1
|
Wang L, Deng X, Zhou Y, Geng X, Zhang Z, Tang Y. Different nitrogen uptake patterns of plant and soil microorganisms in the forest-grassland transition zone on the Loess Plateau. FRONTIERS IN PLANT SCIENCE 2025; 15:1480517. [PMID: 39906231 PMCID: PMC11790565 DOI: 10.3389/fpls.2024.1480517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Academic Contribution Register] [Received: 08/14/2024] [Accepted: 12/26/2024] [Indexed: 02/06/2025]
Abstract
Introduction It is unclear whether plants and microorganisms achieve niche complementarity by taking up different inorganic nitrogen (N) forms to alleviate N competition, particularly in N-limited regions. Methods This paper conducted a 15-day 15N tracer study (15NH4NO3 or 15NH4NO3) in situ to quantitatively calculate the uptake rates of plants and microorganisms in four stands (pure Hippophae rhamnoides L, pure Pinus tabuliformis Carrière, mixed H. rhamnoides-P. tabuliformis, and Artemisia gmelinii Weber ex Stechm grassland) in the forest-grassland transition zone on the Loess Plateau during the growing season. Among them, H. rhamnoides and P. tabuliformis can associated with arbuscular mycorrhizal and ectomycorrhizal, respectively. Results The results indicated that H. rhamnoides in the pure stand and A. gmelinii preferred to take up 15NO3 -, whereas P. tabuliformis in the pure stand preferred 15NH4 +. Compared to pure stands, mixed afforestation decreased the NH4 + and NO3 - uptake rate of H. rhamnoides by 87% and 70%, respectively, but did not alter the N preference of plants. Plants and microorganisms differed in their N preferences in the pure stand, whereas this was not the case in the mixed stand. The proportional similarity index between H. rhamnoides and P. tabuliformis (0.90 ± 0.01) was higher than that between plants and microorganisms in forest stands, except for P. tabuliformis and microorganisms in the mixed stand (0.90 ± 0.02). Discussion Those results indicated that niche complementarity by preferring different N forms can alleviate N competition. This study helped to gain a deeper understanding of the plasticity of N uptake patterns by plants and microorganisms in the forest-grassland transition zone, and provides theoretical support for vegetation restoration during the implementation of the Grain for Green program on the Loess Plateau.
Collapse
Affiliation(s)
- Lina Wang
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Xu Deng
- College of Forestry, Northwest A&F University, Yangling, Shaanxi, China
| | - Ying Zhou
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Xueqi Geng
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Zeling Zhang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| | - Yakun Tang
- State Key Laboratory of Soil Erosion and Dryland Farming on the Loess Plateau, Northwest A&F University, Yangling, Shaanxi, China
| |
Collapse
|
2
|
Luo Y, Nan L. Genome-wide identification of high-affinity nitrate transporter 2 (NRT2) gene family under phytohormones and abiotic stresses in alfalfa (Medicago sativa). Sci Rep 2024; 14:31920. [PMID: 39738449 DOI: 10.1038/s41598-024-83438-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/13/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
The high-affinity nitrate transporter 2 (NRT2) protein plays an important role in nitrate uptake and transport in plants. In this study, the NRT2s gene family were systematically analyzed in alfalfa. We identified three MsNRT2 genes from the genomic database. They were named MsNRT2.1-2.3 based on their chromosomal location. The phylogenetic tree revealed that NRT2 proteins were categorized into two main subgroups, which were further confirmed by their gene structure and conserved motifs. Three MsNRT2 genes distributed on 2 chromosomes. Furthermore, we studied the expression patterns of MsNRT2 genes in six tissues based on RNA-sequencing data from the Short Read Archive (SRA) database of NCBI, and the results showed that MsNRT2 genes were widely expressed in six tissues. After leaves and roots were treated with drought, salt, abscisic acid (ABA) and salicylic acid (SA) for 0-48 h, and we used quantitative RT-PCR to analyze the expression levels of MsNRT2 genes and the results showed that most of the MsNRT2 genes responded to these stresses. However, there are specific genes that play a role under specific treatment conditions. This result provides a basis for further research on the target genes. In summary, MsNRT2s play an irreplaceable role in the growth, development and stress response of alfalfa, and this study provides valuable information and theoretical basis for future research on MsNRT2 function.
Collapse
Affiliation(s)
- Yanyan Luo
- Pratacultural College, Key Laboratory of Grassland Ecosystem (Ministry of Education), Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-sponsored by Ministry and Province), Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Lili Nan
- Pratacultural College, Key Laboratory of Grassland Ecosystem (Ministry of Education), Key Laboratory of Forage Gerplasm Innovation and New Variety Breeding of Ministry of Agriculture and Rural Affairs (Co-sponsored by Ministry and Province), Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
3
|
Akhtar K, Ain NU, Prasad PVV, Naz M, Aslam MM, Djalovic I, Riaz M, Ahmad S, Varshney RK, He B, Wen R. Physiological, molecular, and environmental insights into plant nitrogen uptake, and metabolism under abiotic stresses. THE PLANT GENOME 2024; 17:e20461. [PMID: 38797919 DOI: 10.1002/tpg2.20461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/28/2023] [Revised: 03/27/2024] [Accepted: 04/09/2024] [Indexed: 05/29/2024]
Abstract
Nitrogen (N) as an inorganic macronutrient is inevitable for plant growth, development, and biomass production. Many external factors and stresses, such as acidity, alkalinity, salinity, temperature, oxygen, and rainfall, affect N uptake and metabolism in plants. The uptake of ammonium (NH4 +) and nitrate (NO3 -) in plants mainly depends on soil properties. Under the sufficient availability of NO3 - (>1 mM), low-affinity transport system is activated by gene network NRT1, and under low NO3 - availability (<1 mM), high-affinity transport system starts functioning encoded by NRT2 family of genes. Further, under limited N supply due to edaphic and climatic factors, higher expression of the AtNRT2.4 and AtNRT2.5T genes of the NRT2 family occur and are considered as N remobilizing genes. The NH4 + ion is the final form of N assimilated by cells mediated through the key enzymes glutamine synthetase and glutamate synthase. The WRKY1 is a major transcription factor of the N regulation network in plants. However, the transcriptome and metabolite profiles show variations in N assimilation metabolites, including glycine, glutamine, and aspartate, under abiotic stresses. The overexpression of NO3 - transporters (OsNRT2.3a and OsNRT1.1b) can significantly improve the biomass and yield of various crops. Altering the expression levels of genes could be a valuable tool to improve N metabolism under the challenging conditions of soil and environment, such as unfavorable temperature, drought, salinity, heavy metals, and nutrient stress.
Collapse
Affiliation(s)
- Kashif Akhtar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Noor Ul Ain
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - P V Vara Prasad
- Feed the Future Innovation Lab for Collaborative Research on Sustainable Intensification, Kansas State University, Manhattan, Kansas, USA
| | - Misbah Naz
- Institute of Environment and Ecology, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Mehtab Muhammad Aslam
- College of Agriculture, Food and Natural Resources (CAFNR), Division of Plant Sciences & Technology, University of Missouri, Columbia, Missouri, USA
| | - Ivica Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad, Pakistan
| | - Shakeel Ahmad
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Rajeev K Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, Western Australia, Australia
| | - Bing He
- Guangxi Key Laboratory of Agro-Environment and Agric-Products Safety, College of Agriculture, Guangxi University, Nanning, China
| | - Ronghui Wen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangxi Key Laboratory of Sugarcane Biology, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
4
|
Wang J, Wang L, Zhang X, Li S, Wang X, Yang L, Wu F, Su H. Genome-wide identification of nitrate transporter 1/peptide transporter family (NPF) genes reveals that PaNPF5.5 enhances nitrate uptake in sweet cherry under high nitrate condition. Gene 2023; 888:147797. [PMID: 37708922 DOI: 10.1016/j.gene.2023.147797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/17/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
NITRATE TRANSPORTER 1 (NRT1)/PEPTIDETRANSPORTER (PTR) family (NPF) plays a significant role in nitrate transport. However, little is known about the NPF genes in sweet cherry. In this study, a total of 60 PaNPF genes in sweet cherry were identified by bioinformatics, which were divided into 8 families. Transcriptomic analysis showed that most PaNPF genes responded to both low and high nitrate conditions, especially PaNPF5.5, which was highly up-regulated under high nitrate condition. Molecular analysis showed that PaNPF5.5 was a transporter localized to the cell membrane. Further functional studies found that PaNPF5.5 overexpression promoted the growth of sweet cherry rootstock Gisela 6 by accelerating the nitrogen absorption process under high nitrate environment. Taken together, we believe that PaNPF5.5 plays an important role in regulating the transport of nitrate at high nitrate conditions, and provides a promising method for improving nitrate absorption efficiency at nitrogen excess environment.
Collapse
Affiliation(s)
- Jingtao Wang
- School of Agriculture, Ludong University, Yantai 264025, China; College of Life Sciences, Ludong University, Yantai 264025, China
| | - Lei Wang
- College of Life Sciences, Ludong University, Yantai 264025, China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong 264025, China
| | - Songlin Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaohui Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Fanlin Wu
- School of Agriculture, Ludong University, Yantai 264025, China.
| | - Hongyan Su
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China.
| |
Collapse
|
5
|
Garcia-Gomez P, Olmos-Ruiz R, Nicolas-Espinosa J, Carvajal M. Effects of low nitrogen supply on biochemical and physiological parameters related to nitrate and water, involving nitrate transporters and aquaporins in Citrus macrophylla. PLANT BIOLOGY (STUTTGART, GERMANY) 2023; 25:944-955. [PMID: 37357019 DOI: 10.1111/plb.13553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/19/2023] [Accepted: 06/08/2023] [Indexed: 06/27/2023]
Abstract
A reduction in chemical N-based fertillizer was investigated in Citrus plants. As N and water uptake are connected, the relationship between the physiological response to reductions in N was studied in relation to N metabolism and water. We examined the response of new and mature leaves and roots of Citrus macrophylla, grown under controlled conditions, and given different concentrations of N: 16, 8 or 4 mM. Differences in growth and development were determined for biochemical (mineral content, photosynthetic pigments, proteins and nitrate and nitrite reductase activity), physiological (photosynthesis and transpiration), and molecular (relative expression of nitrate transporters and aquaporins) parameters. Only plants given 4 mM N showed a reduction in growth. Although there were changes in NR activity, protein synthesis, and chlorophyll content in both 8 and 4 mM N plants that were highly related to aquaporin and nitrate transporter expression. The results revealed new findings on the relationship between aquaporins and nitrate transporters in new leaves of Citrus, suggesting a mechanism for ensuring growth under low N when new tissues are being formed.
Collapse
Affiliation(s)
- P Garcia-Gomez
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - R Olmos-Ruiz
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - J Nicolas-Espinosa
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| | - M Carvajal
- Aquaporins Group, Plant Nutrition Department, Centro de Edafología y Biología Aplicada del Segura (CEBAS-CSIC), Campus Universitario de Espinardo, Murcia, Spain
| |
Collapse
|
6
|
Hu X, Li W, Liu Q, Yin C. Interactions between species change the uptake of ammonium and nitrate in Abies faxoniana and Picea asperata. TREE PHYSIOLOGY 2022; 42:1396-1410. [PMID: 34962272 DOI: 10.1093/treephys/tpab175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/27/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Plant nitrogen (N) uptake is affected by plant-plant interactions, but the mechanisms remain unknown. A 15N-labeled technique was used in a pot experiment to analyze the uptake rate of ammonium (NH4+) and nitrate (NO3-) by Abies faxoniana Rehd. et Wils and Picea asperata Mast. in single-plant mode, intraspecific and interspecific interactions. The results indicated that the effects of plant-plant interactions on N uptake rate depended on plant species and N forms. Picea asperata had a higher N uptake rate of both N forms than A. faxoniana, and both species preferred NO3-. Compared with single-plant mode, intraspecific interaction increased NH4+ uptake for A. faxoniana but reduced that for P. asperata, while it did not change NO3- uptake for the two species. The interspecific interaction enhanced N uptake of both N forms for A. faxoniana but did not affect the P. asperata compared with single-plant mode. NH4+ and NO3- uptake rates for the two species were regulated by root N concentration, root nitrate reductase activity, root vigor, soil pH and soil N availability under plant-plant interactions. Decreased NH4+ uptake rate for P. asperata under intraspecific interaction was induced by lower root N concentration and nitrate reductase activity. The positive effects of interspecific interaction on N uptake for A. faxoniana could be determined mainly by positive rhizosphere effects, such as high soil pH. From the perspective of root-soil interactions, our study provides insight into how plant-plant interactions affect N uptake, which can help to understand species coexistence and biodiversity maintenance in forest ecosystems.
Collapse
Affiliation(s)
- Xuefeng Hu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Wanting Li
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Qinghua Liu
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, P. R. China
| | - Chunying Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, PO Box 416, Chengdu 610041, P. R. China
| |
Collapse
|
7
|
Systematic Investigation and Expression Profiles of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in Tea Plant ( Camellia sinensis). Int J Mol Sci 2022; 23:ijms23126663. [PMID: 35743106 PMCID: PMC9223465 DOI: 10.3390/ijms23126663] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 05/05/2022] [Revised: 06/05/2022] [Accepted: 06/11/2022] [Indexed: 02/04/2023] Open
Abstract
NRT1/PTR FAMILY (NPF) genes are characterized as nitrate and peptide transporters that played important roles in various substrates transport in plants. However, little is known about the NPF gene in tea plants. Here, a total of 109 CsNPF members were identified from the tea plant genome, and divided into 8 groups according to their sequence characteristics and phylogenetic relationship. Gene structure and conserved motif analysis supported the evolutionary conservation of CsNPFs. Many hormone and stress response cis-acting elements and transcription factor binding sites were found in CsNPF promoters. Syntenic analysis suggested that multiple duplication types contributed to the expansion of NPF gene family in tea plants. Selection pressure analysis showed that CsNPF genes experienced strong purifying selective during the evolution process. The distribution of NPF family genes revealed that 8 NPF subfamilies were formed before the divergence of eudicots and monocots. Transcriptome analysis showed that CsNPFs were expressed differently in different tissues of the tea plant. The expression of 20 CsNPF genes at different nitrate concentrations was analyzed, and most of those genes responded to nitrate resupply. Subcellular localization showed that both CsNPF2.3 and CsNPF6.1 were localized in the plasma membrane, which was consistent with the characteristics of transmembrane proteins involved in NO3- transport. This study provides a theoretical basis for further investigating the evolution and function of NPF genes.
Collapse
|
8
|
Genome-Wide Characterization of High-Affinity Nitrate Transporter 2 (NRT2) Gene Family in Brassica napus. Int J Mol Sci 2022; 23:ijms23094965. [PMID: 35563356 PMCID: PMC9104966 DOI: 10.3390/ijms23094965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 04/07/2022] [Revised: 04/25/2022] [Accepted: 04/28/2022] [Indexed: 12/04/2022] Open
Abstract
Nitrate transporter 2 (NRT2) plays an essential role in Nitrogen (N) uptake, transport, utilization, and stress resistance. In this study, the NRT2 gene family in two sequenced Brassica napus ecotypes were identified, including 31 genes in ‘Zhongshuang11’ (BnaZSNRT2s) and 19 in ‘Darmor-bzh’ (BnaDarNRT2s). The candidate genes were divided into three groups (Group I−III) based on phylogenetic analyses, supported by a conserved intron-exon structure in each group. Collinearity analysis revealed that the large expansion of BnaZSNRT2s attributed to allopolyploidization of ancestors Brassica rapa and Brassica oleracea, and small-scale duplication events in B. napus. Transcription factor (TF) binding site prediction, cis-element analysis, and microRNA prediction suggested that the expressions of BnaZSNRT2s are regulated by multiple factors, and the regulatory pattern is relatively conserved in each group and is tightly connected between groups. Expression assay showed the diverse and differentiated spatial-temporal expression profiles of BnaZSNRT2s in Group I, but conserved patterns were observed in Group II/III; and the low nitrogen (LN) stress up-regulated expression profiles were presented in Group I−III, based on RNA-seq data. RT-qPCR analyses confirmed that BnaZSNRT2.5A-1 and BnaZSNRT2.5C-1 in Group II were highly up-regulated under LN stress in B. napus roots. Our results offer valid information and candidates for further functional BnaZSNRT2s studies.
Collapse
|
9
|
Comparative Proteomic Analysis of Two Contrasting Maize Hybrids’ Responses to Low Nitrogen Stress at the Twelve Leaf Stage and Function Verification of ZmTGA Gene. Genes (Basel) 2022; 13:genes13040670. [PMID: 35456476 PMCID: PMC9030517 DOI: 10.3390/genes13040670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 02/20/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022] Open
Abstract
Nitrogen is one of the essential nutrients for plant growth and development. However, large amounts of nitrogen fertilizer not only increase the production costs, but also lead to serious environmental problems. Therefore, it is particularly important to reduce the application of nitrogen fertilizer and develop maize varieties with low nitrogen tolerance. The aim of this study was to determine the phenotypic and proteomic alterations of maize affected by nitrogen deficiency and to elucidate the molecular and physiological mechanisms underpinning maize tolerance to low nitrogen. Two maize hybrids with contrasting low nitrogen tolerance were used as the experimental materials. Maize plants were grown under different nitrogen application levels (N0 and N240) and proteomic analysis performed to analyze leaf differentially abundant proteins (DAPs) under different nitrogen conditions. The results showed that under the nitrogen deficiency condition, the nitrogen content, leaf dry weight, leaf area, and leaf area index of XY335 decreased by 15.58%, 8.83%, 3.44%, and 3.44%, respectively. However, in the variety HN138, the same parameters decreased by 56.94%, 11.97%, 8.79%, and 8.79%, respectively. Through proteomic analysis, we found that the low nitrogen tolerance variety responded to low nitrogen stress through lignin biosynthesis, ubiquitin-mediated proteolysis, and stress defense proteins. Transmembrane transporters were differentially expressed in both hybrids after low nitrogen treatment, suggesting that this was a common response to low nitrogen stress. Using bioinformatics analysis, we selected the key candidate gene (ZmTGA) that was assumed to respond to low nitrogen stress, and its function was characterized by maize mutants. The results showed that when compared with normal nitrogen treatment, the root length of the mutants under low nitrogen treatment increased by 10.1%, while that of the wild-type increased by 14.8%; the root surface area of the wild type under low nitrogen treatment increased by 9.6%, while that of the mutants decreased by 5.2%; the root surface area of the wild type was higher than that of the mutant at both nitrogen levels; and the activities of glutathione and guaiacol peroxidase enzymes in the mutant were lower than those in the wild-type under low nitrogen treatment. In summary, the mutant was less adaptable to a low nitrogen environment than the wild type. Our results provide maize genetic resources and a new direction for a further understanding of maize response to low nitrogen stress.
Collapse
|
10
|
Lebedev VG, Popova AA, Shestibratov KA. Genetic Engineering and Genome Editing for Improving Nitrogen Use Efficiency in Plants. Cells 2021; 10:cells10123303. [PMID: 34943810 PMCID: PMC8699818 DOI: 10.3390/cells10123303] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 10/29/2021] [Revised: 11/18/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022] Open
Abstract
Low nitrogen availability is one of the main limiting factors for plant growth and development, and high doses of N fertilizers are necessary to achieve high yields in agriculture. However, most N is not used by plants and pollutes the environment. This situation can be improved by enhancing the nitrogen use efficiency (NUE) in plants. NUE is a complex trait driven by multiple interactions between genetic and environmental factors, and its improvement requires a fundamental understanding of the key steps in plant N metabolism—uptake, assimilation, and remobilization. This review summarizes two decades of research into bioengineering modification of N metabolism to increase the biomass accumulation and yield in crops. The expression of structural and regulatory genes was most often altered using overexpression strategies, although RNAi and genome editing techniques were also used. Particular attention was paid to woody plants, which have great economic importance, play a crucial role in the ecosystems and have fundamental differences from herbaceous species. The review also considers the issue of unintended effects of transgenic plants with modified N metabolism, e.g., early flowering—a research topic which is currently receiving little attention. The future prospects of improving NUE in crops, essential for the development of sustainable agriculture, using various approaches and in the context of global climate change, are discussed.
Collapse
Affiliation(s)
- Vadim G. Lebedev
- Forest Biotechnology Group, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia;
- Correspondence:
| | - Anna A. Popova
- Department of Botany and Plant Physiology, Voronezh State University of Forestry and Technologies named after G.F. Morozov, 394087 Voronezh, Russia;
| | - Konstantin A. Shestibratov
- Forest Biotechnology Group, Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 142290 Pushchino, Russia;
- Department of Botany and Plant Physiology, Voronezh State University of Forestry and Technologies named after G.F. Morozov, 394087 Voronezh, Russia;
| |
Collapse
|
11
|
Zhang F, He W, Yuan Q, Wei K, Ruan L, Wang L, Cheng H. Transcriptome analysis identifies CsNRT genes involved in nitrogen uptake in tea plants, with a major role of CsNRT2.4. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 167:970-979. [PMID: 34571390 DOI: 10.1016/j.plaphy.2021.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 08/05/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Tea trees have a high demand for nitrogen (N) fertilizer to improve the yield and quality of tea. In this research, transcriptome analysis revealed the effect of N starvation and resupply upon N uptake in tea plants. We identified 4098 differentially expressed genes (DEGs) that were significantly enriched in amino acid and N metabolism and were extensively mapped to the tea genome. The CsNRT gene family plays vital roles in the nitrogen uptake of tea plants. The full CDS sequences of CsNRT1.1, CsNRT1.2, CsNRT1.5, CsNRT1.7, CsNRT2.4, CsNRT2.5, CsNRT3.1 and CsNRT3.2 were cloned. One-year-old cutting seedlings of Zhongcha302 (ZC302) were selected for hydroponic culture and were used for gene expression analysis. The seedlings were resupplied with 0.2 and 2 mM N after N starvation. The results of the gene expression under different N treatments and in various tissues indicated that the expression of CsNRT2.4 was highly expressed in tea roots and was greatly induced by N. Overexpressed CsNRT2.4 in transgenic Arabidopsis thaliana increased the root lengths and fresh weights and improved the NO3- uptake rate in the Arabidopsis roots at a low NO3- level. Thus, we inferred that CsNRT2.4 was a key gene for N uptake in tea plant roots. This study provides new insights into the molecular mechanisms of tea plant responses to N resupply and reveals hub genes for improving nitrogen usage efficiency (NUE) in tea plants.
Collapse
Affiliation(s)
- Fen Zhang
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Wei He
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Qingyun Yuan
- Department of Horticulture, Henan Agricultural University, Zhengzhou, 450002, China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Li Ruan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou 310008, China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute Chinese Academy of Agricultural Sciences, Hangzhou 310008, China.
| |
Collapse
|
12
|
Sathee L, Jha SK, Rajput OS, Singh D, Kumar S, Kumar A. Expression dynamics of genes encoding nitrate and ammonium assimilation enzymes in rice genotypes exposed to reproductive stage salinity stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:161-172. [PMID: 34044225 DOI: 10.1016/j.plaphy.2021.05.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 10/10/2020] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Understanding the reproductive stage salinity stress tolerance is a key target for breeding stress tolerant rice genotypes. Nitrate and ammonium are equally important nitrogen forms utilized by rice. We evaluated nitrate and ammonium assimilation during reproductive stage in control and salinity (10dSm-1 using NaCl) stressed rice plants. Osmotic stress tolerant rice genotype Shabhagidhan (SD) and high yielding yet osmotic and salinity stress sensitive genotype Pusa sugandh-5 (PS5) were evaluated. Salinity stress was given to plants during panicle emergence and flag leaves was collected after 1d, 3d 5d, 7d, 9d,12d and 15d after anthesis. Reproductive stage salinity stress resulted in decrease of membrane stability, relative water content and osmotic potential of rice plants. Reproductive stage salinity stress decreased the expression of nitrate reductase (OsNIA), nitrite reductase (OsNiR), Glutamine synthetase (OsGLN1.1, OsGLN1.2, OsGLN2) and glutamate synthase/GOGAT (OsFd-GOGAT, OsNADH-GOGAT) in flag leaves. In response to stress, SD showed better stress tolerance than PS5 in terms of higher yield stability. Variety SD showed higher leaf nitrate and ammonium content and maintained comparatively higher nitrate and ammonia metabolism enzyme activity than PS5. Salinity stress upregulated the activity of glutamate dehydrogenase enzyme and indirectly contributed to the higher proline content and maintenance of favourable osmotic potential in SD. Expression of GS2 which has role in photo respiratory ammonia assimilation was upregulated by salinity stress in PS5 in comparison to SD. Rice genotype showing better induction of nitrogen assimilatory genes will be more tolerant to reproductive stage salinity stress.
Collapse
Affiliation(s)
- Lekshmy Sathee
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India.
| | - Shailendra K Jha
- Division of Genetics, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Ompal Singh Rajput
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Dalveer Singh
- Division of Plant Physiology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Santosh Kumar
- Division of Crop Research, ICAR Research Complex for Eastern Region, Patna, Bihar, India
| | - Arun Kumar
- National Phytotron Facility, ICAR-Indian Agricultural Research Institute, New Delhi, India
| |
Collapse
|
13
|
Castro-Rodríguez V, Ávila C, Cánovas FM. Getting more bark for your buck: nitrogen economy of deciduous forest trees. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4369-4372. [PMID: 32710786 DOI: 10.1093/jxb/eraa238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 06/11/2023]
Abstract
This article comments on:
Li G, Lin R, Egekwu C, Blakeslee J, Lin J, Pettengill E, Murphy AS, Peer WA, Islam N, Babst BA, Gao F, Komarov S, Tai Y-C, Coleman GD. 2020. Seasonal nitrogen remobilization and the role of auxin transport in poplar trees. Journal of Experimental Botany 71, 4512–4530.
Collapse
Affiliation(s)
- Vanessa Castro-Rodríguez
- Grupo de Biología Molecular y Biotecnología de Plantas (BIO-114), Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología de Plantas (BIO-114), Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| | - Francisco M Cánovas
- Grupo de Biología Molecular y Biotecnología de Plantas (BIO-114), Facultad de Ciencias, Universidad de Málaga, Málaga, Spain
| |
Collapse
|
14
|
Ortigosa F, Valderrama-Martín JM, Urbano-Gámez JA, García-Martín ML, Ávila C, Cánovas FM, Cañas RA. Inorganic Nitrogen Form Determines Nutrient Allocation and Metabolic Responses in Maritime Pine Seedlings. PLANTS 2020; 9:plants9040481. [PMID: 32283755 PMCID: PMC7238028 DOI: 10.3390/plants9040481] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 03/14/2020] [Revised: 04/02/2020] [Accepted: 04/07/2020] [Indexed: 12/11/2022]
Abstract
Nitrate and ammonium are the main forms of inorganic nitrogen available to plants. The present study aimed to investigate the metabolic changes caused by ammonium and nitrate nutrition in maritime pine (Pinus pinaster Ait.). Seedlings were grown with five solutions containing different proportions of nitrate and ammonium. Their nitrogen status was characterized through analyses of their biomass, different biochemical and molecular markers as well as a metabolite profile using 1H-NMR. Ammonium-fed seedlings exhibited higher biomass than nitrate-fed-seedlings. Nitrate mainly accumulated in the stem and ammonium in the roots. Needles of ammonium-fed seedlings had higher nitrogen and amino acid contents but lower levels of enzyme activities related to nitrogen metabolism. Higher amounts of soluble sugars and L-arginine were found in the roots of ammonium-fed seedlings. In contrast, L-asparagine accumulated in the roots of nitrate-fed seedlings. The differences in the allocation of nitrate and ammonium may function as metabolic buffers to prevent interference with the metabolism of photosynthetic organs. The metabolite profiles observed in the roots suggest problems with carbon and nitrogen assimilation in nitrate-supplied seedlings. Taken together, this new knowledge contributes not only to a better understanding of nitrogen metabolism but also to improving aspects of applied mineral nutrition for conifers.
Collapse
Affiliation(s)
- Francisco Ortigosa
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - José Miguel Valderrama-Martín
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - José Alberto Urbano-Gámez
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - María Luisa García-Martín
- BIONAND, Centro Andaluz de Nanomedicina y Biotecnología, Junta de Andalucía, Universidad de Málaga, 29590 Málaga, Spain;
| | - Concepción Ávila
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
| | - Rafael A. Cañas
- Grupo de Biología Molecular y Biotecnología, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Campus Universitario de Teatinos, 29071 Málaga, Spain; (F.O.); (J.M.V.-M.); (J.A.U.-G.); (C.Á.); (F.M.C.)
- Correspondence: ; Tel.: +34-952-13-4272
| |
Collapse
|
15
|
Iqbal A, Qiang D, Zhun W, Xiangru W, Huiping G, Hengheng Z, Nianchang P, Xiling Z, Meizhen S. Growth and nitrogen metabolism are associated with nitrogen-use efficiency in cotton genotypes. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 149:61-74. [PMID: 32050119 DOI: 10.1016/j.plaphy.2020.02.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/27/2019] [Revised: 02/01/2020] [Accepted: 02/02/2020] [Indexed: 05/23/2023]
Abstract
Crops, including cotton, are sensitive to nitrogen (N) and excessive use can lead to an increase in production costs and environmental problems. We hypothesized that the use of cotton genotypes with substantial root systems and high genetic potentials for nitrogen-use efficiency (NUE) would best address these problems. Therefore, the interspecific variations and traits contributing to NUE in six cotton genotypes having contrasting NUEs were studied in response to various nitrate concentrations. Large genotypic variations were observed in morphophysiological and biochemical traits, especially shoot dry weight, root traits, and N-assimilating enzyme levels. The roots of all the cotton genotypes were more sensitive to low-than high-nitrate concentrations, and the genotype CCRI-69 had the largest root system irrespective of the nitrate concentration. The root morphological traits were positively correlated with N-utilization efficiency and were more affected by genotype than nitrate concentration. Conversely, growth and N-assimilating enzyme levels were more affected by nitrate concentration and were positively correlated with N-uptake efficiency. Based on shoot dry weight, CCRI-69 and XLZ-30 were identified as N-efficient and N-inefficient genotypes, respectively, and these results were confirmed by their contrasting root systems, N metabolism, and NUEs. In the future, multi-omics techniques will be performed to identify key genes/pathways involved in N metabolism, which may have the potential to improve root architecture and increase NUE.
Collapse
Affiliation(s)
- Asif Iqbal
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| | - Dong Qiang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wang Zhun
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Wang Xiangru
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Gui Huiping
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Zhang Hengheng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Pang Nianchang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China
| | - Zhang Xiling
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| | - Song Meizhen
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang, 455000, PR China.
| |
Collapse
|
16
|
Wu F, Fang F, Wu N, Li L, Tang M. Nitrate Transporter Gene Expression and Kinetics of Nitrate Uptake by Populus × canadensis 'Neva' in Relation to Arbuscular Mycorrhizal Fungi and Nitrogen Availability. Front Microbiol 2020; 11:176. [PMID: 32184762 PMCID: PMC7058973 DOI: 10.3389/fmicb.2020.00176] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Academic Contribution Register] [Received: 07/27/2019] [Accepted: 01/24/2020] [Indexed: 12/24/2022] Open
Abstract
Plants and other organisms in the ecosystem compete for the limited nitrogen (N) in the soil. Formation of a symbiotic relationship with arbuscular mycorrhizal fungi (AMF) may influence plant competitiveness for N. However, the effects of AMF on plant nitrate (NO3 -) uptake capacity remain unknown. In this study, a pot experiment was conducted to investigate the effects of N application and Rhizophagus irregularis inoculation on the root absorbing area, uptake kinetics of NO3 -, and the expression of NO3 - transporter (NRT) genes in Populus × canadensis 'Neva'. The results showed that R. irregularis colonized more than 70% of the roots of the poplar and increased root active absorbing area/total absorbing area. The uptake kinetics of NO3 - by poplar fitted the Michaelis-Menten equation. Mycorrhizal plants had a higher maximum uptake rate (V max) value than non-mycorrhizal plants, indicating that R. irregularis enhanced the NO3 - uptake capacity of poplar. The expression of NRTs in roots, namely, NRT1;2, NRT2;4B, NRT2;4C, NRT3;1A, NRT3;1B, and NRT3;1C, was decreased by R. irregularis under conditions of 0 and 1 mM NH4NO3. This study demonstrated that the improved NO3 - uptake capacity by R. irregularis was not achieved by up-regulating the expression of NRTs in roots. The mycorrhizal pathway might repress root direct pathway in the NO3 - uptake by mycorrhizal plants.
Collapse
Affiliation(s)
- Fei Wu
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
- College of Forestry, Northwest A&F University, Yangling, China
- Key Laboratory of State Forestry and Grassland Administration on Forest Ecosystem Protection and Restoration of Poyang Lake Watershed, College of Forestry, Jiangxi Agricultural University, Nanchang, China
| | - Fengru Fang
- College of Forestry, Northwest A&F University, Yangling, China
| | - Na Wu
- School of Life Science, Shanxi Datong University, Datong, China
| | - Li Li
- College of Forestry, Northwest A&F University, Yangling, China
| | - Ming Tang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
17
|
Iqbal A, Dong Q, Wang X, Gui H, Zhang H, Zhang X, Song M. Variations in Nitrogen Metabolism are Closely Linked with Nitrogen Uptake and Utilization Efficiency in Cotton Genotypes under Various Nitrogen Supplies. PLANTS (BASEL, SWITZERLAND) 2020; 9:E250. [PMID: 32075340 PMCID: PMC7076418 DOI: 10.3390/plants9020250] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Academic Contribution Register] [Received: 01/21/2020] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 12/14/2022]
Abstract
Cotton production is highly sensitive to nitrogen (N) fertilization, whose excessive use is responsible for human and environmental problems. Lowering N supply together with the selection of N-efficient genotypes, more able to uptake, utilize, and remobilize the available N, could be a challenge to maintain high cotton production sustainably. The current study aimed to explore the intraspecific variation among four cotton genotypes in response to various N supplies, in order to identify the most distinct N-efficient genotypes and their nitrogen use efficiency (NUE)-related traits in hydroponic culture. On the basis of shoot dry matter, CCRI-69 and XLZ-30 were identified as N-efficient and N-inefficient genotypes, respectively, and these results were confirmed by their contrasting N metabolism, uptake (NUpE), and utilization efficiency (NUtE). Overall, our results indicated the key role of shoot glutamine synthetase (GS) and root total soluble protein in NUtE. Conversely, tissue N concentration and N-metabolizing enzymes were considered as the key traits in conferring high NUpE. The remobilization of N from the shoot to roots by high shoot GS activity may be a strategy to enhance root total soluble protein, which improves root growth for N uptake and NUE. In future, multi-omics studies will be employed to focus on the key genes and pathways involved in N metabolism and their role in improving NUE.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiling Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (A.I.); (Q.D.)
| | - Meizhen Song
- State Key Laboratory of Cotton Biology, Institute of Cotton Research of Chinese Academy of Agricultural Sciences, Anyang 455000, China; (A.I.); (Q.D.)
| |
Collapse
|
18
|
Fatiukha A, Filler N, Lupo I, Lidzbarsky G, Klymiuk V, Korol AB, Pozniak C, Fahima T, Krugman T. Grain protein content and thousand kernel weight QTLs identified in a durum × wild emmer wheat mapping population tested in five environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020. [PMID: 31562566 DOI: 10.1101/601773] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/16/2023]
Abstract
Genetic dissection of GPC and TKW in tetraploid durum × WEW RIL population, based on high-density SNP genetic map, revealed 12 GPC QTLs and 11 TKW QTLs, with favorable alleles for 11 and 5 QTLs, respectively, derived from WEW. Wild emmer wheat (Triticum turgidum ssp. dicoccoides, WEW) was shown to exhibit high grain protein content (GPC) and therefore possess a great potential for improvement of cultivated wheat nutritional value. Genetic dissection of thousand kernel weight (TKW) and grain protein content (GPC) was performed using a high-density genetic map constructed based on a recombinant inbred line (RIL) population derived from a cross between T. durum var. Svevo and WEW acc. Y12-3. Genotyping of 208 F6 RILs with a 15 K wheat single nucleotide polymorphism (SNP) array yielded 4166 polymorphic SNP markers, of which 1510 were designated as skeleton markers. A total map length of 2169 cM was obtained with an average distance of 1.5 cM between SNPs. A total of 12 GPC QTLs and 11 TKW QTLs were found under five different environments. No significant correlations were found between GPC and TKW across all environments. Four major GPC QTLs with favorable alleles from WEW were found on chromosomes 4BS, 5AS, 6BS and 7BL. The 6BS GPC QTL coincided with the physical position of the NAC transcription factor TtNAM-B1, underlying the cloned QTL, Gpc-B1. Comparisons of the physical intervals of the GPC QTLs described here with the results previously reported in other durum × WEW RIL population led to the discovery of seven novel GPC QTLs. Therefore, our research emphasizes the importance of GPC QTL dissection in diverse WEW accessions as a source of novel alleles for improvement of GPC in cultivated wheat.
Collapse
Affiliation(s)
- Andrii Fatiukha
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Naveh Filler
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Itamar Lupo
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Gabriel Lidzbarsky
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Curtis Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
| |
Collapse
|
19
|
Fatiukha A, Filler N, Lupo I, Lidzbarsky G, Klymiuk V, Korol AB, Pozniak C, Fahima T, Krugman T. Grain protein content and thousand kernel weight QTLs identified in a durum × wild emmer wheat mapping population tested in five environments. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:119-131. [PMID: 31562566 DOI: 10.1007/s00122-019-03444-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 04/22/2019] [Accepted: 09/18/2019] [Indexed: 05/14/2023]
Abstract
Genetic dissection of GPC and TKW in tetraploid durum × WEW RIL population, based on high-density SNP genetic map, revealed 12 GPC QTLs and 11 TKW QTLs, with favorable alleles for 11 and 5 QTLs, respectively, derived from WEW. Wild emmer wheat (Triticum turgidum ssp. dicoccoides, WEW) was shown to exhibit high grain protein content (GPC) and therefore possess a great potential for improvement of cultivated wheat nutritional value. Genetic dissection of thousand kernel weight (TKW) and grain protein content (GPC) was performed using a high-density genetic map constructed based on a recombinant inbred line (RIL) population derived from a cross between T. durum var. Svevo and WEW acc. Y12-3. Genotyping of 208 F6 RILs with a 15 K wheat single nucleotide polymorphism (SNP) array yielded 4166 polymorphic SNP markers, of which 1510 were designated as skeleton markers. A total map length of 2169 cM was obtained with an average distance of 1.5 cM between SNPs. A total of 12 GPC QTLs and 11 TKW QTLs were found under five different environments. No significant correlations were found between GPC and TKW across all environments. Four major GPC QTLs with favorable alleles from WEW were found on chromosomes 4BS, 5AS, 6BS and 7BL. The 6BS GPC QTL coincided with the physical position of the NAC transcription factor TtNAM-B1, underlying the cloned QTL, Gpc-B1. Comparisons of the physical intervals of the GPC QTLs described here with the results previously reported in other durum × WEW RIL population led to the discovery of seven novel GPC QTLs. Therefore, our research emphasizes the importance of GPC QTL dissection in diverse WEW accessions as a source of novel alleles for improvement of GPC in cultivated wheat.
Collapse
Affiliation(s)
- Andrii Fatiukha
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Naveh Filler
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Itamar Lupo
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Gabriel Lidzbarsky
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Valentyna Klymiuk
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Abraham B Korol
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel
| | - Curtis Pozniak
- Department of Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada
| | - Tzion Fahima
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
- Department of Evolutionary and Environmental Biology, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
| | - Tamar Krugman
- Institute of Evolution, University of Haifa, Mt. Carmel, 31905, Haifa, Israel.
| |
Collapse
|
20
|
Scheerer U, Trube N, Netzer F, Rennenberg H, Herschbach C. ATP as Phosphorus and Nitrogen Source for Nutrient Uptake by Fagus sylvatica and Populus x canescens Roots. FRONTIERS IN PLANT SCIENCE 2019; 10:378. [PMID: 31019519 PMCID: PMC6458296 DOI: 10.3389/fpls.2019.00378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 07/27/2018] [Accepted: 03/12/2019] [Indexed: 05/08/2023]
Abstract
The present study elucidated whether roots of temperate forest trees can take up organic phosphorus in the form of ATP. Detached non-mycorrhizal roots of beech (Fagus sylvatica) and gray poplar (Populus x canescens) were exposed under controlled conditions to 33P-ATP and/or 13C/15N labeled ATP in the presence and absence of the acid phosphatase inhibitor MoO4 2-. Accumulation of the respective label in the roots was used to calculate 33P, 13C and 15N uptake rates in ATP equivalents for comparison reason. The present data shown that a significant part of ATP was cleaved outside the roots before phosphate (Pi) was taken up. Furthermore, nucleotide uptake seems more reasonable after cleavage of at least one Pi unit as ADP, AMP and/or as the nucleoside adenosine. Similar results were obtained when still attached mycorrhizal roots of adult beech trees and their natural regeneration of two forest stands were exposed to ATP in the presence or absence of MoO4 2-. Cleavage of Pi from ATP by enzymes commonly present in the rhizosphere, such as extracellular acid phosphatases, ecto-apyrase and/or nucleotidases, prior ADP/AMP/adenosine uptake is highly probable but depended on the soil type and the pH of the soil solution. Although uptake of ATP/ADP/AMP cannot be excluded, uptake of the nucleoside adenosine without breakdown into its constituents ribose and adenine is highly evident. Based on the 33P, 13C, and 15N uptake rates calculated as equivalents of ATP the 'pro and contra' for the uptake of nucleotides and nucleosides is discussed. Short Summary Roots take up phosphorus from ATP as Pi after cleavage but might also take up ADP and/or AMP by yet unknown nucleotide transporter(s) because at least the nucleoside adenosine as N source is taken up without cleavage into its constituents ribose and adenine.
Collapse
Affiliation(s)
- Ursula Scheerer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Niclas Trube
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Florian Netzer
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Heinz Rennenberg
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| | - Cornelia Herschbach
- Chair of Tree Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
- Chair of Ecosystem Physiology, Institute of Forest Sciences, Albert-Ludwigs-University Freiburg, Freiburg, Germany
| |
Collapse
|
21
|
Cánovas FM, Cañas RA, de la Torre FN, Pascual MB, Castro-Rodríguez V, Avila C. Nitrogen Metabolism and Biomass Production in Forest Trees. FRONTIERS IN PLANT SCIENCE 2018; 9:1449. [PMID: 30323829 PMCID: PMC6172323 DOI: 10.3389/fpls.2018.01449] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 06/25/2018] [Accepted: 09/12/2018] [Indexed: 05/20/2023]
Abstract
Low nitrogen (N) availability is a major limiting factor for tree growth and development. N uptake, assimilation, storage and remobilization are key processes in the economy of this essential nutrient, and its efficient metabolic use largely determines vascular development, tree productivity and biomass production. Recently, advances have been made that improve our knowledge about the molecular regulation of acquisition, assimilation and internal recycling of N in forest trees. In poplar, a model tree widely used for molecular and functional studies, the biosynthesis of glutamine plays a central role in N metabolism, influencing multiple pathways both in primary and secondary metabolism. Moreover, the molecular regulation of glutamine biosynthesis is particularly relevant for accumulation of N reserves during dormancy and in N remobilization that takes place at the onset of the next growing season. The characterization of transgenic poplars overexpressing structural and regulatory genes involved in glutamine biosynthesis has provided insights into how glutamine metabolism may influence the N economy and biomass production in forest trees. Here, a general overview of this research topic is outlined, recent progress are analyzed and challenges for future research are discussed.
Collapse
Affiliation(s)
- Francisco M. Cánovas
- Grupo de Biología Molecular y Biotecnología de Plantas, Departamento de Biología Molecular y Bioquímica, Universidad de Málaga, Málaga, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Pascual MB, Molina-Rueda JJ, Cánovas FM, Gallardo F. Overexpression of a cytosolic NADP+-isocitrate dehydrogenase causes alterations in the vascular development of hybrid poplars. TREE PHYSIOLOGY 2018; 38:992-1005. [PMID: 29920606 DOI: 10.1093/treephys/tpy044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 11/13/2017] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
Cytosolic NADP+-isocitrate dehydrogenase (ICDH) is one of the major enzymes involved in the production of 2-oxoglutarate for amino acid biosynthesis in plants. In most plants studied, ICDH is encoded by either one gene or a small gene family, and the protein sequence has been highly conserved during evolution, suggesting it plays different and essential roles in metabolism and differentiation. To elucidate the role of ICDH in hybrid poplar (Populus tremula x P. alba), transgenic plants overexpressing the Pinus pinaster gene were generated. Overexpression of ICDH resulted in hybrid poplar (Populus tremula × P. alba) trees with higher expression levels of the endogenous ICDH gene and higher enzyme content than control untransformed plants. Transgenic poplars also showed an increased expression of glutamine synthetase (GS1.3), glutamate decarboxylase (GAD) and other genes associated with vascular differentiation. Furthermore, these plants exhibited increased growth in height, longer internodes and enhanced vascular development in young leaves and the apical region of stem. Modifications in amino acid and organic acid content were observed in young leaves of the transgenic lines, suggesting an increased biosynthesis of amino acids for building new structures and also for transport to other sink organs, as expanding leaves or young stems. Taken together, these results support an important role of ICDH in plant growth and vascular development.
Collapse
Affiliation(s)
- María Belén Pascual
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Juan Jesús Molina-Rueda
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Francisco M Cánovas
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| | - Fernando Gallardo
- Departamento de Biología Molecular y Bioquímica, Facultad de Ciencias, Universidad de Málaga, Campus Universitario de Teatinos, Málaga, Spain
| |
Collapse
|
23
|
Babst BA, Coleman GD. Seasonal nitrogen cycling in temperate trees: Transport and regulatory mechanisms are key missing links. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 270:268-277. [PMID: 29576080 DOI: 10.1016/j.plantsci.2018.02.021] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 01/31/2018] [Accepted: 02/22/2018] [Indexed: 05/08/2023]
Abstract
Nutrient accumulation, one of the major ecosystem services provided by forests, is largely due to the accumulation and retention of nutrients in trees. This review focuses on seasonal cycling of nitrogen (N), often the most limiting nutrient in terrestrial ecosystems. When leaves are shed during autumn, much of the N may be resorbed and stored in the stem over winter, and then used for new stem and leaf growth in spring. A framework exists for understanding the metabolism and transport of N in leaves and stems during winter dormancy, but many of the underlying genes remain to be identified and/or verified. Transport of N during seasonal N cycling is a particularly weak link, since the physical pathways for loading and unloading of amino N to and from the phloem are poorly understood. Short-day photoperiod followed by decreasing temperatures are the environmental cues that stimulate dormancy induction, and nutrient remobilization and storage. However, beyond the involvement of phytochrome, very little is known about the signal transduction mechanisms that link environmental cues to nutrient remobilization and storage. We propose a model whereby nutrient transport and sensing plays a major role in source-sink transitions of leaves and stems during seasonal N cycling.
Collapse
Affiliation(s)
- Benjamin A Babst
- Arkansas Forest Resources Center, Division of Agriculture, University of Arkansas System, Monticello, AR 71656, USA; School of Forestry and Natural Resources, University of Arkansas at Monticello, Monticello, AR 71656, USA.
| | - Gary D Coleman
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
24
|
Lee DK, Redillas MCFR, Jung H, Choi S, Kim YS, Kim JK. A Nitrogen Molecular Sensing System, Comprised of the ALLANTOINASE and UREIDE PERMEASE 1 Genes, Can Be Used to Monitor N Status in Rice. FRONTIERS IN PLANT SCIENCE 2018; 9:444. [PMID: 29720986 PMCID: PMC5915567 DOI: 10.3389/fpls.2018.00444] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Academic Contribution Register] [Received: 09/18/2017] [Accepted: 03/21/2018] [Indexed: 05/14/2023]
Abstract
Nitrogen (N) is an essential nutrient for plant growth and development, but its concentration in the soil is often insufficient for optimal crop production. Consequently, improving N utilization in crops is considered as a major target in agricultural biotechnology. However, much remains to be learnt about crop N metabolism for application. In this study, we have developed a molecular sensor system to monitor the N status in rice (Oryza sativa). We first examined the role of the ureide, allantoin, which is catabolized into allantoin-derived metabolites and used as an N source under low N conditions. The expression levels of two genes involved in ureide metabolism, ALLANTOINASE (OsALN) and UREIDE PERMEASE 1 (OsUPS1), were highly responsive to the N status. OsALN was rapidly up-regulated under low N conditions, whereas OsUPS1 was up-regulated under high N conditions. Taking advantage of the responses of these two genes to N status, we generated transgenic rice plants harboring the molecular N sensors, proALN::ALN-LUC2 and proUPS1::UPS1-LUC2, comprising the gene promoters driving expression of the luciferase reporter. We observed that expression of the transgenes mimicked transcriptional regulation of the endogenous OsALN and OsUPS1 genes in response to exogenous N status. Importantly, the molecular N sensors showed similar levels of specificity to nitrate and ammonium, from which we infer their sensing abilities. Transgenic rice plants expressing the proUPS1::UPS1-LUC2 sensor showed strong luminescence under high exogenous N conditions (>1 mM), whereas transgenic plants expressing the proALN::ALN-LUC2 sensor showed strong luminescence under low exogenous N conditions (<0.1 mM). High exogenous N (>1 mM) substantially increased internal ammonium and nitrate levels, whereas low exogenous N (<0.1 mM) had no effect on internal ammonium and nitrate levels, indicating the luminescence signals of molecular sensors reflect internal N status in rice. Thus, proALN::ALN-LUC2 and proUPS1::UPS1-LUC2 represent N molecular sensors that operate over a physiological and developmental range in rice.
Collapse
Affiliation(s)
| | | | | | | | | | - Ju-Kon Kim
- *Correspondence: Dong-Keun Lee, Ju-Kon Kim,
| |
Collapse
|
25
|
Gojon A. Nitrogen nutrition in plants: rapid progress and new challenges. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2457-2462. [PMID: 30053117 PMCID: PMC5853562 DOI: 10.1093/jxb/erx171] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Academic Contribution Register] [Indexed: 05/02/2023]
Affiliation(s)
- Alain Gojon
- UMR Biochimie & Physiologie Moléculaire des Plantes - (B&PMP), CNRS-INRA-SUPAGRO-UM, Campus INRA / SupAgro, Place Pierre Viala –, Montpellier Cedex, France
- Correspondence:
| |
Collapse
|