1
|
Caner C, Pala ÇU, Yüceer M. The impact of ozone and equilibrium-modified atmosphere packaging on storage stability and health-promoting indicators of fresh " Angelino" plums. FOOD SCI TECHNOL INT 2024:10820132241263198. [PMID: 39034107 DOI: 10.1177/10820132241263198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Effectiveness of ozone concentrations (2, 5, and 10 ppm) and exposure time (3 and 9 min) on selected physicochemical properties (pH, soluble solids, color values (L*, a*, and b*), and texture) and health-promoting indicators such as organic acids, total phenolics (TP), and anthocyanins of "Angelino" fresh plums was evaluated during storage (0, 30, 90, and 120 days) in equilibrium modified atmosphere packaging (EMAP). Total anthocyanin contents and organic acid profiles were significantly affected by storage times. Malic acid (MA) was the main organic acid in "Angelino" plums. MA content (4663 and 4764 mg/L) was the highest value in the ozonated 2-ppm/9-min and 5-ppm/3-min than other ozonated groups and also control at 120 days of the storage. The ozone treatments especially 2-ppm/9-min and 5-ppm/3 min can significantly retard the degradation of MA content (8294 to 2688-2694 mg/L) during the storage (p < .05). Total phenol content were most significantly decreased in the control during storage, with the loss at the level of 31.7% of TPs, while the lowest one 2-ppm/9-min (20.8%) and 5-ppm/-3 min (21.9%). The color and texture are maintained for the ozone applications compared to the control during storage. Ozonation with 2-ppm/9-min and 5-ppm/-3 min showed the best performance while maintaining the storage stability based on the physicochemical properties including hardness and bioactive compounds (such as anthocyanins and organic acids), visual appearance due to the more attractive color (L*, a*, b*) the plums.
Collapse
Affiliation(s)
- Cengiz Caner
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Çiğdem Uysal Pala
- Department of Food Engineering, Canakkale Onsekiz Mart University, Canakkale, Turkey
| | - Muhammed Yüceer
- Department of Food Processing, Canakkale Onsekiz Mart University, Canakkale, Turkey
| |
Collapse
|
2
|
Ying L, Bian J, Zhao F, Chen X, Tang J, Jiang F, Sun B. Short-term anaerobic treatment maintained the quality of Actinidia arguta by activating the antioxidant defense system. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:4320-4330. [PMID: 38318646 DOI: 10.1002/jsfa.13317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/06/2023] [Accepted: 01/17/2024] [Indexed: 02/07/2024]
Abstract
BACKGROUND This study aimed to investigate the effect of 6, 12, and 24 h short-term anaerobic treatment on kiwiberry quality and antioxidant properties at 5 °C. RESULTS Short-term anaerobic treatment was found to delay ripening and softening in kiwiberries, evident from changes in ethylene release, total soluble solids, starch, protopectin, and fruit texture. The 24 h treatment group exhibited the lowest decay rate of 12% on day 49, a 38% reduction compared with the control group. Anaerobic treatment reduced flesh translucency and decay in the fruit. The 12 h and 24 h treatments enhanced the activities of superoxide dismutase, peroxidase, catalase, and ascorbate peroxidase, and increased the level of total phenolics, flavonoids, anthocyanins, and ascorbic acid. Moreover, it lowered oxidative damage in cell membranes, evidenced by reduced malondialdehyde content and relative conductivity. CONCLUSION These results indicate that anaerobic treatment maintains the fruit quality by stimulating its antioxidant defense system. Therefore, short-term anaerobic treatment emerges as a promising method for kiwiberry storage. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Limei Ying
- Shenyang Agricultural University, Food College, Shenyang, China
| | - Jingwen Bian
- Shenyang Agricultural University, Food College, Shenyang, China
| | - Fengjun Zhao
- Liaodong University, School of Agriculture, Dandong, China
| | - Xi Chen
- Rutgers University, Department of Food Science, New Brunswick, USA
| | - Jianxin Tang
- Shenyang Agricultural University, Food College, Shenyang, China
| | - Fengli Jiang
- Shenyang Agricultural University, Food College, Shenyang, China
| | - Bingxin Sun
- Shenyang Agricultural University, Food College, Shenyang, China
| |
Collapse
|
3
|
Yan H, Chen H, Zhao J, Yao T, Ding X. Postharvest H2O2 treatment affects flavor quality, texture quality and ROS metabolism of ‘Hongshi’ kiwifruit fruit kept at ambient conditions. Food Chem 2023. [DOI: 10.1016/j.foodchem.2022.134908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
4
|
Prospecting the role of nanotechnology in extending the shelf-life of fresh produce and in developing advanced packaging. Food Packag Shelf Life 2022. [DOI: 10.1016/j.fpsl.2022.100955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
5
|
Anjali KU, Reshma C, Sruthi NU, Pandiselvam R, Kothakota A, Kumar M, Siliveru K, Marszałek K, Mousavi Khaneghah A. Influence of ozone treatment on functional and rheological characteristics of food products: an updated review. Crit Rev Food Sci Nutr 2022; 64:3687-3701. [PMID: 36268992 DOI: 10.1080/10408398.2022.2134292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
In this milieu, ozone technology has emerged as an avant-garde non-thermal mode of disinfection with potential applications in the food industry. This eco-friendly technology has a comprehendible adeptness in replacing alternative chemical sanitizers and is recognized as a generally safe disinfectant for fruits and vegetables. Several researchers have been focusing on the biochemical impacts of ozone on different quantitative and qualitative aspects of fruits and vegetables. A collection of those works is presented in this review highlighting the effect of ozone on the functional, antioxidant, and rheological properties of food. This can be a benevolent tool for discovering the processing states of ozone applications and ensuing influence on safety and quality attributes of previously studied foods and opening further research areas. It extends shelf life and never leaves any harmful residues on the product since it decomposes to form oxygen. It was seen that the impact on a specific property of food was dependent on the ozone concentration and treatment time, and the adverse effects of ozone exposure can be alleviated once the processing conditions are optimized. The present review can be used as a baseline for designing different food processing operations involving ozone.
Collapse
Affiliation(s)
- K U Anjali
- Department of Food Science and Technology, Pondicherry University, Puducherry, India
| | - C Reshma
- National Institute of Food Technology Entrepreneurship and Management, Sonipat, Haryana, India
| | - N U Sruthi
- Agricultural and Food Engineering Department, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal, India
| | - R Pandiselvam
- Physiology, Biochemistry, and Post-harvest Technology Division, ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, India
| | - Anjineyulu Kothakota
- Agro-Processing & Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (NIIST), Trivandrum, Kerala, India
| | - Manoj Kumar
- Chemical and Biochemical Processing Division, ICAR-Central Institute for Research on Cotton Technology, Mumbai, Maharashtra, India
| | - Kaliramesh Siliveru
- Department of Grain Science & Industry, Kansas State University, Manhattan, Kansas, USA
| | - Krystian Marszałek
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| | - Amin Mousavi Khaneghah
- Department of Fruit and Vegetable Product Technology, Prof. Wacław Dąbrowski Institute of Agricultural and Food Biotechnology - State Research Institute, Warsaw, Poland
| |
Collapse
|
6
|
Polychroniadou C, Karagiannis E, Michailidis M, Adamakis IDS, Ganopoulos I, Tanou G, Bazakos C, Molassiotis A. Identification of genes and metabolic pathways involved in wounding-induced kiwifruit ripening. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 179:179-190. [PMID: 35358868 DOI: 10.1016/j.plaphy.2022.03.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 06/14/2023]
Abstract
Fruit is constantly challenged by wounding events, inducing accelerated ripening and irreversible metabolic changes. However, cognate mechanisms that regulate this process are little known. To expand our knowledge of ripening metabolism induced by wounding, an artificial-wound global transcriptome investigation combined with metabolite profiling study was conducted in postharvest kiwifruit (Actinidia chinensis var. deliciosa (A. Chev.) A. Chev. 'Hayward'). Wounding treatment promoted fruit ripening, as demonstrated by changes in fruit firmness, ethylene production and respiration activity determined periodically during a ripening period of 8 d at room temperature. Calcium imaging using fluorescent probe Fluo-3 AM revealed spatial dynamics of Ca2+ signaling in the wounding area following 8d ripening. Several sugars including fructose, glucose, and sucrose as well as organic acids such as citric, succinic and galacturonic acid were increased by wounding. Changes of various amino acids in wounded-treated fruit, especially 5-oxoproline and valine along with alternations of soluble alcohols, like myo-inositol were detected. Gene expression analysis of the wounded fruit showed increased expression of genes that are mainly involved in defense response (e.g., AdTLP.1-3, AdPP2C.1-2, AdMALD1), calcium ion binding (e.g., AdCbEFh, AdCLR, AdANX), TCA cycle (e.g., AdMDH.1, AdMDH.2, AdCS), sugars (e.g., AdSUSA.1, AdSPS4, AdABFr), secondary metabolism (e.g., AdPAL.1-3, AdCCR, AdHCT.1-2), lipid processing (e.g., AdGELP.1-4, AdGELP) and pectin degradation (e.g., AdPE.1-2, AdPAE.1-2, AdPG.1-2) as well as in ethylene (AdERF7, AdERF1B, AdACO.1-4) and auxin (AdICE, AdAEFc, AdASII) synthesis and perception. Moreover, genes related to aquaporins, such as AdAQP2, AdAQP4 and AdAQP7 were down-regulated in fruit exposed to wounding. These results demonstrate multiple metabolic points of wounding regulatory control during kiwifruit ripening and provide insights into the molecular basis of wounding-mediated ripening.
Collapse
Affiliation(s)
- Chrysanthi Polychroniadou
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | - Michail Michailidis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece
| | | | - Ioannis Ganopoulos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece; Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| | - Georgia Tanou
- Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece; Institute of Soil and Water Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece
| | - Christos Bazakos
- Institute of Plant Breeding and Genetic Resources, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece; Joint Laboratory of Horticulture, ELGO-DIMITRA, Thessaloniki-Thermi, 57001, Greece; Department of Comparative Development and Genetics, Max Planck Institute for Plant Breeding Research, Carl-von-Linne-Weg 10, 50829, Cologne, Germany
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki-Thermi, 57001, Greece.
| |
Collapse
|
7
|
Wang J, Wu Z. Combined use of ultrasound-assisted washing with in-package atmospheric cold plasma processing as a novel non-thermal hurdle technology for ready-to-eat blueberry disinfection. ULTRASONICS SONOCHEMISTRY 2022; 84:105960. [PMID: 35240411 PMCID: PMC8891714 DOI: 10.1016/j.ultsonch.2022.105960] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 02/14/2022] [Accepted: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Ultrasound (US) has limited disinfection efficacy, and it has been recommended to combine it with chemical disinfectants during fresh produce washing. After washing and before packaging, the disinfection effect of US-assisted washing can be weakened; thus, in-package disinfection is important. As a nutritious fruit, there are no packaged blueberries can be directly eaten. Therefore, in this study, blueberry was selected as the model, and the two most commonly used disinfectants (free chlorine [FC] at 10 ppm and peracetic acid [PAA] at 80 ppm) were combined with low-frequency US (25 kHz) during washing, followed by in-package disinfection using dielectric barrier discharge cold plasma (CP). The disinfection efficacy of US-FC and US-PAA against Escherichia coli O157:H7 and Salmonella Typhimurium was significantly higher than that of US, PAA, or FC alone. The highest disinfection efficacy of CP was observed at the pulse frequency range of 400-800 Hz. For US-FC (1 min) + CP (1 min), an additional 0.86, 0.71, 0.42, and 0.29 log CFU/g of reduction for E. coli O157:H7, S. Typhimurium, aerobic mesophilic counts, and mold and yeast was achieved, respectively, compared with US-FC (2 min) alone. For US-PAA (1 min) + CP (1 min) an additional 0.71, 0.59, 0.32, and 0.21 log CFU/g of reduction was achieved for the above organisms, respectively, compared with US-PAA (2 min) alone. Quality loss (in total color difference, firmness, and anthocyanin content) was not observed after treatment with US-FC + CP, US-PAA + CP, US-FC, or US-PAA. After treatment with US-FC + CP or US-PAA + CP, the reactive oxygen species (ROS) content was significantly lower than that in the other groups, and antioxidant enzyme activity was significantly higher than that in the other groups, suggesting that in-package CP can activate the blueberry antioxidant system to scavenge ROS, thereby lowering the risk of quality loss. US-CP combination not only improves the disinfection efficacy but also lowers quality loss caused by ROS, without prolonging the processing time.
Collapse
Affiliation(s)
- Jiayi Wang
- College of Food and Chemical Engineering, Shaoyang University, Shaoyang 422000, China.
| | - Zhaoxia Wu
- College of Food Science, Shenyang Agricultural University, Shenyang 110000, China
| |
Collapse
|
8
|
CAO S, MENG L, MA C, BA L, LEI J, JI N, WANG R. Effect of ozone treatment on physicochemical parameters and ethylene biosynthesis inhibition in Guichang Kiwifruit. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.64820] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Sen CAO
- School of Food and Pharmaceutical Engineering, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - Lingshuai MENG
- School of Food and Pharmaceutical Engineering, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - Chao MA
- Guizhou Engineering Research Center for Fruit Processing, China
| | - Liangjie BA
- School of Food and Pharmaceutical Engineering, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - Jiqing LEI
- School of Food and Pharmaceutical Engineering, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - Ning JI
- School of Food and Pharmaceutical Engineering, China; Guizhou Engineering Research Center for Fruit Processing, China
| | - Rui WANG
- School of Food and Pharmaceutical Engineering, China; Guizhou Engineering Research Center for Fruit Processing, China
| |
Collapse
|
9
|
Sustainability of emerging green non-thermal technologies in the food industry with food safety perspective: A review. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.112140] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
10
|
Li ZX, Chen M, Miao YX, Li Q, Ren Y, Zhang WL, Lan JB, Liu YQ. The role of AcPGIP in the kiwifruit (Actinidia chinensis) response to Botrytis cinerea. FUNCTIONAL PLANT BIOLOGY : FPB 2021; 48:1254-1263. [PMID: 34600600 DOI: 10.1071/fp21054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 09/05/2021] [Indexed: 05/23/2023]
Abstract
Kiwifruit (Actinidia chinensis) is rich in nutritional and medicinal value. However, the organism responsible for grey mould, Botrytis cinerea, causes great economic losses and food safety problems to the kiwifruit industry. Understanding the molecular mechanism underlying postharvest kiwifruit responses to B. cinerea is important for preventing grey mould decay and enhancing resistance breeding. Kiwifruit cv. 'Hongyang' was used as experimental material. The AcPGIP gene was cloned and virus-induced gene silencing (VIGS) was used to explore the function of the polygalacturonase inhibiting protein (PGIP) gene in kiwifruit resistance to B. cinerea. Virus-induced silencing of AcPGIP resulted in enhanced susceptibility of kiwifruit to B. cinerea. Antioxidant enzymes, secondary metabolites and endogenous hormones were analysed to investigate kiwifruit responses to B. cinerea infection. Kiwifruit effectively activated antioxidant enzymes and secondary metabolite production in response to B. cinerea, which significantly increased Indole-3-acetic acid (IAA), gibberellin 3 (GA3) and abscisic acid (ABA) content relative to those in uninfected fruit. Silencing of AcPGIP enabled kiwifruit to quickly activate hormone-signaling pathways through an alternative mechanism to trigger defence responses against B. cinerea infection. These results expand our understanding of the regulatory mechanism for disease resistance in kiwifruit; further, they provide gene-resource reserves for molecular breeding of kiwifruit for disease resistance.
Collapse
Affiliation(s)
- Zhe-Xin Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Min Chen
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | | | - Qiang Li
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Yun Ren
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Wen-Lin Zhang
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Jian-Bin Lan
- Chongqing Key Laboratory of Economic Plant Biotechnology, Collaborative Innovation Center of Special Plant Industry in Chongqing, College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | | |
Collapse
|
11
|
Fan X. Gaseous ozone to preserve quality and enhance microbial safety of fresh produce: Recent developments and research needs. Compr Rev Food Sci Food Saf 2021; 20:4993-5014. [PMID: 34323365 DOI: 10.1111/1541-4337.12796] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/24/2022]
Abstract
Fresh fruits and vegetables are highly perishable and are subject to large postharvest losses due to physiological (senescence), pathologic (decay), and physical (mechanical damage) factors. In addition, contamination of fresh produce with foodborne human pathogens has become a concern. Gaseous ozone has multiple benefits including destruction of ethylene, inactivation of foodborne and spoilage microorganisms, and degradation of chemical residues. This article reviews the beneficial effects of gaseous ozone, its influence on quality and biochemical changes, foodborne human pathogens, and spoilage microorganisms, and discusses research needs with an emphasis on fruits. Ozone may induce synthesis of a number of antioxidants and bioactive compounds by activating secondary metabolisms involving a wide range of enzymes. Disparities exist in the literature regarding the impact of gaseous ozone on quality and physiological processes of fresh produce, such as weight loss, ascorbic acid, and fruit ripening. The disparities are complicated by incomplete reporting of the necessary information, such as relative humidity and temperatures at which ozone measurement and treatment were performed, which is needed for accurate comparison of results among studies. In order to fully realize the benefits of gaseous ozone, research is needed to evaluate the molecular mechanisms of gaseous ozone in inhibiting ripening, influence of relative humidity on the antimicrobial efficacy, interaction between ozone and the cuticle of fresh produce, ozone signaling pathways in the cells and tissues, and so forth. Possible adverse effects of gaseous ozone on quality of fresh produce also need to be carefully evaluated for the purpose of enhancing microbial and chemical safety of fresh produce.
Collapse
Affiliation(s)
- Xuetong Fan
- Eastern Regional Research Center, U.S. Department of Agriculture, Agricultural Research Service, Wyndmoor, Pennsylvania, USA
| |
Collapse
|
12
|
Wei H, Seidi F, Zhang T, Jin Y, Xiao H. Ethylene scavengers for the preservation of fruits and vegetables: A review. Food Chem 2020; 337:127750. [PMID: 32861166 DOI: 10.1016/j.foodchem.2020.127750] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 12/18/2022]
Abstract
The phytohormone ethylene is the main cause of postharvest spoilage of fruit and vegetables (F&V). To address the global challenge of reducing postharvest losses of F&V, effective management of ethylene is of great importance. This review summarizes the various ethylene scavengers/inhibitors and emerging technologies recently developed for the effective removal of ethylene released, paying particular attention to the ethylene scavenger/inhibitors containing catalysts to promote the in-situ oxidation of ethylene without inducing further pollution. Packing ethylene scavengers, such as zeolite, titanium dioxide and transition metals, in a small sachet has been practically used and widely reported. However, incorporating ethylene scavenger into food packaging materials or films along with the in-situ oxidation of ethylene has been rarely reviewed. The current review fills up this gap, covering the latest research progress on ethylene scavengers/inhibitors and discussion on the mechanisms of ethylene elimination and oxidation associated with F&V packaging.
Collapse
Affiliation(s)
- Haiying Wei
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Farzad Seidi
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| | - Tingwei Zhang
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yongcan Jin
- Joint International Research Lab of Lignocellulosic Functional Materials and Provincial Key Lab of Pulp and Paper Sci & Tech, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Huining Xiao
- Department of Chemical Engineering, University of New Brunswick, Fredericton, NB E3B 5A3, Canada.
| |
Collapse
|
13
|
Zhao J, Quan P, Liu H, Li L, Qi S, Zhang M, Zhang B, Li H, Zhao Y, Ma B, Han M, Zhang H, Xing L. Transcriptomic and Metabolic Analyses Provide New Insights into the Apple Fruit Quality Decline during Long-Term Cold Storage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:4699-4716. [PMID: 32078318 DOI: 10.1021/acs.jafc.9b07107] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Long-term low-temperature conditioning (LT-LTC) decreases apple fruit quality, but the underlying physiological and molecular basis is relatively uncharacterized. We identified 12 clusters of differentially expressed genes (DEGs) involved in multiple biological processes (i.e., sugar, malic acid, fatty acid, lipid, complex phytohormone, and stress-response pathways). The expression levels of genes in sugar pathways were correlated with decreasing starch levels during LT-LTC. Specifically, starch-synthesis-related genes (e.g., BE, SBE, and GBSS genes) exhibited downregulated expression, whereas sucrose-metabolism-related gene expression levels were up- or downregulated. The expression levels of genes in the malic acid pathway (ALMT9, AATP1, and AHA2) were upregulated, as well as the content of malic acid in apple fruit during LT-LTC. A total of 151 metabolites, mainly related to amino acids and their isoforms, amines, organic acids, fatty acids, sugars, and polyols, were identified during LT-LTC. Additionally, 35 organic-acid-related metabolites grouped into three clusters, I (3), II (22), and III (10), increased in abundance during LT-LTC. Multiple phytohormones regulated the apple fruit chilling injury response. The ethylene (ET) and abscisic acid (ABA) levels increased at CS2 and CS3, and jasmonate (JA) levels also increased during LT-LTC. Furthermore, the expression levels of genes involved in ET, ABA, and JA synthesis and response pathways were upregulated. Finally, some key transcription factor genes (MYB, bHLH, ERF, NAC, and bZIP genes) related to the apple fruit cold acclimation response were differentially expressed. Our results suggest that the multilayered mechanism underlying apple fruit deterioration during LT-LTC is a complex, transcriptionally regulated process involving cell structures, sugars, lipids, hormones, and transcription factors.
Collapse
Affiliation(s)
- Juan Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Pengkun Quan
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hangkong Liu
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Lei Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Siyan Qi
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mengsheng Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Bo Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Hao Li
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Yanru Zhao
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Baiquan Ma
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Mingyu Han
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Haihui Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| | - Libo Xing
- College of Horticulture, Northwest A&F University, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Key Laboratory of Agricultural Internet of Things, Ministry of Agriculture Rural Affairs, 712100 Xianyang, Yangling, Shaanxi, P. R. China
- Shaanxi Key Laboratory of Agriculture Information Perception and Intelligent Service, 712100 Xianyang, Yangling, Shaanxi, P. R. China
| |
Collapse
|
14
|
Pandiselvam R, Kaavya R, Jayanath Y, Veenuttranon K, Lueprasitsakul P, Divya V, Kothakota A, Ramesh S. Ozone as a novel emerging technology for the dissipation of pesticide residues in foods–a review. Trends Food Sci Technol 2020. [DOI: 10.1016/j.tifs.2019.12.017] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
15
|
López-Vidal O, Olmedilla A, Sandalio LM, Sevilla F, Jiménez A. Is Autophagy Involved in Pepper Fruit Ripening? Cells 2020; 9:cells9010106. [PMID: 31906273 PMCID: PMC7016703 DOI: 10.3390/cells9010106] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 12/23/2019] [Accepted: 12/29/2019] [Indexed: 12/21/2022] Open
Abstract
Autophagy is a universal self-degradation process involved in the removal and recycling of cellular constituents and organelles; however, little is known about its possible role in fruit ripening, in which the oxidation of lipids and proteins and changes in the metabolism of different cellular organelles occur. In this work, we analyzed several markers of autophagy in two critical maturation stages of pepper (Capsicum annuum L.) fruits where variations due to ripening become clearly visible. Using two commercial varieties that ripen to yellow and red fruits respectively, we studied changes in the gene expression and protein content of several autophagy (ATG) components, ATG4 activity, as well as the autophagy receptor NBR1 and the proteases LON1 and LON2. Additionally, the presence of intravacuolar vesicles was analyzed by electron microscopy. Altogether, our data reveal that autophagy plays a role in the metabolic changes which occur during ripening in the two studied varieties, suggesting that this process may be critical to acquiring final optimal quality of pepper fruits.
Collapse
Affiliation(s)
- Omar López-Vidal
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia 30100, Spain; (O.L.-V.); (F.S.)
| | - Adela Olmedilla
- Department of Biochemistry, Cellular and Molecular Biology of Plants, EEZ-CSIC, Granada 18160, Spain; (A.O.); (L.M.S.)
| | - Luisa María Sandalio
- Department of Biochemistry, Cellular and Molecular Biology of Plants, EEZ-CSIC, Granada 18160, Spain; (A.O.); (L.M.S.)
| | - Francisca Sevilla
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia 30100, Spain; (O.L.-V.); (F.S.)
| | - Ana Jiménez
- Department of Stress Biology and Plant Pathology, CEBAS-CSIC, Murcia 30100, Spain; (O.L.-V.); (F.S.)
- Correspondence: ; Tel.: +34-968-396200
| |
Collapse
|
16
|
Zhu X, Jiang J, Yin C, Li G, Jiang Y, Shan Y. Effect of Ozone Treatment on Flavonoid Accumulation of Satsuma Mandarin ( Citrus unshiu Marc.) during Ambient Storage. Biomolecules 2019; 9:E821. [PMID: 31816983 PMCID: PMC6995626 DOI: 10.3390/biom9120821] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 11/30/2019] [Accepted: 12/01/2019] [Indexed: 11/25/2022] Open
Abstract
This study aimed to compare the flavonoid accumulation between ozone-treated and untreated Satsuma mandarin (Citrusunshiu Marc.) fruits. The fruits exposed to gaseous ozone were found to have higher antioxidant activities and content of flavonoid during the storage period by ultra-high performance liquid chromatography (UPLC). To reveal the molecular regulation of flavonoid accumulation by ozone, chalcone synthase (CHS), chalcone isomerase (CHI), β-1,3-glucanase (GLU), chitinase (CHT), phenylalanine ammonia-lyase (PAL), and peroxidase (POD) were identified and their expression was examined by quantitative real-time polymerase chain reaction (q-PCR). These results support the promising application of ozone treatment as a safe food preservation technique for controlling postharvest disease and extending shelf-life of harvested Satsuma mandarin.
Collapse
Affiliation(s)
- Xiangrong Zhu
- Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.Z.); (G.L.)
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Longping branch, Graduate School of Hunan University, Changsha 410125, China; (J.J.); (C.Y.)
| | - Jing Jiang
- Longping branch, Graduate School of Hunan University, Changsha 410125, China; (J.J.); (C.Y.)
| | - Chunxiao Yin
- Longping branch, Graduate School of Hunan University, Changsha 410125, China; (J.J.); (C.Y.)
| | - Gaoyang Li
- Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.Z.); (G.L.)
- Longping branch, Graduate School of Hunan University, Changsha 410125, China; (J.J.); (C.Y.)
| | - Yueming Jiang
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Yang Shan
- Hunan Key Lab of Fruits &Vegetables Storage, Processing, Quality and Safety, Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha 410125, China; (X.Z.); (G.L.)
- Longping branch, Graduate School of Hunan University, Changsha 410125, China; (J.J.); (C.Y.)
| |
Collapse
|
17
|
Vettraino AM, Bianchini L, Caradonna V, Forniti R, Goffi V, Zambelli M, Testa A, Vinciguerra V, Botondi R. Ozone gas as a storage treatment to control Gnomoniopsis castanea, preserving chestnut quality. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:6060-6065. [PMID: 31226223 DOI: 10.1002/jsfa.9883] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/10/2019] [Accepted: 06/14/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Chestnuts are gluten-free, low-fat, cholesterol-free products. Postharvest decay reduces chestnut shelf life and can cause severe economic losses. In this study we investigated the effect of ozone (O3 ) gaseous treatment on chestnut rot caused by Gnomoniopsis castanea and the quality parameters of chestnuts. RESULTS The results showed that ozone treatment (150 ppb during the day, and 300 ppb during the night) reduced the decay of chestnuts and had a fungistatic effect on isolates of G. castanea. The exposure of chestnuts to ozone did not alter weight losses, sugar content and titratable acidity. The concentration of total phenolics decreased during the storage period, both for treated and untreated nuts. However, after 150 days of treatment the polyphenol content of the chestnuts exposed to ozone was significantly higher than in control nuts. CONCLUSIONS Our results suggested that ozone is an appropriate and economical tool to maximize the quality of chestnut shelf life, enabling it to be stored for long periods. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
| | | | | | - Roberto Forniti
- DIBAF, University of Tuscia, Via S. Camillo de Lellis, Viterbo, Italy
| | - Valentina Goffi
- DIBAF, University of Tuscia, Via S. Camillo de Lellis, Viterbo, Italy
| | - Marta Zambelli
- DIBAF, University of Tuscia, Via S. Camillo de Lellis, Viterbo, Italy
| | - Antonino Testa
- Department of Agriculture, University of Naples Federico II, Portici, Italy
| | | | - Rinaldo Botondi
- DIBAF, University of Tuscia, Via S. Camillo de Lellis, Viterbo, Italy
| |
Collapse
|
18
|
Goffi V, Zampella L, Forniti R, Petriccione M, Botondi R. Effects of ozone postharvest treatment on physicochemical and qualitative traits of Actinidia chinensis 'Soreli' during cold storage. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2019; 99:5654-5661. [PMID: 31141163 DOI: 10.1002/jsfa.9823] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ozone has been used for improving the postharvest life of fruits and vegetables. Ozonation, an alternative decontamination method, can be applied effectively to perishable commodities immediately after harvest. Kiwifruit is a subtropical climacteric fruit that is less able to acclimate and is susceptible to low temperatures. In this study, we investigated the influence of ozone and different storage temperatures on the physico-chemical and qualitative features in Actinidia chinensis 'Soreli'. The fruits were treated with a continuous flow of ozone in air (300 ppb), stored at 2 and 4 °C for 60 days, and sampled every 15 days. RESULTS It was found that ozone treatment induced the ripening process; this was evident at the end of the storage, with higher soluble solids content for ozone-treated fruits at 2 and 4 °C. Storage temperatures and gaseous ozone treatment influenced in a different manner the bioactive compounds, such as polyphenols, flavonoids, ascorbic acid, and carotenoids. Additionally, under gaseous ozone storage, microbial growth was delayed, improving the microbial quality index when the fruits were stored at the lowest storage temperature (2 °C). Principal component analysis highlighted that the effects of storage temperature on physico-chemical and bioactive compounds were greater than the postharvest treatment. CONCLUSION Storage temperature influenced the postharvest life of 'Soreli'. Storage at 2 °C and under 300 ppb gaseous ozone improved the yellow-fleshed fruit storage life. However, storage at 4 °C under 300 ppb gaseous ozone did not show advantages in preserving the fruit quality. © 2019 Society of Chemical Industry.
Collapse
Affiliation(s)
- Valentina Goffi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Luigi Zampella
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria (CREA), Centro di ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Caserta, Italy
| | - Roberto Forniti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| | - Milena Petriccione
- Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia agraria (CREA), Centro di ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Caserta, Italy
| | - Rinaldo Botondi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), Università degli Studi della Tuscia, Viterbo, Italy
| |
Collapse
|
19
|
Liu W, Zhang M, Bhandari B. Nanotechnology – A shelf life extension strategy for fruits and vegetables. Crit Rev Food Sci Nutr 2019; 60:1706-1721. [DOI: 10.1080/10408398.2019.1589415] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Wenchao Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Min Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- Jiangsu Province Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Bhesh Bhandari
- School of Agriculture and Food Sciences, University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
20
|
Salzano AM, Renzone G, Sobolev AP, Carbone V, Petriccione M, Capitani D, Vitale M, Novi G, Zambrano N, Pasquariello MS, Mannina L, Scaloni A. Unveiling Kiwifruit Metabolite and Protein Changes in the Course of Postharvest Cold Storage. FRONTIERS IN PLANT SCIENCE 2019; 10:71. [PMID: 30778366 PMCID: PMC6369206 DOI: 10.3389/fpls.2019.00071] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 01/17/2019] [Indexed: 05/07/2023]
Abstract
Actinidia deliciosa cv. Hayward fruit is renowned for its micro- and macronutrients, which vary in their levels during berry physiological development and postharvest processing. In this context, we have recently described metabolic pathways/molecular effectors in fruit outer endocarp characterizing the different stages of berry physiological maturation. Here, we report on the kiwifruit postharvest phase through an integrated approach consisting of pomological analysis combined with NMR/LC-UV/ESI-IT-MSn- and 2D-DIGE/nanoLC-ESI-LIT-MS/MS-based proteometabolomic measurements. Kiwifruit samples stored under conventional, cold-based postharvest conditions not involving the use of dedicated chemicals were sampled at four stages (from fruit harvest to pre-commercialization) and analyzed in comparison for pomological features, and outer endocarp metabolite and protein content. About 42 metabolites were quantified, together with corresponding proteomic changes. Proteomics showed that proteins associated with disease/defense, energy, protein destination/storage, cell structure and metabolism functions were affected at precise fruit postharvest times, providing a justification to corresponding pomological/metabolite content characteristics. Bioinformatic analysis of variably represented proteins revealed a central network of interacting species, modulating metabolite level variations during postharvest fruit storage. Kiwifruit allergens were also quantified, demonstrating in some cases their highest levels at the fruit pre-commercialization stage. By lining up kiwifruit postharvest processing to a proteometabolomic depiction, this study integrates previous observations on metabolite and protein content in postharvest berries treated with specific chemical additives, and provides a reference framework for further studies on the optimization of fruit storage before its commercialization.
Collapse
Affiliation(s)
- Anna Maria Salzano
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
| | - Anatoly P. Sobolev
- Magnetic Resonance Laboratory “Annalaura Segre”, Institute of Chemical Methodologies, National Research Council, Monterotondo, Italy
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council, Avellino, Italy
| | - Milena Petriccione
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Caserta, Italy
| | - Donatella Capitani
- Magnetic Resonance Laboratory “Annalaura Segre”, Institute of Chemical Methodologies, National Research Council, Monterotondo, Italy
| | - Monica Vitale
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | - Gianfranco Novi
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
- Ceinge Biotecnologie Avanzate S. C. a R. L., Naples, Italy
| | - Maria Silvia Pasquariello
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l’Analisi dell’Economia Agraria, Caserta, Italy
| | - Luisa Mannina
- Magnetic Resonance Laboratory “Annalaura Segre”, Institute of Chemical Methodologies, National Research Council, Monterotondo, Italy
- Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, Rome, Italy
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, Istituto per il Sistema Produzione Animale In Ambiente Mediterraneo, National Research Council, Naples, Italy
| |
Collapse
|
21
|
Minas IS, Tanou G, Krokida A, Karagiannis E, Belghazi M, Vasilakakis M, Papadopoulou KK, Molassiotis A. Ozone-induced inhibition of kiwifruit ripening is amplified by 1-methylcyclopropene and reversed by exogenous ethylene. BMC PLANT BIOLOGY 2018; 18:358. [PMID: 30558543 PMCID: PMC6296049 DOI: 10.1186/s12870-018-1584-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 11/30/2018] [Indexed: 05/29/2023]
Abstract
BACKGROUND Understanding the mechanisms involved in climacteric fruit ripening is key to improve fruit harvest quality and postharvest performance. Kiwifruit (Actinidia deliciosa cv. 'Hayward') ripening involves a series of metabolic changes regulated by ethylene. Although 1-methylcyclopropene (1-MCP, inhibitor of ethylene action) or ozone (O3) exposure suppresses ethylene-related kiwifruit ripening, how these molecules interact during ripening is unknown. RESULTS Harvested 'Hayward' kiwifruits were treated with 1-MCP and exposed to ethylene-free cold storage (0 °C, RH 95%) with ambient atmosphere (control) or atmosphere enriched with O3 (0.3 μL L- 1) for up to 6 months. Their subsequent ripening performance at 20 °C (90% RH) was characterized. Treatment with either 1-MCP or O3 inhibited endogenous ethylene biosynthesis and delayed fruit ripening at 20 °C. 1-MCP and O3 in combination severely inhibited kiwifruit ripening, significantly extending fruit storage potential. To characterize ethylene sensitivity of kiwifruit following 1-MCP and O3 treatments, fruit were exposed to exogenous ethylene (100 μL L- 1, 24 h) upon transfer to 20 °C following 4 and 6 months of cold storage. Exogenous ethylene treatment restored ethylene biosynthesis in fruit previously exposed in an O3-enriched atmosphere. Comparative proteomics analysis showed separate kiwifruit ripening responses, unraveled common 1-MCP- and O3-dependent metabolic pathways and identified specific proteins associated with these different ripening behaviors. Protein components that were differentially expressed following exogenous ethylene exposure after 1-MCP or O3 treatment were identified and their protein-protein interaction networks were determined. The expression of several kiwifruit ripening related genes, such as 1-aminocyclopropane-1-carboxylic acid oxidase (ACO1), ethylene receptor (ETR1), lipoxygenase (LOX1), geranylgeranyl diphosphate synthase (GGP1), and expansin (EXP2), was strongly affected by O3, 1-MCP, their combination, and exogenously applied ethylene. CONCLUSIONS Our findings suggest that the combination of 1-MCP and O3 functions as a robust repressive modulator of kiwifruit ripening and provide new insight into the metabolic events underlying ethylene-induced and ethylene-independent ripening outcomes.
Collapse
Affiliation(s)
- Ioannis S. Minas
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
- Department of Horticulture and Landscape Architecture, Colorado State University, 301 University Avenue, Fort Collins, CO 80523 USA
| | - Georgia Tanou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
- Institute of Soil and Water Resources, ELGO-DEMETER, 57001 Thessaloniki, Greece
| | - Afroditi Krokida
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Maya Belghazi
- UMR 7286 - CRN2M, Centre d’ Analyses Protéomiques de Marseille (CAPM), CNRS, Aix-Marseille Université, Marseille, France
| | - Miltiadis Vasilakakis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Kalliope K. Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, Biopolis, 41500 Larissa, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
22
|
Goffi V, Modesti M, Forniti R, Botondi R. Quality of green (Actinidia chinensisvar.deliciosa‘Hayward’) and yellow (A. chinensisvar.chinensis‘Soreli’) kiwifruit during cold storage at 0°C in normal atmosphere and with gaseous ozone. ACTA ACUST UNITED AC 2018. [DOI: 10.17660/actahortic.2018.1218.65] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
23
|
Ziogas V, Molassiotis A, Fotopoulos V, Tanou G. Hydrogen Sulfide: A Potent Tool in Postharvest Fruit Biology and Possible Mechanism of Action. FRONTIERS IN PLANT SCIENCE 2018; 9:1375. [PMID: 30283483 PMCID: PMC6157321 DOI: 10.3389/fpls.2018.01375] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Accepted: 08/29/2018] [Indexed: 05/04/2023]
Abstract
Hydrogen sulfide (H2S), an endogenous gaseous molecule, is considered as a signaling agent, in parallel with other low molecular weight reactive substances, mainly hydrogen peroxide (H2O2) and nitric oxide (NO), in various plant systems. New studies are now revealing that the postharvest application of H2S, through H2S donors such as sodium hydrosulfide (NaSH) or sodium sulfide (Na2S), can inhibit fruit ripening and senescence programs in numerous fruits. We discuss here current knowledge on the impact of H2S in postharvest physiology of several climacteric and non-climacteric fruits such as banana, apple, pear, kiwifruit, strawberry, mulberry fruit, and grape. Although there is still a considerable lack of studies establishing the mechanisms by which H2S signaling is linked to fruit metabolism, we highlight several candidate mechanisms, including a putative cross-talk between H2S and ethylene, reactive oxygen and nitrogen species, oxidative/nitrosative stress signaling, sulfate metabolism, and post-translational modification of protein cysteine residues (S-sulfhydration) as being functional in this H2S postharvest action. Understanding H2S metabolism and signaling during postharvest storage and the interplay with other key player molecules would therefore provide new, improved strategies for better fruit postharvest storage. To achieve this understanding, postharvest fruit physiology research will need to focus increasingly on the spatial interaction between H2S and ethylene perception as well as on the interplay between S-sulfhydration/desulfhydration and S-nitrosylation/denitrosylation under several postharvest conditions.
Collapse
Affiliation(s)
- Vasileios Ziogas
- Institute of Olive Tree, Subtropical Plants and Viticulture, ELGO-DEMETER, Chania, Greece
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol, Cyprus
| | - Georgia Tanou
- Institute of Soil and Water Resources, ELGO-DEMETER, Thessaloniki, Greece
| |
Collapse
|
24
|
Wang S, Wang J, Wang T, Li C, Wu Z. Effects of ozone treatment on pesticide residues in food: a review. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13938] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Shan Wang
- College of Food Science; Shenyang Agricultural University; 120 Dongling Rd. 110866 Shenyang China
| | - Jiayi Wang
- College of Food Science; Shenyang Agricultural University; 120 Dongling Rd. 110866 Shenyang China
| | - Tianyu Wang
- College of Food Science; Shenyang Agricultural University; 120 Dongling Rd. 110866 Shenyang China
| | - Chen Li
- College of Food Science; Shenyang Agricultural University; 120 Dongling Rd. 110866 Shenyang China
| | - Zhaoxia Wu
- College of Food Science; Shenyang Agricultural University; 120 Dongling Rd. 110866 Shenyang China
| |
Collapse
|
25
|
Souza LPD, Faroni LRD, Heleno FF, Cecon PR, Gonçalves TDC, Silva GJD, Prates LHF. Effects of ozone treatment on postharvest carrot quality. Lebensm Wiss Technol 2018. [DOI: 10.1016/j.lwt.2017.11.057] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Toti M, Carboni C, Botondi R. Postharvest gaseous ozone treatment enhances quality parameters and delays softening in cantaloupe melon during storage at 6 °C. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2018; 98:487-494. [PMID: 28612399 DOI: 10.1002/jsfa.8485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/09/2017] [Accepted: 06/09/2017] [Indexed: 06/07/2023]
Abstract
BACKGROUND A trial was conducted to evaluate the effect of postharvest gaseous ozone (O3 ) treatment on quality parameters and cell wall enzymes of cantaloupe melon cv. Caldeo during storage at 6 °C for 13 days. Fruits were kept in cold storage and treated with 0.15 ppm gaseous O3 during the day and 0.3 ppm overnight; control fruits (CK) were stored in normal atmosphere. RESULTS Firmness was higher and ethylene concentration significantly lower in O3 fruits compared with CK fruits. During storage, microbial counts were lower in both O3 and CK fruits; from day 9, O3 fruits showed a significant decrease in mesophilic aerobes. Additionally, total carotenoids had a tendency to be higher, with no significant differences between CK and O3 fruits. The same trend was observed for ascorbic acid, colour, total soluble solids content and acidity. Finally, O3 treatment reduced the activities of cell wall enzymes α-arabinopyranosidase, β-galactopyranosidase and polygalacturonase starting from day 3 of storage. Pectin methyl esterase activity did not seem to be affected by O3 treatment. CONCLUSION Gaseous O3 treatment during cold storage was effective in decreasing ethylene production and delaying fruit softening in cantaloupe melon by extending quality maintenance. © 2017 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mauro Toti
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| | | | - Rinaldo Botondi
- Department for Innovation in Biological, Agro-food and Forest Systems (DIBAF), University of Tuscia, Viterbo, Italy
| |
Collapse
|
27
|
Salzano AM, Sobolev A, Carbone V, Petriccione M, Renzone G, Capitani D, Vitale M, Minasi P, Pasquariello MS, Novi G, Zambrano N, Scortichini M, Mannina L, Scaloni A. A proteometabolomic study of Actinidia deliciosa fruit development. J Proteomics 2017; 172:11-24. [PMID: 29133123 DOI: 10.1016/j.jprot.2017.11.004] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Revised: 10/17/2017] [Accepted: 11/08/2017] [Indexed: 10/18/2022]
Affiliation(s)
- Anna Maria Salzano
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Anatoly Sobolev
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, National Research Council, 00015, Monterotondo, Rome, Italy
| | - Virginia Carbone
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Milena Petriccione
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 81100 Caserta, Italy
| | - Giovanni Renzone
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Donatella Capitani
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, National Research Council, 00015, Monterotondo, Rome, Italy
| | - Monica Vitale
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy; Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy
| | - Paola Minasi
- Institute of Food Sciences, National Research Council, 83100 Avellino, Italy
| | - Maria Silvia Pasquariello
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 81100 Caserta, Italy
| | - Gianfranco Novi
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy
| | - Nicola Zambrano
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università degli Studi di Napoli "Federico II", 80131 Naples, Italy; CEINGE Biotecnologie Avanzate, 80145 Naples, Italy
| | - Marco Scortichini
- Centro di Ricerca per Olivicoltura, Frutticoltura e Agrumicoltura, Consiglio per la Ricerca in Agricoltura e l'Analisi dell'Economia Agraria, 81100 Caserta, Italy
| | - Luisa Mannina
- Magnetic Resonance Laboratory "Annalaura Segre", Institute of Chemical Methodologies, National Research Council, 00015, Monterotondo, Rome, Italy; Dipartimento di Chimica e Tecnologie del Farmaco, Sapienza Università di Roma, 00185 Rome, Italy.
| | - Andrea Scaloni
- Proteomics & Mass Spectrometry Laboratory, ISPAAM, National Research Council, 80147 Naples, Italy.
| |
Collapse
|
28
|
Tanou G, Minas IS, Scossa F, Belghazi M, Xanthopoulou A, Ganopoulos I, Madesis P, Fernie A, Molassiotis A. Exploring priming responses involved in peach fruit acclimation to cold stress. Sci Rep 2017; 7:11358. [PMID: 28900303 PMCID: PMC5595836 DOI: 10.1038/s41598-017-11933-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2017] [Accepted: 09/01/2017] [Indexed: 01/11/2023] Open
Abstract
Cold storage of fruit may induce the physiological disorder chilling injury (CI); however, the molecular basis of CI development remains largely unexplored. Simulated conditions of CI priming and suppression provided an interesting experimental system to study cold response in fruit. Peaches (cv. June Gold) at the commercial harvest (CH) or tree-ripe (TR) stages were immediately exposed to cold treatment (40 d, 0 °C) and an additional group of CH fruits were pre-conditioned 48 h at 20 °C prior to low-temperature exposure (pre-conditioning, PC). Following cold treatment, the ripening behaviour of the three groups of fruits was analysed (3 d, 20 °C). Parallel proteomic, metabolomic and targeted transcription comparisons were employed to characterize the response of fruit to CI expression. Physiological data indicated that PC suppressed CI symptoms and induced more ethylene biosynthesis than the other treatments. Differences in the protein and metabolic profiles were identified, both among treatments and before and after cold exposure. Transcriptional expression patterns of several genes were consistent with their protein abundance models. Interestingly, metabolomic and gene expression results revealed a possible role for valine and/or isoleucine in CI tolerance. Overall, this study provides new insights into molecular changes during fruit acclimation to cold environment.
Collapse
Affiliation(s)
- Georgia Tanou
- Department of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
| | - Ioannis S Minas
- Department of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
- Department of Horticulture and Landscape Architecture, Colorado State University, Fort Collins, CO, USA
- Western Colorado Research Center at Orchard Mesa, Colorado State University, Grand Junction, CO, USA
| | - Federico Scossa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria, Centro di ricerca per la Frutticoltura (CREA-FRU), Roma, Italy
| | - Maya Belghazi
- Proteomics Analysis Center (CAPM), Faculty of Medicine, 13916, Marseilles, France
| | | | | | | | - Alisdair Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, 14476, Potsdam-Golm, Germany
| | - Athanassios Molassiotis
- Department of Agriculture, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece.
| |
Collapse
|
29
|
iTRAQ-based quantitative proteomic analysis reveals alterations in the metabolism of Actinidia arguta. Sci Rep 2017; 7:5670. [PMID: 28720800 PMCID: PMC5515984 DOI: 10.1038/s41598-017-06074-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 06/02/2017] [Indexed: 11/10/2022] Open
Abstract
Actinidia arguta ‘Tianyuanhong’ is a new kiwifruit variety with an all-red pericarp and pulp, in contrast to the all-green pulp of A. arguta ‘Yongfengyihao’. Transcriptome profile analysis of fruit color has been reported, however, the metabolic mechanisms producing red flesh remain unknown, and it is unclear why the pulp of ‘Tianyuanhong’ is red rather than green. Herein, we identified differences between the proteomes of two A. arguta cultivars with different fruit color by using iTRAQ-based quantitative proteomic methods during the stage of color change. In total, 2310 differentially abundant proteins were detected between the two cultivars at 70 and 100 days after flowering, and the protein functions were analyzed based on KEGG and GO. The largest group of differentially expressed proteins were related to photosynthesis, glyoxylate metabolism, N metabolism, and anthocyanin biosynthesis. Finally, to verify the iTRAQ data, 12 representative genes encoding differentially expressed proteins were analyzed via quantitative real-time PCR, and these genes differed in transcriptional and translational expression levels. Our proteomic study contributes to understanding the metabolic pathways and biological processes involved in fruit color changes in different cultivars of A. arguta. These data and analyses will provide new insight into the development of kiwifruit flesh color.
Collapse
|
30
|
Ziogas V, Tanou G, Belghazi M, Diamantidis G, Molassiotis A. Characterization of β-amino- and γ-amino butyric acid-induced citrus seeds germination under salinity using nanoLC-MS/MS analysis. PLANT CELL REPORTS 2017; 36:787-789. [PMID: 27761604 DOI: 10.1007/s00299-016-2063-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Accepted: 10/10/2016] [Indexed: 06/06/2023]
Abstract
BABA or GABA induces salinity acclimation during citrus seeds germination via alternation of specific proteins (e.g., citrin). The impact of four elicitors, namely hydrogen peroxide (H2O2), β-amino butyric acid (BABA), γ-amino butyric acid (GABA) and hydrogen sulfide (H2S) donor, sodium hydrosulfide (NaHS), in citrus seed germination under salinity (150 mM NaCl) was tested. The germination potential was adversely affected by NaCl-alone treatment. Pretreatment with H2O2 or the NaHS-H2S donor prior to salinity had no significant effect in germination process, however, BABA and GABA substantially improved seed acclimation to salinity, as evidenced by increased germination percentage and radicle length. Total soluble proteins of radicle and cotyledons were separated by 1DE SDS-PAGE and proteins zones were analyzed by mass spectrometry. In total, 27 and 3 proteins were identified in radicle and cotyledons, respectively. The identified proteins mainly include redox-regulated enzymes (i.e., glutathione S-transferase, dehydroascorbate reductase, Mn-superoxide dismutase, glutathione peroxidase), energy-related proteins (i.e., isocitrate lyase, malate synthase, pyruvate decarboxylase), stress proteins (i.e., stress-related protein, miraculin, thaumatin, disulfide isomerase), storage proteins (i.e., vicilin, Pis v 1 allergen 2S albumin) and transcriptional regulators (i.e., MarR family transcriptional regulator, MADS544 protein). Pretreatments with BABA or GABA altered the accumulation of protein zones exclusively corresponding to citrin, indicating that this protein may serve as a marker for salinity acclimation in citrus seeds.
Collapse
Affiliation(s)
- Vasileios Ziogas
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Georgia Tanou
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Maya Belghazi
- CNRS, UMR 7286, Plate-Forme de Recherche en Neurosciences PFRN, 13015, Marseille, France
- Aix-Marseille Université, AMU, 13015, Marseille, France
| | - Grigorios Diamantidis
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Athanassios Molassiotis
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece.
| |
Collapse
|
31
|
Exposure to ozone reduces postharvest quality loss in red and green chilli peppers. Food Chem 2016; 210:305-10. [DOI: 10.1016/j.foodchem.2016.04.119] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Revised: 04/25/2016] [Accepted: 04/25/2016] [Indexed: 11/24/2022]
|
32
|
Ainalidou A, Tanou G, Belghazi M, Samiotaki M, Diamantidis G, Molassiotis A, Karamanoli K. Integrated analysis of metabolites and proteins reveal aspects of the tissue-specific function of synthetic cytokinin in kiwifruit development and ripening. J Proteomics 2016; 143:318-333. [DOI: 10.1016/j.jprot.2016.02.013] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 02/12/2016] [Accepted: 02/17/2016] [Indexed: 12/30/2022]
|
33
|
Tzortzakis N, Chrysargyris A. Postharvest ozone application for the preservation of fruits and vegetables. FOOD REVIEWS INTERNATIONAL 2016. [DOI: 10.1080/87559129.2016.1175015] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
34
|
López-Vidal O, Camejo D, Rivera-Cabrera F, Konigsberg M, Villa-Hernández J, Mendoza-Espinoza J, Pérez-Flores L, Sevilla F, Jiménez A, Díaz de León-Sánchez F. Mitochondrial ascorbate–glutathione cycle and proteomic analysis of carbonylated proteins during tomato (Solanum lycopersicum) fruit ripening. Food Chem 2016; 194:1064-72. [DOI: 10.1016/j.foodchem.2015.08.055] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 11/15/2022]
|
35
|
Minas IS, Tanou G, Karagiannis E, Belghazi M, Molassiotis A. Coupling of Physiological and Proteomic Analysis to Understand the Ethylene- and Chilling-Induced Kiwifruit Ripening Syndrome. FRONTIERS IN PLANT SCIENCE 2016; 7:120. [PMID: 26913040 PMCID: PMC4753329 DOI: 10.3389/fpls.2016.00120] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Accepted: 01/22/2016] [Indexed: 05/23/2023]
Abstract
Kiwifruit [Actinidia deliciosa (A. Chev.) C.F. Liang et A.R. Ferguson, cv. "Hayward"] is classified as climacteric fruit and the initiation of endogenous ethylene production following harvest is induced by exogenous ethylene or chilling exposure. To understand the biological basis of this "dilemma," kiwifruit ripening responses were characterized at 20°C following treatments with exogenous ethylene (100 μL L(-1), 20°C, 24 h) or/and chilling temperature (0°C, 10 days). All treatments elicited kiwifruit ripening and induced softening and endogenous ethylene biosynthesis, as determined by 1-aminocyclopropane-1-carboxylic acid (ACC) content and ACC synthase (ACS) and ACC oxidase (ACO) enzyme activities after 10 days of ripening at 20°C. Comparative proteomic analysis using two-dimensional gel electrophoresis (2DE-PAGE) and nanoscale liquid chromatography coupled to tandem mass spectrometry (nanoLC-MS/MS) revealed 81 kiwifruit proteins associated with ripening. Thirty-one kiwifruit proteins were identified as commonly regulated by the three treatments accompanied by dynamic changes of 10 proteins specific to exogenous ethylene, 2 to chilling treatment, and 12 to their combination. Ethylene and/or chilling-responsive proteins were mainly involved in disease/defense, energy, protein destination/storage, and cell structure/cell wall. Interactions between the identified proteins were demonstrated by bioinformatics analysis, allowing a more complete insight into biological pathways and molecular functions affected by ripening. The present approach provides a quantitative basis for understanding the ethylene- and chilling-induced kiwifruit ripening and climacteric fruit ripening in general.
Collapse
Affiliation(s)
- Ioannis S. Minas
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
- Department of Horticulture and Landscape Architecture, Colorado State UniversityFort Collins, CO, USA
- Western Colorado Research Center at Orchard Mesa, Colorado State UniversityGrand Junction, CO, USA
| | - Georgia Tanou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Maya Belghazi
- UMR 7286 - CRN2M, Centre d' Analyses Protéomiques de Marseille, Centre National de la Recherche Scientifique, Aix-Marseille UniversitéMarseille, France
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| |
Collapse
|
36
|
Feng X, An Y, Zheng J, Sun M, Wang L. Proteomics and SSH Analyses of ALA-Promoted Fruit Coloration and Evidence for the Involvement of a MADS-Box Gene, MdMADS1. FRONTIERS IN PLANT SCIENCE 2016; 7:1615. [PMID: 27872628 PMCID: PMC5098116 DOI: 10.3389/fpls.2016.01615] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 10/12/2016] [Indexed: 05/20/2023]
Abstract
Skin color is a key quality attribute of fruits and how to improve fruit coloration has long been a major concern. 5-Aminolevulinic acid (ALA), a natural plant growth regulator, can significantly increase anthocyanin accumulation in fruit skin and therefore effectively improve coloration of many fruits, including apple. However, the molecular mechanism how ALA stimulates anthocyanin accumulation in fruit skin remains unknown. Here, we investigated the impact of ALA on apple skin at the protein and mRNA levels. A total of 85 differentially expressed proteins in apple skins between ALA and water treatment (control) were identified by complementary gel-based and gel-free separation techniques. Most of these differentially expressed proteins were up-regulated by ALA. Function analysis suggested that 87.06% of the ALA-responsive proteins were associated with fruit ripening. To further screen ALA-responsive regulators, we constructed a subtracted cDNA library (tester: ALA treatment; driver: control) and obtained 104 differentially expressed unigenes, of which 38 unigenes were indicators for the fruit ripening-related genes. The differentially changed proteins and transcripts did not correspond well at an individual level, but showed similar regulated direction in function at the pathway level. Among the identified fruit ripening-related genes, the expression of MdMADS1, a developmental transcription regulator of fruit ripening, was positively correlated with expression of anthocyanin biosynthetic genes (MdCHS, MdDFR, MdLDOX, and MdUFGT) in apple skin under ALA treatment. Moreover, overexpression of MdMADS1 enhanced anthocyanin content in transformed apple calli, which was further enhanced by ALA. The anthocyanin content in MdMADS1-silenced calli was less than that in the control with ALA treatment, but higher than that without ALA treatment. These results indicated that MdMADS1 is involved in ALA-induced anthocyanin accumulation. In addition, anthocyanin-related verification in apple calli suggested that the regulation of MdMADS1 on anthocyanin biosynthesis was partially independent of fruit ripening process. Taken together, our findings provide insight into the mechanism how ALA regulates anthocyanin accumulation and add new information on transcriptase regulators of fruit coloration.
Collapse
Affiliation(s)
- Xinxin Feng
- College of Horticulture, Nanjing Agricultural University Nanjing, China
| | - Yuyan An
- College of Horticulture, Nanjing Agricultural University Nanjing, China
| | - Jie Zheng
- College of Horticulture, Nanjing Agricultural University Nanjing, China
| | - Miao Sun
- College of Horticulture, Nanjing Agricultural University Nanjing, China
| | - Liangju Wang
- College of Horticulture, Nanjing Agricultural University Nanjing, China
| |
Collapse
|
37
|
Karagiannis E, Tanou G, Samiotaki M, Michailidis M, Diamantidis G, Minas IS, Molassiotis A. Comparative Physiological and Proteomic Analysis Reveal Distinct Regulation of Peach Skin Quality Traits by Altitude. FRONTIERS IN PLANT SCIENCE 2016; 7:1689. [PMID: 27891143 PMCID: PMC5102882 DOI: 10.3389/fpls.2016.01689] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 10/26/2016] [Indexed: 05/12/2023]
Abstract
The role of environment in fruit physiology has been established; however, knowledge regarding the effect of altitude in fruit quality traits is still lacking. Here, skin tissue quality characters were analyzed in peach fruit (cv. June Gold), harvested in 16 orchards located in low (71.5 m mean), or high (495 m mean) altitutes sites. Data indicated that soluble solids concentration and fruit firmness at commercial harvest stage were unaffected by alitute. Peach grown at high-altitude environment displayed higher levels of pigmentation and specific antioxidant-related activity in their skin at the commercial harvest stage. Skin extracts from distinct developmental stages and growing altitudes exhibited different antioxidant ability against DNA strand-scission. The effects of altitude on skin tissue were further studied using a proteomic approach. Protein expression analysis of the mature fruits depicted altered expression of 42 proteins that are mainly involved in the metabolic pathways of defense, primary metabolism, destination/storage and energy. The majority of these proteins were up-regulated at the low-altitude region. High-altitude environment increased the accumulation of several proteins, including chaperone ClpC, chaperone ClpB, pyruvate dehydrogenase E1, TCP domain class transcription factor, and lipoxygenase. We also discuss the altitude-affected protein variations, taking into account their potential role in peach ripening process. This study provides the first characterization of the peach skin proteome and helps to improve our understanding of peach's response to altitude.
Collapse
Affiliation(s)
- Evangelos Karagiannis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Georgia Tanou
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | | | - Michail Michailidis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Grigorios Diamantidis
- Laboratory of Agricultural Chemistry, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
| | - Ioannis S. Minas
- Department of Horticulture and Landscape Architecture, Colorado State UniversityFort Collins, CO, USA
- Western Colorado Research Center at Orchard Mesa, Colorado State UniversityGrand Junction, CO, USA
| | - Athanassios Molassiotis
- Laboratory of Pomology, Department of Agriculture, Aristotle University of ThessalonikiThessaloniki, Greece
- *Correspondence: Athanassios Molassiotis
| |
Collapse
|
38
|
Zhang Y, De Stefano R, Robine M, Butelli E, Bulling K, Hill L, Rejzek M, Martin C, Schoonbeek HJ. Different Reactive Oxygen Species Scavenging Properties of Flavonoids Determine Their Abilities to Extend the Shelf Life of Tomato. PLANT PHYSIOLOGY 2015; 169:1568-83. [PMID: 26082399 PMCID: PMC4634045 DOI: 10.1104/pp.15.00346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 06/15/2015] [Indexed: 05/18/2023]
Abstract
The shelf life of tomato (Solanum lycopersicum) fruit is determined by the processes of overripening and susceptibility to pathogens. Postharvest shelf life is one of the most important traits for commercially grown tomatoes. We compared the shelf life of tomato fruit that accumulate different flavonoids and found that delayed overripening is associated with increased total antioxidant capacity caused by the accumulation of flavonoids in the fruit. However, reduced susceptibility to Botrytis cinerea, a major postharvest fungal pathogen of tomato, is conferred by specific flavonoids only. We demonstrate an association between flavonoid structure, selective scavenging ability for different free radicals, and reduced susceptibility to B. cinerea. Our study provides mechanistic insight into how flavonoids influence the shelf life, information that could be used to improve the shelf life of tomato and, potentially, other soft fruit.
Collapse
Affiliation(s)
- Yang Zhang
- John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.Z., R.D.S., M.Ro., E.B., K.B., L.H., M.Re., C.M., H.S.); andDepartment of Soil, Plant, Environmental, and Animal Sciences, University of Naples Federico II, 80138 Naples, Italy (R.D.S.)
| | - Rosalba De Stefano
- John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.Z., R.D.S., M.Ro., E.B., K.B., L.H., M.Re., C.M., H.S.); andDepartment of Soil, Plant, Environmental, and Animal Sciences, University of Naples Federico II, 80138 Naples, Italy (R.D.S.)
| | - Marie Robine
- John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.Z., R.D.S., M.Ro., E.B., K.B., L.H., M.Re., C.M., H.S.); andDepartment of Soil, Plant, Environmental, and Animal Sciences, University of Naples Federico II, 80138 Naples, Italy (R.D.S.)
| | - Eugenio Butelli
- John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.Z., R.D.S., M.Ro., E.B., K.B., L.H., M.Re., C.M., H.S.); andDepartment of Soil, Plant, Environmental, and Animal Sciences, University of Naples Federico II, 80138 Naples, Italy (R.D.S.)
| | - Katharina Bulling
- John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.Z., R.D.S., M.Ro., E.B., K.B., L.H., M.Re., C.M., H.S.); andDepartment of Soil, Plant, Environmental, and Animal Sciences, University of Naples Federico II, 80138 Naples, Italy (R.D.S.)
| | - Lionel Hill
- John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.Z., R.D.S., M.Ro., E.B., K.B., L.H., M.Re., C.M., H.S.); andDepartment of Soil, Plant, Environmental, and Animal Sciences, University of Naples Federico II, 80138 Naples, Italy (R.D.S.)
| | - Martin Rejzek
- John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.Z., R.D.S., M.Ro., E.B., K.B., L.H., M.Re., C.M., H.S.); andDepartment of Soil, Plant, Environmental, and Animal Sciences, University of Naples Federico II, 80138 Naples, Italy (R.D.S.)
| | - Cathie Martin
- John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.Z., R.D.S., M.Ro., E.B., K.B., L.H., M.Re., C.M., H.S.); andDepartment of Soil, Plant, Environmental, and Animal Sciences, University of Naples Federico II, 80138 Naples, Italy (R.D.S.)
| | - Henk-jan Schoonbeek
- John Innes Centre, Norwich NR4 7UH, United Kingdom (Y.Z., R.D.S., M.Ro., E.B., K.B., L.H., M.Re., C.M., H.S.); andDepartment of Soil, Plant, Environmental, and Animal Sciences, University of Naples Federico II, 80138 Naples, Italy (R.D.S.)
| |
Collapse
|
39
|
Tanou G, Minas IS, Karagiannis E, Tsikou D, Audebert S, Papadopoulou KK, Molassiotis A. The impact of sodium nitroprusside and ozone in kiwifruit ripening physiology: a combined gene and protein expression profiling approach. ANNALS OF BOTANY 2015; 116:649-662. [PMID: 26159933 DOI: 10.1093/aob/mcv107649-662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/29/2015] [Indexed: 05/26/2023]
Abstract
BACKGROUND AND AIMS Despite their importance in many aspects of plant physiology, information about the function of oxidative and, particularly, of nitrosative signalling in fruit biology is limited. This study examined the possible implications of O3 and sodium nitroprusside (SNP) in kiwifruit ripening, and their interacting effects. It also aimed to investigate changes in the kiwifruit proteome in response to SNP and O3 treatments, together with selected transcript analysis, as a way to enhance our understanding of the fruit ripening syndrome. METHODS Kiwifruits following harvest were pre-treated with 100 μm SNP, then cold-stored (0 °C, relative humidity 95 %) for either 2 or 6 months in the absence or in the presence of O3 (0·3 μL L(-1)), and subsequently were allowed to ripen at 20 °C. The ripening behaviour of fruit was characterized using several approaches: together with ethylene production, several genes, enzymes and metabolites involved in ethylene biosynthesis were analysed. Kiwifruit proteins were identified using 2-D electrophoresis coupled with nanoliquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Expression patterns of kiwifruit ripening-related genes were also analysed using real-time quantitative reverse transcription-PCR (RT-qPCR). KEY RESULTS O3 treatment markedly delayed fruit softening and depressed the ethylene biosynthetic mechanism. Although SNP alone was relatively ineffective in regulating ripening, SNP treatment prior to O3 exposure attenuated the O3-induced ripening inhibition. Proteomic analysis revealed a considerable overlap between proteins affected by both SNP and O3. Consistent with this, the temporal dynamics in the expression of selected kiwifruit ripening-related genes were noticeably different between individual O3 and combined SNP and O3 treatments. CONCLUSIONS This study demonstrates that O3-induced ripening inhibition could be reversed by SNP and provides insights into the interaction between oxidative and nitrosative signalling in climacteric fruit ripening.
Collapse
Affiliation(s)
- Georgia Tanou
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis S Minas
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Evangelos Karagiannis
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece and
| | - Stéphane Audebert
- CRCM, INSERM U1068, Institute Paoli-Calmettes, Aix-Marseille University, UM105, CNRS, UMR7258, 163 Luminy Av.F-13009 Marseille, France
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece and
| | - Athanassios Molassiotis
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece,
| |
Collapse
|
40
|
Tanou G, Minas IS, Karagiannis E, Tsikou D, Audebert S, Papadopoulou KK, Molassiotis A. The impact of sodium nitroprusside and ozone in kiwifruit ripening physiology: a combined gene and protein expression profiling approach. ANNALS OF BOTANY 2015; 116:649-62. [PMID: 26159933 PMCID: PMC4578001 DOI: 10.1093/aob/mcv107] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 05/29/2015] [Indexed: 05/02/2023]
Abstract
BACKGROUND AND AIMS Despite their importance in many aspects of plant physiology, information about the function of oxidative and, particularly, of nitrosative signalling in fruit biology is limited. This study examined the possible implications of O3 and sodium nitroprusside (SNP) in kiwifruit ripening, and their interacting effects. It also aimed to investigate changes in the kiwifruit proteome in response to SNP and O3 treatments, together with selected transcript analysis, as a way to enhance our understanding of the fruit ripening syndrome. METHODS Kiwifruits following harvest were pre-treated with 100 μm SNP, then cold-stored (0 °C, relative humidity 95 %) for either 2 or 6 months in the absence or in the presence of O3 (0·3 μL L(-1)), and subsequently were allowed to ripen at 20 °C. The ripening behaviour of fruit was characterized using several approaches: together with ethylene production, several genes, enzymes and metabolites involved in ethylene biosynthesis were analysed. Kiwifruit proteins were identified using 2-D electrophoresis coupled with nanoliquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. Expression patterns of kiwifruit ripening-related genes were also analysed using real-time quantitative reverse transcription-PCR (RT-qPCR). KEY RESULTS O3 treatment markedly delayed fruit softening and depressed the ethylene biosynthetic mechanism. Although SNP alone was relatively ineffective in regulating ripening, SNP treatment prior to O3 exposure attenuated the O3-induced ripening inhibition. Proteomic analysis revealed a considerable overlap between proteins affected by both SNP and O3. Consistent with this, the temporal dynamics in the expression of selected kiwifruit ripening-related genes were noticeably different between individual O3 and combined SNP and O3 treatments. CONCLUSIONS This study demonstrates that O3-induced ripening inhibition could be reversed by SNP and provides insights into the interaction between oxidative and nitrosative signalling in climacteric fruit ripening.
Collapse
Affiliation(s)
- Georgia Tanou
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Ioannis S Minas
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Evangelos Karagiannis
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Daniela Tsikou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece and
| | - Stéphane Audebert
- CRCM, INSERM U1068, Institute Paoli-Calmettes, Aix-Marseille University, UM105, CNRS, UMR7258, 163 Luminy Av.F-13009 Marseille, France
| | - Kalliope K Papadopoulou
- Department of Biochemistry and Biotechnology, University of Thessaly, 41221 Larissa, Greece and
| | - Athanassios Molassiotis
- School of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece,
| |
Collapse
|
41
|
Dawkar VV, Dholakia BB, Gupta VS. Agriproteomics of Bread Wheat: Comparative Proteomics and Network Analyses of Grain Size Variation. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2015; 19:372-82. [PMID: 26134253 DOI: 10.1089/omi.2015.0040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Agriproteomics signifies the merging of agriculture research and proteomics systems science and is impacting plant research and societal development. Wheat is a frequently consumed foodstuff, has highly variable grain size that in effect contributes to wheat grain yield and the end-product quality. Very limited information is available on molecular basis of grain size due to complex multifactorial nature of this trait. Here, using liquid chromatography-mass spectrometry, we investigated the proteomics profiles from grains of wheat genotypes, Rye selection 111 (RS111) and Chinese spring (CS), which differ in their size. Significant differences in protein expression were found, including 33 proteins uniquely present in RS111 and 32 only in CS, while 54 proteins were expressed from both genotypes. Among differentially expressed proteins, 22 were upregulated, while 21 proteins were downregulated in RS111 compared to CS. Functional classification revealed their role in energy metabolism, seed storage, stress tolerance and transcription. Further, protein interactive network analysis was performed to predict the targets of identified proteins. Significantly different interactions patterns were observed between these genotypes with detection of proteins such as Cyp450, Sus2, and WRKY that could potentially affect seed size. The present study illustrates the potentials of agriproteomics as a veritable new frontier of plant omics research.
Collapse
Affiliation(s)
- Vishal V Dawkar
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune, India
| | - Bhushan B Dholakia
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune, India
| | - Vidya S Gupta
- Plant Molecular Biology Unit, Division of Biochemical Sciences, CSIR-National Chemical Laboratory , Dr. Homi Bhabha Road, Pune, India
| |
Collapse
|
42
|
Glowacz M, Colgan R, Rees D. The use of ozone to extend the shelf-life and maintain quality of fresh produce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2015; 95:662-671. [PMID: 24913013 DOI: 10.1002/jsfa.6776] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2014] [Revised: 06/03/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
Fresh produce has been recognised as a healthy food, thus there is increasing consumer demand for fresh fruit and vegetables. The shelf-life of fresh produce, however, is relatively short and is limited by microbial contamination or visual, textural and nutritional quality loss. There are many methods to reduce/eliminate microorganisms present in food and ozone treatment is one of them. The use of ozone by the fresh produce industry is a good alternative to chemical treatments, e.g. the use of chlorine. The effectiveness of ozone as an antimicrobial agent has previously been reviewed and has been updated here, with the latest findings. The main focus of this review is on the effects of ozone on the fresh produce quality, defined by maintenance of texture, visual quality, taste and aroma, and nutritional content. Furthermore, ozone has been found to be efficient in reducing pesticide residues from the produce. The treatments that have the ability to reduce microbial contamination of the product without having an adverse effect on its visual, textural and nutritional quality can be recommended and subsequently incorporated into the supply chain. A good understanding of all the benefits and limitations related to the use of ozone is needed, and relevant information has been reviewed in this paper.
Collapse
Affiliation(s)
- Marcin Glowacz
- Natural Resources Institute, University of Greenwich, Chatham, Kent ME4 4TB, UK
| | | | | |
Collapse
|
43
|
Minas IS, Vicente AR, Dhanapal AP, Manganaris GA, Goulas V, Vasilakakis M, Crisosto CH, Molassiotis A. Ozone-induced kiwifruit ripening delay is mediated by ethylene biosynthesis inhibition and cell wall dismantling regulation. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 229:76-85. [PMID: 25443835 DOI: 10.1016/j.plantsci.2014.08.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 08/10/2014] [Accepted: 08/26/2014] [Indexed: 05/21/2023]
Abstract
Ozone treatments are used to preserve quality during cold storage of commercially important fruits due to its ethylene oxidizing capacity and its antimicrobial attributes. To address whether or not ozone also modulates ripening by directly affecting fruit physiology, kiwifruit (Actinidia deliciosa cv. 'Hayward') were stored in very low ethylene atmosphere at 0°C (95% RH) in air (control) or in the presence of ozone (0.3μLL(-1)) for 2 or 4 months and subsequently ripened at 20°C (90% RH) for up to 8d. Ozone-treated kiwifruit showed a significant delay of ripening during maintenance at 20°C, accompanied by a marked decrease in ethylene biosynthesis due to inhibited AdACS1 and AdACO1 expression and reduced ACC synthase (ACS) and ACC oxidase (ACO) enzyme activity. Furthermore, ozone-treated fruit exhibited a marked reduction in flesh softening and cell wall disassembly. This effect was associated with reduced cell wall swelling and pectin and neutral sugar solubilization and was correlated with the inhibition of cell wall degrading enzymes activity, such as polygalacturonase (PG) and endo-1,4-β-glucanase/1,4-β-glucosidase (EGase/glu). Conclusively, the present study indicated that ozone may exert major residual effects in fruit ripening physiology and suggested that ethylene biosynthesis and cell walls turnover are specifically targeted by ozone.
Collapse
Affiliation(s)
- Ioannis S Minas
- Department of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece; Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA 95616, United States; Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | - Ariel R Vicente
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus; Centro de Investigación y Desarrollo en Criotecnología de Alimentos, Facultad de Ciencias Exactas, CONICET-UNLP, 47 y 116, La Plata 1900, Argentina; LIPA, Laboratorio de Investigación en Productos Agroindustriales, Facultad de Ciencias Agrarias y Forestales Calle, 60 y 119, La Plata 1900, Argentina.
| | - Arun Prabhu Dhanapal
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA 95616, United States.
| | - George A Manganaris
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | - Vlasios Goulas
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, 3603 Lemesos, Cyprus.
| | - Miltiadis Vasilakakis
- Department of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.
| | - Carlos H Crisosto
- Department of Plant Sciences, University of California, Davis, One Shields Avenue, CA 95616, United States.
| | - Athanassios Molassiotis
- Department of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece.
| |
Collapse
|
44
|
Enhanced Photosynthesis and Carbon Metabolism Favor Arsenic Tolerance in Artemisia annua, a Medicinal Plant as Revealed by Homology-Based Proteomics. INTERNATIONAL JOURNAL OF PROTEOMICS 2014; 2014:163962. [PMID: 24868464 PMCID: PMC4020366 DOI: 10.1155/2014/163962] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Accepted: 02/03/2014] [Indexed: 12/24/2022]
Abstract
This paper provides the first proteomic evidence of arsenic (As) tolerance and interactive regulatory network between primary and secondary metabolism in the medicinal plant, Artemisia annua. While chlorophyll fluorescence and photosynthetic rate depicted mild inhibition, there was a significant enhancement in PSI activity, whole chain, ATP, and NADPH contents in 100 μM As treatments compared to the control plants. However, a decrease in the above variables was recorded under 150 μM treatments. Proteomic decoding of the survival strategy of A. annua under As stress using 2-DE followed by MALDI-MS/MS revealed a total of 46 differentially expressed protein spots. In contrast to other plants where As inhibits photosynthesis, A. annua showed appreciable photosynthetic CO2 assimilation and allocation of carbon resources at 100 μM As concentration. While an increased accumulation of ATP synthase, ferredoxin-NADP(H) oxidoreductase, and FeS-rieske proteins supported the operation of cyclic electron transport, mdr ABC transporter protein and pcs gene might be involved in As detoxification. The most interesting observation was an increased accumulation of LEAFY like novel protein conceivably responsible for an early onset of flowering in A. annua under As stress. This study not only affirmed the role of energy metabolism proteins but also identified potential candidates responsible for As tolerance in plants.
Collapse
|
45
|
Tanou G, Ziogas V, Belghazi M, Christou A, Filippou P, Job D, Fotopoulos V, Molassiotis A. Polyamines reprogram oxidative and nitrosative status and the proteome of citrus plants exposed to salinity stress. PLANT, CELL & ENVIRONMENT 2014; 37:864-85. [PMID: 24112028 DOI: 10.1111/pce.12204] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 09/11/2013] [Accepted: 09/12/2013] [Indexed: 05/02/2023]
Abstract
The interplay among polyamines (PAs) and reactive oxygen and nitrogen species (RNS and ROS) is emerging as a key issue in plant responses to salinity. To address this question, we analysed the impact of exogenous PAs [putrescine (Put), spermidine (Spd) and spermine (Spm)] on the oxidative and nitrosative status in citrus plants exposed to salinity. PAs partially reversed the NaCl-induced phenotypic and physiological disturbances. The expression of PA biosynthesis (ADC, SAMDC, SPDS and SPMS) and catabolism (DAO and PAO) genes was systematically up-regulated by PAs. In addition, PAs altered the oxidative status in salt-stressed plants as inferred by changes in ROS production and redox status accompanied by regulation of transcript expression and activities of various antioxidant enzymes. Furthermore, NaCl-induced up-regulation of NO-associated genes, such as NR, NADde, NOS-like and AOX, along with S-nitrosoglutathione reductase and nitrate reductase activities, was partially restored by PAs. Protein carbonylation and tyrosine nitration are depressed by specific PAs whereas protein S-nitrosylation was elicited by all PAs. Furthermore, we identified 271 S-nitrosylated proteins that were commonly or preferentially targeted by salinity and individual PAs. This work helps improve our knowledge on the plant's response to environmental challenge.
Collapse
Affiliation(s)
- Georgia Tanou
- Faculty of Agriculture, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Molassiotis A, Tanou G, Filippou P, Fotopoulos V. Proteomics in the fruit tree science arena: new insights into fruit defense, development, and ripening. Proteomics 2014; 13:1871-84. [PMID: 23986917 DOI: 10.1002/pmic.201200428] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Fruit tree crops are agricultural commodities of high economic importance, while fruits also represent one of the most vital components of the human diet. Therefore, a great effort has been made to understand the molecular mechanisms covering fundamental biological processes in fruit tree physiology and fruit biology. Thanks to the development of cutting-edge "omics" technologies such as proteomic analysis, scientists now have powerful tools to support traditional fruit tree research. Such proteomic analyses are establishing high-density 2DE reference maps and peptide mass fingerprint databases that can lead fruit science into a new postgenomic research era. Here, an overview of the application of proteomics in key aspects of fruit tree physiology as well as in fruit biology, including defense responses to abiotic and biotic stress factors, is presented. A panoramic view of ripening-related proteins is also discussed, as an example of proteomic application in fruit science.
Collapse
|
47
|
Li MW, Qi X, Ni M, Lam HM. Silicon era of carbon-based life: application of genomics and bioinformatics in crop stress research. Int J Mol Sci 2013; 14:11444-83. [PMID: 23759993 PMCID: PMC3709742 DOI: 10.3390/ijms140611444] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 05/07/2013] [Accepted: 05/17/2013] [Indexed: 01/25/2023] Open
Abstract
Abiotic and biotic stresses lead to massive reprogramming of different life processes and are the major limiting factors hampering crop productivity. Omics-based research platforms allow for a holistic and comprehensive survey on crop stress responses and hence may bring forth better crop improvement strategies. Since high-throughput approaches generate considerable amounts of data, bioinformatics tools will play an essential role in storing, retrieving, sharing, processing, and analyzing them. Genomic and functional genomic studies in crops still lag far behind similar studies in humans and other animals. In this review, we summarize some useful genomics and bioinformatics resources available to crop scientists. In addition, we also discuss the major challenges and advancements in the "-omics" studies, with an emphasis on their possible impacts on crop stress research and crop improvement.
Collapse
Affiliation(s)
- Man-Wah Li
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Xinpeng Qi
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Meng Ni
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| | - Hon-Ming Lam
- Center for Soybean Research, State Key Laboratory of Agrobiotechnology and School of Life Sciences, the Chinese University of Hong Kong, Shatin, N.T., Hong Kong; E-Mails: (M.-W.L.); (X.Q.); (M.N.)
| |
Collapse
|
48
|
Pedreschi R, Lurie S, Hertog M, Nicolaï B, Mes J, Woltering E. Post-harvest proteomics and food security. Proteomics 2013; 13:1772-83. [PMID: 23483703 DOI: 10.1002/pmic.201200387] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 10/27/2012] [Accepted: 11/11/2012] [Indexed: 12/12/2022]
Abstract
To guarantee sufficient food supply for a growing world population, efforts towards improving crop yield and plant resistance should be complemented with efforts to reduce post-harvest losses. Post-harvest losses are substantial and occur at different stages of the food chain in developed and developing countries. In recent years, a substantially increasing interest can be seen in the application of proteomics to understand post-harvest events. In the near future post-harvest proteomics will be poised to move from fundamental research to aiding the reduction of food losses. Proteomics research can help in reducing food losses through (i) identification and validation of gene products associated to specific quality traits supporting marker-assisted crop improvement programmes, (ii) delivering markers of initial quality that allow optimisation of distribution conditions and prediction of remaining shelf-life for decision support systems and (iii) delivering early detection tools of physiological or pathogen-related post-harvest problems. In this manuscript, recent proteomics studies on post-harvest and stress physiology are reviewed and discussed. Perspectives on future directions of post-harvest proteomics studies aiming to reduce food losses are presented.
Collapse
Affiliation(s)
- Romina Pedreschi
- Food & Biobased Research Centre, Wageningen University, Wageningen, The Netherlands.
| | | | | | | | | | | |
Collapse
|
49
|
Miller FA, Silva CLM, Brandão TRS. A Review on Ozone-Based Treatments for Fruit and Vegetables Preservation. FOOD ENGINEERING REVIEWS 2013. [DOI: 10.1007/s12393-013-9064-5] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
50
|
Chan Z. Proteomic responses of fruits to environmental stresses. FRONTIERS IN PLANT SCIENCE 2013; 3:311. [PMID: 23335934 PMCID: PMC3541545 DOI: 10.3389/fpls.2012.00311] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/24/2012] [Indexed: 05/18/2023]
Abstract
Fruits and vegetables are extremely susceptible to decay and easily lose commercial value after harvest. Different strategies have been developed to control postharvest decay and prevent quality deterioration during postharvest storage, including cold storage, controlled atmosphere (CA), and application of biotic and abiotic stimulus. In this review, mechanisms related to protein level responses of host side and pathogen side were characterized. Protein extraction protocols have been successfully developed for recalcitrant, low protein content fruit tissues. Comparative proteome profiling and functional analysis revealed that defense related proteins, energy metabolism, and antioxidant pathway played important roles in fruits in response to storage conditions and exogenous elicitor treatments. Secretome of pathogenic fungi has been well-investigated and the results indicated that hydrolytic enzymes were the key virulent factors for the pathogen infection. These protein level changes shed new light on interaction among fruits, pathogens, and environmental conditions. Potential postharvest strategies to reduce risk of fruit decay were further proposed based on currently available proteomic data.
Collapse
Affiliation(s)
- Zhulong Chan
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|