1
|
Xu W, Cheng H, Cheng J, Zhu S, Cui Y, Wang C, Wu J, Lan X, Cheng Y. A COBRA family protein, PtrCOB3, contributes to gelatinous layer formation of tension wood fibers in poplar. PLANT PHYSIOLOGY 2024; 196:323-337. [PMID: 38850037 DOI: 10.1093/plphys/kiae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/24/2024] [Indexed: 06/09/2024]
Abstract
Angiosperm trees usually develop tension wood (TW) in response to gravitational stimulation. TW comprises abundant gelatinous (G-) fibers with thick G-layers primarily composed of crystalline cellulose. Understanding the pivotal factors governing G-layer formation in TW fiber remains elusive. This study elucidates the role of a Populus trichocarpa COBRA family protein, PtrCOB3, in the G-layer formation of TW fibers. PtrCOB3 expression was upregulated, and its promoter activity was enhanced during TW formation. Comparative analysis with wild-type trees revealed that ptrcob3 mutants, mediated by Cas9/gRNA gene editing, were incapable of producing G-layers within TW fibers and showed severely impaired stem lift. Fluorescence immunolabeling data revealed a dearth of crystalline cellulose in the tertiary cell wall (TCW) of ptrcob3 TW fibers. The role of PtrCOB3 in G-layer formation is contingent upon its native promoter, as evidenced by the comparative phenotypic assessments of pCOB11::PtrCOB3, pCOB3::PtrCOB3, and pCOB3::PtrCOB11 transgenic lines in the ptrcob3 background. Overexpression of PtrCOB3 under the control of its native promoter expedited G-layer formation within TW fibers. We further identified 3 transcription factors that bind to the PtrCOB3 promoter and positively regulate its transcriptional levels. Alongside the primary TCW synthesis genes, these findings enable the construction of a 2-layer transcriptional regulatory network for the G-layer formation of TW fibers. Overall, this study uncovers mechanistic insight into TW formation, whereby a specific COB protein executes the deposition of cellulose, and consequently, G-layer formation within TW fibers.
Collapse
Affiliation(s)
- Wenjing Xu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Siran Zhu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yongyao Cui
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Jianzhen Wu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xingguo Lan
- College of Life Sciences, Northeast Forestry University, Harbin 150040, China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
2
|
Teli S, Deshmukh K, Khan T, Suvarna V. Recent Advances in Biomedical Applications of Mannans and Xylans. Curr Drug Targets 2024; 25:261-277. [PMID: 38375843 DOI: 10.2174/0113894501285058240203094846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/15/2024] [Accepted: 01/23/2024] [Indexed: 02/21/2024]
Abstract
Plant-based phytochemicals, including flavonoids, alkaloids, tannins, saponins, and other metabolites, have attracted considerable attention due to their central role in synthesizing nanomaterials with various biomedical applications. Hemicelluloses are the second most abundant among naturally occurring heteropolymers, accounting for one-third of all plant constituents. In particular, xylans, mannans, and arabinoxylans are structured polysaccharides derived from hemicellulose. Mannans and xylans are characterized by their linear configuration of β-1,4-linked mannose and xylose units, respectively. At the same time, arabinoxylan is a copolymer of arabinose and xylose found predominantly in secondary cell walls of seeds, dicotyledons, grasses, and cereal tissues. Their widespread use in tissue engineering, drug delivery, and gene delivery is based on their properties, such as cell adhesiveness, cost-effectiveness, high biocompatibility, biodegradability, and low immunogenicity. Moreover, it can be easily functionalized, which expands their potential applications and provides them with structural diversity. This review comprehensively addresses recent advances in the field of biomedical applications. It explores the potential prospects for exploiting the capabilities of mannans and xylans in drug delivery, gene delivery, and tissue engineering.
Collapse
Affiliation(s)
- Shriya Teli
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Kajal Deshmukh
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| | - Vasanti Suvarna
- Department of Pharmaceutical Analysis & Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai 400056, Maharashtra, India
| |
Collapse
|
3
|
Chen J, Liu M, Meng X, Zhang Y, Wang Y, Jiao N, Chen J. Multiomics studies with co-transformation reveal microRNAs via miRNA-TF-mRNA network participating in wood formation in Hevea brasiliensis. FRONTIERS IN PLANT SCIENCE 2023; 14:1068796. [PMID: 37645463 PMCID: PMC10461101 DOI: 10.3389/fpls.2023.1068796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Accepted: 05/17/2023] [Indexed: 08/31/2023]
Abstract
Introduction MicroRNAs (miRNAs) are small endogenous non-coding RNAs that play an important role in wood formation in plants. However, the significance of the link between miRNAs and their target transcripts in wood formation remains unclear in rubber tree (Hevea brasiliensis). Methods In this study, we induced the formation of reaction wood by artificially bending rubber trees for 300 days and performed small RNA sequencing and transcriptome deep sequencing (RNA-seq) to describe the complement of miRNAs and their targets contributing to this process. Results and discussion We identified 5, 11, and 2 differentially abundant miRNAs in normal wood (NW) compared to tension wood (TW), in NW relative to opposite wood (OW), and between TW and OW, respectively. We also identified 12 novel miRNAs and 39 potential miRNA-mRNA pairs with different accumulation patterns in NW, TW, and OW. We noticed that many miRNAs targeted transcription factor genes, which were enriched in KEGG pathways associated with phenylpropanoid biosynthesis, phenylalanine metabolism, and pyruvate metabolism. Thus, miRNA-TF-mRNA network involved in wood formation via tension wood model were constructed. We validated the differential accumulation of miRNAs and their targets by RT-qPCR analysis and overexpressed miRNA in Nicotiana benthamiana with its potential target gene. These results will provide a reference for a deep exploration of growth and development in rubber tree.
Collapse
Affiliation(s)
- Jinhui Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory/Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, School of Forestry, Hainan University, Sanya, China
- Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Mingming Liu
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory/Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, School of Forestry, Hainan University, Sanya, China
- School of Tropical Crops, Hainan University, Haikou, China
| | - Xiangxu Meng
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory/Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, School of Forestry, Hainan University, Sanya, China
- Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Yuanyuan Zhang
- Rubber Research Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, China
- State Centre for Rubber Breeding, Haikou, Hainan, China
| | - Yue Wang
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory/Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, School of Forestry, Hainan University, Sanya, China
- Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Nanbo Jiao
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory/Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, School of Forestry, Hainan University, Sanya, China
- Engineering Research Center of Rare and Precious Tree Species in Hainan Province, School of Forestry, Hainan University, Haikou, China
| | - Jianmiao Chen
- Sanya Nanfan Research Institute of Hainan University, Hainan Yazhou Bay Seed Laboratory/Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and Ornamental Plants, Ministry of Education, School of Forestry, Hainan University, Sanya, China
- School of Tropical Crops, Hainan University, Haikou, China
| |
Collapse
|
4
|
Cunha Neto IL, Hall BT, Lanba AR, Blosenski JD, Onyenedum JG. Laser ablation tomography (LATscan) as a new tool for anatomical studies of woody plants. THE NEW PHYTOLOGIST 2023; 239:429-444. [PMID: 36811411 DOI: 10.1111/nph.18831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/09/2023] [Indexed: 06/02/2023]
Abstract
Traditionally, botanists study plant anatomy by carefully sectioning samples, histological staining to highlight tissues of interests, then imaging slides under light microscopy. This approach generates significant details; however, this workflow is laborious, particularly in woody vines (lianas) with heterogeneous anatomies, and ultimately yields two-dimensional (2D) images. Laser ablation tomography (LATscan) is a high-throughput imaging system that yields hundreds of images per minute. This method has proven useful for studying the structure of delicate plant tissues; however, its utility in understanding the structure of woody tissues is underexplored. We report LATscan-derived anatomical data from several stems of lianas (c. 20 mm) of seven species and compare these results with those obtained through traditional anatomical techniques. LATscan successfully allows the description of tissue composition by differentiating cell type, size, and shape, but also permits the recognition of distinct cell wall composition (e.g. lignin, suberin, cellulose) based on differential fluorescent signals on unstained samples. LATscan generate high-quality 2D images and 3D reconstructions of woody plant samples; therefore, this new technology is useful for both qualitative and quantitative analyses. This high-throughput imaging technology has the potential to bolster phenotyping of vegetative and reproductive anatomy, wood anatomy, and other biological systems.
Collapse
Affiliation(s)
- Israel L Cunha Neto
- School of Integrative Plant Sciences and L. H. Bailey Hortorium, Cornell University, NY, 14853, Ithaca, USA
| | - Benjamin T Hall
- Laser for Innovative Solutions (L4iS), Suite 261, 200 Innovation Boulevard, State College, PA, 16803, USA
| | - Asheesh R Lanba
- Laser for Innovative Solutions (L4iS), Suite 261, 200 Innovation Boulevard, State College, PA, 16803, USA
- Department of Engineering, University of Southern Maine, 37 College Ave., Gorham, ME, 04038, USA
| | - Joshua D Blosenski
- Laser for Innovative Solutions (L4iS), Suite 261, 200 Innovation Boulevard, State College, PA, 16803, USA
| | - Joyce G Onyenedum
- School of Integrative Plant Sciences and L. H. Bailey Hortorium, Cornell University, NY, 14853, Ithaca, USA
| |
Collapse
|
5
|
Bai Y, Tian D, Chen P, Wu D, Du K, Zheng B, Shi X. A Pectate Lyase Gene Plays a Critical Role in Xylem Vascular Development in Arabidopsis. Int J Mol Sci 2023; 24:10883. [PMID: 37446058 DOI: 10.3390/ijms241310883] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
As a major component of the plant primary cell wall, structure changes in pectin may affect the formation of the secondary cell wall and lead to serious consequences on plant growth and development. Pectin-modifying enzymes including pectate lyase-like proteins (PLLs) participate in the remodeling of pectin during organogenesis, especially during fruit ripening. In this study, we used Arabidopsis as a model system to identify critical PLL genes that are of particular importance for vascular development. Four PLL genes, named AtPLL15, AtPLL16, AtPLL19, and AtPLL26, were identified for xylem-specific expression. A knock-out T-DNA mutant of AtPLL16 displayed an increased amount of pectin, soluble sugar, and acid-soluble lignin (ASL). Interestingly, the atpll16 mutant exhibited an irregular xylem phenotype, accompanied by disordered xylem ray cells and an absence of interfascicular phloem fibers. The xylem fiber cell walls in the atpll16 mutant were thicker than those of the wild type. On the contrary, AtPLL16 overexpression resulted in expansion of the phloem and a dramatic change in the xylem-to-phloem ratios. Altogether, our data suggest that AtPLL16 as a pectate lyase plays an important role during vascular development in Arabidopsis.
Collapse
Affiliation(s)
- Yun Bai
- College of Horticulture, Jilin Agricultural University, Changchun 130118, China
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dongdong Tian
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Peng Chen
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Dan Wu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Kebing Du
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Zheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
| | - Xueping Shi
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Poplar Research Center, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
6
|
Viljanen M, Muranen S, Kinnunen O, Kalbfleisch S, Svedström K. Structure of cellulose in birch phloem fibres in tension wood: an X-ray nanodiffraction study. PLANT METHODS 2023; 19:58. [PMID: 37328911 DOI: 10.1186/s13007-023-01036-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 06/07/2023] [Indexed: 06/18/2023]
Abstract
BACKGROUND To gain a better understanding of bark layer structure and function, especially of the phloem fibres and their contribution to the posture control of trees, it is important to map the structural properties of these cells. The role of bark can also be linked to the reaction wood formation and properties which are essential when it comes to studying the questions related to tree growth. To offer new insights into the role of bark in the postural control of trees, we studied the micro- and nanoscale structures of the phloem and its nearest layers. This study is the first time, in which phloem fibres in trees have been extensively examined using X-ray diffraction (XRD). We determined the orientation of cellulose microfibrils in phloem fibres of Silver birch saplings by using scanning synchrotron nanodiffraction. The samples consisted of phloem fibres extracted from tension, opposite and normal wood (TW, OW, NW). RESULTS Using scanning XRD, we were able to obtain new information about the mean microfibril angle (MFA) in cellulose microfibrils in phloem fibres connected to reaction wood. A slight but consistent difference was detected in the average MFA values of phloem fibres between the TW and OW sides of the stem. Using scanning XRD, different contrast agents (intensity of the main cellulose reflection or calcium oxalate reflection, mean MFA value) were used to produce 2D images with 200 nm spatial resolution. CONCLUSIONS Based on our results, the tension wood formation in the stem might be related to the structure and properties of phloem fibres. Thus, our results suggest that the nanostructure of phloem fibres is involved in the postural control of trees containing tension and opposite wood.
Collapse
Affiliation(s)
- Mira Viljanen
- Department of Physics, University of Helsinki, (Gustaf Hällströmin Katu 2), P.O. Box 64, 00014, Helsinki, Finland.
| | - Sampo Muranen
- Viikki Plant Science Centre, Institute of Biotechnology, University of Helsinki, (Viikinkaari 1), P.O. Box 65, 00014, Helsinki, Finland
- Organismal and Evolutionary Biology Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, 00014, Helsinki, Finland
| | - Outi Kinnunen
- Department of Physics, University of Helsinki, (Gustaf Hällströmin Katu 2), P.O. Box 64, 00014, Helsinki, Finland
| | | | - Kirsi Svedström
- Department of Physics, University of Helsinki, (Gustaf Hällströmin Katu 2), P.O. Box 64, 00014, Helsinki, Finland
| |
Collapse
|
7
|
Prabhakar PK, Pereira JH, Taujale R, Shao W, Bharadwaj VS, Chapla D, Yang JY, Bomble YJ, Moremen KW, Kannan N, Hammel M, Adams PD, Scheller HV, Urbanowicz BR. Structural and biochemical insight into a modular β-1,4-galactan synthase in plants. NATURE PLANTS 2023; 9:486-500. [PMID: 36849618 PMCID: PMC10115243 DOI: 10.1038/s41477-023-01358-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/25/2023] [Indexed: 05/18/2023]
Abstract
Rhamnogalacturonan I (RGI) is a structurally complex pectic polysaccharide with a backbone of alternating rhamnose and galacturonic acid residues substituted with arabinan and galactan side chains. Galactan synthase 1 (GalS1) transfers galactose and arabinose to either extend or cap the β-1,4-galactan side chains of RGI, respectively. Here we report the structure of GalS1 from Populus trichocarpa, showing a modular protein consisting of an N-terminal domain that represents the founding member of a new family of carbohydrate-binding module, CBM95, and a C-terminal glycosyltransferase family 92 (GT92) catalytic domain that adopts a GT-A fold. GalS1 exists as a dimer in vitro, with stem domains interacting across the chains in a 'handshake' orientation that is essential for maintaining stability and activity. In addition to understanding the enzymatic mechanism of GalS1, we gained insight into the donor and acceptor substrate binding sites using deep evolutionary analysis, molecular simulations and biochemical studies. Combining all the results, a mechanism for GalS1 catalysis and a new model for pectic galactan side-chain addition are proposed.
Collapse
Affiliation(s)
- Pradeep Kumar Prabhakar
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, USA
| | - Jose Henrique Pereira
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Rahil Taujale
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Wanchen Shao
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Vivek S Bharadwaj
- Renewable Resources and Enabling Sciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Digantkumar Chapla
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Jeong-Yeh Yang
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Yannick J Bomble
- Biosciences Center, National Renewable Energy Laboratory, Golden, CO, USA
| | - Kelley W Moremen
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA
| | - Natarajan Kannan
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Michal Hammel
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Paul D Adams
- Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Bioengineering, University of California, Berkeley, CA, USA
| | - Henrik V Scheller
- Joint BioEnergy Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California, Berkeley, CA, USA
| | - Breeanna R Urbanowicz
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA.
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, USA.
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oakridge, TN, USA.
| |
Collapse
|
8
|
Blervacq AS, Moreau M, Duputié A, Hawkins S. Comparative Analysis of G-Layers in Bast Fiber and Xylem Cell Walls in Flax Using Raman Spectroscopy. Biomolecules 2023; 13:biom13030435. [PMID: 36979370 PMCID: PMC10046372 DOI: 10.3390/biom13030435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/03/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
In a response to gravitropic stress, G-layers (gelatinous layers) were deposited in xylem cell walls of tilted flax plants. G-layers were produced in both tension wood (upper side) as expected but were also observed in opposite wood (lower side). Raman spectral profiles were acquired for xylem G-layers from the tension and opposite side as well as from the G-layer of bast fibers grown under non-tilted conditions. Statistical analysis by principal component analysis (PCA) and partial least square-discriminant analysis (PLS-DA) clearly distinguished bast fiber G-layers from xylem G-layers. Discriminating bands were observed for cellulose (380–1150–1376 cm–1), hemicelluloses (517–1094–1126–1452 cm–1) and aromatics (1270–1599–1658 cm–1). PCA did not allow separation of G-layers from tension/opposite-wood sides. In contrast, the two types of xylem G-layers could be incompletely discriminated through PLS-DA. Overall, the results suggested that while the architecture (polymer spatial distribution) of bast fibers G-layers and xylem G-layers are similar, they should be considered as belonging to a different cell wall layer category based upon ontogenetical and chemical composition parameters.
Collapse
Affiliation(s)
- Anne-Sophie Blervacq
- Université de Lille, Sciences et Technologies, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
- Correspondence: ; Tel.: +33-3-2043-4030
| | - Myriam Moreau
- Université de Lille, Sciences et Technologies, CNRS, UMR 8516-LASIRE-Laboratoire de Spectroscopie Pour les Interactions, la Réactivité et l’Environnement, F-59000 Lille, France
| | - Anne Duputié
- Université de Lille, Sciences et Technologies, CNRS, UMR 8198-EEP-Evo-Eco-Paléo, Bâtiment SN2, F-59000 Lille, France
| | - Simon Hawkins
- Université de Lille, Sciences et Technologies, CNRS, UMR 8576-UGSF-Unité de Glycobiologie Structurale et Fonctionnelle, F-59000 Lille, France
| |
Collapse
|
9
|
Transcriptomic Evidence Reveals Low Gelatinous Layer Biosynthesis in Neolamarckia cadamba after Gravistimulation. Int J Mol Sci 2022; 24:ijms24010268. [PMID: 36613711 PMCID: PMC9820806 DOI: 10.3390/ijms24010268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 12/28/2022] Open
Abstract
Trees can control their shape and resist gravity by producing tension wood (TW), which is a special wood that results from trees being put under stress. TW is characterized by the presence of a gelatinous layer (G layer) and the differential distribution of cell wall polymers. In this study, we investigated whether or not gravistimulation in N. cadamba resulted in TW with an obvious G layer. The results revealed an absence of an obvious G layer in samples of the upper side of a leaning stem (UW), as well as an accumulation of cellulose and a decrease in lignin content. A negligible change in the content of these polymers was recorded and compared to untreated plant (NW) samples, revealing the presence of a G layer either in much lower concentrations or in a lignified form. A transcriptomic investigation demonstrated a higher expression of cell wall esterase- and hydrolase-related genes in the UW, suggesting an accumulation of noncellulosic sugars in the UW, similar to the spectroscopy results. Furthermore, several G-layer-specific genes were also downregulated, including fasciclin-like arabinogalactan proteins (FLA), beta-galactosidase (BGAL) and chitinase-like proteins (CTL). The gene coexpression network revealed a strong correlation between cell-wall-synthesis-related genes and G-layer-synthesis-specific genes, suggesting their probable antagonistic role during G layer formation. In brief, the G layer in N. cadamba was either synthesized in a very low amount or was lignified during an early stage of growth; further experimental validation is required to understand the exact mechanism and stage of G layer formation in N. cadamba during gravistimulation.
Collapse
|
10
|
Tudu M, Samanta A. Natural polysaccharides: Chemical properties and application in pharmaceutical formulations. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
11
|
Kanapin A, Rozhmina T, Bankin M, Surkova S, Duk M, Osyagina E, Samsonova M. Genetic Determinants of Fiber-Associated Traits in Flax Identified by Omics Data Integration. Int J Mol Sci 2022; 23:14536. [PMID: 36498863 PMCID: PMC9738745 DOI: 10.3390/ijms232314536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/10/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
In this paper, we explore potential genetic factors in control of flax phenotypes associated with fiber by mining a collection of 306 flax accessions from the Federal Research Centre of the Bast Fiber Crops, Torzhok, Russia. In total, 11 traits were assessed in the course of 3 successive years. A genome-wide association study was performed for each phenotype independently using six different single-locus models implemented in the GAPIT3 R package. Moreover, we applied a multivariate linear mixed model implemented in the GEMMA package to account for trait correlations and potential pleiotropic effects of polymorphisms. The analyses revealed a number of genomic variants associated with different fiber traits, implying the complex and polygenic control. All stable variants demonstrate a statistically significant allelic effect across all 3 years of the experiment. We tested the validity of the predicted variants using gene expression data available for the flax fiber studies. The results shed new light on the processes and pathways associated with the complex fiber traits, while the pinpointed candidate genes may be further used for marker-assisted selection.
Collapse
Affiliation(s)
- Alexander Kanapin
- Centre for Computational Biology, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Tatyana Rozhmina
- Laboratory of Breeding Technologies, Federal Research Center for Bast Fiber Crops, 172002 Torzhok, Russia
| | - Mikhail Bankin
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Svetlana Surkova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Duk
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
- Theoretical Department, Ioffe Institute, 194021 St. Petersburg, Russia
| | - Ekaterina Osyagina
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| | - Maria Samsonova
- Mathematical Biology & Bioinformatics Laboratory, Peter the Great St. Petersburg Polytechnic University, 195251 St. Petersburg, Russia
| |
Collapse
|
12
|
Review: Tertiary cell wall of plant fibers as a source of inspiration in material design. Carbohydr Polym 2022; 295:119849. [DOI: 10.1016/j.carbpol.2022.119849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2022] [Revised: 06/19/2022] [Accepted: 07/05/2022] [Indexed: 11/23/2022]
|
13
|
Ma Y, Stafford L, Ratcliffe J, Bacic A, Johnson KL. WAKL8 Regulates Arabidopsis Stem Secondary Wall Development. PLANTS (BASEL, SWITZERLAND) 2022; 11:2297. [PMID: 36079678 PMCID: PMC9460275 DOI: 10.3390/plants11172297] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 08/24/2022] [Accepted: 08/30/2022] [Indexed: 06/15/2023]
Abstract
Wall-associated kinases/kinase-likes (WAKs/WAKLs) are plant cell surface sensors. A variety of studies have revealed the important functions of WAKs/WAKLs in regulating cell expansion and defense in cells with primary cell walls. Less is known about their roles during the development of the secondary cell walls (SCWs) that are present in xylem vessel (XV) and interfascicular fiber (IF) cells. In this study, we used RNA-seq data to screen Arabidopsis thaliana WAKs/WAKLs members that may be involved in SCW development and identified WAKL8 as a candidate. We obtained T-DNA insertion mutants wakl8-1 (inserted at the promoter region) and wakl8-2 (inserted at the first exon) and compared the phenotypes to wild-type (WT) plants. Decreased WAKL8 transcript levels in stems were found in the wakl8-2 mutant plants, and the phenotypes observed included reduced stem length and thinner walls in XV and IFs compared with those in the WT plants. Cell wall analysis showed no significant changes in the crystalline cellulose or lignin content in mutant stems compared with those in the WT. We found that WAKL8 had alternative spliced versions predicted to have only extracellular regions, which may interfere with the function of the full-length version of WAKL8. Our results suggest WAKL8 can regulate SCW thickening in Arabidopsis stems.
Collapse
Affiliation(s)
- Yingxuan Ma
- School of BioSciences, University of Melbourne, Parkville, VIC 3052, Australia
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Luke Stafford
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
| | - Antony Bacic
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| | - Kim L. Johnson
- La Trobe Institute for Agriculture & Food, Department of Animal, Plant and Soil Science, AgriBio Building, La Trobe University, Bundoora, VIC 3086, Australia
- Sino-Australia Plant Cell Wall Research Centre, College of Forestry and Biotechnology, Zhejiang Agriculture and Forestry University, Lin’an, Hangzhou 311300, China
| |
Collapse
|
14
|
Melelli A, Jamme F, Beaugrand J, Bourmaud A. Evolution of the ultrastructure and polysaccharide composition of flax fibres over time: When history meets science. Carbohydr Polym 2022; 291:119584. [DOI: 10.1016/j.carbpol.2022.119584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/30/2022] [Accepted: 05/04/2022] [Indexed: 11/28/2022]
|
15
|
Impact of cell wall non-cellulosic and cellulosic polymers on the mechanical properties of flax fibre bundles. Carbohydr Polym 2022; 291:119599. [DOI: 10.1016/j.carbpol.2022.119599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 05/02/2022] [Accepted: 05/05/2022] [Indexed: 11/02/2022]
|
16
|
Blervacq AS, Moreau M, Duputié A, De Waele I, Duponchel L, Hawkins S. Raman spectroscopy mapping of changes in the organization and relative quantities of cell wall polymers in bast fiber cell walls of flax plants exposed to gravitropic stress. FRONTIERS IN PLANT SCIENCE 2022; 13:976351. [PMID: 36072316 PMCID: PMC9442035 DOI: 10.3389/fpls.2022.976351] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Flax is an important fiber crop that is subject to lodging. In order to gain more information about the potential role of the bast fiber cell wall in the return to the vertical position, 6-week-old flax plants were subjected to a long-term (6 week) gravitropic stress by stem tilting in an experimental set-up that excluded autotropism. Stress induced significant morphometric changes (lumen surface, lumen diameter, and cell wall thickness and lumen surface/total fiber surface ratio) in pulling- and opposite-side fibers compared to control fibers. Changes in the relative amounts and spatial distribution of cell wall polymers in flax bast fibers were determined by Raman vibrational spectroscopy. Following spectra acquisition, datasets (control, pulling- and opposite sides) were analyzed by principal component analysis, PC score imaging, and Raman chemical cartography of significant chemical bonds. Our results show that gravitropic stress induces discrete but significant changes in the composition and/or spatial organization of cellulose, hemicelluloses and lignin within the cell walls of both pulling side and opposite side fibers.
Collapse
Affiliation(s)
- Anne-Sophie Blervacq
- Université de Lille, Sciences et Technologies, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| | - Myriam Moreau
- Université de Lille, Sciences et Technologies, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, Plateforme FT-Raman, Lille, France
| | - Anne Duputié
- Université de Lille, Sciences et Technologies, CNRS, UMR 8198 - EEP - Evo-Eco-Paléo, Lille, France
| | - Isabelle De Waele
- Université de Lille, Sciences et Technologies, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, Plateforme FT-Raman, Lille, France
| | - Ludovic Duponchel
- Université de Lille, Sciences et Technologies, CNRS, UMR 8516 - LASIRE – Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l’Environnement, Lille, France
| | - Simon Hawkins
- Université de Lille, Sciences et Technologies, CNRS, UMR 8576 - UGSF - Unité de Glycobiologie Structurale et Fonctionnelle, Lille, France
| |
Collapse
|
17
|
Oyserman BO, Flores SS, Griffioen T, Pan X, van der Wijk E, Pronk L, Lokhorst W, Nurfikari A, Paulson JN, Movassagh M, Stopnisek N, Kupczok A, Cordovez V, Carrión VJ, Ligterink W, Snoek BL, Medema MH, Raaijmakers JM. Disentangling the genetic basis of rhizosphere microbiome assembly in tomato. Nat Commun 2022; 13:3228. [PMID: 35710629 PMCID: PMC9203511 DOI: 10.1038/s41467-022-30849-9] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 05/19/2022] [Indexed: 12/31/2022] Open
Abstract
Microbiomes play a pivotal role in plant growth and health, but the genetic factors involved in microbiome assembly remain largely elusive. Here, we map the molecular features of the rhizosphere microbiome as quantitative traits of a diverse hybrid population of wild and domesticated tomato. Gene content analysis of prioritized tomato quantitative trait loci suggests a genetic basis for differential recruitment of various rhizobacterial lineages, including a Streptomyces-associated 6.31 Mbp region harboring tomato domestication sweeps and encoding, among others, the iron regulator FIT and the water channel aquaporin SlTIP2.3. Within metagenome-assembled genomes of root-associated Streptomyces and Cellvibrio, we identify bacterial genes involved in metabolism of plant polysaccharides, iron, sulfur, trehalose, and vitamins, whose genetic variation associates with specific tomato QTLs. By integrating 'microbiomics' and quantitative plant genetics, we pinpoint putative plant and reciprocal rhizobacterial traits underlying microbiome assembly, thereby providing a first step towards plant-microbiome breeding programs.
Collapse
Affiliation(s)
- Ben O Oyserman
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands.
| | - Stalin Sarango Flores
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Thom Griffioen
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Xinya Pan
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Elmar van der Wijk
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Lotte Pronk
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Wouter Lokhorst
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Azkia Nurfikari
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Joseph N Paulson
- Department of Data Sciences, Genentech, Inc. South San Francisco, South San Francisco, CA, USA
| | - Mercedeh Movassagh
- Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Data Sciences Dana Farber Cancer Institute, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Nejc Stopnisek
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Anne Kupczok
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
| | - Viviane Cordovez
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
| | - Víctor J Carrión
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Wilco Ligterink
- Wageningen Seed Lab, Laboratory of Plant Physiology, Wageningen University, Wageningen, The Netherlands
| | - Basten L Snoek
- Theoretical Biology and Bioinformatics, Utrecht University, Utrecht, The Netherlands
| | - Marnix H Medema
- Bioinformatics Group, Wageningen University, Wageningen, The Netherlands
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Jos M Raaijmakers
- Department of Microbial Ecology, Netherlands Institute of Ecology, Wageningen, The Netherlands.
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
18
|
Sousa-Baena MS, Onyenedum JG. Bouncing back stronger: Diversity, structure, and molecular regulation of gelatinous fiber development. CURRENT OPINION IN PLANT BIOLOGY 2022; 67:102198. [PMID: 35286861 DOI: 10.1016/j.pbi.2022.102198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 01/18/2022] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Gelatinous fibers (G-fibers) are specialized contractile cells found in a diversity of vascular plant tissues, where they provide mechanical support and/or facilitate plant mobility. G-fibers are distinct from typical fibers by the presence of an innermost thickened G-layer, comprised mainly of axially oriented cellulose microfibrils. Despite the disparate developmental origins-tension wood fibers from the vascular cambium or primary phloem fibers from the procambium-G-fiber development, composition, and molecular signatures are remarkably similar; however, important distinctions do exist. Here, we synthesize current knowledge of the phylogenetic diversity, compositional makeup, and the molecular profiles that characterize G-fiber development and highlight open questions for future investigation.
Collapse
Affiliation(s)
- Mariane S Sousa-Baena
- School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA.
| | - Joyce G Onyenedum
- School of Integrative Plant Sciences, Section of Plant Biology and the L.H. Bailey Hortorium, Cornell University, Ithaca, NY, USA
| |
Collapse
|
19
|
San Martin JAB, Pozner RE, Di Stilio VS. Heterochrony and repurposing in the evolution of gymnosperm seed dispersal units. EvoDevo 2022; 13:7. [PMID: 35172885 PMCID: PMC8851845 DOI: 10.1186/s13227-022-00191-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 01/12/2022] [Indexed: 11/14/2022] Open
Abstract
Background Plant dispersal units, or diaspores, allow the colonization of new environments expanding geographic range and promoting gene flow. Two broad categories of diaspores found in seed plants are dry and fleshy, associated with abiotic and biotic dispersal agents, respectively. Anatomy and developmental genetics of fleshy angiosperm fruits is advanced in contrast to the knowledge gap for analogous fleshy structures in gymnosperm diaspores. Improved understanding of the structural basis of modified accessory organs that aid in seed dispersal will enable future work on the underlying genetics, contributing to hypotheses on the origin of angiosperm fruits. To generate a structural framework for the development and evolution of gymnosperm fleshy diaspores, we studied the anatomy and histochemistry of Ephedra (Gnetales) seed cone bracts, the modified leaves surrounding the reproductive organs. We took an ontogenetic approach, comparing and contrasting the anatomy and histology of fleshy and papery-winged seed cone bracts, and their respective pollen cone bracts and leaves in four species from the South American clade. Results Seed bract fleshiness in Ephedra derives from mucilage accumulated in chlorenchyma cells, also found in the reduced young leaves before they reach their mature, dry stage. Cellulosic fibers, an infrequent cell type in gymnosperms, were found in Ephedra, where they presumably function as a source of supplementary apoplastic water in fleshy seed cone bracts. Papery-winged bract development more closely resembles that of leaves, with chlorenchyma mucilage cells turning into tanniniferous cells early on, and hyaline margins further extending into “wings”. Conclusions We propose an evolutionary developmental model whereby fleshy and papery-winged bracts develop from an early-stage anatomy shared with leaves that differs at the pollination stage. The ancestral fleshy bract state may represent a novel differentiation program built upon young leaf anatomy, while the derived dry, papery-winged state is likely built upon an existing differentiation pattern found in mature vegetative leaves. This model for the evolution of cone bract morphology in South American Ephedra hence involves a novel differentiation program repurposed from leaves combined with changes in the timing of leaf differentiation, or heterochrony, that can further be tested in other gymnosperms with fleshy diaspores. Supplementary Information The online version contains supplementary material available at 10.1186/s13227-022-00191-8.
Collapse
Affiliation(s)
- Juca A B San Martin
- Instituto de Botánica Darwinion (IBODA, CONICET & ANCEFN), Labardén 200, C.C. 22, B1642HYD, San Isidro, Buenos Aires, Argentina
| | - Raúl E Pozner
- Instituto de Botánica Darwinion (IBODA, CONICET & ANCEFN), Labardén 200, C.C. 22, B1642HYD, San Isidro, Buenos Aires, Argentina.
| | | |
Collapse
|
20
|
Ma Y, MacMillan CP, de Vries L, Mansfield SD, Hao P, Ratcliffe J, Bacic A, Johnson KL. FLA11 and FLA12 glycoproteins fine-tune stem secondary wall properties in response to mechanical stresses. THE NEW PHYTOLOGIST 2022; 233:1750-1767. [PMID: 34862967 PMCID: PMC9302641 DOI: 10.1111/nph.17898] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/20/2021] [Indexed: 05/19/2023]
Abstract
Secondary cell walls (SCWs) in stem xylem vessel and fibre cells enable plants to withstand the enormous compressive forces associated with upright growth. It remains unclear if xylem vessel and fibre cells can directly sense mechanical stimuli and modify their SCW during development. We provide evidence that Arabidopsis SCW-specific Fasciclin-Like Arabinogalactan-proteins 11 (FLA11) and 12 (FLA12) are possible cell surface sensors regulating SCW development in response to mechanical stimuli. Plants overexpressing FLA11 (OE-FLA11) showed earlier SCW development compared to the wild-type (WT) and altered SCW properties that phenocopy WT plants under compression stress. By contrast, OE-FLA12 stems showed higher cellulose content compared to WT plants, similar to plants experiencing tensile stress. fla11, OE-FLA11, fla12, and OE-FLA12 plants showed altered SCW responses to mechanical stress compared to the WT. Quantitative polymerase chain reaction (qPCR) and RNA-seq analysis revealed the up-regulation of genes and pathways involved in stress responses and SCW synthesis and regulation. Analysis of OE-FLA11 nst1 nst3 plants suggests that FLA11 regulation of SCWs is reliant on classical transcriptional networks. Our data support the involvement of FLA11 and FLA12 in SCW sensing complexes to fine-tune both the initiation of SCW development and the balance of lignin and cellulose synthesis/deposition in SCWs during development and in response to mechanical stimuli.
Collapse
Affiliation(s)
- Yingxuan Ma
- School of BioSciencesUniversity of MelbourneParkvilleVic.3052Australia
- Department of Animal, Plant and Soil ScienceLa Trobe Institute for Agriculture & FoodLa Trobe UniversityAgriBio BuildingBundooraVic.3086Australia
| | - Colleen P. MacMillan
- Agriculture and FoodCSIROCSIRO Black Mountain Science and Innovation ParkCanberraACT2601Australia
| | - Lisanne de Vries
- Department of Wood ScienceUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Shawn D. Mansfield
- Department of Wood ScienceUniversity of British ColumbiaVancouverBCV6T 1Z4Canada
| | - Pengfei Hao
- Department of Animal, Plant and Soil ScienceLa Trobe Institute for Agriculture & FoodLa Trobe UniversityAgriBio BuildingBundooraVic.3086Australia
| | - Julian Ratcliffe
- Department of Animal, Plant and Soil ScienceLa Trobe Institute for Agriculture & FoodLa Trobe UniversityAgriBio BuildingBundooraVic.3086Australia
| | - Antony Bacic
- Department of Animal, Plant and Soil ScienceLa Trobe Institute for Agriculture & FoodLa Trobe UniversityAgriBio BuildingBundooraVic.3086Australia
- College of Forestry and BiotechnologySino‐Australia Plant Cell Wall Research CentreZhejiang Agriculture and Forestry UniversityLin'anHangzhou311300China
| | - Kim L. Johnson
- Department of Animal, Plant and Soil ScienceLa Trobe Institute for Agriculture & FoodLa Trobe UniversityAgriBio BuildingBundooraVic.3086Australia
- College of Forestry and BiotechnologySino‐Australia Plant Cell Wall Research CentreZhejiang Agriculture and Forestry UniversityLin'anHangzhou311300China
| |
Collapse
|
21
|
Sang Y, Liu M. Hierarchical self-assembly into chiral nanostructures. Chem Sci 2022; 13:633-656. [PMID: 35173928 PMCID: PMC8769063 DOI: 10.1039/d1sc03561d] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/09/2021] [Indexed: 12/11/2022] Open
Abstract
One basic principle regulating self-assembly is associated with the asymmetry of constituent building blocks or packing models. Using asymmetry to manipulate molecular-level devices and hierarchical functional materials is a promising topic in materials sciences and supramolecular chemistry. Here, exemplified by recent major achievements in chiral hierarchical self-assembly, we show how chirality may be utilized in the design, construction and evolution of highly ordered and complex chiral nanostructures. We focus on how unique functions can be developed by the exploitation of chiral nanostructures instead of single basic units. Our perspective on the future prospects of chiral nanostructures via the hierarchical self-assembly strategy is also discussed.
Collapse
Affiliation(s)
- Yutao Sang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| |
Collapse
|
22
|
Yu J, Zhou C, Li D, Li S, Jimmy Lin YC, Wang JP, Chiang VL, Li W. A PtrLBD39-mediated transcriptional network regulates tension wood formation in Populus trichocarpa. PLANT COMMUNICATIONS 2022; 3:100250. [PMID: 35059630 PMCID: PMC8760142 DOI: 10.1016/j.xplc.2021.100250] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 09/10/2021] [Accepted: 10/19/2021] [Indexed: 05/29/2023]
Abstract
Tension wood (TW) is a specialized xylem tissue formed in angiosperm trees under gravitational stimulus or mechanical stresses (e.g., bending). The genetic regulation that underlies this important mechanism remains poorly understood. Here, we used laser capture microdissection of stem xylem cells coupled with full transcriptome RNA-sequencing to analyze TW formation in Populus trichocarpa. After tree bending, PtrLBD39 was the most significantly induced transcription factor gene; it has a phylogenetically paired homolog, PtrLBD22. CRISPR-based knockout of PtrLBD39/22 severely inhibited TW formation, reducing cellulose and increasing lignin content. Transcriptomic analyses of CRISPR-based PtrLBD39/22 double mutants showed that these two genes regulate a set of TW-related genes. Chromatin immunoprecipitation sequencing (ChIP-seq) was used to identify direct targets of PtrLBD39. We integrated transcriptomic analyses and ChIP-seq assays to construct a transcriptional regulatory network (TRN) mediated by PtrLBD39. In this TRN, PtrLBD39 directly regulates 26 novel TW-responsive transcription factor genes. Our work suggests that PtrLBD39 and PtrLBD22 specifically control TW formation by mediating a TW-specific TRN in Populus.
Collapse
Affiliation(s)
- Jing Yu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chenguang Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Danning Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Shuang Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Ying-Chung Jimmy Lin
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Department of Life Sciences and Institute of Plant Biology, College of Life Science, National Taiwan University, Taipei, Taiwan 10617, China
| | - Jack P. Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, NC 27695, USA
| | - Vincent L. Chiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
- Department of Forestry and Environmental Resources, Forest Biotechnology Group, North Carolina State University, Raleigh, NC 27695, USA
| | - Wei Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
23
|
Chery JG, Glos RAE, Anderson CT. Do woody vines use gelatinous fibers to climb? THE NEW PHYTOLOGIST 2022; 233:126-131. [PMID: 34160082 DOI: 10.1111/nph.17576] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/08/2021] [Indexed: 05/28/2023]
Abstract
Many plant movements are facilitated by contractile cells called gelatinous fibers (G-fibers), but how G-fibers function in the climbing movements of woody vines remains underexplored. In this Insight, we compare the presence and distribution of G-fibers in the stems of stem-twiners, which wrap around supports, with non-stem-twiners, which attach to supports via tendrils or adventitious roots. An examination of 164 species spanning the vascular plant phylogeny reveals that G-fibers are common in stem-twiners but scarce in non-stem-twiners, suggesting that G-fibers are preferentially formed in the organ responsible for movement. When present, G-fibers are in the xylem, phloem, pericycle, and/or cortex. We discuss the hypothesis that G-fibers are foundational to plant movement and highlight research opportunities concerning G-fiber development and function.
Collapse
Affiliation(s)
- Joyce G Chery
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Section of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Rosemary A E Glos
- School of Integrative Plant Sciences and L.H. Bailey Hortorium, Section of Plant Biology, Cornell University, Ithaca, NY, 14853, USA
| | - Charles T Anderson
- Department of Biology, The Pennsylvania State University, University Park, PA, 16802, USA
| |
Collapse
|
24
|
Faleri C, Xu X, Mareri L, Hausman JF, Cai G, Guerriero G. Immunohistochemical analyses on two distinct internodes of stinging nettle show different distribution of polysaccharides and proteins in the cell walls of bast fibers. PROTOPLASMA 2022; 259:75-90. [PMID: 33839957 PMCID: PMC8752570 DOI: 10.1007/s00709-021-01641-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 03/29/2021] [Indexed: 05/27/2023]
Abstract
Stinging nettle is a perennial herbaceous species holding value as a multi-purpose plant. Indeed, its leaves and roots are phytofactories providing functional ingredients of medicinal interest and its stems produce silky and resistant extraxylary fibers (a.k.a. bast fibers) valued in the biocomposite sector. Similarly to what is reported in other fiber crops, the stem of nettle contains both lignified and hypolignified fibers in the core and cortex, respectively, and it is therefore a useful model for cell wall research. Indeed, data on nettle stem tissues can be compared to those obtained in other models, such as hemp and flax, to support hypotheses on the differentiation and development of bast fibers. The suitability of the nettle stem as model for cell wall-related research was already validated using a transcriptomics and biochemical approach focused on internodes at different developmental stages sampled at the top, middle, and bottom of the stem. We here sought to complement and enrich these data by providing immunohistochemical and ultrastructural details on young and older stem internodes. Antibodies recognizing non-cellulosic polysaccharides (galactans, arabinans, rhamnogalacturonans) and arabinogalactan proteins were here investigated with the goal of understanding whether their distribution changes in the stem tissues in relation to the bast fiber and vascular tissue development. The results obtained indicate that the occurrence and distribution of cell wall polysaccharides and proteins differ between young and older internodes and that these changes are particularly evident in the bast fibers.
Collapse
Affiliation(s)
- Claudia Faleri
- Dipartimento Scienze della Vita, University of Siena, via Mattioli 4, Siena, Italy
| | - Xuan Xu
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg
| | - Lavinia Mareri
- Dipartimento Scienze della Vita, University of Siena, via Mattioli 4, Siena, Italy
| | - Jean-Francois Hausman
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg
| | - Giampiero Cai
- Dipartimento Scienze della Vita, University of Siena, via Mattioli 4, Siena, Italy.
| | - Gea Guerriero
- Environmental Research and Innovation (ERIN) Department, Luxembourg Institute of Science and Technology (LIST), Hautcharage, Luxembourg
| |
Collapse
|
25
|
Yoshida K, Sakamoto S, Mitsuda N. In Planta Cell Wall Engineering: From Mutants to Artificial Cell Walls. PLANT & CELL PHYSIOLOGY 2021; 62:1813-1827. [PMID: 34718770 DOI: 10.1093/pcp/pcab157] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 10/03/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
To mitigate the effects of global warming and to preserve the limited fossil fuel resources, an increased exploitation of plant-based materials and fuels is required, which would be one of the most important innovations related to sustainable development. Cell walls account for the majority of plant dry biomass and so is the target of such innovations. In this review, we discuss recent advances in in planta cell wall engineering through genetic manipulations, with a focus on wild-type-based and mutant-based approaches. The long history of using a wild-type-based approach has resulted in the development of many strategies for manipulating lignin, hemicellulose and pectin to decrease cell wall recalcitrance. In addition to enzyme-encoding genes, many transcription factor genes important for changing relevant cell wall characteristics have been identified. Although mutant-based cell wall engineering is relatively new, it has become feasible due to the rapid development of genome-editing technologies and systems biology-related research; we will soon enter an age of designed artificial wood production via complex genetic manipulations of many industrially important trees and crops.
Collapse
Affiliation(s)
- Kouki Yoshida
- Technology Center, Taisei Corporation, Nase-cho 344-1, Totsuka-ku, Yokohama, Kanagawa, 245-0051 Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566 Japan
| |
Collapse
|
26
|
Quantifying Oxidation of Cellulose-Associated Glucuronoxylan by Two Lytic Polysaccharide Monooxygenases from Neurospora crassa. Appl Environ Microbiol 2021; 87:e0165221. [PMID: 34613755 PMCID: PMC8612270 DOI: 10.1128/aem.01652-21] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Family AA9 lytic polysaccharide monooxygenases (LPMOs) are abundant in fungi, where they catalyze oxidative depolymerization of recalcitrant plant biomass. These AA9 LPMOs cleave cellulose and some also act on hemicelluloses, primarily other (substituted) β-(1→4)-glucans. Oxidative cleavage of xylan has been shown for only a few AA9 LPMOs, and it remains unclear whether this activity is a minor side reaction or primary function. Here, we show that Neurospora crassa LPMO9F (NcLPMO9F) and the phylogenetically related, hitherto uncharacterized NcLPMO9L from N. crassa are active on both cellulose and cellulose-associated glucuronoxylan but not on glucuronoxylan alone. A newly developed method for simultaneous quantification of xylan-derived and cellulose-derived oxidized products showed that NcLPMO9F preferentially cleaves xylan when acting on a cellulose–beechwood glucuronoxylan mixture, yielding about three times more xylan-derived than cellulose-derived oxidized products. Interestingly, under similar conditions, NcLPMO9L and the previously characterized McLPMO9H, from Malbranchea cinnamomea, showed different xylan-to-cellulose preferences, giving oxidized product ratios of about 0.5:1 and 1:1, respectively, indicative of functional variation among xylan-active LPMOs. Phylogenetic and structural analysis of xylan-active AA9 LPMOs led to the identification of characteristic structural features, including unique features that do not occur in phylogenetically remote AA9 LPMOs, such as four AA9 LPMOs whose lack of activity toward glucuronoxylan was demonstrated in the present study. Taken together, the results provide a path toward discovery of additional xylan-active LPMOs and show that the huge family of AA9 LPMOs has members that preferentially act on xylan. These findings shed new light on the biological role and industrial potential of these fascinating enzymes. IMPORTANCE Plant cell wall polysaccharides are highly resilient to depolymerization by hydrolytic enzymes, partly due to cellulose chains being tightly packed in microfibrils that are covered by hemicelluloses. Lytic polysaccharide monooxygenases (LPMOs) seem well suited to attack these resilient copolymeric structures, but the occurrence and importance of hemicellulolytic activity among LPMOs remain unclear. Here, we show that certain AA9 LPMOs preferentially cleave xylan when acting on a cellulose–glucuronoxylan mixture, and that this ability is the result of protein evolution that has resulted in a clade of AA9 LPMOs with specific structural features. Our findings strengthen the notion that the vast arsenal of AA9 LPMOs in certain fungal species provides functional versatility and that AA9 LPMOs may have evolved to promote oxidative depolymerization of a wide variety of recalcitrant, copolymeric plant polysaccharide structures. These findings have implications for understanding the biological roles and industrial potential of LPMOs.
Collapse
|
27
|
Morales-Quintana L, Ramos P. A Talk between Flavonoids and Hormones to Reorient the Growth of Gymnosperms. Int J Mol Sci 2021; 22:ijms222312630. [PMID: 34884435 PMCID: PMC8657560 DOI: 10.3390/ijms222312630] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 11/20/2021] [Accepted: 11/20/2021] [Indexed: 12/05/2022] Open
Abstract
Plants reorient the growth of affected organs in response to the loss of gravity vector. In trees, this phenomenon has received special attention due to its importance for the forestry industry of conifer species. Sustainable management is a key factor in improving wood quality. It is of paramount importance to understand the molecular and genetic mechanisms underlying wood formation, together with the hormonal and environmental factors that affect wood formation and quality. Hormones are related to the modulation of vertical growth rectification. Many studies have resulted in a model that proposes differential growth in the stem due to unequal auxin and jasmonate allocation. Furthermore, many studies have suggested that in auxin distribution, flavonoids act as molecular controllers. It is well known that flavonoids affect auxin flux, and this is a new area of study to understand the intracellular concentrations and how these compounds can control the gravitropic response. In this review, we focused on different molecular aspects related to the hormonal role in flavonoid homeostasis and what has been done in conifer trees to identify molecular players that could take part during the gravitropic response and reduce low-quality wood formation.
Collapse
Affiliation(s)
- Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Talca 3467987, Chile
- Correspondence: (L.M.-Q.); (P.R.); Tel.: +56-71-2735-699 (L.M.-Q.); +56-73-2213-501 (P.R.)
| | - Patricio Ramos
- Centro de Investigación de Estudios Avanzados del Maule (CIEAM), Vicerrectoría de Investigación y Postgrado, Universidad Católica del Maule, Talca 3460000, Chile
- Centro de Biotecnología de los Recursos Naturales (CenBio), Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile
- Centro del Secano, Facultad de Ciencias Agrarias y Forestales, Universidad Católica del Maule, Talca 3460000, Chile
- Correspondence: (L.M.-Q.); (P.R.); Tel.: +56-71-2735-699 (L.M.-Q.); +56-73-2213-501 (P.R.)
| |
Collapse
|
28
|
Takata N, Tsuyama T, Nagano S, Baba K, Yasuda Y, Sakamoto S, Mitsuda N, Taniguchi T. Prior secondary cell wall formation is required for gelatinous layer deposition and posture control in gravi-stimulated aspen. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 108:725-736. [PMID: 34396622 DOI: 10.1111/tpj.15466] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/19/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Cell walls, especially secondary cell walls (SCWs), maintain cell shape and reinforce wood, but their structure and shape can be altered in response to gravity. In hardwood trees, tension wood is formed along the upper side of a bending stem and contains wood fiber cells that have a gelatinous layer (G-layer) inside the SCW. In a previous study, we generated nst/snd quadruple-knockout aspens (Populus tremula × Populus tremuloides), in which SCW formation was impaired in 99% of the wood fiber cells. In the present study, we produced nst/snd triple-knockout aspens, in which a large number of wood fibers had thinner SCWs than the wild type (WT) and some had no SCW. Because SCW layers are always formed prior to G-layer deposition, the nst/snd mutants raise interesting questions of whether the mutants can form G-layers without SCW and whether they can control their postures in response to changes in gravitational direction. The nst/snd mutants and the WT plants showed growth eccentricity and vessel frequency reduction when grown on an incline, but the triple mutants recovered their upright growth only slightly, and the quadruple mutants were unable to maintain their postures. The mutants clearly showed that the G-layers were formed in SCW-containing wood fibers but not in those lacking the SCW. Our results indicate that SCWs are essential for G-layer formation and posture control. Furthermore, each wood fiber cell may be able to recognize its cell wall developmental stage to initiate the formation of the G-layer as a response to gravistimulation.
Collapse
Affiliation(s)
- Naoki Takata
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, 319-1301, Japan
| | - Taku Tsuyama
- Faculty of Agriculture, University of Miyazaki, Miyazaki, Miyazaki, 889-2192, Japan
| | - Soichiro Nagano
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, 319-1301, Japan
| | - Kei'ichi Baba
- Research Institute for Sustainable Humanosphere, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Yuko Yasuda
- Forest Tree Breeding Center, Forestry and Forest Products Research Institute, Forest Research and Management Organization, Hitachi, Ibaraki, 319-1301, Japan
| | - Shingo Sakamoto
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Nobutaka Mitsuda
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba, Ibaraki, 305-8566, Japan
- Global Zero Emission Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Toru Taniguchi
- Forest Bio-Research Center, Forestry and Forest Products Research Institute, Hitachi, Ibaraki, 319-1301, Japan
| |
Collapse
|
29
|
Majda M, Kozlova L, Banasiak A, Derba-Maceluch M, Iashchishyn IA, Morozova-Roche LA, Smith RS, Gorshkova T, Mellerowicz EJ. Elongation of wood fibers combines features of diffuse and tip growth. THE NEW PHYTOLOGIST 2021; 232:673-691. [PMID: 33993523 DOI: 10.1111/nph.17468] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 04/28/2021] [Indexed: 06/12/2023]
Abstract
Xylem fibers are highly elongated cells that are key constituents of wood, play major physiological roles in plants, comprise an important terrestrial carbon reservoir, and thus have enormous ecological and economic importance. As they develop, from fusiform initials, their bodies remain the same length while their tips elongate and intrude into intercellular spaces. To elucidate mechanisms of tip elongation, we studied the cell wall along the length of isolated, elongating aspen xylem fibers and used computer simulations to predict the forces driving the intercellular space formation required for their growth. We found pectin matrix epitopes (JIM5, LM7) concentrated at the tips where cellulose microfibrils have transverse orientation, and xyloglucan epitopes (CCRC-M89, CCRC-M58) in fiber bodies where microfibrils are disordered. These features are accompanied by changes in cell wall thickness, indicating that while the cell wall elongates strictly at the tips, it is deposited all over fibers. Computer modeling revealed that the intercellular space formation needed for intrusive growth may only require targeted release of cell adhesion, which allows turgor pressure in neighboring fiber cells to 'round' the cells creating spaces. These characteristics show that xylem fibers' elongation involves a distinct mechanism that combines features of both diffuse and tip growth.
Collapse
Affiliation(s)
- Mateusz Majda
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Liudmila Kozlova
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre, Russian Academy of Sciences, Kazan, 420111, Russia
| | - Alicja Banasiak
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
- Department of Plant Developmental Biology, Institute of Experimental Biology, University of Wrocław, Kanonia 6/8, Wrocław, 50-328, Poland
| | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| | - Igor A Iashchishyn
- Department of Medical Biochemistry and Biophysics, Umeå University, Umeå, SE-901 87, Sweden
| | | | - Richard S Smith
- Department of Computational and Systems Biology, John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Tatyana Gorshkova
- Kazan Institute of Biochemistry and Biophysics, FRC Kazan Scientific Centre, Russian Academy of Sciences, Kazan, 420111, Russia
| | - Ewa J Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre (UPSC), Swedish University of Agricultural Sciences, Umeå, 901 83, Sweden
| |
Collapse
|
30
|
de Vries L, Guevara-Rozo S, Cho M, Liu LY, Renneckar S, Mansfield SD. Tailoring renewable materials via plant biotechnology. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:167. [PMID: 34353358 PMCID: PMC8344217 DOI: 10.1186/s13068-021-02010-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Accepted: 07/06/2021] [Indexed: 05/03/2023]
Abstract
Plants inherently display a rich diversity in cell wall chemistry, as they synthesize an array of polysaccharides along with lignin, a polyphenolic that can vary dramatically in subunit composition and interunit linkage complexity. These same cell wall chemical constituents play essential roles in our society, having been isolated by a variety of evolving industrial processes and employed in the production of an array of commodity products to which humans are reliant. However, these polymers are inherently synthesized and intricately packaged into complex structures that facilitate plant survival and adaptation to local biogeoclimatic regions and stresses, not for ease of deconstruction and commercial product development. Herein, we describe evolving techniques and strategies for altering the metabolic pathways related to plant cell wall biosynthesis, and highlight the resulting impact on chemistry, architecture, and polymer interactions. Furthermore, this review illustrates how these unique targeted cell wall modifications could significantly extend the number, diversity, and value of products generated in existing and emerging biorefineries. These modifications can further target the ability for processing of engineered wood into advanced high performance materials. In doing so, we attempt to illuminate the complex connection on how polymer chemistry and structure can be tailored to advance renewable material applications, using all the chemical constituents of plant-derived biopolymers, including pectins, hemicelluloses, cellulose, and lignins.
Collapse
Affiliation(s)
- Lisanne de Vries
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA
| | - Sydne Guevara-Rozo
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - MiJung Cho
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Li-Yang Liu
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Scott Renneckar
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Shawn D Mansfield
- Department of Wood Science, Faculty of Forestry, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
- US Department of Energy (DOE) Great Lakes Bioenergy Research Center, the Wisconsin Energy Institute, University of Wisconsin - Madison, Madison, WI , 53726, USA.
| |
Collapse
|
31
|
Kim ES, Choi W, Park SH. The thickening and modification of the galactan-enriched layer during primary phloem fibre development in Cannabis sativa. AOB PLANTS 2021; 13:plab044. [PMID: 34394905 PMCID: PMC8356173 DOI: 10.1093/aobpla/plab044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Primary phloem fibres (PPFs) have higher fibre quality and are economically more important for the textile sector than secondary phloem fibres. Both the chemical composition and mechanical structure of the secondary cell wall mainly influence the quality of bast fibres. We investigated the thickening of the galactan-enriched (Gn) layer and its modification process into a gelatinous (G)-layer, which is the largest portion of the secondary cell wall, during the development of the PPF in Cannabis sativa. Stem segments of hemp collected at 17, 29, 52 and 62 days after sowing were comparatively examined using light microscopy, scanning electron microscopy and transmission electron microscopy. The initial cells of PPF started the proliferation and differentiation at 17 days, but the secondary cell wall thickening had already commenced before the 29 days. Both the G- and Gn-layer were rapidly added onto the S-layer of PPFs; thus, the secondary cell wall thickness increased approximately 2-fold at 52 days (from the 29-day mark), and 8-fold at 62 days. The cortical microtubule arrays appeared adjacent to the plasma membrane of PPF cells related to the cellulose synthesis. Additionally, cross-sectioned microfibrils were observed on Gn-layer as the cluster of tiny spots. At 62 days, the specific stratification structure consisting of several lamellae occurred on the G-layer of the secondary cell wall. The secondary cell wall thickened remarkably at 52 days through 62 days so that the mature secondary cell wall consisted of three distinctive layers, the S-, G- and Gn-layer. Cortical microtubule arrays frequently appeared adjacent to the plasma membrane together with cellulose microfibrils on secondary cell wall. The G-layer of PPF at 62 days exhibited the characteristic stratification structure, which demonstrates the modification of the Gn-layer into the G-layer.
Collapse
Affiliation(s)
- Eun-Soo Kim
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO 81001-4901, USA
| | - Wonkyun Choi
- Division of Ecological Safety, National Institute of Ecology, Seocheon 33657, South Korea
| | - Sang-Hyuck Park
- Institute of Cannabis Research, Colorado State University-Pueblo, Pueblo, CO 81001-4901, USA
| |
Collapse
|
32
|
Xu W, Cheng H, Zhu S, Cheng J, Ji H, Zhang B, Cao S, Wang C, Tong G, Zhen C, Mu L, Zhou Y, Cheng Y. Functional understanding of secondary cell wall cellulose synthases in Populus trichocarpa via the Cas9/gRNA-induced gene knockouts. THE NEW PHYTOLOGIST 2021; 231:1478-1495. [PMID: 33713445 PMCID: PMC8362133 DOI: 10.1111/nph.17338] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 03/02/2021] [Indexed: 05/12/2023]
Abstract
Plant cellulose is synthesized by a large plasma membrane-localized cellulose synthase (CesA) complex. However, an overall functional determination of secondary cell wall (SCW) CesAs is still lacking in trees, especially one based on gene knockouts. Here, the Cas9/gRNA-induced knockouts of PtrCesA4, 7A, 7B, 8A and 8B genes were produced in Populus trichocarpa. Based on anatomical, immunohistochemical and wood composition evidence, we gained a comprehensive understanding of five SCW PtrCesAs at the genetic level. Complete loss of PtrCesA4, 7A/B or 8A/B led to similar morphological abnormalities, indicating similar and nonredundant genetic functions. The absence of the gelatinous (G) layer, one-layer-walled fibres and a 90% decrease in cellulose in these mutant woods revealed that the three classes of SCW PtrCesAs are essential for multilayered SCW structure and wood G-fibre. In addition, the mutant primary and secondary phloem fibres lost the n(G + L)- and G-layers and retained the thicker S-layers (L, lignified; S, secondary). Together with polysaccharide immunolocalization data, these findings suggest differences in the role of SCW PtrCesAs-synthesized cellulose in wood and phloem fibre wall structures. Overall, this functional understanding of the SCW PtrCesAs provides further insights into the impact of lacking cellulose biosynthesis on growth, SCW, wood G-fibre and phloem fibre wall structures in the tree.
Collapse
Affiliation(s)
- Wenjing Xu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
- School of ForestryNortheast Forestry UniversityHarbin150040China
| | - Hao Cheng
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Siran Zhu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Jiyao Cheng
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Huanhuan Ji
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Baocai Zhang
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Shenquan Cao
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Chong Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Guimin Tong
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Cheng Zhen
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| | - Liqiang Mu
- School of ForestryNortheast Forestry UniversityHarbin150040China
| | - Yihua Zhou
- Institute of Genetics and Developmental BiologyChinese Academy of SciencesBeijing100101China
| | - Yuxiang Cheng
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbin150040China
| |
Collapse
|
33
|
Silvestre GH, Pinto LO, Bernardes JS, Miwa RH, Fazzio A. Disassembly of TEMPO-Oxidized Cellulose Fibers: Intersheet and Interchain Interactions in the Isolation of Nanofibers and Unitary Chains. J Phys Chem B 2021; 125:3717-3724. [PMID: 33821657 DOI: 10.1021/acs.jpcb.1c01928] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cellulose disassembly is an important issue in designing nanostructures using cellulose-based materials. In this work, we present a combination of experimental and theoretical study addressing the disassembly of cellulose nanofibrils. Through 2,2,6,6-tetramethylpiperidine-1-oxyl-mediated oxidation processes, combined with atomic force microscopy results, we show the formation of nanofibers with diameters corresponding to that of a single-cellulose polymer chain. The formation of these polymer chains is controlled by repulsive electrostatic interactions between the oxidized chains. Further, first-principles calculations have been performed in order to provide an atomistic understanding of the cellulose disassembling processes, focusing on the balance between the interchain (IC) and intersheet (IS) interactions upon oxidation. First, we analyze these interactions in pristine systems, where we found the IS interaction to be stronger than the IC interaction. In the oxidized systems, we have considered the formation of (charged) carboxylate groups along the inner sites of elementary fibrils. We show a net charge concentration on the carboxylate groups, supporting the emergence of repulsive electrostatic interactions between the cellulose nanofibers. Indeed, our total energy results show that the weakening of the binding strength between the fibrils is proportional to the concentration and net charge density of the carboxylate group. Moreover, by comparing the IC and IS binding energies, we found that most of the disassembly processes should take place by breaking the IC O-H···O hydrogen bond interactions and thus supporting the experimental observation of single- and double-cellulose polymer chains.
Collapse
Affiliation(s)
- Gustavo H Silvestre
- Instituto de Física, Universidade Federal de Uberlândia, C.P. 593, Uberlândia 38400-902, Minas Gerais, Brazil
| | - Lidiane O Pinto
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil
| | - Juliana S Bernardes
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil.,Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| | - Roberto H Miwa
- Instituto de Física, Universidade Federal de Uberlândia, C.P. 593, Uberlândia 38400-902, Minas Gerais, Brazil
| | - Adalberto Fazzio
- Brazilian Nanotechnology National Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, São Paulo 13083-970, Brazil.,Center for Natural and Human Sciences, Federal University of ABC, Santo André, São Paulo 09210-580, Brazil
| |
Collapse
|
34
|
Tatongjai S, Kraichak E, Kermanee P. Comparative anatomy and salt management of Sonneratia caseolaris (L.) Engl. (Lythraceae) grown in saltwater and freshwater. PeerJ 2021; 9:e10962. [PMID: 33665038 PMCID: PMC7916540 DOI: 10.7717/peerj.10962] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 01/27/2021] [Indexed: 11/20/2022] Open
Abstract
Sonneratia caseolaris is a pioneer species in mangrove. It can naturally grow in both saltwater and freshwater. The study was aimed at investigating and comparing the anatomical character of the S. caseolaris plants growing in different conditions and how they coped with salinity. The anatomical characteristics of roots, stems, petioles and leaf blade were investigated. The plant samples were prepared into permanent slides using a paraffin method, while the wood samples were made into permanent slides using a sliding microtome technique. Tissue clearing of leaf blade and scanning electron microscopic analysis of wood were performed. In addition, sodium chloride content in various organs and tissues was examined. It was found that cable root, stem and leaf blade showed some different anatomical characteristics between the two conditions. Periderm is a prominent tissue in saltwater roots. Tanniferous cells were observed in pneumatophores, petioles, stems and leaf blades of saltwater plants, but not found in pneumatophores and lamina of freshwater plants. Mesophyll thickness was lower in the saltwater condition. The vessel density was significantly higher in the saltwater condition than in the freshwater condition, whereas the vessel diameters in the freshwater condition were significantly higher than those in the saltwater condition. From the results, it can be concluded that root periderm plays an important role in salt exclusion, and the occurrence of tanniferous cells is associated with salt elimination.
Collapse
Affiliation(s)
- Sukrit Tatongjai
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Ekaphan Kraichak
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| | - Prasart Kermanee
- Department of Botany, Faculty of Science, Kasetsart University, Bangkok, Thailand
| |
Collapse
|
35
|
Yan J, Liu Y, Yang L, He H, Huang Y, Fang L, Scheller HV, Jiang M, Zhang A. Cell wall β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana. MOLECULAR PLANT 2021; 14:411-425. [PMID: 33276159 DOI: 10.1016/j.molp.2020.11.023] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/12/2020] [Accepted: 11/30/2020] [Indexed: 06/12/2023]
Abstract
Salinity severely reduces plant growth and limits agricultural productivity. Dynamic changes and rearrangement of the plant cell wall is an important response to salt stress, but relatively little is known about the biological importance of specific cell wall components in the response. Here, we demonstrate a specific function of β-1,4-galactan in salt hypersensitivity. We found that salt stress induces the accumulation of β-1,4-galactan in root cell walls by up regulating the expression of GALACTAN SYNTHASE 1 (GALS1), which encodes a β-1,4-galactan synthase. The accumulation of β-1,4-galactan negatively affects salt tolerance. Exogenous application of D-galactose (D-Gal) causes an increase in β-1,4-galactan levels in the wild type and GALS1 mutants, especially in GALS1 overexpressors, which correlated with the aggravated salt hypersensitivity. Furthermore, we discovered that the BARLEY B RECOMBINANT/BASIC PENTACYSTEINE transcription factors BPC1/BPC2 positively regulate plant salt tolerance by repressing GALS1 expression and β-1,4-galactan accumulation. Genetic analysis suggested that GALS1 is genetically epistatic to BPC1/BPC2 with respect to the control of salt sensitivity as well as accumulation of β-1,4-galactan. Taken together, our results reveal a new regulatory mechanism by which β-1,4-galactan regulated by the BPC1/BPC2-GALS1 module aggravates salt sensitivity in Arabidopsis thaliana.
Collapse
Affiliation(s)
- Jingwei Yan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ya Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lan Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Huan He
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Yun Huang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Lin Fang
- Guangdong Provincial Key Laboratory of Applied Botany, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, Guangdong 510650, China
| | - Henrik Vibe Scheller
- Joint Bioenergy Institute and Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
| | - Mingyi Jiang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Aying Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China; State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China.
| |
Collapse
|
36
|
Nguan HS, Tsai ST, Chen JL, Hsu PJ, Kuo JL, Ni CK. Collision-induced dissociation of xylose and its applications in linkage and anomericity identification. Phys Chem Chem Phys 2021; 23:3485-3495. [DOI: 10.1039/d0cp05868h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Different dehydration barrier heights result in different branching ratio, a simple and fast anomeric configuration identification for xylose.
Collapse
Affiliation(s)
- Hock-Seng Nguan
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | - Shang-Ting Tsai
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | - Jien-Lian Chen
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | - Po-Jen Hsu
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | - Jer-Lai Kuo
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
| | - Chi-Kung Ni
- Institute of Atomic and Molecular Sciences
- Academia Sinica
- Taipei 10617
- Taiwan
- Department of Chemistry
| |
Collapse
|
37
|
Pramod S, Gandla ML, Derba-Maceluch M, Jönsson LJ, Mellerowicz EJ, Winestrand S. Saccharification Potential of Transgenic Greenhouse- and Field-Grown Aspen Engineered for Reduced Xylan Acetylation. FRONTIERS IN PLANT SCIENCE 2021; 12:704960. [PMID: 34557213 PMCID: PMC8454504 DOI: 10.3389/fpls.2021.704960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 07/22/2021] [Indexed: 05/20/2023]
Abstract
High acetylation of xylan in hardwoods decreases their value as biorefinery feedstocks. To counter this problem, we have constitutively suppressed RWA genes encoding acetyl-CoA transporters using the 35S promoter, or constitutively and wood-specifically (using the WP promoter) expressed fungal acetyl xylan esterases of families CE1 (AnAXE1) and CE5 (HjAXE), to reduce acetylation in hybrid aspen. All these transformations improved the saccharification of wood from greenhouse-grown trees. Here, we describe the chemical properties and saccharification potential of the resulting lines grown in a five-year field trial, and one type of them (WP:AnAXE1) in greenhouse conditions. Chemically, the lignocellulose of the field- and greenhouse-field-grown plants slightly differed, but the reductions in acetylation and saccharification improvement of engineered trees were largely maintained in the field. The main novel phenotypic observation in the field was higher lignification in lines with the WP promoter than those with the 35S promoter. Following growth in the field, saccharification glucose yields were higher from most transformed lines than from wild-type (WT) plants with no pretreatment, but there was no improvement in saccharification with acid pretreatment. Thus, acid pretreatment removes most recalcitrance caused by acetylation. We found a complex relationship between acetylation and glucose yields in saccharification without pretreatment, suggesting that other variables, for example, the acetylation pattern, affect recalcitrance. Bigger gains in glucose yields were observed in lines with the 35S promoter than in those with the WP promoter, possibly due to their lower lignin content. However, better lignocellulose saccharification of these lines was offset by a growth penalty and their glucose yield per tree was lower. In a comparison of the best lines with each construct, WP:AnAXE1 provided the highest glucose yield per tree from saccharification, with and without pretreatment, WP:HjAXE yields were similar to those of WT plants, and yields of lines with other constructs were lower. These results show that lignocellulose properties of field-grown trees can be improved by reducing cell wall acetylation using various approaches, but some affect productivity in the field. Thus, better understanding of molecular and physiological consequences of deacetylation is needed to obtain quantitatively better results.
Collapse
Affiliation(s)
- Sivan Pramod
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Marta Derba-Maceluch
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
| | | | - Ewa J. Mellerowicz
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå, Sweden
- *Correspondence: Ewa J. Mellerowicz,
| | | |
Collapse
|
38
|
C IP, R S. Characterization of a new natural cellulosic fiber extracted from Derris scandens stem. Int J Biol Macromol 2020; 165:2303-2313. [PMID: 33091474 DOI: 10.1016/j.ijbiomac.2020.10.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/10/2020] [Accepted: 10/12/2020] [Indexed: 01/11/2023]
Abstract
The present study aims to identify a potential substitute for the harmful synthetic fibers in the field of polymer composites. With this objective, a comprehensive characterization of Derris scandens stem fibers (DSSFs) was carried out. The presence of high strength gelatinous fibers with a traditional hierarchical cell structure was found in the anatomical study. The chemical compositional analysis estimated the cellulose, hemicellulose, and lignin contents of 63.3 wt%, 11.6 wt%, and 15.3 wt%, respectively. Further analysis with XRD confirmed the presence of crystalline cellulose having a size of 11.92 nm with a crystallinity index of 58.15%. SEM and AFM studies show that these fibers are porous, and the average roughness is 105.95 nm. Single fiber tensile tests revealed that the DSSFs exhibited the mean Young's modulus and tensile strength of 13.54 GPa and 633.87 MPa respectively. Furthermore, the extracted fibers were found to be thermally stable up to 230 °C, as confirmed by thermogravimetric analysis. The fibers extracted from the stem of medicinal plant Derris scandens have the properties comparable to that of existing natural fibers, thus, suggesting it to use as a highly promising reinforcing agent alternative to synthetic fibers in polymer matrix composites.
Collapse
Affiliation(s)
- Ilaiya Perumal C
- Department of Mechanical Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi 630004, Sivaganga District, Tamil Nadu, India.
| | - Sarala R
- Department of Mechanical Engineering, Alagappa Chettiar Government College of Engineering and Technology, Karaikudi 630004, Sivaganga District, Tamil Nadu, India
| |
Collapse
|
39
|
De Zio E, Montagnoli A, Karady M, Terzaghi M, Sferra G, Antoniadi I, Scippa GS, Ljung K, Chiatante D, Trupiano D. Reaction Wood Anatomical Traits and Hormonal Profiles in Poplar Bent Stem and Root. FRONTIERS IN PLANT SCIENCE 2020; 11:590985. [PMID: 33363556 PMCID: PMC7754185 DOI: 10.3389/fpls.2020.590985] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/05/2020] [Indexed: 05/27/2023]
Abstract
Reaction wood (RW) formation is an innate physiological response of woody plants to counteract mechanical constraints in nature, reinforce structure and redirect growth toward the vertical direction. Differences and/or similarities between stem and root response to mechanical constraints remain almost unknown especially in relation to phytohormones distribution and RW characteristics. Thus, Populus nigra stem and root subjected to static non-destructive mid-term bending treatment were analyzed. The distribution of tension and compression forces was firstly modeled along the main bent stem and root axis; then, anatomical features, chemical composition, and a complete auxin and cytokinin metabolite profiles of the stretched convex and compressed concave side of three different bent stem and root sectors were analyzed. The results showed that in bent stems RW was produced on the upper stretched convex side whereas in bent roots it was produced on the lower compressed concave side. Anatomical features and chemical analysis showed that bent stem RW was characterized by a low number of vessel, poor lignification, and high carbohydrate, and thus gelatinous layer in fiber cell wall. Conversely, in bent root, RW was characterized by high vessel number and area, without any significant variation in carbohydrate and lignin content. An antagonistic interaction of auxins and different cytokinin forms/conjugates seems to regulate critical aspects of RW formation/development in stem and root to facilitate upward/downward organ bending. The observed differences between the response stem and root to bending highlight how hormonal signaling is highly organ-dependent.
Collapse
Affiliation(s)
- Elena De Zio
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Antonio Montagnoli
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Michal Karady
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Laboratory of Growth Regulators, Institute of Experimental Botany of the Czech Academy of Sciences and Faculty of Science of Palacký University, Olomouc, Czechia
| | - Mattia Terzaghi
- Department of Chemistry and Biology ‘A. Zambelli’, University of Salerno, Fisciano, Italy
| | - Gabriella Sferra
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Ioanna Antoniadi
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Gabriella S. Scippa
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| | - Karin Ljung
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Donato Chiatante
- Department of Biotechnology and Life Science, University of Insubria, Varese, Italy
| | - Dalila Trupiano
- Department of Biosciences and Territory, University of Molise, Pesche, Italy
| |
Collapse
|
40
|
Blanco-Pastor JL, Barre P, Keep T, Ledauphin T, Escobar-Gutiérrez A, Roschanski AM, Willner E, Dehmer KJ, Hegarty M, Muylle H, Veeckman E, Vandepoele K, Ruttink T, Roldán-Ruiz I, Manel S, Sampoux JP. Canonical correlations reveal adaptive loci and phenotypic responses to climate in perennial ryegrass. Mol Ecol Resour 2020; 21:849-870. [PMID: 33098268 DOI: 10.1111/1755-0998.13289] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/10/2020] [Accepted: 10/12/2020] [Indexed: 11/28/2022]
Abstract
Germplasm from perennial ryegrass (Lolium perenne L.) natural populations is useful for breeding because of its adaptation to a wide range of climates. Climate-adaptive genes can be detected from associations between genotype, phenotype and climate but an integrated framework for the analysis of these three sources of information is lacking. We used two approaches to identify adaptive loci in perennial ryegrass and their effect on phenotypic traits. First, we combined Genome-Environment Association (GEA) and GWAS analyses. Then, we implemented a new test based on a Canonical Correlation Analysis (CANCOR) to detect adaptive loci. Furthermore, we improved the previous perennial ryegrass gene set by de novo gene prediction and functional annotation of 39,967 genes. GEA-GWAS revealed eight outlier loci associated with both environmental variables and phenotypic traits. CANCOR retrieved 633 outlier loci associated with two climatic gradients, characterized by cold-dry winter versus mild-wet winter and long rainy season versus long summer, and pointed out traits putatively conferring adaptation at the extremes of these gradients. Our CANCOR test also revealed the presence of both polygenic and oligogenic climatic adaptations. Our gene annotation revealed that 374 of the CANCOR outlier loci were positioned within or close to a gene. Co-association networks of outlier loci revealed a potential utility of CANCOR for investigating the interaction of genes involved in polygenic adaptations. The CANCOR test provides an integrated framework to analyse adaptive genomic diversity and phenotypic responses to environmental selection pressures that could be used to facilitate the adaptation of plant species to climate change.
Collapse
Affiliation(s)
| | - Philippe Barre
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | - Thomas Keep
- INRAE, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | | | | | - Anna Maria Roschanski
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Malchow/Poel, Germany
| | - Evelyn Willner
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Malchow/Poel, Germany
| | - Klaus J Dehmer
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Malchow/Poel, Germany
| | - Matthew Hegarty
- Institute of Biological, Environmental and Rural Sciences (IBERS), Aberystwyth University, Aberystwyth, UK
| | - Hilde Muylle
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Melle, Belgium
| | - Elisabeth Veeckman
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Melle, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Klaas Vandepoele
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Melle, Belgium.,Bioinformatics Institute Ghent, Ghent University, Ghent, Belgium.,Center for Plant Systems Biology, VIB, Ghent, Belgium
| | - Tom Ruttink
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Melle, Belgium
| | - Isabel Roldán-Ruiz
- Flanders Research Institute for Agriculture, Fisheries and Food (ILVO) - Plant Sciences Unit, Melle, Belgium.,Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
| | - Stéphanie Manel
- CEFE, University of Montpellier, CNRS, EPHE-PSL University, IRD, Univ Paul Valéry Montpellier, Montpellier, France
| | | |
Collapse
|
41
|
Ibragimova N, Mokshina N, Ageeva M, Gurjanov O, Mikshina P. Rearrangement of the Cellulose-Enriched Cell Wall in Flax Phloem Fibers over the Course of the Gravitropic Reaction. Int J Mol Sci 2020; 21:ijms21155322. [PMID: 32727025 PMCID: PMC7432630 DOI: 10.3390/ijms21155322] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/23/2020] [Accepted: 07/24/2020] [Indexed: 11/23/2022] Open
Abstract
The plant cell wall is a complex structure consisting of a polysaccharide network. The rearrangements of the cell wall during the various physiological reactions of plants, however, are still not fully characterized. Profound changes in cell wall organization are detected by microscopy in the phloem fibers of flax (Linum usitatissimum) during the restoration of the vertical position of the inclined stems. To characterize the underlying biochemical and structural changes in the major cell wall polysaccharides, we compared the fiber cell walls of non-inclined and gravistimulated plants by focusing mainly on differences in non-cellulosic polysaccharides and the fine cellulose structure. Biochemical analysis revealed a slight increase in the content of pectins in the fiber cell walls of gravistimulated plants as well as an increase in accessibility for labeling non-cellulosic polysaccharides. The presence of galactosylated xyloglucan in the gelatinous cell wall layer of flax fibers was demonstrated, and its labeling was more pronounced in the gravistimulated plants. Using solid state NMR, an increase in the crystallinity of the cellulose in gravistimulated plants, along with a decrease in cellulose mobility, was demonstrated. Thus, gravistimulation may affect the rearrangement of the cell wall, which can enable restoration in a vertical position of the plant stem.
Collapse
|
42
|
Expression of Cell Wall-Modifying Enzymes in Aspen for Improved Lignocellulose Processing. Methods Mol Biol 2020. [PMID: 32617934 DOI: 10.1007/978-1-0716-0621-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Wood is an important source of biomass for materials and chemicals, and a target for genetic engineering of its properties for different applications or for research. Wood properties can be altered by using different enzymes acting on cell wall polymers postsynthetically in cell walls. This approach allows for a precise polymer structure modification thanks to the specificity of enzymes used. Such enzymes can originate from all kinds of organisms, or even be modified in a desired way for novel attributes. Here we present a general strategy for expressing a microbial enzyme in aspen and targeting it to cell wall, using an example of fungal glucuronoyl esterase. We describe methods of vector cloning, plant transformation, transgenic line selection and multiplication, testing for the presence of enzymatic activity in different cell compartments, and finally the method of plant transferring from sterile culture to the greenhouse conditions.
Collapse
|
43
|
Du J, Gerttula S, Li Z, Zhao ST, Liu YL, Liu Y, Lu MZ, Groover AT. Brassinosteroid regulation of wood formation in poplar. THE NEW PHYTOLOGIST 2020; 225:1516-1530. [PMID: 31120133 DOI: 10.1111/nph.15936] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Accepted: 04/30/2019] [Indexed: 05/06/2023]
Abstract
Brassinosteroids have been implicated in the differentiation of vascular cell types in herbaceous plants, but their roles during secondary growth and wood formation are not well defined. Here we pharmacologically and genetically manipulated brassinosteroid levels in poplar trees and assayed the effects on secondary growth and wood formation, and on gene expression within stems. Elevated brassinosteroid levels resulted in increases in secondary growth and tension wood formation, while inhibition of brassinosteroid synthesis resulted in decreased growth and secondary vascular differentiation. Analysis of gene expression showed that brassinosteroid action is positively associated with genes involved in cell differentiation and cell-wall biosynthesis. The results presented here show that brassinosteroids play a foundational role in the regulation of secondary growth and wood formation, in part through the regulation of cell differentiation and secondary cell wall biosynthesis.
Collapse
Affiliation(s)
- Juan Du
- College of Life Sciences, Zhejiang University, 866 Yu Hang tang Road, Hangzhou, 310058, China
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- Pacific Southwest Research Station, US Forest Service, Davis, CA, 95618, USA
| | - Suzanne Gerttula
- Pacific Southwest Research Station, US Forest Service, Davis, CA, 95618, USA
| | - Zehua Li
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Shu-Tang Zhao
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Ying-Li Liu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
| | - Yu Liu
- College of Life Sciences, Zhejiang University, 866 Yu Hang tang Road, Hangzhou, 310058, China
| | - Meng-Zhu Lu
- State Key Laboratory of Tree Genetics and Breeding, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, 100091, China
- State Key Laboratory of Subtropical Silviculture, School of Forestry and Biotechnology, Zhejiang Agriculture and Forest University, Hangzhou, 311300, China
| | - Andrew T Groover
- Pacific Southwest Research Station, US Forest Service, Davis, CA, 95618, USA
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
44
|
Xie J, Li J, Jie Y, Xie D, Yang D, Shi H, Zhong Y. Comparative transcriptomics of stem bark reveals genes associated with bast fiber development in Boehmeria nivea L. gaud (ramie). BMC Genomics 2020; 21:40. [PMID: 31931705 PMCID: PMC6958601 DOI: 10.1186/s12864-020-6457-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Accepted: 01/07/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Boehmeria nivea L. Gaud (Ramie) produces one of the longest natural fibers in nature. The bark of ramie mainly comprises of the phloem tissue of stem and is the raw material for fiber. Therefore, identifying the molecular regulation of phloem development is important for understanding of bast fiber biosynthesis and improvement of fiber quality in ramie. RESULTS In this study, we collected top bud (TB), bark from internode elongating region (ER) and bark from internode fully elongated region (FER) from the ramie variety Zhongzhu No. 1. Histological study indicated that these samples contain phloem tissues at different developmental and maturation stages, with a higher degree of maturation of phloem tissue in FER. RNA sequencing (RNA-seq) was performed and de novo transcriptome was assembled. Unigenes and differentially expressed genes (DEGs) in these three samples were identified. The analysis of DEGs by using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) revealed clear differences in gene expression between ER and FER. Some unigenes involved in secondary cell wall biosynthesis were up-regulated in both ER and FER, while unigenes for some cell wall components or cell wall modifications showed differential expression between ER and FER. In addition, the ethylene respond factors (ERFs) in the ethylene signaling pathway were up-regulated in FER, and ent-kaurenoic acid oxidase (KAO) and GA 20-oxidase (GA20ox) for gibberellins biosynthesis were up-regulated while GA 2-oxidase (GA2ox) for gibberellin inactivation was down-regulated in FER. CONCLUSIONS Both morphological study and gene expression analysis supported a burst of phloem and vascular developmental processes during the fiber maturation in the ramie stem, and ethylene and gibberellin are likely to be involved in this process. Our findings provide novel insights into the phloem development and fiber maturation in ramie, which could be useful for fiber improvement in ramie and other fiber crops.
Collapse
Affiliation(s)
- Jiyong Xie
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Jiaqi Li
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yucheng Jie
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Deyu Xie
- College of Agronomy, Hunan Agricultural University, Changsha, 410128, China.,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Di Yang
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Huazhong Shi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Yingli Zhong
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
45
|
Decou R, Labrousse P, Béré E, Fleurat-Lessard P, Krausz P. Structural features in tension wood and distribution of wall polymers in the G-layer of in vitro grown poplars. PROTOPLASMA 2020; 257:13-29. [PMID: 31321553 DOI: 10.1007/s00709-019-01416-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 07/08/2019] [Indexed: 05/19/2023]
Abstract
Under the effect of disturbances, like unbalanced stem, but also during normal development, poplar trees can develop a specific secondary xylem, called "tension wood" (TW), which is easily identifiable by the presence of a gelatinous layer in the secondary cell walls (SCW) of the xylem fibers. Since TW formation was mainly performed on 2-year-old poplar models, an in vitro poplar that produces gelatinous fibers (G-fibers) while offering the same experimental advantages as herbaceous plants has been developed. Using specific cell wall staining techniques, wood structural features and lignin/cellulose distribution were both detailed in cross-sections obtained from the curved stem part of in vitro poplars. A supposed delay in the SCW lignification process in the G-fibers, along with the presence of a G-layer, could be observed in the juvenile plants. Moreover, in this G-layer, the immunolabeling of various polymers carried out in the SCW of TW has allowed detecting crystalline cellulose, arabinogalactans proteins, and rhamnogalacturonans I; however, homogalacturonans, xylans, and xyloglucans could not be found. Interestingly, extensins were detected in this typical adaptative or stress-induced structure. These observations were corroborated by a quantitation of the immunorecognized polymer distribution using gold particle labeling. In conclusion, the in vitro poplar model seems highly convenient for TW studies focusing on the implementation of wall polymers that provide the cell wall with greater plasticity in adapting to the environment.
Collapse
Affiliation(s)
- Raphaël Decou
- University of Limoges, PEIRENE, EA 7500, F-87000, Limoges, France.
- Laboratoire de chimie des Substances naturelles, University of Limoges, UPRES EA 1069, F-87000, Limoges, France.
| | - Pascal Labrousse
- University of Limoges, PEIRENE, EA 7500, F-87000, Limoges, France
| | - Emile Béré
- Campus Sciences, Image UP, Service de Microscopie Electronique et Photonique, Pôle Biologie Santé, University of Poitiers, F-86022, Poitiers Cedex 9, France
| | - Pierrette Fleurat-Lessard
- Campus Sciences, Image UP, Service de Microscopie Electronique et Photonique, Pôle Biologie Santé, University of Poitiers, F-86022, Poitiers Cedex 9, France
- Ecologie & Biologie des Interactions, University of Poitiers, UMR CNRS 7267, F-86073, Poitiers Cedex 9, France
| | - Pierre Krausz
- Laboratoire de chimie des Substances naturelles, University of Limoges, UPRES EA 1069, F-87000, Limoges, France
| |
Collapse
|
46
|
Behr M, Faleri C, Hausman JF, Planchon S, Renaut J, Cai G, Guerriero G. Distribution of cell-wall polysaccharides and proteins during growth of the hemp hypocotyl. PLANTA 2019; 250:1539-1556. [PMID: 31352512 DOI: 10.1007/s00425-019-03245-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 07/18/2019] [Indexed: 05/13/2023]
Abstract
The immuno-ultrastructural investigation localized cell-wall polysaccharides of bast fibers during hemp hypocotyl growth. Moreover, for the first time, the localization of a peroxidase and laccase is provided in textile hemp. In the hypocotyl of textile hemp, elongation and girth increase are separated in time. This organ is therefore ideal for time-course analyses. Here, we follow the ultrastructural rearrangement of cell-wall components during the development of the hemp hypocotyl. An expression analysis of genes involved in the biosynthesis of cellulose, the chief polysaccharide of bast fiber cell walls and xylan, the main hemicellulose of secondary cell walls, is also provided. The analysis shows a higher expression of cellulose and xylan-related genes at 15 and 20 days after sowing, as compared to 9 days. In the young hypocotyl, the cell walls of bast fibers show cellulose microfibrils that are not yet compacted to form a mature G-layer. Crystalline cellulose is detected abundantly in the S1-layer, together with unsubstituted/low-substituted xylan and, to a lesser extent, in the G-layer. The LM5 galactan epitope is confined to the walls of parenchymatic cells. LM6-specific arabinans are detected at the interface between the cytoplasm and the gelatinous cell wall of bast fibers. The class III peroxidase antibody shows localization in the G-layer only at older developmental stages. The laccase antibody shows a distinctive labelling of the G-layer region closest to the S1-layer; the signal becomes more homogeneous as the hypocotyl matures. The data provide important insights on the cell wall distribution of polysaccharide and protein components in bast fibers during the hypocotyl growth of textile hemp.
Collapse
Affiliation(s)
- Marc Behr
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Claudia Faleri
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy
| | - Jean-Francois Hausman
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Sébastien Planchon
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Jenny Renaut
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg
| | - Giampiero Cai
- Department of Life Sciences, University of Siena, via P.A. Mattioli 4, 53100, Siena, Italy.
| | - Gea Guerriero
- Research and Innovation Department, Luxembourg Institute of Science and Technology, 5 Avenue des Hauts-Fourneaux, 4362, Esch/Alzette, Luxembourg.
| |
Collapse
|
47
|
Seyfferth C, Wessels BA, Gorzsás A, Love JW, Rüggeberg M, Delhomme N, Vain T, Antos K, Tuominen H, Sundberg B, Felten J. Ethylene Signaling Is Required for Fully Functional Tension Wood in Hybrid Aspen. FRONTIERS IN PLANT SCIENCE 2019; 10:1101. [PMID: 31611886 PMCID: PMC6775489 DOI: 10.3389/fpls.2019.01101] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 08/12/2019] [Indexed: 06/01/2023]
Abstract
Tension wood (TW) in hybrid aspen trees forms on the upper side of displaced stems to generate a strain that leads to uplifting of the stem. TW is characterized by increased cambial growth, reduced vessel frequency and diameter, and the presence of gelatinous, cellulose-rich (G-)fibers with its microfibrils oriented parallel to the fiber cell axis. Knowledge remains limited about the molecular regulators required for the development of this special xylem tissue with its characteristic morphological, anatomical, and chemical features. In this study, we use transgenic, ethylene-insensitive (ETI) hybrid aspen trees together with time-lapse imaging to show that functional ethylene signaling is required for full uplifting of inclined stems. X-ray diffraction and Raman microspectroscopy of TW in ETI trees indicate that, although G-fibers form, the cellulose microfibril angle in the G-fiber S-layer is decreased, and the chemical composition of S- and G-layers is altered than in wild-type TW. The characteristic asymmetric growth and reduction of vessel density is suppressed during TW formation in ETI trees. A genome-wide transcriptome profiling reveals ethylene-dependent genes in TW, related to cell division, cell wall composition, vessel differentiation, microtubule orientation, and hormone crosstalk. Our results demonstrate that ethylene regulates transcriptional responses related to the amount of G-fiber formation and their properties (chemistry and cellulose microfibril angle) during TW formation. The quantitative and qualitative changes in G-fibers are likely to contribute to uplifting of stems that are displaced from their original position.
Collapse
Affiliation(s)
- Carolin Seyfferth
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Bernard A. Wessels
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | | | | | - Markus Rüggeberg
- Institute for Building Materials, Swiss Federal Institute of Technology Zurich (ETH Zurich), Zurich, Switzerland
- Laboratory of Wood Materials, Swiss Federal Laboratories of Materials Science and Technology, Dubendorf, Switzerland
| | - Nicolas Delhomme
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| | - Thomas Vain
- DIADE, Univ Montpellier, IRD, Montpellier, France
| | - Kamil Antos
- Department of Integrative Medical Biology, Umeå University, Umeå, Sweden
| | - Hannele Tuominen
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Björn Sundberg
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
- Stora Enso AB, Nacka, Sweden
| | - Judith Felten
- Umeå Plant Science Centre, Department of Forest Genetics and Plant Physiology, Swedish University of Agricultural Sciences, Umeå, Sweden
| |
Collapse
|
48
|
Pramod S, Rajput KS, Rao KS. Immunolocalization of β-(1-4)-D-galactan, xyloglucans and xylans in the reaction xylem fibres of Leucaena leucocephala (Lam.) de Wit. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:217-223. [PMID: 31310944 DOI: 10.1016/j.plaphy.2019.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/09/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Cell wall architecture of tension wood fibres represents a suitable biological system to study the mechanism of growth and maintenance of posture of trees growing under various physical and physiological growth constraints. In the present study, we investigated the spatial distributions of β-(1-4)-D-galactan, xyloglucan and xylans (both less and highly substituted) in the opposite and tension wood fibres of bent Leucaena leucocephala by immunolabelling with monoclonal antibodies LM5, CCRCM1, LM10 and LM11 specific to these carbohydrate epitopes. The presence of non-lignified, tertiary wall layer is the typical tension wood characteristic associated with the reaction xylem fibres in Leucaena. LM5 labelling of opposite fibres showed weak labelling in the cell walls indicating less concentration of β-(1-4)-D-galactans while tension wood showed strong labelling in the tertiary wall layer suggesting the gelatinous layer (G-layer) has a strong cross linking with β-(1-4)-D-galactans. Xyloglucan distribution was more in the compound middle lamellae and the primary wall-S1 layer boundary of tension wood fibres as compared to that of opposite wood. A weak labelling was also evident near the boundary between the G-layer and the secondary wall of tension wood fibres. The secondary wall of opposite and tension wood fibres showed a strong distribution of both ls ACG Xs (LM10) and hs ACG Xs (LM11) while a weak labelling was noticed in the compound middle lamella. Tension wood fibres also showed strong xylan labelling mainly confined to the lignified secondary walls while the G-layer showed weak xylan labelling. In conclusion, our results suggest that β-(1-4)-D-galactans and xyloglucans could be implicated in the tensile stress generation within the G-layer of tension wood fibres of Leucaena leucocephala.
Collapse
Affiliation(s)
- S Pramod
- Department of Botany, The Maharaja Sayajirao of Baroda, Vadodara, 390002, Gujarat, India.
| | - Kishore S Rajput
- Department of Botany, The Maharaja Sayajirao of Baroda, Vadodara, 390002, Gujarat, India
| | - Karumanchi S Rao
- Department of Biosciences, Sardar Patel University, Vallabh Vidyanagar, 388120, Gujarat, India
| |
Collapse
|
49
|
Bokor B, Soukup M, Vaculík M, Vd’ačný P, Weidinger M, Lichtscheidl I, Vávrová S, Šoltys K, Sonah H, Deshmukh R, Bélanger RR, White PJ, El-Serehy HA, Lux A. Silicon Uptake and Localisation in Date Palm ( Phoenix dactylifera) - A Unique Association With Sclerenchyma. FRONTIERS IN PLANT SCIENCE 2019; 10:988. [PMID: 31456812 PMCID: PMC6701203 DOI: 10.3389/fpls.2019.00988] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 07/12/2019] [Indexed: 05/20/2023]
Abstract
Date palm (Phoenix dactylifera) can accumulate as much as 1% silicon (Si), but not much is known about the mechanisms inherent to this process. Here, we investigated in detail the uptake, accumulation and distribution of Si in date palms, and the phylogeny of Si transporter genes in plants. We characterized the PdNIP2 transporter following heterologous expression in Xenopus oocytes and used qPCR to determine the relative expression of Si transporter genes. Silicon accumulation and distribution was investigated by light microscopy, scanning electron microscopy coupled with X-ray microanalysis and Raman microspectroscopy. We proved that PdNIP2-1 codes for a functional Si-permeable protein and demonstrated that PdNIP2 transporter genes were constitutively expressed in date palm. Silicon aggregates/phytoliths were found in specific stegmata cells present in roots, stems and leaves and their surfaces were composed of pure silica. Stegmata were organized on the outer surface of the sclerenchyma bundles or associated with the sclerenchyma of the vascular bundles. Phylogenetic analysis clustered NIP2 transporters of the Arecaceae in a sister position to those of the Poaceae. It is suggested, that Si uptake in date palm is mediated by a constitutively expressed Si influx transporter and accumulated as Si aggregates in stegmata cells abundant in the outer surface of the sclerenchyma bundles (fibers).
Collapse
Affiliation(s)
- Boris Bokor
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Bratislava, Slovakia
| | - Milan Soukup
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marek Vaculík
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Institute of Botany, Plant Science and Biodiversity Centre, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Peter Vd’ačný
- Department of Zoology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Marieluise Weidinger
- Core Facility of Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Irene Lichtscheidl
- Core Facility of Cell Imaging and Ultrastructure Research, University of Vienna, Vienna, Austria
| | - Silvia Vávrová
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Katarína Šoltys
- Comenius University Science Park, Bratislava, Slovakia
- Department of Molecular Biology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Humira Sonah
- Department of Plant Science, Université Laval, Quebec, QC, Canada
| | - Rupesh Deshmukh
- Department of Plant Science, Université Laval, Quebec, QC, Canada
| | | | - Philip J. White
- The James Hutton Institute, Dundee, United Kingdom
- Distinguished Scientist Fellowship Program, King Saud University, Riyadh, Saudi Arabia
| | - Hamed A. El-Serehy
- Zoology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Alexander Lux
- Department of Plant Physiology, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
- Comenius University Science Park, Bratislava, Slovakia
| |
Collapse
|
50
|
Kumar V, Hainaut M, Delhomme N, Mannapperuma C, Immerzeel P, Street NR, Henrissat B, Mellerowicz EJ. Poplar carbohydrate-active enzymes: whole-genome annotation and functional analyses based on RNA expression data. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 99:589-609. [PMID: 31111606 PMCID: PMC6852159 DOI: 10.1111/tpj.14417] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 05/06/2019] [Accepted: 05/13/2019] [Indexed: 05/20/2023]
Abstract
Carbohydrate-active enzymes (CAZymes) catalyze the formation and modification of glycoproteins, glycolipids, starch, secondary metabolites and cell wall biopolymers. They are key enzymes for the biosynthesis of food and renewable biomass. Woody biomass is particularly important for long-term carbon storage and as an abundant renewable natural resource for many industrial applications. This study presents a re-annotation of CAZyme genes in the current Populus trichocarpa genome assembly and in silico functional characterization, based on high-resolution RNA-Seq data sets. Altogether, 1914 CAZyme and expansin genes were annotated in 101 families. About 1797 of these genes were found expressed in at least one Populus organ. We identified genes involved in the biosynthesis of different cell wall polymers and their paralogs. Whereas similar families exist in poplar and Arabidopsis thaliana (with the exception of CBM13 found only in poplar), a few families had significantly different copy numbers between the two species. To identify the transcriptional coordination and functional relatedness within the CAZymes and other proteins, we performed co-expression network analysis of CAZymes in wood-forming tissues using the AspWood database (http://aspwood.popgenie.org/aspwood-v3.0/) for Populus tremula. This provided an overview of the transcriptional changes in CAZymes during the transition from primary to secondary wall formation, and the clustering of transcripts into potential regulons. Candidate enzymes involved in the biosynthesis of polysaccharides were identified along with many tissue-specific uncharacterized genes and transcription factors. These collections offer a rich source of targets for the modification of secondary cell wall biosynthesis and other developmental processes in woody plants.
Collapse
Affiliation(s)
- Vikash Kumar
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| | - Matthieu Hainaut
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Aix‐Marseille UniversityMarseilleFrance
- INRAUSC 1408 AFMBMarseilleFrance
| | - Nicolas Delhomme
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| | | | - Peter Immerzeel
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
- Chemical EngineeringKarlstad UniversityKarlstad65188Sweden
| | - Nathaniel R. Street
- Umeå Plant Science CenterPlant Physiology DepartmentUmeå UniversityUmeåSweden
| | - Bernard Henrissat
- Architecture et Fonction des Macromolécules BiologiquesCentre National de la Recherche Scientifique (CNRS)Aix‐Marseille UniversityMarseilleFrance
- INRAUSC 1408 AFMBMarseilleFrance
| | - Ewa J. Mellerowicz
- Umeå Plant Science CenterDepartment of Forest Genetics and Plant PhysiologySwedish University of Agricultural SciencesUmeaSweden
| |
Collapse
|