1
|
Guo H, Li J, Liu Y, Fernández-Pascual E. Lipid metabolism during seed germination of Pistacia chinensis and its response to gibberellic acid. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 219:109371. [PMID: 39667083 DOI: 10.1016/j.plaphy.2024.109371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/14/2024]
Abstract
Lipid metabolism may play a critical role in fueling seed germination, but the knowledge of lipid metabolism during germination is still ambiguous. Here, we hypothesize that gibberellic acid (GA) promotes germination by means of enhancing lipid mobilization in Chinese pistachio (Pistacia chinensis Bunge), a species belonging to Anacardiaceae with high oil content in its seeds. A multi-omics approach has been applied to measure lipid mobilization during seed germination, and to identify the key regulators involved in GA-mediated lipid metabolism. The results indicated that GA contents increased, while IAA, ABA and JA contents decreased during seed germination. GA3 increased significantly in the two germination stages (i.e. imbibition and radicle protrusion), and it was more abundant than GA1 and GA4. In addition, the relative content of most lipids decreased during germination, and the differentially changed metabolites were significantly enriched in lipid metabolic pathways based on KEGG analysis. WGCNA indicated that GA3 was correlated with more genes in lipid metabolic pathways. Transcriptomic analysis further revealed that differentially expressed genes (DEGs) related to fatty acid biosynthesis, glycerolipid metabolism, glycerophospholipid metabolism and starch and sucrose metabolism were upregulated under GA3 application, such as the acetyl-CoA carboxylase biotin carboxyl carrier protein (ACCB), fatty acyl-ACP thioesterase B (FATB), diacylglycerol acyltransferase (DGAT) and DEFECTIVE IN ANTHER DEHISCENCE 1 (DAD1). Therefore, our study supports the hypothesis that GA promotes seed germination in P. chinensis by enhancing lipid mobilization. This study proposes a novel mechanism of lipid responses to exogenous GA, which contributes to a deep understanding of germination of oleaginous seeds.
Collapse
Affiliation(s)
- Huanhuan Guo
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Jinjin Li
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China
| | - Yong Liu
- Key Laboratory for Silviculture and Conservation, Ministry of Education, Beijing Forestry University, Beijing, 100083, China; State Key Laboratory of Efficient Production of Forest Resources, Beijing Forestry University, Haidian District, Beijing, 100083, China.
| | - Eduardo Fernández-Pascual
- Biodiversity Research Institute (IMIB), University of Oviedo - CSIC - Principality of Asturias, E-33600, Mieres, Spain
| |
Collapse
|
2
|
Sapara VJ, Shankhapal AR, Reddy PS. Genome-wide screening and characterization of phospholipase A (PLA)-like genes in sorghum (Sorghum bicolor L.). PLANTA 2024; 260:35. [PMID: 38922509 DOI: 10.1007/s00425-024-04467-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024]
Abstract
MAIN CONCLUSION The characterisation of PLA genes in the sorghum genome using in-silico methods revealed their essential roles in cellular processes, providing a foundation for further detailed studies. Sorghum bicolor (L.) Moench is the fifth most cultivated crop worldwide, and it is used in many ways, but it has always gained less popularity due to the yield, pest, and environmental constraints. Improving genetic background and developing better varieties is crucial for better sorghum production in semi-arid tropical regions. This study focuses on the phospholipase A (PLA) family within sorghum, comprehensively characterising PLA genes and their expression across different tissues. The investigation identified 32 PLA genes in the sorghum genome, offering insights into their chromosomal localization, molecular weight, isoelectric point, and subcellular distribution through bioinformatics tools. PLA-like family genes are classified into three groups, namely patatin-related phospholipase A (pPLA), phospholipase A1 (PLA1), and phospholipase A2 (PLA2). In-silico chromosome localization studies revealed that these genes are unevenly distributed in the sorghum genome. Cis-motif analysis revealed the presence of several developmental, tissue and hormone-specific elements in the promoter regions of the PLA genes. Expression studies in different tissues such as leaf, root, seedling, mature seed, immature seed, anther, and pollen showed differential expression patterns. Taken together, genome-wide analysis studies of PLA genes provide a better understanding and critical role of this gene family considering the metabolic processes involved in plant growth, defence and stress response.
Collapse
Affiliation(s)
- Vidhi J Sapara
- Cell Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Department of Genetics, Osmania University, Hyderabad, Telangana, India
| | - Aishwarya R Shankhapal
- Cell Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Nottingham, UK
- Plant Sciences for the Bio-Economy, Rothamsted Research, Harpenden, Hertfordshire, UK
| | - Palakolanu Sudhakar Reddy
- Cell Molecular Biology and Trait Engineering, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad, Telangana, 502324, India.
| |
Collapse
|
3
|
Luo M, Gao J, Liu R, Wang S, Wang G. Morphological and anatomical changes during dormancy break of the seeds of Fritillaria taipaiensis. PLANT SIGNALING & BEHAVIOR 2023; 18:2194748. [PMID: 36999406 PMCID: PMC10072057 DOI: 10.1080/15592324.2023.2194748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/05/2023] [Accepted: 03/06/2023] [Indexed: 06/19/2023]
Abstract
Fritillaria taipaiensis P. Y. Li is the most suitable species planted at low altitudes among other species used as Tendrilleaf Fritillary Bulb, whose seeds embracing the morphological and physiological dormancy need to experience a long-dormant time from sowing to germination. In this study, the developmental changes of F. taipaiensis seeds during dormancy period were observed by morphological and anatomical observation, and the cause of long-term dormancy of seeds was discussed from the perspective of embryonic development. The process of embryonic organogenesis was revealed during the dormancy stage by the paraffin section. The effects of testa, endosperm and temperature on dormant seeds were discussed. Furthermore, we found that the mainly dormant reason was caused by the morphological dormancy, which accounted for 86% of seed development time. The differentiation time of the globular or pear-shaped embryo into a short-rod embryo was longer, which was one of the chief reasons for the morphological dormancy and played an important role in embryonic formation. Testa and endosperm with mechanical constraint and inhibitors involved in the dormancy of F. taipaiensis seeds. The seeds of F. taipaiensis, the average ambient temperature of 6-12°C for morphological dormancy and 11-22°C for physiological dormancy, were unsuitable for seed growth. Therefore, we suggested that the dormancy time of F. taipaiensis seeds could be shortened by shortening the development time of the proembryo stage and stratification for the different stages of dormancy.
Collapse
Affiliation(s)
- Min Luo
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ran Liu
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - ShiQi Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guangzhi Wang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
4
|
Bansal S, Sundararajan S, Shekhawat PK, Singh S, Soni P, Tripathy MK, Ram H. Rice lipases: a conundrum in rice bran stabilization: a review on their impact and biotechnological interventions. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:985-1003. [PMID: 37649880 PMCID: PMC10462582 DOI: 10.1007/s12298-023-01343-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 09/01/2023]
Abstract
Rice is a primary food and is one of the most important constituents of diets all around the world. Rice bran is a valuable component of rice, containing many oil-soluble vitamins, minerals, and oil. It is known for its ability to improve the economic value of rice. Further, it contains substantial quantities of minerals like potassium, calcium, magnesium, iron and antioxidants like tocopherols, tocotrienols, and γ-oryzanol, indicating that rice bran can be utilized effectively against several life-threatening disorders. It is difficult to fully utilize the necessary nutrients due to the presence of lipases in rice bran. These lipases break down lipids, specifically Triacylglycerol, into free fatty acids and glycerol. This review discusses physicochemical properties, mechanism of action, distribution, and activity of lipases in various components of rice seeds. The phylogenetic and gene expression analysis helped to understand the differential expression pattern of lipase genes at different growth phases of rice plant. Further, this review discusses various genetic and biotechnological approaches to decrease lipase activity in rice and other plants, which could potentially prevent the degradation of bran oil. The goal is to establish whether lipases are a major contributor to this issue and to develop rice varieties with improved bran stability. This information sets the stage for upcoming molecular research in this area. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-023-01343-3.
Collapse
Affiliation(s)
- Sakshi Bansal
- National Agri-Food Biotechnology Institute, Sector 81, Mohali, 140306 India
| | - Sathish Sundararajan
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | | | - Shivangi Singh
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Praveen Soni
- Department of Botany, University of Rajasthan, JLN Marg, Jaipur, 302004 India
| | - Manas K. Tripathy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
5
|
Pan C, Zhou Y, Yao L, Yu L, Qiao Z, Tang M, Wei F. Amomum tsaoko DRM1 regulate seed germination and improve heat tolerance in Arabidopsis. JOURNAL OF PLANT PHYSIOLOGY 2023; 286:154007. [PMID: 37209458 DOI: 10.1016/j.jplph.2023.154007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/22/2023]
Abstract
Seed dormancy and germination are critical to medicinal plant reproduction. Dormancy-associated gene (DRM1) has been involved in the regulation of dormancy in Arabidopsis meristematic tissues or organs. However, research on molecular functions and regulations of DRM1 in Amomum tsaoko, an important medicinal plant, is rare. In this study, the DRM1 was isolated from embryos of A. tsaoko, and the results of protein subcellular localization in Arabidopsis protoplast indicated that DRM1 was mainly nucleus and cytoplasm. Expression analysis showed that DRM1 especially exhibited the highest transcript level in dormant seed and short-time stratification while displaying a high response of hormone and abiotic stress. Further investigation showed that ectopic expression of DRM1 in Arabidopsis exhibited delayed seed germination and germination capability to high temperatures. Additionally, DRM1 transgenic Arabidopsis exhibited increased tolerance to heat stress by enhancing antioxidative capacities and regulating stress-associated genes (AtHsp25.3-P, AtHsp18.2-CI, AtHsp70B, AtHsp101, AtGolS1, AtMBF1c, AtHsfA2, AtHsfB1 and AtHsfB2). Overall, our results reveal the role of DRM1 in seed germination and abiotic stress response.
Collapse
Affiliation(s)
- Chunliu Pan
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Yunyi Zhou
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Lixiang Yao
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Liying Yu
- Guangxi TCM Resources General Survey and Data Collection Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| | - Zhu Qiao
- Guangxi Medicinal Resources Conservation and Genetic Improvement Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China.
| | - Meiqiong Tang
- Guangxi Medicinal Resources Conservation and Genetic Improvement Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China.
| | - Fan Wei
- Guangxi Medicinal Resources Conservation and Genetic Improvement Key Laboratory, Guangxi Botanical Garden of Medicinal Plants, 530023, Nanning, China.
| |
Collapse
|
6
|
Saddhe AA, Potocký M. Comparative phylogenomic and structural analysis of canonical secretory PLA2 and novel PLA2-like family in plants. FRONTIERS IN PLANT SCIENCE 2023; 14:1118670. [PMID: 36909415 PMCID: PMC9995887 DOI: 10.3389/fpls.2023.1118670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Plant secretory phospholipase A2 (sPLA2) is a family of lipolytic enzymes involved in the sn-2 hydrolysis of phospholipid carboxyester bonds, characterized by the presence of a conserved PA2c domain. PLA2 produces free fatty acids and lysophospholipids, which regulate several physiological functions, including lipid metabolism, plant growth and development, signal transduction, and response to various environmental stresses. In the present work, we have performed a comparative analysis of PA2c domain-containing genes across plants, focusing on gene distribution, phylogenetic analysis, tissue-specific expression, and homology modeling. Our data revealed the widespread occurrence of multiple sPLA2 in most land plants and documented single sPLA2 in multiple algal groups, indicating an ancestral origin of sPLA2. We described a novel PA2c-containing gene family present in all plant lineages and lacking secretory peptide, which we termed PLA2-like. Phylogenetic analysis revealed two independent clades in canonical sPLA2 genes referred to as α and β clades, whereas PLA2-like genes clustered independently as a third clade. Further, we have explored clade-specific gene expressions showing that while all three clades were expressed in vegetative and reproductive tissues, only sPLA2-β and PLA2-like members were expressed in the pollen and pollen tube. To get insight into the conservation of the gene regulatory network of sPLA2 and PLA2-like genes, we have analyzed the occurrence of various cis-acting promoter elements across the plant kingdom. The comparative 3D structure analysis revealed conserved and unique features within the PA2c domain for the three clades. Overall, this study will help to understand the evolutionary significance of the PA2c family and lay the foundation for future sPLA2 and PLA2-like characterization in plants.
Collapse
Affiliation(s)
- Ankush Ashok Saddhe
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
| | - Martin Potocký
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
7
|
Zhang H, Zhang Y, Xu N, Rui C, Fan Y, Wang J, Han M, Wang Q, Sun L, Chen X, Lu X, Wang D, Chen C, Ye W. Genome-wide expression analysis of phospholipase A1 (PLA1) gene family suggests phospholipase A1-32 gene responding to abiotic stresses in cotton. Int J Biol Macromol 2021; 192:1058-1074. [PMID: 34656543 DOI: 10.1016/j.ijbiomac.2021.10.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 01/01/2023]
Abstract
Cotton is the most important crop for the production of natural fibres used in the textile industry. High salinity, drought, cold and high temperature represent serious abiotic stresses, which seriously threaten cotton production. Phospholipase AS has an irreplaceable role in lipid signal transmission, growth and development and stress events. Phospholipase A can be divided into three families: PLA1, PLA2 and pPLA. Among them, the PLA1 family is rarely studied in plants. In order to study the potential functions of the PLA1 family in cotton, the bioinformatics analysis of the PLA1 family was correlated with cotton adversity, and tissue-specific analysis was performed. Explore the structure-function relationship of PLA1 members. It is found that the expression of GbPLA1-32 gene is affected by a variety of environmental stimuli, indicating that it plays a very important role in stress and hormone response, and closely associates the cotton adversity with this family. Through further functional verification, we found that virus-induced GbPLA1-32 gene silencing (VIGS) caused Gossypium barbadense to be sensitive to salt stress. This research provides an important basis for further research on the molecular mechanism of cotton resistance to abiotic stress.
Collapse
Affiliation(s)
- Hong Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China; Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052 Urumqi, China
| | - Yuexin Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Nan Xu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Cun Rui
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Yapeng Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Jing Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Mingge Han
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052 Urumqi, China
| | - Qinqin Wang
- Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052 Urumqi, China
| | - Liangqing Sun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Xiugui Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Xuke Lu
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Delong Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Chao Chen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China
| | - Wuwei Ye
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Zhengzhou Research Base, School of Agricultural Sciences, Zhengzhou University, Key Laboratory for Cotton Genetic Improvement, MOA, Anyang, Henan 455000, China; Engineering Research Centre of Cotton, Ministry of Education/College of Agriculture, Xinjiang Agricultural University, 311 Nongda East Road, 830052 Urumqi, China.
| |
Collapse
|
8
|
Analysis of Stored mRNA Degradation in Acceleratedly Aged Seeds of Wheat and Canola in Comparison to Arabidopsis. PLANTS 2020; 9:plants9121707. [PMID: 33291562 PMCID: PMC7761881 DOI: 10.3390/plants9121707] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 12/01/2020] [Accepted: 12/01/2020] [Indexed: 12/26/2022]
Abstract
Seed aging has become a topic of renewed interest but its mechanism remains poorly understood. Our recent analysis of stored mRNA degradation in aged Arabidopsis seeds found that the stored mRNA degradation rates (estimated as the frequency of breakdown per nucleotide per day or β value) were constant over aging time under stable conditions. However, little is known about the generality of this finding to other plant species. We expanded the analysis to aged seeds of wheat (Triticum aestivum) and canola (Brassica napus). It was found that wheat and canola seeds required much longer periods than Arabidopsis seeds to lose seed germination ability completely under the same aging conditions. As what had been observed for Arabidopsis, stored mRNA degradation (∆Ct value in qPCR) in wheat and canola seeds correlated linearly and tightly with seed aging time or mRNA fragment size, while the quality of total RNA showed little change during seed aging. The generated β values reflecting the rate of stored mRNA degradation in wheat or canola seeds were similar for different stored mRNAs assayed and constant over seed aging time. The overall β values for aged seeds of wheat and canola showed non-significant differences from that of Arabidopsis when aged under the same conditions. These results are significant, allowing for better understanding of controlled seed aging for different species at the molecular level and for exploring the potential of stored mRNAs as seed aging biomarkers.
Collapse
|
9
|
Dervisi I, Valassakis C, Agalou A, Papandreou N, Podia V, Haralampidis K, Iconomidou VA, Kouvelis VN, Spaink HP, Roussis A. Investigation of the interaction of DAD1-LIKE LIPASE 3 (DALL3) with Selenium Binding Protein 1 (SBP1) in Arabidopsis thaliana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 291:110357. [PMID: 31928671 DOI: 10.1016/j.plantsci.2019.110357] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/18/2019] [Accepted: 11/21/2019] [Indexed: 06/10/2023]
Abstract
Phospholipase PLA1-Iγ2 or otherwise DAD1-LIKE LIPASE 3 (DALL3) is a member of class I phospholipases and has a role in JA biosynthesis. AtDALL3 was previously identified in a yeast two-hybrid screening as an interacting protein of the Arabidopsis Selenium Binding Protein 1 (SBP1). In this work, we have studied AtDALL3 as an interacting partner of the Arabidopsis Selenium Binding Protein 1 (SBP1). Phylogenetic analysis showed that DALL3 appears in the PLA1-Igamma1, 2 group, paired with PLA1-Igammma1. The highest level of expression of AtDALL3 was observed in 10-day-old roots and in flowers, while constitutive levels were maintained in seedlings, cotyledons, shoots and leaves. In response to abiotic stress, DALL3 was shown to participate in the network of genes regulated by cadmium, selenite and selenate compounds. DALL3 promoter driven GUS assays revealed that the expression patterns defined were overlapping with the patterns reported for AtSBP1 gene, indicating that DALL3 and SBP1 transcripts co-localize. Furthermore, quantitative GUS assays showed that these compounds elicited changes in activity in specific cells files, indicating the differential response of DALL3 promoter. GFP::DALL3 studies by confocal microscopy demonstrated the localization of DALL3 in the plastids of the root apex, the plastids of the central root and the apex of emerging lateral root primordia. Additionally, we confirmed by yeast two hybrid assays the physical interaction of DALL3 with SBP1 and defined a minimal SBP1 fragment that DALL3 binds to. Finally, by employing bimolecular fluorescent complementation we demonstrated the in planta interaction of the two proteins.
Collapse
Affiliation(s)
- Irene Dervisi
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Chrysanthi Valassakis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Adamantia Agalou
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Nikolaos Papandreou
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University, 15784, Athens, Greece
| | - Varvara Podia
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Kosmas Haralampidis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Vassiliki A Iconomidou
- Department of Cell Biology and Biophysics, Faculty of Biology, National & Kapodistrian University, 15784, Athens, Greece
| | - Vassili N Kouvelis
- Department of Genetics and Biotechnology, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, the Netherlands
| | - Andreas Roussis
- Department of Botany, Faculty of Biology, National & Kapodistrian University of Athens, 15784, Athens, Greece.
| |
Collapse
|
10
|
OsPLB gene expressed during seed germination encodes a phospholipase in rice. 3 Biotech 2020; 10:30. [PMID: 32015947 DOI: 10.1007/s13205-019-2016-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 12/11/2019] [Indexed: 10/25/2022] Open
Abstract
Hydrolysis of phospholipid monolayer by phospholipases is an important event in the mobilization of stored lipids for seed germination. However, the identification and functional characterization of cereal phospholipases, especially during rice germination, are limited. In the present study, we have identified and characterized a phospholipase OsPLB gene expressed during germination. The full-length coding region of OsPLB was cloned into pRSETA as well as pYES2/NTC vector. The recombinant protein was successfully expressed in both E. coli and Saccharomyces cerevisiae. The recombinant protein was purified to homogeneity by affinity chromatography, and it was further confirmed by MS/MS analysis. In vitro lipase assay and lipidome analysis using high-resolution mass spectrometry showed phosphatidylcholine (PC) specific phospholipase B activity. The results revealed that protein encoded by OsPLB gene prefers to hydrolyze PCs with C28, C32, and C34 containing unsaturated fatty acids. Collectively, the present study describes the identification and characterization of a phospholipase B, which hydrolyze PC, a major component of phospholipid monolayer covering storage lipid, as an initial event during rice seed germination.
Collapse
|
11
|
Takáč T, Novák D, Šamaj J. Recent Advances in the Cellular and Developmental Biology of Phospholipases in Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:362. [PMID: 31024579 PMCID: PMC6459882 DOI: 10.3389/fpls.2019.00362] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 03/08/2019] [Indexed: 05/05/2023]
Abstract
Phospholipases (PLs) are lipid-hydrolyzing enzymes known to have diverse signaling roles during plant abiotic and biotic stress responses. They catalyze lipid remodeling, which is required to generate rapid responses of plants to environmental cues. Moreover, they produce second messenger molecules, such as phosphatidic acid (PA) and thus trigger or modulate signaling cascades that lead to changes in gene expression. The roles of phospholipases in plant abiotic and biotic stress responses have been intensively studied. Nevertheless, emerging evidence suggests that they also make significant contributions to plants' cellular and developmental processes. In this mini review, we summarized recent advances in the study of the cellular and developmental roles of phospholipases in plants.
Collapse
Affiliation(s)
| | | | - Jozef Šamaj
- Department of Cell Biology, Centre of the Region Haná for Biotechnological and Agricultural Research, Faculty of Science, Palacký University Olomouc, Olomouc, Czechia
| |
Collapse
|
12
|
Xu Y, Berkowitz O, Narsai R, De Clercq I, Hooi M, Bulone V, Van Breusegem F, Whelan J, Wang Y. Mitochondrial function modulates touch signalling in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:623-645. [PMID: 30537160 DOI: 10.1111/tpj.14183] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 11/16/2018] [Accepted: 11/21/2018] [Indexed: 05/28/2023]
Abstract
Plants respond to short- and long-term mechanical stimuli, via altered transcript abundance and growth respectively. Jasmonate, gibberellic acid and calcium have been implicated in mediating responses to mechanical stimuli. Previously it has been shown that the transcript abundance for the outer mitochondrial membrane protein of 66 kDa (OM66), is induced several fold after 30 min in response to touch. Therefore, the effect of mitochondrial function on the response to mechanical stimulation by touch at 30 min was investigated. Twenty-five mutants targeting mitochondrial function or regulators revealed that all affected the touch transcriptome. Double and triple mutants revealed synergistic or antagonistic effects following the observed responses in the single mutants. Changes in the touch-responsive transcriptome were localised, recurring with repeated rounds of stimulus. The gene expression kinetics after repeated touch were complex, displaying five distinct patterns. These transcriptomic responses were altered by some regulators of mitochondrial retrograde signalling, such as cyclic dependent protein kinase E1, a kinase protein in the mediator complex, and KIN10 (SnRK1 - sucrose non-fermenting related protein kinase 1), revealing an overlap between the touch response and mitochondrial stress signalling and alternative mitochondrial metabolic pathways. Regulatory network analyses revealed touch-induced stress responses and suppressed growth and biosynthetic processes. Interaction with the phytohormone signalling pathways indicated that ethylene and gibberellic acid had the greatest effect. Hormone measurements revealed that mutations of genes that encoded mitochondrial proteins altered hormone concentrations. Mitochondrial function modulates touch-induced changes in gene expression directly through altered regulatory networks, and indirectly via altering hormonal levels.
Collapse
Affiliation(s)
- Yue Xu
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Oliver Berkowitz
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Reena Narsai
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Inge De Clercq
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 71), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), 9052, Ghent, Belgium
| | - Michelle Hooi
- ARC Centre of Excellence in Plant Cell Walls and Adelaide Glycomics, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia
| | - Vincent Bulone
- ARC Centre of Excellence in Plant Cell Walls and Adelaide Glycomics, School of Agriculture Food and Wine, The University of Adelaide, Waite Campus, Urrbrae, Australia
| | - Frank Van Breusegem
- Department of Plant Biotechnology and Bioinformatics, Ghent University, (Technologiepark 71), 9052, Ghent, Belgium
- VIB Center for Plant Systems Biology, (Technologiepark 71), 9052, Ghent, Belgium
| | - James Whelan
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| | - Yan Wang
- Department of Animal, Plant and Soil Sciences, School of Life Sciences, Australian Research Council Centre of Excellence in Plant Energy Biology, La Trobe University, 5 Ring Road, Bundoora, 3086, Victoria, Australia
| |
Collapse
|
13
|
Salem MA, Li Y, Wiszniewski A, Giavalisco P. Regulatory-associated protein of TOR (RAPTOR) alters the hormonal and metabolic composition of Arabidopsis seeds, controlling seed morphology, viability and germination potential. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2017; 92:525-545. [PMID: 28845535 DOI: 10.1111/tpj.13667] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 08/04/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
Target of Rapamycin (TOR) is a positive regulator of growth and development in all eukaryotes, which positively regulates anabolic processes like protein synthesis, while repressing catabolic processes, including autophagy. To better understand TOR function we decided to analyze its role in seed development and germination. We therefore performed a detailed phenotypic analysis using mutants of the REGULATORY-ASSOCIATED PROTEIN OF TOR 1B (RAPTOR1B), a conserved TOR interactor, acting as a scaffold protein, which recruits substrates for the TOR kinase. Our results show that raptor1b plants produced seeds that were delayed in germination and less resistant to stresses, leading to decreased viability. These physiological phenotypes were accompanied by morphological changes including decreased seed-coat pigmentation and reduced production of seed-coat mucilage. A detailed molecular analysis revealed that many of these morphological changes were associated with significant changes of the metabolic content of raptor1b seeds, including elevated levels of free amino acids, as well as reduced levels of protective secondary metabolites and storage proteins. Most of these observed changes were accompanied by significantly altered phytohormone levels in the raptor1b seeds, with increases in abscisic acid, auxin and jasmonic acid, which are known to inhibit germination. Delayed germination and seedling growth, observed in the raptor1b seeds, could be partially restored by the exogenous supply of gibberellic acid, indicating that TOR is at the center of a regulatory hub controlling seed metabolism, maturation and germination.
Collapse
Affiliation(s)
- Mohamed A Salem
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, 11562, Egypt
| | - Yan Li
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Andrew Wiszniewski
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Patrick Giavalisco
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| |
Collapse
|
14
|
Oenel A, Fekete A, Krischke M, Faul SC, Gresser G, Havaux M, Mueller MJ, Berger S. Enzymatic and Non-Enzymatic Mechanisms Contribute to Lipid Oxidation During Seed Aging. PLANT & CELL PHYSIOLOGY 2017; 58:925-933. [PMID: 28371855 DOI: 10.1093/pcp/pcx036] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 03/05/2017] [Indexed: 05/26/2023]
Abstract
Storage of seeds is accompanied by loss of germination and oxidation of storage and membrane lipids. A lipidomic analysis revealed that during natural and artificial aging of Arabidopsis seeds, levels of several diacylglycerols and free fatty acids, such as linoleic acid and linolenic acid as well as free oxidized fatty acids and oxygenated triacylglycerols, increased. Lipids can be oxidized by enzymatic or non-enzymatic processes. In the enzymatic pathway, lipoxygenases (LOXs) catalyze the first oxygenation step of polyunsaturated fatty acids. Analysis of lipid levels in mutants with defects in the two 9-LOX genes revealed that the strong increase in free 9-hydroxy- and 9-keto-fatty acids is dependent on LOX1 but not LOX5. Fatty acid oxidation correlated with an aging-induced decrease of germination, raising the question of whether these oxylipins negatively regulate germination. However, seeds of the lox1 mutant were only slightly more tolerant to aging, indicating that 9-LOX products contribute to but are not the major cause of loss of germination during aging. In contrast to free oxidized fatty acids, accumulation of oxygenated triacylglycerols upon accelerated aging was mainly based on non-enzymatic oxidation of seed storage lipids.
Collapse
Affiliation(s)
- Ayla Oenel
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Agnes Fekete
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Markus Krischke
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Sophie C Faul
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Gabriele Gresser
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Michel Havaux
- CEA, CNRS UMR7265, Aix-Marseille Université, Laboratoire d'Ecophysiologie Moléculaire des Plantes, Saint-Paul-lez-Durance, France
| | - Martin J Mueller
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| | - Susanne Berger
- Julius-von-Sachs-Institute, Pharmaceutical Biology, University of Wuerzburg, Julius-von-Sachs-Platz, Wuerzburg, Germany
| |
Collapse
|
15
|
Xiong Q, Ma B, Lu X, Huang YH, He SJ, Yang C, Yin CC, Zhao H, Zhou Y, Zhang WK, Wang WS, Li ZK, Chen SY, Zhang JS. Ethylene-Inhibited Jasmonic Acid Biosynthesis Promotes Mesocotyl/Coleoptile Elongation of Etiolated Rice Seedlings. THE PLANT CELL 2017; 29:1053-1072. [PMID: 28465411 PMCID: PMC5466032 DOI: 10.1105/tpc.16.00981] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 03/27/2017] [Accepted: 05/02/2017] [Indexed: 05/04/2023]
Abstract
Elongation of the mesocotyl and coleoptile facilitates the emergence of rice (Oryza sativa) seedlings from soil and is affected by various genetic and environment factors. The regulatory mechanism underlying this process remains largely unclear. Here, we examined the regulation of mesocotyl and coleoptile growth by characterizing a gaoyao1 (gy1) mutant that exhibits a longer mesocotyl and longer coleoptile than its original variety of rice. GY1 was identified through map-based cloning and encodes a PLA1-type phospholipase that localizes in chloroplasts. GY1 functions at the initial step of jasmonic acid (JA) biosynthesis to repress mesocotyl and coleoptile elongation in etiolated rice seedlings. Ethylene inhibits the expression of GY1 and other genes in the JA biosynthesis pathway to reduce JA levels and enhance mesocotyl and coleoptile growth by promoting cell elongation. Genetically, GY1 acts downstream of the OsEIN2-mediated ethylene signaling pathway to regulate mesocotyl/coleoptile growth. Through analysis of the resequencing data from 3000 rice accessions, we identified a single natural variation of the GY1 gene, GY1376T , which contributes to mesocotyl elongation in rice varieties. Our study reveals novel insights into the regulatory mechanism of mesocotyl/coleoptile elongation and should have practical applications in rice breeding programs.
Collapse
Affiliation(s)
- Qing Xiong
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Biao Ma
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiang Lu
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi-Hua Huang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Si-Jie He
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chao Yang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cui-Cui Yin
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - He Zhao
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Zhou
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wan-Ke Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Wen-Sheng Wang
- Institute of Crop Sciences/National Key Facilities for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Zhi-Kang Li
- Institute of Crop Sciences/National Key Facilities for Crop Gene Resources and Genetic Improvement, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shou-Yi Chen
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jin-Song Zhang
- State Key Lab of Plant Genomics, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Sun YH, Hung CY, Qiu J, Chen J, Kittur FS, Oldham CE, Henny RJ, Burkey KO, Fan L, Xie J. Accumulation of high OPDA level correlates with reduced ROS and elevated GSH benefiting white cell survival in variegated leaves. Sci Rep 2017; 7:44158. [PMID: 28276518 PMCID: PMC5343462 DOI: 10.1038/srep44158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 02/02/2017] [Indexed: 12/19/2022] Open
Abstract
Variegated 'Marble Queen' (Epipremnum aureum) plant has white (VMW) and green (VMG) sectors within the same leaf. The white sector cells containing undifferentiated chloroplasts are viable, but the underlying mechanism for their survival and whether these white cells would use any metabolites as signal molecules to communicate with the nucleus for maintaining their viability remain unclear. We analyzed and compared phytohormone levels with their precursors produced in chloroplasts between VMW and VMG, and further compared their transcriptomes to understand the consequences related to the observed elevated 12-oxo phytodienoic acid (OPDA), which was 9-fold higher in VMW than VMG. Transcriptomic study showed that a large group of OPDA-responsive genes (ORGs) were differentially expressed in VMW, including stress-related transcription factors and genes for reactive oxygen species (ROS) scavengers, DNA replication and repair, and protein chaperones. Induced expression of these ORGs could be verified in OPDA-treated green plants. Reduced level of ROS and higher levels of glutathione in VMW were further confirmed. Our results suggest that elevated OPDA or its related compounds are recruited by white cells as a signaling molecule(s) to up-regulate stress and scavenging activity related genes that leads to reduced ROS levels and provides survival advantages to the white cells.
Collapse
Affiliation(s)
- Ying-Hsuan Sun
- Department of Forestry, National Chung Hsing University, Taichung 402, Taiwan
| | - Chiu-Yueh Hung
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Jie Qiu
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Jianjun Chen
- Environmental Horticulture Department and Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| | - Farooqahmed S. Kittur
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Carla E. Oldham
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| | - Richard J. Henny
- Environmental Horticulture Department and Mid-Florida Research and Education Center, University of Florida, Apopka, FL 32703, USA
| | - Kent O. Burkey
- USDA-ARS Plant Science Research Unit and Department of Crop Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Longjiang Fan
- Department of Agronomy, Zhejiang University, Hangzhou 310029, China
| | - Jiahua Xie
- Department of Pharmaceutical Sciences, Biomanufacturing Research Institute & Technology Enterprise, North Carolina Central University, Durham, NC 27707, USA
| |
Collapse
|
17
|
A High Temperature-Dependent Mitochondrial Lipase EXTRA GLUME1 Promotes Floral Phenotypic Robustness against Temperature Fluctuation in Rice (Oryza sativa L.). PLoS Genet 2016; 12:e1006152. [PMID: 27367609 PMCID: PMC4930220 DOI: 10.1371/journal.pgen.1006152] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022] Open
Abstract
The sessile plants have evolved diverse intrinsic mechanisms to control their proper development under variable environments. In contrast to plastic vegetative development, reproductive traits like floral identity often show phenotypic robustness against environmental variations. However, it remains obscure about the molecular basis of this phenotypic robustness. In this study, we found that eg1 (extra glume1) mutants of rice (Oryza savita L.) showed floral phenotypic variations in different growth locations resulting in a breakdown of floral identity robustness. Physiological and biochemical analyses showed that EG1 encodes a predominantly mitochondria-localized functional lipase and functions in a high temperature-dependent manner. Furthermore, we found that numerous environmentally responsive genes including many floral identity genes are transcriptionally repressed in eg1 mutants and OsMADS1, OsMADS6 and OsG1 genetically act downstream of EG1 to maintain floral robustness. Collectively, our results demonstrate that EG1 promotes floral robustness against temperature fluctuation by safeguarding the expression of floral identify genes through a high temperature-dependent mitochondrial lipid pathway and uncovers a novel mechanistic insight into floral developmental control.
Collapse
|
18
|
Park KY, Kim EY, Seo YS, Kim WT. Constitutive expression of CaPLA1 conferred enhanced growth and grain yield in transgenic rice plants. PLANT MOLECULAR BIOLOGY 2016; 90:517-32. [PMID: 26803502 DOI: 10.1007/s11103-016-0440-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2015] [Accepted: 01/13/2016] [Indexed: 05/13/2023]
Abstract
Phospholipids are not only important components of cell membranes, but participate in diverse processes in higher plants. In this study, we generated Capsicum annuum phospholipiase A1 (CaPLA1) overexpressing transgenic rice (Oryza sativa L.) plants under the control of the maize ubiquitin promoter. The T4 CaPLA1-overexpressing rice plants (Ubi:CaPLA1) had a higher root:shoot mass ratio than the wild-type plants in the vegetative stage. Leaf epidermal cells from transgenic plants had more cells than wild-type plants. Genes that code for cyclin and lipid metabolic enzymes were up-regulated in the transgenic lines. When grown under typical paddy field conditions, the transgenic plants produced more tillers, longer panicles and more branches per panicle than the wild-type plants, all of which resulted in greater grain yield. Microarray analysis suggests that gene expressions that are related with cell proliferation, lipid metabolism, and redox state were widely altered in CaPLA1-overexpressing transgenic rice plants. Ubi:CaPLA1 plants had a reduced membrane peroxidation state, as determined by malondialdehyde and conjugated diene levels and higher peroxidase activity than wild-type rice plants. Furthermore, three isoprenoid synthetic genes encoding terpenoid synthase, hydroxysteroid dehydrogenase and 3-hydroxy-3-methyl-glutaryl-CoA reductase were up-regulated in CaPLA1-overexpressing plants. We suggest that constitutive expression of CaPLA1 conferred increased grain yield with enhanced growth in transgenic rice plants by alteration of gene activities related with cell proliferation, lipid metabolism, membrane peroxidation state and isoprenoid biosynthesis.
Collapse
Affiliation(s)
- Ki Youl Park
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Eun Yu Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
| | - Young Sam Seo
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea
- Research Institute, Korea Ginseng Corp., Daejeon, 305-805, Korea
| | - Woo Taek Kim
- Department of Systems Biology, College of Life Science and Biotechnology, Yonsei University, Seoul, 120-749, Korea.
| |
Collapse
|
19
|
Ma L, Zhu F, Li Z, Zhang J, Li X, Dong J, Wang T. TALEN-Based Mutagenesis of Lipoxygenase LOX3 Enhances the Storage Tolerance of Rice (Oryza sativa) Seeds. PLoS One 2015; 10:e0143877. [PMID: 26641666 PMCID: PMC4671593 DOI: 10.1371/journal.pone.0143877] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Accepted: 11/10/2015] [Indexed: 12/23/2022] Open
Abstract
The deterioration of rice grain reduces the quality of rice, resulting in serious economic losses for farmers. Lipoxygenases (LOXs) catalyze the dioxygenation of polyunsaturated fatty acids with at least one cis,cis-1,4-pentadiene to form hydroperoxide, which is a major factor influencing seed longevity and viability. Recently, genome editing, an essential tool employed in reverse genetics, has been used experimentally to investigate basic plant biology or to modify crop plants for the improvement of important agricultural traits. In this study, we performed targeted mutagenesis in rice using transcription activator-like effector nucleases (TALENs) to improve seed storability. A modified ligation-independent cloning method (LIC) was employed to allow for the quick and efficient directional insertion of TALEN monomer modules into destination vectors used in plants. We demonstrated the feasibility and flexibility of the technology by developing a set of modular vectors for genome editing. After construction and validation, the TALEN pairs were used to create stable transgenic rice lines via Agrobacterium-mediated transformation. One heterozygous mutant (4%) was recovered from 25 transgenic NPTII-resistant lines, and the mutation was transmitted to the next generation. Further molecular and protein level experiments verified LOX3 deficiency and demonstrated the improvement of seed storability. Our work provides a flexible genome editing tool for improving important agronomic traits, as well as direct evidence that Lox3 has only a limited impact on seed longevity.
Collapse
Affiliation(s)
- Lei Ma
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, China
| | - Fugui Zhu
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhenwei Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jianfu Zhang
- Rice Research Institute, Fujian Academy of Agricultural Sciences, Fuzhou, China
| | - Xin Li
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Jiangli Dong
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Tao Wang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
- * E-mail:
| |
Collapse
|
20
|
Mucha S, Walther D, Müller TM, Hincha DK, Glawischnig E. Substantial reprogramming of the Eutrema salsugineum (Thellungiella salsuginea) transcriptome in response to UV and silver nitrate challenge. BMC PLANT BIOLOGY 2015; 15:137. [PMID: 26063239 PMCID: PMC4464140 DOI: 10.1186/s12870-015-0506-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/24/2015] [Indexed: 05/05/2023]
Abstract
BACKGROUND Cruciferous plants synthesize a large variety of tryptophan-derived phytoalexins in response to pathogen infection, UV irradiation, or high dosages of heavy metals. The major phytoalexins of Eutrema salsugineum (Thellungiella salsuginea), which has recently been established as an extremophile model plant, are probably derivatives of indole glucosinolates, in contrast to Arabidopsis, which synthesizes characteristic camalexin from the glucosinolate precursor indole-3-acetaldoxime. RESULTS The transcriptional response of E. salsugineum to UV irradiation and AgNO3 was monitored by RNAseq and microarray analysis. Most transcripts (respectively 70% and 78%) were significantly differentially regulated and a large overlap between the two treatments was observed (54% of total). While core genes of the biosynthesis of aliphatic glucosinolates were repressed, tryptophan and indole glucosinolate biosynthetic genes, as well as defence-related WRKY transcription factors, were consistently upregulated. The putative Eutrema WRKY33 ortholog was functionally tested and shown to complement camalexin deficiency in Atwrky33 mutant. CONCLUSIONS In E. salsugineum, UV irradiation or heavy metal application resulted in substantial transcriptional reprogramming. Consistently induced genes of indole glucosinolate biosynthesis and modification will serve as candidate genes for the biosynthesis of Eutrema-specific phytoalexins.
Collapse
MESH Headings
- Biosynthetic Pathways/genetics
- Brassicaceae/drug effects
- Brassicaceae/genetics
- Brassicaceae/radiation effects
- Cellular Reprogramming/drug effects
- Cellular Reprogramming/radiation effects
- Gene Expression Regulation, Plant/drug effects
- Gene Expression Regulation, Plant/radiation effects
- Gene Knockout Techniques
- Glucosinolates/biosynthesis
- Indoles/metabolism
- Metals, Heavy/toxicity
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Sesquiterpenes/metabolism
- Silver Nitrate/pharmacology
- Stress, Physiological/drug effects
- Stress, Physiological/genetics
- Stress, Physiological/radiation effects
- Thiazoles/metabolism
- Transcription Factors/metabolism
- Transcription, Genetic/drug effects
- Transcription, Genetic/radiation effects
- Transcriptome/drug effects
- Transcriptome/genetics
- Transcriptome/radiation effects
- Tryptophan/biosynthesis
- Ultraviolet Rays
- Phytoalexins
Collapse
Affiliation(s)
- Stefanie Mucha
- Lehrstuhl für Genetik, Technische Universität München, D-85354, Freising, Germany.
| | - Dirk Walther
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Germany.
| | - Teresa M Müller
- Lehrstuhl für Genetik, Technische Universität München, D-85354, Freising, Germany.
| | - Dirk K Hincha
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam, Germany.
| | - Erich Glawischnig
- Lehrstuhl für Genetik, Technische Universität München, D-85354, Freising, Germany.
| |
Collapse
|
21
|
Ahn CS, Ahn HK, Pai HS. Overexpression of the PP2A regulatory subunit Tap46 leads to enhanced plant growth through stimulation of the TOR signalling pathway. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:827-40. [PMID: 25399018 PMCID: PMC4321543 DOI: 10.1093/jxb/eru438] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Tap46, a regulatory subunit of protein phosphatase 2A (PP2A), plays an essential role in plant growth and development through a functional link with the Target of Rapamycin (TOR) signalling pathway. Here, we have characterized the molecular mechanisms behind a gain-of-function phenotype of Tap46 and its relationship with TOR to gain further insights into Tap46 function in plants. Constitutive overexpression of Tap46 in Arabidopsis resulted in overall growth stimulation with enlarged organs, such as leaves and siliques. Kinematic analysis of leaf growth revealed that increased cell size was mainly responsible for the leaf enlargement. Tap46 overexpression also enhanced seed size and viability under accelerated ageing conditions. Enhanced plant growth was also observed in dexamethasone (DEX)-inducible Tap46 overexpression Arabidopsis lines, accompanied by increased cellular activities of nitrate-assimilating enzymes. DEX-induced Tap46 overexpression and Tap46 RNAi resulted in increased and decreased phosphorylation of S6 kinase (S6K), respectively, which is a sensitive indicator of endogenous TOR activity, and Tap46 interacted with S6K in planta based on bimolecular fluorescence complementation and co-immunoprecipitation. Furthermore, inactivation of TOR by estradiol-inducible RNAi or rapamycin treatment decreased Tap46 protein levels, but increased PP2A catalytic subunit levels. Real-time quantitative PCR analysis revealed that Tap46 overexpression induced transcriptional modulation of genes involved in nitrogen metabolism, ribosome biogenesis, and lignin biosynthesis. These findings suggest that Tap46 modulates plant growth as a positive effector of the TOR signalling pathway and Tap46/PP2Ac protein abundance is regulated by TOR activity.
Collapse
Affiliation(s)
- Chang Sook Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hee-Kyung Ahn
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| | - Hyun-Sook Pai
- Department of Systems Biology, Yonsei University, Seoul 120-749, Korea
| |
Collapse
|
22
|
sPLA2 and PLA1: Secretory Phospholipase A2 and Phospholipase A1 in Plants. SIGNALING AND COMMUNICATION IN PLANTS 2014. [DOI: 10.1007/978-3-642-42011-5_6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|