1
|
Zhong S, Yang H, Guan J, Shen J, Ren T, Li Z, Tan F, Li Q, Luo P. Characterization of the MADS-Box Gene Family in Akebia trifoliata and Their Evolutionary Events in Angiosperms. Genes (Basel) 2022; 13:genes13101777. [PMID: 36292662 PMCID: PMC9601569 DOI: 10.3390/genes13101777] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/27/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
As the largest clade of modern plants, flower plants have evolved a wide variety of flowers and fruits. MADS-box genes play key roles in regulating plant morphogenesis, while basal eudicots have an evolutionarily important position of acting as an evolutionary bridge between basal angiosperms and core eudicots. Akebia trifoliata is an important member of the basal eudicot group. To study the early evolution of angiosperms, we identified and characterized the MADS-Box gene family on the whole-genome level of A. trifoliata. There were 47 MADS-box genes (13 type I and 34 type II genes) in the A. trifoliata genome; type I genes had a greater gene length and coefficient of variation and a smaller exon number than type II genes. A total of 27 (57.4%) experienced whole or segmental genome duplication and purifying selection. A transcriptome analysis suggested that three and eight genes were involved in whole fruit and seed development, respectively. The diversification and phylogenetic analysis of 1479 type II MADS-box genes of 22 angiosperm species provided some clues indicating that a γ whole genome triplication event of eudicots possibility experienced a two-step process. These results are valuable for improving A. trifoliata fruit traits and theoretically elucidating evolutionary processes of angiosperms, especially eudicots.
Collapse
Affiliation(s)
- Shengfu Zhong
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Huai Yang
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Ju Guan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinliang Shen
- College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Tianheng Ren
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Zhi Li
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Feiquan Tan
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
| | - Qing Li
- Department of Biology and Chemistry, Chongqing Industry and Trade Polytechnic, Chongqing 408000, China
| | - Peigao Luo
- Key Laboratory of Plant Genetics and Breeding at Sichuan Agricutural University of Sichuan Province, College of Agronomy, Sichuan Agricultural University, Chengdu 611130, China
- Correspondence:
| |
Collapse
|
2
|
Li C, Lei C, Wang K, Tan M, Xu F, Wang J, Zheng Y. MADS2 regulates priming defence in postharvest peach through combined salicylic acid and abscisic acid signaling. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3787-3806. [PMID: 35266534 DOI: 10.1093/jxb/erac099] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
MADS-box genes play well-documented roles in plant development, but relatively little is known regarding their involvement in defence responses. In this study, pre-treatment of peach (Prunus persica) fruit with β-aminobutyric acid (BABA) activated resistance against Rhizopus stolonifer, leading to a significant delay in the symptomatic appearance of disease. This was associated with an integrated defence response that included a H2O2 burst, ABA accumulation, and callose deposition. cDNA library screening identified nucleus-localized MADS2 as an interacting partner with NPR1, and this was further confirmed by yeast two-hybrid, luciferase complementation imaging, and co-immunoprecipitation assays. The DNA-binding activity of NPR1 conferred by the NPR1-MADS2 complex was required for the transcription of SA-dependent pathogenesis-related (PR) and ABA-inducible CalS genes in order to gain the BABA-induced resistance, in which MAPK1-induced post-translational modification of MADS2 was also involved. In accordance with this, overexpression of PpMADS2 in Arabidopsis potentiated the transcription of a group of PR genes and conferred fungal resistance in the transgenic plants. Conversely, Arabidopsis mads2-knockout lines showed high sensitivity to the fungal pathogen. Our results indicate that MADS2 positively participates in BABA-elicited defence in peach through a combination of SA-dependent NPR1 activation and ABA signaling-induced callose accumulation, and that this defence is also related to the post-translational modification of MADS2 by MAPK1 for signal amplification.
Collapse
Affiliation(s)
- Chunhong Li
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
- College of Biology and Food Science, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Changyi Lei
- College of Biology and Food Science, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Kaituo Wang
- College of Biology and Food Science, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Meilin Tan
- College of Biology and Food Science, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Feng Xu
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, P.R. China
| | - Jinsong Wang
- College of Biology and Food Science, Chongqing Three Gorges University, Chongqing 404000, P.R. China
| | - Yonghua Zheng
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095 Jiangsu, P.R. China
| |
Collapse
|
3
|
Bacillus amyloliquefaciens SN16-1-Induced Resistance System of the Tomato against Rhizoctonia solani. Pathogens 2021; 11:pathogens11010035. [PMID: 35055983 PMCID: PMC8780726 DOI: 10.3390/pathogens11010035] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/24/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Tomato (Solanum lycopersicum), as an important economical vegetable, is often infected with Rhizoctonia solani, which results in a substantial reduction in production. Therefore, the molecular mechanism of biocontrol microorganisms assisting tomato to resist pathogens is worth exploring. Here, we use Bacillus amyloliquefaciens SN16-1 as biocontrol bacteria, and employed RNA-Seq technology to study tomato gene and defense-signaling pathways expression. Gene Ontology (GO) analyses showed that an oxidation-reduction process, peptidase regulator activity, and oxidoreductase activity were predominant. Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses showed that phenylpropanoid biosynthesis, biosynthesis of unsaturated fatty acids, aldosterone synthesis and secretion, and phototransduction were significantly enriched. SN16-1 activated defenses in the tomato via systemic-acquired resistance (which depends on the salicylic acid signaling pathway), rather than classic induction of systemic resistance. The genes induced by SN16-1 included transcription factors, plant hormones (ethylene, auxin, abscisic acid, and gibberellin), receptor-like kinases, heat shock proteins, and defense proteins. SN16-1 rarely activated pathogenesis-related proteins, but most pathogenesis-related proteins were induced in the presence of the pathogens. In addition, the molecular mechanisms of the response of tomatoes to SN16-1 and R. solani RS520 were significantly different.
Collapse
|
4
|
Liu X, Zhang Z. A double-edged sword: reactive oxygen species (ROS) during the rice blast fungus and host interaction. FEBS J 2021; 289:5505-5515. [PMID: 34453409 DOI: 10.1111/febs.16171] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 08/07/2021] [Accepted: 09/26/2021] [Indexed: 01/04/2023]
Abstract
Magnaporthe oryzae is a hemibiotrophic fungus that also needs host nutrients for propagation during infection. During its interaction with rice, reactive oxygen species (ROS) mediate important signaling reactions impacting both the pathogen and the host. In M. oryzae, the accumulation of ROS is important for the formation and maturation of the infectious structure appressorium. On the other hand, upon M. oryzae infection, rice generates further ROS to restrict invasive hyphae (IH) spreading. Despite ROS receptors remaining to be identified, M. oryzae recruits several strategies to respond and suppress ROS accumulation through the secretion of various effector molecules. These findings suggest that the balance between the generation and scavenging of ROS is sophisticatedly controlled during M. oryzae-rice interaction. In this review, we discuss advances to understand the regulation mechanisms for the generation, accumulation, and transduction of ROS.
Collapse
Affiliation(s)
- Xinyu Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, China
| | - Zhengguang Zhang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, China.,Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, Nanjing, China.,The Key Laboratory of Plant Immunity, Nanjing Agricultural University, China
| |
Collapse
|
5
|
Zhang C, Song Z, Jin P, Zhou X, Zhang H. Xylooligosaccharides induce stomatal closure via salicylic acid signaling-regulated reactive oxygen species and nitric oxide production in Arabidopsis. PHYSIOLOGIA PLANTARUM 2021; 172:1908-1918. [PMID: 33755206 DOI: 10.1111/ppl.13403] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 02/20/2021] [Accepted: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Xylooligosaccharides (XOS) are the major coproducts of biofuel production and the most representative functional sugar enhancing animal physiology. However, little is known regarding the biological relevance of XOS to plants. Here, we found XOS triggered stomatal closure in Arabidopsis in a dose-dependent manner. Pamarcological data showed that XOS-induced stomatal closure was markedly inhibited by catalase (CAT, a reactive oxygen species [ROS] scavenger), salicylhydroxamic acid (SHAM, a peroxidase inhibitor), and 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO, a nitric oxide [NO] scavenger). Moreover, XOS induced the production of ROS and NO in guard cells of Arabidopsis. ROS production was strongly restricted by CAT and SHAM, but was unaffected by treatment with diphenyleneiodonium chloride (DPI, an NADPH oxidase inhibitor) or cPTIO. NO production was suppressed by CAT, SHAM, and cPTIO, but not by DPI. The elevation of ROS level mediated by SHAM-sensitive peroxidases occurred upstream of NO. Additionally, XOS-triggered stomatal closure and ROS and NO accumulation were significantly impaired in npr1 (salicylic acid signaling) mutant plants, but were not in jar1 (jasmonic acid signaling) or ein2 (ethylene signaling) mutant plants. Furthermore, XOS-induced stomatal closure was unaffected in both ost1 and atrbohD atrbohF (abscisic acid [ABA] signaling) mutant plants. Therefore, these results indicated that the biotic sugar, XOS, can elicit stomatal closure via salicylic acid signaling-mediated production of ROS and NO, in a manner independent of ABA signaling.
Collapse
Affiliation(s)
- Cheng Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, Anhui, China
| | - Zhiqiang Song
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, Anhui, China
| | - Pinyuan Jin
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, Anhui, China
| | - Xiuhong Zhou
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, Anhui, China
| | - Huajian Zhang
- Department of Plant Pathology, College of Plant Protection, Anhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education Institutes, Hefei, Anhui, China
| |
Collapse
|
6
|
Song Z, Zhang C, Chen L, Jin P, Tetteh C, Zhou X, Gao Z, Zhang H. The Arabidopsis small G-protein AtRAN1 is a positive regulator in chitin-induced stomatal closure and disease resistance. MOLECULAR PLANT PATHOLOGY 2021; 22:92-107. [PMID: 33191557 PMCID: PMC7749754 DOI: 10.1111/mpp.13010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 05/05/2023]
Abstract
Chitin, a fungal microbial-associated molecular pattern, triggers various defence responses in several plant systems. Although it induces stomatal closure, the molecular mechanisms of its interactions with guard cell signalling pathways are unclear. Based on screening of public microarray data obtained from the ATH1 Affymetrix and Arabidopsis eFP browser, we isolated a cDNA encoding a Ras-related nuclear protein 1 AtRAN1. AtRAN1 expression was enriched in guard cells in a manner consistent with involvement in the control of the stomatal movement. AtRAN1 mutation impaired chitin-induced stomatal closure and accumulation of reactive oxygen species and nitric oxide in guard cells. In addition, Atran1 mutant plants exhibited compromised chitin-enhanced plant resistance to both bacterial and fungal pathogens due to changes in defence-related genes. Furthermore, Atran1 mutant plants were hypersensitive to drought stress compared to Col-0 plants, and had lower levels of stress-responsive genes. These data demonstrate a previously uncharacterized signalling role for AtRAN1, mediating chitin-induced signalling.
Collapse
Affiliation(s)
- Zhiqiang Song
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Cheng Zhang
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Ling Chen
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Pinyuan Jin
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Charles Tetteh
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Xiuhong Zhou
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Zhimou Gao
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| | - Huajian Zhang
- Department of Plant PathologyCollege of Plant ProtectionAnhui Agricultural University, Key Laboratory of Biology and Sustainable Management of Plant Diseases and Pests of Anhui Higher Education InstitutesHefeiAnhuiChina
| |
Collapse
|
7
|
Hada A, Dutta TK, Singh N, Singh B, Rai V, Singh NK, Rao U. A genome-wide association study in Indian wild rice accessions for resistance to the root-knot nematode Meloidogyne graminicola. PLoS One 2020; 15:e0239085. [PMID: 32960916 PMCID: PMC7508375 DOI: 10.1371/journal.pone.0239085] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 08/28/2020] [Indexed: 11/18/2022] Open
Abstract
Rice root-knot nematode (RRKN), Meloidogyne graminicola is one of the major biotic constraints in rice-growing countries of Southeast Asia. Host plant resistance is an environmentally-friendly and cost-effective mean to mitigate RRKN damage to rice. Considering the limited availability of genetic resources in the Asian rice (Oryza sativa) cultivars, exploration of novel sources and genetic basis of RRKN resistance is necessary. We screened 272 diverse wild rice accessions (O. nivara, O. rufipogon, O. sativa f. spontanea) to identify genotypes resistant to RRKN. We dissected the genetic basis of RRKN resistance using a genome-wide association study with SNPs (single nucleotide polymorphism) genotyped by 50K "OsSNPnks" genic Affymetrix chip. Population structure analysis revealed that these accessions were stratified into three major sub-populations. Overall, 40 resistant accessions (nematode gall number and multiplication factor/MF < 2) were identified, with 17 novel SNPs being significantly associated with phenotypic traits such as number of galls, egg masses, eggs/egg mass and MF per plant. SNPs were localized to the quantitative trait loci (QTL) on chromosome 1, 2, 3, 4, 6, 10 and 11 harboring the candidate genes including NBS-LRR, Cf2/Cf5 resistance protein, MYB, bZIP, ARF, SCARECROW and WRKY transcription factors. Expression of these identified genes was significantly (P < 0.01) upregulated in RRKN-infected plants compared to mock-inoculated plants at 7 days after inoculation. The identified SNPs enrich the repository of candidate genes for future marker-assisted breeding program to alleviate the damage of RRKN in rice.
Collapse
Affiliation(s)
- Alkesh Hada
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Tushar K. Dutta
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Nisha Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Balwant Singh
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | - Vandna Rai
- ICAR-National Institute for Plant Biotechnology, New Delhi, India
| | | | - Uma Rao
- Division of Nematology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
8
|
Liu F, Xu Y, Zhou L, Ali A, Jiang H, Zhu S, Li X. DNA Repair Gene ZmRAD51A Improves Rice and Arabidopsis Resistance to Disease. Int J Mol Sci 2019; 20:E807. [PMID: 30781829 PMCID: PMC6412738 DOI: 10.3390/ijms20040807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 12/31/2022] Open
Abstract
RAD51 (DNA repair gene) family genes play ubiquitous roles in immune response among species from plants to mammals. In this study, we cloned the ZmRAD51A gene (a member of RAD51) in maize and generated ZmRAD51A overexpression (ZmRAD51A-OE) in rice, tobacco, and Arabidopsis. The expression level of ZmRAD51A was remarkably induced by salicylic acid (SA) application in maize, and the transient overexpression of ZmRAD51A in tobacco induced a hypersensitive response. The disease resistance was significantly enhanced in ZmRAD51A- OE (overexpressing) plants, triggering an increased expression of defense-related genes. High-performance liquid chromatography (HPLC) analysis showed that, compared to control lines, ZmRAD51A-OE in rice plants resulted in higher SA levels, and conferred rice plants resistance to Magnaporthe oryzae. Moreover, the ZmRAD51A-OE Arabidopsis plants displayed increased resistance to Pseudomonas syringae pv. tomato DC3000 when compared to wild types. Together, our results provide the evidence that, for the first time, the maize DNA repair gene ZmRAD51A plays an important role in in disease resistance.
Collapse
Affiliation(s)
- Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Lingyan Zhou
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Asif Ali
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Haiyang Jiang
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Suwen Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
9
|
Tahir J, Hoyte S, Bassett H, Brendolise C, Chatterjee A, Templeton K, Deng C, Crowhurst R, Montefiori M, Morgan E, Wotton A, Funnell K, Wiedow C, Knaebel M, Hedderley D, Vanneste J, McCallum J, Hoeata K, Nath A, Chagné D, Gea L, Gardiner SE. Multiple quantitative trait loci contribute to resistance to bacterial canker incited by Pseudomonas syringae pv. actinidiae in kiwifruit ( Actinidia chinensis). HORTICULTURE RESEARCH 2019; 6:101. [PMID: 31645956 PMCID: PMC6804790 DOI: 10.1038/s41438-019-0184-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 07/11/2019] [Accepted: 07/17/2019] [Indexed: 05/10/2023]
Abstract
Pseudomonas syringae pv. actinidiae (Psa) biovar 3, a virulent, canker-inducing pathogen is an economic threat to the kiwifruit (Actinidia spp.) industry worldwide. The commercially grown diploid (2×) A. chinensis var. chinensis is more susceptible to Psa than tetraploid and hexaploid kiwifruit. However information on the genetic loci modulating Psa resistance in kiwifruit is not available. Here we report mapping of quantitative trait loci (QTLs) regulating resistance to Psa in a diploid kiwifruit population, derived from a cross between an elite Psa-susceptible 'Hort16A' and a resistant male breeding parent P1. Using high-density genetic maps and intensive phenotyping, we identified a single QTL for Psa resistance on Linkage Group (LG) 27 of 'Hort16A' revealing 16-19% phenotypic variance and candidate alleles for susceptibility and resistance at this loci. In addition, six minor QTLs were identified in P1 on distinct LGs, exerting 4-9% variance. Resistance in the F1 population is improved by additive effects from 'Hort16A' and P1 QTLs providing evidence that divergent genetic pathways interact to combat the virulent Psa strain. Two different bioassays further identified new QTLs for tissue-specific responses to Psa. The genetic marker at LG27 QTL was further verified for association with Psa resistance in diploid Actinidia chinensis populations. Transcriptome analysis of Psa-resistant and susceptible genotypes in field revealed hallmarks of basal defense and provided candidate RNA-biomarkers for screening for Psa resistance in greenhouse conditions.
Collapse
Affiliation(s)
- Jibran Tahir
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Stephen Hoyte
- The New Zealand Institute for Plant Food Research Limited, Hamilton, New Zealand
| | - Heather Bassett
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Cyril Brendolise
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Abhishek Chatterjee
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Kerry Templeton
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Cecilia Deng
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | - Ross Crowhurst
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 92–169, Auckland, 1025 New Zealand
| | | | - Ed Morgan
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Andrew Wotton
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Keith Funnell
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Claudia Wiedow
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Mareike Knaebel
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Duncan Hedderley
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Joel Vanneste
- The New Zealand Institute for Plant Food Research Limited, Hamilton, New Zealand
| | - John McCallum
- The New Zealand Institute for Plant and Food Research Limited, Lincoln, New Zealand
| | - Kirsten Hoeata
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - Amardeep Nath
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - David Chagné
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| | - Luis Gea
- The New Zealand Institute for Plant and Food Research Limited, 412 No 1 Road, RD2, Te Puke, 3182 New Zealand
| | - Susan E. Gardiner
- The New Zealand Institute for Plant and Food Research Limited, Private Bag 11030, Manawatu Mail Centre, Palmerston North, 4442 New Zealand
| |
Collapse
|
10
|
Xu Y, Liu F, Zhu S, Li X. Expression of a maize NBS gene ZmNBS42 enhances disease resistance in Arabidopsis. PLANT CELL REPORTS 2018; 37:1523-1532. [PMID: 30039463 DOI: 10.1007/s00299-018-2324-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Accepted: 07/14/2018] [Indexed: 06/08/2023]
Abstract
Expression of the ZmNBS42 in Arabidopsis plants conferred resistance to bacterial pathogens, providing potential resistance enhancement of maize in further genetic breeding. Nucleotide-binding site (NBS) domain proteins play critical roles in disease resistance. In this study, we isolate a novel NBS gene ZmNBS42 from maize and systematically investigate its function on disease resistance. We find that the expression levels of ZmNBS42 in maize leaf were strikingly increased in response to Bipolaris maydis inoculation and SA treatment. The spatial expression pattern analysis reveals that, during development, ZmNBS42 is ubiquitously highly expressed in maize root, leaf, stem, internode and seed, but lowly expressed in pericarp and embryo. To better understand the roles of ZmNBS42, we overexpressed ZmNBS42 in heterologous systems. Transient overexpression of ZmNBS42 in the leaves of Nicotiana benthamiana induces a hypersensitive response. ZmNBS42 overexpression (ZmNBS42-OE) Arabidopsis plants produced more SA content than Col-0 plants, and increased the expression levels of some defense-responsive genes compared to Col-0 plants. Moreover, the ZmNBS42-OE Arabidopsis plants displayed enhanced resistance against Pseudomonas syringae pathovar tomato DC3000 (Pst DC3000). These results together suggest that ZmNBS42 can serve as an important regulator in disease resistance, thus better understanding of ZmNBS42 would benefit the resistance enhancement in maize breeding programs.
Collapse
Affiliation(s)
- Yunjian Xu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
- College of Agronomy, Anhui Agricultural University, No. 130, Changjiang West Road, Hefei, 230036, China
| | - Suwen Zhu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China
| | - Xiaoyu Li
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, No. 130 Changjiang West Road, Hefei, 230036, China.
| |
Collapse
|
11
|
Bortolamiol-Bécet D, Monsion B, Chapuis S, Hleibieh K, Scheidecker D, Alioua A, Bogaert F, Revers F, Brault V, Ziegler-Graff V. Phloem-Triggered Virus-Induced Gene Silencing Using a Recombinant Polerovirus. Front Microbiol 2018; 9:2449. [PMID: 30405546 PMCID: PMC6206295 DOI: 10.3389/fmicb.2018.02449] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Accepted: 09/25/2018] [Indexed: 01/22/2023] Open
Abstract
The phloem-limited poleroviruses infect Arabidopsis thaliana without causing noticeable disease symptoms. In order to facilitate visual infection identification, we developed virus-induced gene silencing (VIGS) vectors derived from Turnip yellows virus (TuYV). Short sequences from the host gene AtCHLI1 required for chlorophyll biosynthesis [42 nucleotides in sense or antisense orientation or as an inverted-repeat (IR), or an 81 nucleotide sense fragment] were inserted into the 3' non-coding region of the TuYV genome to screen for the most efficient and robust silencing vector. All recombinant viruses produced a clear vein chlorosis phenotype on infected Arabidopsis plants due to the expression inhibition of the AtCHLI1 gene. The introduction of a sense-oriented sequence into TuYV genome resulted in a virus exhibiting a more sustainable chlorosis than the virus containing an IR of the same length. This observation was correlated with a higher stability of the sense sequence insertion in the viral genome. In order to evaluate the impact of the TuYV silencing suppressor P0 in the VIGS mechanism a P0 knock-out mutation was introduced into the recombinant TuYV viruses. They induced a similar but milder vein clearing phenotype due to lower viral accumulation. This indicates that P0 does not hinder the performances of the TuYV silencing effect and confirms that in the viral infection context, P0 has no major impact on the production, propagation and action of the short distance silencing signal in phloem cells. Finally, we showed that TuYV can be used to strongly silence the phloem specific AtRTM1 gene. The TuYV-derived VIGS vectors therefore represent powerful tools to easily detect and monitor TuYV in infected plants and conduct functional analysis of phloem-restricted genes. Moreover this example indicates the potential of poleroviruses for use in functional genomic studies of agronomic plants.
Collapse
Affiliation(s)
- Diane Bortolamiol-Bécet
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France.,Architecture et Réactivité de l'ARN, Institut de biologie moléculaire et cellulaire CNRS-UPR 9002, Université de Strasbourg, Strasbourg, France
| | - Baptiste Monsion
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France.,UMR1161 Virologie, INRA, ANSES, Ecole Nationale Vétérinaire d'Alfort, Maisons-Alfort, France
| | - Sophie Chapuis
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Kamal Hleibieh
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Danièle Scheidecker
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Abdelmalek Alioua
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| | - Florent Bogaert
- SVQV, INRA UMR 1131, Université de Strasbourg, Colmar, France
| | - Frédéric Revers
- BFP, INRA UMR 1332, Univ. Bordeaux, Villenave d'Ornon, France.,BIOGECO, INRA UMR 1202, Univ. Bordeaux, Pessac, France
| | | | - Véronique Ziegler-Graff
- Institut de biologie moléculaire des plantes, CNRS-UPR 2357, Université de Strasbourg, Strasbourg, France
| |
Collapse
|
12
|
Xu Y, Liu F, Zhu S, Li X. The Maize NBS-LRR Gene ZmNBS25 Enhances Disease Resistance in Rice and Arabidopsis. FRONTIERS IN PLANT SCIENCE 2018; 9:1033. [PMID: 30065743 PMCID: PMC6056734 DOI: 10.3389/fpls.2018.01033] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 06/25/2018] [Indexed: 05/05/2023]
Abstract
Nucleotide-binding site-leucine-rich repeat (NBS-LRR) domain proteins are immune sensors and play critical roles in plant disease resistance. In this study, we cloned and characterized a novel NBS-LRR gene ZmNBS25 in maize. We found that ZmNBS25 could response to pathogen inoculation and salicylic acid (SA) treatment in maize, and transient overexpression of ZmNBS25 induced a hypersensitive response in tobacco. High-performance liquid chromatography (HPLC) analysis showed that, compared to control plants, ZmNBS25 overexpression (ZmNBS25-OE) in Arabidopsis and rice resulted in higher SA levels. By triggering the expression of certain defense-responsive genes, ZmNBS25-OE enhanced the resistance of Arabidopsis and rice to Pseudomonas syringae pv. tomato DC3000 and sheath blight disease, respectively. Moreover, we found little change of grain size and 1000-grain weight between ZmNBS25-OE rice lines and controls. Together, our results suggest that ZmNBS25 can function as a disease resistance gene across different species, being a valuable candidate for engineering resistance in breeding programs.
Collapse
Affiliation(s)
- Yunjian Xu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Fang Liu
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- College of Agronomy, Anhui Agricultural University, Hefei, China
| | - Suwen Zhu
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- School of Life Sciences, Anhui Agricultural University, Hefei, China
- National Engineering Laboratory of Crop Stress Resistance Breeding, Anhui Agricultural University, Hefei, China
- *Correspondence: Xiaoyu Li, ;
| |
Collapse
|
13
|
Stress2TF: a manually curated database of TF regulation in plant response to stress. Gene 2017; 638:36-40. [PMID: 28974472 DOI: 10.1016/j.gene.2017.09.067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 09/14/2017] [Accepted: 09/29/2017] [Indexed: 01/17/2023]
Abstract
Considerable studies demonstrate that plant transcription factors (TFs) play key regulatory roles in abiotic/biotic stress conditions, such as drought and pathogen attack. However, there is no effort dedicated to curate experimentally validated stress-TF regulatory relationships from these individual reports into a central database, which put an obstacle in the exploration of stress-TF regulations in plants. To address this issue, we presented a literature-curated database 'Stress2TF' that currently documented 1533 regulatory relationships between 71 abiotic/biotic stresses and 558 TFs in 47 plant species. Each entry in Stress2TF contains detailed information about a stress-TF relationship such as plant name, stress name, TF and brief description of stress-TF relationship. Stress2TF provided a user-friendly interface for entry browse, search and download. In addition, a submission page and several useful tools (e.g., BLAST, network visualization) were integrated. Stress2TF may be a valuable resource for the research of stress-TF regulatory mechanisms in plants. Stress2TF is available at http://csgenomics.ahau.edu.cn/Stress2TF.
Collapse
|
14
|
Kant R, Dasgupta I. Phenotyping of VIGS-mediated gene silencing in rice using a vector derived from a DNA virus. PLANT CELL REPORTS 2017; 36:1159-1170. [PMID: 28540496 DOI: 10.1007/s00299-017-2156-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2016] [Accepted: 05/15/2017] [Indexed: 05/09/2023]
Abstract
Target genes in rice can be optimally silenced if inserted in antisense or hairpin orientation in the RTBV-derived VIGS vector and plants grown at 28 °C and 80% humidity after inoculation. Virus induced gene silencing (VIGS) is a method used to transiently silence genes in dicot as well as monocot plants. For the important monocot species rice, the Rice tungro bacilliform virus (RTBV)-derived VIGS system (RTBV-VIGS), which uses agroinoculation to initiate silencing, has not been standardized for optimal use. Here, using RTBV-VIGS, three sets of conditions were tested to achieve optimal silencing of the rice marker gene phytoene desaturase (pds). The effect of orientation of the insert in the RTBV-VIGS plasmid (sense, antisense and hairpin) on the silencing of the target gene was then evaluated using rice magnesium chelatase subunit H (chlH). Finally, the rice Xa21 gene, conferring resistance against bacterial leaf blight disease (BLB) was silenced using RTBV-VIGS system. In each case, real-time PCR-based assessment indicated approximately 40-80% fall in the accumulation levels of the transcripts of pds, chlH and Xa21. In the case of pds, the appearance of white streaks in the emerging leaves, and for chlH, chlorophyll levels and F v/F m ratio were assessed as phenotypes for silencing. For Xa21, the resistance levels to BLB were assessed by measuring the lesion length and the percent diseased areas of leaves, following challenge inoculation with Xanthomonas oryzae. In each case, the RTBV-MVIGS system gave rise to a discernible phenotype indicating the silencing of the respective target gene using condition III (temperature 28 °C, humidity 80% and 1 mM MES and 20 µM acetosyringone in secondary agrobacterium culture), which revealed the robustness of this gene silencing system for rice.
Collapse
Affiliation(s)
- Ravi Kant
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Indranil Dasgupta
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
15
|
|
16
|
Wang H, Zhang X, Yang H, Liu X, Li H, Yuan L, Li W, Fu Z, Tang J, Kang D. Identification of heterotic loci associated with grain yield and its components using two CSSL test populations in maize. Sci Rep 2016; 6:38205. [PMID: 27917917 PMCID: PMC5137037 DOI: 10.1038/srep38205] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 11/07/2016] [Indexed: 11/17/2022] Open
Abstract
Heterosis has widely been used to increase grain yield and quality. In this study, the genetic basis of heterosis on grain yield and its main components in maize were examined over 2 years in two locations in two test populations constructed from a set of 184 chromosome segment substitution lines (CSSLs) and two inbred lines (Zheng58 and Xun9058). Of the 169 heterotic loci (HL) associated with grain yield and its five components identified in CSSL × Zheng58 and CSSL × Xun9058 test populations, only 25 HL were detected in both populations. The comparison of quantitative trait loci (QTLs) detected in the CSSL population with HL detected in the two test populations revealed that only 15.46% and 17.35% of the HL in the given populations respectively, shared the same chromosomal regions as that of the corresponding QTLs and showed dominant effects as well as pleiotropism with additive and dominant effects. In addition, most of the HL (74.23% and 74.49%) had overdominant effects. These results suggest that overdominance is the main contributor to the effects of heterosis on grain yield and its components in maize, and different HL are associated with heterosis for different traits in different hybrids.
Collapse
Affiliation(s)
- Hongqiu Wang
- College of Agriculture and Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiangge Zhang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huili Yang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Xiaoyang Liu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Huimin Li
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Liang Yuan
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Weihua Li
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Zhiyuan Fu
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
| | - Jihua Tang
- Key Laboratory of Wheat and Maize Crops Science, Collaborative Innovation Center of Henan Grain Crops, College of Agronomy, Henan Agricultural University, Zhengzhou, 450002, China
- Hubei Collaborative Innovation Center for Grain Industry, Yangtze University, Jingzhou, 434023, China
| | - Dingming Kang
- College of Agriculture and Biotechnology, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing, 100193, China
| |
Collapse
|