1
|
Zhao Y, Lu J, Hu B, Jiao P, Gao B, Jiang Z, Liu S, Guan S, Ma Y. Cloning and functional analysis of ZmMADS42 gene in maize. GM CROPS & FOOD 2024; 15:105-117. [PMID: 38466176 PMCID: PMC10936638 DOI: 10.1080/21645698.2024.2328384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/05/2024] [Indexed: 03/12/2024]
Abstract
Maize (Zea mays L.) is the most important cereal crop in the world. Flowering period and photoperiod play important roles in the reproductive development of maize. This study, investigated ZmMADS42, a gene that is highly expressed in the shoot apical meristem. Agrobacterium infection was used to successfully obtain overexpressed ZmMADS42 plants. Fluorescence quantitative PCR revealed that the expression of the ZmMADS42 gene in the shoot apical meristem of transgenic plants was 2.8 times higher than that of the wild-type(WT). In addition, the expression of the ZmMADS42 gene in the endosperm was 2.4 times higher than that in the wild-type. The seed width of the T2 generation increased by 5.35%, whereas the seed length decreased by 7.78% compared with that of the wild-type. Dissection of the shoot tips of transgenic and wild-type plants from the 7-leaf stage to the 9-leaf stage revealed that the transgenic plants entered the differentiation stage earlier and exhibited more tassel meristems during their vegetative growth period. The mature transgenic plants were approximately 20 cm shorter in height and had a lower panicle position than the wild-type plants. Comparing the flowering period, the tasseling, powdering, and silking stages of the transgenic plants occurred 10 days earlier than those of the wild-type plants. The results showed that the ZmMADS42 gene played a significant role in regulating the flowering period and plant height of maize.
Collapse
Affiliation(s)
- Yang Zhao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Jianyu Lu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bo Hu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Peng Jiao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Bai Gao
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Zhenzhong Jiang
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Siyan Liu
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Shuyan Guan
- College of Agronomy, Jilin Agricultural University, Changchun, China
| | - Yiyong Ma
- College of Agronomy, Jilin Agricultural University, Changchun, China
| |
Collapse
|
2
|
Tantisuwanichkul K, Komaki S, Watanabe M, Tohge T, Sirikantaramas S. Unveiling the regulatory role of DzAGL6-1 in carotenoid biosynthesis during durian (Durio zibethinus) fruit development. PLANT CELL REPORTS 2024; 43:217. [PMID: 39153055 DOI: 10.1007/s00299-024-03302-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/29/2024] [Indexed: 08/19/2024]
Abstract
KEY MESSAGE Approximately 119 MADS-box genes have been identified in durian. Moreover, DzAGL6-1 primarily expressed during fruit development, activates the DzPSY promoter. Transient expression of DzAGL6-1 in tomatoes influences carotenoid production. MADS-box transcription factors play a crucial role in regulating plant biological processes, including fruit ripening and associated events. This study aimed to comprehend the mechanisms involved in durian fruit development and ripening and carotenoid production by conducting a genome-wide analysis of MADS-box proteins in durian (Durio zibethinus L.), an economically important fruit in Southeast Asia. A total of 119 durian MADS-box proteins were identified from the genome of the 'Musang King' cultivar. Based on the phylogenetic analysis, the proteins were classified into types I and II, which exhibited similar conserved motif compositions. Notably, only 16 durian MADS-box genes exhibited fruit-specific expression patterns. Among these genes, DzAGL6-1 was predominantly expressed during fruit development, a stage at which carotenoid biosynthesis is activated. Transient expression of DzAGL6-1 in tomato fruit increased the transcript level of the carotenoid biosynthetic gene phytoene synthase (PSY) and the β-carotene content. Furthermore, DzAGL6-1 activated the promoter activity of DzPSY, as demonstrated by a dual-luciferase assay. These findings provide insights into the role of MADS-box transcription factors in regulating carotenoid biosynthesis during durian fruit development.
Collapse
Affiliation(s)
- Kittiya Tantisuwanichkul
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Shinichiro Komaki
- Plant Secondary Metabolism, Division of Biological Science, NARA Institute of Science and Technology, Nara, Japan
| | - Mutsumi Watanabe
- Plant Secondary Metabolism, Division of Biological Science, NARA Institute of Science and Technology, Nara, Japan
| | - Takayuki Tohge
- Plant Secondary Metabolism, Division of Biological Science, NARA Institute of Science and Technology, Nara, Japan
| | - Supaart Sirikantaramas
- Center of Excellence in Molecular Crop, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.
- Omics Sciences and Bioinformatics Center, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
3
|
Yang Y, Ji Y, Wang K, Li J, Zhu G, Ma L, Ostersetzer-Biran O, Zhu B, Fu D, Qu G, Luo Y, Zhu H. RNA editing factor SlORRM2 regulates the formation of fruit pointed tips in tomato. PLANT PHYSIOLOGY 2024; 195:2757-2771. [PMID: 38668628 DOI: 10.1093/plphys/kiae235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 03/28/2024] [Indexed: 08/02/2024]
Abstract
Domestication of tomato (Solanum lycopersicum) has led to large variation in fruit size and morphology. The development of the distal end of the fruit is a critical factor in determining its overall shape. However, the intricate mechanisms underlying distal fruit development require further exploration. This study aimed to investigate the regulatory role of an organelle RNA recognition motif (RRM)-containing protein SlORRM2 in tomato fruit morphology development. Mutant plants lacking SlORRM2 exhibited fruits with pointed tips at the distal end. However, this phenotype could be successfully restored through the implementation of a "functional complementation" strategy. Our findings suggest that the formation of pointed tips in the fruits of the CR-slorrm2 mutants is linked to alterations in the development of the ovary and style. We observed a substantial decrease in the levels of indole-3-acetic acid (IAA) and altered expression of IAA-related response genes in the ovary and style tissues of CR-slorrm2. Moreover, our data demonstrated that SlORRM2 plays a role in regulating mitochondrial RNA editing sites, particularly within genes encoding various respiratory chain subunits. Additionally, the CR-slorrm2 mutants exhibited modified organellar morphology and increased levels of reactive oxygen species. These findings provide valuable insights into the mechanisms underlying the formation of fruit pointed tips in tomato and offer genetic resources for tomato breeding.
Collapse
Affiliation(s)
- Yongfang Yang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
- Key Laboratory of Seed Innovation, State Key Laboratory of Plant Genomics and National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Yajing Ji
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Keru Wang
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jinyan Li
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guoning Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liqun Ma
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Oren Ostersetzer-Biran
- Department of Plant and Environmental Sciences, Institute of Life Sciences, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 9190401, Israel
| | - Benzhong Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Daqi Fu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Guiqin Qu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Yunbo Luo
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Hongliang Zhu
- The College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| |
Collapse
|
4
|
Jia H, Xu Y, Deng Y, Xie Y, Gao Z, Lang Z, Niu Q. Key transcription factors regulate fruit ripening and metabolite accumulation in tomato. PLANT PHYSIOLOGY 2024; 195:2256-2273. [PMID: 38561990 PMCID: PMC11213253 DOI: 10.1093/plphys/kiae195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/28/2024] [Accepted: 03/13/2024] [Indexed: 04/04/2024]
Abstract
Fruit ripening is a complex process involving dynamic changes to metabolites and is controlled by multiple factors, including transcription factors (TFs). Several TFs are reportedly essential regulators of tomato (Solanum lycopersicum) fruit ripening. To evaluate the effects of specific TFs on metabolite accumulation during fruit ripening, we combined CRISPR/Cas9-mediated mutagenesis with metabolome and transcriptome analyses to explore regulatory mechanisms. Specifically, we generated various genetically engineered tomato lines that differed regarding metabolite contents and fruit colors. The metabolite and transcript profiles indicated that the selected TFs have distinct functions that control fruit metabolite contents, especially carotenoids and sugars. Moreover, a mutation to ELONGATED HYPOCOTYL5 (HY5) increased tomato fruit fructose and glucose contents by approximately 20% (relative to the wild-type levels). Our in vitro assay showed that HY5 can bind directly to the G-box cis-element in the Sugars Will Eventually be Exported Transporter (SWEET12c) promoter to activate expression, thereby modulating sugar transport. Our findings provide insights into the mechanisms regulating tomato fruit ripening and metabolic networks, providing the theoretical basis for breeding horticultural crops that produce fruit with diverse flavors and colors.
Collapse
Affiliation(s)
- Huimin Jia
- College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China
| | - Yaping Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| | - Yuanwei Deng
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| | - Yinhuan Xie
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| | - Zhongshan Gao
- Department of Horticulture, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058 Zhejiang, China
| | - Zhaobo Lang
- Institute of Advanced Biotechnology, School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qingfeng Niu
- National Engineering Laboratory of Crop Stress Resistance Breeding, School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
- Advanced Academy, Anhui Agricultural University, Research Centre for Biological Breeding Technology, Hefei, Anhui 230036, China
| |
Collapse
|
5
|
Méndez-Yáñez A, Sáez D, Rodríguez-Arriaza F, Letelier-Naritelli C, Valenzuela-Riffo F, Morales-Quintana L. Involvement of the GH38 Family Exoglycosidase α-Mannosidase in Strawberry Fruit Ripening. Int J Mol Sci 2024; 25:6581. [PMID: 38928287 PMCID: PMC11203768 DOI: 10.3390/ijms25126581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 05/31/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
Exoglycosidase enzymes hydrolyze the N-glycosylations of cell wall enzymes, releasing N-glycans that act as signal molecules and promote fruit ripening. Vesicular exoglycosidase α-mannosidase enzymes of the GH38 family (EC 3.2.1.24; α-man) hydrolyze N-glycans in non-reduced termini. Strawberry fruit (Fragaria × ananassa) is characterized by rapid softening as a result of cell wall modifications during the fruit ripening process. Enzymes acting on cell wall polysaccharides explain the changes in fruit firmness, but α-man has not yet been described in F. × ananassa, meaning that the indirect effects of N-glycan removal on its fruit ripening process are unknown. The present study identified 10 GH38 α-man sequences in the F. × ananassa genome with characteristic conserved domains and key residues. A phylogenetic tree built with the neighbor-joining method and three groups of α-man established, of which group I was classified into three subgroups and group III contained only Poaceae spp. sequences. The real-time qPCR results demonstrated that FaMAN genes decreased during fruit ripening, a trend mirrored by the total enzyme activity from the white to ripe stages. The analysis of the promoter regions of these FaMAN genes was enriched with ripening and phytohormone response elements, and contained cis-regulatory elements related to stress responses to low temperature, drought, defense, and salt stress. This study discusses the relevance of α-man in fruit ripening and how it can be a useful target to prolong fruit shelf life.
Collapse
Affiliation(s)
- Angela Méndez-Yáñez
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Poniente #1670, Talca 3467987, Chile
| | - Darwin Sáez
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Poniente #1670, Talca 3467987, Chile
- Programa de Doctorado en Ciencias Biomédicas, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Poniente #1670, Talca 3467987, Chile
| | - Francisca Rodríguez-Arriaza
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Poniente #1670, Talca 3467987, Chile
| | - Claudio Letelier-Naritelli
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Poniente #1670, Talca 3467987, Chile
| | - Felipe Valenzuela-Riffo
- Instituto de Ciencias Biológicas, Universidad de Talca, Campus Talca, Avenida Lircay s/n, Talca 3460000, Chile
| | - Luis Morales-Quintana
- Multidisciplinary Agroindustry Research Laboratory, Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Cinco Poniente #1670, Talca 3467987, Chile
| |
Collapse
|
6
|
Zhang J, Dong T, Hu Z, Li J, Zhu M, Chen G. A SEPALLATA MADS-Box Transcription Factor, SlMBP21, Functions as a Negative Regulator of Flower Number and Fruit Yields in Tomato. PLANTS (BASEL, SWITZERLAND) 2024; 13:1421. [PMID: 38794491 PMCID: PMC11125064 DOI: 10.3390/plants13101421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/03/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024]
Abstract
MADS-box transcription factors act as the crucial regulators in plant organ differentiation. Crop yields are highly influenced by the flower number and fruit growth. However, flower identification is a very complex biological process, which involves many cascade regulations. The molecular mechanisms underlying the genetic regulation of flower identification in cultivated plants, such as tomato, are intricate and require further exploration. In this study, we investigated the vital function of a SEPALLATA (SEP) MADS-box gene, SlMBP21, in tomato sympodial inflorescence meristem (SIM) development for the conversion from SIMs to floral meristems (FMs). SlMBP21 transcripts were primarily accumulated in young inflorescence meristem, flowers, sepals, and abscission zones. The Ailsa Craig (AC++) tomato plants with suppressed SlMBP21 mRNA levels using RNAi exhibited a large increase in flower number and fruit yields in addition to enlarged sepals and inhibited abscission zone development. Scanning electron microscopy (SEM) revealed that the maturation of inflorescence meristems (IMs) was repressed in SlMBP21-RNAi lines. RNA-seq and qRT-PCR analyses showed that numerous genes related to the flower development, plant hormone signal transduction, cell cycle, and cell proliferation et al. were dramatically changed in SlMBP21-RNAi lines. Yeast two-hybrid assay exhibited that SlMBP21 can respectively interact with SlCMB1, SFT, JOINTLESS, and MC, which play key roles in inflorescence meristems or FM development. In summary, our data demonstrate that SlMBP21 functions as a key regulator in SIM development and the conversion from SIMs to FMs, through interacting with other regulatory proteins to control the expression of related genes.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Resources Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
| | - Tingting Dong
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (T.D.); (M.Z.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| | - Mingku Zhu
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221008, China; (T.D.); (M.Z.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Z.H.); (J.L.)
| |
Collapse
|
7
|
Shen H, Luo B, Ding Y, Xiao H, Chen G, Yang Z, Hu Z, Wu T. The YABBY Transcription Factor, SlYABBY2a, Positively Regulates Fruit Septum Development and Ripening in Tomatoes. Int J Mol Sci 2024; 25:5206. [PMID: 38791245 PMCID: PMC11121019 DOI: 10.3390/ijms25105206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024] Open
Abstract
The tomato fruit is a complex organ and is composed of various structures from the inside out, such as columella, septum, and placenta. However, our understanding of the development and function of these internal structures remains limited. In this study, we identified a plant-specific YABBY protein, SlYABBY2a, in the tomato (Solanum lycopersicum). SlYABBY2a exhibits relatively high expression levels among the nine YABBY genes in tomatoes and shows specific expression in the septum of the fruit. Through the use of a gene-editing technique performed by CRISPR/Cas9, we noticed defects in septum development in the Slyabby2a mutant fruits, leading to the inward concavity of the fruit pericarp and delayed septum ripening. Notably, the expression levels of key genes involved in auxin (SlFZY4, SlFZY5, and SlFZY6) and ethylene (SlACS2) biosynthesis were significantly downregulated in the septum of the Slalkbh10b mutants. Furthermore, the promoter activity of SlYABBY2a was regulated by the ripening regulator, SlTAGL1, in vivo. In summary, these discoveries provide insights into the positive regulation of SlYABBY2a on septum development and ripening and furnish evidence of the coordinated regulation of the auxin and ethylene signaling pathways in the ripening process, which expands our comprehension of septum development in the internal structure of the fruit.
Collapse
Affiliation(s)
- Hui Shen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Baobing Luo
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| | - Yingfeng Ding
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Haojun Xiao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| | - Zhengan Yang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (Y.D.); (H.X.); (Z.Y.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| | - Ting Wu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (H.S.); (B.L.); (G.C.)
| |
Collapse
|
8
|
Zhang J, Hu Z, Xie Q, Dong T, Li J, Chen G. Two SEPALLATA MADS-Box Genes, SlMBP21 and SlMADS1, Have Cooperative Functions Required for Sepal Development in Tomato. Int J Mol Sci 2024; 25:2489. [PMID: 38473738 PMCID: PMC10931843 DOI: 10.3390/ijms25052489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/08/2024] [Accepted: 02/15/2024] [Indexed: 03/14/2024] Open
Abstract
MADS-box transcription factors have crucial functions in numerous physiological and biochemical processes during plant growth and development. Previous studies have reported that two MADS-box genes, SlMBP21 and SlMADS1, play important regulatory roles in the sepal development of tomato, respectively. However, the functional relationships between these two genes are still unknown. In order to investigate this, we simultaneously studied these two genes in tomato. Phylogenetic analysis showed that they were classified into the same branch of the SEPALLATA (SEP) clade. qRT-PCR displayed that both SlMBP21 and SlMADS1 transcripts are preferentially accumulated in sepals, and are increased with flower development. During sepal development, SlMBP21 is increased but SlMADS1 is decreased. Using the RNAi, tomato plants with reduced SlMBP21 mRNA generated enlarged and fused sepals, while simultaneous inhibition of SlMBP21 and SlMADS1 led to larger (longer and wider) and fused sepals than that in SlMBP21-RNAi lines. qRT-PCR results exhibited that the transcripts of genes relating to sepal development, ethylene, auxin and cell expansion were dramatically changed in SlMBP21-RNAi sepals, especially in SlMBP21-SlMADS1-RNAi sepals. Yeast two-hybrid assay displayed that SlMBP21 can interact with SlMBP21, SlAP2a, TAGL1 and RIN, and SlMADS1 can interact with SlAP2a and RIN, respectively. In conclusion, SlMBP21 and SlMADS1 cooperatively regulate sepal development in tomato by impacting the expression or activities of other related regulators or via interactions with other regulatory proteins.
Collapse
Affiliation(s)
- Jianling Zhang
- Laboratory of Plant Germplasm Innovation and Utilization, School of Life Sciences, Liaocheng University, Liaocheng 252000, China;
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Tingting Dong
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
- Institute of Integrative Plant Biology, School of Life Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jing Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing 400030, China; (Q.X.); (T.D.); (J.L.)
| |
Collapse
|
9
|
Wu J, Yang S, Chen N, Jiang Q, Huang L, Qi J, Xu G, Shen L, Yu H, Fan X, Gan Y. Nuclear translocation of OsMADS25 facilitated by OsNAR2.1 in reponse to nitrate signals promotes rice root growth by targeting OsMADS27 and OsARF7. PLANT COMMUNICATIONS 2023; 4:100642. [PMID: 37353931 PMCID: PMC10721473 DOI: 10.1016/j.xplc.2023.100642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 05/24/2023] [Accepted: 06/20/2023] [Indexed: 06/25/2023]
Abstract
Nitrate is an important nitrogen source and signaling molecule that regulates plant growth and development. Although several components of the nitrate signaling pathway have been identified, the detailed mechanisms are still unclear. Our previous results showed that OsMADS25 can regulate root development in response to nitrate signals, but the mechanism is still unknown. Here, we try to answer two key questions: how does OsMADS25 move from the cytoplasm to the nucleus, and what are the direct target genes activated by OsMADS25 to regulate root growth after it moves to the nucleus in response to nitrate? Our results demonstrated that OsMADS25 moves from the cytoplasm to the nucleus in the presence of nitrate in an OsNAR2.1-dependent manner. Chromatin immunoprecipitation sequencing, chromatin immunoprecipitation qPCR, yeast one-hybrid, and luciferase experiments showed that OsMADS25 directly activates the expression of OsMADS27 and OsARF7, which are reported to be associated with root growth. Finally, OsMADS25-RNAi lines, the Osnar2.1 mutant, and OsMADS25-RNAi Osnar2.1 lines exhibited significantly reduced root growth compared with the wild type in response to nitrate supply, and expression of OsMADS27 and OsARF7 was significantly suppressed in these lines. Collectively, these results reveal a new mechanism by which OsMADS25 interacts with OsNAR2.1. This interaction is required for nuclear accumulation of OsMADS25, which promotes OsMADS27 and OsARF7 expression and root growth in a nitrate-dependent manner.
Collapse
Affiliation(s)
- Junyu Wu
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Shuaiqi Yang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Nana Chen
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Qining Jiang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Linli Huang
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Jiaxuan Qi
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| | - Lisha Shen
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Hao Yu
- Temasek Life Sciences Laboratory and Department of Biological Sciences, National University of Singapore, 1 Research Link, Singapore 117604, Singapore
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yinbo Gan
- Zhejiang Key Laboratory of Crop Germplasm, Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
10
|
Sharma M, Negi S, Kumar P, Srivastava DK, Choudhary MK, Irfan M. Fruit ripening under heat stress: The intriguing role of ethylene-mediated signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111820. [PMID: 37549738 DOI: 10.1016/j.plantsci.2023.111820] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 08/01/2023] [Accepted: 08/05/2023] [Indexed: 08/09/2023]
Abstract
Crop production is significantly influenced by climate, and even minor climate changes can have a substantial impact on crop yields. Rising temperature due to climate change can lead to heat stress (HS) in plants, which not only hinders plant growth and development but also result in significant losses in crop yields. To cope with the different stresses including HS, plants have evolved a variety of adaptive mechanisms. In response to these stresses, phytohormones play a crucial role by generating endogenous signals that regulate the plant's defensive response. Among these, Ethylene (ET), a key phytohormone, stands out as a major regulator of stress responses in plants and regulates many plant traits, which are critical for crop productivity and nutritional quality. ET is also known as a ripening hormone for decades in climacteric fruit and many studies are available deciphering the function of different ET biosynthesis and signaling components in the ripening process. Recent studies suggest that HS significantly affects fruit quality traits and perturbs fruit ripening by altering the regulation of many ethylene biosynthesis and signaling genes resulting in substantial loss of fruit yield, quality, and postharvest stability. Despite the significant progress in this field in recent years the interplay between ET, ripening, and HS is elusive. In this review, we summarized the recent advances and current understanding of ET in regulating the ripening process under HS and explored their crosstalk at physiological and molecular levels to shed light on intricate relationships.
Collapse
Affiliation(s)
- Megha Sharma
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Shivanti Negi
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Pankaj Kumar
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India.
| | - Dinesh Kumar Srivastava
- Department of Biotechnology, Dr. Y.S. Parmar University of Horticulture and Forestry, Solan, Himachal Pradesh, India
| | - Mani Kant Choudhary
- Department of Biology, University of Arkansas at Little Rock, Little Rock, AR 72204, USA
| | - Mohammad Irfan
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
11
|
Xia Y, Lai Z, Do YY, Huang PL. Characterization of MicroRNAs and Gene Expression in ACC Oxidase RNA Interference-Based Transgenic Bananas. PLANTS (BASEL, SWITZERLAND) 2023; 12:3414. [PMID: 37836154 PMCID: PMC10574930 DOI: 10.3390/plants12193414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/17/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023]
Abstract
Banana (Musa acuminata, AAA group) is a typically respiratory climacteric fruit. Previously, genes encoding ACC oxidase, one of the key enzymes in ethylene biosynthesis, Mh-ACO1 and Mh-ACO2 in bananas were silenced individually using RNAi interference technology, and fruit ripening of transgenic bananas was postponed. Here, the differential expression of miRNAs and their targeted mRNAs were analyzed in the transcriptomes of fruits at the third ripening stage, peel color more green than yellow, from the untransformed and RNAi transgenic bananas. Five significantly differentially expressed miRNAs (mac-miR169a, mac-miR319c-3p, mac-miR171a, mac-miR156e-5p, and mac-miR164a-5p) were identified. The predicted miRNA target genes were mainly enriched in six KEGG pathways, including 'sulfur relay system', 'protein digestion and absorption', 'histidine metabolism', 'pathogenic E. coli infection', 'sulfur metabolism', and 'starch and sucrose metabolism'. After ethylene treatment, the expression of ACC oxidase silencing-associated miRNAs was down-regulated, and that of their target genes was up-regulated along with fruit ripening. The evolutionary clustering relationships of miRNA precursors among 12 gene families related to fruit ripening were analyzed. The corresponding expression patterns of mature bodies were mainly concentrated in flowers, fruits, and leaves. Our results indicated that ethylene biosynthesis is associated with miRNAs regulating the expression of sulfur metabolism-related genes in bananas.
Collapse
Affiliation(s)
- Yan Xia
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Zhongxiong Lai
- Institute of Horticultural Biotechnology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yi-Yin Do
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| | - Pung-Ling Huang
- Department of Horticulture and Landscape Architecture, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
12
|
Li Q, Luo S, Zhang L, Feng Q, Song L, Sapkota M, Xuan S, Wang Y, Zhao J, van der Knaap E, Chen X, Shen S. Molecular and genetic regulations of fleshy fruit shape and lessons from Arabidopsis and rice. HORTICULTURE RESEARCH 2023; 10:uhad108. [PMID: 37577396 PMCID: PMC10419822 DOI: 10.1093/hr/uhad108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 05/12/2023] [Indexed: 08/15/2023]
Abstract
Fleshy fruit shape is an important external quality trait influencing the usage of fruits and consumer preference. Thus, modification of fruit shape has become one of the major objectives for crop improvement. However, the underlying mechanisms of fruit shape regulation are poorly understood. In this review we summarize recent progress in the genetic basis of fleshy fruit shape regulation using tomato, cucumber, and peach as examples. Comparative analyses suggest that the OFP-TRM (OVATE Family Protein - TONNEAU1 Recruiting Motif) and IQD (IQ67 domain) pathways are probably conserved in regulating fruit shape by primarily modulating cell division patterns across fleshy fruit species. Interestingly, cucumber homologs of FRUITFULL (FUL1), CRABS CLAW (CRC) and 1-aminocyclopropane-1-carboxylate synthase 2 (ACS2) were found to regulate fruit elongation. We also outline the recent progress in fruit shape regulation mediated by OFP-TRM and IQD pathways in Arabidopsis and rice, and propose that the OFP-TRM pathway and IQD pathway coordinate regulate fruit shape through integration of phytohormones, including brassinosteroids, gibberellic acids, and auxin, and microtubule organization. In addition, functional redundancy and divergence of the members of each of the OFP, TRM, and IQD families are also shown. This review provides a general overview of current knowledge in fruit shape regulation and discusses the possible mechanisms that need to be addressed in future studies.
Collapse
Affiliation(s)
- Qiang Li
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuangxia Luo
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Liying Zhang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Qian Feng
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Lijun Song
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Manoj Sapkota
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Shuxin Xuan
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Yanhua Wang
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Jianjun Zhao
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Esther van der Knaap
- Center for Applied Genetic Technologies, Institute for Plant Breeding, Genetics and Genomics, Department of Horticulture, University of Georgia, Athens, GA, USA
| | - Xueping Chen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Shuxing Shen
- College of Horticulture, State Key Laboratory of North China Crop Improvement and Regulation, Key Laboratory of Vegetable Germplasm Innovation and Utilization of Hebei, Collaborative Innovation Center of Vegetable Industry in Hebei, Hebei Agricultural University, Baoding, Hebei 071000, China
| |
Collapse
|
13
|
Zhang S, Wang L, Yao J, Wu N, Ahmad B, van Nocker S, Wu J, Abudureheman R, Li Z, Wang X. Control of ovule development in Vitis vinifera by VvMADS28 and interacting genes. HORTICULTURE RESEARCH 2023; 10:uhad070. [PMID: 37293531 PMCID: PMC10244803 DOI: 10.1093/hr/uhad070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/08/2023] [Indexed: 06/10/2023]
Abstract
Seedless grapes are increasingly popular throughout the world, and the development of seedless varieties is a major breeding goal. In this study, we demonstrate an essential role for the grapevine MADS-box gene VvMADS28 in morphogenesis of the ovule. We found that VvMADS28 mRNA accumulated in the ovules of a seeded cultivar, 'Red Globe', throughout the course of ovule and seed development, especially within the integument/seed coat. In contrast, in the seedless cultivar 'Thompson Seedless', VvMADS28 was expressed only weakly in ovules, and this was associated with increased levels of histone H3 lysine 27 trimethylation (H3K27me3) within the VvMADS28 promoter region. RNAi-mediated transient suppression of VvMADS28 expression in 'Red Globe' led to reduced seed size associated with inhibition of episperm and endosperm cell development. Heterologous overexpression of VvMADS28 in transgenic tomatoes interfered with sepal development and resulted in smaller fruit but did not obviously affect seed size. Assays in yeast cells showed that VvMADS28 is subject to regulation by the transcription factor VvERF98, and that VvMADS28 could interact with the Type I/ Mβ MADS-domain protein VvMADS5. Moreover, through DNA-affinity purification-sequencing (DAP-seq), we found that VvMADS28 protein specifically binds to the promoter of the grapevine WUSCHEL (VvWUS) gene, suggesting that maintenance of the VvMADS28-VvMADS5 dimer and VvWUS expression homeostasis influences seed development. Taken together, our results provide insight into regulatory mechanisms of ovule and seed development associated with VvMADS28.
Collapse
Affiliation(s)
- Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- College of Horticulture, Hebei Agricultural University, Baoding 071000, China
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Na Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bilal Ahmad
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Agriculture Genomics Institute, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, MI 48823, USA
| | - Jiuyun Wu
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, Xinjiang, China
| | - Riziwangguli Abudureheman
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, Xinjiang, China
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Turpan Research Institute of Agricultural Sciences, Xinjiang Academy of Agricultural Sciences, Turpan 838000, Xinjiang, China
| |
Collapse
|
14
|
Deng L, Yang T, Li Q, Chang Z, Sun C, Jiang H, Meng X, Huang T, Li CB, Zhong S, Li C. Tomato MED25 regulates fruit ripening by interacting with EIN3-like transcription factors. THE PLANT CELL 2023; 35:1038-1057. [PMID: 36471914 PMCID: PMC10015170 DOI: 10.1093/plcell/koac349] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Fruit ripening relies on the precise spatiotemporal control of RNA polymerase II (Pol II)-dependent gene transcription, and the evolutionarily conserved Mediator (MED) coactivator complex plays an essential role in this process. In tomato (Solanum lycopersicum), a model climacteric fruit, ripening is tightly coordinated by ethylene and several key transcription factors. However, the mechanism underlying the transmission of context-specific regulatory signals from these ripening-related transcription factors to the Pol II transcription machinery remains unknown. Here, we report the mechanistic function of MED25, a subunit of the plant Mediator transcriptional coactivator complex, in controlling the ethylene-mediated transcriptional program during fruit ripening. Multiple lines of evidence indicate that MED25 physically interacts with the master transcription factors of the ETHYLENE-INSENSITIVE 3 (EIN3)/EIN3-LIKE (EIL) family, thereby playing an essential role in pre-initiation complex formation during ethylene-induced gene transcription. We also show that MED25 forms a transcriptional module with EIL1 to regulate the expression of ripening-related regulatory as well as structural genes through promoter binding. Furthermore, the EIL1-MED25 module orchestrates both positive and negative feedback transcriptional circuits, along with its downstream regulators, to fine-tune ethylene homeostasis during fruit ripening.
Collapse
Affiliation(s)
- Lei Deng
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianxia Yang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Li
- Department of Pomology, College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zeqian Chang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanlong Sun
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hongling Jiang
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwen Meng
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai’an 271018, China
| | - Tingting Huang
- Institute of Vegetable, Qingdao Academy of Agricultural Sciences, Qingdao 266100, China
| | - Chang-Bao Li
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Silin Zhong
- State Key Laboratory of Agrobiotechnology, School of Life Sciences, Chinese University of Hong Kong, Hong Kong 999077, China
| | - Chuanyou Li
- State Key Laboratory of Plant Genomics, National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
15
|
Cheng L, Li R, Wang X, Ge S, Wang S, Liu X, He J, Jiang CZ, Qi M, Xu T, Li T. A SlCLV3-SlWUS module regulates auxin and ethylene homeostasis in low light-induced tomato flower abscission. THE PLANT CELL 2022; 34:4388-4408. [PMID: 35972422 PMCID: PMC9614458 DOI: 10.1093/plcell/koac254] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 08/03/2022] [Indexed: 06/12/2023]
Abstract
Premature abscission of flowers and fruits triggered by low light stress can severely reduce crop yields. However, the underlying molecular mechanism of this organ abscission is not fully understood. Here, we show that a gene (SlCLV3) encoding CLAVATA3 (CLV3), a peptide hormone that regulates stem cell fate in meristems, is highly expressed in the pedicel abscission zone (AZ) in response to low light in tomato (Solanum lycopersicum). SlCLV3 knockdown and knockout lines exhibit delayed low light-induced flower drop. The receptor kinases SlCLV1 and BARELY ANY MERISTEM1 function in the SlCLV3 peptide-induced low light response in the AZ to decrease expression of the transcription factor gene WUSCHEL (SlWUS). DNA affinity purification sequencing identified the transcription factor genes KNOX-LIKE HOMEDOMAIN PROTEIN1 (SlKD1) and FRUITFULL2 (SlFUL2) as SlWUS target genes. Our data reveal that low light reduces SlWUS expression, resulting in higher SlKD1 and SlFUL2 expression in the AZ, thereby perturbing the auxin response gradient and causing increased ethylene production, eventually leading to the initiation of abscission. These results demonstrate that the SlCLV3-SlWUS signaling pathway plays a central role in low light-induced abscission by affecting auxin and ethylene homeostasis.
Collapse
Affiliation(s)
- Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Xiaoyang Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Jing He
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture Agricultural Research Service, Albany, California 95616, USA
- Department of Plant Sciences, University of California, Los Angeles, California 95616, USA
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, China
| |
Collapse
|
16
|
Variation in the fruit development gene POINTED TIP regulates protuberance of tomato fruit tip. Nat Commun 2022; 13:5940. [PMID: 36209204 PMCID: PMC9547884 DOI: 10.1038/s41467-022-33648-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 09/27/2022] [Indexed: 11/09/2022] Open
Abstract
The domestication of tomato has led to striking variations in fruit morphology. Here, we show a genome-wide association study (GWAS) to understand the development of the fruit tip and describe a POINTED TIP (PT) gene that encodes a C2H2-type zinc finger transcription factor. A single nucleotide polymorphism is found to change a histidine (H) to an arginine (R) in the C2H2 domain of PT and the two alleles are referred to as PTH and PTR. Knocking out PTH leads to development of pointed tip fruit. PTH functions to suppress pointed tip formation by downregulating the transcription of FRUTFULL 2 (FUL2), which alters the auxin transport. Our evolutionary analysis and previous studies by others suggest that the PTR allele likely hitch-hiked along with other selected loci during the domestication process. This study uncovers variation in PT and molecular mechanism underlying fruit tip development in tomato. While auxin has been implicated in the development of tomato fruit with pointed tips, the mechanism are largely unknown. Here, the authors report variation of a C2H2-type zinc finger transcription factor affects transcription of FUL2, which consequently regulates auxin transport and distribution to determine tomato fruit shape.
Collapse
|
17
|
Zhang S, Yao J, Wang L, Wu N, van Nocker S, Li Z, Gao M, Wang X. Role of grapevine SEPALLATA-related MADS-box gene VvMADS39 in flower and ovule development. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 111:1565-1579. [PMID: 35830211 DOI: 10.1111/tpj.15907] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 06/30/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
Seedlessness is one of the most important breeding goals for table grapes; thus, understanding the molecular genetic regulation of seed development and abortion is critical for the development of seedless cultivars. In the present study, we characterized VvMADS39, a class E MADS-box gene of grapevine (Vitis vinifera) orthologous to Arabidopsis SEP2. Heterologous overexpression of VvMADS39 in tomato reduced the fruit and seed size and seed number. Targeted mutagenesis of the homologous SlMADS39 in tomato induced various floral and fruit defects. It could reasonable to suppose that active VvMADS39 expression in "Thompson Seedless" may restrict cellular expansion, resulting in the development of smaller fruits and seeds, VvMADS39 may play a role in the regulation of ovule development in grapevine and contributes to seedless fruit formation. In contrast, VvMADS39 suppression in "Red Globe" was associated with enhanced histone H3 lysine 27 trimethylation in the promoter region of VvMADS39, allowing normal ovule and fruit development; Meanwhile, VvMADS39 interacts with VvAGAMOUS, and the activity of the VvMADS39-VvAGAMOUS dimer to induce integument development requires the activation and maintenance of VvINO expression. The synergistic cooperation between VvMADS39 and related proteins plays an important role in maintaining floral meristem characteristics, and fruit and ovule development.
Collapse
Affiliation(s)
- Songlin Zhang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jin Yao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Li Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Na Wu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Steve van Nocker
- Department of Horticulture, Michigan State University, East Lansing, Michigan, USA
| | - Zhi Li
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
18
|
Chen TT, Yao XH, Liu H, Li YP, Qin W, Yan X, Wang XY, Peng BW, Zhang YJ, Shao J, Hu XY, Miao Q, Fu XQ, Wang YL, Li L, Tang KX. MADS-box gene AaSEP4 promotes artemisinin biosynthesis in Artemisia annua. FRONTIERS IN PLANT SCIENCE 2022; 13:982317. [PMID: 36119604 PMCID: PMC9473666 DOI: 10.3389/fpls.2022.982317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 08/11/2022] [Indexed: 06/15/2023]
Abstract
The plant Artemisia annua is well known for its production of artemisinin, a sesquiterpene lactone that is an effective antimalarial compound. Although remarkable progress has been made toward understanding artemisinin biosynthesis, the effect of MADS-box family transcription factors on artemisinin biosynthesis is still poorly understood. In this study, we identified a MADS transcription factor, AaSEP4, that was predominantly expressed in trichome. AaSEP4 acts as a nuclear-localized transcriptional activator activating the expression of AaGSW1 (GLANDULAR TRICHOME-SPECIFIC WRKY1). Dual-luciferase and Yeast one-hybrid assays revealed that AaSEP4 directly bound to the CArG motif in the promoter region of AaGSW1. Overexpression of AaSEP4 in A. annua significantly induced the expression of AaGSW1 and four artemisinin biosynthesis genes, including amorpha-4,11-diene synthase (ADS), cytochrome P450 monooxygenase (CYP71AV1), double-bond reductase 2 (DBR2) and aldehyde dehydrogenase 1 (ALDH1). Furthermore, the results of high-performance liquid chromatography (HPLC) showed that the artemisinin content was significantly increased in the AaSEP4-overexpressed plants. In addition, RT-qPCR results showed that AaSEP4 was induced by methyl jasmonic acid (MeJA) treatment. Taken together, these results explicitly demonstrate that AaSEP4 is a positive regulator of artemisinin biosynthesis, which can be used in the development of high-artemisinin yielding A. annua varieties.
Collapse
|
19
|
Zhu F, Jadhav SS, Tohge T, Salem MA, Lee JM, Giovannoni JJ, Cheng Y, Alseekh S, Fernie AR. A comparative transcriptomics and eQTL approach identifies SlWD40 as a tomato fruit ripening regulator. PLANT PHYSIOLOGY 2022; 190:250-266. [PMID: 35512210 PMCID: PMC9434188 DOI: 10.1093/plphys/kiac200] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 03/28/2022] [Indexed: 05/31/2023]
Abstract
Although multiple vital genes with strong effects on the tomato (Solanum lycopersicum) ripening process have been identified via the positional cloning of ripening mutants and cloning of ripening-related transcription factors (TFs), recent studies suggest that it is unlikely that we have fully characterized the gene regulatory networks underpinning this process. Here, combining comparative transcriptomics and expression QTLs, we identified 16 candidate genes involved in tomato fruit ripening and validated them through virus-induced gene silencing analysis. To further confirm the accuracy of the approach, one potential ripening regulator, SlWD40 (WD-40 repeats), was chosen for in-depth analysis. Co-expression network analysis indicated that master regulators such as RIN (ripening inhibitor) and NOR (nonripening) as well as vital TFs including FUL1 (FRUITFUL1), SlNAC4 (NAM, ATAF1,2, and CUC2 4), and AP2a (Activating enhancer binding Protein 2 alpha) strongly co-expressed with SlWD40. Furthermore, SlWD40 overexpression and RNAi lines exhibited substantially accelerated and delayed ripening phenotypes compared with the wild type, respectively. Moreover, transcriptome analysis of these transgenics revealed that expression patterns of ethylene biosynthesis genes, phytoene synthase, pectate lyase, and branched chain amino transferase 2, in SlWD40-RNAi lines were similar to those of rin and nor fruits, which further demonstrated that SlWD40 may act as an important ripening regulator in conjunction with RIN and NOR. These results are discussed in the context of current models of ripening and in terms of the use of comparative genomics and transcriptomics as an effective route for isolating causal genes underlying differences in genotypes.
Collapse
Affiliation(s)
| | | | - Takayuki Tohge
- Max-Planck-Institut für Molekulare Pflanzenphysiologie, Am Mühlenberg 1, Potsdam-Golm 14476, Germany
| | - Mohamed A Salem
- Department of Pharmacognosy and Natural Products, Faculty of Pharmacy, Menoufia University, Menoufia 32511, Egypt
| | | | - James J Giovannoni
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca, New York 14853, USA
- US Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853, USA
| | - Yunjiang Cheng
- National R&D Center for Citrus Preservation, Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | | | | |
Collapse
|
20
|
Tang Y, Wang L, Qu Z, Huang C, Zhao T, Li Y, Zhang C. BSISTER transcription factors directly binds to the promoter of IAA19 and IAA29 genes to up-regulate gene expression and promote the root development. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 321:111324. [PMID: 35696924 DOI: 10.1016/j.plantsci.2022.111324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/24/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Roots play an important role in the growth and development of plants and auxin participates in regulating plant root development. Some studies have shown that BS (BSISTER) gene (the closest gene of class B gene) is involved in plant root development, but whether BS regulates root development via auxin signaling still not clear. To explore VviBS1 and VviBS2 roles in root development, VviBS1 and VviBS2 were overexpressedin Arabidopsis tt16 mutant and we found that they could restore the phenotype of shorter PR (primary roots) and high density of LR (lateral root) of tt16 compared with the wild type Ws Arabidopsis seedlings. However, the addition of exogenous NAA (naphthalene acetic acid) could not significantly promote the PR length of tt16 Arabidopsis, and the auxin signal transduction of tt16 may be blocked. The expression levels of auxin signal transduction pathway genes in Ws, tt16, p35s:VviBS1 in tt16 and p35s:VviBS2 in tt16 seedlings were detected. It was found that the expression of AtARF2, AtARF12, AtARF14, AtARF15, AtARF20, AtGH3, AtGH3-2 and AtSAUR51 genes in tt16 seedlings was higher than that in Ws, while the expression of AtIAA19 and AtIAA29 in Ws seedlings was higher than that of tt16. More importantly, BS may up regulate AtIAA19 and AtIAA29 expression directly by binding to their promoter. In addition, VviBS1 and VviBS2 also affect seed germination and may regulate leaf yellowing by regulating ethylene synthase. Therefore, our findings reveal a molecular mechanism that BS may modulate root system development via Aux/IAA-based auxin signaling, and provide insight into the BS function in regulation of leaf yellowing.
Collapse
Affiliation(s)
- Yujin Tang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Ling Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Ziyang Qu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Congbo Huang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Ting Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| | - Yan Li
- College of Life Sciences, Northwest A&F University, Yangling 712100, Shaanxi, China.
| | - Chaohong Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling 712100, Shaanxi, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northwest Region), Ministry of Agriculture, Yangling 712100, Shaanxi, China.
| |
Collapse
|
21
|
Zhang X, Ren Z, Hu G, Zhao S, Wei H, Fan S, Ma Q. Functional divergence of GhAP1.1 and GhFUL2 associated with flowering regulation in upland cotton (Gossypium hirsutum L.). JOURNAL OF PLANT PHYSIOLOGY 2022; 275:153757. [PMID: 35777126 DOI: 10.1016/j.jplph.2022.153757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 06/19/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
The AP1/FUL transcription factors are important for floral development, but the underlying molecular mechanisms remain unclear. In this study, we cloned and identified two AP1/FUL-like genes, GhAP1.1 and GhFUL2, in upland cotton, which is a commonly cultivated economically valuable crop. Sequence alignment and phylogenetic analysis indicated that GhAP1.1 and GhFUL2, which are encoded by genes in the AP1/FUL clade, have conserved N-terminal regions but diverse C-terminal domains. Quantitative real-time PCR analysis revealed that GhAP1.1 and GhFUL2 were expressed in the flower and root, and showed opposite expression patterns during shoot apical meristem development. The upregulated expression of GhAP1.1 in Arabidopsis did not result in significant changes to the flowering time or floral organ development, and the transcript levels of the florigen FT increased and those of LFY decreased. Overexpression of GhFUL2 in Arabidopsis delayed flowering and promoted bolting by decreasing FT and LFY transcript levels. Silencing GhFUL2 in cotton dramatically increased the expression of GhFT and GhAP1.3 and promoted flowering. Yeast two-hybrid and bimolecular fluorescence complementation assays indicated that GhAP1.1 could interact with the SVP homolog GhSVP2.2, whereas GhFUL2 formed heterodimers with GhSEP3/GhSEP4 homologs and GhSVP2.2. The present results demonstrated that the functional divergence of GhAP1.1 and GhFUL2, which involved changes in sequences and expression patterns, influenced the regulation of cotton flower development.
Collapse
Affiliation(s)
- Xiaohong Zhang
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Zhongying Ren
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China
| | - Genhai Hu
- Collaborative Innovation Center of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, 453003, PR China
| | - Shilei Zhao
- Sanmenxia Academy of Agricultural Sciences, Sanmenxia, 472000, PR China
| | - Hengling Wei
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China
| | - Shuli Fan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China.
| | - Qifeng Ma
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of CAAS, Anyang, 455000, PR China.
| |
Collapse
|
22
|
Yang Y, Dong S, Miao H, Liu X, Dai Z, Li X, Gu X, Zhang S. Genome-Wide Association Studies Reveal Candidate Genes Related to Stem Diameter in Cucumber ( Cucumis sativus L.). Genes (Basel) 2022; 13:genes13061095. [PMID: 35741858 PMCID: PMC9222855 DOI: 10.3390/genes13061095] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/10/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
The stem diameter, an important agronomic trait, affects cucumber growth and yield. However, no genes responsible for cucumber stem diameter have been identified yet. In this study, the stem diameter of 88 cucumber core germplasms were measured in spring 2020, autumn 2020 and autumn 2021, and a genome-wide association study (GWAS) was carried out based on the gene sequence and stem diameter of core germplasms. A total of eight loci (gSD1.1, gSD2.1, gSD3.1, gSD3.2, gSD4.1, gSD5.1, gSD5.2, and gSD6.1) significantly associated with cucumber stem diameter were detected. Of these, five loci (gSD1.1, gSD2.1, gSD3.1, gSD5.2, and gSD6.1) were repeatedly detected in two or more seasons and were considered as robust and reliable loci. Based on the linkage disequilibrium sequences of the associated SNP loci, 37 genes were selected. By further investigating the five loci via analyzing Arabidopsis homologous genes and gene haplotypes, five genes (CsaV3_1G028310, CsaV3_2G006960, CsaV3_3G009560, CsaV3_5G031320, and CsaV3_6G031260) showed variations in amino acid sequence between thick stem lines and thin stem lines. Expression pattern analyses of these genes also showed a significant difference between thick stem and thin stem lines. This study laid the foundation for gene cloning and molecular mechanism study of cucumber stem development.
Collapse
|
23
|
Li F, Jia Y, Zhou S, Chen X, Xie Q, Hu Z, Chen G. SlMBP22 overexpression in tomato affects flower morphology and fruit development. JOURNAL OF PLANT PHYSIOLOGY 2022; 272:153687. [PMID: 35378388 DOI: 10.1016/j.jplph.2022.153687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/23/2022] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
MADS-domain transcription factors have been identified as key regulators involved in proper flower and fruit development in angiosperms. As members of the MADS-box subfamily, Bsister (Bs) genes have been observed to play an important role during the evolution of the reproductive organs in seed plants. However, their effects on reproductive development in fruit crops, such as tomato (Solanum lycopersicum), remain unclear. Here, we found that SlMBP22 overexpression (SlMBP22-OE) resulted in considerable alterations in floral morphology and affected the expression levels of several floral homeotic genes. Further analysis by yeast two-hybrid (Y2H) and bimolecular fluorescence complementation (BiFC) assays demonstrated that SlMBP22 forms dimers with class A protein MACROCALYX (MC) and SEPALLATA (SEP) floral homeotic proteins TM5 and TM29, respectively. In addition, pollen viability and cross-fertilization assays suggested that the defect in female reproductive development was responsible for the infertility phenotype observed in the strong overexpression transgenic plants. Transgenic fruits with mild overexpression exhibited reduced size as a result of reduced cell expansion, rather than impaired cell division. Additionally, SlMBP22 overexpression in tomato not only affected proanthocyanidin (PA) accumulation but also altered seed dormancy. Taken together, these findings may provide new insights into the knowledge of Bs MADS-box genes in flower and fruit development in tomato.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Yanhua Jia
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Shengen Zhou
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xinyu Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Qiaoli Xie
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Zongli Hu
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Guoping Chen
- Laboratory of Molecular Biology of Tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| |
Collapse
|
24
|
Wu YM, Ma YJ, Wang M, Zhou H, Gan ZM, Zeng RF, Ye LX, Zhou JJ, Zhang JZ, Hu CG. Mobility of FLOWERING LOCUS T protein as a systemic signal in trifoliate orange and its low accumulation in grafted juvenile scions. HORTICULTURE RESEARCH 2022; 9:uhac056. [PMID: 35702366 PMCID: PMC9186307 DOI: 10.1093/hr/uhac056] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/21/2022] [Indexed: 05/29/2023]
Abstract
The long juvenile period of perennial woody plants is a major constraint in breeding programs. FLOWERING LOCUS T (FT) protein is an important mobile florigen signal that induces plant flowering. However, whether FT can be transported in woody plants to shorten the juvenile period is unknown, and its transport mechanism remains unclear. In this study, trifoliate orange FT (ToFT) and Arabidopsis FT (AtFT, which has been confirmed to be transportable in Arabidopsis) as a control were transformed into tomato and trifoliate orange, and early flowering was induced in the transgenic plants. Long-distance and two-way (upward and downward) transmission of ToFT and AtFT proteins was confirmed in both tomato and trifoliate orange using grafting and western blot analysis. However, rootstocks of transgenic trifoliate orange could not induce flowering in grafted wild-type juvenile scions because of the low accumulation of total FT protein in the grafted scions. It was further confirmed that endogenous ToFT protein was reduced in trifoliate orange, and the accumulation of the transported ToFT and AtFT proteins was lower than that in grafted juvenile tomato scions. Furthermore, the trifoliate orange FT-INTERACTING PROTEIN1 homolog (ToFTIP1) was isolated by yeast two-hybrid analysis. The FTIP1 homolog may regulate FT transport by interacting with FT in tomato and trifoliate orange. Our findings suggest that FT transport may be conserved between the tomato model and woody plants. However, in woody plants, the transported FT protein did not accumulate in significant amounts in the grafted wild-type juvenile scions and induce the scions to flower.
Collapse
|
25
|
Jiang X, Lubini G, Hernandes-Lopes J, Rijnsburger K, Veltkamp V, de Maagd RA, Angenent GC, Bemer M. FRUITFULL-like genes regulate flowering time and inflorescence architecture in tomato. THE PLANT CELL 2022; 34:1002-1019. [PMID: 34893888 PMCID: PMC8894982 DOI: 10.1093/plcell/koab298] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/30/2021] [Indexed: 05/23/2023]
Abstract
The timing of flowering and the inflorescence architecture are critical for the reproductive success of tomato (Solanum lycopersicum), but the gene regulatory networks underlying these traits have not been fully explored. Here, we show that the tomato FRUITFULL-like (FUL-like) genes FUL2 and MADS-BOX PROTEIN 20 (MBP20) promote the vegetative-to-reproductive transition and repress inflorescence branching by inducing floral meristem (FM) maturation. FUL1 fulfils a less prominent role and appears to depend on FUL2 and MBP20 for its upregulation in the inflorescence- and floral meristems. MBP10, the fourth tomato FUL-like gene, has probably lost its function. The tomato FUL-like proteins cannot homodimerize in in vitro assays, but heterodimerize with various other MADS-domain proteins, potentially forming distinct complexes in the transition meristem and FM. Transcriptome analysis of the primary shoot meristems revealed various interesting downstream targets, including four repressors of cytokinin signaling that are upregulated during the floral transition in ful1 ful2 mbp10 mbp20 mutants. FUL2 and MBP20 can also bind in vitro to the upstream regions of these genes, thereby probably directly stimulating cell division in the meristem upon the transition to flowering. The control of inflorescence branching does not occur via the cytokinin oxidase/dehydrogenases (CKXs) but may be regulated by repression of transcription factors such as TOMATO MADS-box gene 3 (TM3) and APETALA 2b (AP2b).
Collapse
Affiliation(s)
- Xiaobing Jiang
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Greice Lubini
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, Brazil
- PPG-Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14049-900, Brazil
| | - José Hernandes-Lopes
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Departamento de Botânica, Instituto de Biociências, Universidade de São Paulo, Rua do Matão 277, 05508-090 São Paulo, Brazil
| | - Kim Rijnsburger
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Vera Veltkamp
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Ruud A de Maagd
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Gerco C Angenent
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| | - Marian Bemer
- Laboratory of Molecular Biology, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
- Business Unit Bioscience, Wageningen University and Research, Droevendaalsesteeg 1, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
26
|
Sharma A, Ramakrishnan M, Khanna K, Landi M, Prasad R, Bhardwaj R, Zheng B. Brassinosteroids and metalloids: Regulation of plant biology. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127518. [PMID: 34836689 DOI: 10.1016/j.jhazmat.2021.127518] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 06/28/2021] [Accepted: 10/13/2021] [Indexed: 05/06/2023]
Abstract
Metalloid contamination in the environment is one of the serious concerns posing threat to our ecosystems. Excess of metalloid concentrations (including antimony, arsenic, boron, selenium etc.) in soil results in their over accumulation in plant tissues, which ultimately causes phytotoxicity and their bio-magnification. So, it is very important to find some ecofriendly approaches to counter negative impacts of above mentioned metalloids on plant system. Brassinosteroids (BRs) belong to family of plant steroidal hormones, and are considered as one of the ecofriendly way to counter metalloid phytotoxicity. This phytohormone regulates the plant biology in presence of metalloids by modulating various key biological processes like cell signaling, primary and secondary metabolism, bio-molecule crosstalk and redox homeostasis. The present review explains the in-depth mechanisms of BR regulated plant responses in presence of metalloids, and provides some biotechnological aspects towards ecofriendly management of metalloid contamination.
Collapse
Affiliation(s)
- Anket Sharma
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| | - Muthusamy Ramakrishnan
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, Jiangsu, China
| | - Kanika Khanna
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Marco Landi
- Department of Agriculture, Food and Environment, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy; CIRSEC, Centre for Climatic Change Impact, University of Pisa, Via del Borghetto 80, I-56124, Pisa, Italy
| | - Rajendra Prasad
- Department of Horticulture, Kulbhaskar Ashram Post Graduate College, Prayagraj, Uttar Pradesh, India
| | - Renu Bhardwaj
- Plant Stress Physiology Lab, Department of Botanical and Environment Sciences, Guru Nanak Dev University, Amritsar, Punjab 143005, India
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou 311300, China.
| |
Collapse
|
27
|
Trubanová N, Shi J, Schilling S. Firming up your tomato: a natural promoter variation in a MADS-box gene is causing all-flesh tomatoes. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:1-4. [PMID: 34986230 PMCID: PMC8730695 DOI: 10.1093/jxb/erab442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This article comments on: Liu L, Zhang K, Bai JR, Lu J, Lu X, Hu J, Pan C, He S, Yuan J, Zhang Y, Zhang M, Guo Y, Wang X, Huang Z, Du Y, Cheng F, Li J. 2022. All-flesh fruit in tomato is controlled by reduced expression dosage of AFF through a structural variant mutation in the promoter. Journal of Experimental Botany 73, 123–138.
Collapse
Affiliation(s)
- Nina Trubanová
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Ireland
| | - Jiaqi Shi
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Ireland
| | - Susanne Schilling
- School of Biology and Environmental Science and Earth Institute, University College Dublin, Ireland
| |
Collapse
|
28
|
Functional Conservation and Divergence of Five AP1/FUL-like Genes in Marigold ( Tagetes erecta L.). Genes (Basel) 2021; 12:genes12122011. [PMID: 34946960 PMCID: PMC8700864 DOI: 10.3390/genes12122011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Revised: 12/10/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Members of AP1/FUL subfamily genes play an essential role in the regulation of floral meristem transition, floral organ identity, and fruit ripping. At present, there have been insufficient studies to explain the function of the AP1/FUL-like subfamily genes in Asteraceae. Here, we cloned two euAP1 clade genes TeAP1-1 and TeAP1-2, and three euFUL clade genes TeFUL1, TeFUL2, and TeFUL3 from marigold (Tagetes erecta L.). Expression profile analysis demonstrated that TeAP1-1 and TeAP1-2 were mainly expressed in receptacles, sepals, petals, and ovules. TeFUL1 and TeFUL3 were expressed in flower buds, stems, and leaves, as well as reproductive tissues, while TeFUL2 was mainly expressed in flower buds and vegetative tissues. Overexpression of TeAP1-2 or TeFUL2 in Arabidopsis resulted in early flowering, implying that these two genes might regulate the floral transition. Yeast two-hybrid analysis indicated that TeAP1/FUL proteins only interacted with TeSEP proteins to form heterodimers and that TeFUL2 could also form a homodimer. In general, TeAP1-1 and TeAP1-2 might play a conserved role in regulating sepal and petal identity, similar to the functions of MADS-box class A genes, while TeFUL genes might display divergent functions. This study provides a theoretical basis for the study of AP1/FUL-like genes in Asteraceae species.
Collapse
|
29
|
Li G, Wang J, Zhang C, Ai G, Zhang D, Wei J, Cai L, Li C, Zhu W, Larkin RM, Zhang J. L2, a chloroplast metalloproteinase, regulates fruit ripening by participating in ethylene autocatalysis under the control of ethylene response factors. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:7035-7048. [PMID: 34255841 DOI: 10.1093/jxb/erab325] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Accepted: 07/12/2021] [Indexed: 06/13/2023]
Abstract
Although autocatalytic ethylene biosynthesis plays an important role in the ripening of climacteric fruits, our knowledge of the network that promotes it remains limited. We identified white fruit (wf), a tomato mutant that produces immature fruit that are white and that ripen slowly. We found that an inversion on chromosome 10 disrupts the LUTESCENT2 (L2) gene, and that white fruit is allelic to lutescent2. Using CRISPR/Cas9 technology we knocked out L2 in wild type tomato and found that the l2-cr mutants produced phenotypes that were very similar to white fruit (lutescent2). In the l2-cr fruit, chloroplast development was impaired and the accumulation of carotenoids and lycopene occurred more slowly than in wild type. During fruit ripening in l2-cr mutants, the peak of ethylene release was delayed, less ethylene was produced, and the expression of ACO genes was significantly suppressed. We also found that exogenous ethylene induces the expression of L2 and that ERF.B3, an ethylene response factor, binds to the promoter of the L2 gene and activates its transcription. Thus, the expression of L2 is regulated by exogenous ethylene. Taken together, our results indicate that ethylene may affect the expression of L2 gene and that L2 participates in autocatalytic ethylene biosynthesis during tomato fruit ripening.
Collapse
Affiliation(s)
- Guobin Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiafa Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunli Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Guo Ai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Dedi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jing Wei
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liangyu Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Changbao Li
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Wenzhao Zhu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Robert M Larkin
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
- Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan 430070, China
| |
Collapse
|
30
|
Yue Y, Sun S, Li J, Yu H, Wu H, Sun B, Li T, Han T, Jiang B. GmFULa improves soybean yield by enhancing carbon assimilation without altering flowering time or maturity. PLANT CELL REPORTS 2021; 40:1875-1888. [PMID: 34272585 PMCID: PMC8494661 DOI: 10.1007/s00299-021-02752-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/04/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE GmFULa improved soybean yield by enhancing carbon assimilation. Meanwhile, different from known yield-related genes, it did not alter flowering time or maturity. Soybean (Glycine max (L.) Merr.) is highly demanded by a continuously growing human population. However, increasing soybean yield is a major challenge. FRUITFULL (FUL), a MADS-box transcription factor, plays important roles in multiple developmental processes, especially fruit and pod development, which are crucial for soybean yield formation. However, the functions of its homologs in soybean are not clear. Here, through haplotype analysis, we found that one haplotype of the soybean homolog GmFULa (GmFULa-H02) is dominant in cultivated soybeans, suggesting that GmFULa-H02 was highly selected during domestication and varietal improvement of soybean. Interestingly, transgenic overexpression of GmFULa enhanced vegetative growth with more biomass accumulated and ultimately increased the yield but without affecting the plant height or changing the flowering time and maturity, indicating that it enhances the efficiency of dry matter accumulation. It also promoted the yield factors like branch number, pod number and 100-seed weight, which ultimately increased the yield. It increased the palisade tissue cell number and the chlorophyll content to promote photosynthesis and increase the soluble sugar content in leaves and fresh seeds. Furthermore, GmFULa were found to be sublocalized in the nucleus and positively regulate sucrose synthases (SUSs) and sucrose transporters (SUTs) by binding with the conserved CArG boxes in their promoters. Overall, these results showed GmFULa promotes the capacity of assimilation and the transport of the resultant assimilates to increase yield, and provided insights into the link between GmFULa and sucrose synthesis with transport-related molecular pathways that control seed yield.
Collapse
Affiliation(s)
- Yanlei Yue
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shi Sun
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiawen Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haidong Yu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongxia Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Baiquan Sun
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Tianfu Han
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bingjun Jiang
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
31
|
Transcriptomic analysis of a wild and a cultivated varieties of Capsicum annuum over fruit development and ripening. PLoS One 2021; 16:e0256319. [PMID: 34428253 PMCID: PMC8384167 DOI: 10.1371/journal.pone.0256319] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 08/03/2021] [Indexed: 12/13/2022] Open
Abstract
Chili pepper (Capsicum annuum) is one of the most important crops worldwide. Its fruits contain metabolites produced over the maturation process like capsaicinoids and carotenoids. This metabolic process produces internal changes in flavor, color, texture, and aroma in fruits to make them more attractive for seed dispersal organisms. The chiltepin (C. annuum L. var. glabriusculum) is a wild variety of the C. annuum L. species that is considered a source of genetic resources that could be used to improve the current chili crops. In this study, we performed a transcriptomic analysis on two fruit maturation stages: immature stage (green fruit) and mature stage (red fruit) of a wild and a cultivated pepper variety. We found 19,811 genes expressed, and 1,008 genes differentially expressed (DEGs) in at least one of the five contrast used; 730 DEGs were found only in one contrast, and most DEGs in all contrasts were downregulated. GO enrichment analysis showed that the majority of DEGs are related to stress responses. KEGG enrichment analysis detected differences in expression patterns in metabolic pathways related to phenylpropanoid biosynthesis, secondary metabolites, plant hormone signal transduction, carotenoid biosynthesis and sesquiterpenoid and triterpenoid biosynthesis. We selected 105 tomato fruit ripening-related genes, and found 53 pepper homologs differentially expressed related to shape, size, and secondary metabolite biosynthesis. According to the transcriptome analysis, the two peppers showed very similar gene expression patterns; differences in expression patterns of genes related to shape, size, ethylene and secondary metabolites biosynthesis suggest that changes produced by domestication of chilli pepper could be very specific to the expression of genes related to traits desired in commercial fruits.
Collapse
|
32
|
Ito Y, Nakamura N, Kotake-Nara E. Semi-dominant effects of a novel ripening inhibitor (rin) locus allele on tomato fruit ripening. PLoS One 2021; 16:e0249575. [PMID: 33886595 PMCID: PMC8061929 DOI: 10.1371/journal.pone.0249575] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
The tomato (Solanum lycopersicum) ripening inhibitor (rin) mutation completely represses fruit ripening, as rin fruits fail to express ripening-associated genes and remain green and firm. Moreover, heterozygous rin fruits (rin/+) ripen normally but have extended shelf life, an important consideration for this perishable fruit crop; therefore, heterozygous rin has been widely used to breed varieties that produce red tomatoes with improved shelf life. We previously used CRISPR/Cas9 to produce novel alleles at the rin locus. The wild-type allele RIN encodes a MADS-box transcription factor and the novel allele, named as rinG2, generates an early stop codon, resulting in C-terminal truncation of the transcription factor. Like rin fruits, rinG2 fruits exhibit extended shelf life, but unlike rin fruits, which remain yellow-green even after long-term storage, rinG2 fruits turn orange due to ripening-associated carotenoid production. Here, to explore the potential of the rinG2 mutation for breeding, we characterized the effects of rinG2 in the heterozygous state (rinG2/+) compared to the effects of rin/+. The softening of rinG2/+ fruits was delayed compared to the wild type but to a lesser degree than rin/+ fruits. Lycopene and β-carotene levels in rinG2/+ fruits were similar to those of the wild type, whereas rin/+ fruits accumulated half the amount of β-carotene compared to the wild type. The rinG2/+ fruits produced lower levels of ethylene than wild-type and rin/+ fruits. Expression analysis revealed that in rinG2/+ fruits, the rinG2 mutation (like rin) partially inhibited the expression of ripening-associated genes. The small differences in the inhibitory effects of rinG2 vs. rin coincided with small differences in phenotypes, such as ethylene production, softening, and carotenoid accumulation. Therefore, rinG2 represents a promising genetic resource for developing tomato cultivars with extended shelf life.
Collapse
Affiliation(s)
- Yasuhiro Ito
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Nobutaka Nakamura
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Eiichi Kotake-Nara
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
33
|
Lu S, Ye J, Zhu K, Zhang Y, Zhang M, Xu Q, Deng X. A fruit ripening-associated transcription factor CsMADS5 positively regulates carotenoid biosynthesis in citrus. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:3028-3043. [PMID: 33543257 DOI: 10.1093/jxb/erab045] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 02/01/2021] [Indexed: 05/21/2023]
Abstract
Carotenoids in citrus contribute to the quality of the fruit, but the mechanism of its transcriptional regulation is fairly unknown. Here, we characterized a citrus FRUITFULL sub-clade MADS gene, CsMADS5, that was ripening-inducible and acted as a nucleus-localized trans-activator. Transient overexpression of CsMADS5 in citrus induced fruit coloration and enhanced carotenoid concentrations. The expression of carotenogenic genes including phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene β-cyclase 1 (LCYb1) was increased in the peels of fruits overexpressing CsMADS5. Similar results were observed from stable overexpression of CsMADS5 in tomato fruits and citrus calli, even though the effect of CsMADS5 on carotenoid metabolism in transgenic citrus calli was limited. Further biochemical analyses demonstrated that CsMADS5 activated the transcription of PSY, PDS, and LCYb1 by directly binding to their promoters. We concluded that CsMADS5 positively regulates carotenoid biosynthesis in fruits by directly activating the transcription of carotenogenic genes. Moreover, CsMADS5 physically interacted with a positive regulator CsMADS6, indicating that CsMADS5 may form an enhancer complex with CsMADS6 to synergistically promote carotenoid accumulation. These findings expand our understanding of the complex transcriptional regulatory hierarchy of carotenoid biosynthesis during fruit ripening.
Collapse
Affiliation(s)
- Suwen Lu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
- University of Trento, Italy
| | - Junli Ye
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Kaijie Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Yin Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | | | - Qiang Xu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
34
|
Li F, Chen X, Zhou S, Xie Q, Wang Y, Xiang X, Hu Z, Chen G. Overexpression of SlMBP22 in Tomato Affects Plant Growth and Enhances Tolerance to Drought Stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 301:110672. [PMID: 33218637 DOI: 10.1016/j.plantsci.2020.110672] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 06/11/2023]
Abstract
MADS-box transcription factors play crucial and diverse roles in plant growth and development, and the responses to biotic and abiotic stresses. However, the implementation of MADS-box transcription factors in regulating plant architecture and stress responses has not been fully explored in tomato. Here, we found that a novel MADS-box transcription factor, SlMBP22, participated in the control of agronomical traits, tolerance to abiotic stress, and regulation of auxin and gibberellin signalling. Transgenic plants overexpressing SlMBP22 (SlMBP22-OE) displayed pleiotropic phenotypes, including reduced plant height and leaf size, by affecting auxin and/or gibberellin signalling. SlMBP22 was induced by dehydration treatment, and SlMBP22-OE plants were more tolerant to drought stress than wild-type (WT). Furthermore, SlMBP22 overexpression plants accumulated more chlorophyll, starch and soluble sugar than WT, indicating that the darker green leaves might be attributed to increased chlorophyll levels in the transgenic plants. RNA-Seq results showed that the transcript levels of a series of genes related to chloroplast development, chlorophyll metabolism, starch and sucrose metabolism, hormone signalling, and stress responses were altered. Collectively, our data demonstrate that SlMBP22 plays an important role in both regulating tomato growth and resisting drought stress.
Collapse
Affiliation(s)
- Fenfen Li
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xinyu Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Shengen Zhou
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Qiaoli Xie
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Yunshu Wang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Xiaoxue Xiang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing, PR China.
| |
Collapse
|
35
|
Wang X, Gao L, Jiao C, Stravoravdis S, Hosmani PS, Saha S, Zhang J, Mainiero S, Strickler SR, Catala C, Martin GB, Mueller LA, Vrebalov J, Giovannoni JJ, Wu S, Fei Z. Genome of Solanum pimpinellifolium provides insights into structural variants during tomato breeding. Nat Commun 2020; 11:5817. [PMID: 33199703 PMCID: PMC7670462 DOI: 10.1038/s41467-020-19682-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/27/2020] [Indexed: 01/01/2023] Open
Abstract
Solanum pimpinellifolium (SP) is the wild progenitor of cultivated tomato. Because of its remarkable stress tolerance and intense flavor, SP has been used as an important germplasm donor in modern tomato breeding. Here, we present a high-quality chromosome-scale genome sequence of SP LA2093. Genome comparison identifies more than 92,000 structural variants (SVs) between LA2093 and the modern cultivar, Heinz 1706. Genotyping these SVs in ~600 representative tomato accessions identifies alleles under selection during tomato domestication, improvement and modern breeding, and discovers numerous SVs overlapping genes known to regulate important breeding traits such as fruit weight and lycopene content. Expression quantitative trait locus (eQTL) analysis detects hotspots harboring master regulators controlling important fruit quality traits, including cuticular wax accumulation and flavonoid biosynthesis, and SVs contributing to these complex regulatory networks. The LA2093 genome sequence and the identified SVs provide rich resources for future research and biodiversity-based breeding. Solanum pimpinellifolium (SP) is the progenitor of cultivated tomato and an important germplasm. Here, the authors assemble SP genome, identify structural variants (SVs) by comparing with modern cultivar, reveal SVs associated with important breeding traits, and detect SVs harboring master regulators of fruit quality traits.
Collapse
Affiliation(s)
- Xin Wang
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Lei Gao
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.,CAS Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Innovative Academy of Seed Design, Chinese Academy of Sciences, Wuhan, Hubei, 430074, China
| | - Chen Jiao
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | | | | | - Surya Saha
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | - Jing Zhang
- Boyce Thompson Institute, Ithaca, NY, 14853, USA
| | | | | | | | - Gregory B Martin
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.,Plant Pathology and Plant-Microbe Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | | | | | - James J Giovannoni
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.,US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA
| | - Shan Wu
- Boyce Thompson Institute, Ithaca, NY, 14853, USA.
| | - Zhangjun Fei
- Boyce Thompson Institute, Ithaca, NY, 14853, USA. .,US Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, NY, 14853, USA.
| |
Collapse
|
36
|
Singh P, Bharti N, Singh AP, Tripathi SK, Pandey SP, Chauhan AS, Kulkarni A, Sane AP. Petal abscission in fragrant roses is associated with large scale differential regulation of the abscission zone transcriptome. Sci Rep 2020; 10:17196. [PMID: 33057097 PMCID: PMC7566604 DOI: 10.1038/s41598-020-74144-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Accepted: 09/08/2020] [Indexed: 12/03/2022] Open
Abstract
Flowers of fragrant roses such as Rosa bourboniana are ethylene-sensitive and undergo rapid petal abscission while hybrid roses show reduced ethylene sensitivity and delayed abscission. To understand the molecular mechanism underlying these differences, a comparative transcriptome of petal abscission zones (AZ) of 0 h and 8 h ethylene-treated flowers from R. bourboniana was performed. Differential regulation of 3700 genes (1518 up, 2182 down) representing 8.5% of the AZ transcriptome was observed between 0 and 8 h ethylene-treated R. bourboniana petal AZ. Abscission was associated with large scale up-regulation of the ethylene pathway but prominent suppression of the JA, auxin and light-regulated pathways. Regulatory genes encoding kinases/phosphatases/F-box proteins and transcription factors formed the major group undergoing differential regulation besides genes for transporters, wall modification, defense and phenylpropanoid pathways. Further comparisons with ethylene-treated petals of R. bourboniana and 8 h ethylene-treated AZ (R. hybrida) identified a core set of 255 genes uniquely regulated by ethylene in R. bourboniana AZ. Almost 23% of these encoded regulatory proteins largely conserved with Arabidopsis AZ components. Most of these were up-regulated while an entire set of photosystem genes was prominently down-regulated. The studies provide important information on regulation of petal abscission in roses.
Collapse
Affiliation(s)
- Priya Singh
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Neeraj Bharti
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India.,High Performance Computing-Medical and Bioinformatics Applications Group, Centre for Development of Advanced Computing, Pune, 411008, India
| | - Amar Pal Singh
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India.,National Institute for Plant Genome Research, New Delhi, 110067, India
| | - Siddharth Kaushal Tripathi
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India.,National Centre for Natural Products Research, School of Pharmacy, University of Mississippi, Oxford, MS, 38677, USA
| | - Saurabh Prakash Pandey
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhishek Singh Chauhan
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abhijeet Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, 411007, India
| | - Aniruddha P Sane
- Molecular Biology and Biotechnology, CSIR-National Botanical Research Institute, Lucknow, 226001, India. .,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
37
|
Zhang C, Wang J, Wang X, Li C, Ye Z, Zhang J. UF, a WOX gene, regulates a novel phenotype of un-fused flower in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 297:110523. [PMID: 32563463 DOI: 10.1016/j.plantsci.2020.110523] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Flower formation is a basic condition for fruit set in all flowering plants. The normal stamen of tomato flower fused together to form a yellow cylinder surrounding the carpels. In this study, we identified an un-fused flower (uf) tomato mutant that is defective in petal, carpal and stamen fusion and lateral outgrowth. After RNA-seq-based BSA (BSR), the candidate region location was identified in the long arm of chromosome 3. Using map-based cloning with InDel and CAPS markers, the UF candidate gene was mapped in a 104 kb region. In this region, a WOX (WUSCHEL-related homeobox) transcription factor SlWOX1 was considered as a candidate of UF as there is a 72bp deletion in its second exon in uf mutant. The mutations of SlWOX1 generated by CRISPR/CAS9 approach under wild-type background reproduced the phenotypes of uf mutant, indicating that the SlWOX1 gene is indeed UF. Interestingly, expression analysis of organ lateral polarity determinant genes showed that abaxial genes (SlYABBY5 and SlARF4) and adaxial genes (AS and HD-ZIPIII) were significantly down-regulated in the uf mutant, which is different to that in Arabidopsis and petunia. In conclusion, this work revealed a novel function of SlWOX1 in the regulation of flower development in tomato.
Collapse
Affiliation(s)
- Chunli Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Jiafa Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Xin Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Changxing Li
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China.
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan430070, PR China; Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture and Rural Affairs, Wuhan430070, PR China.
| |
Collapse
|
38
|
Ito Y, Sekiyama Y, Nakayama H, Nishizawa-Yokoi A, Endo M, Shima Y, Nakamura N, Kotake-Nara E, Kawasaki S, Hirose S, Toki S. Allelic Mutations in the Ripening -Inhibitor Locus Generate Extensive Variation in Tomato Ripening. PLANT PHYSIOLOGY 2020; 183:80-95. [PMID: 32094307 PMCID: PMC7210617 DOI: 10.1104/pp.20.00020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/13/2020] [Indexed: 05/03/2023]
Abstract
RIPENING INHIBITOR (RIN) is a transcription factor with transcriptional activator activity that plays a major role in regulating fruit ripening in tomato (Solanum lycopersicum). Recent studies have revealed that (1) RIN is indispensable for full ripening but not for the induction of ripening; and (2) the rin mutation, which produces nonripening fruits that never turn red or soften, is not a null mutation but instead converts the encoded transcriptional activator into a repressor. Here, we have uncovered aspects of RIN function by characterizing a series of allelic mutations within this locus that were produced by CRISPR/Cas9. Fruits of RIN-knockout plants, which are characterized by partial ripening and low levels of lycopene but never turn fully red, showed excess flesh softening compared to the wild type. The knockout mutant fruits also showed accelerated cell wall degradation, suggesting that, contrary to the conventional view, RIN represses over-ripening in addition to facilitating ripening. A C-terminal domain-truncated RIN protein, encoded by another allele of the RIN locus (rinG2), did not activate transcription but formed transcription factor complexes that bound to target genomic regions in a manner similar to that observed for wild-type RIN protein. Fruits expressing this truncated RIN protein exhibited extended shelf life, but unlike rin fruits, they accumulated lycopene and appeared orange. The diverse ripening properties of the RIN allelic mutants suggest that substantial phenotypic variation can be produced by tuning the activity of a transcription factor.
Collapse
Affiliation(s)
- Yasuhiro Ito
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Yasuyo Sekiyama
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
- Advanced Analysis Center, NARO, Tsukuba, Ibaraki 305-8642, Japan
| | - Hiroko Nakayama
- Advanced Analysis Center, NARO, Tsukuba, Ibaraki 305-8642, Japan
| | - Ayako Nishizawa-Yokoi
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Masaki Endo
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Yoko Shima
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Nobutaka Nakamura
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Eiichi Kotake-Nara
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Susumu Kawasaki
- Food Research Institute, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki 305-8642, Japan
| | - Sakiko Hirose
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
| | - Seiichi Toki
- Institute of Agrobiological Sciences, NARO, 2-1-2 Kannondai, Tsukuba, Ibaraki 305-8602, Japan
- Graduate School of Nanobioscience, Yokohama City University, Yokohama, Kanagawa, 236-0027, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Kanagawa, 244-0813, Japan
| |
Collapse
|
39
|
Morel P, Chambrier P, Boltz V, Chamot S, Rozier F, Rodrigues Bento S, Trehin C, Monniaux M, Zethof J, Vandenbussche M. Divergent Functional Diversification Patterns in the SEP/AGL6/AP1 MADS-Box Transcription Factor Superclade. THE PLANT CELL 2019; 31:3033-3056. [PMID: 31591161 PMCID: PMC6925017 DOI: 10.1105/tpc.19.00162] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/29/2019] [Accepted: 10/04/2019] [Indexed: 05/20/2023]
Abstract
Members of SEPALLATA (SEP) and APETALA1 (AP1)/SQUAMOSA (SQUA) MADS-box transcription factor subfamilies play key roles in floral organ identity determination and floral meristem determinacy in the rosid species Arabidopsis (Arabidopsis thaliana). Here, we present a functional characterization of the seven SEP/AGL6 and four AP1/SQUA genes in the distant asterid species petunia (Petunia × hybrida). Based on the analysis of single and higher order mutants, we report that the petunia SEP1/SEP2/SEP3 orthologs together with AGL6 encode classical SEP floral organ identity and floral termination functions, with a master role for the petunia SEP3 ortholog FLORAL BINDING PROTEIN2 (FBP2). By contrast, the FBP9 subclade members FBP9 and FBP23, for which no clear ortholog is present in Arabidopsis, play a major role in determining floral meristem identity together with FBP4, while contributing only moderately to floral organ identity. In turn, the four members of the petunia AP1/SQUA subfamily redundantly are required for inflorescence meristem identity and act as B-function repressors in the first floral whorl, together with BEN/ROB genes. Overall, these data together with studies in other species suggest major differences in the functional diversification of the SEP/AGL6 and AP1/SQUA MADS-box subfamilies during angiosperm evolution.plantcell;31/12/3033/FX1F1fx1.
Collapse
Affiliation(s)
- Patrice Morel
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Pierre Chambrier
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Véronique Boltz
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Sophy Chamot
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Frédérique Rozier
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Suzanne Rodrigues Bento
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Christophe Trehin
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Marie Monniaux
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| | - Jan Zethof
- Plant Genetics, Institute for Water and Wetland Research, Radboud University Nijmegen, 6525AJ Nijmegen, The Netherlands
| | - Michiel Vandenbussche
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRA, F-69342, Lyon, France
| |
Collapse
|
40
|
Quinet M, Angosto T, Yuste-Lisbona FJ, Blanchard-Gros R, Bigot S, Martinez JP, Lutts S. Tomato Fruit Development and Metabolism. FRONTIERS IN PLANT SCIENCE 2019; 10:1554. [PMID: 31850035 PMCID: PMC6895250 DOI: 10.3389/fpls.2019.01554] [Citation(s) in RCA: 167] [Impact Index Per Article: 33.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 11/07/2019] [Indexed: 05/20/2023]
Abstract
Tomato (Solanum lycopersicum L.) belongs to the Solanaceae family and is the second most important fruit or vegetable crop next to potato (Solanum tuberosum L.). It is cultivated for fresh fruit and processed products. Tomatoes contain many health-promoting compounds including vitamins, carotenoids, and phenolic compounds. In addition to its economic and nutritional importance, tomatoes have become the model for the study of fleshy fruit development. Tomato is a climacteric fruit and dramatic metabolic changes occur during its fruit development. In this review, we provide an overview of our current understanding of tomato fruit metabolism. We begin by detailing the genetic and hormonal control of fruit development and ripening, after which we document the primary metabolism of tomato fruits, with a special focus on sugar, organic acid, and amino acid metabolism. Links between primary and secondary metabolic pathways are further highlighted by the importance of pigments, flavonoids, and volatiles for tomato fruit quality. Finally, as tomato plants are sensitive to several abiotic stresses, we briefly summarize the effects of adverse environmental conditions on tomato fruit metabolism and quality.
Collapse
Affiliation(s)
- Muriel Quinet
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Trinidad Angosto
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Fernando J. Yuste-Lisbona
- Centro de Investigación en Biotecnología Agroalimentaria (BITAL), Universidad de Almería, Almería, Spain
| | - Rémi Blanchard-Gros
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Servane Bigot
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| | | | - Stanley Lutts
- Groupe de Recherche en Physiologie Végétale, Earth and Life Institute, Université Catholique de Louvain, Louvain-la-Neuve, Belgium
| |
Collapse
|
41
|
Wang Y, Zhang J, Hu Z, Guo X, Tian S, Chen G. Genome-Wide Analysis of the MADS-Box Transcription Factor Family in Solanum lycopersicum. Int J Mol Sci 2019; 20:ijms20122961. [PMID: 31216621 PMCID: PMC6627509 DOI: 10.3390/ijms20122961] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/13/2019] [Accepted: 06/15/2019] [Indexed: 11/16/2022] Open
Abstract
MADS-box family genes encode transcription factors that are involved in multiple developmental processes in plants, especially in floral organ specification, fruit development, and ripening. However, a comprehensive analysis of tomato MADS-box family genes, which is an important model plant to study flower fruit development and ripening, remains obscure. To gain insight into the MADS-box genes in tomato, 131 tomato MADS-box genes were identified. These genes could be divided into five groups (Mα, Mβ, Mγ, Mδ, and MIKC) and were found to be located on all 12 chromosomes. We further analyzed the phylogenetic relationships among Arabidopsis and tomato, as well as the protein motif structure and exon–intron organization, to better understand the tomato MADS-box gene family. Additionally, owing to the role of MADS-box genes in floral organ identification and fruit development, the constitutive expression patterns of MADS-box genes at different stages in tomato development were identified. We analyzed 15 tomato MADS-box genes involved in floral organ identification and five tomato MADS-box genes related to fruit development by qRT-PCR. Collectively, our study provides a comprehensive and systematic analysis of the tomato MADS-box genes and would be valuable for the further functional characterization of some important members of the MADS-box gene family.
Collapse
Affiliation(s)
- Yunshu Wang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Jianling Zhang
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Zongli Hu
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Xuhu Guo
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| | - Shibing Tian
- The Institute of Vegetable Research, Chongqing Academy of Agricultural Sciences, Chongqing 401329, China.
| | - Guoping Chen
- Laboratory of molecular biology of tomato, Bioengineering College, Chongqing University, Chongqing 400044, China.
| |
Collapse
|
42
|
Zhao J, Jiang L, Che G, Pan Y, Li Y, Hou Y, Zhao W, Zhong Y, Ding L, Yan S, Sun C, Liu R, Yan L, Wu T, Li X, Weng Y, Zhang X. A Functional Allele of CsFUL1 Regulates Fruit Length through Repressing CsSUP and Inhibiting Auxin Transport in Cucumber. THE PLANT CELL 2019; 31:1289-1307. [PMID: 30979795 PMCID: PMC6588310 DOI: 10.1105/tpc.18.00905] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 03/04/2019] [Accepted: 03/29/2019] [Indexed: 05/03/2023]
Abstract
Fruit length is a prominent agricultural trait during cucumber (Cucumis sativus) domestication and diversifying selection; however, the regulatory mechanisms of fruit elongation remain elusive. We identified two alleles of the FRUITFULL (FUL)-like MADS-box gene CsFUL1 with 3393C/A Single Nucleotide Polymorphism variation among 150 cucumber lines. Whereas CsFUL1A was specifically enriched in the long-fruited East Asian type cucumbers (China and Japan), the CsFUL1C allele was randomly distributed in cucumber populations, including wild and semiwild cucumbers. CsFUL1A knockdown led to further fruit elongation in cucumber, whereas elevated expression of CsFUL1A resulted in significantly shorter fruits. No effect on fruit elongation was detected when CsFUL1C expression was modulated, suggesting that CsFUL1A is a gain-of-function allele in long-fruited cucumber that acts as a repressor during diversifying selection of East Asian cucumbers. Furthermore, CsFUL1A binds to the CArG-box in the promoter region of SUPERMAN, a regulator of cell division and expansion, to repress its expression. Additionally, CsFUL1A inhibits the expression of auxin transporters PIN-FORMED1 (PIN1) and PIN7, resulting in decreases in auxin accumulation in fruits. Together, our work identifies an agriculturally important allele and suggests a strategy for manipulating fruit length in cucumber breeding that involves modulation of CsFUL1A expression.
Collapse
Affiliation(s)
- Jianyu Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
| | - Li Jiang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
- Department of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Gen Che
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yupeng Pan
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
| | - Yanqiang Li
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Yu Hou
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Wensheng Zhao
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yanting Zhong
- Department of Plant Nutrition, China Agricultural University, Beijing 100193, China
| | - Lian Ding
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
- Department of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuangshuang Yan
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Chengzhen Sun
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Renyi Liu
- Shanghai Center for Plant Stress Biology, Chinese Academy of Sciences, Shanghai 201602, China
| | - Liying Yan
- College of Horticulture Science and Technology, Hebei Normal University of Science & Technology, Qinhuangdao 066004, China
| | - Tao Wu
- College of Horticultural and Landscape Architecture, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, China
| | - Xuexian Li
- Department of Plant Nutrition, China Agricultural University, Beijing 100193, China
| | - Yiqun Weng
- Department of Horticulture, University of Wisconsin, Madison, Wisconsin 53706
- USDA-ARS, Vegetable Crops Research Unit, 1575 Linden Drive, Madison, Wisconsin 53706
| | - Xiaolan Zhang
- Beijing Key Laboratory of Growth and Developmental Regulation for Protected Vegetable Crops, MOE Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
43
|
Ma G, Zou Q, Shi X, Tian D, Sheng Q. Ectopic expression of the AaFUL1 gene identified in Anthurium andraeanum affected floral organ development and seed fertility in tobacco. Gene 2019; 696:197-205. [PMID: 30802537 DOI: 10.1016/j.gene.2019.02.050] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/21/2019] [Accepted: 02/12/2019] [Indexed: 11/18/2022]
Abstract
Anthurium andraeanum is a high-grade potted flower that enjoys global popularity. Its floral organs have been substantially modified, and its ornamental value is based on its petaloid bracts. MADS-box gene products are important transcription factors that control plant development. In particular, the APETALA1 (AP1)/FRUITFULL (FUL) family of MADS-box genes plays a key role in flowering transitions and out-whorl floral organ identity specification. In this report, one FUL-like gene was cloned from Anthurium andraeanum and named AaFUL1 after bioinformatics identification. Subsequent subcellular localization experiments confirmed that the AaFUL1 protein was located in the nucleus, and data obtained from an expression analysis indicated that the relative expression level of AaFUL1 was the highest in bracts and inflorescences, while its expression was relatively low in stems and roots. Next, an AaFUL1 overexpression vector was constructed and ectopically expressed in tobacco. The transformants did not show any early flowering phenotype, but the average internode length of the inflorescence branch was significantly higher than that observed in the control, and its petal color had substantially faded. The morphology of the petal and pistil was clearly changed, the fruit was deformed, and the seed was largely aborted. These data indicate that even though the sequence of AaFUL1 is relatively conserved, its function differs from that of other orthologs, and the FUL subfamily of MADS-box transcription factors may have taken on new functions during the evolution processes. The results of this experiment enrich our knowledge of FUL transcription factors in monocotyledon plants.
Collapse
Affiliation(s)
- Guangying Ma
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China.
| | - Qingcheng Zou
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Xiaohua Shi
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Danqing Tian
- Floriculture Research and Development Center of Zhejiang Academy of Agricultural Sciences, Hangzhou, Zhejiang, China
| | - Qianqian Sheng
- College of Landscape Architecture, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
44
|
Zhang S, Lu S, Yi S, Han H, Zhou Q, Cai F, Bao M, Liu G. Identification and characterization of FRUITFULL-like genes from Platanus acerifolia, a basal eudicot tree. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 280:206-218. [PMID: 30823999 DOI: 10.1016/j.plantsci.2018.11.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 09/18/2018] [Accepted: 11/26/2018] [Indexed: 05/26/2023]
Abstract
The function of euAP1 and euFUL in AP1/FUL lineage have been well characterized in core eudicots, and they play common and distinct roles in plant development. However, the evolution and function of FUL-like genes is poorly understood in basal eudicots. In this study, we identified three FUL-like genes PlacFL1/2/3 from London plane (Platanus acerifolia). Sequence alignment and phylogenetic analysis indicated that PlacFL1/2/3 are AP1/FUL orthologs and encoded proteins containing FUL motif and paleoAP1 motif. Quantitative real-time PCR (qRT-PCR) analysis showed that PlacFL1/2/3 were expressed in both vegetative and reproductive tissues, but with distinct spatiotemporal patterns. In contrast to PlacFL1 and PlacFL3, PlacFL2 exhibited higher expression levels and broader expression regions, and that the expression of PlacFL2 gene showed a decreasing and increasing tendency in subpetiolar buds during dormancy induction and breaking, respectively. Overexpression of PlacFLs in Arabidopsis and PlacFL3 in tobacco resulted in early flowering, as well as early termination of inflorescence meristems for transgenic Arabidopsis plants. The expression changes of flowering time and flower meristem identity genes in transgenic Arabidopsis lines with different PlacFLs suggested that PlacFL2 and PlacFL3 may regulate different downstream genes to perform divergent functions. Yeast two-hybrid analysis indicated that PlacFLs interacted strongly with PlacSEP proteins, and PlacFL3 instead of PlacFL1 and PlacFL2 could also form a homodimer and interact with D-class proteins. Our results suggest that PlacFLs may play conserved functions in regulating flowering and flower development, and PlacFL2 might also be involved in dormancy regulation. The research helps us to understand the functional evolution of FUL-like genes in basal eudicots, especially in perennial woody species.
Collapse
Affiliation(s)
- Sisi Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China; Wuhan Institute of Landscape Architecture, Peace Avenue No. 1240, Wuhan, 430081, China
| | - Shunjiao Lu
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Shuangshuang Yi
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Hongji Han
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Qin Zhou
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Fangfang Cai
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Manzhu Bao
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Key Laboratory of Urban Agriculture in Central China, Ministry of Agriculture, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Shizishan Street No. 1, Wuhan, 430070, China
| | - Guofeng Liu
- Guangzhou Institute of Forestry and Landscape Architecture, Guangzhou, 510405, China.
| |
Collapse
|
45
|
Li S, Chen K, Grierson D. A critical evaluation of the role of ethylene and MADS transcription factors in the network controlling fleshy fruit ripening. THE NEW PHYTOLOGIST 2019; 221:1724-1741. [PMID: 30328615 DOI: 10.1111/nph.15545] [Citation(s) in RCA: 97] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/28/2018] [Indexed: 05/18/2023]
Abstract
Contents Summary 1724 I. Introduction 1725 II. Ripening genes 1725 III. The importance of ethylene in controlling ripening 1727 IV. The importance of MADS-RIN in controlling ripening 1729 V. Interactions between components of the ripening regulatory network 1734 VI. Conclusions 1736 Acknowledgements 1738 Author contributions 1738 References 1738 SUMMARY: Understanding the regulation of fleshy fruit ripening is biologically important and provides insights and opportunities for controlling fruit quality, enhancing nutritional value for animals and humans, and improving storage and waste reduction. The ripening regulatory network involves master and downstream transcription factors (TFs) and hormones. Tomato is a model for ripening regulation, which requires ethylene and master TFs including NAC-NOR and the MADS-box protein MADS-RIN. Recent functional characterization showed that the classical RIN-MC gene fusion, previously believed to be a loss-of-function mutation, is an active TF with repressor activity. This, and other evidence, has highlighted the possibility that MADS-RIN itself is not important for ripening initiation but is required for full ripening. In this review, we discuss the diversity of components in the control network, their targets, and how they interact to control initiation and progression of ripening. Both hormones and individual TFs affect the status and activity of other network participants, which changes overall network signaling and ripening outcomes. MADS-RIN, NAC-NOR and ethylene play critical roles but there are still unanswered questions about these and other TFs. Further attention should be paid to relationships between ethylene, MADS-RIN and NACs in ripening control.
Collapse
Affiliation(s)
- Shan Li
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Kunsong Chen
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
| | - Don Grierson
- College of Agriculture & Biotechnology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijingang Campus, Hangzhou, 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| |
Collapse
|
46
|
Re-evaluation of transcription factor function in tomato fruit development and ripening with CRISPR/Cas9-mutagenesis. Sci Rep 2019; 9:1696. [PMID: 30737425 PMCID: PMC6368595 DOI: 10.1038/s41598-018-38170-6] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 12/19/2018] [Indexed: 11/08/2022] Open
Abstract
Tomato (Solanum lycopersicum) is a model for climacteric fleshy fruit ripening studies. Tomato ripening is regulated by multiple transcription factors together with the plant hormone ethylene and their downstream effector genes. Transcription Factors APETALA2a (AP2a), NON-RIPENING (NOR) and FRUITFULL (FUL1/TDR4 and FUL2/MBP7) were reported as master regulators controlling tomato fruit ripening. Their proposed functions were derived from studies of the phenotype of spontaneous mutants or RNAi knock-down lines rather than, as it appears now, actual null mutants. To study TF function in tomato fruit ripening in more detail, we used CRISPR/Cas9-mediated mutagenesis to knock out the encoding genes, and phenotypes of these mutants are reported for the first time. While the earlier ripening, orange-ripe phenotype of ap2a mutants was confirmed, the nor null mutant exhibited a much milder phenotype than the spontaneous nor mutant. Additional analyses revealed that the severe phenotype in the spontaneous mutant is caused by a dominant-negative allele. Our approach also provides new insight into the independent and overlapping functions of FUL1 and FUL2. Single and combined null alleles of FUL1 and FUL2 illustrate that these two genes have partially redundant functions in fruit ripening, but also unveil an additional role for FUL2 in early fruit development.
Collapse
|
47
|
Dubey M, Jaiswal V, Rawoof A, Kumar A, Nitin M, Chhapekar SS, Kumar N, Ahmad I, Islam K, Brahma V, Ramchiary N. Identification of genes involved in fruit development/ripening in Capsicum and development of functional markers. Genomics 2019; 111:1913-1922. [PMID: 30615924 DOI: 10.1016/j.ygeno.2019.01.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 11/27/2018] [Accepted: 01/02/2019] [Indexed: 01/25/2023]
Abstract
The molecular mechanism of the underlying genes involved in the process of fruit ripening in Capsicum (family Solanaceae) is not clearly known. In the present study, we identified orthologs of 32 fruit development/ripening genes of tomato in Capsicum, and validated their expression in fruit development stages in C. annuum, C. frutescens, and C. chinense. In silico expression analysis using transcriptome data identified a total of 12 out of 32 genes showing differential expression during different stages of fruit development in Capsicum. Real time expression identified gene LOC107847473 (ortholog of MADS-RIN) had substantially higher expression (>500 folds) in breaker and mature fruits, which suggested the non-climacteric ripening behaviour of Capsicum. However, differential expression of Ehtylene receptor 2-like (LOC107873245) gene during fruit maturity supported the climacteric behaviour of only C. frutescens (hot pepper). Furthermore, development of 49 gene based simple sequence repeat (SSR) markers would help in selection of identified genes in Capsicum breeding.
Collapse
Affiliation(s)
- Meenakshi Dubey
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biotechnology, Delhi Technological University, Delhi 110042, India
| | - Vandana Jaiswal
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Abdul Rawoof
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Ajay Kumar
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Plant Science, School of Biological Sciences, Central University of Kerala, Kararagod 671316, India
| | - Mukesh Nitin
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Sushil Satish Chhapekar
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nitin Kumar
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Bioengineering and Technology, Institute of Science and Technology, Gauhati University, Gopinath Bordoloi Nagar, Guwahati 781014, India
| | - Ilyas Ahmad
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Khushbu Islam
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Vijaya Brahma
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; School of Computational and Integrative Sciences, Jawaharlal Nehru University, New Delhi 110067, India
| | - Nirala Ramchiary
- Translational and Evolutionary Genomics Lab, School of Life Sciences, Jawaharlal Nehru University, New Delhi 110067, India; Department of Biotechnology, Delhi Technological University, Delhi 110042, India.
| |
Collapse
|
48
|
Maheepala DC, Emerling CA, Rajewski A, Macon J, Strahl M, Pabón-Mora N, Litt A. Evolution and Diversification of FRUITFULL Genes in Solanaceae. FRONTIERS IN PLANT SCIENCE 2019; 10:43. [PMID: 30846991 PMCID: PMC6394111 DOI: 10.3389/fpls.2019.00043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Accepted: 01/11/2019] [Indexed: 05/12/2023]
Abstract
Ecologically and economically important fleshy edible fruits have evolved from dry fruit numerous times during angiosperm diversification. However, the molecular mechanisms that underlie these shifts are unknown. In the Solanaceae there has been a major shift to fleshy fruits in the subfamily Solanoideae. Evidence suggests that an ortholog of FRUITFULL (FUL), a transcription factor that regulates cell proliferation and limits the dehiscence zone in the silique of Arabidopsis, plays a similar role in dry-fruited Solanaceae. However, studies have shown that FUL orthologs have taken on new functions in fleshy fruit development, including regulating elements of tomato ripening such as pigment accumulation. FUL belongs to the core eudicot euFUL clade of the angiosperm AP1/FUL gene lineage. The euFUL genes fall into two paralogous clades, euFULI and euFULII. While most core eudicots have one gene in each clade, Solanaceae have two: FUL1 and FUL2 in the former, and MBP10 and MBP20 in the latter. We characterized the evolution of the euFUL genes to identify changes that might be correlated with the origin of fleshy fruit in Solanaceae. Our analyses revealed that the Solanaceae FUL1 and FUL2 clades probably originated through an early whole genome multiplication event. By contrast, the data suggest that the MBP10 and MBP20 clades are the result of a later tandem duplication event. MBP10 is expressed at weak to moderate levels, and its atypical short first intron lacks putative transcription factor binding sites, indicating possible pseudogenization. Consistent with this, our analyses show that MBP10 is evolving at a faster rate compared to MBP20. Our analyses found that Solanaceae euFUL gene duplications, evolutionary rates, and changes in protein residues and expression patterns are not correlated with the shift in fruit type. This suggests deeper analyses are needed to identify the mechanism underlying the change in FUL ortholog function.
Collapse
Affiliation(s)
- Dinusha C. Maheepala
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Christopher A. Emerling
- Institut des Sciences de l’Évolution de Montpellier, Université de Montpellier, Centre National de la Recherche Scientifique, Institut de Recherche pour le Développement, École Pratique des Hautes Études, Montpellier, France
| | - Alex Rajewski
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Jenna Macon
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
| | - Maya Strahl
- The New York Botanical Garden, Bronx, NY, United States
| | | | - Amy Litt
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA, United States
- *Correspondence: Amy Litt,
| |
Collapse
|
49
|
Ding X, Zhu X, Ye L, Xiao S, Wu Z, Chen W, Li X. The interaction of CpEBF1 with CpMADSs is involved in cell wall degradation during papaya fruit ripening. HORTICULTURE RESEARCH 2019; 6:13. [PMID: 30622723 PMCID: PMC6312555 DOI: 10.1038/s41438-018-0095-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/09/2018] [Accepted: 09/19/2018] [Indexed: 05/20/2023]
Abstract
Ethylene plays a pivotal role in climacteric fruit ripening; whereas 1-MCP, a non-toxic antagonist of ethylene, prevents ethylene-dependent responses and fruit ripening. In this study, a short-term treatment (1 h) with 400 nL L-1 1-MCP delayed the ripening of harvested papaya. However, long-term application of 1-MCP (400 nL L-1, 16 h) resulted in abnormal fruit ripening, with the fruits exhibiting normal yellowing without softening, significantly higher cellulose and lignin contents, and intact cell walls (CW). Furthermore, we found that long-term treatment with 1-MCP significantly inhibited the expression of CpEBF1, an EIN3-binding F-box-1 gene. A protein interaction analysis using yeast two-hybrid, BiFC and GST pull-down assays showed that CpEBF1 interacts with the CpMADS1/3 and CpEIL1 proteins. The interaction of CpEBF1 with CpMADS1/3 further activated the activities of CW-degradation gene promoters. Subcellular localization showed that these proteins were localized in the nucleus. Additionally, the expression levels of CpMADS1/3, CpEIL1, and several CW-degradation-related genes were significantly downregulated by long-term 1-MCP treatment. Therefore, we propose that the inhibited expression of CpEBF1 and CpMADS1/3 resulted in the repressed activation of CW-degradation-related genes via their interaction, thereby resulting in fruit softening disorders.
Collapse
Affiliation(s)
- Xiaochun Ding
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Xiaoyang Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Lanlan Ye
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Shuangling Xiao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Zhenxian Wu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Weixin Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| | - Xueping Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources/Guangdong Provincial Key Laboratory of Postharvest Science of Fruits and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou, 510642 China
| |
Collapse
|
50
|
Sravankumar T, Naik N, Kumar R. A ripening-induced SlGH3-2 gene regulates fruit ripening via adjusting auxin-ethylene levels in tomato (Solanum lycopersicum L.). PLANT MOLECULAR BIOLOGY 2018; 98:455-469. [PMID: 30367324 DOI: 10.1007/s11103-018-0790-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Accepted: 10/17/2018] [Indexed: 05/21/2023]
Abstract
Silencing of SlGH3-2 in tomato alters auxin and ethylene levels during fruit ripening and cause reduced lycopene accumulation in the transgenic fruits. While auxin's role during fleshy fruit ripening is widely acknowledged to be important, the physiological functions of several ripening-induced genes, especially those involved in the maintenance of cellular auxin homeostasis, largely remain under-explored. In the present study, the updated inventory shows that 24 members constitute the Gretchen-Hagen 3 (GH3) gene family in tomato. Their characterization using an expression profiling approach revealed that SlGH3-2, a member of the group II IAA-amido synthetase, is strongly induced at the commencement of fruit ripening. Phylogenetic analysis and homology modeling revealed that SlGH3-2 is the closest homolog of pepper CcGH3 and grapevine VvGH3-1. Expression profiling revealed that the mRNA level of SlGH3-2 is inhibited in ripening mutants such as ripening-inhibitor (rin) and Never-ripe (Nr). Whereas both auxin and ethylene were found to act as positive regulators of its transcript accumulation. The fruits of 35S::SlGH3-2 RNAi lines exhibited prolonged shelf-life. Both ethylene production and lycopene accumulation were affected in the fruits of SlGH3-2 silenced lines. These observations were corroborated by the altered expression of key ethylene and carotenoid biosynthesis genes such as ACS2 and PSY1, respectively, in the RNAi lines. Additionally, the SlGH3-2 silenced line fruits had higher IAA and IBA levels at the ripening stages, and showed increased transcript accumulation of several known auxin-induced SlIAA and SlGH3 genes. Altogether, the present study suggests that SlGH3-2 influences fruit ripening in tomato via modulating ethylene and auxin crosstalk, especially during the early phase.
Collapse
Affiliation(s)
- Thula Sravankumar
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - NandKiran Naik
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India
| | - Rahul Kumar
- Plant Translational Research Laboratory, Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, 500046, India.
| |
Collapse
|