1
|
Fakhimi N, Grossman AR. Photosynthetic Electron Flows and Networks of Metabolite Trafficking to Sustain Metabolism in Photosynthetic Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:3015. [PMID: 39519934 PMCID: PMC11548211 DOI: 10.3390/plants13213015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 10/03/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024]
Abstract
Photosynthetic eukaryotes have metabolic pathways that occur in distinct subcellular compartments. However, because metabolites synthesized in one compartment, including fixed carbon compounds and reductant generated by photosynthetic electron flows, may be integral to processes in other compartments, the cells must efficiently move metabolites among the different compartments. This review examines the various photosynthetic electron flows used to generate ATP and fixed carbon and the trafficking of metabolites in the green alga Chlamydomomas reinhardtii; information on other algae and plants is provided to add depth and nuance to the discussion. We emphasized the trafficking of metabolites across the envelope membranes of the two energy powerhouse organelles of the cell, the chloroplast and mitochondrion, the nature and roles of the major mobile metabolites that move among these compartments, and the specific or presumed transporters involved in that trafficking. These transporters include sugar-phosphate (sugar-P)/inorganic phosphate (Pi) transporters and dicarboxylate transporters, although, in many cases, we know little about the substrate specificities of these transporters, how their activities are regulated/coordinated, compensatory responses among transporters when specific transporters are compromised, associations between transporters and other cellular proteins, and the possibilities for forming specific 'megacomplexes' involving interactions between enzymes of central metabolism with specific transport proteins. Finally, we discuss metabolite trafficking associated with specific biological processes that occur under various environmental conditions to help to maintain the cell's fitness. These processes include C4 metabolism in plants and the carbon concentrating mechanism, photorespiration, and fermentation metabolism in algae.
Collapse
Affiliation(s)
- Neda Fakhimi
- Department of Biosphere Sciences and Engineering, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA;
| | - Arthur R. Grossman
- Department of Biosphere Sciences and Engineering, The Carnegie Institution for Science, 260 Panama Street, Stanford, CA 94305, USA;
- Courtesy Appointment, Department of Biology, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
Han J, Liu CX, Liu J, Wang CR, Wang SC, Miao G. AGC kinases OXI1 and AGC2-2 regulate camalexin secretion and disease resistance by phosphorylating transporter PDR6. PLANT PHYSIOLOGY 2024; 195:1835-1850. [PMID: 38535832 DOI: 10.1093/plphys/kiae186] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/28/2024] [Indexed: 06/30/2024]
Abstract
Plant transporters regulating the distribution of secondary metabolites play critical roles in defending against pathogens, insects, and interacting with beneficial microbes. The phosphorylation of these transporters can alter their activity, stability, and intracellular protein trafficking. However, the regulatory mechanism underlying this modification remains elusive. In this study, we discovered two orthologs of mammalian PKA, PKG, and PKC (AGC) kinases, oxidative signal-inducible 1 (OXI1) and its closest homologue, AGC subclass 2 member 2 (AGC2-2; 75% amino acid sequence identity with OXI1), associated with the extracellular secretion of camalexin and Arabidopsis (Arabidopsis thaliana) resistance to Pseudomonas syringae, and Botrytis cinerea. These kinases can undergo in vitro kinase reactions with three pleiotropic drug resistance (PDR) transporters: PDR6, PDR8, and PDR12. Moreover, our investigation confirmed PDR6 interaction with OXI1 and AGC2-2. By performing LC-MS/MS and parallel reaction monitoring, we identified the phosphorylation sites on PDR6 targeted by these kinases. Notably, chitin-induced PDR6 phosphorylation at specific residues, namely S31, S33, S827, and T832. Additional insights emerged by expressing dephosphorylated PDR6 variants in a pdr6 mutant background, revealing that the target residues S31, S33, and S827 promote PDR6 efflux activity, while T832 potentially contributes to PDR6 stability within the plasma membrane. The findings of this study elucidate partial mechanisms involved in the activity regulation of PDR-type transporters, providing valuable insights for their potential application in future plant breeding endeavors.
Collapse
Affiliation(s)
- Juan Han
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Institute of Digital Ecology and Health, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Chang-Xin Liu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Jian Liu
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Cheng-Run Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Shun-Chang Wang
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| | - Guopeng Miao
- Department of Bioengineering, Huainan Normal University, Huainan, Anhui Province 232038, China
- Key Laboratory of Bioresource and Environmental Biotechnology of Anhui Higher Education Institutes, Huainan Normal University, Huainan, Anhui Province 232038, China
| |
Collapse
|
3
|
Zhu H, Ye Z, Xu Z, Wei L. Transcriptomic Analysis Reveals the Effect of Urea on Metabolism of Nannochloropsis oceanica. Life (Basel) 2024; 14:797. [PMID: 39063552 PMCID: PMC11278182 DOI: 10.3390/life14070797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/28/2024] Open
Abstract
The eukaryotic microalga Nannochloropsis oceanica represents a promising bioresource for the production of biofuels and pharmaceuticals. Urea, a crucial nutrient for the photosynthetic N. oceanica, stimulates the accumulation of substances such as lipids, which influence growth and physiology. However, the specific mechanisms by which N. oceanica responds and adapts to urea addition remain unknown. High-throughput mRNA sequencing and differential gene expression analysis under control and urea-added conditions revealed significant metabolic changes. This involved the differential expression of 2104 genes, with 1354 being upregulated and 750 downregulated, resulting in the reprogramming of crucial pathways such as carbon and nitrogen metabolism, photosynthesis, and lipid metabolism. The results specifically showed that genes associated with photosynthesis in N. oceanica were significantly downregulated, particularly those related to light-harvesting proteins. Interestingly, urea absorption and transport may depend not only on specialized transport channels such as urease but also on alternative transport channels such as the ABC transporter family and the CLC protein family. In addition, urea caused specific changes in carbon and lipid metabolism. Genes associated with the Calvin cycle and carbon concentration mechanisms were significantly upregulated. In lipid metabolism, the expression of genes associated with lipases and polyunsaturated fatty acid synthesis was highly activated. Furthermore, the expression of several genes involved in the tricarboxylic acid cycle and folate metabolism was enhanced, making important contributions to energy supply and the synthesis and modification of genes and macromolecules. Our observations indicate that N. oceanica actively and dynamically regulates the redistribution of carbon and nitrogen after urea addition, providing references for further research on the effects of urea on N. oceanica.
Collapse
Affiliation(s)
- Han Zhu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Hainan Observation and Research Station of Dongzhaigang Mangrove Wetland Ecosystem, Haikou 571129, China
- International Science and Technology Cooperation Laboratory for Marine Microalgae Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| | - Zhenli Ye
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Zhengru Xu
- College of Foreign Language, Hainan Normal University, Haikou 571157, China
| | - Li Wei
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
- Hainan Observation and Research Station of Dongzhaigang Mangrove Wetland Ecosystem, Haikou 571129, China
- International Science and Technology Cooperation Laboratory for Marine Microalgae Ecological Carbon Sinks, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
4
|
Zhu Z, Krall L, Li Z, Xi L, Luo H, Li S, He M, Yang X, Zan H, Gilbert M, Gombos S, Wang T, Neuhäuser B, Jacquot A, Lejay L, Zhang J, Liu J, Schulze WX, Wu XN. Transceptor NRT1.1 and receptor-kinase QSK1 complex controls PM H +-ATPase activity under low nitrate. Curr Biol 2024; 34:1479-1491.e6. [PMID: 38490203 DOI: 10.1016/j.cub.2024.02.066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 03/17/2024]
Abstract
NRT1.1, a nitrate transceptor, plays an important role in nitrate binding, sensing, and nitrate-dependent lateral root (LR) morphology. However, little is known about NRT1.1-mediated nitrate signaling transduction through plasma membrane (PM)-localized proteins. Through in-depth phosphoproteome profiling using membranes of Arabidopsis roots, we identified receptor kinase QSK1 and plasma membrane H+-ATPase AHA2 as potential downstream components of NRT1.1 signaling in a mild low-nitrate (LN)-dependent manner. QSK1, as a functional kinase and molecular link, physically interacts with NRT1.1 and AHA2 at LN and specifically phosphorylates AHA2 at S899. Importantly, we found that LN, not high nitrate (HN), induces formation of the NRT1.1-QSK1-AHA2 complex in order to repress the proton efflux into the apoplast by increased phosphorylation of AHA2 at S899. Loss of either NRT1.1 or QSK1 thus results in a higher T947/S899 phosphorylation ratio on AHA2, leading to enhanced pump activity and longer LRs under LN. Our results uncover a regulatory mechanism in which NRT1.1, under LN conditions, promotes coreceptor QSK1 phosphorylation and enhances the NRT1.1-QSK1 complex formation to transduce LN sensing to the PM H+-ATPase AHA2, controlling the phosphorylation ratio of activating and inhibitory phosphorylation sites on AHA2. This then results in altered proton pump activity, apoplast acidification, and regulation of NRT1.1-mediated LR growth.
Collapse
Affiliation(s)
- Zhe Zhu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Leonard Krall
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China.
| | - Zhi Li
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Lin Xi
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hongxiu Luo
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Shalan Li
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Mingjie He
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Xiaolin Yang
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Haitao Zan
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Max Gilbert
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Sven Gombos
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Ting Wang
- Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education, College of Life Science, Beijing Normal University, Beijing 100875, China
| | - Benjamin Neuhäuser
- Nutritional Crop Physiology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Aurore Jacquot
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Laurence Lejay
- IPSiM, University Montpellier, CNRS, INRAE, Institut Agro, 34060 Montpellier, France
| | - Jingbo Zhang
- National Academy of Agriculture Green Development, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Junzhong Liu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China
| | - Waltraud X Schulze
- Department of Plant Systems Biology, University of Hohenheim, 70599 Stuttgart, Germany.
| | - Xu Na Wu
- Yunnan Key Laboratory of Cell Metabolism and Diseases, State Key Laboratory of Conservation and Utilization of Bio-Resources in Yunnan, Center for Life Science and School of Life Sciences, Yunnan University, Kunming 650500, China.
| |
Collapse
|
5
|
Choi SJ, Lee Z, Jeong E, Kim S, Seo JS, Um T, Shim JS. Signaling pathways underlying nitrogen transport and metabolism in plants. BMB Rep 2023; 56:56-64. [PMID: 36658636 PMCID: PMC9978367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Indexed: 01/21/2023] Open
Abstract
Nitrogen (N) is an essential macronutrient required for plant growth and crop production. However, N in soil is usually insufficient for plant growth. Thus, chemical N fertilizer has been extensively used to increase crop production. Due to negative effects of N rich fertilizer on the environment, improving N usage has been a major issue in the field of plant science to achieve sustainable production of crops. For that reason, many efforts have been made to elucidate how plants regulate N uptake and utilization according to their surrounding habitat over the last 30 years. Here, we provide recent advances focusing on regulation of N uptake, allocation of N by N transporting system, and signaling pathway controlling N responses in plants. [BMB Reports 2023; 56(2): 56-64].
Collapse
Affiliation(s)
- Su Jeong Choi
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Zion Lee
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Eui Jeong
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Sohyun Kim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Jun Sung Seo
- Crop Biotechnology Institute, Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Taeyoung Um
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea,Corresponding author. Tel: +82-62-530-0507; Fax: +82-62-530-2199; E-mail:
| |
Collapse
|
6
|
Unkefer PJ, Knight TJ, Martinez RA. The intermediate in a nitrate-responsive ω-amidase pathway in plants may signal ammonium assimilation status. PLANT PHYSIOLOGY 2023; 191:715-728. [PMID: 36303326 PMCID: PMC9806585 DOI: 10.1093/plphys/kiac501] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
A metabolite of ammonium assimilation was previously theorized to be involved in the coordination of the overall nitrate response in plants. Here we show that 2-hydroxy-5-oxoproline, made by transamination of glutamine, the first product of ammonium assimilation, may be involved in signaling a plant's ammonium assimilation status. In leaves, 2-hydroxy-5-oxoproline met four foundational requirements to be such a signal. First, when it was applied to foliage, enzyme activities of nitrate reduction and ammonium assimilation increased; the activities of key tricarboxylic acid cycle-associated enzymes that help to supply carbon skeletons for amino acid synthesis also increased. Second, its leaf pools increased as nitrate availability increased. Third, the pool size of its precursor, Gln, reflected ammonium assimilation rather than photorespiration. Fourth, it was widely conserved among monocots, dicots, legumes, and nonlegumes and in plants with C3 or C4 metabolism. Made directly from the first product of ammonium assimilation, 2-hydroxy-5-oxoproline acted as a nitrate uptake stimulant. When 2-hydroxy-5-oxoproline was provided to roots, the plant's nitrate uptake rate approximately doubled. Plants exogenously provided with 2-hydroxy-5-oxoproline to either roots or leaves accumulated greater biomass. A model was constructed that included the proposed roles of 2-hydroxy-5-oxoproline as a signal molecule of ammonium assimilation status in leaves, as a stimulator of nitrate uptake by roots and nitrate downloading from the xylem. In summary, a glutamine metabolite made in the ω-amidase pathway stimulated nitrate uptake by roots and was likely to be a signal of ammonium assimilation status in leaves. A chemical synthesis method for 2-hydroxy-5-oxoproline was also developed.
Collapse
|
7
|
McDonald TR, Rizvi MF, Ruiter BL, Roy R, Reinders A, Ward JM. Posttranslational regulation of transporters important for symbiotic interactions. PLANT PHYSIOLOGY 2022; 188:941-954. [PMID: 34850211 PMCID: PMC8825328 DOI: 10.1093/plphys/kiab544] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Accepted: 10/27/2021] [Indexed: 05/20/2023]
Abstract
Coordinated sharing of nutritional resources is a central feature of symbiotic interactions, and, despite the importance of this topic, many questions remain concerning the identification, activity, and regulation of transporter proteins involved. Recent progress in obtaining genome and transcriptome sequences for symbiotic organisms provides a wealth of information on plant, fungal, and bacterial transporters that can be applied to these questions. In this update, we focus on legume-rhizobia and mycorrhizal symbioses and how transporters at the symbiotic interfaces can be regulated at the protein level. We point out areas where more research is needed and ways that an understanding of transporter mechanism and energetics can focus hypotheses. Protein phosphorylation is a predominant mechanism of posttranslational regulation of transporters in general and at the symbiotic interface specifically. Other mechanisms of transporter regulation, such as protein-protein interaction, including transporter multimerization, polar localization, and regulation by pH and membrane potential are also important at the symbiotic interface. Most of the transporters that function in the symbiotic interface are members of transporter families; we bring in relevant information on posttranslational regulation within transporter families to help generate hypotheses for transporter regulation at the symbiotic interface.
Collapse
Affiliation(s)
- Tami R McDonald
- Department of Biology, St Catherine University, St Paul, Minnesota, USA
| | - Madeeha F Rizvi
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Bretton L Ruiter
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Rahul Roy
- Department of Biology, St Catherine University, St Paul, Minnesota, USA
| | - Anke Reinders
- College of Continuing and Professional Studies, University of Minnesota, St. Paul, Minnesota, USA
| | - John M Ward
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
- Author for communication:
| |
Collapse
|
8
|
Gojon A, Nussaume L, Luu DT, Murchie EH, Baekelandt A, Rodrigues Saltenis VL, Cohan J, Desnos T, Inzé D, Ferguson JN, Guiderdonni E, Krapp A, Klein Lankhorst R, Maurel C, Rouached H, Parry MAJ, Pribil M, Scharff LB, Nacry P. Approaches and determinants to sustainably improve crop production. Food Energy Secur 2022. [DOI: 10.1002/fes3.369] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Affiliation(s)
- Alain Gojon
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Laurent Nussaume
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Doan T. Luu
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| | - Erik H. Murchie
- School of Biosciences University of Nottingham Loughborough UK
| | - Alexandra Baekelandt
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | | | | | - Thierry Desnos
- UMR7265 Laboratoire de Biologie du Développement des Plantes Service de Biologie Végétale et de Microbiologie Environnementales Institut de Biologie Environnementale et Biotechnologie CNRS‐CEA‐Université Aix‐Marseille Saint‐Paul‐lez‐Durance France
| | - Dirk Inzé
- Department of Plant Biotechnology and Bioinformatics Ghent University Ghent Belgium
- VIB Center for Plant Systems Biology Ghent Belgium
| | - John N. Ferguson
- School of Biosciences University of Nottingham Loughborough UK
- Department of Plant Sciences University of Cambridge Cambridge UK
| | | | - Anne Krapp
- Institut Jean‐Pierre Bourgin INRAE AgroParisTech Université Paris‐Saclay Versailles France
| | - René Klein Lankhorst
- Wageningen Plant Research Wageningen University & Research Wageningen The Netherlands
| | | | - Hatem Rouached
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
- Department of Plant, Soil, and Microbial Sciences Michigan State University East Lansing Michigan USA
| | | | - Mathias Pribil
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Lars B. Scharff
- Department of Plant and Environmental Sciences Copenhagen Plant Science Centre University of Copenhagen Frederiksberg Denmark
| | - Philippe Nacry
- BPMP Institut Agro Univ Montpellier INRAE CNRS Montpellier France
| |
Collapse
|
9
|
New insights into the role of chrysanthemum calcineurin B-like interacting protein kinase CmCIPK23 in nitrate signaling in Arabidopsis roots. Sci Rep 2022; 12:1018. [PMID: 35046428 PMCID: PMC8770472 DOI: 10.1038/s41598-021-04758-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 12/30/2021] [Indexed: 02/07/2023] Open
Abstract
Nitrate is an important source of nitrogen and also acts as a signaling molecule to trigger numerous physiological, growth, and developmental processes throughout the life of the plant. Many nitrate transporters, transcription factors, and protein kinases participate in the regulation of nitrate signaling. Here, we identified a gene encoding the chrysanthemum calcineurin B-like interacting protein kinase CmCIPK23, which participates in nitrate signaling pathways. In Arabidopsis, overexpression of CmCIPK23 significantly decreased lateral root number and length and primary root length compared to the WT when grown on modified Murashige and Skoog medium with KNO3 as the sole nitrogen source (modified MS). The expression of nitrate-responsive genes differed significantly between CmCIPK23-overexpressing Arabidopsis (CmCIPK23-OE) and the WT after nitrate treatment. Nitrate content was significantly lower in CmCIPK23-OE roots, which may have resulted from reduced nitrate uptake at high external nitrate concentrations (≥ 1 mM). Nitrate reductase activity and the expression of nitrate reductase and glutamine synthase genes were lower in CmCIPK23-OE roots. We also found that CmCIPK23 interacted with the transcription factor CmTGA1, whose Arabidopsis homolog regulates the nitrate response. We inferred that CmCIPK23 overexpression influences root development on modified MS medium, as well as root nitrate uptake and assimilation at high external nitrate supply. These findings offer new perspectives on the mechanisms by which the chrysanthemum CBL interacting protein kinase CmCIPK23 influences nitrate signaling.
Collapse
|
10
|
Cui H, Zhou W, Deng Y, Zheng B, Zhang Q, Zhang Z, Lu T, Qian H. Meta-transcriptomic profiling of functional variation of freshwater microbial communities induced by an antidepressant sertraline hydrochloride. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 786:147434. [PMID: 33964776 DOI: 10.1016/j.scitotenv.2021.147434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Sertraline hydrochloride (Ser-HCl) is an effective and commonly used antidepressant drug, which is also frequently detected in aquatic environments. Our previous research showed that Ser-HCl changes the community composition of aquatic microbiome, but the understanding of the expression of functional pathways in microbial communities is still incomplete; to address this knowledge gap, we used meta-transcriptomics analysis to evaluate the toxicity of Ser-HCl to natural aquatic microbial communities cultured in laboratory microcosms. Meta-transcriptomic results show that a 15-day exposure to 50 μg/L Ser-HCl significantly changed the functional expression activity of aquatic microbial communities. Pathways related to lipid metabolism, energy metabolism, membrane transport function, and genetic information processing in the aquatic microbial community were severely inhibited under Ser-HCl treatment, but metabolism of cofactors and vitamins to alleviate biological toxicity after Ser-HCl exposure was enhanced. Our study thus reveals details of the effects of sertraline on the functioning of aquatic microbiome. Due to the extensive use of Ser-HCl and its strong biological activity, it should not continue to be an overlooked pollutant. Therefore, more attention should be paid to the negative effects of such biologically active drugs on the expression of aquatic microbiome.
Collapse
Affiliation(s)
- Hengzheng Cui
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Wenya Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Yu Deng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Binyu Zheng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Qi Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Zhenyan Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| | - Tao Lu
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China.
| | - Haifeng Qian
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, PR China
| |
Collapse
|
11
|
Santin A, Caputi L, Longo A, Chiurazzi M, Ribera d'Alcalà M, Russo MT, Ferrante MI, Rogato A. Integrative omics identification, evolutionary and structural analysis of low affinity nitrate transporters in diatoms, diNPFs. Open Biol 2021; 11:200395. [PMID: 33823659 PMCID: PMC8025304 DOI: 10.1098/rsob.200395] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Diatoms are one of the major and most diverse groups of phytoplankton, with chimeric genomes harbouring a combination of genes of bacterial, animal and plant origin. They have developed sophisticated mechanisms to face environmental variations. In marine environments, nutrients concentration shows significant temporal and spatial variability, influencing phytoplankton growth. Among nutrients, nitrogen, present at micromolar levels, is often a limiting resource. Here, we report a comprehensive characterization of the Nitrate Transporter 1/Peptide Transporter Family (NPF) in diatoms, diNPFs. NPFs are well characterized in many organisms where they recognize a broad range of substrates, ranging from short-chained di- and tri-peptides in bacteria, fungi and mammals to a wide variety of molecules including nitrate in higher plants. Scarce information is available for diNPFs. We integrated-omics, phylogenetic, structural and expression analyses, to infer information on their role in diatoms. diNPF genes diverged to produce two distinct clades with strong sequence and structural homology with either bacterial or plant NPFs, with different predicted sub-cellular localization, suggesting that the divergence resulted in functional diversification. Moreover, transcription analysis of diNPF genes under different laboratory and environmental growth conditions suggests that diNPF diversification led to genetic adaptations that might contribute to diatoms ability to flourish in diverse environmental conditions.
Collapse
Affiliation(s)
- Anna Santin
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Luigi Caputi
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy
| | - Antonella Longo
- BioDiscovery Institute, Denton, TX, USA.,Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Maurizio Chiurazzi
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy
| | | | | | | | - Alessandra Rogato
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Naples, Italy.,Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, 80131 Naples, Italy
| |
Collapse
|
12
|
Nitrogen Uptake in Plants: The Plasma Membrane Root Transport Systems from a Physiological and Proteomic Perspective. PLANTS 2021; 10:plants10040681. [PMID: 33916130 PMCID: PMC8066207 DOI: 10.3390/plants10040681] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 03/26/2021] [Accepted: 03/29/2021] [Indexed: 11/17/2022]
Abstract
Nitrogen nutrition in plants is a key determinant in crop productivity. The availability of nitrogen nutrients in the soil, both inorganic (nitrate and ammonium) and organic (urea and free amino acids), highly differs and influences plant physiology, growth, metabolism, and root morphology. Deciphering this multifaceted scenario is mandatory to improve the agricultural sustainability. In root cells, specific proteins located at the plasma membrane play key roles in the transport and sensing of nitrogen forms. This review outlines the current knowledge regarding the biochemical and physiological aspects behind the uptake of the individual nitrogen forms, their reciprocal interactions, the influences on root system architecture, and the relations with other proteins sustaining fundamental plasma membrane functionalities, such as aquaporins and H+-ATPase. This topic is explored starting from the information achieved in the model plant Arabidopsis and moving to crops in agricultural soils. Moreover, the main contributions provided by proteomics are described in order to highlight the goals and pitfalls of this approach and to get new hints for future studies.
Collapse
|
13
|
Affiliation(s)
- Brent N Kaiser
- School of Life and Environmental Sciences, Faculty of Science, University of Sydney, Sydney, New South Wales, Australia.
| |
Collapse
|
14
|
Ohkubo Y, Kuwata K, Matsubayashi Y. A type 2C protein phosphatase activates high-affinity nitrate uptake by dephosphorylating NRT2.1. NATURE PLANTS 2021; 7:310-316. [PMID: 33686225 DOI: 10.1038/s41477-021-00870-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/01/2021] [Indexed: 06/12/2023]
Abstract
The nitrate transporter NRT2.1, which plays a central role in high-affinity nitrate uptake in roots, is activated at the post-translational level in response to nitrogen (N) starvation1,2. However, the critical enzymes required for the post-translational activation of NRT2.1 remain to be identified. Here, we show that a type 2C protein phosphatase, designated CEPD-induced phosphatase (CEPH), activates high-affinity nitrate uptake by directly dephosphorylating Ser501 of NRT2.1, a residue that functions as a negative phospho-switch in Arabidopsis2. CEPH is predominantly expressed in epidermal and cortex cells in roots and is upregulated by N starvation via a CEPDL2/CEPD1/2-mediated long-distance signalling from shoots3,4. The loss of CEPH leads to marked decreases in high-affinity nitrate uptake, tissue nitrate content and plant biomass. Collectively, our results identify CEPH as a crucial enzyme in the N-starvation-dependent activation of NRT2.1 and provide molecular and mechanistic insights into how plants regulate high-affinity nitrate uptake at the post-translational level in response to the N environment.
Collapse
Affiliation(s)
- Yuri Ohkubo
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules, Nagoya University, Nagoya, Japan
| | - Yoshikatsu Matsubayashi
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Japan.
| |
Collapse
|
15
|
Santos LCND, Gaion LA, Prado RM, Barreto RF, Carvalho RF. Low auxin sensitivity of diageotropica tomato mutant alters nitrogen deficiency response. AN ACAD BRAS CIENC 2020; 92:e20190254. [PMID: 33206797 DOI: 10.1590/0001-3765202020190254] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Accepted: 09/09/2019] [Indexed: 11/21/2022] Open
Abstract
Plant responses to nitrogen supply are dependent on auxin signaling, but much still remains to be elucidated regarding N deficiency in tomato. Thus, the objective of this work was to evaluate how low auxin sensitivity regulates the responses of tomato plants to N deficiency. For this purpose, we used the tomato diageotropica mutant, with low auxin sensitivity, and a near isogenic line cv. Micro-Tom grown in nutrient solutions under absence and presence of nitrogen. Plant height, stem diameter, root and shoot dry mass, area and root density, number of lateral roots, leaf area, chlorophylls and carotenoids content, nitrogen accumulation and nitrogen use efficiency were evaluated. We observed a clear interaction between the tomato genotype and nitrogen. When the plants were grown with nitrogen, 'Micro-Tom' showed higher growth than the diageotropica mutant. Under nitrogen deficiency condition, the mutant showed improved growth, nitrogen use efficiency and higher contents of pigments. In general, the low sensitivity to auxin in diageotropica caused reduced growth in both shoot and root. However, the diageotropica tomato showed a positive regulation of the nitrogen use efficiency under nitrogen deficiency. In general, our data revealed that the reduced sensitivity to auxin increased the adaptive capacity to the nitrogen deficiency.
Collapse
Affiliation(s)
- Luiz C N Dos Santos
- Universidade Estadual Paulista (UNESP), Departamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinária, Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, 14884-900 Jaboticabal, SP, Brazil
| | - Lucas A Gaion
- Universidade de Marília, Centro de Ciências Agrárias, Avenida Higino Muzzy Filho, 1001, Cidade Universitária, 17525-902 Marília, SP, Brazil
| | - Renato M Prado
- Universidade Estadual Paulista (UNESP), Departamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinária, Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, 14884-900 Jaboticabal, SP, Brazil
| | - Rafael F Barreto
- Universidade Estadual Paulista (UNESP), Departamento de Solos e Adubos, Faculdade de Ciências Agrárias e Veterinária, Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, 14884-900 Jaboticabal, SP, Brazil
| | - RogÉrio F Carvalho
- Universidade Estadual Paulista (UNESP), Departamento de Biologia Aplicada à Agropecuária, Faculdade de Ciências Agrárias e Veterinária, Via de Acesso Prof. Paulo Donato Castellane, s/n, Zona Rural, 14884-900 Jaboticabal, SP, Brazil
| |
Collapse
|
16
|
Affiliation(s)
- Moona Rahikainen
- Molecular Plant Biology, University of Turku, Turku, FI-20014, Finland
| | | |
Collapse
|
17
|
Jacquot A, Chaput V, Mauries A, Li Z, Tillard P, Fizames C, Bonillo P, Bellegarde F, Laugier E, Santoni V, Hem S, Martin A, Gojon A, Schulze W, Lejay L. NRT2.1 C-terminus phosphorylation prevents root high affinity nitrate uptake activity in Arabidopsis thaliana. THE NEW PHYTOLOGIST 2020; 228:1038-1054. [PMID: 32463943 DOI: 10.1111/nph.16710] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
In Arabidopsis thaliana, NRT2.1 codes for a main component of the root nitrate high-affinity transport system. Previous studies revealed that post-translational regulation of NRT2.1 plays an important role in the control of root nitrate uptake and that one mechanism could correspond to NRT2.1 C-terminus processing. To further investigate this hypothesis, we produced transgenic plants with truncated forms of NRT2.1. This revealed an essential sequence for NRT2.1 activity, located between the residues 494 and 513. Using a phospho-proteomic approach, we found that this sequence contains one phosphorylation site, at serine 501, which can inactivate NRT2.1 function when mimicking the constitutive phosphorylation of this residue in transgenic plants. This phenotype could neither be explained by changes in abundance of NRT2.1 and NAR2.1, a partner protein of NRT2.1, nor by a lack of interaction between these two proteins. Finally, the relative level of serine 501 phosphorylation was found to be increased by ammonium nitrate in wild-type plants, leading to the inactivation of NRT2.1 and to a decrease in high affinity nitrate transport into roots. Altogether, these observations reveal a new and essential mechanism for the regulation of NRT2.1 activity.
Collapse
Affiliation(s)
- Aurore Jacquot
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | - Valentin Chaput
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | - Adeline Mauries
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | - Zhi Li
- Institute of Physiology and Biotechnology of Plants, Plant Systems Biology, University of Hohenheim, Garbenstrasse 30, 70593, Stuttgart, Germany
| | - Pascal Tillard
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | - Cécile Fizames
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | - Pauline Bonillo
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | - Fanny Bellegarde
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | - Edith Laugier
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | - Véronique Santoni
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | - Sonia Hem
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | - Antoine Martin
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | - Alain Gojon
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| | - Waltraud Schulze
- Institute of Physiology and Biotechnology of Plants, Plant Systems Biology, University of Hohenheim, Garbenstrasse 30, 70593, Stuttgart, Germany
| | - Laurence Lejay
- BPMP, CNRS, INRAE, Institut Agro, Univ Montpellier, 34060, Montpellier, France
| |
Collapse
|
18
|
Maghiaoui A, Bouguyon E, Cuesta C, Perrine-Walker F, Alcon C, Krouk G, Benková E, Nacry P, Gojon A, Bach L. The Arabidopsis NRT1.1 transceptor coordinately controls auxin biosynthesis and transport to regulate root branching in response to nitrate. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:4480-4494. [PMID: 32428238 DOI: 10.1093/jxb/eraa242] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2020] [Accepted: 05/13/2020] [Indexed: 05/21/2023]
Abstract
In agricultural systems, nitrate is the main source of nitrogen available for plants. Besides its role as a nutrient, nitrate has been shown to act as a signal molecule in plant growth, development, and stress responses. In Arabidopsis, the NRT1.1 nitrate transceptor represses lateral root (LR) development at low nitrate availability by promoting auxin basipetal transport out of the LR primordia (LRPs). Here we show that NRT1.1 acts as a negative regulator of the TAR2 auxin biosynthetic gene in the root stele. This is expected to repress local auxin biosynthesis and thus to reduce acropetal auxin supply to the LRPs. Moreover, NRT1.1 also negatively affects expression of the LAX3 auxin influx carrier, thus preventing the cell wall remodeling required for overlying tissue separation during LRP emergence. NRT1.1-mediated repression of both TAR2 and LAX3 is suppressed at high nitrate availability, resulting in nitrate induction of the TAR2 and LAX3 expression that is required for optimal stimulation of LR development by nitrate. Altogether, our results indicate that the NRT1.1 transceptor coordinately controls several crucial auxin-associated processes required for LRP development, and as a consequence that NRT1.1 plays a much more integrated role than previously expected in regulating the nitrate response of root system architecture.
Collapse
Affiliation(s)
- Amel Maghiaoui
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Eléonore Bouguyon
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Candela Cuesta
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | - Carine Alcon
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Gabriel Krouk
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Eva Benková
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Philippe Nacry
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Alain Gojon
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Liên Bach
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
19
|
The Importance of Protein Phosphorylation for Signaling and Metabolism in Response to Diel Light Cycling and Nutrient Availability in a Marine Diatom. BIOLOGY 2020; 9:biology9070155. [PMID: 32640597 PMCID: PMC7408324 DOI: 10.3390/biology9070155] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/01/2020] [Accepted: 07/03/2020] [Indexed: 01/23/2023]
Abstract
Diatoms are major contributors to global primary production and their populations in the modern oceans are affected by availability of iron, nitrogen, phosphate, silica, and other trace metals, vitamins, and infochemicals. However, little is known about the role of phosphorylation in diatoms and its role in regulation and signaling. We report a total of 2759 phosphorylation sites on 1502 proteins detected in Phaeodactylum tricornutum. Conditionally phosphorylated peptides were detected at low iron (n = 108), during the diel cycle (n = 149), and due to nitrogen availability (n = 137). Through a multi-omic comparison of transcript, protein, phosphorylation, and protein homology, we identify numerous proteins and key cellular processes that are likely under control of phospho-regulation. We show that phosphorylation regulates: (1) carbon retrenchment and reallocation during growth under low iron, (2) carbon flux towards lipid biosynthesis after the lights turn on, (3) coordination of transcription and translation over the diel cycle and (4) in response to nitrogen depletion. We also uncover phosphorylation sites for proteins that play major roles in diatom Fe sensing and utilization, including flavodoxin and phytotransferrin (ISIP2A), as well as identify phospho-regulated stress proteins and kinases. These findings provide much needed insight into the roles of protein phosphorylation in diel cycling and nutrient sensing in diatoms.
Collapse
|
20
|
Zhang Z, Hu B, Chu C. Towards understanding the hierarchical nitrogen signalling network in plants. CURRENT OPINION IN PLANT BIOLOGY 2020; 55:60-65. [PMID: 32304938 DOI: 10.1016/j.pbi.2020.03.006] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 01/21/2020] [Accepted: 03/04/2020] [Indexed: 05/12/2023]
Abstract
Nitrogen (N) is the most abundant mineral elements in plants, and the application of inorganic N fertilizer makes huge contribution to the crop production and global food security. However, low N use efficiency (NUE) and overapplication of N fertilizers causes ever-growing environmental problems. Understanding the molecular mechanisms of N sensing and signalling in plants will provide molecular basis for NUE improvement of crops. Forward genetics screening and functional analysis have characterized the NRT1.1-NLP centered N signalling pathway at the cellular level. With the incorporation of systems biology approaches, a preliminary N regulatory network has been delineated. Meanwhile, long-distance N signalling has also been unveiled at the whole plant level. This review highlights most recent understanding of the N signalling network in plants, and also discusses how to further integrate hierarchical regulation of N signalling in plants.
Collapse
Affiliation(s)
- Zhihua Zhang
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China; School of Life Sciences, Guangzhou University, Guangzhou 510006, China; Guangdong Laboratory of Lingnan Modern Agricultural Science and Technology, Guangzhou 510642, China
| | - Bin Hu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Chengcai Chu
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, the Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
21
|
Zhang Y, Wu X, Yuan L. Distinct non-coding RNAs confer root-dependent sense transgene-induced post-transcriptional gene silencing and nitrogen-dependent post-transcriptional regulation to AtAMT1;1 transcripts in Arabidopsis roots. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 102:823-837. [PMID: 31901180 DOI: 10.1111/tpj.14667] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
High-affinity ammonium uptake in roots mediate by AMT1-type ammonium transporters, which are tightly controlled at multiple regulatory levels for adapting various nitrogen availability. For Arabidopsis AtAMT1;1 gene, in addition to the transcriptional and post-translational controls, an organ-dependent and N-dependent post-transcriptional regulation was suggested as an additional regulatory step for fine tuning ammonium uptake, but the underlying mechanisms remain to be elucidated. Here, we showed that degradation of AtAMT1;1 transcript in roots of Pro35s:AtAMT1;1-transformed atamt1;1-1 Arabidopsis plants resulted from RDR6-dependent sense transgene-induced post-transcriptional gene silencing (S-PTGS). The siRNAs for S-PTGS may derive from the aberrant RNA, of which the production was co-determined by sequence feature and excessive expression of AtAMT1;1. Switching to the expression of AtAMT1;1 driven by ProAtUBQ10 or of AtAMT1;1 mutated at two siRNA-targeted hotspots reduced AtAMT1;1-specific siRNAs and overcame S-PTGS in roots. In roots of these lines, however, the steady-state transcript levels of AtAMT1;1 still significantly decreased under conditions of N-sufficiency compared with N-deficiency, confirming a N-dependent post-transcriptional regulatory manner. A crucial role of the 207-bp 3'-end sequence of AtAMT1;1 was further demonstrated by N-dependent accumulation of chimeric-AtAMT1;1 transcript in T-DNA insertion lines and of GFP-tagged chimeric-AtAMT1;1 transcript in transgenic lines. A novel non-coding RNA (ncRNA), which was highly abundant in N-sufficient roots, may target the above-identified 3'-end region for the degrading AtAMT1;1 transcript. This degradation could be prevented by a mutation on the AtAMT1;1 transcript at a potential cleavage site (+1458). These results suggested two distinct mechanisms of regulating AtAMT1;1 mRNA turnover by ncRNA for strictly control of ammonium uptake in roots.
Collapse
Affiliation(s)
- Yongjian Zhang
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Xiangyu Wu
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| | - Lixing Yuan
- Key Laboratory of Plant-Soil Interaction, MOE, College of Resources and Environmental Sciences, China Agricultural University, 100193, Beijing, China
| |
Collapse
|
22
|
Integrated Transcriptional and Proteomic Profiling Reveals Potential Amino Acid Transporters Targeted by Nitrogen Limitation Adaptation. Int J Mol Sci 2020; 21:ijms21062171. [PMID: 32245240 PMCID: PMC7139695 DOI: 10.3390/ijms21062171] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/19/2020] [Accepted: 03/19/2020] [Indexed: 01/10/2023] Open
Abstract
Nitrogen (N) is essential for plant growth and crop productivity. Organic N is a major form of remobilized N in plants’ response to N limitation. It is necessary to understand the regulatory role of N limitation adaption (NLA) in organic N remobilization for this adaptive response. Transcriptional and proteomic analyses were integrated to investigate differential responses of wild-type (WT) and nla mutant plants to N limitation and to identify the core organic N transporters targeted by NLA. Under N limitation, the nla mutant presented an early senescence with faster chlorophyll loss and less anthocyanin accumulation than the WT, and more N was transported out of the aging leaves in the form of amino acids. High-throughput transcriptomic and proteomic analyses revealed that N limitation repressed genes involved in photosynthesis and protein synthesis, and promoted proteolysis; these changes were higher in the nla mutant than in the WT. Both transcriptional and proteomic profiling demonstrated that LHT1, responsible for amino acid remobilization, were only significantly upregulated in the nla mutant under N limitation. These findings indicate that NLA might target LHT1 and regulate organic N remobilization, thereby improving our understanding of the regulatory role of NLA on N remobilization under N limitation.
Collapse
|
23
|
Zhang F, Wang L, Bai P, Wei K, Zhang Y, Ruan L, Wu L, Cheng H. Identification of Regulatory Networks and Hub Genes Controlling Nitrogen Uptake in Tea Plants [ Camellia sinensis (L.) O. Kuntze]. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:2445-2456. [PMID: 31899627 DOI: 10.1021/acs.jafc.9b06427] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Nitrogen (N) uptake, as the first step of N metabolism, is a key limiting factor for plant growth. To understand the gene expression networks that control N absorption and metabolism in tea plants, we analyzed transcriptomes in the young roots of two groups of tea plants with significantly different growth rates under different N treatments (0, 0.2, and 2 mM). Using pairwise comparisons and weighted gene co-expression network analyses (WGCNA), we successfully constructed 16 co-expression modules. Among them, a specific module (turquoise) that substantially responded to the low N treatment was identified. Based on KEGG analysis, the relative genes that enriched in the "N metabolism" pathways were used to construct gene co-expression networks of N metabolism. Finally, a high-affinity ammonium (NH4+) transporter designated CsAMT1.2 was identified as a hub gene in the N metabolism network in tea plant roots and the gene expression could be highly induced by N resupply. The gene functional analysis revealed that CsAMT1.2 could make functional complementation of MEP1, MEP2, and MEP3 genes in 31019b yeast cells and improve NH4+ uptake rate in 31019b at low NH4+ level. Thus, CsAMT1.2 was a key gene controlling N uptake in tea plants and might play a vital role in promoting NH4+ uptake from the environment in tea roots. This study provided a useful foundation for improving the NUE in tea plantations.
Collapse
Affiliation(s)
- Fen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute , Chinese Academy of Agricultural Sciences , 9 Meiling South Road , Hangzhou 310008 , China
| | - Liyuan Wang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute , Chinese Academy of Agricultural Sciences , 9 Meiling South Road , Hangzhou 310008 , China
| | - Peixian Bai
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute , Chinese Academy of Agricultural Sciences , 9 Meiling South Road , Hangzhou 310008 , China
| | - Kang Wei
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute , Chinese Academy of Agricultural Sciences , 9 Meiling South Road , Hangzhou 310008 , China
| | - Yazhen Zhang
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute , Chinese Academy of Agricultural Sciences , 9 Meiling South Road , Hangzhou 310008 , China
| | - Li Ruan
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute , Chinese Academy of Agricultural Sciences , 9 Meiling South Road , Hangzhou 310008 , China
| | - Liyun Wu
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute , Chinese Academy of Agricultural Sciences , 9 Meiling South Road , Hangzhou 310008 , China
| | - Hao Cheng
- Key Laboratory of Tea Biology and Resources Utilization, Ministry of Agriculture, National Center for Tea Improvement, Tea Research Institute , Chinese Academy of Agricultural Sciences , 9 Meiling South Road , Hangzhou 310008 , China
| |
Collapse
|
24
|
Zhao P, Lin Z, Wang Y, Chai H, Li Y, He L, Zhou J. Facilitating effects of plant hormones on biomass production and nutrients removal by Tetraselmis cordiformis for advanced sewage treatment and its mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133650. [PMID: 31377356 DOI: 10.1016/j.scitotenv.2019.133650] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/11/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Advanced sewage treatment by microalgae is regarded as a promising method for addressing eutrophication. To improve sewage treatment, three kinds of plant hormones including auxin (indole-3-acetic acid, IAA), cytokinin (Zeatin), and brassinosteroid, were chosen to measure the influence of plant hormones on nitrogen and phosphorus removal by Tetraselmis cordiformis and to analyze their mechanisms, including photosynthesis, nutrient metabolism, and gene transcription. The results indicated that the maximal removal efficiencies of total nitrogen and phosphate by T. cordiformis were elevated by the plant hormones by 184.3% and 53.2%, respectively. The chlorophyll a content was increased by 1.1 times by the plant hormones in comparison with the control. Moreover, after being stimulated by plant hormones, the activities of nitrate reductase (NR) and glutamine synthetase (GS) increased by 90.4% and 82.1%, respectively, in comparison with the control. Supplementation with plant hormones also significantly elevated the mRNA expression level of GS-related gene by 30.9%. This study demonstrated that plant hormones could significantly promote the nutrient removal of microalgae for sewage treatment in artificial laboratory conditions and provided theoretical support for its further practical full-scale application under variable conditions.
Collapse
Affiliation(s)
- Pengcheng Zhao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Ziyuan Lin
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yingmu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Hongxiang Chai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yancheng Li
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Lei He
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
25
|
Perin G, Yunus IS, Valton M, Alobwede E, Jones PR. Sunlight-driven recycling to increase nutrient use-efficiency in agriculture. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101554] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Rubio L, Díaz-García J, Amorim-Silva V, Macho AP, Botella MA, Fernández JA. Molecular Characterization of ZosmaNRT2, the Putative Sodium Dependent High-Affinity Nitrate Transporter of Zostera marina L. Int J Mol Sci 2019; 20:ijms20153650. [PMID: 31357380 PMCID: PMC6695921 DOI: 10.3390/ijms20153650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 07/19/2019] [Accepted: 07/24/2019] [Indexed: 01/24/2023] Open
Abstract
One of the most important adaptations of seagrasses during sea colonization was the capacity to grow at the low micromolar nitrate concentrations present in the sea. In contrast to terrestrial plants that use H+ symporters for high-affinity NO3− uptake, seagrasses such as Zostera marina L. use a Na+-dependent high-affinity nitrate transporter. Interestingly, in the Z. marina genome, only one gene (Zosma70g00300.1; NRT2.1) is annotated to this function. Analysis of this sequence predicts the presence of 12 transmembrane domains, including the MFS domains of the NNP transporter family and the “nitrate signature” that appears in all members of the NNP family. Phylogenetic analysis shows that this sequence is more related to NRT2.5 than to NRT2.1, sharing a common ancestor with both monocot and dicot plants. Heterologous expression of ZosmaNRT2-GFP together with the high-affinity nitrate transporter accessory protein ZosmaNAR2 (Zosma63g00220.1) in Nicotiana benthamiana leaves displayed four-fold higher fluorescence intensity than single expression of ZosmaNRT2-GFP suggesting the stabilization of NRT2 by NAR2. ZosmaNRT2-GFP signal was present on the Hechtian-strands in the plasmolyzed cells, pointing that ZosmaNRT2 is localized on the plasma membrane and that would be stabilized by ZosmaNAR2. Taken together, these results suggest that Zosma70g00300.1 would encode a high-affinity nitrate transporter located at the plasma membrane, equivalent to NRT2.5 transporters. These molecular data, together with our previous electrophysiological results support that ZosmaNRT2 would have evolved to use Na+ as a driving ion, which might be an essential adaptation of seagrasses to colonize marine environments.
Collapse
Affiliation(s)
- Lourdes Rubio
- Department of Botánica y Fisiología Vegetal, Campus de Teatinos, University of Málaga, 29071 Málaga, Spain.
| | - Jordi Díaz-García
- Department of Botánica y Fisiología Vegetal, Campus de Teatinos, University of Málaga, 29071 Málaga, Spain
| | - Vítor Amorim-Silva
- Department Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'' (IHSM-UMA-CSIC), University of Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institutes of Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, China
| | - Miguel A Botella
- Department Biología Molecular y Bioquímica, Instituto de Hortofruticultura Subtropical y Mediterránea ''La Mayora'' (IHSM-UMA-CSIC), University of Málaga, Campus Teatinos, 29071 Málaga, Spain
| | - José A Fernández
- Department of Botánica y Fisiología Vegetal, Campus de Teatinos, University of Málaga, 29071 Málaga, Spain
| |
Collapse
|
27
|
Busseni G, Vieira FRJ, Amato A, Pelletier E, Pierella Karlusich JJ, Ferrante MI, Wincker P, Rogato A, Bowler C, Sanges R, Maiorano L, Chiurazzi M, d'Alcalà MR, Caputi L, Iudicone D. Meta-omics reveals genetic flexibility of diatom nitrogen transporters in response to environmental changes. Mol Biol Evol 2019; 36:2522-2535. [PMID: 31259367 PMCID: PMC6805229 DOI: 10.1093/molbev/msz157] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 06/05/2019] [Accepted: 06/22/2019] [Indexed: 01/27/2023] Open
Abstract
Diatoms (Bacillariophyta), one of the most abundant and diverse groups of marine phytoplankton, respond rapidly to the supply of new nutrients, often out-competing other phytoplankton. Herein, we integrated analyses of the evolution, distribution and expression modulation of two gene families involved in diatom nitrogen uptake (DiAMT1 and DiNRT2), in order to infer the main drivers of divergence in a key functional trait of phytoplankton. Our results suggest that major steps in the evolution of the two gene families reflected key events triggering diatom radiation and diversification. Their expression is modulated in the contemporary ocean by seawater temperature, nitrate and iron concentrations. Moreover, the differences in diversity and expression of these gene families throughout the water column hint at a possible link with bacterial activity. This study represents a proof-of-concept of how a holistic approach may shed light on the functional biology of organisms in their natural environment.
Collapse
Affiliation(s)
- Greta Busseni
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | - Fabio Rocha Jimenez Vieira
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Alberto Amato
- Laboratoire de Physiologie Cellulaire et Végétale, Univ. Grenoble Alpes, CEA, INRA, CNRS. BIG, 17 rue des Martyrs Grenoble cedex 9, France
| | - Eric Pelletier
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.,FR2022/Tara Oceans-GOSEE, 3 rue Michel-Ange, Paris, France
| | - Juan J Pierella Karlusich
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | | | - Patrick Wincker
- Génomique Métabolique, Genoscope, Institut François Jacob, CEA, CNRS, Univ Evry, Université Paris-Saclay, Evry, France.,FR2022/Tara Oceans-GOSEE, 3 rue Michel-Ange, Paris, France
| | - Alessandra Rogato
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.,Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, Naples, Italy
| | - Chris Bowler
- Institut de biologie de l'Ecole normale supérieure (IBENS), Ecole normale supérieure, CNRS, INSERM, PSL Université Paris, Paris, France
| | - Remo Sanges
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.,Scuola Internazionale Superiore di Studi Avanzati (SISSA), Via Bonomea 265, Trieste, Italy
| | - Luigi Maiorano
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy.,Dipartimento di Biologia e Biotecnologie "Charles Darwin", Università di Roma "La Sapienza", Viale dell'Università 32, Roma, Italy
| | - Maurizio Chiurazzi
- Institute of Biosciences and BioResources, CNR, Via P. Castellino 111, Naples, Italy
| | | | - Luigi Caputi
- Stazione Zoologica Anton Dohrn, Villa Comunale, Naples, Italy
| | | |
Collapse
|
28
|
Li Y, Sun H, Wu Z, Li H, Sun Q. Urban traffic changes the biodiversity, abundance, and activity of phyllospheric nitrogen-fixing bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:16097-16104. [PMID: 30968298 DOI: 10.1007/s11356-019-05008-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 03/26/2019] [Indexed: 06/09/2023]
Abstract
The phyllosphere provides appropriate conditions for colonization by microorganisms, including diazotrophic bacteria. However, a poor understanding of the effects of the atmospheric environment on the phyllospheric diazotrophic communities persists. We detected the biodiversity, abundance, and activity of nitrogen-fixing bacteria in the phyllospheres of two evergreen shrubs, Nerium indicum Mill. and Osmanthus sp., sampled from urban areas with heavy traffic, a college campus, and a forest. Quantitative PCR analysis indicated that the copy numbers of nifH sequences were highest in the phyllospheres of both plants in heavy-traffic urban areas and correlated with the recorded nitrogenase activities of the phyllospheres. Similarly, the phyllosphere from heavy-traffic urban areas also possessed the highest biodiversity indices of diazotrophic communities from both the two plants. Pyrosequencing analysis revealed a diversity of nifH sequences in phyllosphere that were mostly uniquely found in the phyllosphere, and many of these were proteobacteria-like and cyanobacteria-like. Members of the Proteobacteria, mostly of which were not closely related to unknown organisms, were detected exclusively in the phyllosphere and represented substantial fractions of their associated diazotrophic communities. Our study provides initial insight into the shifts in the biodiversity and community structure of N2-fixing microorganisms in the phyllospheres of different atmospheric environments.
Collapse
Affiliation(s)
- Yang Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Hong Sun
- College of Life Science, Northeast Forestry University, Harbin, China
| | - Zhaojun Wu
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Hui Li
- School of Resources and Environmental Engineering, Anhui University, Hefei, China
| | - Qingye Sun
- School of Resources and Environmental Engineering, Anhui University, Hefei, China.
| |
Collapse
|
29
|
Tornkvist A, Liu C, Moschou PN. Proteolysis and nitrogen: emerging insights. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:2009-2019. [PMID: 30715465 DOI: 10.1093/jxb/erz024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/10/2019] [Indexed: 05/07/2023]
Abstract
Nitrogen (N) is a core component of fertilizers used in modern agriculture to increase yields and thus to help feed a growing global population. However, this comes at a cost to the environment, through run-off of excess N as a result of poor N-use efficiency (NUE) by crops. An obvious remedy to this problem would therefore be the improvement of NUE, which requires advancing our understanding on N homeostasis, sensing, and uptake. Proteolytic pathways are linked to N homeostasis as they recycle proteins that contain N and carbon; however, emerging data suggest that their functions extend beyond this simple recycling. Here, we highlight roles of proteolytic pathways in non-symbiotic and symbiotic N uptake and in systemic N sensing. We also offer a novel view in which we suggest that proteolytic pathways have roles in N homeostasis that differ from their accepted function in recycling.
Collapse
Affiliation(s)
- Anna Tornkvist
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Chen Liu
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
| | - Panagiotis N Moschou
- Department of Plant Biology, Uppsala BioCenter, Swedish University of Agricultural Sciences and Linnean Center for Plant Biology, Uppsala, Sweden
- Department of Biology, University of Crete, Heraklion, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology - Hellas, Heraklion, Greece
| |
Collapse
|
30
|
Hrmova M, Gilliham M. Plants fighting back: to transport or not to transport, this is a structural question. CURRENT OPINION IN PLANT BIOLOGY 2018; 46:68-76. [PMID: 30138844 DOI: 10.1016/j.pbi.2018.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 06/08/2023]
Abstract
Membrane-embedded transport proteins are fundamental to life; their co-ordinated action controls the movement and distribution of solutes into, around and out of cells for signalling, metabolism, nutrition, stress tolerance and development. Here we outline two case studies of transport systems that plants use to tolerate soil elemental toxicity, demonstrating how iterative studies of protein structure and function result in unparalleled insights into transport mechanics. Further, we propose that integrative platforms of biological, biochemical and biophysical tools can provide quantitative data on substrate specificity and transport rates, which are important in understanding transporter evolution and their roles in cell biology and whole plant physiology. Such knowledge equips biotechnologists and breeders with the power to deliver improvements in crop yields in sub-optimal soils.
Collapse
Affiliation(s)
- Maria Hrmova
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia; School of Life Sciences, Huaiyin Normal University, Huai'an 223300, China.
| | - Matthew Gilliham
- School of Agriculture, Food and Wine, University of Adelaide, Waite Campus, Glen Osmond, South Australia 5064, Australia; Australian Research Council Centre of Excellence in Plant Energy Biology, University of Adelaide, Waite Research Institute, Glen Osmond, South Australia 5064, Australia
| |
Collapse
|
31
|
Tegeder M, Masclaux-Daubresse C. Source and sink mechanisms of nitrogen transport and use. THE NEW PHYTOLOGIST 2018; 217:35-53. [PMID: 29120059 DOI: 10.1111/nph.14876] [Citation(s) in RCA: 314] [Impact Index Per Article: 52.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 09/09/2017] [Indexed: 05/03/2023]
Abstract
Contents Summary 35 I. Introduction 35 II. Nitrogen acquisition and assimilation 36 III. Root-to-shoot transport of nitrogen 38 IV. Nitrogen storage pools in vegetative tissues 39 V. Nitrogen transport from source leaf to sink 40 VI. Nitrogen import into sinks 42 VII. Relationship between source and sink nitrogen transport processes and metabolism 43 VIII. Regulation of nitrogen transport 43 IX. Strategies for crop improvement 44 X. Conclusions 46 Acknowledgements 47 References 47 SUMMARY: Nitrogen is an essential nutrient for plant growth. World-wide, large quantities of nitrogenous fertilizer are applied to ensure maximum crop productivity. However, nitrogen fertilizer application is expensive and negatively affects the environment, and subsequently human health. A strategy to address this problem is the development of crops that are efficient in acquiring and using nitrogen and that can achieve high seed yields with reduced nitrogen input. This review integrates the current knowledge regarding inorganic and organic nitrogen management at the whole-plant level, spanning from nitrogen uptake to remobilization and utilization in source and sink organs. Plant partitioning and transient storage of inorganic and organic nitrogen forms are evaluated, as is how they affect nitrogen availability, metabolism and mobilization. Essential functions of nitrogen transporters in source and sink organs and their importance in regulating nitrogen movement in support of metabolism, and vegetative and reproductive growth are assessed. Finally, we discuss recent advances in plant engineering, demonstrating that nitrogen transporters are effective targets to improve crop productivity and nitrogen use efficiency. While inorganic and organic nitrogen transporters were examined separately in these studies, they provide valuable clues about how to successfully combine approaches for future crop engineering.
Collapse
Affiliation(s)
- Mechthild Tegeder
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Céline Masclaux-Daubresse
- INRA-AgroParisTech, Institut Jean-Pierre Bourgin, UMR1318, ERL CNRS 3559, Saclay Plant Sciences, Versailles, France
| |
Collapse
|
32
|
Substrate Specificity of the FurE Transporter Is Determined by Cytoplasmic Terminal Domain Interactions. Genetics 2017; 207:1387-1400. [PMID: 28978674 DOI: 10.1534/genetics.117.300327] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 10/03/2017] [Indexed: 12/17/2022] Open
Abstract
FurE, a member of the Nucleobase Cation Symporter 1 transporter family in Aspergillus nidulans, is specific for allantoin, uric acid (UA), uracil, and related analogs. Herein, we show that C- or N-terminally-truncated FurE transporters (FurE-ΔC or FurE-ΔΝ) present increased protein stability, but also an inability for UA transport. To better understand the role of cytoplasmic terminal regions, we characterized genetic suppressors that restore FurE-ΔC-mediated UA transport. Suppressors map in the periphery of the substrate-binding site [Thr133 in transmembrane segment (TMS)3 and Val343 in TMS8], an outward-facing gate (Ser296 in TMS7, Ile371 in TMS9, and Tyr392 and Leu394 in TMS10), or in flexible loops (Asp26 in LN, Gly222 in L5, and Asn308 in L7). Selected suppressors were also shown to restore the wild-type specificity of FurE-ΔΝ, suggesting that both C- and/or N-terminal domains are involved in intramolecular dynamics critical for substrate selection. A direct, substrate-sensitive interaction of C- and/or N-terminal domains was supported by bimolecular fluorescence complementation assays. To our knowledge, this is the first case where not only the function, but also the specificity, of a eukaryotic transporter is regulated by its terminal cytoplasmic regions.
Collapse
|
33
|
Lupini A, Princi MP, Araniti F, Miller AJ, Sunseri F, Abenavoli MR. Physiological and molecular responses in tomato under different forms of N nutrition. JOURNAL OF PLANT PHYSIOLOGY 2017; 216:17-25. [PMID: 28551475 DOI: 10.1016/j.jplph.2017.05.013] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 05/16/2017] [Accepted: 05/17/2017] [Indexed: 05/14/2023]
Abstract
Urea is the most common nitrogen (N) fertilizer in agriculture, due to its cheaper price and high N content. Although the reciprocal influence between NO3- and NH4+ nutrition are well known, urea (U) interactions with these N-inorganic forms are poorly studied. Here, the responses of two tomato genotypes to ammonium nitrate (AN), U alone or in combination were investigated. Significant differences in root and shoot biomass between genotypes were observed. Under AN+U supply, Linosa showed higher biomass compared to UC82, exhibiting also higher values for many root architectural traits. Linosa showed higher Nitrogen Uptake (NUpE) and Utilization Efficiency (NUtE) compared to UC82, under AN+U nutrition. Interestingly, Linosa exhibited also a significantly higher DUR3 transcript abundance. These results underline the beneficial effect of AN+U nutrition, highlighting new molecular and physiological strategies for selecting crops that can be used for more sustainable agriculture. The data suggest that translocation and utilization (NUtE) might be a more important component of NUE than uptake (NUpE) in tomato. Genetic variation could be a source for useful NUE traits in tomato; further experiments are needed to dissect the NUtE components that confer a higher ability to utilize N in Linosa.
Collapse
Affiliation(s)
- Antonio Lupini
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Feo di Vito I-89124, Reggio Calabria RC, Italy.
| | - Maria Polsia Princi
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Feo di Vito I-89124, Reggio Calabria RC, Italy
| | - Fabrizio Araniti
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Feo di Vito I-89124, Reggio Calabria RC, Italy
| | | | - Francesco Sunseri
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Feo di Vito I-89124, Reggio Calabria RC, Italy
| | - Maria Rosa Abenavoli
- Dipartimento AGRARIA, Università Mediterranea di Reggio Calabria, Feo di Vito I-89124, Reggio Calabria RC, Italy
| |
Collapse
|
34
|
Gojon A. Nitrogen nutrition in plants: rapid progress and new challenges. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:2457-2462. [PMID: 30053117 PMCID: PMC5853562 DOI: 10.1093/jxb/erx171] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Affiliation(s)
- Alain Gojon
- UMR Biochimie & Physiologie Moléculaire des Plantes - (B&PMP), CNRS-INRA-SUPAGRO-UM, Campus INRA / SupAgro, Place Pierre Viala –, Montpellier Cedex, France
- Correspondence:
| |
Collapse
|