1
|
Li S, Ma C, Li S, Zhang M, Zhang C, Qi J, Wang L, Wu X, Li J, Wu J. Mitogen-activated protein kinase 4 phosphorylates MYC2 transcription factors to regulate jasmonic acid signaling and herbivory responses in maize. PLANT PHYSIOLOGY 2024; 197:kiae575. [PMID: 39471326 DOI: 10.1093/plphys/kiae575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/10/2024] [Accepted: 09/22/2024] [Indexed: 11/01/2024]
Abstract
Regulation of responses induced by herbivory and jasmonic acid (JA) remains poorly understood in the important staple crop maize (Zea mays). MYC2 is the key transcription factor regulating many aspects of JA signaling, while mitogen-activated protein kinases (MAPKs or MPKs) play important roles in various plant physiological processes. Using a combination of reverse genetics, transcriptome analysis, and biochemical assays, we elucidated the important role of mitogen-activated protein kinase 4 (MPK4) in maize resistance to insects and in JA signaling. Silencing MPK4 increased the JA and jasmonoyl-isoleucine levels elicited by wounding or simulated herbivory but decreased maize resistance to armyworm (Mythimna separata) larvae. We showed that MPK4 is required for transcriptional regulation of many genes responsive to methyl jasmonate, indicating the important role of maize MPK4 in JA signaling. Biochemical analyses indicated that MPK4 directly phosphorylates MYC2s at Thr115 of MYC2a and Thr112 of MYC2b. Compared with nonphosphorylated MYC2s, phosphorylated MYC2s were more prone to degradation and exhibited enhanced transactivation activity against the promoters of several benzoxazinoid biosynthesis genes, which are important for maize defense against insects. This study reveals the essential role of maize MPK4 in JA signaling and provides insights into the functions of MAPKs in maize.
Collapse
Affiliation(s)
- Sen Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shalan Li
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Science, Yunnan University, Kunming 650500, China
| | - Mou Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Prominent Crops, Beijing 100093, China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Prominent Crops, Beijing 100093, China
| | - Xuna Wu
- State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan and Center for Life Science, School of Life Science, Yunnan University, Kunming 650500, China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
- CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing 100049, China
- State Key Laboratory of Plant Diversity and Prominent Crops, Beijing 100093, China
| |
Collapse
|
2
|
Huang S, Wang C, Wang L, Li S, Wang T, Tao Z, Zhao Y, Ma J, Zhao M, Zhang X, Wang L, Xie C, Li P. Loss-of-function of LIGULELESS1 activates the jasmonate pathway and promotes maize resistance to corn leaf aphids. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3326-3341. [PMID: 39145425 PMCID: PMC11606423 DOI: 10.1111/pbi.14451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/27/2024] [Accepted: 08/02/2024] [Indexed: 08/16/2024]
Abstract
Corn leaf aphids (Rhopalosiphum maidis) are highly destructive pests of maize (Zea mays) that threaten growth and seed yield, but resources for aphid resistance are scarce. Here, we identified an aphid-resistant maize mutant, resistance to aphids 1 (rta1), which is allelic to LIGULELESS1 (LG1). We confirmed LG1's role in aphid resistance using the independent allele lg1-2, allelism tests and LG1 overexpression lines. LG1 interacts with, and increases the stability of ZINC-FINGER PROTEIN EXPRESSED IN INFLORESCENCE MERISTEM (ZIM1), a central component of the jasmonic acid (JA) signalling pathway, by disturbing its interaction with the F-box protein CORONATINE INSENSITIVE 1a (COI1a). Natural variation in the LG1 promoter was associated with aphid resistance among inbred lines. Moreover, a loss-of-function mutant in the LG1-related gene SPL8 in the dicot Arabidopsis thaliana conferred aphid resistance. This study revealed the aphid resistance mechanism of lg1, providing a theoretical basis and germplasm for breeding aphid-resistant crops.
Collapse
Affiliation(s)
- Shijie Huang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Chuanhong Wang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Ling Wang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Shuai Li
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Tengyue Wang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Zhen Tao
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Yibing Zhao
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Jing Ma
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Mengjie Zhao
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Xinqiao Zhang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Lei Wang
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| | - Chuanxiao Xie
- Institute of Crop Sciences, Chinese Academy of Agricultural SciencesNational Key Facility for Crop Gene Resources and Genetic ImprovementBeijingChina
| | - Peijin Li
- The National Key Engineering Lab of Crop Stress Resistance BreedingThe School of Life Sciences, Anhui Agricultural UniversityHefeiChina
- Center for Crop Pest Detection and ControlAnhui Agricultural UniversityHefeiChina
| |
Collapse
|
3
|
Zhao X, Shi Z, He F, Niu Y, Qi G, Sun S, Li X, Gao X. Benzoxazinoids Biosynthetic Gene Cluster Identification and Expression Analysis in Maize under Biotic and Abiotic Stresses. Int J Mol Sci 2024; 25:7460. [PMID: 39000567 PMCID: PMC11242666 DOI: 10.3390/ijms25137460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/02/2024] [Accepted: 07/05/2024] [Indexed: 07/16/2024] Open
Abstract
Benzoxazinoids (BXs) are unique bioactive metabolites with protective and allelopathic properties in maize in response to diverse stresses. The production of BXs involves the fine regulations of BXs biosynthetic gene cluster (BGC). However, little is known about whether and how the expression pattern of BGC members is impacted by biotic and abiotic stresses. Here, maize BGC was systemically investigated and 26 BGC gene members were identified on seven chromosomes, for which Bin 4.00-4.01/4.03-4.04/7.02 were the most enriched regions. All BX proteins were clearly divided into three classes and seven subclasses, and ten conserved motifs were further identified among these proteins. These proteins were localized in the subcellular compartments of chloroplast, endoplasmic reticulum, or cytoplasmic, where their catalytic activities were specifically executed. Three independent RNA-sequencing (RNA-Seq) analyses revealed that the expression profiles of the majority of BGC gene members were distinctly affected by multiple treatments, including light spectral quality, low-temperature, 24-epibrassinolide induction, and Asian corn borer infestation. Thirteen differentially expressed genes (DEGs) with high and specific expression levels were commonly detected among three RNA-Seq, as core conserved BGC members for regulating BXs biosynthesis under multiple abiotic/biotic stimulates. Moreover, the quantitative real-time PCR (qRT-PCR) verified that six core conserved genes in BGC were significantly differentially expressed in leaves of seedlings upon four treatments, which caused significant increases in 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA) content under darkness and wound treatments, whereas a clear decrease in DIMBOA content was observed under low-temperature treatment. In conclusion, the changes in BX metabolites in maize were regulated by BGC gene members in multiple stress presences. Therefore, the identification of key genes associated with BX accumulation under biotic/abiotic stresses will provide valuable gene resources for breeding maize varieties with enhanced capability to adapt to environmental stresses.
Collapse
Affiliation(s)
- Xiaoqiang Zhao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhenzhen Shi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Fuqiang He
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yining Niu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Guoxiang Qi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Siqi Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xin Li
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiquan Gao
- State Key Laboratory for Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
4
|
Li Y, Cai L, Ding T, Tian E, Yan X, Wang X, Zhang J, Yu K, Chen Z. Comparative Transcriptome Analysis Reveals the Molecular Basis of Brassica napus in Response to Aphid Stress. PLANTS (BASEL, SWITZERLAND) 2023; 12:2855. [PMID: 37571009 PMCID: PMC10421284 DOI: 10.3390/plants12152855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/23/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Rapeseed is a globally important economic crop that can be severely impacted by aphids. However, our understanding of rapeseed resistance to aphid stress is very limited. In this study, we analyzed the resistance characteristics of the low aphid-susceptible variety APL01 and the highly aphid-susceptible variety Holly in response to aphid stress. APL01 had a more significant inhibitory effect on aphid proliferation compared with Holly during the early stage of inoculation, whereas Holly showed stronger tolerance to aphid stress compared with APL01 during the later stage of inoculation. Through transcriptome, physiological, and gene expression analyses, it was revealed that chitinase activity, catalase activity, calcium signal transduction, and activation of systemic acquired resistance might be involved in aphid resistance in B. napus. The degree of inhibition of photosynthesis in plants under aphid stress directly determines the tolerance of B. napus to aphid stress. Furthermore, four promising candidate genes were screened from eight genes related to rapeseed response to biotic stress through RT-qPCR analysis of gene expression levels. These research findings represent an important step forward in understanding the resistance of rapeseed to aphid stress and provide a solid foundation for the cloning of genes responsible for this resistance.
Collapse
Affiliation(s)
- Yuanhong Li
- College of Agriculture, Guizhou University, Guiyang 550025, China; (Y.L.); (L.C.); (T.D.); (E.T.)
| | - Lei Cai
- College of Agriculture, Guizhou University, Guiyang 550025, China; (Y.L.); (L.C.); (T.D.); (E.T.)
- Center for Research and Development of Fine Chemical, Guizhou University, Guiyang 550025, China
| | - Ting Ding
- College of Agriculture, Guizhou University, Guiyang 550025, China; (Y.L.); (L.C.); (T.D.); (E.T.)
| | - Entang Tian
- College of Agriculture, Guizhou University, Guiyang 550025, China; (Y.L.); (L.C.); (T.D.); (E.T.)
| | - Xiaohong Yan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Wuhan 430062, China;
| | - Xiaodong Wang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; (X.W.); (J.Z.)
| | - Jiefu Zhang
- Institute of Industrial Crops, Jiangsu Academy of Agricultural Sciences, Key Laboratory of Cotton and Rapeseed, Ministry of Agriculture and Rural Affairs, Nanjing 210014, China; (X.W.); (J.Z.)
| | - Kunjiang Yu
- College of Agriculture, Guizhou University, Guiyang 550025, China; (Y.L.); (L.C.); (T.D.); (E.T.)
- Center for Research and Development of Fine Chemical, Guizhou University, Guiyang 550025, China
- Guangxi Tianyuan Biochemical Co., Ltd., Nanning 530009, China
| | - Zhuo Chen
- Center for Research and Development of Fine Chemical, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Genetic Variation, DIMBOA Accumulation, and Candidate Gene Identification in Maize Multiple Insect-Resistance. Int J Mol Sci 2023; 24:ijms24032138. [PMID: 36768464 PMCID: PMC9916695 DOI: 10.3390/ijms24032138] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/25/2023] Open
Abstract
Maize seedlings contain high amounts of 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one (DIMBOA), and the effect of DIMBOA is directly associated with multiple insect-resistance against insect pests such as Asian corn borer and corn leaf aphids. Although numerous genetic loci for multiple insect-resistant traits have been identified, little is known about genetic controls regarding DIMBOA content. In this study, the best linear unbiased prediction (BLUP) values of DIMBOA content in two ecological environments across 310 maize inbred lines were calculated; and their phenotypic data and BLUP values were used for marker-trait association analysis. We identified nine SSRs that were significantly associated with DIMBOA content, which explained 4.30-20.04% of the phenotypic variation. Combined with 47 original genetic loci from previous studies, we detected 19 hot loci and approximately 11 hot loci (in Bin 1.04, Bin 2.00-2.01, Bin 2.03-2.04, Bin 4.00-4.03, Bin 5.03, Bin 5.05-5.07, Bin 8.01-8.03, Bin 8.04-8.05, Bin 8.06, Bin 9.01, and Bin 10.04 regions) supported pleiotropy for their association with two or more insect-resistant traits. Within the 19 hot loci, we identified 49 candidate genes, including 12 controlling DIMBOA biosynthesis, 6 involved in sugar metabolism/homeostasis, 2 regulating peroxidases activity, 21 associated with growth and development [(auxin-upregulated RNAs (SAUR) family member and v-myb avian myeloblastosis viral oncogene homolog (MYB)], and 7 involved in several key enzyme activities (lipoxygenase, cysteine protease, restriction endonuclease, and ubiquitin-conjugating enzyme). The synergy and antagonism interactions among these genes formed the complex defense mechanisms induced by multiple insect pests. Moreover, sufficient genetic variation was reported for DIMBOA performance and SSR markers in the 310 tested maize inbred lines, and 3 highly (DIMBOA content was 402.74-528.88 μg g-1 FW) and 15 moderate (DIMBOA content was 312.92-426.56 μg g-1 FW) insect-resistant genotypes were major enriched in the Reid group. These insect-resistant inbred lines can be used as parents in maize breeding programs to develop new varieties.
Collapse
|
6
|
In Silico Genome-Wide Mining and Analysis of Terpene Synthase Gene Family in Hevea Brasiliensis. Biochem Genet 2022; 61:1185-1209. [DOI: 10.1007/s10528-022-10311-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Accepted: 12/09/2022] [Indexed: 12/23/2022]
|
7
|
Wani SH, Choudhary M, Barmukh R, Bagaria PK, Samantara K, Razzaq A, Jaba J, Ba MN, Varshney RK. Molecular mechanisms, genetic mapping, and genome editing for insect pest resistance in field crops. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2022; 135:3875-3895. [PMID: 35267056 PMCID: PMC9729161 DOI: 10.1007/s00122-022-04060-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 02/11/2022] [Indexed: 05/03/2023]
Abstract
Improving crop resistance against insect pests is crucial for ensuring future food security. Integrating genomics with modern breeding methods holds enormous potential in dissecting the genetic architecture of this complex trait and accelerating crop improvement. Insect resistance in crops has been a major research objective in several crop improvement programs. However, the use of conventional breeding methods to develop high-yielding cultivars with sustainable and durable insect pest resistance has been largely unsuccessful. The use of molecular markers for identification and deployment of insect resistance quantitative trait loci (QTLs) can fastrack traditional breeding methods. Till date, several QTLs for insect pest resistance have been identified in field-grown crops, and a few of them have been cloned by positional cloning approaches. Genome editing technologies, such as CRISPR/Cas9, are paving the way to tailor insect pest resistance loci for designing crops for the future. Here, we provide an overview of diverse defense mechanisms exerted by plants in response to insect pest attack, and review recent advances in genomics research and genetic improvements for insect pest resistance in major field crops. Finally, we discuss the scope for genomic breeding strategies to develop more durable insect pest resistant crops.
Collapse
Affiliation(s)
- Shabir H Wani
- Mountain Research Center for Field Crops, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Khudwani, J&K, 192101, India.
| | - Mukesh Choudhary
- ICAR-Indian Institute of Maize Research (ICAR-IIMR), PAU Campus, Ludhiana, Punjab, 141001, India
| | - Rutwik Barmukh
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Pravin K Bagaria
- ICAR-Indian Institute of Maize Research (ICAR-IIMR), PAU Campus, Ludhiana, Punjab, 141001, India
| | - Kajal Samantara
- Department of Genetics and Plant Breeding, Centurion University of Technology and Management, Paralakhemundi, Odisha, 761211, India
| | - Ali Razzaq
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture Faisalabad, Faisalabad, 38040, Pakistan
| | - Jagdish Jaba
- Intergated Crop Management, International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India
| | - Malick Niango Ba
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), BP 12404, Niamey, Niger
| | - Rajeev K Varshney
- Center of Excellence in Genomics and Systems Biology (CEGSB), International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, 502324, India.
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia.
| |
Collapse
|
8
|
Wang YX, Chen HF, Yin ZY, Chen WL, Lu LT. The genetic adaptations of Toxoptera aurantii facilitated its rapid multiple plant hosts dispersal and invasion. Genomics 2022; 114:110472. [PMID: 36055573 DOI: 10.1016/j.ygeno.2022.110472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 08/24/2022] [Accepted: 08/27/2022] [Indexed: 01/14/2023]
Abstract
Toxoptera aurantii Boyer de Fonscolombe (Hemiptera: Aphididae) can attack many plant hosts, including tea (Camellia sinensis L.), citrus (Citrus spp.), lychee (Litchi chinensis Sonn.), banana (Musa spp.), and pineapple (Ananas comasus L.) among others. It is a widely distributed hexapod and one of the most destructive pests in tea plantations, causing enormous economic losses in tea production each year. A high-quality reference genome is important to study the phylogenetics and evolution of T. aurantii because its genome is highly heterozygous and repetitive. We obtained a de novo genome assembly of T. aurantii at the chromosome level using a combination of long Nanopore reads from sequencing with high-throughput chromosome conformation capture technology. When finally assembled, the genome was 318.95 Mb on four chromosomes with a 15.19 Mb scaffold N50. A total of 12,162 genes encoded proteins, while there were 22.01% repetitive sequences that totaled 67.73 Mb. Phylogenetic analyses revealed that T. aurantii and Aphis gossypii parted ways approximately 7.6 million years ago (Mya). We used a combination of long-read single-molecule sequencing with Hi-C-based chromatin interaction maps that resulted in a reference chromosomal level reference genome of T. aurantii that was high quality. Our results will enable the exploration of the genetics behind the special biological features of T. aurantii and also provide a source of data that should be useful to compare the compare genome among the Hemiptera.
Collapse
Affiliation(s)
- Yan-Xia Wang
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China; College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Hu-Fang Chen
- College of Tea Science, Guizhou University, Guiyang 550025, China
| | - Zheng-Yan Yin
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China
| | - Wen-Long Chen
- Provincial Key Laboratory for Agricultural Pest Management of Mountainous Region, Institute of Entomology, Guizhou University, Guiyang 550025, China.
| | - Li-Tang Lu
- College of Tea Science, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
9
|
Batyrshina ZS, Shavit R, Yaakov B, Bocobza S, Tzin V. The transcription factor TaMYB31 regulates the benzoxazinoid biosynthetic pathway in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:5634-5649. [PMID: 35554544 PMCID: PMC9467655 DOI: 10.1093/jxb/erac204] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 05/10/2022] [Indexed: 05/13/2023]
Abstract
Benzoxazinoids are specialized metabolites that are highly abundant in staple crops, such as maize and wheat. Although their biosynthesis has been studied for several decades, the regulatory mechanisms of the benzoxazinoid pathway remain unknown. Here, we report that the wheat transcription factor MYB31 functions as a regulator of benzoxazinoid biosynthesis genes. A transcriptomic analysis of tetraploid wheat (Triticum turgidum) tissue revealed the up-regulation of two TtMYB31 homoeologous genes upon aphid and caterpillar feeding. TaMYB31 gene silencing in the hexaploid wheat Triticum aestivum significantly reduced benzoxazinoid metabolite levels and led to susceptibility to herbivores. Thus, aphid progeny production, caterpillar body weight gain, and spider mite oviposition significantly increased in TaMYB31-silenced plants. A comprehensive transcriptomic analysis of hexaploid wheat revealed that the TaMYB31 gene is co-expressed with the target benzoxazinoid-encoded Bx genes under several biotic and environmental conditions. Therefore, we analyzed the effect of abiotic stresses on benzoxazinoid levels and discovered a strong accumulation of these compounds in the leaves. The results of a dual fluorescence assay indicated that TaMYB31 binds to the Bx1 and Bx4 gene promoters, thereby activating the transcription of genes involved in the benzoxazinoid pathway. Our finding is the first report of the transcriptional regulation mechanism of the benzoxazinoid pathway in wheat.
Collapse
Affiliation(s)
- Zhaniya S Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Samuel Bocobza
- Department of Ornamentals and Biotechnology, Institute of Plant Sciences, Agricultural Research Organization, The Volcani Center, 68 Hamakabim Road, 7528809, Rishon LeZion, Israel
| | | |
Collapse
|
10
|
Shavit R, Batyrshina ZS, Yaakov B, Florean M, Köllner TG, Tzin V. The wheat dioxygenase BX6 is involved in the formation of benzoxazinoids in planta and contributes to plant defense against insect herbivores. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111171. [PMID: 35151455 DOI: 10.1016/j.plantsci.2021.111171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/22/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Benzoxazinoids are plant specialized metabolites with defense properties, highly abundant in wheat (Triticum), one of the world's most important crops. The goal of our study was to characterize dioxygenase BX6 genes in tetraploid and hexaploid wheat genotypes and to elucidate their effects on defense against herbivores. Phylogenetic analysis revealed four BX6 genes in the hexaploid wheat T. aestivum, but only one ortholog was found in the tetraploid (T. turgidum) wild emmer wheat and the cultivated durum wheat. Transcriptome sequencing of durum wheat plants, damaged by either aphids or caterpillars, revealed that several BX genes, including TtBX6, were upregulated upon caterpillar feeding, relative to the undamaged control plants. A virus-induced gene silencing approach was used to reduce the expression of BX6 in T. aestivum plants, which exhibited both reduced transcript levels and reduced accumulation of different benzoxazinoids. To elucidate the effect of BX6 on plant defense, bioassays with different herbivores feeding on BX6-silenced leaves were conducted. The results showed that plants with silenced BX6 were more susceptible to aphids and the two-spotted spider mite than the control. Overall, our study indicates that wheat BX6 is involved in benzoxazinoid formation in planta and contributes to plant resistance against insect herbivores.
Collapse
Affiliation(s)
- Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Zhaniya S Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel
| | - Matilde Florean
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, D-07745, Jena, Germany
| | - Tobias G Köllner
- Max Planck Institute for Chemical Ecology, Department of Natural Product Biosynthesis, D-07745, Jena, Germany
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Israel.
| |
Collapse
|
11
|
Kumari P, Kumar V, Kumar R, Pahuja SK. Sorghum polyphenols: plant stress, human health benefits, and industrial applications. PLANTA 2021; 254:47. [PMID: 34374841 PMCID: PMC8353607 DOI: 10.1007/s00425-021-03697-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 08/03/2021] [Indexed: 06/13/2023]
Abstract
MAIN CONCLUSION Various phenolic compounds of sorghum are effective in the management of abiotic stress (salt, nutrients) and biotic stress (caused by birds, fungi and aphids). The health and industrial application of phenolics is mainly contributed by inherent antioxidant and nutraceutical potential. In a natural environment, plant growth is affected by various biotic and abiotic stresses. In every ecosystem, the presence of a wide range of harmful biological agents (bacteria, fungi, nematodes, mites, and insects) and undesirable environmental factors (drought, salinity, heat, excessive or low rainfall, etc.) may cause a heavy loss in crop productivity. Being sessile during evolution, plants have evolved multiple defense mechanisms against various types of microbial pathogens and environmental stresses. A plant's natural defense system produces some compounds named secondary metabolites, which include phenolics, terpenes, and nitrogen. The phenolic profile of grain sorghum, the least utilized staple crop, is unique, more diverse, and more abundant than in any other common cereal grain. It mainly contains phenolic acids, 3-deoxyanthocyanidins and condensed tannins. Sorghum polyphenols play a major role in plant defense against biotic and abiotic stresses and have many additional health benefits along with various industrial applications. The objective of this review is to discuss the phenolic compounds derived from grain sorghum and describe their role in plant defense, human health, and industrial applications.
Collapse
Affiliation(s)
- Pummy Kumari
- Department of Plant Breeding and Genetics, COA, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India.
| | - Vinod Kumar
- Department of Biochemistry, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Rakesh Kumar
- Department of Microbiology, COBS&H, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| | - Surender Kumar Pahuja
- Department of Plant Breeding and Genetics, COA, CCS Haryana Agricultural University, Hisar, 125004, Haryana, India
| |
Collapse
|
12
|
Ribeiro GCD, Martins ICF, Campos LD, Mello MN, Mejdalani G. Spatial and Temporal Distribution of Leafhoppers (Hemiptera: Cicadellidae) in a Corn Field. NEOTROPICAL ENTOMOLOGY 2021; 50:630-642. [PMID: 34110600 DOI: 10.1007/s13744-021-00880-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 04/24/2021] [Indexed: 06/12/2023]
Abstract
Leafhoppers (Hemiptera: Cicadellidae) are phytophagous insects that transmit diseases and cause damage to this crop. Thus, the main goal of this study was to verify the spatiotemporal behavior of the leafhoppers Tapajosa ocellata (Osborn, 1926), Dechacona missionum (Berg, 1879), and Dalbulus maidis (DeLong, 1923) in a corn field in Igarapé-Açu, northeastern Pará, northern Brazil. An area of 1.0 ha was used for the development of the study. A mango agroecosystem, a pasture, and secondary forest fragment are adjacent to the experimental area. The sampling of leafhoppers occurred during the 2015 and 2016 harvests. For sampling, 10 random plants per plot were analyzed, totaling 1000 plants per sample. In order to verify the occurrence of leafhoppers, all aerial parts of the plants were analyzed visually. The spatiotemporal behavior of leafhoppers and influence of adjacent areas and phenological stages of corn were verified through geostatistics. From the composition of semivariograms, interpolation maps were constructed by kriging. The results showed that, in 2015, there was a higher incidence of D. maidis compared to the following year. In 2016, 352 individuals of T. ocellata and 66 of D. missionum were observed. Regarding the spatial distribution, it was found that the smallest area of influence of T. ocellata, D. missionum, and D. maidis was 0.09, 0.08, and 0.05 ha, respectively. The spatial distribution of leafhoppers showed an aggregate behavior concentrated close to adjacent areas with a predominance of grasses. Population fluctuation demonstrated that the highest incidence of leafhoppers occurs in the vegetative stages of corn.
Collapse
Affiliation(s)
| | | | | | | | - Gabriel Mejdalani
- Depto de Entomologia, Museu Nacional, Univ Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, RJ, Brazil
| |
Collapse
|
13
|
Singh A, Dilkes B, Sela H, Tzin V. The Effectiveness of Physical and Chemical Defense Responses of Wild Emmer Wheat Against Aphids Depends on Leaf Position and Genotype. FRONTIERS IN PLANT SCIENCE 2021; 12:667820. [PMID: 34262579 PMCID: PMC8273356 DOI: 10.3389/fpls.2021.667820] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/19/2021] [Indexed: 05/15/2023]
Abstract
The bird cherry-oat aphid (Rhopalosiphum padi) is one of the most destructive insect pests in wheat production. To reduce aphid damage, wheat plants have evolved various chemical and physical defense mechanisms. Although these mechanisms have been frequently reported, much less is known about their effectiveness. The tetraploid wild emmer wheat (WEW; Triticum turgidum ssp. dicoccoides), one of the progenitors of domesticated wheat, possesses untapped resources from its numerous desirable traits, including insect resistance. The goal of this research was to determine the effectiveness of trichomes (physical defense) and benzoxazinoids (BXDs; chemical defense) in aphid resistance by exploiting the natural diversity of WEW. We integrated a large dataset composed of trichome density and BXD abundance across wheat genotypes, different leaf positions, conditions (constitutive and aphid-induced), and tissues (whole leaf and phloem sap). First, we evaluated aphid reproduction on 203 wheat accessions and found large variation in this trait. Then, we chose eight WEW genotypes and one domesticated durum wheat cultivar for detailed quantification of the defense mechanisms across three leaves. We discovered that these defense mechanisms are influenced by both leaf position and genotype, where aphid reproduction was the highest on leaf-1 (the oldest), and trichome density was the lowest. We compared the changes in trichome density and BXD levels upon aphid infestation and found only minor changes relative to untreated plants. This suggests that the defense mechanisms in the whole leaf are primarily anticipatory and unlikely to contribute to aphid-induced defense. Next, we quantified BXD levels in the phloem sap and detected a significant induction of two compounds upon aphid infestation. Moreover, evaluating aphid feeding patterns showed that aphids prefer to feed on the oldest leaf. These findings revealed the dynamic response at the whole leaf and phloem levels that altered aphid feeding and reproduction. Overall, they suggested that trichomes and the BXD 2,4-dihydroxy-7- methoxy-1,4-benzoxazin-3-one (DIMBOA) levels are the main factors determining aphid resistance, while trichomes are more effective than BXDs. Accessions from the WEW germplasm, rich with trichomes and BXDs, can be used as new genetic sources to improve the resistance of elite wheat cultivars.
Collapse
Affiliation(s)
- Anuradha Singh
- Jacob Blaustein Center for Scientific Cooperation, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - Brian Dilkes
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Hanan Sela
- The Institute for Cereal Crops Improvement, Tel Aviv University, Tel Aviv, Israel
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| |
Collapse
|
14
|
Cadot S, Guan H, Bigalke M, Walser JC, Jander G, Erb M, van der Heijden MGA, Schlaeppi K. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. MICROBIOME 2021; 9:103. [PMID: 33962687 DOI: 10.1101/2020.05.03.075135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 05/20/2023]
Abstract
BACKGROUND Plants influence their root and rhizosphere microbial communities through the secretion of root exudates. However, how specific classes of root exudate compounds impact the assembly of root-associated microbiotas is not well understood, especially not under realistic field conditions. Maize roots secrete benzoxazinoids (BXs), a class of indole-derived defense compounds, and thereby impact the assembly of their microbiota. Here, we investigated the broader impacts of BX exudation on root and rhizosphere microbiotas of adult maize plants grown under natural conditions at different field locations in Europe and the USA. We examined the microbiotas of BX-producing and multiple BX-defective lines in two genetic backgrounds across three soils with different properties. RESULTS Our analysis showed that BX secretion affected the community composition of the rhizosphere and root microbiota, with the most pronounced effects observed for root fungi. The impact of BX exudation was at least as strong as the genetic background, suggesting that BX exudation is a key trait by which maize structures its associated microbiota. BX-producing plants were not consistently enriching microbial lineages across the three field experiments. However, BX exudation consistently depleted Flavobacteriaceae and Comamonadaceae and enriched various potential plant pathogenic fungi in the roots across the different environments. CONCLUSIONS These findings reveal that BXs have a selective impact on root and rhizosphere microbiota composition across different conditions. Taken together, this study identifies the BX pathway as an interesting breeding target to manipulate plant-microbiome interactions. Video Abstract.
Collapse
Affiliation(s)
- Selma Cadot
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Hang Guan
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Bern, Switzerland
| | | | | | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marcel G A van der Heijden
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Klaus Schlaeppi
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland.
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland.
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
15
|
Cadot S, Guan H, Bigalke M, Walser JC, Jander G, Erb M, van der Heijden MGA, Schlaeppi K. Specific and conserved patterns of microbiota-structuring by maize benzoxazinoids in the field. MICROBIOME 2021; 9:103. [PMID: 33962687 PMCID: PMC8106187 DOI: 10.1186/s40168-021-01049-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/15/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND Plants influence their root and rhizosphere microbial communities through the secretion of root exudates. However, how specific classes of root exudate compounds impact the assembly of root-associated microbiotas is not well understood, especially not under realistic field conditions. Maize roots secrete benzoxazinoids (BXs), a class of indole-derived defense compounds, and thereby impact the assembly of their microbiota. Here, we investigated the broader impacts of BX exudation on root and rhizosphere microbiotas of adult maize plants grown under natural conditions at different field locations in Europe and the USA. We examined the microbiotas of BX-producing and multiple BX-defective lines in two genetic backgrounds across three soils with different properties. RESULTS Our analysis showed that BX secretion affected the community composition of the rhizosphere and root microbiota, with the most pronounced effects observed for root fungi. The impact of BX exudation was at least as strong as the genetic background, suggesting that BX exudation is a key trait by which maize structures its associated microbiota. BX-producing plants were not consistently enriching microbial lineages across the three field experiments. However, BX exudation consistently depleted Flavobacteriaceae and Comamonadaceae and enriched various potential plant pathogenic fungi in the roots across the different environments. CONCLUSIONS These findings reveal that BXs have a selective impact on root and rhizosphere microbiota composition across different conditions. Taken together, this study identifies the BX pathway as an interesting breeding target to manipulate plant-microbiome interactions. Video Abstract.
Collapse
Affiliation(s)
- Selma Cadot
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Hang Guan
- Institute of Geography, University of Bern, Bern, Switzerland
| | - Moritz Bigalke
- Institute of Geography, University of Bern, Bern, Switzerland
| | | | | | - Matthias Erb
- Institute of Plant Sciences, University of Bern, Bern, Switzerland
| | - Marcel G A van der Heijden
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland
- Institute of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Institute of Environmental Biology, Utrecht University, Utrecht, The Netherlands
| | - Klaus Schlaeppi
- Division of Agroecology and Environment, Agroscope, Zurich, Switzerland.
- Department of Environmental Sciences, University of Basel, Bernoullistrasse 32, 4056, Basel, Switzerland.
- Institute of Plant Sciences, University of Bern, Bern, Switzerland.
| |
Collapse
|
16
|
Richter A, Powell AF, Mirzaei M, Wang LJ, Movahed N, Miller JK, Piñeros MA, Jander G. Indole-3-glycerolphosphate synthase, a branchpoint for the biosynthesis of tryptophan, indole, and benzoxazinoids in maize. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:245-257. [PMID: 33458870 DOI: 10.1111/tpj.15163] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/22/2020] [Accepted: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The maize (Zea mays) genome encodes three indole-3-glycerolphosphate synthase enzymes (IGPS1, 2, and 3) catalyzing the conversion of 1-(2-carboxyphenylamino)-l-deoxyribulose-5-phosphate to indole-3-glycerolphosphate. Three further maize enzymes (BX1, benzoxazinoneless 1; TSA, tryptophan synthase alpha subunit; and IGL, indole glycerolphosphate lyase) convert indole-3-glycerolphosphate to indole, which is released as a volatile defense signaling compound and also serves as a precursor for the biosynthesis of tryptophan and defense-related benzoxazinoids. Phylogenetic analyses showed that IGPS2 is similar to enzymes found in both monocots and dicots, whereas maize IGPS1 and IGPS3 are in monocot-specific clades. Fusions of yellow fluorescent protein with maize IGPS enzymes and indole-3-glycerolphosphate lyases were all localized in chloroplasts. In bimolecular fluorescence complementation assays, IGPS1 interacted strongly with BX1 and IGL, IGPS2 interacted primarily with TSA, and IGPS3 interacted equally with all three indole-3-glycerolphosphate lyases. Whereas IGPS1 and IGPS3 expression was induced by insect feeding, IGPS2 expression was not. Transposon insertions in IGPS1 and IGPS3 reduced the abundance of both benzoxazinoids and free indole. Spodoptera exigua (beet armyworm) larvae show improved growth on igps1 mutant maize plants. Together, these results suggest that IGPS1 and IGPS3 function mainly in the biosynthesis of defensive metabolites, whereas IGPS2 may be involved in the biosynthesis of tryptophan. This metabolic channeling is similar to, though less exclusive than, that proposed for the three maize indole-3-glycerolphosphate lyases.
Collapse
Affiliation(s)
| | | | | | | | | | - Julia K Miller
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Miguel A Piñeros
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Ithaca, NY, USA
| | | |
Collapse
|
17
|
The potential and efficacy of Allium sativum leaf lectin (ASAL) against sap-sucking insect pests of transgenic maize. Biologia (Bratisl) 2020. [DOI: 10.2478/s11756-020-00533-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Galli M, Feng F, Gallavotti A. Mapping Regulatory Determinants in Plants. Front Genet 2020; 11:591194. [PMID: 33193733 PMCID: PMC7655918 DOI: 10.3389/fgene.2020.591194] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 09/28/2020] [Indexed: 12/24/2022] Open
Abstract
The domestication and improvement of many plant species have frequently involved modulation of transcriptional outputs and continue to offer much promise for targeted trait engineering. The cis-regulatory elements (CREs) controlling these trait-associated transcriptional variants however reside within non-coding regions that are currently poorly annotated in most plant species. This is particularly true in large crop genomes where regulatory regions constitute only a small fraction of the total genomic space. Furthermore, relatively little is known about how CREs function to modulate transcription in plants. Therefore understanding where regulatory regions are located within a genome, what genes they control, and how they are structured are important factors that could be used to guide both traditional and synthetic plant breeding efforts. Here, we describe classic examples of regulatory instances as well as recent advances in plant regulatory genomics. We highlight valuable molecular tools that are enabling large-scale identification of CREs and offering unprecedented insight into how genes are regulated in diverse plant species. We focus on chromatin environment, transcription factor (TF) binding, the role of transposable elements, and the association between regulatory regions and target genes.
Collapse
Affiliation(s)
- Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | - Fan Feng
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, United States.,Department of Plant Biology, Rutgers University, New Brunswick, NJ, United States
| |
Collapse
|
19
|
Pingault L, Palmer NA, Koch KG, Heng-Moss T, Bradshaw JD, Seravalli J, Twigg P, Louis J, Sarath G. Differential Defense Responses of Upland and Lowland Switchgrass Cultivars to a Cereal Aphid Pest. Int J Mol Sci 2020; 21:ijms21217966. [PMID: 33120946 PMCID: PMC7672581 DOI: 10.3390/ijms21217966] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/22/2020] [Accepted: 10/24/2020] [Indexed: 02/01/2023] Open
Abstract
Yellow sugarcane aphid (YSA) (Sipha flava, Forbes) is a damaging pest on many grasses. Switchgrass (Panicum virgatum L.), a perennial C4 grass, has been selected as a bioenergy feedstock because of its perceived resilience to abiotic and biotic stresses. Aphid infestation on switchgrass has the potential to reduce the yields and biomass quantity. Here, the global defense response of switchgrass cultivars Summer and Kanlow to YSA feeding was analyzed by RNA-seq and metabolite analysis at 5, 10, and 15 days after infestation. Genes upregulated by infestation were more common in both cultivars compared to downregulated genes. In total, a higher number of differentially expressed genes (DEGs) were found in the YSA susceptible cultivar (Summer), and fewer DEGs were observed in the YSA resistant cultivar (Kanlow). Interestingly, no downregulated genes were found in common between each time point or between the two switchgrass cultivars. Gene co-expression analysis revealed upregulated genes in Kanlow were associated with functions such as flavonoid, oxidation-response to chemical, or wax composition. Downregulated genes for the cultivar Summer were found in co-expression modules with gene functions related to plant defense mechanisms or cell wall composition. Global analysis of defense networks of the two cultivars uncovered differential mechanisms associated with resistance or susceptibility of switchgrass in response to YSA infestation. Several gene co-expression modules and transcription factors correlated with these differential defense responses. Overall, the YSA-resistant Kanlow plants have an enhanced defense even under aphid uninfested conditions.
Collapse
Affiliation(s)
- Lise Pingault
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Nathan A. Palmer
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
| | - Kyle G. Koch
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Jeffrey D. Bradshaw
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
| | - Javier Seravalli
- Redox Biology Center, Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, USA;
| | - Paul Twigg
- Biology Department, University of Nebraska-Kearney, Kearney, NE 68849, USA;
| | - Joe Louis
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| | - Gautam Sarath
- Department of Entomology, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; (L.P.); (K.G.K.); (T.H.-M.); (J.D.B.)
- Wheat, Sorghum, and Forage Research Unit, USDA-ARS, Lincoln, NE 68583, USA;
- Correspondence: (J.L.); (G.S.); Tel.: +1-402-472-8098 (J.L.); +1-402-472-4204 (G.S.)
| |
Collapse
|
20
|
Genetic Basis of Maize Resistance to Multiple Insect Pests: Integrated Genome-Wide Comparative Mapping and Candidate Gene Prioritization. Genes (Basel) 2020; 11:genes11060689. [PMID: 32599710 PMCID: PMC7349181 DOI: 10.3390/genes11060689] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 05/30/2020] [Accepted: 06/01/2020] [Indexed: 01/01/2023] Open
Abstract
Several species of herbivores feed on maize in field and storage setups, making the development of multiple insect resistance a critical breeding target. In this study, an association mapping panel of 341 tropical maize lines was evaluated in three field environments for resistance to fall armyworm (FAW), whilst bulked grains were subjected to a maize weevil (MW) bioassay and genotyped with Diversity Array Technology's single nucleotide polymorphisms (SNPs) markers. A multi-locus genome-wide association study (GWAS) revealed 62 quantitative trait nucleotides (QTNs) associated with FAW and MW resistance traits on all 10 maize chromosomes, of which, 47 and 31 were discovered at stringent Bonferroni genome-wide significance levels of 0.05 and 0.01, respectively, and located within or close to multiple insect resistance genomic regions (MIRGRs) concerning FAW, SB, and MW. Sixteen QTNs influenced multiple traits, of which, six were associated with resistance to both FAW and MW, suggesting a pleiotropic genetic control. Functional prioritization of candidate genes (CGs) located within 10-30 kb of the QTNs revealed 64 putative GWAS-based CGs (GbCGs) showing evidence of involvement in plant defense mechanisms. Only one GbCG was associated with each of the five of the six combined resistance QTNs, thus reinforcing the pleiotropy hypothesis. In addition, through in silico co-functional network inferences, an additional 107 network-based CGs (NbCGs), biologically connected to the 64 GbCGs, and differentially expressed under biotic or abiotic stress, were revealed within MIRGRs. The provided multiple insect resistance physical map should contribute to the development of combined insect resistance in maize.
Collapse
|
21
|
Leybourne DJ, Bos JIB, Valentine TA, Karley AJ. The price of protection: a defensive endosymbiont impairs nymph growth in the bird cherry-oat aphid, Rhopalosiphum padi. INSECT SCIENCE 2020; 27:69-85. [PMID: 29797656 PMCID: PMC7379937 DOI: 10.1111/1744-7917.12606] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 05/04/2018] [Accepted: 05/15/2018] [Indexed: 05/31/2023]
Abstract
Bacterial endosymbionts have enabled aphids to adapt to a range of stressors, but their effects in many aphid species remain to be established. The bird cherry-oat aphid, Rhopalosiphum padi (Linnaeus), is an important pest of cereals worldwide and has been reported to form symbiotic associations with Serratia symbiotica and Sitobion miscanthi L-type symbiont endobacteria, although the resulting aphid phenotype has not been described. This study presents the first report of R. padi infection with the facultative bacterial endosymbiont Hamiltonella defensa. Individuals of R. padi were sampled from populations in Eastern Scotland, UK, and shown to represent seven R. padi genotypes based on the size of polymorphic microsatellite markers; two of these genotypes harbored H. defensa. In parasitism assays, survival of H. defensa-infected nymphs following attack by the parasitoid wasp Aphidius colemani (Viereck) was 5 fold higher than for uninfected nymphs. Aphid genotype was a major determinant of aphid performance on two Hordeum species, a modern cultivar of barley H. vulgare and a wild relative H. spontaneum, although aphids infected with H. defensa showed 16% lower nymph mass gain on the partially resistant wild relative compared with uninfected individuals. These findings suggest that deploying resistance traits in barley will favor the fittest R. padi genotypes, but symbiont-infected individuals will be favored when parasitoids are abundant, although these aphids will not achieve optimal performance on a poor quality host plant.
Collapse
Affiliation(s)
- Daniel J. Leybourne
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDundeeUK
- Cell and Molecular Sciencesthe James Hutton InstituteInvergowrieDundeeUK
- Ecological Sciencesthe James Hutton InstituteInvergowrieDundeeUK
| | - Jorunn I. B. Bos
- Division of Plant Sciences, School of Life SciencesUniversity of DundeeDundeeUK
- Cell and Molecular Sciencesthe James Hutton InstituteInvergowrieDundeeUK
| | | | - Alison J. Karley
- Ecological Sciencesthe James Hutton InstituteInvergowrieDundeeUK
| |
Collapse
|
22
|
Batyrshina ZS, Yaakov B, Shavit R, Singh A, Tzin V. Comparative transcriptomic and metabolic analysis of wild and domesticated wheat genotypes reveals differences in chemical and physical defense responses against aphids. BMC PLANT BIOLOGY 2020; 20:19. [PMID: 31931716 PMCID: PMC6958765 DOI: 10.1186/s12870-019-2214-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 12/22/2019] [Indexed: 05/15/2023]
Abstract
BACKGROUND Young wheat plants are continuously exposed to herbivorous insect attack. To reduce insect damage and maintain their growth, plants evolved different defense mechanisms, including the biosynthesis of deterrent compounds named benzoxazinoids, and/or trichome formation that provides physical barriers. It is unclear whether both of these mechanisms are equally critical in providing an efficient defense for wheat seedlings against aphids-an economically costly pest in cereal production. RESULTS In this study, we compared the transcriptome, metabolome, benzoxazinoids, and trichome density of three selected wheat genotypes, with a focus on differences related to defense mechanisms. We chose diverse wheat genotypes: two tetraploid wheat genotypes, domesticated durum 'Svevo' and wild emmer 'Zavitan,' and one hexaploid bread wheat, 'Chinese Spring.' The full transcriptomic analysis revealed a major difference between the three genotypes, while the clustering of significantly different genes suggested a higher similarity between the two domesticated wheats than between either and the wild wheat. A pathway enrichment analysis indicated that the genes associated with primary metabolism, as well as the pathways associated with defense such as phytohormones and specialized metabolites, were different between the three genotypes. Measurement of benzoxazinoid levels at the three time points (11, 15, and 18 days after germination) revealed high levels in the two domesticated genotypes, while in wild emmer wheat, they were below detection level. In contrast to the benzoxazinoid levels, the trichome density was dramatically higher in the wild emmer than in the domesticated wheat. Lastly, we tested the bird cherry-oat aphid's (Rhopalosiphum padi) performance and found that Chinese Spring is more resistant than the tetraploid genotypes. CONCLUSIONS Our results show that benzoxazinoids play a more significant defensive role than trichomes. Differences between the abundance of defense mechanisms in the wild and domesticated plants were observed in which wild emmer possesses high physical defenses while the domesticated wheat genotypes have high chemical defenses. These findings provide new insights into the defense adaptations of wheat plants against aphids.
Collapse
Affiliation(s)
- Zhaniya S Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Beery Yaakov
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Anuradha Singh
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, 8499000, Midreseht Ben Gurion, Beer-Sheva, Israel.
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel.
| |
Collapse
|
23
|
Pan Y, Zhao SW, Tang XL, Wang S, Wang X, Zhang XX, Zhou JJ, Xi JH. Transcriptome analysis of maize reveals potential key genes involved in the response to belowground herbivore Holotrichia parallela larvae feeding. Genome 2019; 63:1-12. [PMID: 31533014 DOI: 10.1139/gen-2019-0043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The larvae of Holotrichia parallela, a destructive belowground herbivore, causes tremendous damages to maize plants. However, little is known if there are any defense mechanisms in maize roots to defend themselves against this herbivore. In the current research, we carried out RNA-sequencing to investigate the changes in gene transcription level in maize roots after H. parallela larvae infestation. A total of 644 up-regulated genes and 474 down-regulated genes was found. In addition, Gene ontology (GO) annotation analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis were performed. Weighted gene co-expression network analysis (WGCNA) indicated that peroxidase genes may be the hub genes that regulate maize defenses to H. parallela larvae attack. We also found 105 transcription factors, 44 hormone-related genes, and 62 secondary metabolism-related genes within differentially expressed genes (DEGs). Furthermore, the expression profiles of 12 DEGs from the transcriptome analysis were confirmed by quantitative real-time PCR experiments. This transcriptome analysis provides insights into the molecular mechanisms of the underground defense in maize roots to H. parallela larvae attack and will help to select target genes of maize for defense against belowground herbivory.
Collapse
Affiliation(s)
- Yu Pan
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Shi-Wen Zhao
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xin-Long Tang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Shang Wang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xiao Wang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Xin-Xin Zhang
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Jing-Jiang Zhou
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| | - Jing-Hui Xi
- College of Plant Science, Jilin University, Changchun 130062, P.R. China.,College of Plant Science, Jilin University, Changchun 130062, P.R. China
| |
Collapse
|
24
|
Xu G, Cao J, Wang X, Chen Q, Jin W, Li Z, Tian F. Evolutionary Metabolomics Identifies Substantial Metabolic Divergence between Maize and Its Wild Ancestor, Teosinte. THE PLANT CELL 2019; 31:1990-2009. [PMID: 31227559 PMCID: PMC6751114 DOI: 10.1105/tpc.19.00111] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/17/2019] [Indexed: 05/04/2023]
Abstract
Maize (Zea mays subsp mays) was domesticated from its wild ancestor, teosinte (Zea mays subsp parviglumis). Maize's distinct morphology and adaptation to diverse environments required coordinated changes in various metabolic pathways. However, how the metabolome was reshaped since domestication remains poorly understood. Here, we report a comprehensive assessment of divergence in the seedling metabolome between maize and teosinte. In total, 461 metabolites exhibited significant divergence due to selection. Interestingly, teosinte and tropical and temperate maize, representing major stages of maize evolution, targeted distinct sets of metabolites. Alkaloids, terpenoids, and lipids were specifically targeted in the divergence between teosinte and tropical maize, while benzoxazinoids were specifically targeted in the divergence between tropical and temperate maize. To identify genetic factors controlling metabolic divergence, we assayed the seedling metabolome of a large maize-by-teosinte cross population. We show that the recent metabolic divergence between tropical and temperate maize tended to have simpler genetic architecture than the divergence between teosinte and tropical maize. Through integrating transcriptome data, we identified candidate genes contributing to metabolic divergence, many of which were under selection at the nucleotide and transcript levels. Through overexpression or mutant analysis, we verified the roles of Flavanone 3-hydroxylase1, Purple aleurone1, and maize terpene synthase1 in the divergence of their related biosynthesis pathways. Our findings not only provide important insights into domestication-associated changes in the metabolism but also highlight the power of combining omics data for trait dissection.
Collapse
Affiliation(s)
- Guanghui Xu
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Jingjing Cao
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
- Institute of Plant Protection, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Xufeng Wang
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuyue Chen
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Weiwei Jin
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zhen Li
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Feng Tian
- State Key Laboratory of Plant Physiology and Biochemistry, National Maize Improvement Center, Key Laboratory of Biology and Genetic Improvement of Maize (MOA), Beijing Key Laboratory of Crop Genetic Improvement, Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing 100193, China
| |
Collapse
|
25
|
Leybourne DJ, Valentine TA, Robertson JAH, Pérez-Fernández E, Main AM, Karley AJ, Bos JIB. Defence gene expression and phloem quality contribute to mesophyll and phloem resistance to aphids in wild barley. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:4011-4026. [PMID: 31173098 DOI: 10.1093/jxb/erz163] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 03/26/2019] [Indexed: 05/26/2023]
Abstract
Aphids, including the bird cherry-oat aphid (Rhopalosiphum padi), are significant agricultural pests. The wild relative of barley, Hordeum spontaneum 5 (Hsp5), has been described to be partially resistant to R. padi, with this resistance proposed to involve higher thionin and lipoxygenase gene expression. However, the specificity of this resistance to aphids and its underlying mechanistic processes are unknown. In this study, we assessed the specificity of Hsp5 resistance to aphids and analysed differences in aphid probing and feeding behaviour on Hsp5 and a susceptible barley cultivar (Concerto). We found that partial resistance in Hsp5 to R. padi extends to two other aphid pests of grasses. Using the electrical penetration graph technique, we show that partial resistance is mediated by phloem- and mesophyll-based resistance factors that limit aphid phloem ingestion. To gain insight into plant traits responsible for partial resistance, we compared non-glandular trichome density, defence gene expression, and phloem composition of Hsp5 with those of the susceptible barley cultivar Concerto. We show that Hsp5 partial resistance involves elevated basal expression of thionin and phytohormone signalling genes, and a reduction in phloem quality. This study highlights plant traits that may contribute to broad-spectrum partial resistance to aphids in barley.
Collapse
Affiliation(s)
- Daniel J Leybourne
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
| | - Tracy A Valentine
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
| | - Jean A H Robertson
- Environmental and Biochemical Sciences, the James Hutton Institute, Cragiebuckler, Aberdeen, UK
| | | | - Angela M Main
- Environmental and Biochemical Sciences, the James Hutton Institute, Cragiebuckler, Aberdeen, UK
| | - Alison J Karley
- Ecological Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
| | - Jorunn I B Bos
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dundee, UK
- Cell and Molecular Sciences, the James Hutton Institute, Invergowrie, Dundee, UK
| |
Collapse
|
26
|
Boer CA, Sampaio MV, Pereira HS. Silicon-mediated and constitutive resistance to Rhopalosiphum maidis (Hemiptera: Aphididae) in corn hybrids. BULLETIN OF ENTOMOLOGICAL RESEARCH 2019; 109:356-364. [PMID: 30022743 DOI: 10.1017/s0007485318000585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The corn leaf aphid, Rhopalosiphum maidis (Fitch) (Hemiptera: Aphididae), is an important pest of corn, but no corn genotypes resistant to R. maidis are commercially available. Although the ability of silicon to induce plant resistance against some insects is known, the effect of silicon on R. maidis and in corn hybrids with different levels of constitutive resistance is still unknown. This study sought to determine the constitutive resistance of corn hybrids to R. maidis and silicon resistance induction in hybrids with different degrees of constitutive resistance. Field experiments with natural infestations of aphids were conducted in three locations in Brazil (Patos de Minas, Araguari, and Tupaciguara). Greenhouse trials were also used to evaluate the effect of varietal resistance on aphid population growth and identify resistant and susceptible genotypes. Aphid resistance induced by silicon was determined with resistant and susceptible corn hybrids. In the field, the corn hybrids BM8850, AS1625PRO, and DKB310PRO had the greatest proportion of plants infested by R. maidis in all three localities. The hybrids P30F53H, STATUS VIP, BM9288, DAS2B587HX, DKB175PRO, AS1633PRO, and DKB390PRO2 were the least infested in Patos de Minas and Araguari, and P30F53H was the least infested in Tupaciguara. When antibiosis effects were evaluated by aphid population growth, the hybrids AG7088PRO3 and DKB310PRO2 were susceptible, while P30F53YH was resistant. When natural aphid infestation was evaluated, wherein the effects of antibiosis and non-preference could not be discriminated, soil applications of silicon-induced resistance to R. maidis in both susceptible and constitutively resistant corn hybrids.
Collapse
Affiliation(s)
- C A Boer
- Federal University of Uberlândia, Agricultural Sciences Institute,Uberlândia - Minas Gerais,Brazil
| | - M V Sampaio
- Federal University of Uberlândia, Agricultural Sciences Institute,Uberlândia - Minas Gerais,Brazil
| | - H S Pereira
- Federal University of Uberlândia, Agricultural Sciences Institute,Uberlândia - Minas Gerais,Brazil
| |
Collapse
|
27
|
Zhou S, Kremling KA, Bandillo N, Richter A, Zhang YK, Ahern KR, Artyukhin AB, Hui JX, Younkin GC, Schroeder FC, Buckler ES, Jander G. Metabolome-Scale Genome-Wide Association Studies Reveal Chemical Diversity and Genetic Control of Maize Specialized Metabolites. THE PLANT CELL 2019; 31:937-955. [PMID: 30923231 PMCID: PMC6533025 DOI: 10.1105/tpc.18.00772] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/05/2019] [Accepted: 03/27/2019] [Indexed: 05/17/2023]
Abstract
Cultivated maize (Zea mays) has retained much of the genetic diversity of its wild ancestors. Here, we performed nontargeted liquid chromatography-mass spectrometry metabolomics to analyze the metabolomes of the 282 maize inbred lines in the Goodman Diversity Panel. This analysis identified a bimodal distribution of foliar metabolites. Although 15% of the detected mass features were present in >90% of the inbred lines, the majority were found in <50% of the samples. Whereas leaf bases and tips were differentiated by flavonoid abundance, maize varieties (stiff-stalk, nonstiff-stalk, tropical, sweet maize, and popcorn) showed differential accumulation of benzoxazinoid metabolites. Genome-wide association studies (GWAS), performed for 3,991 mass features from the leaf tips and leaf bases, showed that 90% have multiple significantly associated loci scattered across the genome. Several quantitative trait locus hotspots in the maize genome regulate the abundance of multiple, often structurally related mass features. The utility of maize metabolite GWAS was demonstrated by confirming known benzoxazinoid biosynthesis genes, as well as by mapping isomeric variation in the accumulation of phenylpropanoid hydroxycitric acid esters to a single linkage block in a citrate synthase-like gene. Similar to gene expression databases, this metabolomic GWAS data set constitutes an important public resource for linking maize metabolites with biosynthetic and regulatory genes.
Collapse
Affiliation(s)
- Shaoqun Zhou
- Boyce Thompson Institute, Ithaca, New York 14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Karl A Kremling
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Nonoy Bandillo
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | | | - Ying K Zhang
- Boyce Thompson Institute, Ithaca, New York 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Kevin R Ahern
- Boyce Thompson Institute, Ithaca, New York 14853
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | | | - Joshua X Hui
- Boyce Thompson Institute, Ithaca, New York 14853
| | - Gordon C Younkin
- Boyce Thompson Institute, Ithaca, New York 14853
- Plant Biology Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
| | - Frank C Schroeder
- Boyce Thompson Institute, Ithaca, New York 14853
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, New York 14853
| | - Edward S Buckler
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, New York 14853
- U.S. Department of Agriculture-Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, Ithaca, New York 14853
| | - Georg Jander
- Boyce Thompson Institute, Ithaca, New York 14853
| |
Collapse
|
28
|
Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. Maize synthesized benzoxazinoids affect the host associated microbiome. MICROBIOME 2019; 7:59. [PMID: 30975184 DOI: 10.1186/s40168-019-0677-677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 05/28/2023]
Abstract
BACKGROUND Plants actively shape their associated microbial communities by synthesizing bio-active substances. Plant secondary metabolites are known for their signaling and plant defense functions, yet little is known about their overall effect on the plant microbiome. In this work, we studied the effects of benzoxazinoids (BXs), a group of secondary metabolites present in maize, on the host-associated microbial structure. Using BX knock-out mutants and their W22 parental lines, we employed 16S and ITS2 rRNA gene amplicon analysis to characterize the maize microbiome at early growth stages. RESULTS Rhizo-box experiment showed that BXs affected microbial communities not only in roots and shoots, but also in the rhizosphere. Fungal richness in roots was more affected by BXs than root bacterial richness. Maize genotype (BX mutants and their parental lines) as well as plant age explained both fungal and bacterial community structure. Genotypic effect on microbial communities was stronger in roots than in rhizosphere. Diverse, but specific, microbial taxa were affected by BX in both roots and shoots, for instance, many plant pathogens were negatively correlated to BX content. In addition, a co-occurrence analysis of the root microbiome revealed that BXs affected specific groups of the microbiome. CONCLUSIONS This study provides insights into the role of BXs for microbial community assembly in the rhizosphere and in roots and shoots. Coupling the quantification of BX metabolites with bacterial and fungal communities, we were able to suggest a gatekeeper role of BX by showing its correlation with specific microbial taxa and thus providing insights into effects on specific fungal and bacterial taxa in maize roots and shoots. Root microbial co-occurrence networks revealed that BXs affect specific microbial clusters.
Collapse
Affiliation(s)
- Enoch Narh Kudjordjie
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Rumakanta Sapkota
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Stine K Steffensen
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Inge S Fomsgaard
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Mogens Nicolaisen
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark.
| |
Collapse
|
29
|
Kudjordjie EN, Sapkota R, Steffensen SK, Fomsgaard IS, Nicolaisen M. Maize synthesized benzoxazinoids affect the host associated microbiome. MICROBIOME 2019; 7:59. [PMID: 30975184 PMCID: PMC6460791 DOI: 10.1186/s40168-019-0677-7] [Citation(s) in RCA: 151] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 03/28/2019] [Indexed: 05/18/2023]
Abstract
BACKGROUND Plants actively shape their associated microbial communities by synthesizing bio-active substances. Plant secondary metabolites are known for their signaling and plant defense functions, yet little is known about their overall effect on the plant microbiome. In this work, we studied the effects of benzoxazinoids (BXs), a group of secondary metabolites present in maize, on the host-associated microbial structure. Using BX knock-out mutants and their W22 parental lines, we employed 16S and ITS2 rRNA gene amplicon analysis to characterize the maize microbiome at early growth stages. RESULTS Rhizo-box experiment showed that BXs affected microbial communities not only in roots and shoots, but also in the rhizosphere. Fungal richness in roots was more affected by BXs than root bacterial richness. Maize genotype (BX mutants and their parental lines) as well as plant age explained both fungal and bacterial community structure. Genotypic effect on microbial communities was stronger in roots than in rhizosphere. Diverse, but specific, microbial taxa were affected by BX in both roots and shoots, for instance, many plant pathogens were negatively correlated to BX content. In addition, a co-occurrence analysis of the root microbiome revealed that BXs affected specific groups of the microbiome. CONCLUSIONS This study provides insights into the role of BXs for microbial community assembly in the rhizosphere and in roots and shoots. Coupling the quantification of BX metabolites with bacterial and fungal communities, we were able to suggest a gatekeeper role of BX by showing its correlation with specific microbial taxa and thus providing insights into effects on specific fungal and bacterial taxa in maize roots and shoots. Root microbial co-occurrence networks revealed that BXs affect specific microbial clusters.
Collapse
Affiliation(s)
- Enoch Narh Kudjordjie
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Rumakanta Sapkota
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Stine K. Steffensen
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Inge S. Fomsgaard
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| | - Mogens Nicolaisen
- Faculty of Science and Technology, Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200 Slagelse, Denmark
| |
Collapse
|
30
|
Chen W, Shakir S, Bigham M, Richter A, Fei Z, Jander G. Genome sequence of the corn leaf aphid (Rhopalosiphum maidis Fitch). Gigascience 2019; 8:giz033. [PMID: 30953568 PMCID: PMC6451198 DOI: 10.1093/gigascience/giz033] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/14/2019] [Accepted: 03/08/2019] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The corn leaf aphid (Rhopalosiphum maidis Fitch) is the most economically damaging aphid pest on maize (Zea mays), one of the world's most important grain crops. In addition to causing direct damage by removing photoassimilates, R. maidis transmits several destructive maize viruses, including maize yellow dwarf virus, barley yellow dwarf virus, sugarcane mosaic virus, and cucumber mosaic virus. FINDINGS The genome of a parthenogenetically reproducing R. maidis clone was assembled with a combination of Pacific Biosciences (207-fold coverage) and Illumina (83-fold coverage) sequencing. The 689 assembled contigs, which have an N50 size of 9.0 megabases (Mb) and a low level of heterozygosity, were clustered using Phase Genomics Hi-C interaction maps. Consistent with the commonly observed 2n = 8 karyotype of R. maidis, most of the contigs (473 spanning 321 Mb) were successfully oriented into 4 scaffolds. The genome assembly captured the full length of 95.8% of the core eukaryotic genes, indicating that it is highly complete. Repetitive sequences accounted for 21.2% of the assembly, and a total of 17,629 protein-coding genes were predicted with integrated evidence from ab initio and homology-based gene predictions and transcriptome sequences generated with both Pacific Biosciences and Illumina. An analysis of likely horizontally transferred genes identified 2 from bacteria, 7 from fungi, 2 from protozoa, and 9 from algae. Repeat elements, transposons, and genes encoding likely detoxification enzymes (cytochrome P450s, glutathione S-transferases, carboxylesterases, uridine diphosphate-glucosyltransferases, and ABC transporters) were identified in the genome sequence. Other than Buchnera aphidicola (642,929 base pairs, 602 genes), no endosymbiont bacteria were found in R. maidis. CONCLUSIONS A high-quality R. maidis genome was assembled at the chromosome level. This genome sequence will enable further research related to ecological interactions, virus transmission, pesticide resistance, and other aspects of R. maidis biology. It also serves as a valuable resource for comparative investigation of other aphid species.
Collapse
Affiliation(s)
- Wenbo Chen
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Sara Shakir
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Mahdiyeh Bigham
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Annett Richter
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| | - Zhangjun Fei
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
- US Department of Agriculture–Agricultural Research Service, Robert W. Holley Center for Agriculture and Health, 538 Tower Rd, Ithaca, NY 14853, USA
| | - Georg Jander
- Boyce Thompson Institute, 533 Tower Rd, Ithaca, NY 14853, USA
| |
Collapse
|
31
|
Varsani S, Grover S, Zhou S, Koch KG, Huang PC, Kolomiets MV, Williams WP, Heng-Moss T, Sarath G, Luthe DS, Jander G, Louis J. 12-Oxo-Phytodienoic Acid Acts as a Regulator of Maize Defense against Corn Leaf Aphid. PLANT PHYSIOLOGY 2019; 179:1402-1415. [PMID: 30643012 PMCID: PMC6446797 DOI: 10.1104/pp.18.01472] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 01/03/2019] [Indexed: 05/25/2023]
Abstract
The corn leaf aphid (CLA; Rhopalosiphum maidis) is a phloem sap-sucking insect that attacks many cereal crops, including maize (Zea mays). We previously showed that the maize inbred line Mp708, which was developed by classical plant breeding, provides enhanced resistance to CLA. Here, using electrophysiological monitoring of aphid feeding behavior, we demonstrate that Mp708 provides phloem-mediated resistance to CLA. Furthermore, feeding by CLA on Mp708 plants enhanced callose deposition, a potential defense mechanism utilized by plants to limit aphid feeding and subsequent colonization. In maize, benzoxazinoids (BX) or BX-derived metabolites contribute to enhanced callose deposition by providing heightened resistance to CLA. However, BX and BX-derived metabolites were not significantly altered in CLA-infested Mp708 plants, indicating BX-independent defense against CLA. Evidence presented here suggests that the constitutively higher levels of 12-oxo-phytodienoic acid (OPDA) in Mp708 plants contributed to enhanced callose accumulation and heightened CLA resistance. OPDA enhanced the expression of ethylene biosynthesis and receptor genes, and the synergistic interactions of OPDA and CLA feeding significantly induced the expression of the transcripts encoding Maize insect resistance1-Cysteine Protease, a key defensive protein against insect pests, in Mp708 plants. Furthermore, exogenous application of OPDA on maize jasmonic acid-deficient plants caused enhanced callose accumulation and heightened resistance to CLA, suggesting that the OPDA-mediated resistance to CLA is independent of the jasmonic acid pathway. We further demonstrate that the signaling function of OPDA, rather than a direct toxic effect, contributes to enhanced CLA resistance in Mp708.
Collapse
Affiliation(s)
- Suresh Varsani
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
| | - Sajjan Grover
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
| | - Shaoqun Zhou
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
- School of Integrated Plant Sciences, Cornell University, Ithaca, New York 14853
| | - Kyle G Koch
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
| | - Pei-Cheng Huang
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - Michael V Kolomiets
- Department of Plant Pathology and Microbiology, Texas A&M University, College Station, Texas 77843
| | - W Paul Williams
- United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit, Mississippi State, Mississippi 39762
| | - Tiffany Heng-Moss
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
| | - Gautam Sarath
- Wheat, Sorghum, and Forage Research Unit, United States Department of Agriculture-Agricultural Research Service, Lincoln, Nebraska 68583
| | - Dawn S Luthe
- Department of Plant Science, Pennsylvania State University, University Park, Pennsylvania 16802
| | - Georg Jander
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853
| | - Joe Louis
- Department of Entomology, University of Nebraska, Lincoln, Nebraska 68583
- Department of Biochemistry, University of Nebraska, Lincoln, Nebraska 68583
| |
Collapse
|
32
|
Kariyat RR, Gaffoor I, Sattar S, Dixon CW, Frock N, Moen J, De Moraes CM, Mescher MC, Thompson GA, Chopra S. Sorghum 3-Deoxyanthocyanidin Flavonoids Confer Resistance against Corn Leaf Aphid. J Chem Ecol 2019; 45:502-514. [PMID: 30911880 DOI: 10.1007/s10886-019-01062-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Revised: 02/05/2019] [Accepted: 02/22/2019] [Indexed: 01/03/2023]
Abstract
In this study we examined the role of sorghum flavonoids in providing resistance against corn leaf aphid (CLA) Rhopalosiphum maidis. In sorghum, accumulation of these flavonoids is regulated by a MYB transcription factor, yellow seed1 (y1). Functional y1 alleles accumulate 3-deoxyflavonoids (3-DFs) and 3-deoxyanthocyanidins (3-DAs) whereas null y1 alleles fail to accumulate these compounds. We found that significantly higher numbers of alate CLA adults colonized null y1 plants as compared to functional y1 plants. Controlled cage experiments and pairwise choice assays demonstrated that apterous aphids preferred to feed and reproduce on null y1 plants. These near-isogenic sorghum lines do not differ in their epicuticular wax content and were also devoid of any leaf trichomes. Significantly higher mortality of CLA was observed on artificial aphid diet supplemented with flavonoids obtained from functional y1 plants as compared to null y1 plants or the relevant controls. Our results demonstrate that the proximate mechanism underlying the deleterious effects on aphids is y1-regulated flavonoids which are important defense compounds against CLA.
Collapse
Affiliation(s)
- Rupesh R Kariyat
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX, 78539, USA
| | - Iffa Gaffoor
- Plant Science Department, The Pennsylvania State University, University Park, PA, 16803, USA
| | - Sampurna Sattar
- Plant Science Department, The Pennsylvania State University, University Park, PA, 16803, USA
| | - Cullen W Dixon
- Plant Science Department, The Pennsylvania State University, University Park, PA, 16803, USA
| | - Nadia Frock
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16803, USA
- School of Health Sciences, Nursing Department, Chatham University, 0 Woodland Road, Pittsburgh, PA, 15232, USA
| | - Juliet Moen
- Department of Entomology, The Pennsylvania State University, University Park, PA, 16803, USA
- Grove City College, 100 Campus Drive, Grove City, PA, 16127, USA
| | - Consuelo M De Moraes
- Department of Environmental System Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Mark C Mescher
- Department of Environmental System Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Gary A Thompson
- Plant Science Department, The Pennsylvania State University, University Park, PA, 16803, USA
| | - Surinder Chopra
- Plant Science Department, The Pennsylvania State University, University Park, PA, 16803, USA.
| |
Collapse
|
33
|
Luo B, Ma P, Nie Z, Zhang X, He X, Ding X, Feng X, Lu Q, Ren Z, Lin H, Wu Y, Shen Y, Zhang S, Wu L, Liu D, Pan G, Rong T, Gao S. Metabolite profiling and genome-wide association studies reveal response mechanisms of phosphorus deficiency in maize seedling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:947-969. [PMID: 30472798 PMCID: PMC6850195 DOI: 10.1111/tpj.14160] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 11/05/2018] [Accepted: 11/06/2018] [Indexed: 05/21/2023]
Abstract
Inorganic phosphorus (Pi) is an essential element in numerous metabolic reactions and signaling pathways, but the molecular details of these pathways remain largely unknown. In this study, metabolite profiles of maize (Zea mays L.) leaves and roots were compared between six low-Pi-sensitive lines and six low-Pi-tolerant lines under Pi-sufficient and Pi-deficient conditions to identify pathways and genes associated with the low-Pi stress response. Results showed that under Pi deprivation the concentrations of nucleic acids, organic acids and sugars were increased, but that the concentrations of phosphorylated metabolites, certain amino acids, lipid metabolites and nitrogenous compounds were decreased. The levels of secondary metabolites involved in plant immune reactions, including benzoxazinoids and flavonoids, were significantly different in plants grown under Pi-deficient conditions. Among them, the 11 most stable metabolites showed significant differences under low- and normal-Pi conditions based on the coefficient of variation (CV). Isoleucine and alanine were the most stable metabolites for the identification of Pi-sensitive and Pi-resistant maize inbred lines. With the significant correlation between morphological traits and metabolites, five low-Pi-responding consensus genes associated with morphological traits and simultaneously involved in metabolic pathways were mined by combining metabolites profiles and genome-wide association study (GWAS). The consensus genes induced by Pi deficiency in maize seedlings were also validated by reverse-transcription quantitative polymerase chain reaction (RT-qPCR). Moreover, these genes were further validated in a recombinant inbred line (RIL) population, in which the glucose-6-phosphate-1-epimerase encoding gene mediated yield and correlated traits to phosphorus availability. Together, our results provide a framework for understanding the metabolic processes underlying Pi-deficient responses and give multiple insights into improving the efficiency of Pi use in maize.
Collapse
Affiliation(s)
- Bowen Luo
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Peng Ma
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Zhi Nie
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Xiao Zhang
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Xuan He
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Xin Ding
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Xing Feng
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Quanxiao Lu
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Zhiyong Ren
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Haijian Lin
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Yuanqi Wu
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Yaou Shen
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease ControlSichuanChengduChina
| | - Suzhi Zhang
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Ling Wu
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Dan Liu
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Guangtang Pan
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Tingzhao Rong
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
| | - Shibin Gao
- Maize Research InstituteSichuan Agricultural University611130SichuanChengduChina
- State Key Laboratory of Crop Genetics of Disease Resistance and Disease ControlSichuanChengduChina
| |
Collapse
|
34
|
Gao L, Shen G, Zhang L, Qi J, Zhang C, Ma C, Li J, Wang L, Malook SU, Wu J. An efficient system composed of maize protoplast transfection and HPLC-MS for studying the biosynthesis and regulation of maize benzoxazinoids. PLANT METHODS 2019; 15:144. [PMID: 31798670 PMCID: PMC6882228 DOI: 10.1186/s13007-019-0529-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 11/18/2019] [Indexed: 05/05/2023]
Abstract
BACKGROUND Insect herbivory poses a major threat to maize. Benzoxazinoids are important anti-insect secondary metabolites in maize, whose biosynthetic pathway has been extensively studied. However, yet little is known about how benzoxazinoids are regulated in maize, partly due to lack of mutant resources and recalcitrance to genetic transformation. Transient systems based on mesophyll- or cultured cell-derived protoplasts have been exploited in several plant species and have become a powerful tool for rapid or high-throughput assays of gene functions. Nevertheless, these systems have not been exploited to study the regulation of secondary metabolites. RESULTS A protocol for isolation of protoplasts from etiolated maize seedlings and efficient transfection was optimized. Furthermore, a 10-min-run-time and highly sensitive HPLC-MS method was established to rapidly detect and quantify maize benzoxazinoids. Coupling maize protoplast transfection and HPLC-MS, we screened a few genes potentially regulating benzoxazinoid biosynthesis using overexpression or silencing by artificial microRNA technology. CONCLUSIONS Combining the power of maize protoplast transfection and HPLC-MS analysis, this method allows rapid screening for the regulatory and biosynthetic genes of maize benzoxazinoids in protoplasts, before the candidates are selected for in planta functional analyses. This method can also be applied to study the biosynthesis and regulation of other secondary metabolites in maize and secondary metabolites in other plant species, including those not amenable to transformation.
Collapse
Affiliation(s)
- Lei Gao
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
- School of Biological Science, Yunnan University, Kunming, 650091 China
| | - Guojing Shen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Lingdan Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Jinfeng Qi
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Cuiping Zhang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Canrong Ma
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Jing Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Lei Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Saif Ul Malook
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201 China
| |
Collapse
|
35
|
Shavit R, Batyrshina ZS, Dotan N, Tzin V. Cereal aphids differently affect benzoxazinoid levels in durum wheat. PLoS One 2018; 13:e0208103. [PMID: 30507950 PMCID: PMC6277073 DOI: 10.1371/journal.pone.0208103] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Accepted: 11/12/2018] [Indexed: 12/22/2022] Open
Abstract
Aphids are major pests in cereal crops that cause direct and indirect damage leading to yield reduction. Despite the fact that wheat provides 20% of the world’s caloric and protein diet, its metabolic responses to aphid attack, in general, and specifically its production of benzoxazinoid defense compounds are poorly understood. The objective of this study was to compare the metabolic diversity of durum wheat seedlings (Triticum turgidum ssp. durum) under attack by three different cereal aphids: i) the English grain aphid (Sitobion avenae Fabricius), ii) the bird cherry-oat aphid (Rhopalosiphum padi L.), and iii) the greenbug aphid (Schizaphis graminum Rondani), which are some of the most destructive aphid species to wheat. Insect progeny bioassays and metabolic analyses using chromatography/Q-Exactive/mass spectrometry non-targeted metabolomics and a targeted benzoxazinoid profile were performed on infested leaves. The insect bioassays revealed that the plants were susceptible to S. graminum, resistant to S. avenae, and mildly resistant to R. padi. The metabolic analyses of benzoxazinoids suggested that the predominant metabolites DIMBOA (2,4-dihydroxy-7-methoxy-1,4-benzoxazin- 3-one) and its glycosylated form DIMBOA-glucoside (Glc) were significantly induced upon both S. avenae, and R. padi aphid feeding. However, the levels of the benzoxazinoid metabolite HDMBOA-Glc (2-hydroxy-4,7-dimethoxy-1,4-benzoxazin-3-one glucoside) were enhanced due to the feeding of S. avenae and S. graminum aphids, to which Svevo was the most resistant and the most susceptible, respectively. The results showed a partial correlation between the induction of benzoxazinoids and aphid reproduction. Overall, our observations revealed diverse metabolic responses of wheat seedlings to cereal aphid feeding.
Collapse
Affiliation(s)
- Reut Shavit
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Zhaniya S. Batyrshina
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Nitsan Dotan
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
| | - Vered Tzin
- French Associates Institute for Agriculture and Biotechnology of Drylands, Jacob Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Sede Boqer Campus, Israel
- Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, Israel
- * E-mail:
| |
Collapse
|
36
|
Galli M, Khakhar A, Lu Z, Chen Z, Sen S, Joshi T, Nemhauser JL, Schmitz RJ, Gallavotti A. The DNA binding landscape of the maize AUXIN RESPONSE FACTOR family. Nat Commun 2018; 9:4526. [PMID: 30375394 PMCID: PMC6207667 DOI: 10.1038/s41467-018-06977-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Accepted: 09/23/2018] [Indexed: 01/19/2023] Open
Abstract
AUXIN RESPONSE FACTORS (ARFs) are plant-specific transcription factors (TFs) that couple perception of the hormone auxin to gene expression programs essential to all land plants. As with many large TF families, a key question is whether individual members determine developmental specificity by binding distinct target genes. We use DAP-seq to generate genome-wide in vitro TF:DNA interaction maps for fourteen maize ARFs from the evolutionarily conserved A and B clades. Comparative analysis reveal a high degree of binding site overlap for ARFs of the same clade, but largely distinct clade A and B binding. Many sites are however co-occupied by ARFs from both clades, suggesting transcriptional coordination for many genes. Among these, we investigate known QTLs and use machine learning to predict the impact of cis-regulatory variation. Overall, large-scale comparative analysis of ARF binding suggests that auxin response specificity may be determined by factors other than individual ARF binding site selection.
Collapse
Affiliation(s)
- Mary Galli
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Arjun Khakhar
- Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA
| | - Zefu Lu
- Department of Genetics, The University of Georgia, Athens, GA, 30602, USA
| | - Zongliang Chen
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA
| | - Sidharth Sen
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA
| | - Trupti Joshi
- Informatics Institute, University of Missouri, Columbia, MO, 65211, USA.,Department of Health Management and Informatics and Christopher S. Bond Life Science Center, University of Missouri, Columbia, MO, 65211, USA
| | | | - Robert J Schmitz
- Department of Genetics, The University of Georgia, Athens, GA, 30602, USA
| | - Andrea Gallavotti
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, 08854-8020, USA. .,Department of Plant Biology, Rutgers University, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
37
|
Plant Protection by Benzoxazinoids—Recent Insights into Biosynthesis and Function. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080143] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Benzoxazinoids (BXs) are secondary metabolites present in many Poaceae including the major crops maize, wheat, and rye. In contrast to other potentially toxic secondary metabolites, BXs have not been targets of counter selection during breeding and the effect of BXs on insects, microbes, and neighbouring plants has been recognised. A broad knowledge about the mode of action and metabolisation in target organisms including herbivorous insects, aphids, and plants has been gathered in the last decades. BX biosynthesis has been elucidated on a molecular level in crop cereals. Recent advances, mainly made by investigations in maize, uncovered a significant diversity in the composition of BXs within one species. The pattern can be specific for single plant lines and dynamic changes triggered by biotic and abiotic stresses were observed. Single BXs might be toxic, repelling, attractive, and even growth-promoting for insects, depending on the particular species. BXs delivered into the soil influence plant and microbial communities. Furthermore, BXs can possibly be used as signalling molecules within the plant. In this review we intend to give an overview of the current data on the biosynthesis, structure, and function of BXs, beyond their characterisation as mere phytotoxins.
Collapse
|
38
|
Qi J, Malook SU, Shen G, Gao L, Zhang C, Li J, Zhang J, Wang L, Wu J. Current understanding of maize and rice defense against insect herbivores. PLANT DIVERSITY 2018; 40:189-195. [PMID: 30740564 PMCID: PMC6137261 DOI: 10.1016/j.pld.2018.06.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 06/28/2018] [Accepted: 06/28/2018] [Indexed: 05/25/2023]
Abstract
Plants have sophisticated defense systems to fend off insect herbivores. How plants defend against herbivores in dicotyledonous plants, such as Arabidopsis and tobacco, have been relatively well studied, yet little is known about the defense responses in monocotyledons. Here, we review the current understanding of rice (Oryza sativa) and maize (Zea mays) defense against insects. In rice and maize, elicitors derived from insect herbivore oral secretions or oviposition fluids activate phytohormone signaling, and transcriptomic changes mediated mainly by transcription factors lead to accumulation of defense-related secondary metabolites. Direct defenses, such as trypsin protein inhibitors in rice and benzoxazinoids in maize, have anti-digestive or toxic effects on insect herbivores. Herbivory-induced plant volatiles, such as terpenes, are indirect defenses, which attract the natural enemies of herbivores. R gene-mediated defenses against herbivores are also discussed.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Jianqiang Wu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
39
|
Zhou S, Richter A, Jander G. Beyond Defense: Multiple Functions of Benzoxazinoids in Maize Metabolism. PLANT & CELL PHYSIOLOGY 2018; 59:1528-1537. [PMID: 29584935 DOI: 10.1093/pcp/pcy064] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2018] [Indexed: 05/21/2023]
Abstract
Benzoxazinoids are a class of indole-derived plant metabolites that function in defense against numerous pests and pathogens. Due to their abundance in maize (Zea mays) and other important cereal crops, benzoxazinoids have been the subject of extensive research for >50 years. Whereas benzoxazinoids can account for 1% or more of the dry weight in young seedlings constitutively, their accumulation in older plants is induced locally by pest and pathogen attack. Although the biosynthetic pathways for most maize benzoxazinoids have been identified, unanswered questions remain about the developmental and defense-induced regulation of benzoxazinoid metabolism. Recent research shows that, in addition to their central role in the maize chemical defense repertoire, benzoxazinoids may have important functions in regulating other defense responses, flowering time, auxin metabolism, iron uptake and perhaps aluminum tolerance. Investigation of natural variation in maize benzoxazinoid accumulation, which is greatly facilitated by recent genomics advances, will have a major impact in this research area by leading to the discovery of previously unknown genes and functions of benzoxazinoid metabolism.
Collapse
Affiliation(s)
- Shaoqun Zhou
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, USA
- Plant Biology Section, School of Integrated Plant Science, Cornell University, Ithaca, NY, USA
| | - Annett Richter
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, 533 Tower Road, Ithaca, NY, USA
| |
Collapse
|
40
|
Wang X, Chen Q, Wu Y, Lemmon ZH, Xu G, Huang C, Liang Y, Xu D, Li D, Doebley JF, Tian F. Genome-wide Analysis of Transcriptional Variability in a Large Maize-Teosinte Population. MOLECULAR PLANT 2018; 11:443-459. [PMID: 29275164 DOI: 10.1016/j.molp.2017.12.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 10/21/2017] [Accepted: 12/11/2017] [Indexed: 05/18/2023]
Abstract
Gene expression regulation plays an important role in controlling plant phenotypes and adaptation. Here, we report a comprehensive assessment of gene expression variation through the transcriptome analyses of a large maize-teosinte experimental population. Genome-wide mapping identified 25 660 expression quantitative trait loci (eQTL) for 17 311 genes, capturing an unprecedented range of expression variation. We found that local eQTL were more frequently mapped to adjacent genes, displaying a mode of expression piggybacking, which consequently created co-regulated gene clusters. Genes within the co-regulated gene clusters tend to have relevant functions and shared chromatin modifications. Distant eQTL formed 125 significant distant eQTL hotspots with their targets significantly enriched in specific functional categories. By integrating different sources of information, we identified putative trans- regulators for a variety of metabolic pathways. We demonstrated that the bHLH transcription factor R1 and hexokinase HEX9 might act as crucial regulators for flavonoid biosynthesis and glycolysis, respectively. Moreover, we showed that domestication or improvement has significantly affected global gene expression, with many genes targeted by selection. Of particular interest, the Bx genes for benzoxazinoid biosynthesis may have undergone coordinated cis-regulatory divergence between maize and teosinte, and a transposon insertion that inactivates Bx12 was under strong selection as maize spread into temperate environments with a distinct herbivore community.
Collapse
Affiliation(s)
- Xufeng Wang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Qiuyue Chen
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yaoyao Wu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Zachary H Lemmon
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Guanghui Xu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Cheng Huang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Yameng Liang
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dingyi Xu
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - Dan Li
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China
| | - John F Doebley
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Feng Tian
- National Maize Improvement Center of China, Beijing Key Laboratory of Crop Genetic Improvement, Laboratory of Crop Heterosis and Utilization, Joint International Research Laboratory of Crop Molecular Breeding, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
41
|
Hu W, Pan X, Li F, Dong W. UPLC-QTOF-MS metabolomics analysis revealed the contributions of metabolites to the pathogenesis of Rhizoctonia solani strain AG-1-IA. PLoS One 2018; 13:e0192486. [PMID: 29408919 PMCID: PMC5800620 DOI: 10.1371/journal.pone.0192486] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 01/24/2018] [Indexed: 12/23/2022] Open
Abstract
To explore the pathogenesis of Rhizoctonia solani and its phytotoxin phenylacetic acid (PAA) on maize leaves and sheaths, treated leaf and sheath tissues were analyzed and interpreted by ultra-performance liquid chromatography-mass spectrometry combined with chemometrics. The PAA treatment had similar effects to those of R. solani on maize leaves regarding the metabolism of traumatin, phytosphingosine, vitexin 2'' O-beta-D-glucoside, rutin and DIBOA-glucoside, which were up-regulated, while the synthesis of OPC-8:0 and 12-OPDA, precursors for the synthesis of jasmonic acid, a plant defense signaling molecule, was down-regulated under both treatments. However, there were also discrepancies in the influences exhibited by R. solani and PAA as the metabolic concentration of zeaxanthin diglucoside in the R. solani infected leaf group decreased. Conversely, in the PAA-treated leaf group, the synthesis of zeaxanthin diglucoside was enhanced. Moreover, although the synthesis of 12 metabolites were suppressed in both the R. solani- and PAA-treated leaf tissues, the inhibitory effect of R. solani was stronger than that of PAA. An increased expression of quercitrin and quercetin 3-O-glucoside was observed in maize sheaths treated by R. solani, while their concentrations were not changed significantly in the PAA-treated sheaths. Furthermore, a significant decrease in the concentration of L-Glutamate, which plays important roles in plant resistance to necrotrophic pathogens, only occurred in the R. solani-treated sheath tissues. The differentiated metabolite levels may be the partial reason of why maize sheaths were more susceptible to R. solani than leaves and may explain the underlying mechanisms of R. solani pathogenesis.
Collapse
Affiliation(s)
- Wenjin Hu
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Xinli Pan
- Department of Biochemical and Chemical Engineering, Technische Universität Dortmund, Dortmund, Germany
| | - Fengfeng Li
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, China
| | - Wubei Dong
- Department of Plant Pathology, College of Plant Science and Technology and the Key Lab of Crop Disease Monitoring & Safety Control in Hubei Province, Huazhong Agricultural University, Wuhan, Hubei Province, China
| |
Collapse
|
42
|
Tzin V, Hojo Y, Strickler SR, Bartsch LJ, Archer CM, Ahern KR, Zhou S, Christensen SA, Galis I, Mueller LA, Jander G. Rapid defense responses in maize leaves induced by Spodoptera exigua caterpillar feeding. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:4709-4723. [PMID: 28981781 PMCID: PMC5853842 DOI: 10.1093/jxb/erx274] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2017] [Accepted: 07/13/2017] [Indexed: 05/20/2023]
Abstract
Insects such as the beet armyworm (Spodoptera exigua) cause extensive damage to maize (Zea mays). Maize plants respond by triggering defense signaling, changes in gene expression, and biosynthesis of specialized metabolites. Leaves of maize inbred line B73, which has an available genome sequence, were infested with S. exigua for 1 to 24 h, followed by comparisons of the transcript and metabolite profiles with those of uninfested controls. The most extensive gene expression responses occurred rapidly, within 4-6 h after caterpillar infestation. However, both gene expression and metabolite profiles were altered within 1 h and continued to change during the entire 24 h experiment. The defensive functions of three caterpillar-induced genes were examined using available Dissociation transposon insertions in maize inbred line W22. Whereas mutations in the benzoxazinoid biosynthesis pathway (Bx1 and Bx2) significantly improved caterpillar growth, the knockout of a 13-lipoxygenase (Lox8) involved in jasmonic acid biosynthesis did not. Interestingly, 9-lipoxygenases, which lead to the production of maize death acids, were more strongly induced by caterpillar feeding than 13-lipoxygenases, suggesting an as yet unknown function in maize defense against herbivory. Together, these results provide a comprehensive view of the dynamic transcriptomic and metabolomic responses of maize leaves to caterpillar feeding.
Collapse
Affiliation(s)
- Vered Tzin
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
- Correspondence:
| | - Yuko Hojo
- Okayama University, Institute of Plant Science and Resources, Kurashiki, Okayama, Japan
| | - Susan R Strickler
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Lee J Bartsch
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Cairo M Archer
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Kevin R Ahern
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Shaoqun Zhou
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Shawn A Christensen
- USDA-ARS Chemistry Unit, Center for Medical, Agricultural, and Veterinary Entomology, Gainesville, FL, USA
| | - Ivan Galis
- Okayama University, Institute of Plant Science and Resources, Kurashiki, Okayama, Japan
| | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Tower Rd, Ithaca, NY, USA
| |
Collapse
|
43
|
Song J, Liu H, Zhuang H, Zhao C, Xu Y, Wu S, Qi J, Li J, Hettenhausen C, Wu J. Transcriptomics and Alternative Splicing Analyses Reveal Large Differences between Maize Lines B73 and Mo17 in Response to Aphid Rhopalosiphum padi Infestation. FRONTIERS IN PLANT SCIENCE 2017; 8:1738. [PMID: 29067035 PMCID: PMC5641392 DOI: 10.3389/fpls.2017.01738] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Accepted: 09/22/2017] [Indexed: 05/20/2023]
Abstract
Maize (Zea mays L.) is a staple crop worldwide with extensive genetic variations. Various insects attack maize plants causing large yield loss. Here, we investigated the responses of maize B73, a susceptible line, and Mo17, a resistant line, to the aphid Rhopalosiphum padi on metabolite and transcriptome levels. R. padi feeding had no effect on the levels of the defensive metabolites benzoxazinoids (Bxs) in either line, and Mo17 contained substantially greater levels of Bxs than did B73. Profiling of the differentially expressed genes revealed that B73 and Mo17 responded to R. padi infestation specifically, and importantly, these two lines showed large gene expression differences even without R. padi herbivory. Correlation analysis identified four transcription factors (TFs) that might account for the high Bx levels in Mo17. Similarly, genome-wide alternative splicing (AS) analyses indicated that both B73 and Mo17 had temporally specific responses to R. padi infestation, and these two lines also exhibited large differences of AS regulation under normal condition, and 340 genes, including 10 TFs, were constantly differentially spliced. This study provides large-scale resource datasets for further studies on the mechanisms underlying maize-aphid interactions, and highlights the phenotypic divergence in defense against aphids among maize varieties.
Collapse
Affiliation(s)
- Juan Song
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Hui Liu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Huifu Zhuang
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Chunxia Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Science, Dalian, China
| | - Yuxing Xu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Shibo Wu
- Yunnan Academy of Science and Technology Development, Kunming, China
| | - Jinfeng Qi
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jing Li
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Christian Hettenhausen
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Christian Hettenhausen
| | - Jianqiang Wu
- Yunnan Key Laboratory for Wild Plant Resources, Department of Economic Plants and Biotechnology, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Jianqiang Wu
| |
Collapse
|
44
|
Wouters FC, Blanchette B, Gershenzon J, Vassão DG. Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:1127-1151. [PMID: 27932939 DOI: 10.1007/s11101-016-9481-9481] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/21/2016] [Indexed: 05/28/2023]
Abstract
Benzoxazinoids are a class of indole-derived plant chemical defenses comprising compounds with a 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one skeleton and their derivatives. These phytochemicals are widespread in grasses, including important cereal crops such as maize, wheat and rye, as well as a few dicot species, and display a wide range of antifeedant, insecticidal, antimicrobial, and allelopathic activities. Although their overall effects against insect herbivores are frequently reported, much less is known about how their modes of action specifically influence insect physiology. The present review summarizes the biological activities of benzoxazinoids on chewing, piercing-sucking, and root insect herbivores. We show how within-plant distribution modulates the exposure of different herbivore feeding guilds to these defenses, and how benzoxazinoids may act as toxins, feeding deterrents and digestibility-reducing compounds under different conditions. In addition, recent results on the metabolism of benzoxazinoids by insects and their consequences for plant-herbivore interactions are addressed, as well as directions for future research.
Collapse
Affiliation(s)
- Felipe C Wouters
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Blair Blanchette
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Daniel G Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
45
|
Handrick V, Robert CAM, Ahern KR, Zhou S, Machado RAR, Maag D, Glauser G, Fernandez-Penny FE, Chandran JN, Rodgers-Melnik E, Schneider B, Buckler ES, Boland W, Gershenzon J, Jander G, Erb M, Köllner TG. Biosynthesis of 8-O-Methylated Benzoxazinoid Defense Compounds in Maize. THE PLANT CELL 2016; 28:1682-700. [PMID: 27317675 PMCID: PMC4981128 DOI: 10.1105/tpc.16.00065] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 06/14/2016] [Indexed: 05/04/2023]
Abstract
Benzoxazinoids are important defense compounds in grasses. Here, we investigated the biosynthesis and biological roles of the 8-O-methylated benzoxazinoids, DIM2BOA-Glc and HDM2BOA-Glc. Using quantitative trait locus mapping and heterologous expression, we identified a 2-oxoglutarate-dependent dioxygenase (BX13) that catalyzes the conversion of DIMBOA-Glc into a new benzoxazinoid intermediate (TRIMBOA-Glc) by an uncommon reaction involving a hydroxylation and a likely ortho-rearrangement of a methoxy group. TRIMBOA-Glc is then converted to DIM2BOA-Glc by a previously described O-methyltransferase BX7. Furthermore, we identified an O-methyltransferase (BX14) that converts DIM2BOA-Glc to HDM2BOA-Glc. The role of these enzymes in vivo was demonstrated by characterizing recombinant inbred lines, including Oh43, which has a point mutation in the start codon of Bx13 and lacks both DIM2BOA-Glc and HDM2BOA-Glc, and Il14H, which has an inactive Bx14 allele and lacks HDM2BOA-Glc in leaves. Experiments with near-isogenic maize lines derived from crosses between B73 and Oh43 revealed that the absence of DIM2BOA-Glc and HDM2BOA-Glc does not alter the constitutive accumulation or deglucosylation of other benzoxazinoids. The growth of various chewing herbivores was not significantly affected by the absence of BX13-dependent metabolites, while aphid performance increased, suggesting that DIM2BOA-Glc and/or HDM2BOA-Glc provide specific protection against phloem feeding insects.
Collapse
Affiliation(s)
| | | | - Kevin R Ahern
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Shaoqun Zhou
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | | | - Daniel Maag
- Institute of Biology, University of Neuchatel, 2009 Neuchatel, Switzerland
| | - Gaetan Glauser
- Institute of Biology, University of Neuchatel, 2009 Neuchatel, Switzerland
| | | | - Jima N Chandran
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Eli Rodgers-Melnik
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Bernd Schneider
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | - Edward S Buckler
- Institute for Genomic Diversity, Cornell University, Ithaca, New York 14853
| | - Wilhelm Boland
- Max Planck Institute for Chemical Ecology, 07745 Jena, Germany
| | | | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853
| | - Matthias Erb
- Institute of Plant Sciences, University of Bern, 3013 Bern, Switzerland
| | | |
Collapse
|
46
|
Wouters FC, Blanchette B, Gershenzon J, Vassão DG. Plant defense and herbivore counter-defense: benzoxazinoids and insect herbivores. PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:1127-1151. [PMID: 27932939 PMCID: PMC5106503 DOI: 10.1007/s11101-016-9481-1] [Citation(s) in RCA: 121] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 10/21/2016] [Indexed: 05/19/2023]
Abstract
Benzoxazinoids are a class of indole-derived plant chemical defenses comprising compounds with a 2-hydroxy-2H-1,4-benzoxazin-3(4H)-one skeleton and their derivatives. These phytochemicals are widespread in grasses, including important cereal crops such as maize, wheat and rye, as well as a few dicot species, and display a wide range of antifeedant, insecticidal, antimicrobial, and allelopathic activities. Although their overall effects against insect herbivores are frequently reported, much less is known about how their modes of action specifically influence insect physiology. The present review summarizes the biological activities of benzoxazinoids on chewing, piercing-sucking, and root insect herbivores. We show how within-plant distribution modulates the exposure of different herbivore feeding guilds to these defenses, and how benzoxazinoids may act as toxins, feeding deterrents and digestibility-reducing compounds under different conditions. In addition, recent results on the metabolism of benzoxazinoids by insects and their consequences for plant-herbivore interactions are addressed, as well as directions for future research.
Collapse
Affiliation(s)
- Felipe C. Wouters
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Blair Blanchette
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Jonathan Gershenzon
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - Daniel G. Vassão
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| |
Collapse
|
47
|
Tzin V, Lindsay PL, Christensen SA, Meihls LN, Blue LB, Jander G. Genetic mapping shows intraspecific variation and transgressive segregation for caterpillar‐induced aphid resistance in maize. Mol Ecol 2015; 24:5739-50. [DOI: 10.1111/mec.13418] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Accepted: 10/06/2015] [Indexed: 11/29/2022]
Affiliation(s)
- Vered Tzin
- Boyce Thompson Institute for Plant Research Ithaca NY 14853 USA
| | | | - Shawn A. Christensen
- USDA‐ARS Chemistry Unit Center for Medical, Agricultural and Veterinary Entomology Gainesville FL 32608 USA
| | - Lisa N. Meihls
- Boyce Thompson Institute for Plant Research Ithaca NY 14853 USA
| | - Levi B. Blue
- Boyce Thompson Institute for Plant Research Ithaca NY 14853 USA
| | - Georg Jander
- Boyce Thompson Institute for Plant Research Ithaca NY 14853 USA
| |
Collapse
|
48
|
Tzin V, Fernandez-Pozo N, Richter A, Schmelz EA, Schoettner M, Schäfer M, Ahern KR, Meihls LN, Kaur H, Huffaker A, Mori N, Degenhardt J, Mueller LA, Jander G. Dynamic Maize Responses to Aphid Feeding Are Revealed by a Time Series of Transcriptomic and Metabolomic Assays. PLANT PHYSIOLOGY 2015; 169:1727-43. [PMID: 26378100 PMCID: PMC4634079 DOI: 10.1104/pp.15.01039] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 09/15/2015] [Indexed: 05/18/2023]
Abstract
As a response to insect attack, maize (Zea mays) has inducible defenses that involve large changes in gene expression and metabolism. Piercing/sucking insects such as corn leaf aphid (Rhopalosiphum maidis) cause direct damage by acquiring phloem nutrients as well as indirect damage through the transmission of plant viruses. To elucidate the metabolic processes and gene expression changes involved in maize responses to aphid attack, leaves of inbred line B73 were infested with corn leaf aphids for 2 to 96 h. Analysis of infested maize leaves showed two distinct response phases, with the most significant transcriptional and metabolic changes occurring in the first few hours after the initiation of aphid feeding. After 4 d, both gene expression and metabolite profiles of aphid-infested maize reverted to being more similar to those of control plants. Although there was a predominant effect of salicylic acid regulation, gene expression changes also indicated prolonged induction of oxylipins, although not necessarily jasmonic acid, in aphid-infested maize. The role of specific metabolic pathways was confirmed using Dissociator transposon insertions in maize inbred line W22. Mutations in three benzoxazinoid biosynthesis genes, Bx1, Bx2, and Bx6, increased aphid reproduction. In contrast, progeny production was greatly decreased by a transposon insertion in the single W22 homolog of the previously uncharacterized B73 terpene synthases TPS2 and TPS3. Together, these results show that maize leaves shift to implementation of physical and chemical defenses within hours after the initiation of aphid feeding and that the production of specific metabolites can have major effects in maize-aphid interactions.
Collapse
Affiliation(s)
- Vered Tzin
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Noe Fernandez-Pozo
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Annett Richter
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Eric A Schmelz
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Matthias Schoettner
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Martin Schäfer
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Kevin R Ahern
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Lisa N Meihls
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Harleen Kaur
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Alisa Huffaker
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Naoki Mori
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Joerg Degenhardt
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Lukas A Mueller
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| | - Georg Jander
- Boyce Thompson Institute for Plant Research, Ithaca, New York 14853 (V.T., N.F.-P., K.R.A., L.N.M., H.K., L.A.M., G.J.);Martin Luther University Halle, Wittenberg Institute for Pharmacy, D-06108 Halle, Germany (A.R., J.D.);Division of Biological Sciences, University of California, La Jolla, California 92093 (E.A.S., A.H.);Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, D-07745 Jena, Germany (M.Scho., M.Schä.); andGraduate School of Agriculture, Kyoto University, Kyoto 808-8502, Japan (N.M.)
| |
Collapse
|
49
|
Ding X, Yang M, Huang H, Chuan Y, He X, Li C, Zhu Y, Zhu S. Priming maize resistance by its neighbors: activating 1,4-benzoxazine-3-ones synthesis and defense gene expression to alleviate leaf disease. FRONTIERS IN PLANT SCIENCE 2015; 6:830. [PMID: 26528303 PMCID: PMC4600908 DOI: 10.3389/fpls.2015.00830] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 09/22/2015] [Indexed: 05/23/2023]
Abstract
Plant disease can be effectively suppressed in intercropping systems. Our previous study demonstrated that neighboring maize plants can restrict the spread of soil-borne pathogens of pepper plants by secreting defense compounds into the soil. However, whether maize plant can receive benefits from its neighboring pepper plants in an intercropping system is little attention. We examined the effects of maize roots treated with elicitors from the pepper pathogen Phytophthora capsici and pepper root exudates on the synthesis of 1,4-benzoxazine-3-ones (BXs), the expression of defense-related genes in maize, and their ability to alleviate the severity of southern corn leaf blight (SCLB) caused by Bipolaris maydis. We found that SCLB was significantly reduced after the above treatments. The contents of 1,4-benzoxazine-3-ones (BXs: DIBOA, DIMBOA, and MBOA) and the expression levels of BX synthesis and defense genes in maize roots and shoots were up-regulated. DIMBOA and MBOA effectively inhibited the mycelium growth of Bipolaris maydis at physiological concentrations in maize shoots. Further studies suggested that the defense related pathways or genes in maize roots and shoots were activated by elicitors from the P. capsici or pepper root exudates. In conclusion, maize increased the levels of BXs and defense gene expression both in roots and shoots after being triggered by root exudates and pathogen from neighboring pepper plants, eventually enhancing its resistance.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shusheng Zhu
- Key Laboratory of Agro-Biodiversity and Pest Management of Education Ministry of China, Yunnan Agricultural UniversityKunming, China
| |
Collapse
|
50
|
Louis J, Basu S, Varsani S, Castano-Duque L, Jiang V, Williams WP, Felton GW, Luthe DS. Ethylene Contributes to maize insect resistance1-Mediated Maize Defense against the Phloem Sap-Sucking Corn Leaf Aphid. PLANT PHYSIOLOGY 2015; 169:313-24. [PMID: 26253737 PMCID: PMC4577432 DOI: 10.1104/pp.15.00958] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Accepted: 08/06/2015] [Indexed: 05/04/2023]
Abstract
Signaling networks among multiple phytohormones fine-tune plant defense responses to insect herbivore attack. Previously, it was reported that the synergistic combination of ethylene (ET) and jasmonic acid (JA) was required for accumulation of the maize insect resistance1 (mir1) gene product, a cysteine (Cys) proteinase that is a key defensive protein against chewing insect pests in maize (Zea mays). However, this study suggests that mir1-mediated resistance to corn leaf aphid (CLA; Rhopalosiphum maidis), a phloem sap-sucking insect pest, is independent of JA but regulated by the ET-signaling pathway. Feeding by CLA triggers the rapid accumulation of mir1 transcripts in the resistant maize genotype, Mp708. Furthermore, Mp708 provided elevated levels of antibiosis (limits aphid population)- and antixenosis (deters aphid settling)-mediated resistance to CLA compared with B73 and Tx601 maize susceptible inbred lines. Synthetic diet aphid feeding trial bioassays with recombinant Mir1-Cys Protease demonstrates that Mir1-Cys Protease provides direct toxicity to CLA. Furthermore, foliar feeding by CLA rapidly sends defensive signal(s) to the roots that trigger belowground accumulation of the mir1, signifying a potential role of long-distance signaling in maize defense against the phloem-feeding insects. Collectively, our data indicate that ET-regulated mir1 transcript accumulation, uncoupled from JA, contributed to heightened resistance to CLA in maize. In addition, our results underscore the significance of ET acting as a central node in regulating mir1 expression to different feeding guilds of insect herbivores.
Collapse
Affiliation(s)
- Joe Louis
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - Saumik Basu
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - Suresh Varsani
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - Lina Castano-Duque
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - Victoria Jiang
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - W Paul Williams
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - Gary W Felton
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| | - Dawn S Luthe
- Department of Entomology (J.L., S.B., S.V.) and Department of Biochemistry (J.L.), University of Nebraska, Lincoln, Nebraska 68583; Department of Plant Science (L.C.-D., V.J., D.S.L.) and Department of Entomology (G.W.F.), Pennsylvania State University, University Park, Pennsylvania 16802; and United States Department of Agriculture-Agricultural Research Service, Corn Host Plant Resistance Research Unit (W.P.W.), Mississippi State, Mississippi 39762
| |
Collapse
|