1
|
Sharma A, Samtani H, Laxmi A. Molecular dialogue between light and temperature signalling in plants: from perception to thermotolerance. JOURNAL OF EXPERIMENTAL BOTANY 2025; 76:677-694. [PMID: 39167699 DOI: 10.1093/jxb/erae356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 08/20/2024] [Indexed: 08/23/2024]
Abstract
Light and temperature are the two most variable environmental signals that regulate plant growth and development. Plants in the natural environment usually encounter warmer temperatures during the day and cooler temperatures at night, suggesting both light and temperature are closely linked signals. Due to global warming, it has become important to understand how light and temperature signalling pathways converge and regulate plant development. This review outlines the diverse mechanisms of light and temperature perception, and downstream signalling, with an emphasis on their integration and interconnection. Recent research has highlighted the regulation of thermomorphogenesis by photoreceptors and their downstream light signalling proteins under different light conditions, and circadian clock components at warm temperatures. Here, we comprehensively describe these studies and demonstrate their connection with plant developmental responses. We also explain how the gene signalling pathways of photomorphogenesis and thermomorphogenesis are interconnected with the heat stress response to mediate thermotolerance, revealing new avenues to manipulate plants for climate resilience. In addition, the role of sugars as signalling molecules between light and temperature signalling pathways is also highlighted. Thus, we envisage that such detailed knowledge will enhance the understanding of how plants perceive light and temperature cues simultaneously and bring about responses that help in their adaptation.
Collapse
Affiliation(s)
- Aishwarye Sharma
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Harsha Samtani
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| | - Ashverya Laxmi
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi-110067, India
| |
Collapse
|
2
|
Zhu K, Zhang Y, Shen W, Yu L, Li D, Zhang H, Miao C, Ding X, Jiang Y. Genome-Wide Analysis and Expression Profiling of Glyoxalase Gene Families Under Abiotic Stresses in Cucumber ( Cucumis sativus L.). Int J Mol Sci 2024; 25:11294. [PMID: 39457076 PMCID: PMC11508195 DOI: 10.3390/ijms252011294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 10/28/2024] Open
Abstract
The glyoxalase pathway, consisting of glyoxalase I (GLYI) and glyoxalase II (GLYII), is an enzymatic system that converts cytotoxic methylglyoxal to non-toxic S-D-lactoylglutathione. Although the GLY gene family has been analyzed in Arabidopsis, rice, grape, cabbage, and soybean, cucumber studies are lacking. Here, we analyzed the cucumber GLY gene family, identifying 13 CsGLYI and 2 CsGLYII genes. Furthermore, we investigated the physicochemical properties, phylogenetic relationships, chromosomal localization and colinearity, gene structure, conserved motifs, cis-regulatory elements, and protein-protein interaction networks of the CsGLY family. They were primarily localized in the cytoplasm, chloroplasts, and mitochondria, with a minor presence in the nucleus. The classification of CsGLYI and CsGLYII genes into five classes closely resembled the homologous genes in Arabidopsis and soybean. Additionally, hormone-responsive elements dominated the promoter region of GLY genes, alongside light- and stress-responsive elements. The predicted interaction proteins of CsGLYIs and CsGLYIIs exerted a significant role in cellular respiration, amino acid synthesis, and metabolism, as well as methylglyoxal catabolism. In addition, the expression profiles of GLY genes were distinct in different tissues of cucumber as well as under diverse abiotic stresses. This study is conducive to the further exploration of the functional diversity among glyoxalase genes and the mechanisms of stress responses in cucumber.
Collapse
Affiliation(s)
- Kaili Zhu
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (K.Z.); (L.Y.); (D.L.); (H.Z.)
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Yongxue Zhang
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Weiyao Shen
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
- College of Life Sciences, Shanghai Normal University, Shanghai 200234, China
| | - Lishu Yu
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (K.Z.); (L.Y.); (D.L.); (H.Z.)
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Dandan Li
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (K.Z.); (L.Y.); (D.L.); (H.Z.)
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Haoyu Zhang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (K.Z.); (L.Y.); (D.L.); (H.Z.)
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Chen Miao
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Xiaotao Ding
- Shanghai Key Laboratory of Protected Horticulture Technology, Horticultural Research Institute, Shanghai Academy of Agricultural Science, Shanghai 201403, China; (Y.Z.); (W.S.); (C.M.)
| | - Yuping Jiang
- College of Ecological Technology and Engineering, Shanghai Institute of Technology, Shanghai 201418, China; (K.Z.); (L.Y.); (D.L.); (H.Z.)
| |
Collapse
|
3
|
Balcke GU, Vahabi K, Giese J, Finkemeier I, Tissier A. Coordinated metabolic adaptation of Arabidopsis thaliana to high light. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:387-405. [PMID: 39175460 DOI: 10.1111/tpj.16992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 07/03/2024] [Accepted: 08/05/2024] [Indexed: 08/24/2024]
Abstract
SUMMARYIn plants, exposure to high light irradiation induces various stress responses, which entail complex metabolic rearrangements. To explore these dynamics, we conducted time‐course experiments spanning 2 min to 72 h with Arabidopsis thaliana under high and control light. Comparative metabolomics, transcriptomics, redox proteomics, and stable isotope labeling on leaf rosettes identified a series of synchronous and successive responses that provide a deeper insight into well‐orchestrated mechanisms contributing to high‐light acclimation. We observed transient transcriptome downregulation related to light harvesting and electron flow before the profound remodeling of the photosynthetic apparatus. Throughout the entire time course, redox homeostasis is tightly balanced between downregulation of production and enhanced transformation of NADPH accompanied by redistribution of reducing equivalents across several subcellular compartments. In both light conditions, C4 acids such as malate and fumarate are produced via anaplerosis. In carbon units, their accumulation in vacuoles surpasses plastidic levels of starch and intensifies notably under high light. In parallel, citrate synthesis from pyruvate is significantly hindered diurnally. Isotopic labeling in 2‐oxoglutarate and glutamate suggests a moderate de novo synthesis of C5 acids from a vacuolar citrate reservoir during the light phase while they are largely renewed during the night. In the absence of a diurnal clockwise flow through the tricarboxylic acid (TCA) cycle, increased oxidation of photorespiratory glycine takes over as a source of reductants to fuel mitochondrial ATP production. These findings, along with previous research, contribute to a model integrating redox balance and linking increased carbon assimilation and nitrogen metabolism, especially in the context of an incomplete TCA cycle.
Collapse
Affiliation(s)
- Gerd Ulrich Balcke
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Khabat Vahabi
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| | - Jonas Giese
- Institute for Plant Biology and Biotechnology (IBBP), University of Muenster, Schlossplatz 7, D-48149, Münster, Germany
| | - Iris Finkemeier
- Institute for Plant Biology and Biotechnology (IBBP), University of Muenster, Schlossplatz 7, D-48149, Münster, Germany
| | - Alain Tissier
- Department of Cell and Metabolic Biology, Leibniz Institute of Plant Biochemistry, Weinberg 3, D-06120, Halle (Saale), Germany
| |
Collapse
|
4
|
Kitashova A, Brodsky V, Chaturvedi P, Pierides I, Ghatak A, Weckwerth W, Nägele T. Quantifying the impact of dynamic plant-environment interactions on metabolic regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 290:154116. [PMID: 37839392 DOI: 10.1016/j.jplph.2023.154116] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/17/2023]
Abstract
A plant's genome encodes enzymes, transporters and many other proteins which constitute metabolism. Interactions of plants with their environment shape their growth, development and resilience towards adverse conditions. Although genome sequencing technologies and applications have experienced triumphantly rapid development during the last decades, enabling nowadays a fast and cheap sequencing of full genomes, prediction of metabolic phenotypes from genotype × environment interactions remains, at best, very incomplete. The main reasons are a lack of understanding of how different levels of molecular organisation depend on each other, and how they are constituted and expressed within a setup of growth conditions. Phenotypic plasticity, e.g., of the genetic model plant Arabidopsis thaliana, has provided important insights into plant-environment interactions and the resulting genotype x phenotype relationships. Here, we summarize previous and current findings about plant development in a changing environment and how this might be shaped and reflected in metabolism and its regulation. We identify current challenges in the study of plant development and metabolic regulation and provide an outlook of how methodological workflows might support the application of findings made in model systems to crops and their cultivation.
Collapse
Affiliation(s)
- Anastasia Kitashova
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Vladimir Brodsky
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| | - Palak Chaturvedi
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Iro Pierides
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Arindam Ghatak
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Wolfram Weckwerth
- University of Vienna, Molecular Systems Biology Lab (MOSYS), Department of Functional and Evolutionary Ecology, Faculty of Life Sciences, Djerassiplatz 1, 1030, Vienna, Austria; Vienna Metabolomics Center, University of Vienna, Djerassiplatz 1, 1030, Vienna, Austria.
| | - Thomas Nägele
- LMU Munich, Faculty of Biology, Plant Evolutionary Cell Biology, 82152, Planegg, Germany.
| |
Collapse
|
5
|
Aarabi F, Ghigi A, Ahchige MW, Bulut M, Geigenberger P, Neuhaus HE, Sampathkumar A, Alseekh S, Fernie AR. Genome-wide association study unveils ascorbate regulation by PAS/LOV PROTEIN during high light acclimation. PLANT PHYSIOLOGY 2023; 193:2037-2054. [PMID: 37265123 PMCID: PMC10602610 DOI: 10.1093/plphys/kiad323] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/10/2023] [Accepted: 05/10/2023] [Indexed: 06/03/2023]
Abstract
Varying light conditions elicit metabolic responses as part of acclimation with changes in ascorbate levels being an important component. Here, we adopted a genome-wide association-based approach to characterize the response in ascorbate levels on high light (HL) acclimation in a panel of 315 Arabidopsis (Arabidopsis thaliana) accessions. These studies revealed statistically significant SNPs for total and reduced ascorbate under HL conditions at a locus in chromosome 2. Ascorbate levels under HL and the region upstream and within PAS/LOV PROTEIN (PLP) were strongly associated. Intriguingly, subcellular localization analyses revealed that the PLPA and PLPB splice variants co-localized with VITAMIN C DEFECTIVE2 (VTC2) and VTC5 in both the cytosol and nucleus. Yeast 2-hybrid and bimolecular fluorescence complementation analyses revealed that PLPA and PLPB interact with VTC2 and that blue light diminishes this interaction. Furthermore, PLPB knockout mutants were characterized by 1.5- to 1.7-fold elevations in their ascorbate levels, whereas knockout mutants of the cry2 cryptochromes displayed 1.2- to 1.3-fold elevations compared to WT. Our results collectively indicate that PLP plays a critical role in the elevation of ascorbate levels, which is a signature response of HL acclimation. The results strongly suggest that this is achieved via the release of the inhibitory effect of PLP on VTC2 upon blue light illumination, as the VTC2-PLPB interaction is stronger under darkness. The conditional importance of the cryptochrome receptors under different environmental conditions suggests a complex hierarchy underpinning the environmental control of ascorbate levels. However, the data we present here clearly demonstrate that PLP dominates during HL acclimation.
Collapse
Affiliation(s)
- Fayezeh Aarabi
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Andrea Ghigi
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Micha Wijesingha Ahchige
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Mustafa Bulut
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Peter Geigenberger
- Department Biology I, Ludwig-Maximilians-University Munich, Planegg-Martinsried 82152, Germany
| | - H Ekkehard Neuhaus
- Plant Physiology, University of Kaiserslautern, Kaiserslautern D-67653, Germany
| | - Arun Sampathkumar
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Saleh Alseekh
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Crop Quantitative Genetics, Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| | - Alisdair R Fernie
- Central Metabolism, Max-Planck-Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
- Crop Quantitative Genetics, Centre of Plant Systems Biology and Biotechnology, Plovdiv 4000, Bulgaria
| |
Collapse
|
6
|
Telli M, Ünlü ES. Comparative de novo transcriptome analysis and random UV mutagenesis: application in high biomass and astaxanthin production enhancement for Haematococcus pluvialis. Mol Biol Rep 2023; 50:8133-8143. [PMID: 37550538 DOI: 10.1007/s11033-023-08722-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 07/28/2023] [Indexed: 08/09/2023]
Abstract
BACKGROUND Astaxanthin is a natural carotenoid with strong antioxidant capacity. The high demand on astaxanthin by cosmetic, food, pharmaceutical and aquaculture industries promote its value in the biotechnological research. Haematococcus pluvialis Flotow 1844 has been characterized as one of the most promising species for natural astaxanthin biosynthesis. Even though H. pluvialis as an advantage in producing astaxanthin, its slow grow-yield limits usage of the species for large-scale production. METHODS AND RESULTS In this study we generated mutated H. pluvialis strain by using one-step random UV mutagenesis approach for higher biomass production in the green flagellated period and in turn higher astaxanthin accumulation in red stage per unit algae harvest. Isolated mutant strains were tested for the astaxanthin accumulation and yield of biomass. Among tested strains only mutant strain designated as only MT-3-7-2 showed a consistent and higher growth pattern, the rest had shown a fluctuated and then decreased growth rate than wild type. To demonstrate the phenotypical changes in MT-3-7-2 is associated with transcriptome, we carried out comparative analysis of transcriptome profiles between MT-3-7-2 and the wild type strains. De novo assembly was carried out to obtain the transcripts. Differential expression levels for the transcripts were evaluated by functional annotation analysis. CONCLUSIONS Data showed that increased biomass for the MT-3-7-2 strain was different from wild type with expression of transcripts upregulated in carbohydrate metabolism and downregulated in lipid metabolisms. Our data suggests a switching mechanism is enrolled between carbohydrate and lipid metabolism to regulate cell proliferation and stress responses.
Collapse
Affiliation(s)
- Murat Telli
- Faculty of Art and Science, Department of Biology, Bolu Abant İzzet Baysal University, 14280, Bolu, Turkey.
| | - Ercan Selçuk Ünlü
- Faculty of Art and Science, Department of Chemistry, Bolu Abant İzzet Baysal University, 14280, Bolu, Turkey
| |
Collapse
|
7
|
Segarra-Medina C, Alseekh S, Fernie AR, Rambla JL, Pérez-Clemente RM, Gómez-Cádenas A, Zandalinas SI. Abscisic acid promotes plant acclimation to the combination of salinity and high light stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108008. [PMID: 37690143 DOI: 10.1016/j.plaphy.2023.108008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/24/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
Plants encounter combinations of different abiotic stresses such as salinity (S) and high light (HL). These environmental conditions have a detrimental effect on plant growth and development, posing a threat to agricultural production. Metabolic changes play a crucial role in enabling plants to adapt to fluctuations in their environment. Furthermore, hormones such as abscisic acid (ABA), jasmonic acid (JA) and salicylic acid (SA) have been previously identified as regulators of plant responses to different abiotic stresses. Here we studied the response of Arabidopsis wild type (Col and Ler) plants and mutants impaired in hormone biosynthesis (aba2-11 and aba1-1 in ABA, aos in JA and sid2 in SA) to the combination of S and HL (S + HL). Our findings showed that aba2-11 plants displayed reduced growth, impaired photosystem II (PSII) function, increased leaf damage, and decreased survival compared to Col when subjected to stress combination. However, aos and sid2 mutants did not display significant changes in response to S + HL compared to Col, indicating a key role for ABA in promoting plant tolerance to S + HL and suggesting a marginal role for JA and SA in this process. In addition, we revealed differences in the metabolic response of plants to S + HL compared to S or HL. The analysis of altered metabolic pathways under S + HL suggested that the accumulation of flavonoids is ABA-dependent, whereas the accumulation of branched-chain amino acids (BCAAs) and proline is ABA-independent. Therefore, our study uncovered a key function for ABA in regulating the accumulation of different flavonoids in plants during S + HL.
Collapse
Affiliation(s)
- Clara Segarra-Medina
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Saleh Alseekh
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam, Germany; Center of Plant Systems Biology and Biotechnology, 4000, Plovdiv, Bulgaria
| | - José L Rambla
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Rosa M Pérez-Clemente
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain
| | - Aurelio Gómez-Cádenas
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain.
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Natural Sciences, Universitat Jaume I, 12071, Castellón, Spain.
| |
Collapse
|
8
|
Li D, Ye G, Li J, Lai Z, Ruan S, Qi Q, Wang Z, Duan S, Jin HL, Wang HB. High light triggers flavonoid and polysaccharide synthesis through DoHY5-dependent signaling in Dendrobium officinale. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:1114-1133. [PMID: 37177908 DOI: 10.1111/tpj.16284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 04/25/2023] [Accepted: 05/02/2023] [Indexed: 05/15/2023]
Abstract
Dendrobium officinale is edible and has medicinal and ornamental functions. Polysaccharides and flavonoids, including anthocyanins, are important components of D. officinale that largely determine the nutritional quality and consumer appeal. There is a need to study the molecular mechanisms regulating anthocyanin and polysaccharide biosynthesis to enhance D. officinale quality and its market value. Here, we report that high light (HL) induced the accumulation of polysaccharides, particularly mannose, as well as anthocyanin accumulation, resulting in red stems. Metabolome and transcriptome analyses revealed that most of the flavonoids showed large changes in abundance, and flavonoid and polysaccharide biosynthesis was significantly activated under HL treatment. Interestingly, DoHY5 expression was also highly induced. Biochemical analyses demonstrated that DoHY5 directly binds to the promoters of DoF3H1 (involved in anthocyanin biosynthesis), DoGMPP2, and DoPMT28 (involved in polysaccharide biosynthesis) to activate their expression, thereby promoting anthocyanin and polysaccharide accumulation in D. officinale stems. DoHY5 silencing decreased flavonoid- and polysaccharide-related gene expression and reduced anthocyanin and polysaccharide accumulation, whereas DoHY5 overexpression had the opposite effects. Notably, naturally occurring red-stemmed D. officinale plants similarly have high levels of anthocyanin and polysaccharide accumulation and biosynthesis gene expression. Our results reveal a previously undiscovered role of DoHY5 in co-regulating anthocyanin and polysaccharide biosynthesis under HL conditions, improving our understanding of the mechanisms regulating stem color and determining nutritional quality in D. officinale. Collectively, our results propose a robust and simple strategy for significantly increasing anthocyanin and polysaccharide levels and subsequently improving the nutritional quality of D. officinale.
Collapse
Affiliation(s)
- Dongxiao Li
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Guangying Ye
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Jie Li
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhenqin Lai
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Siyou Ruan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Qi Qi
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zaihua Wang
- Guangdong Provincial Key Lab of Ornamental Plant Germplasm Innovation and Utilization, Environmental Horticulture Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, 510640, China
| | - Sujuan Duan
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hong-Lei Jin
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Guangzhou Key Laboratory of Chinese Medicine Research on Prevention and Treatment of Osteoporosis, The Third Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510375, China
| | - Hong-Bin Wang
- Institute of Medical Plant Physiology and Ecology, School of Pharmaceutical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Key Laboratory of Chinese Medicinal Resource from Lingnan (Guangzhou University of Chinese Medicine), Ministry of Education, Guangzhou, 510006, China
| |
Collapse
|
9
|
Richter AS, Nägele T, Grimm B, Kaufmann K, Schroda M, Leister D, Kleine T. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond. PLANT COMMUNICATIONS 2023; 4:100511. [PMID: 36575799 PMCID: PMC9860301 DOI: 10.1016/j.xplc.2022.100511] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2022] [Revised: 12/05/2022] [Accepted: 12/22/2022] [Indexed: 06/01/2023]
Abstract
Plastids communicate their developmental and physiological status to the nucleus via retrograde signaling, allowing nuclear gene expression to be adjusted appropriately. Signaling during plastid biogenesis and responses of mature chloroplasts to environmental changes are designated "biogenic" and "operational" controls, respectively. A prominent example of the investigation of biogenic signaling is the screen for gun (genomes uncoupled) mutants. Although the first five gun mutants were identified 30 years ago, the functions of GUN proteins in retrograde signaling remain controversial, and that of GUN1 is hotly disputed. Here, we provide background information and critically discuss recently proposed concepts that address GUN-related signaling and some novel gun mutants. Moreover, considering heme as a candidate in retrograde signaling, we revisit the spatial organization of heme biosynthesis and export from plastids. Although this review focuses on GUN pathways, we also highlight recent progress in the identification and elucidation of chloroplast-derived signals that regulate the acclimation response in green algae and plants. Here, stress-induced accumulation of unfolded/misassembled chloroplast proteins evokes a chloroplast-specific unfolded protein response, which leads to changes in the expression levels of nucleus-encoded chaperones and proteases to restore plastid protein homeostasis. We also address the importance of chloroplast-derived signals for activation of flavonoid biosynthesis leading to production of anthocyanins during stress acclimation through sucrose non-fermenting 1-related protein kinase 1. Finally, a framework for identification and quantification of intercompartmental signaling cascades at the proteomic and metabolomic levels is provided, and we discuss future directions of dissection of organelle-nucleus communication.
Collapse
Affiliation(s)
- Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Str. 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Plant Evolutionary Cell Biology, Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Bernhard Grimm
- Institute of Biology/Plant Physiology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Kerstin Kaufmann
- Plant Cell and Molecular Biology, Institute of Biology, Humboldt-Universität zu Berlin, Philippstr. 13, 10115 Berlin, Germany
| | - Michael Schroda
- Molecular Biotechnology and Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Dario Leister
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology (Botany), Faculty of Biology, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
10
|
Zirngibl ME, Araguirang GE, Kitashova A, Jahnke K, Rolka T, Kühn C, Nägele T, Richter AS. Triose phosphate export from chloroplasts and cellular sugar content regulate anthocyanin biosynthesis during high light acclimation. PLANT COMMUNICATIONS 2023; 4:100423. [PMID: 35962545 PMCID: PMC9860169 DOI: 10.1016/j.xplc.2022.100423] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 07/22/2022] [Accepted: 08/09/2022] [Indexed: 05/07/2023]
Abstract
Plants have evolved multiple strategies to cope with rapid changes in the environment. During high light (HL) acclimation, the biosynthesis of photoprotective flavonoids, such as anthocyanins, is induced. However, the exact nature of the signal and downstream factors for HL induction of flavonoid biosynthesis (FB) is still under debate. Here, we show that carbon fixation in chloroplasts, subsequent export of photosynthates by triose phosphate/phosphate translocator (TPT), and rapid increase in cellular sugar content permit the transcriptional and metabolic activation of anthocyanin biosynthesis during HL acclimation. In combination with genetic and physiological analysis, targeted and whole-transcriptome gene expression studies suggest that reactive oxygen species and phytohormones play only a minor role in rapid HL induction of the anthocyanin branch of FB. In addition to transcripts of FB, sugar-responsive genes showed delayed repression or induction in tpt-2 during HL treatment, and a significant overlap with transcripts regulated by SNF1-related protein kinase 1 (SnRK1) was observed, including a central transcription factor of FB. Analysis of mutants with increased and repressed SnRK1 activity suggests that sugar-induced inactivation of SnRK1 is required for HL-mediated activation of anthocyanin biosynthesis. Our study emphasizes the central role of chloroplasts as sensors for environmental changes as well as the vital function of sugar signaling in plant acclimation.
Collapse
Affiliation(s)
- Max-Emanuel Zirngibl
- Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Galileo Estopare Araguirang
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany; Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Anastasia Kitashova
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg-Martinsried, Germany
| | - Kathrin Jahnke
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Tobias Rolka
- Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany
| | - Christine Kühn
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany
| | - Thomas Nägele
- Ludwig-Maximilians-Universität München, Faculty of Biology, Plant Evolutionary Cell Biology, 82152 Planegg-Martinsried, Germany
| | - Andreas S Richter
- University of Rostock, Institute for Biosciences, Physiology of Plant Metabolism, Albert-Einstein-Strasse 3, 18059 Rostock, Germany; Humboldt-Universität zu Berlin, Institute of Biology, Physiology of Plant Cell Organelles, Philippstrasse 13, 10115 Berlin, Germany.
| |
Collapse
|
11
|
Araguirang GE, Richter AS. Activation of anthocyanin biosynthesis in high light - what is the initial signal? THE NEW PHYTOLOGIST 2022; 236:2037-2043. [PMID: 36110042 DOI: 10.1111/nph.18488] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
Due to their sessile nature, plants cannot escape adverse environmental conditions and evolved mechanisms to cope with sudden environmental changes. The reaction to variations in abiotic factors, also summarized as acclimation response, affects all layers of cellular functions and involves rapid modification of enzymatic activities, the metabolome, proteome and transcriptome on different timescales. One trait of plants acclimating to high light (HL) is the rapid transcriptional activation of the flavonoid biosynthesis (FB) pathway resulting in the accumulation of photoprotective and antioxidative flavonoids, such as flavonols and anthocyanins, in the leaf tissue. Although enormous progress has been made in identifying enzymes and transcriptional regulators of FB by forward and reverse genetic approaches in the past, the signals and signalling pathways permitting the conditional activation of FB in HL are still debated. With this Tansley Insight, we summarize the current knowledge on the proposed signals and downstream factors involved in regulating FB and will discuss their contribution to, particularly, HL-induced accumulation of anthocyanins.
Collapse
Affiliation(s)
- Galileo Estopare Araguirang
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| | - Andreas S Richter
- Physiology of Plant Metabolism, Institute for Biosciences, University of Rostock, Albert-Einstein-Strasse 3, 18059, Rostock, Germany
| |
Collapse
|
12
|
Zepeda AC, Heuvelink E, Marcelis LFM. Non-structural carbohydrate dynamics and growth in tomato plants grown at fluctuating light and temperature. FRONTIERS IN PLANT SCIENCE 2022; 13:968881. [PMID: 36262659 PMCID: PMC9574331 DOI: 10.3389/fpls.2022.968881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 08/19/2022] [Indexed: 06/16/2023]
Abstract
Fluctuations in light intensity and temperature lead to periods of asynchrony between carbon (C) supply by photosynthesis and C demand by the plant organs. Storage and remobilization of non-structural carbohydrates (NSC) are important processes that allow plants to buffer these fluctuations. We aimed to test the hypothesis that C storage and remobilization can buffer the effects of temperature and light fluctuations on growth of tomato plants. Tomato plants were grown at temperature amplitudes of 3 or 10°C (deviation around the mean of 22°C) combined with integration periods (IP) of 2 or 10 days. Temperature and light were applied in Phase (high temperature simultaneously with high light intensity, (400 μmol m-2 s-1), low temperature simultaneously with low light intensity (200 μmol m-2 s-1) or in Antiphase (high temperature with low light intensity, low temperature with high light intensity). A control treatment with constant temperature (22°C) and a constant light intensity (300 μmol m-2 s-1) was also applied. After 20 days all treatments had received the same temperature and light integral. Differences in final structural dry weight were relatively small, while NSC concentrations were highly dynamic and followed changes of light and temperature (a positive correlation with decreasing temperature and increasing light intensity). High temperature and low light intensity lead to depletion of the NSC pool, but NSC level never dropped below 8% of the plant weight and this fraction was not mobilizable. Our results suggest that growing plants under fluctuating conditions do not necessarily have detrimental effects on plant growth and may improve biomass production in plants. These findings highlight the importance in the NSC pool dynamics to buffer fluctuations of light and temperature on plant structural growth.
Collapse
|
13
|
Wang J, Wang A, Luo Q, Hu Z, Ma Q, Li Y, Lin T, Liang X, Yu J, Foyer CH, Shi K. Glucose sensing by regulator of G protein signaling 1 (RGS1) plays a crucial role in coordinating defense in response to environmental variation in tomato. THE NEW PHYTOLOGIST 2022; 236:561-575. [PMID: 35789001 DOI: 10.1111/nph.18356] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Low light intensities affect the outbreak of plant diseases. However, the underlying molecular mechanisms remain poorly understood. High-performance liquid chromatography analysis of tomato (Solanum lycopersicum) revealed that apoplastic glucose (Glc) levels decreased in response to low light. Conversely, low-light-induced susceptibility to Pseudomonas syringae pv tomato (Pst) DC3000 was significantly alleviated by exogenous Glc treatment. Using cell-based biolayer interferometry assays, we found that Glc specifically binds to the tomato regulator of G protein signaling 1 (RGS1). Laser scanning confocal microscopy imaging revealed that Glc triggers RGS1 endocytosis, which influences the uncoupling of the RGS1-Gα (GPA1) and GPA1-Gβ (SlGB1) proteins, in a dose- and duration-dependent manner. Analysis of G protein single and double mutants revealed that RGS1 negatively regulates disease resistance under low light and is required for Glc-enhanced defense. Downstream of RGS1-Glc binding, GPA1 negatively mediates the light-intensity-regulated defense, whereas SlGB1 positively regulates this process. These results reveal a novel light-intensity-responsive defense system that is mediated by a Glc-RGS1-G protein signaling pathway. This information will be critical for future investigations of how plant cells sense extracellular sugars and adjust defense under different environments, as well as for genetic engineering approaches to improve stress resilience.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Anran Wang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Qian Luo
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Zhangjian Hu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Qiaomei Ma
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Yimei Li
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Teng Lin
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Xiao Liang
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
| | - Jingquan Yu
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Insitute, Zhejiang University, Sanya, 572025, China
| | - Christine H Foyer
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT, UK
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, 310058, China
- Hainan Insitute, Zhejiang University, Sanya, 572025, China
| |
Collapse
|
14
|
Effect of Light Intensity on Morphology, Photosynthesis and Carbon Metabolism of Alfalfa (Medicago sativa) Seedlings. PLANTS 2022; 11:plants11131688. [PMID: 35807640 PMCID: PMC9269066 DOI: 10.3390/plants11131688] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 06/21/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022]
Abstract
To understand how light intensity influences plant morphology and photosynthesis in the forage crop alfalfa (Medicago sativa L. cv. Zhongmu 1), we investigated changes in leaf angle orientation, chlorophyll fluorescence, parameters of photosynthesis and expression of genes related to enzymes involved in photosynthesis, the Calvin cycle and carbon metabolism in alfalfa seedlings exposed to five light intensities (100, 200, 300, 400 and 500 μmol m−2 s−1) under hydroponic conditions. Seedlings grown under low light intensities had significantly increased plant height, leaf hyponasty, specific leaf area, photosynthetic pigments, leaf nitrogen content and maximal PSII quantum yield, but the increased light-capturing capacity generated a carbon resource cost (e.g., decreased carbohydrates and biomass accumulation). Increased light intensity significantly improved leaf orientation toward the sun and upregulated the genes for Calvin cycle enzymes, thereby increasing photosynthetic capacity. Furthermore, high light (400 and 500 μmol m−2 s−1) significantly enhanced carbohydrate accumulation, accompanied by gene upregulation and increased activity of sucrose and starch-synthesis-related enzymes and those involved in carbon metabolism. Together, these results advance our understanding of morphological and physiological regulation in shade avoidance in alfalfa, which would guide the identification of suitable spatial planting patterns in the agricultural system.
Collapse
|
15
|
Chen Q, Zhang J, Li G. Dynamic epigenetic modifications in plant sugar signal transduction. TRENDS IN PLANT SCIENCE 2022; 27:379-390. [PMID: 34865981 DOI: 10.1016/j.tplants.2021.10.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 09/28/2021] [Accepted: 10/22/2021] [Indexed: 05/21/2023]
Abstract
In eukaryotes, dynamic chromatin states are closely related to changes in gene expression. Epigenetic modifications help plants adapt to their ever-changing environment by modulating gene expression via covalent modification at specific sites on DNA or histones. Sugars provide energy, but also function as signaling molecules to control plant growth and development. Various epigenetic modifications participate in sensing and transmitting sugar signals. Here we summarize recent progress in uncovering the epigenetic mechanisms involved in sugar signal transduction, including histone acetylation and deacetylation, histone methylation and demethylation, and DNA methylation. We also highlight changes in chromatin marks when crosstalk occurs between sugar signaling and the light, temperature, and phytohormone signaling pathways, and describe potential questions and approaches for future research.
Collapse
Affiliation(s)
- Qingshuai Chen
- Shandong Provincial Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China; State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Jing Zhang
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Gang Li
- State Key Laboratory of Crop Biology, College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
16
|
Chen Y, Shu P, Wang R, Du X, Xie Y, Du K, Deng H, Li M, Zhang Y, Grierson D, Liu M. Ethylene response factor AcERF91 affects ascorbate metabolism via regulation of GDP-galactose phosphorylase encoding gene (AcGGP3) in kiwifruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 313:111063. [PMID: 34763857 DOI: 10.1016/j.plantsci.2021.111063] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 05/02/2023]
Abstract
Kiwifruit is known as 'the king of vitamin C' because of the high content of ascorbic acid (AsA) in the fruit. Deciphering the regulatory network and identification of the key regulators mediating AsA biosynthesis is vital for fruit nutrition and quality improvement. To date, however, the key transcription factors regulating AsA metabolism during kiwifruit developmental and ripening processes remains largely unknown. Here, we generated a putative transcriptional regulatory network mediating ascorbate metabolism by transcriptome co-expression analysis. Further studies identified an ethylene response factor AcERF91 from this regulatory network, which is highly co-expressed with a GDP-galactose phosphorylase encoding gene (AcGGP3) during fruit developmental and ripening processes. Through dual-luciferase reporter and yeast one-hybrid assays, it was shown that AcERF91 is able to bind and directly activate the activity of the AcGGP3 promoter. Furthermore, transient expression of AcERF91 in kiwifruit fruits resulted in a significant increase in AsA content and AcGGP3 transcript level, indicating a positive role of AcERF91 in controlling AsA accumulation via regulation of the expression of AcGGP3. Overall, our results provide a new insight into the regulation of AsA metabolism in kiwifruit.
Collapse
Affiliation(s)
- Yuan Chen
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Peng Shu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ruochen Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaofei Du
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yue Xie
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Kui Du
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Heng Deng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Mingzhang Li
- Key Laboratory of Breeding and Utilization of Kiwifruit in Sichuan Province, Sichuan Provincial Academy of Natural Resource Sciences, Chengdu, China
| | - Yang Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Don Grierson
- School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, United Kingdom
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China.
| |
Collapse
|
17
|
Garai S, Bhowal B, Kaur C, Singla-Pareek SL, Sopory SK. What signals the glyoxalase pathway in plants? PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2021; 27:2407-2420. [PMID: 34744374 PMCID: PMC8526643 DOI: 10.1007/s12298-021-00991-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/15/2021] [Accepted: 04/04/2021] [Indexed: 05/06/2023]
Abstract
Glyoxalase (GLY) system, comprising of GLYI and GLYII enzymes, has emerged as one of the primary methylglyoxal (MG) detoxification pathways with an indispensable role during abiotic and biotic stresses. MG homeostasis is indeed very closely guarded by the cell as its higher levels are cytotoxic for the organism. The dynamic responsiveness of MG-metabolizing GLY pathway to both endogenous cues such as, phytohormones, nutrient status, etc., as well as external environmental fluctuations (abiotic and biotic stresses) indicates that a tight regulation occurs in the cell to maintain physiological levels of MG in the system. Interestingly, GLY pathway is also manipulated by its substrates and reaction products. Hence, an investigation of signalling and regulatory aspects of GLY pathway would be worthwhile. Herein, we have attempted to converge all known factors acting as signals or directly regulating GLYI/II enzymes in plants. Further, we also discuss how crosstalk between these different signal molecules might facilitate the regulation of glyoxalase pathway. We believe that MG detoxification is controlled by intricate mechanisms involving a plethora of signal molecules.
Collapse
Affiliation(s)
- Sampurna Garai
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Bidisha Bhowal
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Charanpreet Kaur
- School of Life Sciences, Jawaharlal Nehru University, New Delhi, 110067 India
| | - Sneh Lata Singla-Pareek
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| | - Sudhir K. Sopory
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi, 110067 India
| |
Collapse
|
18
|
Dorion S, Ouellet JC, Rivoal J. Glutathione Metabolism in Plants under Stress: Beyond Reactive Oxygen Species Detoxification. Metabolites 2021; 11:metabo11090641. [PMID: 34564457 PMCID: PMC8464934 DOI: 10.3390/metabo11090641] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 01/16/2023] Open
Abstract
Glutathione is an essential metabolite for plant life best known for its role in the control of reactive oxygen species (ROS). Glutathione is also involved in the detoxification of methylglyoxal (MG) which, much like ROS, is produced at low levels by aerobic metabolism under normal conditions. While several physiological processes depend on ROS and MG, a variety of stresses can dramatically increase their concentration leading to potentially deleterious effects. In this review, we examine the structure and the stress regulation of the pathways involved in glutathione synthesis and degradation. We provide a synthesis of the current knowledge on the glutathione-dependent glyoxalase pathway responsible for MG detoxification. We present recent developments on the organization of the glyoxalase pathway in which alternative splicing generate a number of isoforms targeted to various subcellular compartments. Stress regulation of enzymes involved in MG detoxification occurs at multiple levels. A growing number of studies show that oxidative stress promotes the covalent modification of proteins by glutathione. This post-translational modification is called S-glutathionylation. It affects the function of several target proteins and is relevant to stress adaptation. We address this regulatory function in an analysis of the enzymes and pathways targeted by S-glutathionylation.
Collapse
|
19
|
Min Q, Marcelis LFM, Nicole CCS, Woltering EJ. High Light Intensity Applied Shortly Before Harvest Improves Lettuce Nutritional Quality and Extends the Shelf Life. FRONTIERS IN PLANT SCIENCE 2021; 12:615355. [PMID: 33584772 PMCID: PMC7876091 DOI: 10.3389/fpls.2021.615355] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Accepted: 01/12/2021] [Indexed: 05/28/2023]
Abstract
The effect of light intensity applied shortly before harvest on the nutritional quality, postharvest performance, and shelf life of loose-leaf lettuce (Lactuca sativa L. cv. Expertise RZ Salanova®) was investigated. Lettuce was grown either in a greenhouse with supplemental high-pressure sodium light (Experiment 1, EXP 1) or in a climate room under white LED light (Experiment 2, EXP 2). In both experiments full grown plants were transferred to a climate room for the End of Production (EoP) light treatments during the last week of cultivation. During EoP lighting plants were exposed to different intensities (0, 110, and 270 μmol m-2 s-1 in EXP 1; 50, 210, and 470 μmol m-2 s-1 in EXP 2) from white-red LEDs for 6 (EXP 2) or 7 days (EXP 1). Mature leaves were then harvested and stored in darkness at 10°C to study the postharvest performance. Changes in dry matter content, total ascorbic acid, and carbohydrates (including glucose, fructose sucrose, and starch) levels were determined during EoP lighting and during the subsequent shelf life as indicators of lettuce nutritional quality. Quality aspects (appearance, texture, and odor) were accessed during the shelf life as indicators of postharvest performance. In both experiments, high light intensities applied in EoP lighting increased dry matter percentage and contents of ascorbic acid (AsA) and carbohydrates at harvest and these increased levels were maintained during the shelf life. Increased light intensity in EoP treatment also extended the shelf life. The levels of AsA and carbohydrates at harvest correlated positively with the subsequent shelf life, indicating that the prolonged shelf life relies on the improved energy and antioxidant status of the crop at harvest.
Collapse
Affiliation(s)
- Qianxixi Min
- Horticulture and Product Physiology Group, Wageningen University and Research, Wageningen, Netherlands
| | - Leo F. M. Marcelis
- Horticulture and Product Physiology Group, Wageningen University and Research, Wageningen, Netherlands
| | | | - Ernst J. Woltering
- Horticulture and Product Physiology Group, Wageningen University and Research, Wageningen, Netherlands
- Food and Biobased Research, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
20
|
MOS1 Negatively Regulates Sugar Responses and Anthocyanin Biosynthesis in Arabidopsis. Int J Mol Sci 2020; 21:ijms21197095. [PMID: 32993050 PMCID: PMC7584024 DOI: 10.3390/ijms21197095] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/24/2020] [Accepted: 09/11/2020] [Indexed: 11/16/2022] Open
Abstract
Sugars, which are important signaling molecules, regulate diverse biological processes in plants. However, the convergent regulatory mechanisms governing these physiological activities have not been fully elucidated. MODIFIER OF snc1-1 (MOS1), a modulator of plant immunity, also regulates floral transition, cell cycle control, and other biological processes. However, there was no evidence of whether this protein was involved in sugar responses. In this study, we found that the loss-of-function mutant mos1-6 (mos1) was hypersensitive to sugar and was characterized by defective germination and shortened roots when grown on high-sugar medium. The expression of MOS1 was enhanced by sucrose. Hexokinase 1, an important gene involved in sugar signaling, was upregulated in the mos1 mutant compared to wild-type Col-0 in response to sugar. Furthermore, the mos1 mutant accumulated more anthocyanin than did wild-type Col-0 when grown on high-sugar concentration medium or under high light. MOS1 was found to regulate the expression of flavonoid and anthocyanin biosynthetic genes in response to exogenous sucrose and high-light stress but with different underlying mechanisms, showing multiple functions in addition to immunity regulation in plant development. Our results suggest that the immune regulator MOS1 serves as a coordinator in the regulatory network, governing immunity and other physiological processes.
Collapse
|
21
|
Garcia-Molina A, Kleine T, Schneider K, Mühlhaus T, Lehmann M, Leister D. Translational Components Contribute to Acclimation Responses to High Light, Heat, and Cold in Arabidopsis. iScience 2020; 23:101331. [PMID: 32679545 PMCID: PMC7364123 DOI: 10.1016/j.isci.2020.101331] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 05/26/2020] [Accepted: 06/28/2020] [Indexed: 12/27/2022] Open
Abstract
Plant metabolism is broadly reprogrammed during acclimation to abiotic changes. Most previous studies have focused on transitions from standard to single stressful conditions. Here, we systematically analyze acclimation processes to levels of light, heat, and cold stress that subtly alter physiological parameters and assess their reversibility during de-acclimation. Metabolome and transcriptome changes were monitored at 11 different time points. Unlike transcriptome changes, most alterations in metabolite levels did not readily return to baseline values, except in the case of cold acclimation. Similar regulatory networks operate during (de-)acclimation to high light and cold, whereas heat and high-light responses exhibit similar dynamics, as determined by surprisal and conditional network analyses. In all acclimation models tested here, super-hubs in conditional transcriptome networks are enriched for components involved in translation, particularly ribosomes. Hence, we suggest that the ribosome serves as a common central hub for the control of three different (de-)acclimation responses.
Collapse
Affiliation(s)
- Antoni Garcia-Molina
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Tatjana Kleine
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Kevin Schneider
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, Paul-Ehrlich-Straße 23, 67663 Kaiserslautern, Germany
| | - Martin Lehmann
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| | - Dario Leister
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany.
| |
Collapse
|
22
|
Ascorbate and Thiamin: Metabolic Modulators in Plant Acclimation Responses. PLANTS 2020; 9:plants9010101. [PMID: 31941157 PMCID: PMC7020166 DOI: 10.3390/plants9010101] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 12/12/2022]
Abstract
Cell compartmentalization allows incompatible chemical reactions and localised responses to occur simultaneously, however, it also requires a complex system of communication between compartments in order to maintain the functionality of vital processes. It is clear that multiple such signals must exist, yet little is known about the identity of the key players orchestrating these interactions or about the role in the coordination of other processes. Mitochondria and chloroplasts have a considerable number of metabolites in common and are interdependent at multiple levels. Therefore, metabolites represent strong candidates as communicators between these organelles. In this context, vitamins and similar small molecules emerge as possible linkers to mediate metabolic crosstalk between compartments. This review focuses on two vitamins as potential metabolic signals within the plant cell, vitamin C (L-ascorbate) and vitamin B1 (thiamin). These two vitamins demonstrate the importance of metabolites in shaping cellular processes working as metabolic signals during acclimation processes. Inferences based on the combined studies of environment, genotype, and metabolite, in order to unravel signaling functions, are also highlighted.
Collapse
|
23
|
Fabiańska I, Bucher M, Häusler RE. Intracellular phosphate homeostasis - A short way from metabolism to signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 286:57-67. [PMID: 31300142 DOI: 10.1016/j.plantsci.2019.05.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/14/2019] [Accepted: 05/22/2019] [Indexed: 05/21/2023]
Abstract
Phosphorus in plant cells occurs in inorganic form as both ortho- and pyrophosphate or bound to organic compounds, like e.g., nucleotides, phosphorylated metabolites, phospholipids, phosphorylated proteins, or phytate as P storage in the vacuoles of seeds. Individual compartments of the cell are surrounded by membranes that are selective barriers to avoid uncontrolled solute exchange. A controlled exchange of phosphate or phosphorylated metabolites is accomplished by specific phosphate transporters (PHTs) and the plastidial phosphate translocator family (PTs) of the inner envelope membrane. Plastids, in particular chloroplasts, are the site of various anabolic sequences of enzyme-catalyzed reactions. Apart from their role in metabolism PHTs and PTs are presumed to be also involved in communication between organelles and plant organs. Here we will focus on the integration of phosphate transport and homeostasis in signaling processes. Recent developments in this field will be critically assessed and potential future developments discussed. In particular, the occurrence of various plastid types in one organ (i.e. the leaf) with different functions with respect to metabolism or sensing, as has been documented recently following a tissue-specific proteomics approach (Beltran et al., 2018), will shed new light on functional aspects of phosphate homeostasis.
Collapse
Affiliation(s)
- Izabela Fabiańska
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany
| | - Marcel Bucher
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany; Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, 50674 Cologne, Germany
| | - Rainer E Häusler
- Botanical Institute, Cologne Biocenter, University of Cologne, 50674 Cologne, Germany.
| |
Collapse
|
24
|
Hämälä T, Savolainen O. Genomic Patterns of Local Adaptation under Gene Flow in Arabidopsis lyrata. Mol Biol Evol 2019; 36:2557-2571. [PMID: 31236594 DOI: 10.1093/molbev/msz149] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Revised: 05/02/2019] [Accepted: 06/17/2019] [Indexed: 12/12/2022] Open
Abstract
AbstractShort-scale local adaptation is a complex process involving selection, migration, and drift. The expected effects on the genome are well grounded in theory but examining these on an empirical level has proven difficult, as it requires information about local selection, demographic history, and recombination rate variation. Here, we use locally adapted and phenotypically differentiated Arabidopsis lyrata populations from two altitudinal gradients in Norway to test these expectations at the whole-genome level. Demography modeling indicates that populations within the gradients diverged <2 kya and that the sites are connected by gene flow. The gene flow estimates are, however, highly asymmetric with migration from high to low altitudes being several times more frequent than vice versa. To detect signatures of selection for local adaptation, we estimate patterns of lineage-specific differentiation among these populations. Theory predicts that gene flow leads to concentration of adaptive loci in areas of low recombination; a pattern we observe in both lowland-alpine comparisons. Although most selected loci display patterns of conditional neutrality, we found indications of genetic trade-offs, with one locus particularly showing high differentiation and signs of selection in both populations. Our results further suggest that resistance to solar radiation is an important adaptation to alpine environments, while vegetative growth and bacterial defense are indicated as selected traits in the lowland habitats. These results provide insights into genetic architectures and evolutionary processes driving local adaptation under gene flow. We also contribute to understanding of traits and biological processes underlying alpine adaptation in northern latitudes.
Collapse
Affiliation(s)
- Tuomas Hämälä
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, MN
| | - Outi Savolainen
- Department of Ecology and Genetics, University of Oulu, Oulu, Finland
- Biocenter Oulu, University of Oulu, Oulu, Finland
| |
Collapse
|
25
|
Weise SE, Liu T, Childs KL, Preiser AL, Katulski HM, Perrin-Porzondek C, Sharkey TD. Transcriptional Regulation of the Glucose-6-Phosphate/Phosphate Translocator 2 Is Related to Carbon Exchange Across the Chloroplast Envelope. FRONTIERS IN PLANT SCIENCE 2019; 10:827. [PMID: 31316533 PMCID: PMC6609314 DOI: 10.3389/fpls.2019.00827] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 06/07/2019] [Indexed: 05/02/2023]
Abstract
The exchange of reduced carbon across the inner chloroplast envelope has a large impact on photosynthesis and growth. Under steady-state conditions it is thought that glucose 6-phosphate (G6P) does not cross the chloroplast membrane. However, growth at high CO2, or disruption of starch metabolism can result in the GPT2 gene for a G6P/Pi translocator to be expressed presumably allowing G6P exchange across the chloroplast envelope. We found that after an increase in light, the transcript for GPT2 transiently increases several 100-fold within 2 h in both the Col-0 and WS ecotypes of Arabidopsis thaliana. The increase in transcript for GPT2 is preceded by an increase in transcript for many transcription factors including Redox Responsive Transcription Factor 1 (RRTF1). The increase in GPT2 transcript after exposure to high light is suppressed in a mutant lacking the RRTF1 transcription factor. The GPT2 response was also suppressed in a mutant with a T-DNA insert in the gene for the triose-phosphate/Pi translocator (TPT). However, plants lacking TPT still had a robust rise in RRTF1 transcript in response to high light. From this, we conclude that both RRTF1 (and possibly other transcription factors) and high amounts of cytosolic triose phosphate are required for induction of the expression of GPT2. We hypothesize that transient GPT2 expression and subsequent translation is adaptive, allowing G6P to move into the chloroplast from the cytosol. The imported G6P can be used for starch synthesis or may flow directly into the Calvin-Benson cycle via an alternative pathway (the G6P shunt), which could be important for regulating and stabilizing photosynthetic electron transport and carbon metabolism.
Collapse
Affiliation(s)
- Sean E. Weise
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
| | - Tiffany Liu
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Kevin L. Childs
- Department of Plant Biology, Michigan State University, East Lansing, MI, United States
| | - Alyssa L. Preiser
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | - Hailey M. Katulski
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
| | | | - Thomas D. Sharkey
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, United States
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, United States
- Plant Resilience Institute, Michigan State University, East Lansing, MI, United States
- *Correspondence: Thomas D. Sharkey,
| |
Collapse
|
26
|
Hilgers EJA, Staehr P, Flügge UI, Häusler RE. The Xylulose 5-Phosphate/Phosphate Translocator Supports Triose Phosphate, but Not Phosphoenolpyruvate Transport Across the Inner Envelope Membrane of Plastids in Arabidopsis thaliana Mutant Plants. FRONTIERS IN PLANT SCIENCE 2018; 9:1461. [PMID: 30405650 PMCID: PMC6201195 DOI: 10.3389/fpls.2018.01461] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 09/13/2018] [Indexed: 05/08/2023]
Abstract
The xylulose 5-phosphate/phosphate translocator (PTs) (XPT) represents a link between the plastidial and extraplastidial branches of the oxidative pentose phosphate pathway. Its role is to retrieve pentose phosphates from the extraplastidial space and to make them available to the plastids. However, the XPT transports also triose phosphates and to a lesser extent phosphoenolpyruvate (PEP). Thus, it might support both the triose phosphate/PT (TPT) in the export of photoassimilates from illuminated chloroplasts and the PEP/PT (PPT) in the import of PEP into green or non-green plastids. In mutants defective in the day- and night-path of photoassimilate export from the chloroplasts (i.e., knockout of the TPT [tpt-2] in a starch-free background [adg1-1])the XPT provides a bypass for triose phosphate export and thereby guarantees survival of the adg1-1/tpt-2 double mutant. Here we show that the additional knockout of the XPT in adg1-1/tpt-2/xpt-1 triple mutants results in lethality when the plants were grown in soil. Thus the XPT can functionally support the TPT. The PEP transport capacity of the XPT has been revisited here with a protein heterologously expressed in yeast. PEP transport rates in the proteoliposome system were increased with decreasing pH-values below 7.0. Moreover, PEP transport determined in leaf extracts from wild-type plants showed a similar pH-response, suggesting that in both cases PEP2- is the transported charge-species. Hence, PEP import into illuminated chloroplasts might be unidirectional because of the alkaline pH of the stroma. Here the consequence of a block in PEP transport across the envelope was analyzed in triple mutants defective in both PPTs and the XPT. PPT1 is knocked out in the cue1 mutant. For PPT2 two new mutant alleles were isolated and established as homozygous lines. In contrast to the strong phenotype of cue1, both ppt2 alleles showed only slight growth retardation. As plastidial PEP is required e.g., for the shikimate pathway of aromatic amino acid synthesis, a block in PEP import should result in a lethal phenotype. However, the cue1-6/ppt2-1/ppt2-1 triple mutant was viable and even exhibited residual PEP transport capacity. Hence, alternative ways of PEP transport must exist and are discussed.
Collapse
Affiliation(s)
- Elke J. A. Hilgers
- Department of Biology, Botany II and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Pia Staehr
- Department of Biology, Botany II and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
- Lophius Biosciences GmbH, Regensburg, Germany
| | - Ulf-Ingo Flügge
- Department of Biology, Botany II and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| | - Rainer E. Häusler
- Department of Biology, Botany II and Cluster of Excellence on Plant Sciences (CEPLAS), Cologne Biocenter, University of Cologne, Cologne, Germany
| |
Collapse
|
27
|
Hilgers EJA, Schöttler MA, Mettler-Altmann T, Krueger S, Dörmann P, Eicks M, Flügge UI, Häusler RE. The Combined Loss of Triose Phosphate and Xylulose 5-Phosphate/Phosphate Translocators Leads to Severe Growth Retardation and Impaired Photosynthesis in Arabidopsis thaliana tpt/xpt Double Mutants. FRONTIERS IN PLANT SCIENCE 2018; 9:1331. [PMID: 30333839 PMCID: PMC6175978 DOI: 10.3389/fpls.2018.01331] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/24/2018] [Indexed: 05/18/2023]
Abstract
The xylulose 5-phosphate/phosphate translocator (XPT) represents the fourth functional member of the phosphate translocator (PT) family residing in the plastid inner envelope membrane. In contrast to the other three members, little is known on the physiological role of the XPT. Based on its major transport substrates (i.e., pentose phosphates) the XPT has been proposed to act as a link between the plastidial and extraplastidial branches of the oxidative pentose phosphate pathway (OPPP). As the XPT is also capable of transporting triose phosphates, it might as well support the triose phosphate PT (TPT) in exporting photoassimilates from the chloroplast in the light ('day path of carbon') and hence in supplying the whole plant with carbohydrates. Two independent knockout mutant alleles of the XPT (xpt-1 and xpt-2) lacked any specific phenotype, suggesting that the XPT function is redundant. However, double mutants generated from crossings of xpt-1 to different mutant alleles of the TPT (tpt-1 and tpt-2) were severely retarded in size, exhibited a high chlorophyll fluorescence phenotype, and impaired photosynthetic electron transport rates. In the double mutant the export of triose phosphates from the chloroplasts is completely blocked. Hence, precursors for sucrose biosynthesis derive entirely from starch turnover ('night path of carbon'), which was accompanied by a marked accumulation of maltose as a starch breakdown product. Moreover, pentose phosphates produced by the extraplastidial branch of the OPPP also accumulated in the double mutants. Thus, an active XPT indeed retrieves excessive pentose phosphates from the extra-plastidial space and makes them available to the plastids. Further metabolic profiling revealed that phosphorylated intermediates remained largely unaffected, whereas fumarate and glycine contents were diminished in the double mutants. The assessment of C/N-ratios suggested co-limitations of C- and N-metabolism as possible cause for growth retardation of the double mutants. Feeding of sucrose partially rescued the growth and photosynthesis phenotypes of the double mutants. Immunoblots of thylakoid proteins, spectroscopic determinations of photosynthesis complexes, and chlorophyll a fluorescence emission spectra at 77 Kelvin could only partially explain constrains in photosynthesis observed in the double mutants. The data are discussed together with aspects of the OPPP and central carbon metabolism.
Collapse
Affiliation(s)
- Elke J. A. Hilgers
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | | | | | - Stephan Krueger
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Peter Dörmann
- Molecular Biotechnology and Biochemistry, Universität Bonn, Bonn, Germany
| | | | - Ulf-Ingo Flügge
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| | - Rainer E. Häusler
- Department of Biology, Cologne Biocenter, Botanical Institute II and Cluster of Excellence on Plant Sciences, University of Cologne, Cologne, Germany
| |
Collapse
|
28
|
Wu Y, Gong W, Wang Y, Yong T, Yang F, Liu W, Wu X, Du J, Shu K, Liu J, Liu C, Yang W. Leaf area and photosynthesis of newly emerged trifoliolate leaves are regulated by mature leaves in soybean. JOURNAL OF PLANT RESEARCH 2018; 131:671-680. [PMID: 29600314 DOI: 10.1007/s10265-018-1027-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 02/26/2018] [Indexed: 05/12/2023]
Abstract
Leaf anatomy and the stomatal development of developing leaves of plants have been shown to be regulated by the same light environment as that of mature leaves, but no report has yet been written on whether such a long-distance signal from mature leaves regulates the total leaf area of newly emerged leaves. To explore this question, we created an investigation in which we collected data on the leaf area, leaf mass per area (LMA), leaf anatomy, cell size, cell number, gas exchange and soluble sugar content of leaves from three soybean varieties grown under full sunlight (NS), shaded mature leaves (MS) or whole plants grown in shade (WS). Our results show that MS or WS cause a marked decline both in leaf area and LMA in newly developing leaves. Leaf anatomy also showed characteristics of shade leaves with decreased leaf thickness, palisade tissue thickness, sponge tissue thickness, cell size and cell numbers. In addition, in the MS and WS treatments, newly developed leaves exhibited lower net photosynthetic rate (Pn), stomatal conductance (Gs) and transpiration rate (E), but higher carbon dioxide (CO 2 ) concentration in the intercellular space (Ci) than plants grown in full sunlight. Moreover, soluble sugar content was significantly decreased in newly developed leaves in MS and WS treatments. These results clearly indicate that (1) leaf area, leaf anatomical structure, and photosynthetic function of newly developing leaves are regulated by a systemic irradiance signal from mature leaves; (2) decreased cell size and cell number are the major cause of smaller and thinner leaves in shade; and (3) sugars could possibly act as candidate signal substances to regulate leaf area systemically.
Collapse
Affiliation(s)
- Yushan Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, People's Republic of China
| | - Wanzhuo Gong
- Characteristic Crops Research Institute, Chongqing Academy of Agricultural Sciences, Chongqing, 402160, People's Republic of China
| | - Yangmei Wang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, People's Republic of China
| | - Taiwen Yong
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, People's Republic of China
| | - Feng Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, People's Republic of China
| | - Weigui Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, People's Republic of China
| | - Xiaoling Wu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, People's Republic of China
| | - Junbo Du
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, People's Republic of China
| | - Kai Shu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, People's Republic of China
| | - Jiang Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, People's Republic of China
| | - Chunyan Liu
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, People's Republic of China
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, People's Republic of China
| | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest, Ministry of Agriculture, Chengdu, 611130, People's Republic of China.
- Sichuan Engineering Research Center for Crop Strip Intercropping System, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
29
|
Pommerrenig B, Ludewig F, Cvetkovic J, Trentmann O, Klemens PAW, Neuhaus HE. In Concert: Orchestrated Changes in Carbohydrate Homeostasis Are Critical for Plant Abiotic Stress Tolerance. PLANT & CELL PHYSIOLOGY 2018; 59:1290-1299. [PMID: 29444312 DOI: 10.1093/pcp/pcy037] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Indexed: 06/08/2023]
Abstract
The sessile lifestyle of higher plants is accompanied by their remarkable ability to tolerate unfavorable environmental conditions. This is because, during evolution, plants developed a sophisticated repertoire of molecular and metabolic reactions to cope with changing biotic and abiotic challenges. In particular, the abiotic factors light intensity and ambient temperature are characterized by altering their amplitude within comparably short periods of time and are causative for onset of dynamic plant responses. These rapid responses in plants are also classified as 'acclimation reactions' which differ, due to their reversibility and duration, from non-reversible 'adaptation reactions'. In this review, we demonstrate the remarkable importance of stress-induced changes in carbohydrate homeostasis of plants exposed to high light or low temperatures. These changes represent a co-ordinated process comprising modifications of (i) the concentrations of selected sugars; (ii) starch turnover; (iii) intracellular sugar compartmentation; and (iv) corresponding gene expression patterns. The critical importance of these individual processes has been underlined in the recent past by the analyses of a large number of mutant plants. The outcome of these analyses raised our understanding of acclimation processes in plants per se but might even become instrumental to develop new concepts for directed breeding approaches with the aim to increase abiotic stress tolerance of crop species, which in most cases have high stress sensitivity. The latter direction of plant research is of special importance since abiotic stress stimuli strongly impact on crop productivity and are expected to become even more pronounced because of human activities which alter environmental conditions rapidly.
Collapse
Affiliation(s)
- Benjamin Pommerrenig
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Frank Ludewig
- Department of Biochemistry, Friedrich-Alexander University Erlangen-Nuremberg, Staudtstr. 5, Erlangen, Germany
| | - Jelena Cvetkovic
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Oliver Trentmann
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - Patrick A W Klemens
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| | - H Ekkehard Neuhaus
- University of Kaiserslautern, Plant Physiology, Erwin-Schrödinger-Str, Kaiserslautern, Germany
| |
Collapse
|
30
|
van Rooijen R, Harbinson J, Aarts MGM. Photosynthetic response to increased irradiance correlates to variation in transcriptional response of lipid-remodeling and heat-shock genes. PLANT DIRECT 2018; 2:e00069. [PMID: 31245733 PMCID: PMC6508758 DOI: 10.1002/pld3.69] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 06/10/2018] [Accepted: 06/12/2018] [Indexed: 05/11/2023]
Abstract
Plants have evolved several mechanisms for sensing increased irradiance, involving signal perception by photoreceptors (cryptochromes), and subsequent biochemical (reactive oxygen species, ROS) and metabolic clues to transmit the signals. This results in the increased expression of heat-shock response genes and of the transcription factor LONG HYPOCOTYL 5 (HY5, mediated by the cryptochrome photoreceptor 1, CRY1). Here, we show the existence of another response pathway in Arabidopsis. This pathway evokes the SPX1-mediated expression activation of the transcription factor PHR1 and leads to the expression of several galactolipid biosynthesis genes. Gene expression analysis of accessions Col-0, Ga-0, and Ts-1, showed activated expression of the SPX1/PHR1-mediated gene expression activation pathway acting on galactolipids biosynthesis genes in both Ga-0 and Col-0, but not in Ts-1. The activation of the SPX1/PHR1-mediated response pathway can be associated with lower photosynthesis efficiency in Ts-1, compared to Col-0 and Ga-0. Besides the accession-associated activation of the SPX1/PHR1-mediated response pathway, comparing gene expression in the accessions showed stronger activation of several heat responsive genes in Ga-0, and the opposite in Ts-1, when compared to Col-0, in line with the differences in their efficiency of photosynthesis. We conclude that natural variation in activation of both heat responsive genes and of galactolipids biosynthesis genes contribute to the variation in photosynthesis efficiency in response to irradiance increase.
Collapse
Affiliation(s)
- Roxanne van Rooijen
- Laboratory of GeneticsWageningen University and ResearchWageningenThe Netherlands
- Horticulture and Product PhysiologyWageningen University and ResearchWageningenThe Netherlands
- Present address:
Cluster of Excellence on Plant ScienceHeinrich Heine UniversityDüsseldorfGermany
| | - Jeremy Harbinson
- Horticulture and Product PhysiologyWageningen University and ResearchWageningenThe Netherlands
| | - Mark G. M. Aarts
- Laboratory of GeneticsWageningen University and ResearchWageningenThe Netherlands
| |
Collapse
|
31
|
Marchand J, Heydarizadeh P, Schoefs B, Spetea C. Ion and metabolite transport in the chloroplast of algae: lessons from land plants. Cell Mol Life Sci 2018; 75:2153-2176. [PMID: 29541792 PMCID: PMC5948301 DOI: 10.1007/s00018-018-2793-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 03/01/2018] [Accepted: 03/07/2018] [Indexed: 12/28/2022]
Abstract
Chloroplasts are endosymbiotic organelles and play crucial roles in energy supply and metabolism of eukaryotic photosynthetic organisms (algae and land plants). They harbor channels and transporters in the envelope and thylakoid membranes, mediating the exchange of ions and metabolites with the cytosol and the chloroplast stroma and between the different chloroplast subcompartments. In secondarily evolved algae, three or four envelope membranes surround the chloroplast, making more complex the exchange of ions and metabolites. Despite the importance of transport proteins for the optimal functioning of the chloroplast in algae, and that many land plant homologues have been predicted, experimental evidence and molecular characterization are missing in most cases. Here, we provide an overview of the current knowledge about ion and metabolite transport in the chloroplast from algae. The main aspects reviewed are localization and activity of the transport proteins from algae and/or of homologues from other organisms including land plants. Most chloroplast transporters were identified in the green alga Chlamydomonas reinhardtii, reside in the envelope and participate in carbon acquisition and metabolism. Only a few identified algal transporters are located in the thylakoid membrane and play role in ion transport. The presence of genes for putative transporters in green algae, red algae, diatoms, glaucophytes and cryptophytes is discussed, and roles in the chloroplast are suggested. A deep knowledge in this field is required because algae represent a potential source of biomass and valuable metabolites for industry, medicine and agriculture.
Collapse
Affiliation(s)
- Justine Marchand
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Parisa Heydarizadeh
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France
| | - Benoît Schoefs
- Metabolism, Bioengineering of Microalgal Molecules and Applications (MIMMA), Mer Molécules Santé, IUML, FR 3473 CNRS, Le Mans University, 72000, Le Mans, France.
| | - Cornelia Spetea
- Department of Biological and Environmental Sciences, University of Gothenburg, 40530, Göteborg, Sweden.
| |
Collapse
|
32
|
Rühle T, Reiter B, Leister D. Chlorophyll Fluorescence Video Imaging: A Versatile Tool for Identifying Factors Related to Photosynthesis. FRONTIERS IN PLANT SCIENCE 2018; 9:55. [PMID: 29472935 PMCID: PMC5810273 DOI: 10.3389/fpls.2018.00055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Accepted: 01/10/2018] [Indexed: 05/12/2023]
Abstract
Measurements of chlorophyll fluorescence provide an elegant and non-invasive means of probing the dynamics of photosynthesis. Advances in video imaging of chlorophyll fluorescence have now made it possible to study photosynthesis at all levels from individual cells to entire crop populations. Since the technology delivers quantitative data, is easily scaled up and can be readily combined with other approaches, it has become a powerful phenotyping tool for the identification of factors relevant to photosynthesis. Here, we review genetic chlorophyll fluorescence-based screens of libraries of Arabidopsis and Chlamydomonas mutants, discuss its application to high-throughput phenotyping in quantitative genetics and highlight potential future developments.
Collapse
Affiliation(s)
- Thilo Rühle
- Plant Molecular Biology, Department of Biology, Ludwig Maximilian University of Munich, Munich, Germany
| | | | | |
Collapse
|
33
|
Wulfert S, Krueger S. Phosphoserine Aminotransferase1 Is Part of the Phosphorylated Pathways for Serine Biosynthesis and Essential for Light and Sugar-Dependent Growth Promotion. FRONTIERS IN PLANT SCIENCE 2018; 9:1712. [PMID: 30515188 PMCID: PMC6256069 DOI: 10.3389/fpls.2018.01712] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Accepted: 11/05/2018] [Indexed: 05/22/2023]
Abstract
The phosphorylated pathway of serine biosynthesis represents an important pathway in plants. The pathway consist of three reactions catalyzed by the phosphoglycerate dehydrogenase, the phosphoserine aminotransferase and the phosphoserine phosphatase, and the genes encoding for all enzymes of the pathway have been identified. Previously, the importance of the phosphoglycerate dehydrogenase and phosphoserine phosphatase for plant metabolism and development has been shown, but due to the lack of T-DNA insertion mutants, a physiological characterization of the phosphoserine aminotransferase is still missing. Hence, we generated silencing lines specifically down-regulated in the expression of the major PSAT1 gene. The morphological characterization of the obtained PSAT1-silenced lines revealed a strong inhibition of shoot and root growth. In addition, these lines are hypersensitive to the inhibition of the photorespiratory serine biosynthesis, when growing the plants at elevated CO2. Metabolic analysis of PSAT1-silenced lines, showed a strong accumulation of certain amino acids, most likely due to an enhanced ammonium assimilation. Furthermore, phenotypic analysis under low and high-light conditions and in the presence of sucrose revealed, that the phosphorylated pathway of serine biosynthesis is essential for light and sugar-dependent growth promotion in plants.
Collapse
|
34
|
Schmitz J, Dittmar IC, Brockmann JD, Schmidt M, Hüdig M, Rossoni AW, Maurino VG. Defense against Reactive Carbonyl Species Involves at Least Three Subcellular Compartments Where Individual Components of the System Respond to Cellular Sugar Status. THE PLANT CELL 2017; 29:3234-3254. [PMID: 29150548 PMCID: PMC5757266 DOI: 10.1105/tpc.17.00258] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 11/02/2017] [Accepted: 11/16/2017] [Indexed: 05/07/2023]
Abstract
Methylglyoxal (MGO) and glyoxal (GO) are toxic reactive carbonyl species generated as by-products of glycolysis. The pre-emption pathway for detoxification of these products, the glyoxalase (GLX) system, involves two consecutive reactions catalyzed by GLXI and GLXII. In Arabidopsis thaliana, the GLX system is encoded by three homologs of GLXI and three homologs of GLXII, from which several predicted GLXI and GLXII isoforms can be derived through alternative splicing. We identified the physiologically relevant splice forms using sequencing data and demonstrated that the resulting isoforms have different subcellular localizations. All three GLXI homologs are functional in vivo, as they complemented a yeast GLXI loss-of-function mutant. Efficient MGO and GO detoxification can be controlled by a switch in metal cofactor usage. MGO formation is closely connected to the flux through glycolysis and through the Calvin Benson cycle; accordingly, expression analysis indicated that GLXI is transcriptionally regulated by endogenous sugar levels. Analyses of Arabidopsis loss-of-function lines revealed that the elimination of toxic reactive carbonyl species during germination and seedling establishment depends on the activity of the cytosolic GLXI;3 isoform. The Arabidopsis GLX system involves the cytosol, chloroplasts, and mitochondria, which harbor individual components that might be used at specific developmental stages and respond differentially to cellular sugar status.
Collapse
Affiliation(s)
- Jessica Schmitz
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Isabell C Dittmar
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Jörn D Brockmann
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Marc Schmidt
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Meike Hüdig
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Alessandro W Rossoni
- Institute of Plant Biochemistry, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich-Heine-Universität, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
35
|
Li L, Nelson CJ, Trösch J, Castleden I, Huang S, Millar AH. Protein Degradation Rate in Arabidopsis thaliana Leaf Growth and Development. THE PLANT CELL 2017; 29:207-228. [PMID: 28138016 PMCID: PMC5354193 DOI: 10.1105/tpc.16.00768] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/12/2017] [Accepted: 01/30/2017] [Indexed: 05/04/2023]
Abstract
We applied 15N labeling approaches to leaves of the Arabidopsis thaliana rosette to characterize their protein degradation rate and understand its determinants. The progressive labeling of new peptides with 15N and measuring the decrease in the abundance of >60,000 existing peptides over time allowed us to define the degradation rate of 1228 proteins in vivo. We show that Arabidopsis protein half-lives vary from several hours to several months based on the exponential constant of the decay rate for each protein. This rate was calculated from the relative isotope abundance of each peptide and the fold change in protein abundance during growth. Protein complex membership and specific protein domains were found to be strong predictors of degradation rate, while N-end amino acid, hydrophobicity, or aggregation propensity of proteins were not. We discovered rapidly degrading subunits in a variety of protein complexes in plastids and identified the set of plant proteins whose degradation rate changed in different leaves of the rosette and correlated with leaf growth rate. From this information, we have calculated the protein turnover energy costs in different leaves and their key determinants within the proteome.
Collapse
Affiliation(s)
- Lei Li
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Clark J Nelson
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Josua Trösch
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Ian Castleden
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - Shaobai Huang
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| | - A Harvey Millar
- ARC Centre of Excellence in Plant Energy Biology, University of Western Australia, Crawley 6009, Western Australia, Australia
| |
Collapse
|
36
|
Florez-Sarasa I, Ribas-Carbo M, Del-Saz NF, Schwahn K, Nikoloski Z, Fernie AR, Flexas J. Unravelling the in vivo regulation and metabolic role of the alternative oxidase pathway in C3 species under photoinhibitory conditions. THE NEW PHYTOLOGIST 2016; 212:66-79. [PMID: 27321208 DOI: 10.1111/nph.14030] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 04/23/2016] [Indexed: 06/06/2023]
Abstract
The mitochondrial alternative oxidase pathway (AOP) has been suggested to act as a sink for excess reducing power generated in the chloroplast under high-light (HL) stress and thus may reduce photoinhibition. The aim of this study was to compare different species to investigate the in vivo regulation and role of AOP under HL stress. The in vivo activities of AOP (νalt ) and the cytochrome oxidase pathway, chlorophyll fluorescence, metabolite profiles, alternative oxidase (AOX) capacity and protein amount were determined in leaves of five C3 species under growth light and after HL treatment. Differences in respiration and metabolite levels were observed among species under growth light conditions. The HL response of νalt was highly species dependent, correlated with the AOP capacity and independent of AOX protein content. Nevertheless, significant correlations were observed between νalt , levels of key metabolites and photosynthetic parameters. The results show that the species-specific response of νalt is caused by the differential post-translational regulation of AOX. Significant correlations between respiration, metabolites and photosynthetic performance across species suggest that AOP may permit stress-related amino acid synthesis, whilst maintaining photosynthetic activity under HL stress.
Collapse
Affiliation(s)
- Igor Florez-Sarasa
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Miquel Ribas-Carbo
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain
| | - Néstor Fernández Del-Saz
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain
| | - Kevin Schwahn
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Jaume Flexas
- Grup de Recerca en Biologia de les Plantes en Condicions Mediterranies, Departament de Biologia, Universitat de les Illes Balears, Carretera de Valldemossa Km 7.5, 07122, Palma de Mallorca, Spain
| |
Collapse
|
37
|
Zhi T, Zhou Z, Huang Y, Han C, Liu Y, Zhu Q, Ren C. Sugar suppresses cell death caused by disruption of fumarylacetoacetate hydrolase in Arabidopsis. PLANTA 2016; 244:557-571. [PMID: 27097641 DOI: 10.1007/s00425-016-2530-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Accepted: 04/11/2016] [Indexed: 06/05/2023]
Abstract
Sugar negatively regulates cell death resulting from the loss of fumarylacetoacetate hydrolase that catalyzes the last step in the Tyr degradation pathway in Arabidopsis . Fumarylacetoacetate hydrolase (FAH) hydrolyzes fumarylacetoacetate to fumarate and acetoacetate, the final step in the tyrosine (Tyr) degradation pathway that is essential to animals. Previously, we first found that the Tyr degradation pathway plays an important role in plants. Mutation of the SSCD1 gene encoding FAH in Arabidopsis leads to spontaneous cell death under short-day conditions. In this study, we presented that the lethal phenotype of the short-day sensitive cell death1 (sscd1) seedlings was suppressed by sugars including sucrose, glucose, fructose, and maltose in a dose-dependent manner. Real-time quantitative PCR (RT-qPCR) analysis showed the expression of Tyr degradation pathway genes homogentisate dioxygenase and maleylacetoacetate isomerase, and sucrose-processing genes cell-wall invertase 1 and alkaline/neutral invertase G, was up-regulated in the sscd1 mutant, however, this up-regulation could be repressed by sugar. In addition, a high concentration of sugar attenuated cell death of Arabidopsis wild-type seedlings caused by treatment with exogenous succinylacetone, an abnormal metabolite resulting from the loss of FAH in the Tyr degradation pathway. These results indicated that (1) sugar could suppress cell death in sscd1, which might be because sugar supply enhances the resistance of Arabidopsis seedlings to toxic effects of succinylacetone and reduces the accumulation of Tyr degradation intermediates, resulting in suppression of cell death; and (2) sucrose-processing genes cell-wall invertase 1 and alkaline/neutral invertase G might be involved in the cell death in sscd1. Our work provides insights into the relationship between sugar and sscd1-mediated cell death, and contributes to elucidation of the regulation of cell death resulting from the loss of FAH in plants.
Collapse
Affiliation(s)
- Tiantian Zhi
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Zhou Zhou
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Yi Huang
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Chengyun Han
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
- Key Laboratory of Natural Active Pharmaceutical Constituents, College of Chemistry and Biology Engineering, Yichun University, Yichun, 336000, Jiangxi, China
| | - Yan Liu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Qi Zhu
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China
| | - Chunmei Ren
- Hunan Provincial Key Laboratory of Crop Germplasm Innovation and Utilization, College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
38
|
Chuang HW, Feng JH, Feng YL. The role of arabidopsis WDR protein in plant growth and defense strategies. PLANT SIGNALING & BEHAVIOR 2016; 11:e1217376. [PMID: 27472469 PMCID: PMC5022410 DOI: 10.1080/15592324.2016.1217376] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 07/20/2016] [Indexed: 05/22/2023]
Abstract
Evidence indicates that the mechanisms controlling photosynthesis efficiency also regulate plant response to biotic and abiotic stress. Light-induced cell death is genetically maintained for the control of innate immunity. In a recent study we showed that the expression of AtWDR26 was induced by light, multiple plant hormones, and abiotic stress; increased AtWDR26 strongly upregulated gene groups related to chloroplast metabolism, disease resistance, and abiotic stress tolerance. Gain- and loss-of-function analyses in transgenic plants demonstrated the involvement of AtWDR26 in signaling pathways; these controls were osmotic as well as salt stress tolerance. More detailed transcriptome evidence suggested that AtWDR26 was a powerful inducer of gene expression associated with chloroplast metabolism. This included the electron transport chain of the photosystem, carbohydrate synthesis, and enzymatic activity involved in photorespiration. Moreover, genes in auxin synthesis (and perception) constituted a significant portion of those that were upregulated. Gene expression involved in disease resistance, control of cell wall flexibility, Zn uptake, and AP2/ERF transcription factors was also be upregulated. We concluded that AtWDR26 is one component in the regulatory network between light-regulated plant growth and the adaptation response to disease resistance and abiotic stress. Auxin signal acts downstream for AtWDR26 regulation and the adaptation response to biotic and abiotic stress: this occurs through modulating cell wall flexibility, Zn homeostasis, and controlling stress-related transcription factors.
Collapse
Affiliation(s)
- Huey-wen Chuang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
- CONTACT Huey-wen Chuang Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Ji-Huan Feng
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yung-Lin Feng
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
39
|
Leister D, Kleine T. Definition of a core module for the nuclear retrograde response to altered organellar gene expression identifies GLK overexpressors as gun mutants. PHYSIOLOGIA PLANTARUM 2016; 157:297-309. [PMID: 26876646 DOI: 10.1111/ppl.12431] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Revised: 12/28/2015] [Accepted: 01/04/2016] [Indexed: 05/03/2023]
Abstract
Retrograde signaling can be triggered by changes in organellar gene expression (OGE) induced by inhibitors such as lincomycin (LIN) or mutations that perturb OGE. Thus, an insufficiency of the organelle-targeted prolyl-tRNA synthetase PRORS1 in Arabidopsis thaliana activates retrograde signaling and reduces the expression of nuclear genes for photosynthetic proteins. Recently, we showed that mTERF6, a member of the so-called mitochondrial transcription termination factor (mTERF) family, is involved in the formation of chloroplast (cp) isoleucine-tRNA. To obtain further insights into its functions, co-expression analysis of MTERF6, PRORS1 and two other genes for organellar aminoacyl-tRNA synthetases was conducted. The results suggest a prominent role of mTERF6 in aminoacylation activity, light signaling and seed storage. Analysis of changes in whole-genome transcriptomes in the mterf6-1 mutant showed that levels of nuclear transcripts for cp OGE proteins were particularly affected. Comparison of the mterf6-1 transcriptome with that of prors1-2 showed that reduced aminoacylation of proline (prors1-2) and isoleucine (mterf6-1) tRNAs alters retrograde signaling in similar ways. Database analyses indicate that comparable gene expression changes are provoked by treatment with LIN, norflurazon or high light. A core OGE response module was defined by identifying genes that were differentially expressed under at least four of six conditions relevant to OGE signaling. Based on this module, overexpressors of the Golden2-like transcription factors GLK1 and GLK2 were identified as genomes uncoupled mutants.
Collapse
Affiliation(s)
- Dario Leister
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, Planegg-Martinsried, Munich, Germany
| | - Tatjana Kleine
- Lehrstuhl für Molekularbiologie der Pflanzen (Botanik), Department Biologie I, Ludwig-Maximilians-Universität, Planegg-Martinsried, Munich, Germany
| |
Collapse
|
40
|
Kmiecik P, Leonardelli M, Teige M. Novel connections in plant organellar signalling link different stress responses and signalling pathways. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:3793-807. [PMID: 27053718 DOI: 10.1093/jxb/erw136] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
To coordinate growth, development and responses to environmental stimuli, plant cells need to communicate the metabolic state between different sub-compartments of the cell. This requires signalling pathways, including protein kinases, secondary messengers such as Ca(2+) ions or reactive oxygen species (ROS) as well as metabolites and plant hormones. The signalling networks involved have been intensively studied over recent decades and have been elaborated more or less in detail. However, it has become evident that these signalling networks are also tightly interconnected and often merge at common targets such as a distinct group of transcription factors, most prominently ABI4, which are amenable to regulation by phosphorylation, potentially also in a Ca(2+)- or ROS-dependent fashion. Moreover, the signalling pathways connect several organelles or subcellular compartments, not only in functional but also in physical terms, linking for example chloroplasts to the nucleus or peroxisomes to chloroplasts thereby enabling physical routes for signalling by metabolite exchange or even protein translocation. Here we briefly discuss these novel findings and try to connect them in order to point out the remaining questions and emerging developments in plant organellar signalling.
Collapse
Affiliation(s)
- Przemyslaw Kmiecik
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Manuela Leonardelli
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| | - Markus Teige
- Department of Ecogenomics and Systems Biology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
41
|
Mahmood K, Xu Z, El-Kereamy A, Casaretto JA, Rothstein SJ. The Arabidopsis Transcription Factor ANAC032 Represses Anthocyanin Biosynthesis in Response to High Sucrose and Oxidative and Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2016; 7:1548. [PMID: 27790239 PMCID: PMC5063858 DOI: 10.3389/fpls.2016.01548] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/03/2016] [Indexed: 05/04/2023]
Abstract
Production of anthocyanins is one of the adaptive responses employed by plants during stress conditions. During stress, anthocyanin biosynthesis is mainly regulated at the transcriptional level via a complex interplay between activators and repressors of anthocyanin biosynthesis genes. In this study, we investigated the role of a NAC transcription factor, ANAC032, in the regulation of anthocyanin biosynthesis during stress conditions. ANAC032 expression was found to be induced by exogenous sucrose as well as high light (HL) stress. Using biochemical, molecular and transgenic approaches, we show that ANAC032 represses anthocyanin biosynthesis in response to sucrose treatment, HL and oxidative stress. ANAC032 was found to negatively affect anthocyanin accumulation and the expression of anthocyanin biosynthesis (DFR, ANS/LDOX) and positive regulatory (TT8) genes as demonstrated in overexpression line (35S:ANAC032) compared to wild-type under HL stress. The chimeric repressor line (35S:ANAC032-SRDX) exhibited the opposite expression patterns for these genes. The negative impact of ANAC032 on the expression of DFR, ANS/LDOX and TT8 was found to be correlated with the altered expression of negative regulators of anthocyanin biosynthesis, AtMYBL2 and SPL9. In addition to this, ANAC032 also repressed the MeJA- and ABA-induced anthocyanin biosynthesis. As a result, transgenic lines overexpressing ANAC032 (35S:ANAC032) produced drastically reduced levels of anthocyanin pigment compared to wild-type when challenged with salinity stress. However, transgenic chimeric repressor lines (35S:ANAC032-SRDX) exhibited the opposite phenotype. Our results suggest that ANAC032 functions as a negative regulator of anthocyanin biosynthesis in Arabidopsis thaliana during stress conditions.
Collapse
|
42
|
Chuang HW, Feng JH, Feng YL, Wei MJ. An Arabidopsis WDR protein coordinates cellular networks involved in light, stress response and hormone signals. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2015; 241:23-31. [PMID: 26706055 DOI: 10.1016/j.plantsci.2015.09.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 06/05/2023]
Abstract
The WD-40 repeat (WDR) protein acts as a scaffold for protein interactions in various cellular events. An Arabidopsis WDR protein exhibited sequence similarity with human WDR26, a scaffolding protein implicated in H2O2-induced cell death in neural cells. The AtWDR26 transcript was induced by auxin, abscisic acid (ABA), ethylene (ET), osmostic stress and salinity. The expression of AtWDR26 was regulated by light, and seed germination of the AtWDR26 overexpression (OE) and seedling growth of the T-DNA knock-out (KO) exhibited altered sensitivity to light. Root growth of the OE seedlings increased tolerance to ZnSO4 and NaCl stresses and were hypersensitive to inhibition of osmotic stress. Seedlings of OE and KO altered sensitivities to multiple hormones. Transcriptome analysis of the transgenic plants overexpressing AtWDR26 showed that genes involved in the chloroplast-related metabolism constituted the largest group of the up-regulated genes. AtWDR26 overexpression up-regulated a large number of genes related to defense cellular events including biotic and abiotic stress response. Furthermore, several members of genes functioning in the regulation of Zn homeostasis, and hormone synthesis and perception of auxin and JA were strongly up-regulated in the transgenic plants. Our data provide physiological and transcriptional evidence for AtWDR26 role in hormone, light and abiotic stress cellular events.
Collapse
Affiliation(s)
- Huey-Wen Chuang
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan.
| | - Ji-Huan Feng
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Yung-Lin Feng
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| | - Miam-Ju Wei
- Department of Bioagricultural Sciences, National Chiayi University, Chiayi, Taiwan
| |
Collapse
|
43
|
Thormählen I, Meitzel T, Groysman J, Öchsner AB, von Roepenack-Lahaye E, Naranjo B, Cejudo FJ, Geigenberger P. Thioredoxin f1 and NADPH-Dependent Thioredoxin Reductase C Have Overlapping Functions in Regulating Photosynthetic Metabolism and Plant Growth in Response to Varying Light Conditions. PLANT PHYSIOLOGY 2015; 169:1766-86. [PMID: 26338951 PMCID: PMC4634086 DOI: 10.1104/pp.15.01122] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 09/03/2015] [Indexed: 05/21/2023]
Abstract
Two different thiol redox systems exist in plant chloroplasts, the ferredoxin-thioredoxin (Trx) system, which depends on ferredoxin reduced by the photosynthetic electron transport chain and, thus, on light, and the NADPH-dependent Trx reductase C (NTRC) system, which relies on NADPH and thus may be linked to sugar metabolism in the dark. Previous studies suggested, therefore, that the two different systems may have different functions in plants. We now report that there is a previously unrecognized functional redundancy of Trx f1 and NTRC in regulating photosynthetic metabolism and growth. In Arabidopsis (Arabidopsis thaliana) mutants, combined, but not single, deficiencies of Trx f1 and NTRC led to severe growth inhibition and perturbed light acclimation, accompanied by strong impairments of Calvin-Benson cycle activity and starch accumulation. Light activation of key enzymes of these pathways, fructose-1,6-bisphosphatase and ADP-glucose pyrophosphorylase, was almost completely abolished. The subsequent increase in NADPH-NADP(+) and ATP-ADP ratios led to increased nitrogen assimilation, NADP-malate dehydrogenase activation, and light vulnerability of photosystem I core proteins. In an additional approach, reporter studies show that Trx f1 and NTRC proteins are both colocalized in the same chloroplast substructure. Results provide genetic evidence that light- and NADPH-dependent thiol redox systems interact at the level of Trx f1 and NTRC to coordinately participate in the regulation of the Calvin-Benson cycle, starch metabolism, and growth in response to varying light conditions.
Collapse
Affiliation(s)
- Ina Thormählen
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Tobias Meitzel
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Julia Groysman
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Alexandra Bianca Öchsner
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Edda von Roepenack-Lahaye
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Belén Naranjo
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Francisco J Cejudo
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| | - Peter Geigenberger
- Department Biologie I, Ludwig-Maximilians-Universität München, 82152 Martinsried, Germany (I.T., J.G., A.B.Ö., E.v.R.-L., P.G.);Leibniz-Institut für Pflanzengenetik und Kulturpflanzenforschung, 06466 Gatersleben, Germany (T.M.); andInstituto de Bioquímica Vegetal y Fotosíntesis, University of Seville and Consejo Superior de Investigaciones Científicas, 41092 Seville, Spain (B.N., F.J.C.)
| |
Collapse
|
44
|
Gollan PJ, Tikkanen M, Aro EM. Photosynthetic light reactions: integral to chloroplast retrograde signalling. CURRENT OPINION IN PLANT BIOLOGY 2015; 27:180-91. [PMID: 26318477 DOI: 10.1016/j.pbi.2015.07.006] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 07/15/2015] [Accepted: 07/17/2015] [Indexed: 05/07/2023]
Abstract
Chloroplast retrograde signalling is ultimately dependent on the function of the photosynthetic light reactions and not only guides the acclimation of the photosynthetic apparatus to changing environmental and metabolic cues, but has a much wider influence on the growth and development of plants. New information generated during the past few years about regulation of photosynthetic light reactions and identification of the underlying regulatory proteins has paved the way towards better understanding of the signalling molecules produced in chloroplasts upon changes in the environment. Likewise, the availability of various mutants lacking regulatory functions has made it possible to address the role of excitation energy distribution and electron flow in the thylakoid membrane in inducing the retrograde signals from chloroplasts to the nucleus. Such signalling molecules also induce and interact with hormonal signalling cascades to provide comprehensive information from chloroplasts to the nucleus.
Collapse
Affiliation(s)
- Peter J Gollan
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Mikko Tikkanen
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland
| | - Eva-Mari Aro
- Molecular Plant Biology, Department of Biochemistry, University of Turku, FIN-20014 Turku, Finland.
| |
Collapse
|
45
|
Schöttler MA, Tóth SZ, Boulouis A, Kahlau S. Photosynthetic complex stoichiometry dynamics in higher plants: biogenesis, function, and turnover of ATP synthase and the cytochrome b6f complex. JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:2373-400. [PMID: 25540437 DOI: 10.1093/jxb/eru495] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
During plant development and in response to fluctuating environmental conditions, large changes in leaf assimilation capacity and in the metabolic consumption of ATP and NADPH produced by the photosynthetic apparatus can occur. To minimize cytotoxic side reactions, such as the production of reactive oxygen species, photosynthetic electron transport needs to be adjusted to the metabolic demand. The cytochrome b6f complex and chloroplast ATP synthase form the predominant sites of photosynthetic flux control. Accordingly, both respond strongly to changing environmental conditions and metabolic states. Usually, their contents are strictly co-regulated. Thereby, the capacity for proton influx into the lumen, which is controlled by electron flux through the cytochrome b6f complex, is balanced with proton efflux through ATP synthase, which drives ATP synthesis. We discuss the environmental, systemic, and metabolic signals triggering the stoichiometry adjustments of ATP synthase and the cytochrome b6f complex. The contribution of transcriptional and post-transcriptional regulation of subunit synthesis, and the importance of auxiliary proteins required for complex assembly in achieving the stoichiometry adjustments is described. Finally, current knowledge on the stability and turnover of both complexes is summarized.
Collapse
Affiliation(s)
- Mark Aurel Schöttler
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Szilvia Z Tóth
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Alix Boulouis
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| | - Sabine Kahlau
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, D-14476 Potsdam-Golm, Germany
| |
Collapse
|
46
|
McAllister CH, Good AG. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. PLoS One 2015; 10:e0121830. [PMID: 25830496 PMCID: PMC4382294 DOI: 10.1371/journal.pone.0121830] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Accepted: 02/04/2015] [Indexed: 01/08/2023] Open
Abstract
Alanine aminotransferase (AlaAT, E.C. 2.6.1.2), is a pyridoxal-5'-phosphate-dependent (PLP) enzyme that catalyzes the reversible transfer of an amino group from alanine to 2-oxoglutarate to produce glutamate and pyruvate, or vice versa. It has been well documented in both greenhouse and field studies that tissue-specific over-expression of AlaAT from barley (Hordeum vulgare, HvAlaAT) results in a significant increase in plant NUE in both canola and rice. While the physical phenotypes associated with over-expression of HvAlaAT have been well characterized, the role this enzyme plays in vivo to create a more N efficient plant remains unknown. Furthermore, the importance of HvAlaAT, in contrast to other AlaAT enzyme homologues in creating this phenotype has not yet been explored. To address the role of AlaAT in NUE, AlaAT variants from diverse sources and different subcellular locations, were expressed in the wild-type Arabidopsis thaliana Col-0 background and alaat1;2 (alaat1-1;alaat2-1) knockout background in various N environments. The analysis and comparison of both the physical and physiological properties of AlaAT over-expressing transgenic plants demonstrated significant differences between plants expressing the different AlaAT enzymes under different external conditions. This analysis indicates that the over-expression of AlaAT variants other than HvAlaAT in crop plants could further increase the NUE phenotype(s) previously observed.
Collapse
Affiliation(s)
- Chandra H. McAllister
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
- * E-mail:
| | - Allen G. Good
- Dept. of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada
| |
Collapse
|
47
|
Häusler RE, Heinrichs L, Schmitz J, Flügge UI. How sugars might coordinate chloroplast and nuclear gene expression during acclimation to high light intensities. MOLECULAR PLANT 2014; 7:1121-37. [PMID: 25006007 DOI: 10.1093/mp/ssu064] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The concept of retrograde control of nuclear gene expression assumes the generation of signals inside the chloroplasts, which are either released from or sensed inside of the organelle. In both cases, downstream signaling pathways lead eventually to a differential regulation of nuclear gene expression and the production of proteins required in the chloroplast. This concept appears reasonable as the majority of the over 3000 predicted plastidial proteins are encoded by nuclear genes. Hence, the nucleus needs information on the status of the chloroplasts, such as during acclimation responses, which trigger massive changes in the protein composition of the thylakoid membrane and in the stroma. Here, we propose an additional control mechanism of nuclear- and plastome-encoded photosynthesis genes, taking advantage of pathways involved in sugar- or hormonal signaling. Sugars are major end products of photosynthesis and their contents respond very sensitively to changes in light intensities. Based on recent findings, we ask the question as to whether the carbohydrate status outside the chloroplast can be directly sensed within the chloroplast stroma. Sugars might synchronize the responsiveness of both genomes and thereby help to coordinate the expression of plastome- and nuclear-encoded photosynthesis genes in concert with other, more specific retrograde signals.
Collapse
Affiliation(s)
- Rainer E Häusler
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Luisa Heinrichs
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| | - Jessica Schmitz
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany Present address: Plant Molecular Physiology and Biotechnology, Heinrich-Heine-University, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | - Ulf-Ingo Flügge
- Department of Botany II, Cologne Biocenter, University of Cologne, Zülpicherstr. 47b, 50674 Cologne, Germany
| |
Collapse
|