells 2016; 39:705-13. [PMID: 27643450 PMCID: PMC5050536 DOI: 10.14348/molcells.2016.0159] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Revised: 08/08/2016] [Accepted: 08/11/2016] [Indexed: 11/27/2022] Open
Abstract
The efficiency of Agrobacterium-mediated transformation in plants depends on the virulence of Agrobacterium strains, the plant tissue culture conditions, and the susceptibility of host plants. Understanding the molecular interactions between Agrobacterium and host plant cells is crucial when manipulating the susceptibility of recalcitrant crop plants and protecting orchard trees from crown gall disease. It was discovered that Arabidopsis voltage-dependent anion channel 1 (atvdac1) mutant has drastic effects on Agrobacterium-mediated tumorigenesis and growth developmental phenotypes, and that these effects are dependent on a Ws-0 genetic background. Genetic complementation of Arabidopsis vdac1 mutants and yeast porin1-deficient strain with members of the AtVDAC gene family revealed that AtVDAC1 is required for Agrobacterium-mediated transformation, and there is weak functional redundancy between AtVDAC1 and AtVDAC3, which is independent of porin activity. Furthermore, atvdac1 mutants were deficient in transient and stable transformation by Agrobacterium, suggesting that AtVDAC1 is involved in the early stages of Agrobacterium infection prior to transferred-DNA (T-DNA) integration. Transgenic plants overexpressing AtVDAC1 not only complemented the phenotypes of the atvdac1 mutant, but also showed high efficiency of transient T-DNA gene expression; however, the efficiency of stable transformation was not affected. Moreover, the effect of phytohormone treatment on competence to Agrobacterium was compromised in atvdac1 mutants. These data indicate that AtVDAC1 regulates the competence of Arabidopsis to Agrobacterium infection.
Collapse
Affiliation(s)
- Tackmin Kwon
- Institute of Agricultural Life Sciences, Dong-A University, Busan 49315,
Korea
| |
Collapse
|
47
|
Carraretto L, Checchetto V, De Bortoli S, Formentin E, Costa A, Szabó I, Teardo E. Calcium Flux across Plant Mitochondrial Membranes: Possible Molecular Players. FRONTIERS IN PLANT SCIENCE 2016; 7:354. [PMID: 27065186 PMCID: PMC4814809 DOI: 10.3389/fpls.2016.00354] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Accepted: 03/07/2016] [Indexed: 05/24/2023]
Abstract
Plants, being sessile organisms, have evolved the ability to integrate external stimuli into metabolic and developmental signals. A wide variety of signals, including abiotic, biotic, and developmental stimuli, were observed to evoke specific spatio-temporal Ca(2+) transients which are further transduced by Ca(2+) sensor proteins into a transcriptional and metabolic response. Most of the research on Ca(2+) signaling in plants has been focused on the transport mechanisms for Ca(2+) across the plasma- and the vacuolar membranes as well as on the components involved in decoding of cytoplasmic Ca(2+) signals, but how intracellular organelles such as mitochondria are involved in the process of Ca(2+) signaling is just emerging. The combination of the molecular players and the elicitors of Ca(2+) signaling in mitochondria together with newly generated detection systems for measuring organellar Ca(2+) concentrations in plants has started to provide fruitful grounds for further discoveries. In the present review we give an updated overview of the currently identified/hypothesized pathways, such as voltage-dependent anion channels, homologs of the mammalian mitochondrial uniporter (MCU), LETM1, a plant glutamate receptor family member, adenine nucleotide/phosphate carriers and the permeability transition pore (PTP), that may contribute to the transport of Ca(2+) across the outer and inner mitochondrial membranes in plants. We briefly discuss the relevance of the mitochondrial Ca(2+) homeostasis for ensuring optimal bioenergetic performance of this organelle.
Collapse
Affiliation(s)
| | - Vanessa Checchetto
- Department of Biology, University of PadovaPadova, Italy
- Department of Biomedical Sciences, University of PadovaPadova, Italy
| | | | - Elide Formentin
- Department of Biology, University of PadovaPadova, Italy
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Alex Costa
- Department of Biosciences, University of MilanMilan, Italy
- CNR, Institute of Biophysics, Consiglio Nazionale delle RicercheMilan, Italy
| | - Ildikó Szabó
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| | - Enrico Teardo
- Department of Biology, University of PadovaPadova, Italy
- CNR, Institute of NeurosciencesPadova, Italy
| |
Collapse
|
48
|
Gugger PF, Fitz-Gibbon S, PellEgrini M, Sork VL. Species-wide patterns of DNA methylation variation inQuercus lobataand their association with climate gradients. Mol Ecol 2016; 25:1665-80. [DOI: 10.1111/mec.13563] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 01/25/2016] [Accepted: 01/27/2016] [Indexed: 12/11/2022]
Affiliation(s)
- Paul F. Gugger
- Ecology and Evolutionary Biology; University of California; Los Angeles CA 90095-7239 USA
| | - Sorel Fitz-Gibbon
- Ecology and Evolutionary Biology; University of California; Los Angeles CA 90095-7239 USA
- Molecular, Cell, and Developmental Biology; University of California; Los Angeles CA 90095 USA
| | - Matteo PellEgrini
- Molecular, Cell, and Developmental Biology; University of California; Los Angeles CA 90095 USA
- Institute of Genomics and Proteomics; University of California; Los Angeles CA 90095 USA
| | - Victoria L. Sork
- Ecology and Evolutionary Biology; University of California; Los Angeles CA 90095-7239 USA
- Institute of the Environment and Sustainability; University of California; Los Angeles CA 90095-1496 USA
| |
Collapse
|
49
|
Saidani H, Grobys D, Léonetti M, Kmita H, Homblé F. Towards understanding of plant mitochondrial VDAC proteins: an overview of bean ( Phaseolus) VDAC proteins. AIMS BIOPHYSICS 2016. [DOI: 10.3934/biophy.2017.1.43] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
50
|
Fuchs R, Kopischke M, Klapprodt C, Hause G, Meyer AJ, Schwarzländer M, Fricker MD, Lipka V. Immobilized Subpopulations of Leaf Epidermal Mitochondria Mediate PENETRATION2-Dependent Pathogen Entry Control in Arabidopsis. THE PLANT CELL 2016; 28:130-45. [PMID: 26721862 PMCID: PMC4746686 DOI: 10.1105/tpc.15.00887] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 12/30/2015] [Indexed: 05/05/2023]
Abstract
The atypical myrosinase PENETRATION2 (PEN2) is required for broad-spectrum invasion resistance to filamentous plant pathogens. Previous localization studies suggested PEN2-GFP association with peroxisomes. Here, we show that PEN2 is a tail-anchored protein with dual-membrane targeting to peroxisomes and mitochondria and that PEN2 has the capacity to form homo-oligomer complexes. We demonstrate pathogen-induced recruitment and immobilization of mitochondrial subpopulations at sites of attempted fungal invasion and show that mitochondrial arrest is accompanied by peripheral accumulation of GFP-tagged PEN2. PEN2 substrate production by the cytochrome P450 monooxygenase CYP81F2 is localized to the surface of the endoplasmic reticulum, which focally reorganizes close to the immobilized mitochondria. Exclusive targeting of PEN2 to the outer membrane of mitochondria complements the pen2 mutant phenotype, corroborating the functional importance of the mitochondrial PEN2 protein subpool for controlled local production of PEN2 hydrolysis products at subcellular plant-microbe interaction domains. Moreover, live-cell imaging shows that mitochondria arrested at these domains exhibit a pathogen-induced redox imbalance, which may lead to the production of intracellular signals.
Collapse
Affiliation(s)
- Rene Fuchs
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, 37077 Göttingen, Germany The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Michaela Kopischke
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, 37077 Göttingen, Germany The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Christine Klapprodt
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, 37077 Göttingen, Germany The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Gerd Hause
- Martin-Luther-Universität Halle-Wittenberg, Universitätsbiozentrum, 06120 Halle, Germany
| | - Andreas J Meyer
- University of Bonn, INRES-Chemical Signalling, 53113 Bonn, Germany
| | | | - Mark D Fricker
- Department of Plant Sciences, University of Oxford, Oxford OX1 3RB, United Kingdom
| | - Volker Lipka
- Department of Plant Cell Biology, Albrecht-von-Haller-Institute, Georg-August-University Göttingen, 37077 Göttingen, Germany The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| |
Collapse
|