1
|
Croce R, Carmo-Silva E, Cho YB, Ermakova M, Harbinson J, Lawson T, McCormick AJ, Niyogi KK, Ort DR, Patel-Tupper D, Pesaresi P, Raines C, Weber APM, Zhu XG. Perspectives on improving photosynthesis to increase crop yield. THE PLANT CELL 2024; 36:3944-3973. [PMID: 38701340 PMCID: PMC11449117 DOI: 10.1093/plcell/koae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/11/2024] [Accepted: 03/22/2024] [Indexed: 05/05/2024]
Abstract
Improving photosynthesis, the fundamental process by which plants convert light energy into chemical energy, is a key area of research with great potential for enhancing sustainable agricultural productivity and addressing global food security challenges. This perspective delves into the latest advancements and approaches aimed at optimizing photosynthetic efficiency. Our discussion encompasses the entire process, beginning with light harvesting and its regulation and progressing through the bottleneck of electron transfer. We then delve into the carbon reactions of photosynthesis, focusing on strategies targeting the enzymes of the Calvin-Benson-Bassham (CBB) cycle. Additionally, we explore methods to increase carbon dioxide (CO2) concentration near the Rubisco, the enzyme responsible for the first step of CBB cycle, drawing inspiration from various photosynthetic organisms, and conclude this section by examining ways to enhance CO2 delivery into leaves. Moving beyond individual processes, we discuss two approaches to identifying key targets for photosynthesis improvement: systems modeling and the study of natural variation. Finally, we revisit some of the strategies mentioned above to provide a holistic view of the improvements, analyzing their impact on nitrogen use efficiency and on canopy photosynthesis.
Collapse
Affiliation(s)
- Roberta Croce
- Department of Physics and Astronomy, Faculty of Science, Vrije Universiteit Amsterdam, Amsterdam 1081 HV, theNetherlands
| | | | - Young B Cho
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Maria Ermakova
- School of Biological Sciences, Faculty of Science, Monash University, Melbourne, VIC 3800, Australia
| | - Jeremy Harbinson
- Laboratory of Biophysics, Wageningen University, 6708 WE Wageningen, the Netherlands
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Alistair J McCormick
- School of Biological Sciences, Institute of Molecular Plant Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
- Centre for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3BF, UK
| | - Krishna K Niyogi
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Innovative Genomics Institute, University of California, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, Department of Plant Biology, University of Illinois, Urbana, IL 61801, USA
| | - Dhruv Patel-Tupper
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Paolo Pesaresi
- Department of Biosciences, University of Milan, 20133 Milan, Italy
| | - Christine Raines
- School of Life Sciences, University of Essex, Colchester, Essex CO4 3SQ, UK
| | - Andreas P M Weber
- Institute of Plant Biochemistry, Cluster of Excellence on Plant Science (CEPLAS), Heinrich Heine University, Düsseldorf 40225, Germany
| | - Xin-Guang Zhu
- Key Laboratory of Carbon Capture, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
2
|
Stirbet A, Guo Y, Lazár D, Govindjee G. From leaf to multiscale models of photosynthesis: applications and challenges for crop improvement. PHOTOSYNTHESIS RESEARCH 2024; 161:21-49. [PMID: 38619700 DOI: 10.1007/s11120-024-01083-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 01/29/2024] [Indexed: 04/16/2024]
Abstract
To keep up with the growth of human population and to circumvent deleterious effects of global climate change, it is essential to enhance crop yield to achieve higher production. Here we review mathematical models of oxygenic photosynthesis that are extensively used, and discuss in depth a subset that accounts for diverse approaches providing solutions to our objective. These include models (1) to study different ways to enhance photosynthesis, such as fine-tuning antenna size, photoprotection and electron transport; (2) to bioengineer carbon metabolism; and (3) to evaluate the interactions between the process of photosynthesis and the seasonal crop dynamics, or those that have included statistical whole-genome prediction methods to quantify the impact of photosynthesis traits on the improvement of crop yield. We conclude by emphasizing that the results obtained in these studies clearly demonstrate that mathematical modelling is a key tool to examine different approaches to improve photosynthesis for better productivity, while effective multiscale crop models, especially those that also include remote sensing data, are indispensable to verify different strategies to obtain maximized crop yields.
Collapse
Affiliation(s)
| | - Ya Guo
- Key Laboratory of Advanced Process Control for Light Industry, Ministry of Education Jiangnan University, Wuxi, 214122, China
| | - Dušan Lazár
- Department of Biophysics, Faculty of Science, Palacký Univesity, Šlechtitelů 27, 78371, Olomouc, Czech Republic
| | - Govindjee Govindjee
- Department of Biochemistry, Department of Plant Biology, and the Center of Biophysics & Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA.
| |
Collapse
|
3
|
Zhao L, Cai Z, Li Y, Zhang Y. Engineering Rubisco to enhance CO 2 utilization. Synth Syst Biotechnol 2024; 9:55-68. [PMID: 38273863 PMCID: PMC10809010 DOI: 10.1016/j.synbio.2023.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/15/2023] [Accepted: 12/25/2023] [Indexed: 01/27/2024] Open
Abstract
Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) is a pivotal enzyme that mediates the fixation of CO2. As the most abundant protein on earth, Rubisco has a significant impact on global carbon, water, and nitrogen cycles. However, the significantly low carboxylation activity and competing oxygenase activity of Rubisco greatly impede high carbon fixation efficiency. This review first summarizes the current efforts in directly or indirectly modifying plant Rubisco, which has been challenging due to its high conservation and limitations in chloroplast transformation techniques. However, recent advancements in understanding Rubisco biogenesis with the assistance of chaperones have enabled successful heterologous expression of all Rubisco forms, including plant Rubisco, in microorganisms. This breakthrough facilitates the acquisition and evaluation of modified proteins, streamlining the measurement of their activity. Moreover, the establishment of a screening system in E. coli opens up possibilities for obtaining high-performance mutant enzymes through directed evolution. Finally, this review emphasizes the utilization of Rubisco in microorganisms, not only expanding their carbon-fixing capabilities but also holding significant potential for enhancing biotransformation processes.
Collapse
Affiliation(s)
- Lei Zhao
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhen Cai
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yin Li
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yanping Zhang
- CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
4
|
Cavanagh AP, Ort DR. Transgenic strategies to improve the thermotolerance of photosynthesis. PHOTOSYNTHESIS RESEARCH 2023; 158:109-120. [PMID: 37273092 DOI: 10.1007/s11120-023-01024-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 05/04/2023] [Indexed: 06/06/2023]
Abstract
Warming driven by the accumulation of greenhouse gases in the atmosphere is irreversible over at least the next century, unless practical technologies are rapidly developed and deployed at scale to remove and sequester carbon dioxide from the atmosphere. Accepting this reality highlights the central importance for crop agriculture to develop adaptation strategies for a warmer future. While nearly all processes in plants are impacted by above optimum temperatures, the impact of heat stress on photosynthetic processes stand out for their centrality. Here, we review transgenic strategies that show promise in improving the high-temperature tolerance of specific subprocesses of photosynthesis and in some cases have already been shown in proof of concept in field experiments to protect yield from high temperature-induced losses. We also highlight other manipulations to photosynthetic processes for which full proof of concept is still lacking but we contend warrant further attention. Warming that has already occurred over the past several decades has had detrimental impacts on crop production in many parts of the world. Declining productivity presages a rapidly developing global crisis in food security particularly in low income countries. Transgenic manipulation of photosynthesis to engineer greater high-temperature resilience holds encouraging promise to help meet this challenge.
Collapse
Affiliation(s)
- Amanda P Cavanagh
- School of Life Sciences, University of Essex, Colchester, CO4 3SQ, UK
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, IL, 61801, USA.
- Departments of Plant Biology and Crop Sciences, University of Illinois, Urbana, IL, 61801, USA.
| |
Collapse
|
5
|
Li Y, Zhang P, Sheng W, Zhang Z, Rose RJ, Song Y. Securing maize reproductive success under drought stress by harnessing CO 2 fertilization for greater productivity. FRONTIERS IN PLANT SCIENCE 2023; 14:1221095. [PMID: 37860252 PMCID: PMC10582713 DOI: 10.3389/fpls.2023.1221095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 09/19/2023] [Indexed: 10/21/2023]
Abstract
Securing maize grain yield is crucial to meet food and energy needs for the future growing population, especially under frequent drought events and elevated CO2 (eCO2) due to climate change. To maximize the kernel setting rate under drought stress is a key strategy in battling against the negative impacts. Firstly, we summarize the major limitations to leaf source and kernel sink in maize under drought stress, and identified that loss in grain yield is mainly attributed to reduced kernel set. Reproductive drought tolerance can be realized by collective contribution with a greater assimilate import into ear, more available sugars for ovary and silk use, and higher capacity to remobilize assimilate reserve. As such, utilization of CO2 fertilization by improved photosynthesis and greater reserve remobilization is a key strategy for coping with drought stress under climate change condition. We propose that optimizing planting methods and mining natural genetic variation still need to be done continuously, meanwhile, by virtue of advanced genetic engineering and plant phenomics tools, the breeding program of higher photosynthetic efficiency maize varieties adapted to eCO2 can be accelerated. Consequently, stabilizing maize production under drought stress can be achieved by securing reproductive success by harnessing CO2 fertilization.
Collapse
Affiliation(s)
- Yangyang Li
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Pengpeng Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Wenjing Sheng
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Zixiang Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
| | - Ray J. Rose
- School of Environmental and Life Sciences, The University of Newcastle, Newcastle, NSW, Australia
| | - Youhong Song
- College of Agronomy, Anhui Agricultural University, Hefei, Anhui, China
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
6
|
Zuo L, Huang S, He Y, Zhang L, Cheng G, Feng Y, Han Q, Ge L, Feng L. Design, Synthesis, and Bioassay for the Thiadiazole-Bridged Thioacetamide Compound as Cy-FBP/SBPase Inhibitors Based on Catalytic Mechanism Virtual Screening. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:11834-11846. [PMID: 37498729 DOI: 10.1021/acs.jafc.3c01913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Cyanobacterial fructose-1,6-/sedoheptulose-1,7-bisphosphatase (Cy-FBP/SBPase) was an important regulatory enzyme in cyanobacterial photosynthesis and was a potential target enzyme for screening to obtain novel inhibitors against cyanobacterial blooms. In this study, we developed a novel pharmacophore screening model based on the catalytic mechanism and substrate structure of Cy-FBP/SBPase and screened 26 S series compounds with different structures and pharmacophore characteristics from the Specs database by computer-assisted drug screening. These compounds exhibited moderate inhibitory activity against Cy-FBP/SBPase, with 9 compounds inhibiting >50% at 100 μM. Among them, compound S5 showed excellent inhibitory activity against both Cy-FBP/SBPase and Synechocystis sp. PCC6803 (IC50 = 6.7 ± 0.7 μM and EC50 = 7.7 ± 1.4 μM). The binding mode of compound S5 to Cy-FBP/SBPase was predicted using the molecular docking theory and validated by sentinel mutation and enzyme activity analysis. Physiochemical, gene transcription level, and metabolomic analyses showed that compound S5 significantly reduced the quantum yield of photosystem II and the maximum electron transfer rate, downregulated transcript levels of related genes encoding the Calvin cycle and photosystem, reduced the photosynthetic efficiency of cyanobacteria, thus inhibited metabolic pathways, such as the Calvin cycle and tricarboxylic acid cycle, and eventually achieved an efficient algicide. In addition, compound S5 had a high safety profile for human-derived cells and zebrafish. In summary, the novel pharmacophore screening model obtained from the current work provides an effective solution to the cyanobacterial bloom problem.
Collapse
Affiliation(s)
- Lingzi Zuo
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Shi Huang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Yanlin He
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Liexiong Zhang
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Guonian Cheng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Yu Feng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Qiang Han
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Li Ge
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| | - Lingling Feng
- Key Laboratory of Pesticide & Chemical Biology, Ministry of Education, College of Chemistry, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan, Hubei 430083, People's Republic of China
- National Key Laboratory of Green Pesticide, Central China Normal University (CCNU), Wuhan, Hubei 430079, People's Republic of China
| |
Collapse
|
7
|
Bernacchi CJ, Ruiz-Vera UM, Siebers MH, DeLucia NJ, Ort DR. Short- and long-term warming events on photosynthetic physiology, growth, and yields of field grown crops. Biochem J 2023; 480:999-1014. [PMID: 37418286 PMCID: PMC10422931 DOI: 10.1042/bcj20220433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 07/08/2023]
Abstract
Global temperatures are rising from increasing concentrations of greenhouse gases in the atmosphere associated with anthropogenic activities. Global warming includes a warmer shift in mean temperatures as well as increases in the probability of extreme heating events, termed heat waves. Despite the ability of plants to cope with temporal variations in temperature, global warming is increasingly presenting challenges to agroecosystems. The impact of warming on crop species has direct consequences on food security, therefore understanding impacts and opportunities to adapt crops to global warming necessitates experimentation that allows for modification of growth environments to represent global warming scenarios. Published studies addressing crop responses to warming are extensive, however, in-field studies where growth temperature is manipulated to mimic global warming are limited. Here, we provide an overview of in-field heating techniques employed to understand crop responses to warmer growth environments. We then focus on key results associated with season-long warming, as expected with rising global mean temperatures, and with heat waves, as a consequence of increasing temperature variability and rising global mean temperatures. We then discuss the role of rising temperatures on atmospheric water vapor pressure deficit and potential implications for crop photosynthesis and productivity. Finally, we review strategies by which crop photosynthetic processes might be optimized to adapt crops to the increasing temperatures and frequencies of heat waves. Key findings from this review are that higher temperatures consistently reduce photosynthesis and yields of crops even as atmospheric carbon dioxide increases, yet potential strategies to minimize losses from high-temperature exist.
Collapse
Affiliation(s)
- Carl J. Bernacchi
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL, U.S.A
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
| | | | - Matthew H. Siebers
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL, U.S.A
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
| | - Nicholas J. DeLucia
- Global Change and Photosynthesis Research Unit, USDA-ARS, Urbana, IL, U.S.A
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
| | - Donald R. Ort
- Department of Plant Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
- Carl R Woese Institute for Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, U.S.A
| |
Collapse
|
8
|
He Y, Matthews ML. Seasonal climate conditions impact the effectiveness of improving photosynthesis to increase soybean yield. FIELD CROPS RESEARCH 2023; 296:108907. [PMID: 37193044 PMCID: PMC10155077 DOI: 10.1016/j.fcr.2023.108907] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/31/2023] [Accepted: 03/22/2023] [Indexed: 05/18/2023]
Abstract
Context Photosynthetic stimulations have shown promising outcomes in improving crop photosynthesis, including soybean. However, it is still unclear to what extent these changes can impact photosynthetic assimilation and yield under long-term field climate conditions. Objective In this paper, we present a systematic evaluation of the response of canopy photosynthesis and yield to two critical parameters in leaf photosynthesis: the maximum carboxylation rate of ribulose-1,5-bisphosphate carboxylase/oxygenase (Vcmax) and the maximum electron transport of the ribulose-1,5-bisphosphate regeneration rate (Jmax). Methods Using the field-scale crop model Soybean-BioCro and ten years of observed climate data in Urbana, Illinois, U.S., we conducted sensitivity experiments to estimate the changes in canopy photosynthesis, leaf area index, and biomass due to the changes in Vcmax and Jmax. Results The results show that 1) Both the canopy photosynthetic assimilation (An) and pod biomass yields were more sensitive to the changes in Jmax, particularly at high atmospheric carbon-dioxide concentrations ([CO2]); 2) Higher [CO2] undermined the effectiveness of increasing the two parameters to improve An and yield; 3) Under the same [CO2], canopy light interception and canopy respiration were key factors that undermined improvements in An and yield; 4) A canopy with smaller leaf area index tended to have a higher yield improvement, and 5) Increases in assimilations and yields were highly dependent on growing-season climatic conditions. The solar radiation, temperature, and relative humidity were the main climate drivers that impacted the yield improvement, and they had opposite correlations with improved yield during the vegetative phase compared to the reproductive phase. Conclusions In a world with elevated [CO2], genetic engineering crop photosynthesis should focus more on improving Jmax. Further, long-term climate conditions and seasonal variations must be considered to determine the improvements in soybean canopy photosynthesis and yield at the field scale. Implications Quantifying the effectiveness of changing Vcmax and Jmax helps understand their individual and combined contributions to potential improvements in assimilation and yield. This work provides a framework for evaluating how altering the photosynthetic rate parameters impacts soybean yield and assimilation under different seasonal climate scenarios at the field scale.
Collapse
Affiliation(s)
- Yufeng He
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
| | - Megan L. Matthews
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, IL 61801, USA
- Department of Civil and Environmental Engineering, University of Illinois at Urbana-Champaign, IL 61801, USA
| |
Collapse
|
9
|
Aspray EK, Mies TA, McGrath JA, Montes CM, Dalsing B, Puthuval KK, Whetten A, Herriott J, Li S, Bernacchi CJ, DeLucia EH, Leakey ADB, Long SP, McGrath JM, Miglietta F, Ort DR, Ainsworth EA. Two decades of fumigation data from the Soybean Free Air Concentration Enrichment facility. Sci Data 2023; 10:226. [PMID: 37081032 PMCID: PMC10119297 DOI: 10.1038/s41597-023-02118-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 03/28/2023] [Indexed: 04/22/2023] Open
Abstract
The Soybean Free Air Concentration Enrichment (SoyFACE) facility is the longest running open-air carbon dioxide and ozone enrichment facility in the world. For over two decades, soybean, maize, and other crops have been exposed to the elevated carbon dioxide and ozone concentrations anticipated for late this century. The facility, located in East Central Illinois, USA, exposes crops to different atmospheric concentrations in replicated octagonal ~280 m2 Free Air Concentration Enrichment (FACE) treatment plots. Each FACE plot is paired with an untreated control (ambient) plot. The experiment provides important ground truth data for predicting future crop productivity. Fumigation data from SoyFACE were collected every four seconds throughout each growing season for over two decades. Here, we organize, quality control, and collate 20 years of data to facilitate trend analysis and crop modeling efforts. This paper provides the rationale for and a description of the SoyFACE experiments, along with a summary of the fumigation data and collation process, weather and ambient data collection procedures, and explanations of air pollution metrics and calculations.
Collapse
Affiliation(s)
- Elise Kole Aspray
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Timothy A Mies
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Jesse A McGrath
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Christopher M Montes
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Bradley Dalsing
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Kannan K Puthuval
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Andrew Whetten
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, 2200 E Kenwood Blvd, Milwaukee, WI, 53211, USA
| | - Jelena Herriott
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Department of Agriculture and Applied Sciences, Langston University, 701 Sammy Davis Jr. Drive, Langston, OK, 73050, USA
| | - Shuai Li
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Carl J Bernacchi
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Evan H DeLucia
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Andrew D B Leakey
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
| | - Stephen P Long
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Justin M McGrath
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Franco Miglietta
- National Research Council of Italy, Institute for Bioeconomy (CNR IBE), Florence, Italy
| | - Donald R Ort
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA
| | - Elizabeth A Ainsworth
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, 61801, USA.
- Department of Plant Biology, University of Illinois at Urbana-Champaign, 505 S. Goodwin Ave, Urbana, IL, 61801, USA.
- Institute of Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL, 61801, USA.
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, 1102 S. Goodwin Ave, Urbana, IL, 61801, USA.
| |
Collapse
|
10
|
Doddrell NH, Lawson T, Raines CA, Wagstaff C, Simkin AJ. Feeding the world: impacts of elevated [CO 2] on nutrient content of greenhouse grown fruit crops and options for future yield gains. HORTICULTURE RESEARCH 2023; 10:uhad026. [PMID: 37090096 PMCID: PMC10116952 DOI: 10.1093/hr/uhad026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 02/13/2023] [Indexed: 05/03/2023]
Abstract
Several long-term studies have provided strong support demonstrating that growing crops under elevated [CO2] can increase photosynthesis and result in an increase in yield, flavour and nutritional content (including but not limited to Vitamins C, E and pro-vitamin A). In the case of tomato, increases in yield by as much as 80% are observed when plants are cultivated at 1000 ppm [CO2], which is consistent with current commercial greenhouse production methods in the tomato fruit industry. These results provide a clear demonstration of the potential for elevating [CO2] for improving yield and quality in greenhouse crops. The major focus of this review is to bring together 50 years of observations evaluating the impact of elevated [CO2] on fruit yield and fruit nutritional quality. In the final section, we consider the need to engineer improvements to photosynthesis and nitrogen assimilation to allow plants to take greater advantage of elevated CO2 growth conditions.
Collapse
Affiliation(s)
- Nicholas H Doddrell
- NIAB, New Road, East Malling, Kent, ME19 6BJ UK
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, UK
| | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester CO4 4SQ, UK
| | | | - Carol Wagstaff
- Department of Food and Nutritional Sciences, University of Reading, Whiteknights, Reading, Berkshire RG6 6DZ, UK
| | - Andrew J Simkin
- NIAB, New Road, East Malling, Kent, ME19 6BJ UK
- School of Biosciences, University of Kent, Canterbury, United Kingdom CT2 7NJ, UK
| |
Collapse
|
11
|
Mubarak A, Burgess A, Pyke K, Quick W, Murchie E. Mass screening of rice mutant populations at low CO 2 for identification of lowered photorespiration and respiration rates. FRONTIERS IN PLANT SCIENCE 2023; 14:1125770. [PMID: 36938057 PMCID: PMC10020370 DOI: 10.3389/fpls.2023.1125770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
INTRODUCTION Identifying rice (Oryza sativa) germplasm with improved efficiency of primary metabolism is of utmost importance in order to increase yields. One such approach can be attained through screening genetically diverse populations under altered environmental conditions. Growth or treatment under low carbon dioxide (CO2) concentrations can be used as a means of revealing altered leaf photorespiration, respiration and other metabolic variants. METHODS We developed a pipeline for very high throughput treatment of gamma- and ethyl methanesulfonate- (EMS) induced mutant populations of IR64 rice seedlings at very low CO2 for 7 days. 1050 seedlings per batch at 5th leaf stage were exposed to 60 ppm CO2 for the first day and 30 ppm for the remaining three days. Following this, putative candidates were identified by measuring chlorophyll depletion using SPAD. Screening results showed a distinct difference between the mutants and the WTs. RESULTS AND DISCUSSION The mean chlorophyll loss in WTs ranged from 65% to 11% respectively, whereas in the mutant lines chlorophyll loss ranged from 0 to 100%, suggesting considerable phenotypic variation. Rice mutants with a reduced chlorophyll reduction (<10%) were identified as 'Chlorophyll retention mutants' (CRMs) under low CO2 stress. In total, 1909 mutant lines (14,000 seedlings) were screened for chlorophyll content under 30 ppm CO2, with 26 lines selected for detailed screening. These 26 putative candidates were self-seeded to produce an M5 generation, used to determine the genetic control of the altered response to low CO2. Gas exchange of light and CO2 response revealed that there were significant variations among photosynthetic properties in two selected rice mutants. The CO2 compensation points in the absence of photorespiration and leaf respiration rates were lower than the WTs and anatomical analyses showed that CRM 29 had improved mesophyll cell area. We propose that this approach is useful for generating new material for breeding rice with improved primary metabolism.
Collapse
Affiliation(s)
- A.N.M. Mubarak
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, United Kingdom
- Department of Biosystems Technology, Faculty of Technology, South Eastern University of Sri Lanka, University Park, Oluvil, Sri Lanka
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - A.J. Burgess
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, United Kingdom
| | - K. Pyke
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, United Kingdom
| | - W.P. Quick
- International Rice Research Institute, Los Baños, Laguna, Philippines
| | - E.H. Murchie
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Leicestershire, United Kingdom
| |
Collapse
|
12
|
Eckardt NA, Ainsworth EA, Bahuguna RN, Broadley MR, Busch W, Carpita NC, Castrillo G, Chory J, DeHaan LR, Duarte CM, Henry A, Jagadish SVK, Langdale JA, Leakey ADB, Liao JC, Lu KJ, McCann MC, McKay JK, Odeny DA, Jorge de Oliveira E, Platten JD, Rabbi I, Rim EY, Ronald PC, Salt DE, Shigenaga AM, Wang E, Wolfe M, Zhang X. Climate change challenges, plant science solutions. THE PLANT CELL 2023; 35:24-66. [PMID: 36222573 PMCID: PMC9806663 DOI: 10.1093/plcell/koac303] [Citation(s) in RCA: 43] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Climate change is a defining challenge of the 21st century, and this decade is a critical time for action to mitigate the worst effects on human populations and ecosystems. Plant science can play an important role in developing crops with enhanced resilience to harsh conditions (e.g. heat, drought, salt stress, flooding, disease outbreaks) and engineering efficient carbon-capturing and carbon-sequestering plants. Here, we present examples of research being conducted in these areas and discuss challenges and open questions as a call to action for the plant science community.
Collapse
Affiliation(s)
- Nancy A Eckardt
- Senior Features Editor, The Plant Cell, American Society of Plant Biologists, USA
| | - Elizabeth A Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, Illinois 61801, USA
| | - Rajeev N Bahuguna
- Centre for Advanced Studies on Climate Change, Dr Rajendra Prasad Central Agricultural University, Samastipur 848125, Bihar, India
| | - Martin R Broadley
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Rothamsted Research, West Common, Harpenden, Hertfordshire, AL5 2JQ, UK
| | - Wolfgang Busch
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | - Nicholas C Carpita
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - Gabriel Castrillo
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Joanne Chory
- Plant Molecular and Cellular Biology Laboratory, Salk Institute for Biological Studies, La Jolla, California 92037, USA
- Howard Hughes Medical Institute, Salk Institute for Biological Studies, La Jolla, California 92037, USA
| | | | - Carlos M Duarte
- Red Sea Research Center (RSRC) and Computational Bioscience Research Center, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Saudi Arabia
| | - Amelia Henry
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - S V Krishna Jagadish
- Department of Plant and Soil Science, Texas Tech University, Lubbock, Texas 79410, USA
| | - Jane A Langdale
- Department of Biology, University of Oxford, Oxford, OX1 3RB, UK
| | - Andrew D B Leakey
- Department of Plant Biology, Department of Crop Sciences, and Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Illinois 61801, USA
| | - James C Liao
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Kuan-Jen Lu
- Institute of Biological Chemistry, Academia Sinica, Taipei 11528, Taiwan
| | - Maureen C McCann
- Biosciences Center, National Renewable Energy Laboratory, Golden, Colorado 80401, USA
| | - John K McKay
- Department of Agricultural Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Damaris A Odeny
- The International Crops Research Institute for the Semi-Arid Tropics–Eastern and Southern Africa, Gigiri 39063-00623, Nairobi, Kenya
| | | | - J Damien Platten
- International Rice Research Institute, Rice Breeding Innovations Platform, Los Baños, Laguna 4031, Philippines
| | - Ismail Rabbi
- International Institute of Tropical Agriculture (IITA), PMB 5320 Ibadan, Oyo, Nigeria
| | - Ellen Youngsoo Rim
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Pamela C Ronald
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
- Innovative Genomics Institute, Berkeley, California 94704, USA
| | - David E Salt
- School of Biosciences, University of Nottingham, Nottingham, NG7 2RD, UK
- Future Food Beacon of Excellence, University of Nottingham, Nottingham, NG7 2RD, UK
| | - Alexandra M Shigenaga
- Department of Plant Pathology and the Genome Center, University of California, Davis, California 95616, USA
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| | - Marnin Wolfe
- Auburn University, Dept. of Crop Soil and Environmental Sciences, College of Agriculture, Auburn, Alabama 36849, USA
| | - Xiaowei Zhang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Singh J, Kaushik S, Maharana C, Jhingan GD, Dhar DW. Elevated inorganic carbon and salinity enhances photosynthesis and ATP synthesis in picoalga Picocystis salinarum as revealed by label free quantitative proteomics. Front Microbiol 2023; 14:1059199. [PMID: 36937286 PMCID: PMC10020504 DOI: 10.3389/fmicb.2023.1059199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 01/27/2023] [Indexed: 03/06/2023] Open
Abstract
Saline soda lakes are of immense ecological value as they niche some of the most exclusive haloalkaliphilic communities dominated by bacterial and archaeal domains, with few eukaryotic algal representatives. A handful reports describe Picocystis as a key primary producer with great production rates in extremely saline alkaline habitats. An extremely haloalkaliphilic picoalgal strain, Picocystis salinarum SLJS6 isolated from hypersaline soda lake Sambhar, Rajasthan, India, grew robustly in an enriched soda lake medium containing mainly Na2CO3, 50 g/l; NaHCO3, 50 g/l, NaCl, 50 g/l (salinity ≈150‰) at pH 10. To elucidate the molecular basis of such adaptation to high inorganic carbon and NaCl concentrations, a high-throughput label-free quantitation based quantitative proteomics approach was applied. Out of the total 383 proteins identified in treated samples, 225 were differentially abundant proteins (DAPs), of which 150 were statistically significant (p < 0.05) including 70 upregulated and 64 downregulated proteins after 3 days of growth in highly saline-alkaline medium. Most DAPs were involved in photosynthesis, oxidative phosphorylation, glucose metabolism and ribosomal structural components envisaging that photosynthesis and ATP synthesis were central to the salinity-alkalinity response. Key components of photosynthetic machinery like photosystem reaction centres, adenosine triphosphate (ATP) synthase ATP, Rubisco, Fructose-1,6-bisphosphatase, Fructose-bisphosphate aldolase were highly upregulated. Enzymes peptidylprolyl isomerases (PPIase), important for correct protein folding showed remarkable marked-up regulation along with other chaperon proteins indicating their role in osmotic adaptation. Enhanced photosynthetic activity exhibited by P. salinarum in highly saline-alkaline condition is noteworthy as photosynthesis is suppressed under hyperosmotic conditions in most photosynthetic organisms. The study provided the first insights into the proteome of extremophilic alga P. salinarum exhibiting extraordinary osmotic adaptation and proliferation in polyextreme conditions prevailing in saline sodic ecosystems, potentially unraveling the basis of resilience in this not so known organism and paves the way for a promising future candidate for biotechnological applications and model organism for deciphering the molecular mechanisms of osmotic adaptation. The mass spectrometry proteomics data is available at the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD037170.
Collapse
Affiliation(s)
- Jyoti Singh
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
- Department of Earth Sciences, Pondicherry University, Puducherry, India
- *Correspondence: Jyoti Singh,
| | - Shubham Kaushik
- Vproteomics, Valerian Chem Private Limited, New Delhi, India
| | - Chinmaya Maharana
- Department of Earth Sciences, Pondicherry University, Puducherry, India
- Water Technology Centre, Indian Agricultural Research Institute, New Delhi, India
| | | | - Dolly Wattal Dhar
- Centre for Conservation and Utilization of Blue Green Algae, Division of Microbiology, Indian Agricultural Research Institute, New Delhi, India
- School of Agricultural Sciences, Sharda University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
14
|
Wang A, Lv J, Wang J, Shi K. CO 2 enrichment in greenhouse production: Towards a sustainable approach. FRONTIERS IN PLANT SCIENCE 2022; 13:1029901. [PMID: 36340349 PMCID: PMC9634482 DOI: 10.3389/fpls.2022.1029901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 10/07/2022] [Indexed: 05/03/2023]
Abstract
As the unique source of carbon in the atmosphere, carbon dioxide (CO2) exerts a strong impact on crop yield and quality. However, CO2 deficiency in greenhouses during the daytime often limits crop productivity. Crucially, climate warming, caused by increased atmospheric CO2, urges global efforts to implement carbon reduction and neutrality, which also bring challenges to current CO2 enrichment systems applied in greenhouses. Thus, there is a timely need to develop cost-effective and environmentally friendly CO2 enrichment technologies as a sustainable approach to promoting agricultural production and alleviating environmental burdens simultaneously. Here we review several common technologies of CO2 enrichment in greenhouse production, and their characteristics and limitations. Some control strategies of CO2 enrichment in distribution, period, and concentration are also discussed. We further introduce promising directions for future CO2 enrichment including 1) agro-industrial symbiosis system (AIS); 2) interdisciplinary application of carbon capture and utilization (CCU); and 3) optimization of CO2 assimilation in C3 crops via biotechnologies. This review aims to provide perspectives on efficient CO2 utilization in greenhouse production.
Collapse
Affiliation(s)
- Anran Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Jianrong Lv
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Jiao Wang
- Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Kai Shi
- Department of Horticulture, Zhejiang University, Hangzhou, China
- Yazhou Bay Science and Technology City, Hainan Institute, Zhejiang University, Sanya, China
| |
Collapse
|
15
|
Raines CA. Improving plant productivity by re-tuning the regeneration of RuBP in the Calvin-Benson-Bassham cycle. THE NEW PHYTOLOGIST 2022; 236:350-356. [PMID: 35860861 PMCID: PMC9833393 DOI: 10.1111/nph.18394] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 06/30/2022] [Indexed: 05/03/2023]
Abstract
The Calvin-Benson-Bassham (CBB) cycle is arguably the most important pathway on earth, capturing CO2 from the atmosphere and converting it into organic molecules, providing the basis for life on our planet. This cycle has been intensively studied over the 50 yr since it was elucidated, and it is highly conserved across nature, from cyanobacteria to the largest of our land plants. Eight out of the 11 enzymes in this cycle catalyse the regeneration of ribulose-1-5 bisphosphate (RuBP), the CO2 acceptor molecule. The potential to manipulate RuBP regeneration to improve photosynthesis has been demonstrated in a number of plant species, and the development of new technologies, such as omics and synthetic biology provides exciting future opportunities to improve photosynthesis and increase crop yields.
Collapse
Affiliation(s)
- Christine A. Raines
- School of Life SciencesUniversity of EssexWivenhoe ParkColchesterEssexCO3 4JEUK
| |
Collapse
|
16
|
Montes CM, Demler HJ, Li S, Martin DG, Ainsworth EA. Approaches to investigate crop responses to ozone pollution: from O 3 -FACE to satellite-enabled modeling. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:432-446. [PMID: 34555243 PMCID: PMC9293421 DOI: 10.1111/tpj.15501] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 09/08/2021] [Accepted: 09/16/2021] [Indexed: 05/05/2023]
Abstract
Ozone (O3 ) is a damaging air pollutant to crops. As one of the most reactive oxidants known, O3 rapidly forms other reactive oxygen species (ROS) once it enters leaves through stomata. Those ROS in turn can cause oxidative stress, reduce photosynthesis, accelerate senescence, and decrease crop yield. To improve and adapt our feed, fuel, and food supply to rising O3 pollution, a number of Free Air Concentration Enrichment (O3 -FACE) facilities have been developed around the world and have studied key staple crops. In this review, we provide an overview of the FACE facilities and highlight some of the lessons learned from the last two decades of research. We discuss the differences between C3 and C4 crop responses to elevated O3 , the possible trade-off between productivity and protection, genetic variation in O3 response within and across species, and how we might leverage this observed variation for crop improvement. We also highlight the need to improve understanding of the interaction between rising O3 pollution and other aspects of climate change, notably drought. Finally, we propose the use of globally modeled O3 data that are available at increasing spatial and temporal resolutions to expand upon the research conducted at the limited number of global O3 -FACE facilities.
Collapse
Affiliation(s)
- Christopher M. Montes
- USDA ARS Global Change and Photosynthesis Research Unit1201 W. Gregory DriveUrbanaIL61801USA
| | - Hannah J. Demler
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Shuai Li
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Duncan G. Martin
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Elizabeth A. Ainsworth
- USDA ARS Global Change and Photosynthesis Research Unit1201 W. Gregory DriveUrbanaIL61801USA
- DOE Center for Advanced Bioenergy and Bioproducts Innovation and Carl R. Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| |
Collapse
|
17
|
Sekhar KM, Kota VR, Reddy TP, Rao KV, Reddy AR. Amelioration of plant responses to drought under elevated CO 2 by rejuvenating photosynthesis and nitrogen use efficiency: implications for future climate-resilient crops. PHOTOSYNTHESIS RESEARCH 2021; 150:21-40. [PMID: 32632534 DOI: 10.1007/s11120-020-00772-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 06/24/2020] [Indexed: 05/15/2023]
Abstract
The contemporary global agriculture is beset with serious threats from diverse eco-environmental conditions causing decreases in crop yields by ~ 15%. These yield losses might increase further due to climate change scenarios leading to increased food prices triggering social unrest and famines. Urbanization and industrialization are often associated with rapid increases in greenhouse gases (GHGs) especially atmospheric CO2 concentration [(CO2)]. Increase in atmospheric [CO2] significantly improved crop photosynthesis and productivity initially which vary with plant species, genotype, [CO2] exposure time and biotic as well as abiotic stress factors. Numerous attempts have been made using different plant species to unravel the physiological, cellular and molecular effects of elevated [CO2] as well as drought. This review focuses on plant responses to elevated [CO2] and drought individually as well as in combination with special reference to physiology of photosynthesis including its acclimation. Furthermore, the functional role of nitrogen use efficiency (NUE) and its relation to photosynthetic acclimation and crop productivity under elevated [CO2] and drought are reviewed. In addition, we also discussed different strategies to ameliorate the limitations of ribulose-1,5-bisphosphate (RuBP) carboxylation and RuBP regeneration. Further, improved stomatal and mesophyll conductance and NUE for enhanced crop productivity under fast changing global climate conditions through biotechnological approaches are also discussed here. We conclude that multiple gene editing approaches for key events in photosynthetic processes would serve as the best strategy to generate resilient crop plants with improved productivity under fast changing climate.
Collapse
Affiliation(s)
- Kalva Madhana Sekhar
- Center for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India
| | - Vamsee Raja Kota
- Center for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India
| | - T Papi Reddy
- Center for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India
| | - K V Rao
- Center for Plant Molecular Biology (CPMB), Osmania University, Hyderabad, Telangana, 500007, India
| | | |
Collapse
|
18
|
Hussain S, Ulhassan Z, Brestic M, Zivcak M, Allakhverdiev SI, Yang X, Safdar ME, Yang W, Liu W. Photosynthesis research under climate change. PHOTOSYNTHESIS RESEARCH 2021; 150:5-19. [PMID: 34235625 DOI: 10.1007/s11120-021-00861-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 06/28/2021] [Indexed: 05/13/2023]
Abstract
Increasing global population and climate change uncertainties have compelled increased photosynthetic efficiency and yields to ensure food security over the coming decades. Potentially, genetic manipulation and minimization of carbon or energy losses can be ideal to boost photosynthetic efficiency or crop productivity. Despite significant efforts, limited success has been achieved. There is a need for thorough improvement in key photosynthetic limiting factors, such as stomatal conductance, mesophyll conductance, biochemical capacity combined with Rubisco, the Calvin-Benson cycle, thylakoid membrane electron transport, nonphotochemical quenching, and carbon metabolism or fixation pathways. In addition, the mechanistic basis for the enhancement in photosynthetic adaptation to environmental variables such as light intensity, temperature and elevated CO2 requires further investigation. This review sheds light on strategies to improve plant photosynthesis by targeting these intrinsic photosynthetic limitations and external environmental factors.
Collapse
Affiliation(s)
- Sajad Hussain
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, People's Republic of China
| | - Zaid Ulhassan
- Institute of Crop Science, Ministry of Agriculture and Rural Affairs Laboratory of Spectroscopy Sensing, Zhejiang University, Hangzhou, 310058, People's Republic of China
| | - Marian Brestic
- Department of Plant Physiology, Slovak University of Agriculture, 94976, Nitra, Slovakia
| | - Marek Zivcak
- Department of Plant Physiology, Slovak University of Agriculture, 94976, Nitra, Slovakia
| | - Suleyman I Allakhverdiev
- К.A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, Botanicheskaya St. 35, Moscow, Russia, 127276
| | - Xinghong Yang
- Department of Plant Physiology, College of Life Sciences, Shandong Agricultural University, Daizong Road No. 61, 271018, Taian, People's Republic of China
| | | | - Wenyu Yang
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, People's Republic of China.
| | - Weiguo Liu
- College of Agronomy, Sichuan Agricultural University, 211-Huimin Road, Wenjiang District, Chengdu, 611130, People's Republic of China.
- Key Laboratory of Crop Ecophysiology and Farming System in Southwest China (Ministry of Agriculture), Sichuan Engineering Research Center for Crop Strip Intercropping System, Sichuan Agricultural University, Chengdu, People's Republic of China.
| |
Collapse
|
19
|
Liu Z, Song J, Miao W, Yang B, Zhang Z, Chen W, Tan F, Suo H, Dai X, Zou X, Ou L. Comprehensive Proteome and Lysine Acetylome Analysis Reveals the Widespread Involvement of Acetylation in Cold Resistance of Pepper ( Capsicum annuum L.). FRONTIERS IN PLANT SCIENCE 2021; 12:730489. [PMID: 34512705 PMCID: PMC8429487 DOI: 10.3389/fpls.2021.730489] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/27/2021] [Indexed: 06/13/2023]
Abstract
Pepper is a typical warmth-loving vegetable that lacks a cold acclimation mechanism and is sensitive to cold stress. Lysine acetylation plays an important role in diverse cellular processes, but limited knowledge is available regarding acetylation modifications in the resistance of pepper plants to cold stress. In this study, the proteome and acetylome of two pepper varieties with different levels of cold resistance were investigated by subjecting them to cold treatments of varying durations followed by recovery periods. In total, 6,213 proteins and 4,574 lysine acetylation sites were identified, and this resulted in the discovery of 3,008 differentially expressed proteins and 768 differentially expressed acetylated proteins. A total of 1,988 proteins were identified in both the proteome and acetylome, and the functional differences in these co-identified proteins were elucidated through GO enrichment. KEGG analysis showed that 397 identified acetylated proteins were involved in 93 different metabolic pathways. The dynamic changes in the acetylated proteins in photosynthesis and the "carbon fixation in the photosynthetic organisms" pathway in pepper under low-temperature stress were further analyzed. It was found that acetylation of the PsbO and PsbR proteins in photosystem II and the PsaN protein in photosystem I could regulate the response of pepper leaves to cold stress. The acetylation levels of key carbon assimilation enzymes, such as ribulose bisphosphate carboxylase, fructose-1,6-bisphosphatase, sedoheptulose-1,7-bisphosphatase, glyceraldehyde 3-phosphate dehydrogenase, phosphoribulokinase, and triosephosphate isomerase decreased, leading to decreases in carbon assimilation capacity and photosynthetic efficiency, reducing the cold tolerance of pepper leaves. This study is the first to identify the acetylome in pepper, and it greatly expands the catalog of lysine acetylation substrates and sites in Solanaceae crops, providing new insights for posttranslational modification studies.
Collapse
Affiliation(s)
- Zhoubin Liu
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Jingshuang Song
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Wu Miao
- Hunan Xiangyan Seed Industry Co., Ltd, Changsha, China
| | - Bozhi Yang
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Zhuqing Zhang
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Wenchao Chen
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Fangjun Tan
- Vegetable Research Institute, Hunan Academy of Agricultural Science, Changsha, China
| | - Huan Suo
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Xiongze Dai
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Xuexiao Zou
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| | - Lijun Ou
- College of Horticulture, Hunan Agricultural University, Changsha, China
- ERC for Germplasm Innovation and New Variety Breeding of Horticultural Crops, Changsha, China
- Key Laboratory for Vegetable Biology of Hunan Province, Changsha, China
| |
Collapse
|
20
|
Xu K, Zhang XM, Chen H, Zhang C, Zhu J, Cheng Z, Huang P, Zhou X, Miao Y, Feng X, Fu YF. Fine-Tuning Florigen Increases Field Yield Through Improving Photosynthesis in Soybean. FRONTIERS IN PLANT SCIENCE 2021; 12:710754. [PMID: 34484271 PMCID: PMC8415793 DOI: 10.3389/fpls.2021.710754] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/28/2021] [Indexed: 05/29/2023]
Abstract
Crop yield has been maintaining its attraction for researchers because of the demand of global population growth. Mutation of flowering activators, such as florigen, increases plant biomass at the expense of later flowering, which prevents crop maturity in the field. As a result, it is difficult to apply flowering activators in agriculture production. Here, we developed a strategy to utilize florigen to significantly improve soybean yield in the field. Through the screening of transgenic lines of RNAi-silenced florigen homologs in soybean (Glycine-max-Flowering Locus T Like, GmFTL), we identified a line, GmFTL-RNAi#1, with minor changes in both GmFTL expression and flowering time but with notable increase in soybean yield. As expected, GmFTL-RNAi#1 matured normally in the field and exhibited markedly high yield over multiple locations and years, indicating that it is possible to reach a trade-off between flowering time and high yield through the fine-tuning expression of flowering activators. Further studies uncovered an unknown mechanism by which GmFTL negatively regulates photosynthesis, a substantial source of crop yield, demonstrating a novel function of florigen. Thus, because of the highly conserved functions of florigen in plants and the classical RNAi approach, the findings provide a promising strategy to harness early flowering genes to improve crop yield.
Collapse
Affiliation(s)
- Kun Xu
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Xiao-Mei Zhang
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haifeng Chen
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Chanjuan Zhang
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Jinlong Zhu
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
- Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Harbin, China
| | - Zhiyuan Cheng
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Penghui Huang
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinan Zhou
- Oil Crops Research Institute, Chinese Academy of Agricultural Sciences, Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, China
| | - Yuchen Miao
- Key Laboratory of Plant Stress Biology, State Key Laboratory of Cotton Biology, School of Life Sciences, Henan University, Kaifeng, China
| | - Xianzhong Feng
- CAS Key Laboratory of Soybean Molecular Design Breeding, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Yong-Fu Fu
- MOA Key Laboratory of Soybean Biology, National Key Facility of Crop Gene Resource and Genetic Improvement, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
21
|
Kaul S, Choudhary M, Gupta S, Dhar MK. Engineering Host Microbiome for Crop Improvement and Sustainable Agriculture. Front Microbiol 2021; 12:635917. [PMID: 34122359 PMCID: PMC8193672 DOI: 10.3389/fmicb.2021.635917] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 04/16/2021] [Indexed: 12/27/2022] Open
Abstract
Dynamic consortium of microbial communities (bacteria, fungi, protists, viruses, and nematodes) colonizing multiple tissue types and coevolving conclusively with the host plant is designated as a plant microbiome. The interplay between plant and its microbial mutualists supports several agronomic functions, establishing its crucial role in plant beneficial activities. Deeper functional and mechanistic understanding of plant-microbial ecosystems will render many "ecosystem services" by emulating symbiotic interactions between plants, soil, and microbes for enhanced productivity and sustainability. Therefore, microbiome engineering represents an emerging biotechnological tool to directly add, remove, or modify properties of microbial communities for higher specificity and efficacy. The main goal of microbiome engineering is enhancement of plant functions such as biotic/abiotic stresses, plant fitness and productivities, etc. Various ecological-, biochemical-, and molecular-based approaches have come up as a new paradigm for disentangling many microbiome-based agromanagement hurdles. Furthermore, multidisciplinary approaches provide a predictive framework in achieving a reliable and sustainably engineered plant-microbiome for stress physiology, nutrient recycling, and high-yielding disease-resistant genotypes.
Collapse
Affiliation(s)
- Sanjana Kaul
- School of Biotechnology, University of Jammu, Jammu, India
| | | | - Suruchi Gupta
- School of Biotechnology, University of Jammu, Jammu, India
| | - Manoj K Dhar
- School of Biotechnology, University of Jammu, Jammu, India
| |
Collapse
|
22
|
Aluko OO, Li C, Wang Q, Liu H. Sucrose Utilization for Improved Crop Yields: A Review Article. Int J Mol Sci 2021; 22:4704. [PMID: 33946791 PMCID: PMC8124652 DOI: 10.3390/ijms22094704] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 04/14/2021] [Accepted: 04/17/2021] [Indexed: 12/13/2022] Open
Abstract
Photosynthetic carbon converted to sucrose is vital for plant growth. Sucrose acts as a signaling molecule and a primary energy source that coordinates the source and sink development. Alteration in source-sink balance halts the physiological and developmental processes of plants, since plant growth is mostly triggered when the primary assimilates in the source leaf balance with the metabolic needs of the heterotrophic sinks. To measure up with the sink organ's metabolic needs, the improvement of photosynthetic carbon to synthesis sucrose, its remobilization, and utilization at the sink level becomes imperative. However, environmental cues that influence sucrose balance within these plant organs, limiting positive yield prospects, have also been a rising issue over the past few decades. Thus, this review discusses strategies to improve photosynthetic carbon assimilation, the pathways actively involved in the transport of sucrose from source to sink organs, and their utilization at the sink organ. We further emphasize the impact of various environmental cues on sucrose transport and utilization, and the strategic yield improvement approaches under such conditions.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao 266101, China; (O.O.A.); (C.L.)
| |
Collapse
|
23
|
Horton P, Long SP, Smith P, Banwart SA, Beerling DJ. Technologies to deliver food and climate security through agriculture. NATURE PLANTS 2021; 7:250-255. [PMID: 33731918 DOI: 10.1038/s41477-021-00877-2] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 02/08/2021] [Indexed: 06/12/2023]
Abstract
Agriculture is a major contributor to environmental degradation and climate change. At the same time, a growing human population with changing dietary preferences is driving ever increasing demand for food. The need for urgent reform of agriculture is widely recognized and has resulted in a number of ambitious plans. However, there is credible evidence to suggest that these are unlikely to meet the twin objectives of keeping the increase in global temperature within the target of 2.0 °C above preindustrial levels set out in the Paris Agreement and delivering global food security. Here, we discuss a series of technological options to bring about change in agriculture for delivering food security and providing multiple routes to the removal of CO2 from the atmosphere. These technologies include the use of silicate amendment of soils to sequester atmospheric CO2, agronomy technologies to increase soil organic carbon, and high-yielding resource-efficient crops to deliver increased agricultural yield, thus freeing land that is less suited for intensive cropping for land use practices that will further increase carbon storage. Such alternatives include less intensive regenerative agriculture, afforestation and bioenergy crops coupled with carbon capture and storage technologies.
Collapse
Affiliation(s)
- Peter Horton
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield, UK
| | - Stephen P Long
- Carl R. Woese Institute of Genomic Biology, University of Illinois, Urbana, IL, USA
- Lancaster Environment Centre, Lancaster University, Bailrigg, UK
| | - Pete Smith
- Institute of Biological and Environmental Sciences, University of Aberdeen, Aberdeen, UK
| | - Steven A Banwart
- Global Food and Environment Institute, School of Earth and Environment, University of Leeds, Leeds, UK
| | - David J Beerling
- Leverhulme Centre for Climate Change Mitigation, Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| |
Collapse
|
24
|
Slattery RA, Ort DR. Perspectives on improving light distribution and light use efficiency in crop canopies. PLANT PHYSIOLOGY 2021; 185:34-48. [PMID: 33631812 PMCID: PMC8133579 DOI: 10.1093/plphys/kiaa006] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 10/03/2020] [Indexed: 05/22/2023]
Abstract
Plant stands in nature differ markedly from most seen in modern agriculture. In a dense mixed stand, plants must vie for resources, including light, for greater survival and fitness. Competitive advantages over surrounding plants improve fitness of the individual, thus maintaining the competitive traits in the gene pool. In contrast, monoculture crop production strives to increase output at the stand level and thus benefits from cooperation to increase yield of the community. In choosing plants with higher yields to propagate and grow for food, humans may have inadvertently selected the best competitors rather than the best cooperators. Here, we discuss how this selection for competitiveness has led to overinvestment in characteristics that increase light interception and, consequently, sub-optimal light use efficiency in crop fields that constrains yield improvement. Decades of crop canopy modeling research have provided potential strategies for improving light distribution in crop canopies, and we review the current progress of these strategies, including balancing light distribution through reducing pigment concentration. Based on recent research revealing red-shifted photosynthetic pigments in algae and photosynthetic bacteria, we also discuss potential strategies for optimizing light interception and use through introducing alternative pigment types in crops. These strategies for improving light distribution and expanding the wavelengths of light beyond those traditionally defined for photosynthesis in plant canopies may have large implications for improving crop yield and closing the yield gap.
Collapse
Affiliation(s)
- Rebecca A Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Donald R Ort
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Departments of Plant Biology & Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Author for communication:
| |
Collapse
|
25
|
|
26
|
Multi-gene metabolic engineering of tomato plants results in increased fruit yield up to 23%. Sci Rep 2020; 10:17219. [PMID: 33057137 PMCID: PMC7560729 DOI: 10.1038/s41598-020-73709-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 08/31/2020] [Indexed: 12/14/2022] Open
Abstract
The capacity to assimilate carbon and nitrogen, to transport the resultant sugars and amino acids to sink tissues, and to convert the incoming sugars and amino acids into storage compounds in the sink tissues, are key determinants of crop yield. Given that all of these processes have the potential to co-limit growth, multiple genetic interventions in source and sink tissues, plus transport processes may be necessary to reach the full yield potential of a crop. We used biolistic combinatorial co-transformation (up to 20 transgenes) for increasing C and N flows with the purpose of increasing tomato fruit yield. We observed an increased fruit yield of up to 23%. To better explore the reconfiguration of metabolic networks in these transformants, we generated a dataset encompassing physiological parameters, gene expression and metabolite profiling on plants grown under glasshouse or polytunnel conditions. A Sparse Partial Least Squares regression model was able to explain the combination of genes that contributed to increased fruit yield. This combinatorial study of multiple transgenes targeting primary metabolism thus offers opportunities to probe the genetic basis of metabolic and phenotypic variation, providing insight into the difficulties in choosing the correct combination of targets for engineering increased fruit yield.
Collapse
|
27
|
Mitchell MC, Pritchard J, Okada S, Zhang J, Venables I, Vanhercke T, Ral J. Increasing growth and yield by altering carbon metabolism in a transgenic leaf oil crop. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:2042-2052. [PMID: 32069385 PMCID: PMC7539989 DOI: 10.1111/pbi.13363] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 02/11/2020] [Indexed: 05/14/2023]
Abstract
Engineering high biomass plants that produce oil (triacylglycerol or TAG) in vegetative rather than seed-related tissues could help meet our growing demand for plant oil. Several studies have already demonstrated the potential of this approach by creating transgenic crop and model plants that accumulate TAG in their leaves and stems. However, TAG synthesis may compete with other important carbon and energy reserves, including carbohydrate production, and thereby limit plant growth. The aims of this study were thus: first, to investigate the effect of TAG accumulation on growth and development of previously generated high leaf oil tobacco plants; and second, to increase plant growth and/or oil yields by further altering carbon fixation and partitioning. This study showed that TAG accumulation varied with leaf and plant developmental stage, affected leaf carbon and nitrogen partitioning and reduced the relative growth rate and final biomass of high leaf oil plants. To overcome these growth limitations, four genes related to carbon fixation (encoding CBB cycle enzymes SBPase and chloroplast-targeted FBPase) or carbon partitioning (encoding sucrose biosynthetic enzyme cytosolic FBPase and lipid-related transcription factor DOF4) were overexpressed in high leaf oil plants. In glasshouse conditions, all four constructs increased early growth without affecting TAG accumulation while chloroplast-targeted FBPase and DOF4 also increased final biomass and oil yields. These results highlight the reliance of plant growth on carbon partitioning, in addition to carbon supply, and will guide future attempts to improve biomass and TAG accumulation in transgenic leaf oil crops.
Collapse
Affiliation(s)
- Madeline C. Mitchell
- RMIT UniversityMelbourneVicAustralia
- Food Agility Cooperative Research CentreSydneyNSWAustralia
- Commonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| | - Jenifer Pritchard
- Commonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| | - Shoko Okada
- Commonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| | - Jing Zhang
- Commonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| | - Ingrid Venables
- Commonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| | - Thomas Vanhercke
- Commonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| | - Jean‐Philippe Ral
- Commonwealth Scientific and Industrial Research OrganisationCanberraACTAustralia
| |
Collapse
|
28
|
López-Calcagno PE, Brown KL, Simkin AJ, Fisk SJ, Vialet-Chabrand S, Lawson T, Raines CA. Stimulating photosynthetic processes increases productivity and water-use efficiency in the field. NATURE PLANTS 2020; 6:1054-1063. [PMID: 32782406 DOI: 10.1038/s41477-020-0740-1] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 07/08/2020] [Indexed: 05/20/2023]
Abstract
Previous studies have demonstrated that the independent stimulation of either electron transport or RuBP regeneration can increase the rate of photosynthetic carbon assimilation and plant biomass. In this paper, we present evidence that a multigene approach to simultaneously manipulate these two processes provides a further stimulation of photosynthesis. We report on the introduction of the cyanobacterial bifunctional enzyme fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase or the overexpression of the plant enzyme sedoheptulose-1,7-bisphosphatase, together with the expression of the red algal protein cytochrome c6, and show that a further increase in biomass accumulation under both glasshouse and field conditions can be achieved. Furthermore, we provide evidence that the stimulation of both electron transport and RuBP regeneration can lead to enhanced intrinsic water-use efficiency under field conditions.
Collapse
Affiliation(s)
| | - Kenny L Brown
- School of Life Sciences, University of Essex, Colchester, UK
| | - Andrew J Simkin
- School of Life Sciences, University of Essex, Colchester, UK
- Genetics, Genomics and Breeding, NIAB EMR, East Malling, UK
| | - Stuart J Fisk
- School of Life Sciences, University of Essex, Colchester, UK
| | | | - Tracy Lawson
- School of Life Sciences, University of Essex, Colchester, UK
| | | |
Collapse
|
29
|
Li C, Li N, Huang R, Chen C, Guo J, Yang X, Zhang X, Sun C, Deng X, Wang P. A single nucleotide substitution at the 3'-end of SBPase gene involved in Calvin cycle severely affects plant growth and grain yield in rice. BMC PLANT BIOLOGY 2020; 20:345. [PMID: 32698774 PMCID: PMC7374905 DOI: 10.1186/s12870-020-02541-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Calvin cycle plays a crucial role in carbon fixation which provides the precursors of organic macromolecules for plant growth and development. Currently, no gene involved in Calvin cycle has been identified in monocotyledonous plants through mutant or/and map-based cloning approach. RESULTS Here, we isolated a low-tillering mutant, c6635, in rice (Oryza sativa). The mutant displayed light green leaves and intensely declined pigment contents and photosynthetic capacity at early growth stage. Moreover, its individual plant showed a much smaller size, and most individuals produced only two tillers. At mature stage, its productive panicles, grain number and seed setting rate were significantly decreased, which lead to a sharp reduction of the grain yield. We confirmed that a single nucleotide mutation in LOC_Os04g16680 gene encoding sedoheptulose 1,7-bisphosphatase (SBPase) involved in Calvin cycle was responsible for the mutant phenotype of c6635 through map-based cloning, MutMap analysis and complementation experiments. Sequence analysis suggested that the point mutation caused an amino acid change from Gly-364 to Asp at the C-terminal of SBPase. In addition, OsSBPase gene was mainly expressed in leaf, and the encoded protein was located in chloroplast. The mutation of OsSBPase could significantly affect expression levels of some key genes involved in Calvin cycle. CONCLUSIONS We successfully identified a SBPase gene in monocotyledonous plants. Meanwhile, we demonstrated that a single nucleotide substitution at the 3'-end of this gene severely affects plant growth and grain yield, implying that the Gly-364 at the C-terminal of SBPase could play an important role in SBPase function in rice.
Collapse
Affiliation(s)
- Chun Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Na Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Rui Huang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Congping Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Jia Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiaorong Yang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiangyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Changhui Sun
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China
| | - Xiaojian Deng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| | - Pingrong Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang District, Chengdu, 611130, China.
| |
Collapse
|
30
|
Baslam M, Mitsui T, Hodges M, Priesack E, Herritt MT, Aranjuelo I, Sanz-Sáez Á. Photosynthesis in a Changing Global Climate: Scaling Up and Scaling Down in Crops. FRONTIERS IN PLANT SCIENCE 2020; 11:882. [PMID: 32733499 PMCID: PMC7357547 DOI: 10.3389/fpls.2020.00882] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 05/29/2020] [Indexed: 05/06/2023]
Abstract
Photosynthesis is the major process leading to primary production in the Biosphere. There is a total of 7000bn tons of CO2 in the atmosphere and photosynthesis fixes more than 100bn tons annually. The CO2 assimilated by the photosynthetic apparatus is the basis of crop production and, therefore, of animal and human food. This has led to a renewed interest in photosynthesis as a target to increase plant production and there is now increasing evidence showing that the strategy of improving photosynthetic traits can increase plant yield. However, photosynthesis and the photosynthetic apparatus are both conditioned by environmental variables such as water availability, temperature, [CO2], salinity, and ozone. The "omics" revolution has allowed a better understanding of the genetic mechanisms regulating stress responses including the identification of genes and proteins involved in the regulation, acclimation, and adaptation of processes that impact photosynthesis. The development of novel non-destructive high-throughput phenotyping techniques has been important to monitor crop photosynthetic responses to changing environmental conditions. This wealth of data is being incorporated into new modeling algorithms to predict plant growth and development under specific environmental constraints. This review gives a multi-perspective description of the impact of changing environmental conditions on photosynthetic performance and consequently plant growth by briefly highlighting how major technological advances including omics, high-throughput photosynthetic measurements, metabolic engineering, and whole plant photosynthetic modeling have helped to improve our understanding of how the photosynthetic machinery can be modified by different abiotic stresses and thus impact crop production.
Collapse
Affiliation(s)
- Marouane Baslam
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
| | - Toshiaki Mitsui
- Laboratory of Biochemistry, Faculty of Agriculture, Niigata University, Niigata, Japan
- Graduate School of Science and Technology, Niigata University, Niigata, Japan
| | - Michael Hodges
- Institute of Plant Sciences Paris-Saclay (IPS2), CNRS, INRAE, Université Paris-Saclay, Université Evry, Université Paris Diderot, Paris, France
| | - Eckart Priesack
- Institute of Biochemical Plant Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Matthew T. Herritt
- USDA-ARS Plant Physiology and Genetics Research, US Arid-Land Agricultural Research Center, Maricopa, AZ, United States
| | - Iker Aranjuelo
- Agrobiotechnology Institute (IdAB-CSIC), Consejo Superior de Investigaciones Científicas-Gobierno de Navarra, Mutilva, Spain
| | - Álvaro Sanz-Sáez
- Department of Crop, Soil, and Environmental Sciences, Auburn University, Auburn, AL, United States
| |
Collapse
|
31
|
Hammel A, Sommer F, Zimmer D, Stitt M, Mühlhaus T, Schroda M. Overexpression of Sedoheptulose-1,7-Bisphosphatase Enhances Photosynthesis in Chlamydomonas reinhardtii and Has No Effect on the Abundance of Other Calvin-Benson Cycle Enzymes. FRONTIERS IN PLANT SCIENCE 2020; 11:868. [PMID: 32655601 PMCID: PMC7324757 DOI: 10.3389/fpls.2020.00868] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Accepted: 05/27/2020] [Indexed: 05/18/2023]
Abstract
The productivity of plants and microalgae needs to be increased to feed the growing world population and to promote the development of a low-carbon economy. This goal can be achieved by improving photosynthesis via genetic engineering. In this study, we have employed the Modular Cloning strategy to overexpress the Calvin-Benson cycle (CBC) enzyme sedoheptulose-1,7-bisphosphatase (SBP1) up to threefold in the unicellular green alga Chlamydomonas reinhardtii. The protein derived from the nuclear transgene represented ∼0.3% of total cell protein. Photosynthetic rate and growth were significantly increased in SBP1-overexpressing lines under high-light and elevated CO2 conditions. Absolute quantification of the abundance of all other CBC enzymes by the QconCAT approach revealed no consistent differences between SBP1-overexpressing lines and the recipient strain. This analysis also revealed that the 11 CBC enzymes represent 11.9% of total cell protein in Chlamydomonas. Here, the range of concentrations of CBC enzymes turned out to be much larger than estimated earlier, with a 128-fold difference between the most abundant CBC protein (rbcL) and the least abundant (triose phosphate isomerase). Accordingly, the concentrations of the CBC intermediates are often but not always higher than the binding site concentrations of the enzymes for which they act as substrates. The enzymes with highest substrate to binding site ratios might represent good candidates for overexpression in subsequent engineering steps.
Collapse
Affiliation(s)
- Alexander Hammel
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Frederik Sommer
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - David Zimmer
- Computational Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Mark Stitt
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Timo Mühlhaus
- Computational Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| | - Michael Schroda
- Molecular Biotechnology & Systems Biology, TU Kaiserslautern, Kaiserslautern, Germany
| |
Collapse
|
32
|
Drag DW, Slattery R, Siebers M, DeLucia EH, Ort DR, Bernacchi CJ. Soybean photosynthetic and biomass responses to carbon dioxide concentrations ranging from pre-industrial to the distant future. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:3690-3700. [PMID: 32170296 PMCID: PMC7475242 DOI: 10.1093/jxb/eraa133] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/09/2020] [Indexed: 05/29/2023]
Abstract
Increasing atmospheric carbon dioxide concentration ([CO2]) directly impacts C3 plant photosynthesis and productivity, and the rate at which [CO2] is increasing is greater than initially predicted by worst-case scenario climate models. Thus, it is increasingly important to assess the physiological responses of C3 plants, especially those that serve as important crops, to [CO2] beyond the mid-range levels used in traditional experiments. Here, we grew the C3 crop soybean (Glycine max) at eight different [CO2] levels spanning subambient (340 ppm) to the highest level thought plausible (~2000 ppm) in chambers for 5 weeks. Physiological development was delayed and plant height and total leaf area increased at [CO2] levels higher than ambient conditions, with very little difference in these parameters among the elevated [CO2] treatments >900 ppm. Daily photosynthesis initially increased with rising [CO2] but began to level off at ~1000 ppm CO2. Similar results occurred in biomass accumulation. Thus, as [CO2] continues to match or exceed the worst-case emission scenarios, these results indicate that carbon gain, growth, and potentially yield increases will diminish, thereby ultimately constraining the positive impact that continuing increases in atmospheric [CO2] could have on crop productivity and global terrestrial carbon sinks.
Collapse
Affiliation(s)
- David W Drag
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rebecca Slattery
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Matthew Siebers
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Evan H DeLucia
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, IL, USA
| | - Donald R Ort
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Carl J Bernacchi
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, IL, USA
- Global Change and Photosynthesis Research Unit, United States Department of Agriculture, Agricultural Research Service, Urbana, IL, USA
| |
Collapse
|
33
|
Kohli A, Miro B, Balié J, d’A Hughes J. Photosynthesis research: a model to bridge fundamental science, translational products, and socio-economic considerations in agriculture. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:2281-2298. [PMID: 32076700 PMCID: PMC7135011 DOI: 10.1093/jxb/eraa087] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 02/19/2020] [Indexed: 05/04/2023]
Abstract
Despite impressive success in molecular physiological understanding of photosynthesis, and preliminary evidence on its potential for quantum shifts in agricultural productivity, the question remains of whether increased photosynthesis, without parallel fine-tuning of the associated processes, is enough. There is a distinct lack of formal socio-economic impact studies that address the critical questions of product profiling, cost-benefit analysis, environmental trade-offs, and technological and market forces in product acceptability. When a relatively well understood process gains enough traction for translational value, its broader scientific and technical gap assessment, in conjunction with its socio-economic impact assessment for success, should be a prerequisite. The successes in the upstream basic understanding of photosynthesis should be integrated with a gap analysis for downstream translational applications to impact the farmers' and customers' lifestyles and livelihoods. The purpose of this review is to assess how the laboratory, the field, and the societal demands from photosynthesis could generate a transformative product. Two crucial recommendations from the analysis of the state of knowledge and potential ways forward are (i) the formulation of integrative mega-projects, which span the multistakeholder spectrum, to ensure rapid success in harnessing the transformative power of photosynthesis; and (ii) stipulating spatiotemporal, labour, and economic criteria to stage-gate deliverables.
Collapse
Affiliation(s)
- Ajay Kohli
- International Rice Research Institute, Los Baños, Philippines
| | - Berta Miro
- International Rice Research Institute, Los Baños, Philippines
| | - Jean Balié
- International Rice Research Institute, Los Baños, Philippines
| | | |
Collapse
|
34
|
Wang Y, Burgess SJ, de Becker EM, Long SP. Photosynthesis in the fleeting shadows: an overlooked opportunity for increasing crop productivity? THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 101:874-884. [PMID: 31908116 PMCID: PMC7064922 DOI: 10.1111/tpj.14663] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 12/16/2019] [Accepted: 12/19/2019] [Indexed: 05/20/2023]
Abstract
Photosynthesis measurements are traditionally taken under steady-state conditions; however, leaves in crop fields experience frequent fluctuations in light and take time to respond. This slow response reduces the efficiency of carbon assimilation. Transitions from low to high light require photosynthetic induction, including the activation of Rubisco and the opening of stomata, whereas transitions from high to low light require the relaxation of dissipative energy processes, collectively known as non-photochemical quenching (NPQ). Previous attempts to assess the impact of these delays on net carbon assimilation have used simplified models of crop canopies, limiting the accuracy of predictions. Here, we use ray tracing to predict the spatial and temporal dynamics of lighting for a rendered mature Glycine max (soybean) canopy to review the relative importance of these delays on net cumulative assimilation over the course of both a sunny and a cloudy summer day. Combined limitations result in a 13% reduction in crop carbon assimilation on both sunny and cloudy days, with induction being more important on cloudy than on sunny days. Genetic variation in NPQ relaxation rates and photosynthetic induction in parental lines of a soybean nested association mapping (NAM) population was assessed. Short-term NPQ relaxation (<30 min) showed little variation across the NAM lines, but substantial variation was found in the speeds of photosynthetic induction, attributable to Rubisco activation. Over the course of a sunny and an intermittently cloudy day these would translate to substantial differences in total crop carbon assimilation. These findings suggest an unexplored potential for breeding improved photosynthetic potential in our major crops.
Collapse
Affiliation(s)
- Yu Wang
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Steven J. Burgess
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Elsa M. de Becker
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Plant BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
| | - Stephen P. Long
- Carl R Woese Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Department of Crop SciencesUniversity of Illinois at Urbana‐ChampaignUrbanaIL61801USA
- Lancaster Environment CentreLancaster UniversityLancasterLA1 4YQUK
| |
Collapse
|
35
|
Ainsworth EA, Lemonnier P, Wedow JM. The influence of rising tropospheric carbon dioxide and ozone on plant productivity. PLANT BIOLOGY (STUTTGART, GERMANY) 2020; 22 Suppl 1:5-11. [PMID: 30734441 PMCID: PMC6916594 DOI: 10.1111/plb.12973] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Accepted: 02/04/2019] [Indexed: 05/05/2023]
Abstract
Human activities result in a wide array of pollutants being released to the atmosphere. A number of these pollutants have direct effects on plants, including carbon dioxide (CO2 ), which is the substrate for photosynthesis, and ozone (O3 ), a damaging oxidant. How plants respond to changes in these atmospheric air pollutants, both directly and indirectly, feeds back on atmospheric composition and climate, global net primary productivity and ecosystem service provisioning. Here we discuss the past, current and future trends in emissions of CO2 and O3 and synthesise the current atmospheric CO2 and O3 budgets, describing the important role of vegetation in determining the atmospheric burden of those pollutants. While increased atmospheric CO2 concentration over the past 150 years has been accompanied by greater CO2 assimilation and storage in terrestrial ecosystems, there is evidence that rising temperatures and increased drought stress may limit the ability of future terrestrial ecosystems to buffer against atmospheric emissions. Long-term Free Air CO2 or O3 Enrichment (FACE) experiments provide critical experimentation about the effects of future CO2 and O3 on ecosystems, and highlight the important interactive effects of temperature, nutrients and water supply in determining ecosystem responses to air pollution. Long-term experimentation in both natural and cropping systems is needed to provide critical empirical data for modelling the effects of air pollutants on plant productivity in the decades to come.
Collapse
Affiliation(s)
- E. A. Ainsworth
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS) Global Change and Photosynthesis Research UnitUrbanaILUSA
- Department of Plant Biology and Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - P. Lemonnier
- United States Department of Agriculture (USDA) Agricultural Research Service (ARS) Global Change and Photosynthesis Research UnitUrbanaILUSA
- Department of Plant Biology and Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| | - J. M. Wedow
- Department of Plant Biology and Institute for Genomic BiologyUniversity of Illinois at Urbana‐ChampaignUrbanaILUSA
| |
Collapse
|
36
|
Singer SD, Soolanayakanahally RY, Foroud NA, Kroebel R. Biotechnological strategies for improved photosynthesis in a future of elevated atmospheric CO 2. PLANTA 2019; 251:24. [PMID: 31784816 DOI: 10.1007/s00425-019-03301-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 10/11/2019] [Indexed: 06/10/2023]
Abstract
The improvement of photosynthesis using biotechnological approaches has been the focus of much research. It is now vital that these strategies be assessed under future atmospheric conditions. The demand for crop products is expanding at an alarming rate due to population growth, enhanced affluence, increased per capita calorie consumption, and an escalating need for plant-based bioproducts. While solving this issue will undoubtedly involve a multifaceted approach, improving crop productivity will almost certainly provide one piece of the puzzle. The improvement of photosynthetic efficiency has been a long-standing goal of plant biotechnologists as possibly one of the last remaining means of achieving higher yielding crops. However, the vast majority of these studies have not taken into consideration possible outcomes when these plants are grown long-term under the elevated CO2 concentrations (e[CO2]) that will be evident in the not too distant future. Due to the considerable effect that CO2 levels have on the photosynthetic process, these assessments should become commonplace as a means of ensuring that research in this field focuses on the most effective approaches for our future climate scenarios. In this review, we discuss the main biotechnological research strategies that are currently underway with the aim of improving photosynthetic efficiency and biomass production/yields in the context of a future of e[CO2], as well as alternative approaches that may provide further photosynthetic benefits under these conditions.
Collapse
Affiliation(s)
- Stacy D Singer
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada.
| | - Raju Y Soolanayakanahally
- Saskatoon Research and Development Centre, Agriculture and Agri-Food Canada, Saskatoon, SK, S7N 0X2, Canada
| | - Nora A Foroud
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| | - Roland Kroebel
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge, AB, T1J 4B1, Canada
| |
Collapse
|
37
|
Meacham-Hensold K, Montes CM, Wu J, Guan K, Fu P, Ainsworth EA, Pederson T, Moore CE, Brown KL, Raines C, Bernacchi CJ. High-throughput field phenotyping using hyperspectral reflectance and partial least squares regression (PLSR) reveals genetic modifications to photosynthetic capacity. REMOTE SENSING OF ENVIRONMENT 2019; 231:111176. [PMID: 31534277 PMCID: PMC6737918 DOI: 10.1016/j.rse.2019.04.029] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 04/16/2019] [Accepted: 04/27/2019] [Indexed: 05/20/2023]
Abstract
Spectroscopy is becoming an increasingly powerful tool to alleviate the challenges of traditional measurements of key plant traits at the leaf, canopy, and ecosystem scales. Spectroscopic methods often rely on statistical approaches to reduce data redundancy and enhance useful prediction of physiological traits. Given the mechanistic uncertainty of spectroscopic techniques, genetic modification of plant biochemical pathways may affect reflectance spectra causing predictive models to lose power. The objectives of this research were to assess over two separate years, whether a predictive model can represent natural and imposed variation in leaf photosynthetic potential for different crop cultivars and genetically modified plants, to assess the interannual capabilities of a partial least square regression (PLSR) model, and to determine whether leaf N is a dominant driver of photosynthesis in PLSR models. In 2016, a PLSR analysis of reflectance spectra coupled with gas exchange data was used to build predictive models for photosynthetic parameters including maximum carboxylation rate of Rubisco (V c,max ), maximum electron transport rate (J max ) and percentage leaf nitrogen ([N]). The model was developed for wild type and genetically modified plants that represent a wide range of photosynthetic capacities. Results show that hyperspectral reflectance accurately predicted V c,max, J max and [N] for all plants measured in 2016. Applying these PLSR models to plants grown in 2017 resulted in a strong predictive ability relative to gas exchange measurements for V c,max, but not for J max, and not for genotypes unique to 2017. Building a new model including data collected in 2017 resulted in more robust predictions, with R2 increases of 17% for V c,max . and 13% J max . Plants generally have a positive correlation between leaf nitrogen and photosynthesis, however, tobacco with reduced Rubisco (SSuD) had significantly higher [N] despite much lower V c,max. The PLSR model was able to accurately predict both lower V c,max and higher leaf [N] for this genotype suggesting that the spectral based estimates of V c,max and leaf nitrogen [N] are independent. These results suggest that the PLSR model can be applied across years, but only to genotypes used to build the model and that the actual mechanism measured with the PLSR technique is not directly related to leaf [N]. The success of the leaf-scale analysis suggests that similar approaches may be successful at the canopy and ecosystem scales but to use these methods across years and between genotypes at any scale, application of accurately populated physical based models based on radiative transfer principles may be required.
Collapse
Affiliation(s)
- Katherine Meacham-Hensold
- Department of Plant Biology, University of Illinois at Urbana-Champaign, USA
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA
| | | | - Jin Wu
- Environmental & Climate Science Department, Brookhaven National Laboratory, Upton, New York, USA
- School of Biological Sciences, University of Hong Kong, Pokfulam, Hong Kong
| | - Kaiyu Guan
- Department of Natural Resources and Environmental Sciences, University of Illinois at Urbana-Champaign, IL, USA
- National Center of Supercomputing Applications, University of Illinois at Urbana-Champaign, USA
| | - Peng Fu
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA
| | - Elizabeth A. Ainsworth
- Department of Plant Biology, University of Illinois at Urbana-Champaign, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
| | - Taylor Pederson
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA
| | - Caitlin E. Moore
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA
| | - Kenny Lee Brown
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Christine Raines
- Department of Biological Sciences, University of Essex, Colchester CO4 3SQ, United Kingdom
| | - Carl J. Bernacchi
- Department of Plant Biology, University of Illinois at Urbana-Champaign, USA
- Carl R Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, USA
- USDA ARS Global Change and Photosynthesis Research Unit, Urbana, IL, USA
- Corresponding author at: USDA-ARS Global Change and Photosynthesis Research Unit, 1201 W. Gregory Drive, Urbana, IL 61801, USA.
| |
Collapse
|
38
|
Köhler IH, Huber SC, Bernacchi CJ, Baxter IR. Increased temperatures may safeguard the nutritional quality of crops under future elevated CO 2 concentrations. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2019; 97:872-886. [PMID: 30447177 PMCID: PMC6850270 DOI: 10.1111/tpj.14166] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/19/2018] [Accepted: 10/30/2018] [Indexed: 05/20/2023]
Abstract
Iron (Fe) and zinc (Zn) deficiencies are a global human health problem that may worsen by the growth of crops at elevated atmospheric CO2 concentration (eCO2 ). However, climate change will also involve higher temperature, but it is unclear how the combined effect of eCO2 and higher temperature will affect the nutritional quality of food crops. To begin to address this question, we grew soybean (Glycine max) in a Temperature by Free-Air CO2 Enrichment (T-FACE) experiment in 2014 and 2015 under ambient (400 μmol mol-1 ) and elevated (600 μmol mol-1 ) CO2 concentrations, and under ambient and elevated temperatures (+2.7°C day and +3.4°C at night). In our study, eCO2 significantly decreased Fe concentration in soybean seeds in both seasons (-8.7 and -7.7%) and Zn concentration in one season (-8.9%), while higher temperature (at ambient CO2 concentration) had the opposite effect. The combination of eCO2 with elevated temperature generally restored seed Fe and Zn concentrations to levels obtained under ambient CO2 and temperature conditions, suggesting that the potential threat to human nutrition by increasing CO2 concentration may not be realized. In general, seed Fe concentration was negatively correlated with yield, suggesting inherent limitations to increasing seed Fe. In addition, we confirm our previous report that the concentration of seed storage products and several minerals varies with node position at which the seeds developed. Overall, these results demonstrate the complexity of predicting climate change effects on food and nutritional security when various environmental parameters change in an interactive manner.
Collapse
Affiliation(s)
- Iris H. Köhler
- Global Change and Photosynthesis Research UnitAgricultural Research ServiceUnited States Department of AgricultureUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of IllinoisUrbanaIL61801USA
- Present address:
Graduate School HIGRADEHelmholtz Centre for Environmental Research – UFZLeipzigGermany
| | - Steven C. Huber
- Global Change and Photosynthesis Research UnitAgricultural Research ServiceUnited States Department of AgricultureUrbanaIL61801USA
- Department of Plant BiologyUniversity of IllinoisUrbanaIL61801USA
| | - Carl J. Bernacchi
- Global Change and Photosynthesis Research UnitAgricultural Research ServiceUnited States Department of AgricultureUrbanaIL61801USA
- Carl R. Woese Institute for Genomic BiologyUniversity of IllinoisUrbanaIL61801USA
- Department of Plant BiologyUniversity of IllinoisUrbanaIL61801USA
| | | |
Collapse
|
39
|
Simkin AJ, López-Calcagno PE, Raines CA. Feeding the world: improving photosynthetic efficiency for sustainable crop production. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:1119-1140. [PMID: 30772919 PMCID: PMC6395887 DOI: 10.1093/jxb/ery445] [Citation(s) in RCA: 224] [Impact Index Per Article: 44.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/27/2018] [Indexed: 05/18/2023]
Abstract
A number of recent studies have provided strong support demonstrating that improving the photosynthetic processes through genetic engineering can provide an avenue to improve yield potential. The major focus of this review is on improvement of the Calvin-Benson cycle and electron transport. Consideration is also given to how altering regulatory process may provide an additional route to increase photosynthetic efficiency. Here we summarize some of the recent successes that have been observed through genetic manipulation of photosynthesis, showing that, in both the glasshouse and the field, yield can be increased by >40%. These results provide a clear demonstration of the potential for increasing yield through improvements in photosynthesis. In the final section, we consider the need to stack improvement in photosynthetic traits with traits that target the yield gap in order to provide robust germplasm for different crops across the globe.
Collapse
Affiliation(s)
- Andrew J Simkin
- NIAB EMR, New Road, East Malling, Kent, UK
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| | | | - Christine A Raines
- School of Biological Sciences, Wivenhoe Park, University of Essex, Colchester, UK
| |
Collapse
|
40
|
López‐Calcagno PE, Fisk S, Brown KL, Bull SE, South PF, Raines CA. Overexpressing the H-protein of the glycine cleavage system increases biomass yield in glasshouse and field-grown transgenic tobacco plants. PLANT BIOTECHNOLOGY JOURNAL 2019; 17:141-151. [PMID: 29851213 PMCID: PMC6330538 DOI: 10.1111/pbi.12953] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/19/2018] [Accepted: 05/11/2018] [Indexed: 05/18/2023]
Abstract
Photorespiration is essential for C3 plants, enabling oxygenic photosynthesis through the scavenging of 2-phosphoglycolate. Previous studies have demonstrated that overexpression of the L- and H-proteins of the photorespiratory glycine cleavage system results in an increase in photosynthesis and growth in Arabidopsis thaliana. Here, we present evidence that under controlled environment conditions an increase in biomass is evident in tobacco plants overexpressing the H-protein. Importantly, the work in this paper provides a clear demonstration of the potential of this manipulation in tobacco grown in field conditions, in two separate seasons. We also demonstrate the importance of targeted overexpression of the H-protein using the leaf-specific promoter ST-LS1. Although increases in the H-protein driven by this promoter have a positive impact on biomass, higher levels of overexpression of this protein driven by the constitutive CaMV 35S promoter result in a reduction in the growth of the plants. Furthermore in these constitutive overexpressor plants, carbon allocation between soluble carbohydrates and starch is altered, as is the protein lipoylation of the enzymes pyruvate dehydrogenase and alpha-ketoglutarate complexes. Our data provide a clear demonstration of the positive effects of overexpression of the H-protein to improve yield under field conditions.
Collapse
Affiliation(s)
| | - Stuart Fisk
- School of Biological SciencesUniversity of EssexColchesterUK
| | - Kenny L. Brown
- School of Biological SciencesUniversity of EssexColchesterUK
| | - Simon E. Bull
- School of Biological SciencesUniversity of EssexColchesterUK
- Present address:
Molecular Plant BreedingInstitute of Agricultural SciencesETH Zürich8092ZürichSwitzerland
| | - Paul F. South
- Global Change and Photosynthesis Research UnitUnited States Department of Agriculture/Agricultural Research ServiceUrbanaILUSA
- Carl R. Woese Institute for Genomic BiologyUniversity of IllinoisUrbanaILUSA
| | | |
Collapse
|
41
|
Yadav SK, Khatri K, Rathore MS, Jha B. Introgression of UfCyt c 6, a thylakoid lumen protein from a green seaweed Ulva fasciata Delile enhanced photosynthesis and growth in tobacco. Mol Biol Rep 2018; 45:1745-1758. [PMID: 30159639 DOI: 10.1007/s11033-018-4318-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/16/2018] [Indexed: 01/02/2023]
Abstract
Cytochromes are important components of photosynthetic electron transport chain. Here we report on genetic transformation of Cytochrome c6 (UfCyt c6) gene from Ulva fasciata Delile in tobacco for enhanced photosynthesis and growth. UfCyt c6 cDNA had an open reading frame of 330 bp encoding a polypeptide of 109 amino acids with a predicted molecular mass of 11.65 kDa and an isoelectric point of 5.21. UfCyt c6 gene along with a tobacco petE transit peptide sequence under control of CaMV35S promoter was transformed in tobacco through Agrobacterium mediated genetic transformation. Transgenic tobacco grew normal and exhibited enhanced growth as compared to wild type (WT) and vector control (VC) tobacco. Transgenic tobacco had higher contents of photosynthetic pigments and better ratios of photosynthetic pigments. The tobacco expressing UfCyt c6 gene exhibited higher photosynthetic rate and improved water use efficiency. Further activity of the water-splitting complex, photosystem II quantum yield, photochemical quenching, electron transfer rate, and photosynthetic yield were found comparatively higher in transgenic tobacco as compared to WT and VC tobacco. Alternatively basal quantum yield of non-photochemical processes in PSII and non-photochemical quenching were estimated lower in tobacco expressing UfCyt c6 gene. As a result of improved photosynthetic performance the transgenic tobacco had higher contents of sugar and starch, and exhibited comparatively better growth. To the best of our knowledge this is the first report on expression of UfCyt c6 gene from U. fasciata for improved photosynthesis and growth in tobacco.
Collapse
Affiliation(s)
- Sweta K Yadav
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Kusum Khatri
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Mangal S Rathore
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India.
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar, Gujarat, 364002, India.
| | - Bhavanath Jha
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India.
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar, Gujarat, 364002, India.
| |
Collapse
|
42
|
Yadav SK, Khatri K, Rathore MS, Jha B. Introgression of UfCyt c 6, a thylakoid lumen protein from a green seaweed Ulva fasciata Delile enhanced photosynthesis and growth in tobacco. Mol Biol Rep 2018; 45:1745-1758. [PMID: 30159639 DOI: 10.1007/s11033-018-4318-4311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/16/2018] [Indexed: 05/24/2023]
Abstract
Cytochromes are important components of photosynthetic electron transport chain. Here we report on genetic transformation of Cytochrome c6 (UfCyt c6) gene from Ulva fasciata Delile in tobacco for enhanced photosynthesis and growth. UfCyt c6 cDNA had an open reading frame of 330 bp encoding a polypeptide of 109 amino acids with a predicted molecular mass of 11.65 kDa and an isoelectric point of 5.21. UfCyt c6 gene along with a tobacco petE transit peptide sequence under control of CaMV35S promoter was transformed in tobacco through Agrobacterium mediated genetic transformation. Transgenic tobacco grew normal and exhibited enhanced growth as compared to wild type (WT) and vector control (VC) tobacco. Transgenic tobacco had higher contents of photosynthetic pigments and better ratios of photosynthetic pigments. The tobacco expressing UfCyt c6 gene exhibited higher photosynthetic rate and improved water use efficiency. Further activity of the water-splitting complex, photosystem II quantum yield, photochemical quenching, electron transfer rate, and photosynthetic yield were found comparatively higher in transgenic tobacco as compared to WT and VC tobacco. Alternatively basal quantum yield of non-photochemical processes in PSII and non-photochemical quenching were estimated lower in tobacco expressing UfCyt c6 gene. As a result of improved photosynthetic performance the transgenic tobacco had higher contents of sugar and starch, and exhibited comparatively better growth. To the best of our knowledge this is the first report on expression of UfCyt c6 gene from U. fasciata for improved photosynthesis and growth in tobacco.
Collapse
Affiliation(s)
- Sweta K Yadav
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Kusum Khatri
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India
| | - Mangal S Rathore
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India.
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar, Gujarat, 364002, India.
| | - Bhavanath Jha
- Academy of Scientific and Innovative Research, CSIR, New Delhi, India.
- Division of Biotechnology and Phycology, CSIR-Central Salt and Marine Chemicals Research Institute (CSIR-CSMCRI), Council of Scientific and Industrial Research (CSIR), G.B. Marg, Bhavnagar, Gujarat, 364002, India.
| |
Collapse
|
43
|
De Porcellinis AJ, Nørgaard H, Brey LMF, Erstad SM, Jones PR, Heazlewood JL, Sakuragi Y. Overexpression of bifunctional fructose-1,6-bisphosphatase/sedoheptulose-1,7-bisphosphatase leads to enhanced photosynthesis and global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002. Metab Eng 2018; 47:170-183. [PMID: 29510212 DOI: 10.1016/j.ymben.2018.03.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 02/02/2018] [Accepted: 03/01/2018] [Indexed: 12/25/2022]
Abstract
Cyanobacteria fix atmospheric CO2 to biomass and through metabolic engineering can also act as photosynthetic factories for sustainable productions of fuels and chemicals. The Calvin Benson cycle is the primary pathway for CO2 fixation in cyanobacteria, algae and C3 plants. Previous studies have overexpressed the Calvin Benson cycle enzymes, ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) and bifunctional sedoheptulose-1,7-bisphosphatase/fructose-1,6-bisphosphatase (hereafter BiBPase), in both plants and algae, although their impacts on cyanobacteria have not yet been rigorously studied. Here, we show that overexpression of BiBPase and RuBisCO have distinct impacts on carbon metabolism in the cyanobacterium Synechococcus sp. PCC 7002 through physiological, biochemical, and proteomic analyses. The former enhanced growth, cell size, and photosynthetic O2 evolution, and coordinately upregulated enzymes in the Calvin Benson cycle including RuBisCO and fructose-1,6-bisphosphate aldolase. At the same time it downregulated enzymes in respiratory carbon metabolism (glycolysis and the oxidative pentose phosphate pathway) including glucose-6-phosphate dehydrogenase (G6PDH). The content of glycogen was also significantly reduced while the soluble carbohydrate content increased. These results indicate that overexpression of BiBPase leads to global reprogramming of carbon metabolism in Synechococcus sp. PCC 7002, promoting photosynthetic carbon fixation and carbon partitioning towards non-storage carbohydrates. In contrast, whilst overexpression of RuBisCO had no measurable impact on growth and photosynthetic O2 evolution, it led to coordinated increase in the abundance of proteins involved in pyruvate metabolism and fatty acid biosynthesis. Our results underpin that singular genetic modifications in the Calvin Benson cycle can have far broader cellular impact than previously expected. These features could be exploited to more efficiently direct carbons towards desired bioproducts.
Collapse
Affiliation(s)
- Alice Jara De Porcellinis
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Carlsberg Research Laboratory, 100 Ny Carlsberg Vej, 1799 Copenhagen V, Denmark
| | - Hanne Nørgaard
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Novo Nordisk, Novo Nordisk Park 1, 2760 Måløv, Denmark
| | - Laura Maria Furelos Brey
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Simon Matthé Erstad
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark
| | - Patrik R Jones
- Department Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | - Joshua L Heazlewood
- Joint BioEnergy Institute and Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; School of BioSciences, The University of Melbourne, Victoria 3010, Australia
| | - Yumiko Sakuragi
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark; Copenhagen Plant Science Center, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg DK-1871, Denmark.
| |
Collapse
|
44
|
Fodor N, Challinor A, Droutsas I, Ramirez-Villegas J, Zabel F, Koehler AK, Foyer CH. Integrating Plant Science and Crop Modeling: Assessment of the Impact of Climate Change on Soybean and Maize Production. PLANT & CELL PHYSIOLOGY 2017; 58:1833-1847. [PMID: 29016928 PMCID: PMC6383117 DOI: 10.1093/pcp/pcx141] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 08/25/2017] [Indexed: 05/23/2023]
Abstract
Increasing global CO2 emissions have profound consequences for plant biology, not least because of direct influences on carbon gain. However, much remains uncertain regarding how our major crops will respond to a future high CO2 world. Crop model inter-comparison studies have identified large uncertainties and biases associated with climate change. The need to quantify uncertainty has drawn the fields of plant molecular physiology, crop breeding and biology, and climate change modeling closer together. Comparing data from different models that have been used to assess the potential climate change impacts on soybean and maize production, future yield losses have been predicted for both major crops. When CO2 fertilization effects are taken into account significant yield gains are predicted for soybean, together with a shift in global production from the Southern to the Northern hemisphere. Maize production is also forecast to shift northwards. However, unless plant breeders are able to produce new hybrids with improved traits, the forecasted yield losses for maize will only be mitigated by agro-management adaptations. In addition, the increasing demands of a growing world population will require larger areas of marginal land to be used for maize and soybean production. We summarize the outputs of crop models, together with mitigation options for decreasing the negative impacts of climate on the global maize and soybean production, providing an overview of projected land-use change as a major determining factor for future global crop production.
Collapse
Affiliation(s)
- N�ndor Fodor
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
- Centre for Agricultural Research, Hungarian Academy of Sciences, 2462 Martonv�s�r Brunszvik u. 2., Hungary
| | - Andrew Challinor
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, LS2 9JT Leeds, UK
| | - Ioannis Droutsas
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, LS2 9JT Leeds, UK
| | - Julian Ramirez-Villegas
- International Center for Tropical Agriculture (CIAT), km 17 recta Cali-Palmira, Cali, Colombia
- CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), c/o CIAT, km 17 recta Cali-Palmira, Cali, Colombia
| | - Florian Zabel
- Ludwig-Maximilians-Universit�t M�nchen, Luisenstrasse 37, 80333 Munich, Germany
| | - Ann-Kristin Koehler
- Institute for Climate and Atmospheric Science, School of Earth and Environment, University of Leeds, LS2 9JT Leeds, UK
| | - Christine H Foyer
- Centre for Plant Sciences, School of Biology, Faculty of Biological Sciences, University of Leeds, LS2 9JT Leeds, UK
| |
Collapse
|
45
|
Orr DJ, Pereira AM, da Fonseca Pereira P, Pereira-Lima ÍA, Zsögön A, Araújo WL. Engineering photosynthesis: progress and perspectives. F1000Res 2017; 6:1891. [PMID: 29263782 PMCID: PMC5658708 DOI: 10.12688/f1000research.12181.1] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/27/2017] [Indexed: 12/11/2022] Open
Abstract
Photosynthesis is the basis of primary productivity on the planet. Crop breeding has sustained steady improvements in yield to keep pace with population growth increases. Yet these advances have not resulted from improving the photosynthetic process
per se but rather of altering the way carbon is partitioned within the plant. Mounting evidence suggests that the rate at which crop yields can be boosted by traditional plant breeding approaches is wavering, and they may reach a “yield ceiling” in the foreseeable future. Further increases in yield will likely depend on the targeted manipulation of plant metabolism. Improving photosynthesis poses one such route, with simulations indicating it could have a significant transformative influence on enhancing crop productivity. Here, we summarize recent advances of alternative approaches for the manipulation and enhancement of photosynthesis and their possible application for crop improvement.
Collapse
Affiliation(s)
- Douglas J Orr
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - Auderlan M Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Paula da Fonseca Pereira
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Ítalo A Pereira-Lima
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Agustin Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Wagner L Araújo
- Max-Planck Partner Group at the Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil.,Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| |
Collapse
|
46
|
Tomeo NJ, Rosenthal DM. Variable Mesophyll Conductance among Soybean Cultivars Sets a Tradeoff between Photosynthesis and Water-Use-Efficiency. PLANT PHYSIOLOGY 2017; 174:241-257. [PMID: 28270627 PMCID: PMC5411144 DOI: 10.1104/pp.16.01940] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 03/03/2017] [Indexed: 05/03/2023]
Abstract
Photosynthetic efficiency is a critical determinant of crop yield potential, although it remains below the theoretical optimum in modern crop varieties. Enhancing mesophyll conductance (i.e. the rate of carbon dioxide diffusion from substomatal cavities to the sites of carboxylation) may increase photosynthetic and water use efficiencies. To improve water use efficiency, mesophyll conductance should be increased without concomitantly increasing stomatal conductance. Here, we partition the variance in mesophyll conductance to within- and among-cultivar components across soybean (Glycine max) grown under both controlled and field conditions and examine the covariation of mesophyll conductance with photosynthetic rate, stomatal conductance, water use efficiency, and leaf mass per area. We demonstrate that mesophyll conductance varies more than 2-fold and that 38% of this variation is due to cultivar identity. As expected, mesophyll conductance is positively correlated with photosynthetic rates. However, a strong positive correlation between mesophyll and stomatal conductance among cultivars apparently impedes positive scaling between mesophyll conductance and water use efficiency in soybean. Contrary to expectations, photosynthetic rates and mesophyll conductance both increased with increasing leaf mass per area. The presence of genetic variation for mesophyll conductance suggests that there is potential to increase photosynthesis and mesophyll conductance by selecting for greater leaf mass per area. Increasing water use efficiency, though, is unlikely unless there is simultaneous stabilizing selection on stomatal conductance.
Collapse
Affiliation(s)
- Nicholas J Tomeo
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701
| | - David M Rosenthal
- Department of Environmental and Plant Biology, Ohio University, Athens, Ohio 45701
| |
Collapse
|