1
|
Kleuter M, Yu Y, Pancaldi F, van der Goot AJ, Trindade LM. Prone to loss: Senescence-regulated protein degradation leads to lower protein extractability in aging tomato leaves. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112284. [PMID: 39414151 DOI: 10.1016/j.plantsci.2024.112284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/03/2024] [Accepted: 10/09/2024] [Indexed: 10/18/2024]
Abstract
The utilization of proteins extracted from tomato (Solanum lycopersicum) leaves as cost-effective resources for human consumption or animal feed has gained interest. Thus, increasing protein extractability from tomato leaves became a new breeding target. However, the genetic factors influencing this trait remains poorly understood. In this study, we analyzed changes in leaf protein content, protein composition, and extraction yield across developmental stages, which are vegetative growth, flowering, fruit-forming, and mature fruit. Moreover, tomato gene expression across developmental stages was also studied, to identify genes underlying variability in leaf protein extraction. Protein extraction yield decreased from 0.51 g/g to 0.01 g/g leaf protein from the vegetative to mature stage. However, total protein content inferred with Dumas combustion analysis did not change over the developmental stages tested, while the protein-to-peptide ratio decreased significantly. To further analyze potential causes underlying the decline of protein-to-peptide ratio, the enzymatic activity of proteases - i.e. the enzymes responsible for protein degradation - and the expression of genes encoding these enzymes was studied along plant development. The overall specific activity of proteases did not change significantly throughout plant development. On the contrary, the gene expression of distinct members of the aspartic, cysteine, and subtilase protease families increased. Overall, our findings suggest that extraplastidic protein degradation likely underlies the protein degradation observed during senescence. In the future, the reduction of the activity of extraplastidic proteases through biotechnology could represent an effective strategy to develop tomato varieties with improved protein extraction yields.
Collapse
Affiliation(s)
- Marietheres Kleuter
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands.
| | - Yafei Yu
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - Francesco Pancaldi
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands.
| | - Atze Jan van der Goot
- Laboratory of Food Process Engineering, Wageningen University, PO Box 17, Wageningen 6700 AA, the Netherlands.
| | - Luisa M Trindade
- Plant Breeding, Wageningen University, Droevendaalsesteeg 1, Wageningen 6708 PB, the Netherlands.
| |
Collapse
|
2
|
Salami M, Heidari B, Alizadeh B, Batley J, Wang J, Tan XL, Dadkhodaie A, Richards C. Dissection of quantitative trait nucleotides and candidate genes associated with agronomic and yield-related traits under drought stress in rapeseed varieties: integration of genome-wide association study and transcriptomic analysis. FRONTIERS IN PLANT SCIENCE 2024; 15:1342359. [PMID: 38567131 PMCID: PMC10985355 DOI: 10.3389/fpls.2024.1342359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Introduction An important strategy to combat yield loss challenge is the development of varieties with increased tolerance to drought to maintain production. Improvement of crop yield under drought stress is critical to global food security. Methods In this study, we performed multiomics analysis in a collection of 119 diverse rapeseed (Brassica napus L.) varieties to dissect the genetic control of agronomic traits in two watering regimes [well-watered (WW) and drought stress (DS)] for 3 years. In the DS treatment, irrigation continued till the 50% pod development stage, whereas in the WW condition, it was performed throughout the whole growing season. Results The results of the genome-wide association study (GWAS) using 52,157 single-nucleotide polymorphisms (SNPs) revealed 1,281 SNPs associated with traits. Six stable SNPs showed sequence variation for flowering time between the two irrigation conditions across years. Three novel SNPs on chromosome C04 for plant weight were located within drought tolerance-related gene ABCG16, and their pleiotropically effects on seed weight per plant and seed yield were characterized. We identified the C02 peak as a novel signal for flowering time, harboring 52.77% of the associated SNPs. The 288-kbps LD decay distance analysis revealed 2,232 candidate genes (CGs) associated with traits. The CGs BIG1-D, CAND1, DRG3, PUP10, and PUP21 were involved in phytohormone signaling and pollen development with significant effects on seed number, seed weight, and grain yield in drought conditions. By integrating GWAS and RNA-seq, 215 promising CGs were associated with developmental process, reproductive processes, cell wall organization, and response to stress. GWAS and differentially expressed genes (DEGs) of leaf and seed in the yield contrasting accessions identified BIG1-D, CAND1, and DRG3 genes for yield variation. Discussion The results of our study provide insights into the genetic control of drought tolerance and the improvement of marker-assisted selection (MAS) for breeding high-yield and drought-tolerant varieties.
Collapse
Affiliation(s)
- Maryam Salami
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Heidari
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Bahram Alizadeh
- Oil Crops Research Department, Seed and Plant Improvement Institute, Agricultural Research Education and Extension, Organization, (AREEO), Karaj, Iran
| | - Jacqueline Batley
- School of Biological Sciences, University of Western Australia, Perth, WA, Australia
| | - Jin Wang
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Xiao-Li Tan
- School of Life Sciences, Jiangsu University, Zhenjiang, China
| | - Ali Dadkhodaie
- Department of Plant Production and Genetics, School of Agriculture, Shiraz University, Shiraz, Iran
| | - Christopher Richards
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), National Laboratory for Genetic Resources Preservation, Fort Collins, CO, United States
| |
Collapse
|
3
|
Kapoor B, Jenkins J, Schmutz J, Zhebentyayeva T, Kuelheim C, Coggeshall M, Heim C, Lasky JR, Leites L, Islam-Faridi N, Romero-Severson J, DeLeo VL, Lucas SM, Lazic D, Gailing O, Carlson J, Staton M. A haplotype-resolved chromosome-scale genome for Quercus rubra L. provides insights into the genetics of adaptive traits for red oak species. G3 (BETHESDA, MD.) 2023; 13:jkad209. [PMID: 37708394 PMCID: PMC10627279 DOI: 10.1093/g3journal/jkad209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 09/16/2023]
Abstract
Northern red oak (Quercus rubra L.) is an ecologically and economically important forest tree native to North America. We present a chromosome-scale genome of Q. rubra generated by the combination of PacBio sequences and chromatin conformation capture (Hi-C) scaffolding. This is the first reference genome from the red oak clade (section Lobatae). The Q. rubra assembly spans 739 Mb with 95.27% of the genome in 12 chromosomes and 33,333 protein-coding genes. Comparisons to the genomes of Quercus lobata and Quercus mongolica revealed high collinearity, with intrachromosomal structural variants present. Orthologous gene family analysis with other tree species revealed that gene families associated with defense response were expanding and contracting simultaneously across the Q. rubra genome. Quercus rubra had the most CC-NBS-LRR and TIR-NBS-LRR resistance genes out of the 9 species analyzed. Terpene synthase gene family comparisons further reveal tandem gene duplications in TPS-b subfamily, similar to Quercus robur. Phylogenetic analysis also identified 4 subfamilies of the IGT/LAZY gene family in Q. rubra important for plant structure. Single major QTL regions were identified for vegetative bud break and marcescence, which contain candidate genes for further research, including a putative ortholog of the circadian clock constituent cryptochrome (CRY2) and 8 tandemly duplicated genes for serine protease inhibitors, respectively. Genome-environment associations across natural populations identified candidate abiotic stress tolerance genes and predicted performance in a common garden. This high-quality red oak genome represents an essential resource to the oak genomic community, which will expedite comparative genomics and biological studies in Quercus species.
Collapse
Affiliation(s)
- Beant Kapoor
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| | - Jerry Jenkins
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Jeremy Schmutz
- Genome Sequencing Center, HudsonAlpha Institute for Biotechnology, Huntsville, AL 35806, USA
| | - Tatyana Zhebentyayeva
- Department of Forestry and Natural Resources, University of Kentucky, Lexington, KY 40506, USA
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Carsten Kuelheim
- College of Forest Resources and Environmental Science, Michigan Tech University, Houghton, MI 49931, USA
| | - Mark Coggeshall
- College of Agriculture, Food and Natural Resources, University of Missouri, Columbia, MO 65211, USA
| | - Chris Heim
- Horticultural Science, North Carolina State University, Raleigh, NC 27695, USA
| | - Jesse R Lasky
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Laura Leites
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Nurul Islam-Faridi
- Forest Tree Molecular Cytogenetics Laboratory, USDA-FS, SRS-4160, Department of Ecology & Conservation Biology, Texas A&M University, College Station, TX 77843, USA
| | | | - Victoria L DeLeo
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Sarah M Lucas
- Department of Biology, Pennsylvania State University, University Park, PA 16802, USA
| | - Desanka Lazic
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Lower Saxony 37077, Germany
| | - Oliver Gailing
- Department of Forest Genetics and Forest Tree Breeding, University of Göttingen, Göttingen, Lower Saxony 37077, Germany
| | - John Carlson
- Department of Ecosystem Science and Management, Pennsylvania State University, University Park, PA 16802, USA
| | - Margaret Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN 37996, USA
| |
Collapse
|
4
|
Hou Q, Wang L, Qi Y, Yan T, Zhang F, Zhao W, Wan X. A systematic analysis of the subtilase gene family and expression and subcellular localization investigation of anther-specific members in maize. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108041. [PMID: 37722281 DOI: 10.1016/j.plaphy.2023.108041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/20/2023] [Accepted: 09/13/2023] [Indexed: 09/20/2023]
Abstract
Subtilases (SBTs), also known as Subtilisin-like serine proteases, are extracellular alkaline protease proteins. SBTs function in all stages of plant growth, development and stress responses. Maize (Zea mays L.) is a crop widely used worldwide as food, feed, and industrial materials. However, information about the members and their functions of the SBT proteins in maize is lacking. In this study, we identified 58 ZmSBT genes from the maize genome and conducted a comprehensive investigation of ZmSBTs by phylogenetic, gene duplication event, gene structure, and protein conserved motif analyses. The ZmSBT proteins were phylogenetically classified into seven groups, and collinearity analysis indicated that many ZmSBTs originate from tandem or segmental duplications. Structural and homolog protein comparison revealed ZmSBTs have conserved protein structures with reported subtilase proteins, suggesting the conserved functions. Further analysis showed that ZmSBTs are expressed in different tissues, and many are responses to specific abiotic stress. Analysis of the anther-specific ZmSBT genes showed their expression peaked at different developmental stages of maize anthers. Subcellular localization analysis of selected maize ZmSBTs showed they are located in different cellular compartments. The information provided in this study is valuable for further functional study of ZmSBTs.
Collapse
Affiliation(s)
- Quancan Hou
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi lnternational lnstitute of Agricultural Biosciences, Beijing, 100192, China
| | - Linlin Wang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuchen Qi
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Tingwei Yan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Fan Zhang
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wei Zhao
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiangyuan Wan
- Research Institute of Biology and Agriculture, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Engineering Laboratory of Main Crop Bio-Tech Breeding, Zhongzhi lnternational lnstitute of Agricultural Biosciences, Beijing, 100192, China.
| |
Collapse
|
5
|
Pan JX, Lee D, Sun D, Zhao K, Xiong L, Guo HH, Ren X, Chen P, Lopez de Boer R, Lu Y, Lin H, Mei L, Xiong WC. Muscular Swedish mutant APP-to-Brain axis in the development of Alzheimer's disease. Cell Death Dis 2022; 13:952. [PMID: 36357367 PMCID: PMC9649614 DOI: 10.1038/s41419-022-05378-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/12/2022]
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Notably, patients with AD often suffer from severe sarcopenia. However, their direct link and relationship remain poorly understood. Here, we generated a mouse line, TgAPPsweHSA, by crossing LSL (LoxP-STOP-LoxP)-APPswe with HSA-Cre mice, which express APPswe (Swedish mutant APP) selectively in skeletal muscles. Examining phenotypes in TgAPPsweHSA mice showed not only sarcopenia-like deficit, but also AD-relevant hippocampal inflammation, impairments in adult hippocampal neurogenesis and blood brain barrier (BBB), and depression-like behaviors. Further studies suggest that APPswe expression in skeletal muscles induces senescence and expressions of senescence-associated secretory phenotypes (SASPs), which include inflammatory cytokines and chemokines; but decreases growth factors, such as PDGF-BB and BDNF. These changes likely contribute to the systemic and hippocampal inflammation, deficits in neurogenesis and BBB, and depression-like behaviors, revealing a link of sarcopenia with AD, and uncovering an axis of muscular APPswe to brain in AD development.
Collapse
Affiliation(s)
- Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Kai Zhao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Peng Chen
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Raquel Lopez de Boer
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yuyi Lu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Helena Lin
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Lin Mei
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.
- Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
6
|
A putative SUBTILISIN-LIKE SERINE PROTEASE 1 (SUBSrP1) regulates anther cuticle biosynthesis and panicle development in rice. J Adv Res 2022; 42:273-287. [PMID: 36513418 PMCID: PMC9788943 DOI: 10.1016/j.jare.2022.01.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/24/2021] [Accepted: 01/04/2022] [Indexed: 02/06/2023] Open
Abstract
INTRODUCTION Panicle abortion is a severe physiological defect and causes a reduction in grain yield. OBJECTIVES In this study, we aim to provide the characterization and functional analysis of a mutant apa1331 (apical panicle abortion1331). METHODS The isolated mutant from an EMS-mutagenized population was subjected to SSR analysis and Mutmap assay for candidate gene mapping. We performed phenotypic analysis, anthers cross-sections morphology, wax and cutin profiling, biochemical assays and phylogenetic analysis for characterization and evaluation of apa1331. We used CRISPR/Cas9 disruption for functional validation of its candidate gene. Furthermore, comparative RNA-seq and relative expression analysis were performed to get further insights into mechanistic role of the candidate gene. RESULTS The anthers from the apical spikelets of apa1331 were degenerated, pollen-less and showed defects in cuticle formation. Transverse sections of apa1331 anthers showed defects in post-meiotic microspore development at stage 8-9. Gas Chromatography showed a significant reduction of wax and cutin in anthers of apa1331 compared to Wildtype (WT). Quantification of H2O2 and MDA has indicated the excessive ROS (reactive oxygen species) in apa1331. Trypan blue staining and TUNEL assay revealed cell death and excessive DNA fragmentation in apa1331. Map-based cloning and Mutmap analysis revealed that LOC_Os04g40720, encoding a putative SUBTILISIN-LIKE SERINE PROTEASE (OsSUBSrP1), harbored an SNP (A > G) in apa1331. Phenotypic defects were only seen in apical spikelets due to highest expression of OsSUBSrP1 in upper panicle portion. CRISPR-mediated knock-out lines of OsSUBSrP1 displayed spikelet abortion comparable to apa1331. Global gene expression analysis revealed a significant downregulation of wax and cutin biosynthesis genes. CONCLUSIONS Our study reports the novel role of SUBSrP1 in anther cuticle biosynthesis by ROS-mediated programmed cell death in rice.
Collapse
|
7
|
Teplova AD, Serebryakova MV, Galiullina RA, Chichkova NV, Vartapetian AB. Identification of Phytaspase Interactors via the Proximity-Dependent Biotin-Based Identification Approach. Int J Mol Sci 2021; 22:13123. [PMID: 34884925 PMCID: PMC8658550 DOI: 10.3390/ijms222313123] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 11/29/2021] [Accepted: 12/02/2021] [Indexed: 01/22/2023] Open
Abstract
Proteolytic enzymes are instrumental in various aspects of plant development, including senescence. This may be due not only to their digestive activity, which enables protein utilization, but also to fulfilling regulatory functions. Indeed, for the largest family of plant serine proteases, subtilisin-like proteases (subtilases), several members of which have been implicated in leaf and plant senescence, both non-specific proteolysis and regulatory protein processing have been documented. Here, we strived to identify the protein partners of phytaspase, a plant subtilase involved in stress-induced programmed cell death that possesses a characteristic aspartate-specific hydrolytic activity and unusual localization dynamics. A proximity-dependent biotin identification approach in Nicotiana benthamiana leaves producing phytaspase fused to a non-specific biotin ligase TurboID was employed. Although the TurboID moiety appeared to be unstable in the apoplast environment, several intracellular candidate protein interactors of phytaspase were identified. These were mainly, though not exclusively, represented by soluble residents of the endoplasmic reticulum, namely endoplasmin, BiP, and calreticulin-3. For calreticultin-3, whose gene is characterized by an enhanced expression in senescing leaves, direct interaction with phytaspase was confirmed in an in vitro binding assay using purified proteins. In addition, an apparent alteration of post-translational modification of calreticultin-3 in phytaspase-overproducing plant cells was observed.
Collapse
Affiliation(s)
- Anastasia D. Teplova
- Faculty of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow 119991, Russia;
| | - Marina V. Serebryakova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (R.A.G.); (N.V.C.)
| | - Raisa A. Galiullina
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (R.A.G.); (N.V.C.)
| | - Nina V. Chichkova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (R.A.G.); (N.V.C.)
| | - Andrey B. Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119991, Russia; (M.V.S.); (R.A.G.); (N.V.C.)
| |
Collapse
|
8
|
Pan JX, Sun D, Lee D, Xiong L, Ren X, Guo HH, Yao LL, Lu Y, Jung C, Xiong WC. Osteoblastic Swedish mutant APP expedites brain deficits by inducing endoplasmic reticulum stress-driven senescence. Commun Biol 2021; 4:1326. [PMID: 34824365 PMCID: PMC8617160 DOI: 10.1038/s42003-021-02843-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
Patients with Alzheimer’s disease (AD) often have osteoporosis or osteopenia. However, their direct link and relationship remain largely unclear. Previous studies have detected osteoporotic deficits in young adult Tg2576 and TgAPPsweOCN mice, which express APPswe (Swedish mutant) ubiquitously and selectively in osteoblast (OB)-lineage cells. This raises the question, whether osteoblastic APPswe contributes to AD development. Here, we provide evidence that TgAPPsweOCN mice also exhibit AD-relevant brain pathologies and behavior phenotypes. Some brain pathologies include age-dependent and regional-selective increases in glial activation and pro-inflammatory cytokines, which are accompanied by behavioral phenotypes such as anxiety, depression, and altered learning and memory. Further cellular studies suggest that APPswe, but not APPwt or APPlon (London mutant), in OB-lineage cells induces endoplasmic reticulum-stress driven senescence, driving systemic and cortex inflammation as well as behavioral changes in 6-month-old TgAPPsweOCN mice. These results therefore reveal an unrecognized function of osteoblastic APPswe to brain axis in AD development. Jin-Xiu Pan et al. report that an osteoblast-specific expression of Swedish mutant amyloid precursor protein (APPswe) induces ER stress-driven senescence, leading to systemic inflammation and inflammation in the cortex that drives behavioral changes. The results demonstrate a previously unrecognized function of osteoblastic APPswe to brain axis in AD development.
Collapse
Affiliation(s)
- Jin-Xiu Pan
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Dong Sun
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Daehoon Lee
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Lei Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA.,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA
| | - Xiao Ren
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Hao-Han Guo
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ling-Ling Yao
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Yuyi Lu
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Caroline Jung
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Wen-Cheng Xiong
- Department of Neurosciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA. .,Louis Stokes Cleveland Veterans Affairs Medical Center, Cleveland, OH, USA.
| |
Collapse
|
9
|
D'Ippólito S, Rey-Burusco MF, Feingold SE, Guevara MG. Role of proteases in the response of plants to drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 168:1-9. [PMID: 34607206 DOI: 10.1016/j.plaphy.2021.09.038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Revised: 08/02/2021] [Accepted: 09/28/2021] [Indexed: 05/25/2023]
Abstract
Plants are sessile organisms that, to survive they develop response mechanisms under water deficit conditions. Plant proteases play an essential role in a diversity of biological processes, among them tolerance to drought stress. Proteolysis is a critical regulator of stomatal development. Plant proteases are involved in the crosstalk among phytohormones and adjustment of stomatal aperture. Plant proteases are also related to the increment in reactive oxygen species (ROS) production detected in the plant biochemical response to drought. Plant proteases mitigate this process by degrading damaged, denatured, and aggregated proteins, remobilizing amino acids, and generating molecules involved in signal transductions. Although many roles for proteases have been proposed, molecular bases that regulate these mechanisms remain unknown. In this review, we summarize the current knowledge on the participation of proteases in the signaling pathways of plants in response to water deficit and their relationship with plant stress tolerance.
Collapse
Affiliation(s)
- Sebastián D'Ippólito
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina
| | - María Florencia Rey-Burusco
- Agrobiotechnology Laboratory, National Institute of Agrotechnology (INTA) EEA - Balcarce, Route 226, Km 73.5. DC 276, (7620), Balcarce, Argentina
| | - Sergio Enrique Feingold
- Agrobiotechnology Laboratory, National Institute of Agrotechnology (INTA) EEA - Balcarce, Route 226, Km 73.5. DC 276, (7620), Balcarce, Argentina
| | - María Gabriela Guevara
- Biological Research Institute, National Council of Scientific and Technique Research (CONICET), University of Mar del Plata, Mar del Plata (UNMDP), Argentina.
| |
Collapse
|
10
|
Zhang S, Wu P, Liu J, Du Y, Yang Z. Roflumilast Attenuates Doxorubicin-Induced Cardiotoxicity by Targeting Inflammation and Cellular Senescence in Cardiomyocytes Mediated by SIRT1. DRUG DESIGN DEVELOPMENT AND THERAPY 2021; 15:87-97. [PMID: 33469262 PMCID: PMC7810683 DOI: 10.2147/dddt.s269029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/19/2020] [Indexed: 12/22/2022]
Abstract
Background and Purpose Cardiotoxicity is an important side effect of the treatment of a malignant tumor with Doxorubicin. Currently, decreasing the dosage of Doxorubicin to alleviate the side effects on cardiac function is the common method to deal with the cardiotoxicity induced by Doxorubicin. The present study aims to investigate the therapeutic effects of Roflumilast on Doxorubicin-induced inflammation and cellular senescence, as well as the potential mechanism in H9c2 myocardial cells. Methods The injured cardiac cell model was established by incubation with 5 μmol/L Doxorubicin. MTT was used to evaluate the cell viability of treated H9c2 cardiac cells. The expression of 4-HNE was determined using an immunofluorescence assay. The gene expression levels of IL-17, IL-6, TNF-α, IL-4, PAI-1, p21, and SIRT1 were evaluated using qRT-PCR and the protein levels of Gpx4, PAI-1, p21, and SIRT1 were determined using Western blot analysis. Secretions of IL-17, IL-6, TNF-α, IL-4, CK-MB, and cTnI were measured using ELISA. Cellular senescence was assessed using SA-β-Gal staining. Si-RNA technology was used to knockdown the expression of SIRT1 in H9c2 cardiac cells. Results Cell viability of H9c2 cardiac cells was significantly inhibited by Doxorubicin but rescued by Roflumilast. The upregulated 4-HNE and downregulated Gpx4 were reversed by Roflumilast. The secretions of IL-6 and IL-17 were promoted by Doxorubicin and suppressed by Roflumilast. The increased SA-β-Gal staining induced by Doxorubicin was inhibited by Roflumilast. P21 and PAI-1 were significantly upregulated and SIRT1 was greatly downregulated by Doxorubicin, all of which were reversed by Roflumilast. The anti-senescent effect of Roflumilast was abolished by knocking down SIRT1. Conclusion Roflumilast might attenuate Doxorubicin-induced inflammation and cellular senescence in cardiomyocytes by upregulating SIRT1.
Collapse
Affiliation(s)
- Sheng Zhang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China.,Department of Cardiology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213004, People's Republic of China
| | - Peng Wu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Jiabao Liu
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Yingqiang Du
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| | - Zhijian Yang
- Department of Cardiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, People's Republic of China
| |
Collapse
|
11
|
Borniego ML, Molina MC, Guiamét JJ, Martinez DE. Physiological and Proteomic Changes in the Apoplast Accompany Leaf Senescence in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2020; 10:1635. [PMID: 31969890 PMCID: PMC6960232 DOI: 10.3389/fpls.2019.01635] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 11/20/2019] [Indexed: 05/14/2023]
Abstract
The apoplast, i.e. the cellular compartment external to the plasma membrane, undergoes important changes during senescence. Apoplastic fluid volume increases quite significantly in senescing leaves, thereby diluting its contents. Its pH elevates by about 0.8 units, similar to the apoplast alkalization in response to abiotic stresses. The levels of 159 proteins decrease, whereas 24 proteins increase in relative abundance in the apoplast of senescing leaves. Around half of the apoplastic proteins of non-senescent leaves contain a N-terminal signal peptide for secretion, while all the identified senescence-associated apoplastic proteins contain the signal peptide. Several of the apoplastic proteins that accumulate during senescence also accumulate in stress responses, suggesting that the apoplast may constitute a compartment where developmental and stress-related programs overlap. Other senescence-related apoplastic proteins are involved in cell wall modifications, proteolysis, carbohydrate, ROS and amino acid metabolism, signaling, lipid transport, etc. The most abundant senescence-associated apoplastic proteins, PR2 and PR5 (e.g. pathogenesis related proteins PR2 and PR5) are related to leaf aging rather than to the chloroplast degradation program, as their levels increase only in leaves undergoing developmental senescence, but not in dark-induced senescent leaves. Changes in the apoplastic space may be relevant for signaling and molecular trafficking underlying senescence.
Collapse
Affiliation(s)
| | | | | | - Dana E. Martinez
- Instituto de Fisiología Vegetal (INFIVE), CONICET-Universidad Nacional de La Plata, La Plata, Argentina
| |
Collapse
|
12
|
Prakash S, Deswal R. Analysis of temporally evolved nanoparticle-protein corona highlighted the potential ability of gold nanoparticles to stably interact with proteins and influence the major biochemical pathways in Brassica juncea. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 146:143-156. [PMID: 31751914 DOI: 10.1016/j.plaphy.2019.10.036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 10/07/2019] [Accepted: 10/25/2019] [Indexed: 05/25/2023]
Abstract
Nanoparticles (NPs) are known to adsorb proteins from their surroundings, forming NP-protein corona, which determines their fate, distribution, and effects, yet no information of protein corona (PC) has been gathered in the plants so far. Here we report, the analysis of temporally evolved (2 h-36 h) AuNP-protein coronas formed with Brassica juncea leaf crude protein & nuclear-enriched fraction. Protein coronas were characterized by the techniques including SDS PAGE (Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis), spectrophotometry, dynamic light scattering, zeta potential measurements, and Nano LC-MS/MS. Data analysis revealed the formation of two regimes (Regime I from 2 to 8 h & regime II from 16 to 36 h). Interestingly, coated AuNPs had approx. 30% higher zeta potential than pristine AuNPs after 36 h of interactions. The increase in hydrodynamic radii and adsorbed protein concentrations were consistent with the evolution of zeta potential, indicating the probable role of proteins in providing the better stability of AuNPs. MS analysis identified 97 proteins from regime I (soft corona) and 181 proteins from regime II (hard corona) of crude PC. On the other hand, 282 and 308 proteins were identified from nuclear soft and hard corona respectively, indicating better affinity of nuclear proteins. Besides, the high-affinity proteins (fold change ≥5) were found to be rich in lysine residues showing their involvement in promoting the adsorption. Notably, 27% of regime II corona proteins of the crude protein fraction were from energy-yielding pathways highlighting the potential ability AuNPs to influence the yield in Brassica juncea.
Collapse
Affiliation(s)
- Satya Prakash
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India
| | - Renu Deswal
- Molecular Physiology and Proteomics Laboratory, Department of Botany, University of Delhi, Delhi, 110007, India.
| |
Collapse
|
13
|
Buet A, Costa ML, Martínez DE, Guiamet JJ. Chloroplast Protein Degradation in Senescing Leaves: Proteases and Lytic Compartments. FRONTIERS IN PLANT SCIENCE 2019; 10:747. [PMID: 31275332 PMCID: PMC6593067 DOI: 10.3389/fpls.2019.00747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 05/21/2019] [Indexed: 05/20/2023]
Abstract
Leaf senescence is characterized by massive degradation of chloroplast proteins, yet the protease(s) involved is(are) not completely known. Increased expression and/or activities of serine, cysteine, aspartic, and metalloproteases were detected in senescing leaves, but these studies have not provided information on the identities of the proteases responsible for chloroplast protein breakdown. Silencing some senescence-associated proteases has delayed progression of senescence symptoms, yet it is still unclear if these proteases are directly involved in chloroplast protein breakdown. At least four cellular pathways involved in the traffic of chloroplast proteins for degradation outside the chloroplast have been described (i.e., "Rubisco-containing bodies," "senescence-associated vacuoles," "ATI1-plastid associated bodies," and "CV-containing vesicles"), which differ in their dependence on the autophagic machinery, and the identity of the proteins transported and/or degraded. Finding out the proteases involved in, for example, the degradation of Rubisco, may require piling up mutations in several senescence-associated proteases. Alternatively, targeting a proteinaceous protein inhibitor to chloroplasts may allow the inhibitor to reach "Rubisco-containing bodies," "senescence-associated vacuoles," "ATI1-plastid associated bodies," and "CV-containing vesicles" in essentially the way as chloroplast-targeted fluorescent proteins re-localize to these vesicular structures. This might help to reduce proteolytic activity, thereby reducing or slowing down plastid protein degradation during senescence.
Collapse
Affiliation(s)
- Agustina Buet
- Instituto de Fisiología Vegetal (INFIVE, CONICET-UNLP), La Plata, Argentina
| | - M Lorenza Costa
- Instituto de Fisiología Vegetal (INFIVE, CONICET-UNLP), La Plata, Argentina
| | - Dana E Martínez
- Instituto de Fisiología Vegetal (INFIVE, CONICET-UNLP), La Plata, Argentina
| | - Juan J Guiamet
- Instituto de Fisiología Vegetal (INFIVE, CONICET-UNLP), La Plata, Argentina
| |
Collapse
|
14
|
Calderan-Rodrigues MJ, Guimarães Fonseca J, de Moraes FE, Vaz Setem L, Carmanhanis Begossi A, Labate CA. Plant Cell Wall Proteomics: A Focus on Monocot Species, Brachypodium distachyon, Saccharum spp. and Oryza sativa. Int J Mol Sci 2019; 20:E1975. [PMID: 31018495 PMCID: PMC6514655 DOI: 10.3390/ijms20081975] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 03/06/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022] Open
Abstract
Plant cell walls mostly comprise polysaccharides and proteins. The composition of monocots' primary cell walls differs from that of dicots walls with respect to the type of hemicelluloses, the reduction of pectin abundance and the presence of aromatic molecules. Cell wall proteins (CWPs) differ among plant species, and their distribution within functional classes varies according to cell types, organs, developmental stages and/or environmental conditions. In this review, we go deeper into the findings of cell wall proteomics in monocot species and make a comparative analysis of the CWPs identified, considering their predicted functions, the organs analyzed, the plant developmental stage and their possible use as targets for biofuel production. Arabidopsis thaliana CWPs were considered as a reference to allow comparisons among different monocots, i.e., Brachypodium distachyon, Saccharum spp. and Oryza sativa. Altogether, 1159 CWPs have been acknowledged, and specificities and similarities are discussed. In particular, a search for A. thaliana homologs of CWPs identified so far in monocots allows the definition of monocot CWPs characteristics. Finally, the analysis of monocot CWPs appears to be a powerful tool for identifying candidate proteins of interest for tailoring cell walls to increase biomass yield of transformation for second-generation biofuels production.
Collapse
Affiliation(s)
- Maria Juliana Calderan-Rodrigues
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Juliana Guimarães Fonseca
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Fabrício Edgar de Moraes
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Laís Vaz Setem
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Amanda Carmanhanis Begossi
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| | - Carlos Alberto Labate
- Department of Genetics, Max Feffer Laboratory of Plant Genetics, "Luiz de Queiroz" College of Agriculture, University of São Paulo, CP 83, 13400-970 Piracicaba, SP, Brazil.
| |
Collapse
|
15
|
Asad MAU, Zakari SA, Zhao Q, Zhou L, Ye Y, Cheng F. Abiotic Stresses Intervene with ABA Signaling to Induce Destructive Metabolic Pathways Leading to Death: Premature Leaf Senescence in Plants. Int J Mol Sci 2019; 20:E256. [PMID: 30634648 PMCID: PMC6359161 DOI: 10.3390/ijms20020256] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 12/27/2018] [Accepted: 12/28/2018] [Indexed: 12/19/2022] Open
Abstract
Abiotic stresses trigger premature leaf senescence by affecting some endogenous factors, which is an important limitation for plant growth and grain yield. Among these endogenous factors that regulate leaf senescence, abscisic acid (ABA) works as a link between the oxidase damage of cellular structure and signal molecules responding to abiotic stress during leaf senescence. Considering the importance of ABA, we collect the latest findings related to ABA biosynthesis, ABA signaling, and its inhibitory effect on chloroplast structure destruction, chlorophyll (Chl) degradation, and photosynthesis reduction. Post-translational changes in leaf senescence end with the exhaustion of nutrients, yellowing of leaves, and death of senescent tissues. In this article, we review the literature on the ABA-inducing leaf senescence mechanism in rice and Arabidopsis starting from ABA synthesis, transport, signaling receptors, and catabolism. We also predict the future outcomes of investigations related to other plants. Before changes in translation occur, ABA signaling that mediates the expression of NYC, bZIP, and WRKY transcription factors (TFs) has been investigated to explain the inducing effect on senescence-associated genes. Various factors related to calcium signaling, reactive oxygen species (ROS) production, and protein degradation are elaborated, and research gaps and potential prospects are presented. Examples of gene mutation conferring the delay or induction of leaf senescence are also described, and they may be helpful in understanding the inhibitory effect of abiotic stresses and effective measures to tolerate, minimize, or resist their inducing effect on leaf senescence.
Collapse
Affiliation(s)
- Muhammad Asad Ullah Asad
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Shamsu Ado Zakari
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Qian Zhao
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Lujian Zhou
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Yu Ye
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
| | - Fangmin Cheng
- Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China.
- Jiangsu Collaborative Innovation Centre for Modern Crop Production, Nanjing 210000, China.
| |
Collapse
|
16
|
Zaman MSU, Malik AI, Erskine W, Kaur P. Changes in gene expression during germination reveal pea genotypes with either "quiescence" or "escape" mechanisms of waterlogging tolerance. PLANT, CELL & ENVIRONMENT 2019; 42:245-258. [PMID: 29761495 DOI: 10.1111/pce.13338] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 05/01/2018] [Accepted: 05/01/2018] [Indexed: 05/12/2023]
Abstract
Waterlogging causes germination failure in pea (Pisum sativum L.). Three genotypes (BARI Motorshuti-3, Natore local-2 [NL-2], and Kaspa) contrasting in ability to germinate in waterlogged soil were exposed to different durations of waterlogging. Whole genome RNAseq was employed to capture differentially expressing genes. The ability to germinate in waterlogged soil was associated with testa colour and testa membrane integrity as confirmed by electrical conductivity measurements. Genotypes Kaspa and NL-2 displayed different mechanisms of tolerance. In Kaspa, an energy conserving strategy was indicated by a strong upregulation of tyrosine protein kinsase and down regulation of linoleate 9S-lipoxygenase 5, a fat metabolism gene. In contrast, a faster energy utilization strategy was suggested in NL-2 by the marked upregulation of a subtilase family protein and peroxisomal adenine nucleotide carrier 2, a fat metabolizing gene. Waterlogging susceptibility in germinating seeds of genotype BARI Motorshuti-3 was linked to upregulation of a kunitz-type trypsin/protease inhibitor that blocks protein metabolism and may lead to excessive lipid metabolism and the membrane leakage associated with waterlogging damage. Pathway analyses based on gene ontologies showed seed storage protein metabolism as upregulated in tolerant genotypes and downregulated in the sensitive genotype. Understanding the tolerance mechanism provides a platform to breed for adaptation to waterlogging stress at germination in pea.
Collapse
Affiliation(s)
- Md Shahin Uz Zaman
- Centre for Plant Genetics and Breeding, UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Al Imran Malik
- Centre for Plant Genetics and Breeding, UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - William Erskine
- Centre for Plant Genetics and Breeding, UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, 6009, Australia
| | - Parwinder Kaur
- Centre for Plant Genetics and Breeding, UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Institute of Agriculture, The University of Western Australia, Crawley, Western Australia, 6009, Australia
- Telethon Kids Institute, Subiaco, Western Australia, 6008, Australia
| |
Collapse
|
17
|
Balakireva AV, Deviatkin AA, Zgoda VG, Kartashov MI, Zhemchuzhina NS, Dzhavakhiya VG, Golovin AV, Zamyatnin AA. Proteomics Analysis Reveals That Caspase-Like and Metacaspase-Like Activities Are Dispensable for Activation of Proteases Involved in Early Response to Biotic Stress in Triticum aestivum L. Int J Mol Sci 2018; 19:ijms19123991. [PMID: 30544979 PMCID: PMC6320887 DOI: 10.3390/ijms19123991] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/04/2018] [Accepted: 12/08/2018] [Indexed: 12/15/2022] Open
Abstract
Plants, including Triticum aestivum L., are constantly attacked by various pathogens which induce immune responses. Immune processes in plants are tightly regulated by proteases from different families within their degradome. In this study, a wheat degradome was characterized. Using profile hidden Markov model (HMMer) algorithm and Pfam database, comprehensive analysis of the T. aestivum genome revealed a large number of proteases (1544 in total) belonging to the five major protease families: serine, cysteine, threonine, aspartic, and metallo-proteases. Mass-spectrometry analysis revealed a 30% difference between degradomes of distinct wheat cultivars (Khakasskaya and Darya), and infection by biotrophic (Puccinia recondita Rob. ex Desm f. sp. tritici) or necrotrophic (Stagonospora nodorum) pathogens induced drastic changes in the presence of proteolytic enzymes. This study shows that an early immune response to biotic stress is associated with the same core of proteases from the C1, C48, C65, M24, M41, S10, S9, S8, and A1 families. Further liquid chromatography-mass spectrometry (LC-MS) analysis of the detected protease-derived peptides revealed that infection by both pathogens enhances overall proteolytic activity in wheat cells and leads to activation of proteolytic cascades. Moreover, sites of proteolysis were identified within the proteases, which probably represent targets of autocatalytic activation, or hydrolysis by another protease within the proteolytic cascades. Although predicted substrates of metacaspase-like and caspase-like proteases were similar in biotrophic and necrotrophic infections, proteolytic activation of proteases was not found to be associated with metacaspase-like and caspase-like activities. These findings indicate that the response of T. aestivum to biotic stress is regulated by unique mechanisms.
Collapse
Affiliation(s)
- Anastasia V Balakireva
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia.
| | - Andrei A Deviatkin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia.
| | - Victor G Zgoda
- Institute of Biomedical Chemistry, Pogodinskaya str., 10, bld. 8, Moscow 119121, Russia.
| | - Maxim I Kartashov
- All Russian Research Institute of Phytopathology, VNIIF, Bolshie Vyazemi, Odintsovsky distr., Moscow region 143050, Russia.
| | - Natalia S Zhemchuzhina
- All Russian Research Institute of Phytopathology, VNIIF, Bolshie Vyazemi, Odintsovsky distr., Moscow region 143050, Russia.
| | - Vitaly G Dzhavakhiya
- All Russian Research Institute of Phytopathology, VNIIF, Bolshie Vyazemi, Odintsovsky distr., Moscow region 143050, Russia.
| | - Andrey V Golovin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia.
- Faculty of Bioengineering and Bioinformatics, Moscow State University, Moscow 119992, Russia.
| | - Andrey A Zamyatnin
- Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Trubetskaya str., 8, bld. 2, Moscow 119991, Russia.
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119992, Russia.
| |
Collapse
|
18
|
Wang Q, Guo Q, Guo Y, Yang J, Wang M, Duan X, Niu J, Liu S, Zhang J, Lu Y, Hou Z, Miao W, Wang X, Kong W, Xu X, Wu Y, Rui Q, La H. Arabidopsis subtilase SASP is involved in the regulation of ABA signaling and drought tolerance by interacting with OPEN STOMATA 1. JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:4403-4417. [PMID: 29860476 DOI: 10.1093/jxb/ery205] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Arabidopsis Senescence-Associated Subtilisin Protease (SASP) has previously been reported to participate in leaf senescence and in the development of inflorescences and siliques. Here, we describe a new role of SASP in the regulation of abscisic acid (ABA) signaling. SASP encodes a subtilase and its expression was considerably induced by darkness, ABA, and ethylene treatments. sasp knockout mutants displayed obvious developmental phenotypes such as early flowering and smaller leaves. In particular, the sasp mutants exhibited enhanced ABA sensitivity during seed germination and seedling growth, heightened ABA-mediated leaf senescence, and increased production of reactive oxygen species (ROS). Importantly, the sasp mutants also showed remarkably increased tolerance to drought, with expression of six ABA signaling-related genes being either up- or down-regulated following ABA treatment. Interaction assays demonstrated that SASP physically interacts with OPEN STOMATA 1 (OST1) at the cell periphery. Co-expression of SASP and OST1 led to degradation of OST1, whereas this degradation was impaired in sasp-1 protoplasts. ROS attenuation assays demonstrated that in sasp-1 mutant guard cells the attenuation rate markedly decreased. Taken together, the results demonstrate that SASP plays an important role in regulating ABA signaling and drought tolerance through interaction with OST1.
Collapse
Affiliation(s)
- Qianqian Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Qianli Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yuanyuan Guo
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jieshu Yang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Min Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiaoke Duan
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jiayu Niu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Shuai Liu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Jianzhen Zhang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yanke Lu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Zhi Hou
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Wei Miao
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Xiangyu Wang
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Weiwen Kong
- School of Horticulture and Plant Protection, Yangzhou University, Yangzhou, Jiangsu, China
| | - Xiaoming Xu
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Yufeng Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Bioinformatics Center, Nanjing Agricultural University, Nanjing, China
| | - Qi Rui
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| | - Honggui La
- College of Life Sciences, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
19
|
Schaller A, Stintzi A, Rivas S, Serrano I, Chichkova NV, Vartapetian AB, Martínez D, Guiamét JJ, Sueldo DJ, van der Hoorn RAL, Ramírez V, Vera P. From structure to function - a family portrait of plant subtilases. THE NEW PHYTOLOGIST 2018; 218:901-915. [PMID: 28467631 DOI: 10.1111/nph.14582] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 03/13/2017] [Indexed: 05/20/2023]
Abstract
Contents Summary 901 I. Introduction 901 II. Biochemistry and structure of plant SBTs 902 III. Phylogeny of plant SBTs and family organization 903 IV. Physiological roles of plant SBTs 905 V. Conclusions and outlook 911 Acknowledgements 912 References 912 SUMMARY: Subtilases (SBTs) are serine peptidases that are found in all three domains of life. As compared with homologs in other Eucarya, plant SBTs are more closely related to archaeal and bacterial SBTs, with which they share many biochemical and structural features. However, in the course of evolution, functional diversification led to the acquisition of novel, plant-specific functions, resulting in the present-day complexity of the plant SBT family. SBTs are much more numerous in plants than in any other organism, and include enzymes involved in general proteolysis as well as highly specific processing proteases. Most SBTs are targeted to the cell wall, where they contribute to the control of growth and development by regulating the properties of the cell wall and the activity of extracellular signaling molecules. Plant SBTs affect all stages of the life cycle as they contribute to embryogenesis, seed development and germination, cuticle formation and epidermal patterning, vascular development, programmed cell death, organ abscission, senescence, and plant responses to their biotic and abiotic environments. In this article we provide a comprehensive picture of SBT structure and function in plants.
Collapse
Affiliation(s)
- Andreas Schaller
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Annick Stintzi
- Institute of Plant Physiology and Biotechnology, University of Hohenheim, Stuttgart, 70593, Germany
| | - Susana Rivas
- Laboratoire des Interactions Plantes-Microorganismes, LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Irene Serrano
- Laboratoire des Interactions Plantes-Microorganismes, LIPM, Université de Toulouse, INRA, CNRS, Castanet-Tolosan, 31326, France
| | - Nina V Chichkova
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Andrey B Vartapetian
- Belozersky Institute of Physico-Chemical Biology, Moscow State University, Moscow, 119991, Russia
| | - Dana Martínez
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Juan J Guiamét
- Instituto de Fisiología Vegetal, Universidad Nacional de La Plata, La Plata, 1900, Argentina
| | - Daniela J Sueldo
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Renier A L van der Hoorn
- The Plant Chemetics Laboratory, Department of Plant Sciences, University of Oxford, Oxford, OX1 3RB, UK
| | - Vicente Ramírez
- Institute for Plant Cell Biology and Biotechnology, Heinrich-Heine University, Düsseldorf, 40225, Germany
| | - Pablo Vera
- Institute for Plant Molecular and Cell Biology, Universidad Politécnica de Valencia-CSIC, Valencia, 46022, Spain
| |
Collapse
|
20
|
Havé M, Balliau T, Cottyn-Boitte B, Dérond E, Cueff G, Soulay F, Lornac A, Reichman P, Dissmeyer N, Avice JC, Gallois P, Rajjou L, Zivy M, Masclaux-Daubresse C. Increases in activity of proteasome and papain-like cysteine protease in Arabidopsis autophagy mutants: back-up compensatory effect or cell-death promoting effect? JOURNAL OF EXPERIMENTAL BOTANY 2018; 69:1369-1385. [PMID: 29281085 PMCID: PMC6037082 DOI: 10.1093/jxb/erx482] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/14/2017] [Indexed: 05/18/2023]
Abstract
Autophagy is essential for protein degradation, nutrient recycling, and nitrogen remobilization. Autophagy is induced during leaf ageing and in response to nitrogen starvation, and is known to play a fundamental role in nutrient recycling for remobilization and seed filling. Accordingly, ageing leaves of Arabidopsis autophagy mutants (atg) have been shown to over-accumulate proteins and peptides, possibly because of a reduced protein degradation capacity. Surprisingly, atg leaves also displayed higher protease activities. The work reported here aimed at identifying the nature of the proteases and protease activities that accumulated differentially (higher or lower) in the atg mutants. Protease identification was performed using shotgun LC-MS/MS proteome analyses and activity-based protein profiling (ABPP). The results showed that the chloroplast FTSH (FILAMENTATION TEMPERATURE SENSITIVE H) and DEG (DEGRADATION OF PERIPLASMIC PROTEINS) proteases and several extracellular serine proteases [subtilases (SBTs) and serine carboxypeptidase-like (SCPL) proteases] were less abundant in atg5 mutants. By contrast, proteasome-related proteins and cytosolic or vacuole cysteine proteases were more abundant in atg5 mutants. Rubisco degradation assays and ABPP showed that the activities of proteasome and papain-like cysteine protease were increased in atg5 mutants. Whether these proteases play a back-up role in nutrient recycling and remobilization in atg mutants or act to promote cell death is discussed in relation to their accumulation patterns in the atg5 mutant compared with the salicylic acid-depleted atg5/sid2 double-mutant, and in low nitrate compared with high nitrate conditions. Several of the proteins identified are indeed known as senescence- and stress-related proteases or as spontaneous cell-death triggering factors.
Collapse
Affiliation(s)
- Marien Havé
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Thierry Balliau
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | | - Emeline Dérond
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Gwendal Cueff
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | | | - Aurélia Lornac
- UCBN, INRA, UMR INRA-UBCN 950 Ecophysiologie Végétale, Agronomie & Nutrition N.C.S., Université de Caen Normandie, France
| | - Pavel Reichman
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), Germany and Science Campus Halle – Plant-based Bioeconomy, Germany
| | - Nico Dissmeyer
- Independent Junior Research Group on Protein Recognition and Degradation, Leibniz Institute of Plant Biochemistry (IPB), Weinberg 3, Halle (Saale), Germany and Science Campus Halle – Plant-based Bioeconomy, Germany
| | - Jean-Christophe Avice
- UCBN, INRA, UMR INRA-UBCN 950 Ecophysiologie Végétale, Agronomie & Nutrition N.C.S., Université de Caen Normandie, France
| | - Patrick Gallois
- School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, UK
| | - Loïc Rajjou
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, France
| | - Michel Zivy
- UMR GQE- le Moulon, INRA, Université Paris-Sud, CNRS, AgroParisTech, Université Paris-Saclay, France
| | | |
Collapse
|
21
|
Abstract
Plant senescence is accompanied by a marked increase in proteolytic activities, and cysteine proteases (Cys-protease) represent the prevailing class among the responsible proteases. Cys-proteases predominantly locate to lytic compartments, i.e., to the central vacuole (CV) and to senescence-associated vacuoles (SAVs), the latter being specific to the photosynthetic cells of senescing leaves. Cellular fractionation of vacuolar compartments may facilitate Cys-proteases purification and their concentration for further analysis. Active Cys-proteases may be analyzed by different, albeit complementary approaches: (1) in vivo examination of proteolytic activity by fluorescence microscopy using specific substrates which become fluorescent upon cleavage by Cys-proteases, (2) protease labeling with specific probes that react irreversibly with the active enzymes, and (3) zymography, whereby protease activities are detected in polyacrylamide gels copolymerized with a substrate for proteases. Here we describe the three methods mentioned above for detection of active Cys-proteases and a cellular fractionation technique to isolate SAVs.
Collapse
Affiliation(s)
- Dana E Martínez
- Instituto de Fisiología Vegetal (INFIVE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Lorenza Costa
- Instituto de Fisiología Vegetal (INFIVE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Juan José Guiamét
- Instituto de Fisiología Vegetal (INFIVE)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Universidad Nacional de La Plata, Buenos Aires, Argentina.
| |
Collapse
|
22
|
Roberts IN, Veliz CG, Criado MV, Signorini A, Simonetti E, Caputo C. Identification and expression analysis of 11 subtilase genes during natural and induced senescence of barley plants. JOURNAL OF PLANT PHYSIOLOGY 2017; 211:70-80. [PMID: 28167368 DOI: 10.1016/j.jplph.2017.01.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2016] [Revised: 01/16/2017] [Accepted: 01/17/2017] [Indexed: 06/06/2023]
Abstract
Subtilases are one of the largest groups of the serine protease family and are involved in many aspects of plant development including senescence. In wheat, previous reports demonstrate an active participation of two senescence-induced subtilases, denominated P1 and P2, in nitrogen remobilization during whole plant senescence. The aim of the present study was to examine the participation of subtilases in senescence-associated proteolysis of barley leaves while comparing different senescence types. With this purpose, subtilase enzymatic activity, immunodetection with a heterologous antiserum and gene expression of 11 subtilase sequences identified in barley databases by homology to P1 were analyzed in barley leaves undergoing dark-induced or natural senescence at the vegetative or reproductive growth phase. Results showed that subtilase specific activity as well as two inmunoreactive bands representing putative subtilases increased in barley leaves submitted to natural and dark-induced senescence. Gene expression analysis showed that two of the eleven subtilase genes analyzed, HvSBT3 and HvSBT6, were up-regulated in all the senescence conditions tested while HvSBT2 was expressed and up-regulated only during dark-induced senescence. On the other hand, HvSBT1, HvSBT4 and HvSBT7 were down-regulated during senescence and two other subtilase genes (HvSBT10 and HvSBT11) showed no significant changes. The remaining subtilase genes were not detected. Results demonstrate an active participation of subtilases in protein degradation during dark-induced and natural leaf senescence of barley plants both at the vegetative and reproductive stage, and, based on their expression profile, postulate HvSBT3 and HvSBT6 as key components of senescence-associated proteolysis.
Collapse
Affiliation(s)
- Irma N Roberts
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina.
| | - Cintia G Veliz
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - María Victoria Criado
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Ana Signorini
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Ester Simonetti
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| | - Carla Caputo
- Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), CONICET, Facultad de Agronomía, Universidad de Buenos Aires, Av. San Martín 4453, C1417DSE, Buenos Aires, Argentina
| |
Collapse
|
23
|
Diaz-Mendoza M, Velasco-Arroyo B, Santamaria ME, González-Melendi P, Martinez M, Diaz I. Plant senescence and proteolysis: two processes with one destiny. Genet Mol Biol 2016; 39:329-38. [PMID: 27505308 PMCID: PMC5004835 DOI: 10.1590/1678-4685-gmb-2016-0015] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 05/10/2016] [Indexed: 01/03/2023] Open
Abstract
Senescence-associated proteolysis in plants is a complex and controlled process,
essential for mobilization of nutrients from old or stressed tissues, mainly leaves,
to growing or sink organs. Protein breakdown in senescing leaves involves many
plastidial and nuclear proteases, regulators, different subcellular locations and
dynamic protein traffic to ensure the complete transformation of proteins of high
molecular weight into transportable and useful hydrolysed products. Protease
activities are strictly regulated by specific inhibitors and through the activation
of zymogens to develop their proteolytic activity at the right place and at the
proper time. All these events associated with senescence have deep effects on the
relocation of nutrients and as a consequence, on grain quality and crop yield. Thus,
it can be considered that nutrient recycling is the common destiny of two processes,
plant senescence and, proteolysis. This review article covers the most recent
findings about leaf senescence features mediated by abiotic and biotic stresses as
well as the participants and steps required in this physiological process, paying
special attention to C1A cysteine proteases, their specific inhibitors, known as
cystatins, and their potential targets, particularly the chloroplastic proteins as
source for nitrogen recycling.
Collapse
Affiliation(s)
- Mercedes Diaz-Mendoza
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Blanca Velasco-Arroyo
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - M Estrella Santamaria
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Pablo González-Melendi
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Manuel Martinez
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| | - Isabel Diaz
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid, Madrid, Spain
| |
Collapse
|