1
|
Omari Alzahrani F. Ammonium Transporter 1 ( AMT1) Gene Family in Pomegranate: Genome-Wide Analysis and Expression Profiles in Response to Salt Stress. Curr Issues Mol Biol 2025; 47:59. [PMID: 39852174 PMCID: PMC11764171 DOI: 10.3390/cimb47010059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/26/2025] Open
Abstract
Understanding the ammonium (NH4+) uptake and transport systems, particularly AMT1 genes, is important for plant growth and defense. However, there is a lack of research on identifying and analyzing AMT1 genes in pomegranate, emphasizing the need for further investigation in this area. Five AMT1 genes (PgAMT1-1 to PgAMT1-5) were identified, all of which contain the PF00909 domain, a feature of ammonium transporters. Various characteristics of these genes, including gene length, coding sequence length, and chromosomal locations, were examined. This study evaluated the isoelectric point, hydropathicity, conserved domains, motifs, and synteny of the PgAMT1 proteins. Phylogenetic analysis confirmed the homology of PgAMT1 genes with previously reported AMT in Arabidopsis and tomato. The tissue-specific expression analysis of PgAMT1 genes revealed distinct patterns: PgAMT1-1 and PgAMT1-2 were predominantly expressed in flowers, PgAMT1-3 exhibited notable expression in roots, leaves, and flowers, PgAMT1-4 was primarily expressed in leaf tissue, while the expression of PgAMT1-5 was detected in both leaves and roots. The impact of salt-induced stress on AMT1 gene expression was also examined, revealing that PgAMT1-1, PgAMT1-2, and PgAMT1-4 expression is reduced under increased salt stress. These expression modifications can help regulate NH4+ assimilation in conditions of elevated salinity, maintaining cellular homeostasis and ion balance. This study contributes to the comprehensive identification of the AMT1s gene family in pomegranate; however, further research on the functional characterization of the identified PgAMT1s is needed.
Collapse
Affiliation(s)
- Fatima Omari Alzahrani
- Department of Biology, Faculty of Sciences, Al-Baha University, Al-Baha 65729, Saudi Arabia
| |
Collapse
|
2
|
Li S. Is auxin the key to improve crop nitrogen use efficiency for greener agriculture? THE NEW PHYTOLOGIST 2024; 244:2170-2175. [PMID: 39155785 DOI: 10.1111/nph.20066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 07/26/2024] [Indexed: 08/20/2024]
Abstract
Strengthening future food security through the application of unsustainable levels of inorganic nitrogen (N) fertilizers to crop fields may exacerbate environmental damage. Coordination of N-use efficiency (NUE) and plant growth is, therefore, crucial for sustainable agriculture. Auxin plays pivotal roles in developmental and signaling responses that affect NUE. Hence, a better understanding of these processes provides great potential to improve crop NUE. This review summarizes the effects of auxin on N-related and root developmental processes that either directly or indirectly affect NUE in the model plant Arabidopsis and major crop species to highlight the potential of fostering sustainable agricultural development in the future through modulating auxin-related processes.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China
- Jiangsu Collaborative Innovation Center for Modern Crop Production, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
3
|
Ma L, Wei A, Liu C, Liu N, Han Y, Chen Z, Wang N, Du S. Screening Key Genes Related to Nitrogen Use Efficiency in Cucumber Through Weighted Gene Co-Expression Network Analysis. Genes (Basel) 2024; 15:1505. [PMID: 39766773 PMCID: PMC11675882 DOI: 10.3390/genes15121505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 01/11/2025] Open
Abstract
Cucumber (Cucumis sativus L.) is a crucial vegetable crop, requiring significant nitrogen fertilizer inputs. However, excessive nitrogen application not only impairs growth but also poses severe environmental risks. Thus, enhancing nitrogen use efficiency (NUE) in cucumber is imperative. For the identification of genes associated with NUE in cucumber, roots of high NUE and low NUE lines were analyzed under high nitrogen conditions. Using transcriptome sequencing through WGCNA, a total of 15,180 genes were categorized into 35 co-expression modules, with 5 modules being highly correlated with NUE. Based on differential expression within the five modules and the results of GO and KEGG enrichment analyses, 25 genes were identified as potentially related to NUE. Among these, CsaV4_1G002492 (GLR22), CsaV4_2G003460 (GLR35), CsaV4_3G000307 (NRT1.1), and CsaV4_7G001709 (UPS2) were homologous to genes in Arabidopsis known to directly participate in NUE related process. These four genes were chosen as key genes for further analysis. qRT-PCR analysis revealed that CsaV4_3G000307 and CsaV4_7G001709 were more active during the early stages of the high nitrogen treatment in the high NUE line. Conversely, CsaV4_1G002492 and CsaV4_2G003460 were more active in the low NUE line. Using transcriptomic analysis, a frameshift INDEL mutation was observed in CsaV4_3G000307 in the low NUE line, which impacted the compactness of the protein structure, potentially altering its function. Analysis of protein interactions of these four key genes predicted some potential interaction networks. This research offers critical insights into the genetic factors influencing NUE in cucumber, presenting potential targets for genetic modification or breeding programs.
Collapse
Affiliation(s)
- Linhao Ma
- College of Life Science, Nankai University, Tianjin 300071, China (N.W.)
| | - Aimin Wei
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Ce Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Nan Liu
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
| | - Yike Han
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Zhengwu Chen
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| | - Ningning Wang
- College of Life Science, Nankai University, Tianjin 300071, China (N.W.)
- College of Agricultural Science, Nankai University, Tianjin 300071, China
| | - Shengli Du
- College of Life Science, Nankai University, Tianjin 300071, China (N.W.)
- Cucumber Research Institute, Tianjin Academy of Agricultural Sciences, Tianjin 300192, China
- State Key Laboratory of Vegetable Biobreeding, Tianjin Academy of Agricultural Sciences, Tianjin 300381, China
| |
Collapse
|
4
|
Samant SB, Swain J, Yadav N, Yadav R, Singh P, Rai P, Sheri V, Sreeman S, Subramanyam R, Pareek A, Gupta KJ. Overexpression of Phytoglobin1 in Rice Leads to Enhanced Nitrogen Use Efficiency via Modulation of Nitric Oxide. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39569580 DOI: 10.1111/pce.15289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 11/04/2024] [Indexed: 11/22/2024]
Abstract
Nitric oxide (NO) is one of the byproducts of nitrogen metabolism. Excess amount of NO is scavenged by phytoglobins. The role of phytoglobin mediated NO homoeostasis in modulation of nitrate transporters was investigated using NO scavenger cPTIO, phytoglobin overexpressing rice and Arabidopsis. Growing plants under low nitrate leads to generation of reduced levels of NO accompanied by elevated expression of high affinity transporters (HATs) such as NRT2.1, NRT2.3 and NRT2.4. Scavenging of NO by cPTIO under optimal nitrate caused enhanced HATs expression. Phytoglobin overexpressing Arabidopsis showed improved growth and enhanced expression of HATs under low nitrogen in comparison to WT. Pretreatment of optimal nitrate grown plants with NO scavenger cPTIO enhanced HATs expression and shifting of these primed plants from optimal to low nitrate leads to further elevation of HATs expression accompanied by enhanced nitrogen uptake and its accumulation with positive effect on growth. Phytoglobin overexpression in rice leads to enhanced HATs expression, improved growth, nitrogen accumulation under low nitrate. Pgb OE lines showed enhanced accumulation of amino acids. Taken together our results suggest an important role of phytoglobins in nitrogen uptake and assimilation.
Collapse
Affiliation(s)
- Sanjib Bal Samant
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Jagannath Swain
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Nidhi Yadav
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Reena Yadav
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Pooja Singh
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Preeti Rai
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Vijay Sheri
- National Institute of Plant Genome Research, New Delhi, Delhi, India
| | - Sheshshayee Sreeman
- Department of Physiology, University of Agricultural Sciences, Bangalore, Karnataka, India
| | - Rajagopal Subramanyam
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad, Hyderabad, Telangana, India
| | - Ashwani Pareek
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | | |
Collapse
|
5
|
Zhu X, Abudouaini M, Geng Z, Liu N, Peng T, He Q, Li Y. Metabolite and mineral contents in root, seed, testa, stem and leaf of Peganum harmala L. Heliyon 2024; 10:e40009. [PMID: 39559199 PMCID: PMC11570479 DOI: 10.1016/j.heliyon.2024.e40009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/18/2024] [Accepted: 10/30/2024] [Indexed: 11/20/2024] Open
Abstract
In order to investigate the distribution and accumulation characteristics of metabolites and mineral elements in different parts of Peganum harmala L. (P. harmala), and the synergistic or antagonistic effects between them. In this study, nuclear magnetic resonance (NMR), high performance liquid chromatography (HPLC) and inductively coupled plasma optical emission spectrometer (ICP-OES) were used to determine the contents of metabolites (proline, phosphorylcholine, choline, lysine, 4-hydroxyisoleucine, asparagine, acetic acid, sucrose, harmaline and vasicine) and mineral elements (Ca, Mg, K, P, Na, Cr, Cu, Fe, Zn, Mn, Ni, C, N) in five parts of P. harmala, including root, seed, testa, stem and leaf, and to analyze the relationship among the contents of metabolites and mineral elements. The results showed that the contents of acetic acid, proline, lysine, sucrose and Fe in the root were higher than those in other parts, and the contents of harmaline, phosphorylcholine, P, C, N and Zn in the seeds were the highest. The leaves were rich in vasicine, Na, K, Ca, Mg and Mn. The principal component analysis (PCA) showed that the cumulative variance contribution of the first two principal components was 69.00 %, and the loading values of K, Cu and sucrose were higher, which was consistent with the results of biplot and cluster analysis(HCA). Correlation analysis (CA) results showed that there was a strong overall correlation between the different components of seeds and leaves, and the correlation was greater than that of other parts. The results of this study are helpful to understand the correlation of functional traits among different parts of plants, and determine the internal mechanism of controlling functional traits and the proportional relationship between traits, so as to provide a reference for the resource utilization of plants.
Collapse
Affiliation(s)
- Xiaoqing Zhu
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Xinjiang, 830000, China
| | - Munisha Abudouaini
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Xinjiang, 830000, China
| | - Zhufeng Geng
- Analytic and Testing Center, Beijing Normal University, Beijing, 100875, China
| | - Na Liu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Ting Peng
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Qing He
- School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300350, China
| | - Yinping Li
- College of Chemistry and Chemical Engineering, Xinjiang Normal University, Xinjiang, 830000, China
| |
Collapse
|
6
|
Wang W, Liu X, Guan L. High atmospheric dissolved organic nitrogen deposition in southeast Tibet. Heliyon 2024; 10:e39854. [PMID: 39524846 PMCID: PMC11550757 DOI: 10.1016/j.heliyon.2024.e39854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Nitrogen deposition has been highlighted in the last decades because it was considered as one control factor of global change. The Yarlung Tsangpo Grand Canyon acts as a major passage of monsoonal moisture transport from the Bay of Bengal into the Tibetan Plateau. However, the characteristics of nitrogen(N) deposition in this area are still unclear. Here, we established five N deposition monitoring sites and quantification the bulk N deposition fluxes from 2200 to 4600m above sea level in southeast Tibet. Results showed that the average precipitation amount of the five sites was 1127.7 mm. The dissolved organic nitrogen (DON) was the dominant species, and the deposition flux was 16.80 kg N ha-1 yr-1. The averaged NH4 +-N deposition flux was 4.92 kg N ha-1 yr-1, whereas the NO3 --N deposition flux was 1.49 kg N ha-1 yr-1. In addition, the deposition fluxes of TDN, DON and NH4 +-N were all significantly positive to precipitation amounts at all five sampling sites. However, the deposition flux of NO3 --N was significantly correlated with precipitation amount in the remote environment, and there was no correlation between precipitation amounts and NO3 --N deposition fluxes in human concentrated areas. TDN, DON and NH4 +-N deposition were all concentrated in the plant growing season at all five sampling sites. In conclusion, the atmospheric TDN deposition flux in the Yarlung Zangbo Grand Canyon in southeast Tibet is mainly controlled by precipitation, and DON was the dominant species, followed by NH4 +-N, and NO3 --N contribution was limited.
Collapse
Affiliation(s)
- Wei Wang
- College of Resources and Environmental Sciences, Tibet Agriculture & Animal Husbandry University, Nyingchi, 860000, China
- Key Laboratory of Forest Ecology in Tibet, Ministry of Education, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, 860000, China
| | - Xingyu Liu
- College of Resources and Environmental Sciences, Tibet Agriculture & Animal Husbandry University, Nyingchi, 860000, China
| | - Lixue Guan
- Key Laboratory of Forest Ecology in Tibet, Ministry of Education, Tibet Agriculture & Animal Husbandry University, Nyingchi, Tibet, 860000, China
| |
Collapse
|
7
|
Jiang X, Zhang Z, Wu X, Li C, Sun X, Wu F, Yang A, Yang C. Heterologous biosynthesis of betanin triggers metabolic reprogramming in tobacco. Metab Eng 2024; 86:308-325. [PMID: 39505140 DOI: 10.1016/j.ymben.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/04/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024]
Abstract
Engineering of a specialized metabolic pathway in plants is a promising approach to produce high-value bioactive compounds to address the challenges of climate change and population growth. Understanding the interaction between the heterologous pathway and the native metabolic network of the host plant is crucial for optimizing the engineered system and maximizing the yield of the target compound. In this study, we performed transcriptomic, metabolomic and metagenomic analysis of tobacco (Nicotiana tabacum) plants engineered to produce betanin, an alkaloid pigment that is found in Caryophyllaceae plants. Our data reveals that, in a dose-dependent manor, the biosynthesis of betanin promotes carbohydrate metabolism and represses nitrogen metabolism in the leaf, but enhances nitrogen assimilation and metabolism in the root. By supplying nitrate or ammonium, the accumulation of betanin increased by 1.5-3.8-fold in leaves and roots of the transgenic plants, confirming the pivotal role of nitrogen in betanin production. In addition, the rhizosphere microbial community is reshaped to reduce denitrification and increase respiration and oxidation, assistant to suppress nitrogen loss. Our analysis not only provides a framework for evaluating the pleiotropic effects of an engineered metabolic pathway on the host plant, but also facilitates the development of novel strategies to balance the heterologous process and the native metabolic network for the high-yield and nutrient-efficient production of bioactive compounds in plants.
Collapse
Affiliation(s)
- Xun Jiang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Zhuoxiang Zhang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Xiuming Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Changmei Li
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Xuan Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Fengyan Wu
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Aiguo Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China
| | - Changqing Yang
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, Shandong, PR China.
| |
Collapse
|
8
|
Wu B, Yang G, Huang W, Ruan J, Fang Z. Altered expression of amino acid permease OsAAP11 mediates bud outgrowth and tillering by regulating transport and accumulation of amino acids in rice. Int J Biol Macromol 2024; 280:136230. [PMID: 39362435 DOI: 10.1016/j.ijbiomac.2024.136230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/18/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
Kam sweet rice is a cultural treasure in Qiandongnan, Guizhou Province. However, the situation with low yield and economic value in Kam sweet rice urgently requires improved mechanistic understanding of tillering to increase its yield. In this study, we found that the rate of axillary bud elongation differed significantly among Kam sweet rice varieties, which was positively correlated with tiller number. Transcriptome analysis suggests that genes involved in nitrogen metabolism and plant hormone signaling pathways could be the main reasons for the differences in tillering among these varieties. The amino acid transporter OsAAP11 in the transcriptome was essential for bud outgrowth and rice tillering based on the phenotypic performance of its transgenic plants. Further results found that OsAAP11 was able to transport amino acids such as proline, glycine, and alanine in rice. Natural variations were found in the promoter region of this gene in different Kam sweet rice varieties, which may lead to differences in the transcription levels of OsAAP11. Overall, the results suggest that the natural variations of OsAAP11 in rice might lead to variations in its expression levels, further affecting bud outgrowth and tillering through regulating the transport and accumulation of amino acids.
Collapse
Affiliation(s)
- Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Guo Yang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China
| | - Jingjun Ruan
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang 550025, Guizhou, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang 550025, Guizhou, China.
| |
Collapse
|
9
|
Xue S, Yi X, Peng J, Bak F, Zhang L, Duan G, Liesack W, Zhu Y. Fulvic Acid Enhances Nitrogen Fixation and Retention in Paddy Soils through Microbial-Coupled Carbon and Nitrogen Cycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:18777-18787. [PMID: 39382160 DOI: 10.1021/acs.est.4c07616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Fulvic acid, the most soluble and active humic substance, is widely used as an agent to remediate contaminated soils and improve soil fertility. However, the influence of fulvic acid (FA), as a microbial carbon source, on carbon and nitrogen cycles in paddy soils remains elusive. Therefore, to investigate it, an incubation experiment was conducted. Gas analyses indicated that the carbon dioxide and methane emissions were enhanced in FA treatment, which increased up to 94.08-fold and 5.06-fold, respectively. 15N-labeling experiments revealed that nitrogen fixation capability was promoted (1.2-fold) to reduce the carbon and nitrogen imbalance due to fulvic acid amendment. Metagenomic analysis further revealed that gene abundances of degradation of lignin-like compounds, gallate degradation, methanogenesis, nitrogen fixation, and urea hydrolysis increased, while the bacterial ammonia oxidation and anaerobic ammonium oxidation decreased, caused by FA application. Metabolic reconstruction of metagenome-assembled genomes revealed that Azospirillaceae, Methanosarcinaceae, and Bathyarchaeota, with higher abundance in FA treatment, were the key microorganisms to maintain the carbon and nitrogen balance. The metabolic pathways of fulvic acid degradation and coupled nitrogen fixation and retention were constructed. Collectively, our results provided novel insights into the theoretical basis of the use of humic substances for reducing nitrogen fertilization and climate change.
Collapse
Affiliation(s)
- Shudan Xue
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyun Yi
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Jingjing Peng
- College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Frederik Bak
- Department of Plant and Environmental Sciences, University of Copenhagen, Thorvaldsensvej 40, Frederiksberg 1871, Denmark
| | - Limei Zhang
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guilan Duan
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Werner Liesack
- Max Planck Institute for Terrestrial Microbiology, Karl-von-Frisch-Str. 10, Marburg D-35043, Germany
| | - Yongguan Zhu
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| |
Collapse
|
10
|
Adil M, Lv F, Cao L, Lu H, Lu S, Gul I, Bashir S, Wang Z, Li T, Feng W. Long-term effects of agronomic practices on winter wheat yield and NUE in dryland regions of USA and China: a long-term meta-analysis. Sci Rep 2024; 14:24777. [PMID: 39433773 PMCID: PMC11494107 DOI: 10.1038/s41598-024-74910-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Accepted: 09/27/2024] [Indexed: 10/23/2024] Open
Abstract
Dryland agriculture is fundamental to global crop production and vital to food security. Conservation tillage is extensively practiced in USA wheat cultivation. Meanwhile, the adoption of conservation tillage by Chinese farmers is limited. This meta-analysis compared the yield and nitrogen use efficiency (NUE) between conservation tillage and conventional tillage (CT) with different types of cropping systems, mulching methods, levels of nitrogen fertilizer (NF), and addition of manure. The meta-analysis presented that conservation tillage at high-NF enhanced the yield and NUE, and reduced the yield and NUE at low-NF, compared to CT. The interaction of conservation tillage with leguminous cover crops (LCC) and manure application increased the yield and NUE at low-NF, compared to CT. Non-leguminous cover crops (NLCC) increased the yield and NUE under high-NF than low-NF. The interaction of conservation tillage with management practices showed that the no-tillage (NT) with leguminous cover crops (LCC) significantly increased wheat yield by 58% and NUE by 47% under low-NF compared to CT. However, increasing the rate of NF did not increase the yield under such interaction. Cropping systems, mulching types, and manure application mainly determined the effects of conservation tillage on wheat yield and NUE. The adverse impact of CT on yield and NUE could be alleviated with the application of LCC and manure under moderate NF. We demonstrate that adding LCC and manure have a generally substitutive relationship with N fertilizer, resulting in a significant increase in wheat yield and NUE at low-NF doses as at high N fertilizer dosages. Therefore, based on the obtained results, moderate NF with LCC and manure application is recommended for growing winter wheat in dryland regions of the USA and China.
Collapse
Affiliation(s)
- Muhammad Adil
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center On Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Fenglin Lv
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center On Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Liang Cao
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center On Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Heli Lu
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center On Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China.
- Henan Dabieshan National Field Observation and Research Station of Forest Ecosystem, Zhengzhou, 450046, China.
- Laboratory of Climate Change Mitigation and Carbon Neutrality, Henan University, Zhengzhou, 450001, China.
- Xinyang Academy of Ecological Research, Xinyang, 464000, China.
- Henan Key Laboratory of Earth System Observation and Modeling, Henan University, Kaifeng, 475004, China.
| | - Siqi Lu
- Department of Geography, Sustainability, Community, and Urban Studies, University of Connecticut, Storrs, CT, 06269-4148, USA.
| | - Isma Gul
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center On Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions (Henan University), Ministry of Education/National Demonstration Center for Environment and Planning, Henan University, Kaifeng, 475004, China
| | - Safdar Bashir
- Department of Soil and Water Systems, University of Idaho, Moscow, ID, 83844, USA
| | - Zhenchuang Wang
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center On Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Tingting Li
- College of Geography and Environmental Science/Key Research Institute of Yellow River Civilization and Sustainable Development and Collaborative Innovation Center On Yellow River Civilization of Henan Province, Henan University, Kaifeng, 475004, China
| | - Wanfu Feng
- The Forest Science Research Institute of Xinyang, Xinyang, 464031, Henan, China
- Henan Jigongshan Forest Ecosystem National Observation and Research Station, Xinyang, 464031, Henan, China
| |
Collapse
|
11
|
Madan B, Raghuram N. Phenotypic, Physiological, and Gene Expression Analysis for Nitrogen and Phosphorus Use Efficienies in Three Popular Genotypes of Rice ( Oryza sativa Indica). PLANTS (BASEL, SWITZERLAND) 2024; 13:2567. [PMID: 39339542 PMCID: PMC11434935 DOI: 10.3390/plants13182567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 09/30/2024]
Abstract
Crop nitrogen (N) and phosphorus (P) use efficiencies (NUE/PUE) are important to minimize wastage and nutrient pollution, but no improved crop for both is currently available. We addressed them together in rice, in the view of its high consumption of NPK fertilizers. We analyzed 46 morphophysiological parameters for the N/P response in three popular indica genotypes, namely, BPT 5204, Panvel 1, and CR Dhan 301 at low, medium, and normal N/P doses. They include 18 vegetative, 15 physiological, and 13 reproductive parameters. The segregation of significantly N/P-responsive parameters correlating with NUE/PUE revealed 21 NUE, 22 PUE, and 12 common parameters. Feature selection analyses revealed the common high-ranking parameters including the photosynthetic rate at the reproductive stage, tiller number, root-shoot ratio, culm thickness, and flag leaf width. The venn selection using the reported NUE/PUE-related candidate genes in rice revealed five genes in common for both, namely OsIAA3, OsEXPA10, OsCYP75B4, OsSultr3;4, and OsFER2, which were associated with three of the common traits for NUE/PUE. Their expression studies using qRT-PCR revealed the opposite regulation in contrasting genotypes for OsSultr3;4 and OsEXPA10 in N-response and for OsFER2 in P-response, indicating their role in contrasting N/P use efficiencies. Overall, CR Dhan 301 has the highest NUE and PUE followed by Panvel 1 and BPT5204 among the studied genotypes.
Collapse
Affiliation(s)
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, University School of Biotechnology, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi 110078, India;
| |
Collapse
|
12
|
Pratt C, Petersen IA, Paungfoo-Lonhienne C. Manipulating geological phosphorus resources for improved production and environmental outcomes during plant establishment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121702. [PMID: 38986376 DOI: 10.1016/j.jenvman.2024.121702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/12/2024]
Abstract
Phosphorus (P) fertilisers are under scrutiny due to resource constraints and environmental impacts. Simple rock phosphate (RP) modifications with acids and co-applied with microbial inoculum could offer sustainable alternative P fertiliser products. We evaluated the effects of acid-treated rock phosphate (RP) in combination with fungal inoculum on plant establishment, environmental impacts (nutrient leaching) and soil quality in a 5-month pot trial. The treatments were evaluated in a clayey Vertisol and a silty Acrisol using cotton (Gossypium hirsutum) as a model plant. The RP treatments - apart from the unmodified and HCl products - were effective in promoting plant establishment with two of the microbial formulations superior to conventional P fertilisers by an average factor of 2 in both soil types (p < 0.05). All RP products restricted P leaching compared with conventional P fertilisers (p < 0.05), by an average factor of 5 for diammonium phosphate (DAP) in both soil types and 3 for the triple superphosphate TSP (only in Acrisol). Nitrate leaching from all treatments was high although much lower from the RP treatments compared with the conventional fertilisers towards the end of the establishment trial, by an average factor of 1.5 (p < 0.05). Ranking analysis revealed that some RP treatments showed evidence for improved ongoing soil quality, including decreased P leaching and soil acidification risks. Microbial analysis showed complex interactions between treatment and soil type. Nonetheless, inoculum persistence at the end of the plant establishment phase was observed for all pots analysed. Our results demonstrate that relatively simple modifications to RP could pave the way for developing sustainable P fertilisers.
Collapse
Affiliation(s)
- Chris Pratt
- School of Environment and Science/Australian Rivers Institute, Griffith University, Kessels Road, Nathan, Queensland, 4111, Australia.
| | - Ian Alexander Petersen
- School of Agriculture and Food Sustainability, University of Queensland, St Lucia, Queensland, 4072, Australia; Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St Lucia, Queensland, 4072, Australia
| | | |
Collapse
|
13
|
Liu X, Chen S, Miao C, Ye H, Li Q, Jiang H, Chen J. Transcriptome analysis of differentially expressed genes in rice seedling leaves under different nitrate treatments on resistance to bacterial leaf blight. FRONTIERS IN PLANT SCIENCE 2024; 15:1436912. [PMID: 39027672 PMCID: PMC11254694 DOI: 10.3389/fpls.2024.1436912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 06/13/2024] [Indexed: 07/20/2024]
Abstract
Nitrogen (N), as one of the most abundant mineral elements in rice, not only is the primary limiting factor for rice yield, but also impacts plant disease resistance by modulating plant morphology, regulating biochemical characteristics, as well as enhancing metabolic processes. Bacterial blight, a severe bacterial disease caused by Xanthomonas oryzae pv. oryzae (Xoo), significantly impairing rice yield and quality. Previous studies have shown that moderate application of nitrate nitrogen can improve plant disease resistance. However, further exploration is urgently required to investigate the involvement of the nitrate nitrogen signaling pathway in conferring resistance against bacterial leaf blight. In this study, we employed transcriptome sequencing to analyze the differentially expressed genes under various concentrations of nitrate supply duringrice bacterial blight infection. Our research reveals that nitrate nitrogen supply influences rice resistance to bacterial leaf blight. Through transcriptomic profiling of rice leaves inoculated under different nitrate nitrogen concentrations, we identified 4815 differentially expressed genes (DEGs) among four comparison groups, with notable differences in DEG enrichment between low and high nitrate nitrogen conditions, with some members of the NPF family implicated and we preliminarily elucidated the molecular regulatory network in which nitrate nitrogen participates in bacterial leaf blight resistance. Our findings provide a novel insight into a mechanism involving the nitrate nitrogen drive wider defense in rice.
Collapse
Affiliation(s)
- Xintong Liu
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Shunquan Chen
- Shenzhen Institute of Molecular Crop Design, Shenzhen, Guangdong, China
| | - Changjian Miao
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Huijing Ye
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Qingchao Li
- Bijie Academy of Agricultural Sciences, Bijie, Guizhou, China
| | - Hongzhen Jiang
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Jingguang Chen
- School of Agriculture and Biotechnology, Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
14
|
Li S, Jiao B, Wang J, Zhao P, Dong F, Yang F, Ma C, Guo P, Zhou S. Identification of Wheat Glutamate Synthetase Gene Family and Expression Analysis under Nitrogen Stress. Genes (Basel) 2024; 15:827. [PMID: 39062606 PMCID: PMC11275450 DOI: 10.3390/genes15070827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/28/2024] Open
Abstract
Nitrogen (N), as the main component of biological macromolecules, maintains the basic process of plant growth and development. GOGAT, as a key enzyme in the N assimilation process, catalyzes α-ketoglutaric acid and glutamine to form glutamate. In this study, six GOGAT genes in wheat (Triticum aestivum L.) were identified and classified into two subfamilies, Fd-GOGAT (TaGOGAT2s) and NADH-GOGAT (TaGOGAT3s), according to the type of electron donor. Subcellular localization prediction showed that TaGOGAT3-D was localized in mitochondria and that the other five TaGOGATs were localized in chloroplasts. Via the analysis of promoter elements, many binding sites related to growth and development, hormone regulation and plant stress resistance regulations were found on the TaGOGAT promoters. The tissue-specificity expression analysis showed that TaGOGAT2s were mainly expressed in wheat leaves and flag leaves, while TaGOGAT3s were highly expressed in roots and leaves. The expression level of TaGOGATs and the enzyme activity of TaGOGAT3s in the leaves and roots of wheat seedlings were influenced by the treatment of N deficiency. This study conducted a systematic analysis of wheat GOGAT genes, providing a theoretical basis not only for the functional analysis of TaGOGATs, but also for the study of wheat nitrogen use efficiency (NUE).
Collapse
Affiliation(s)
- Songshuo Li
- School of Biological Science and Engineering, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050018, China;
| | - Bo Jiao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| | - Jiao Wang
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| | - Pu Zhao
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| | - Fushuang Dong
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| | - Fan Yang
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| | - Chunhong Ma
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| | - Peng Guo
- School of Biological Science and Engineering, Hebei University of Science and Technology, Yuxiang Street 26, Shijiazhuang 050018, China;
| | - Shuo Zhou
- Hebei Key Laboratory of Plant Genetic Engineering, Institute of Biotechnology and Food Science, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang 050051, China; (B.J.)
| |
Collapse
|
15
|
Chen Y, Li Y, Fu Y, Jia L, Li L, Xu Z, Zhang N, Liu Y, Fan X, Xuan W, Xu G, Zhang R. The beneficial rhizobacterium Bacillus velezensis SQR9 regulates plant nitrogen uptake via an endogenous signaling pathway. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3388-3400. [PMID: 38497798 DOI: 10.1093/jxb/erae125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 03/16/2024] [Indexed: 03/19/2024]
Abstract
Nitrogen fertilizer is widely used in agriculture to boost crop yields. Plant growth-promoting rhizobacteria (PGPRs) can increase plant nitrogen use efficiency through nitrogen fixation and organic nitrogen mineralization. However, it is not known whether they can activate plant nitrogen uptake. In this study, we investigated the effects of volatile compounds (VCs) emitted by the PGPR strain Bacillus velezensis SQR9 on plant nitrogen uptake. Strain SQR9 VCs promoted nitrogen accumulation in both rice and Arabidopsis. In addition, isotope labeling experiments showed that strain SQR9 VCs promoted the absorption of nitrate and ammonium. Several key nitrogen-uptake genes were up-regulated by strain SQR9 VCs, such as AtNRT2.1 in Arabidopsis and OsNAR2.1, OsNRT2.3a, and OsAMT1 family members in rice, and the deletion of these genes compromised the promoting effect of strain SQR9 VCs on plant nitrogen absorption. Furthermore, calcium and the transcription factor NIN-LIKE PROTEIN 7 play an important role in nitrate uptake promoted by strain SQR9 VCs. Taken together, our results indicate that PGPRs can promote nitrogen uptake through regulating plant endogenous signaling and nitrogen transport pathways.
Collapse
Affiliation(s)
- Yu Chen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yucong Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yansong Fu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Letian Jia
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Lun Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhihui Xu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Nan Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yunpeng Liu
- State Key Laboratory of Efficient Utilization of Arid and Semi-arid Arable Land in Northern China, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaorong Fan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Wei Xuan
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Guohua Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and MOA Key Laboratory of Plant Nutrition and Fertilization in Lower-Middle Reaches of the Yangtze River, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruifu Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
16
|
Xu Q, Wang Y, Sun W, Li Y, Xu Y, Cheng B, Li X. Genome-wide identification of nitrate transporter 1/peptide transporter family ( NPF) induced by arbuscular mycorrhiza in the maize genome. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2024; 30:757-774. [PMID: 38846454 PMCID: PMC11150374 DOI: 10.1007/s12298-024-01464-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 04/27/2024] [Accepted: 05/15/2024] [Indexed: 06/09/2024]
Abstract
The Transporter 1/Peptide Transporter Family (NPF) is essential for the uptake and transport of nitrate nitrogen. Significant increases in nitrogen have been increasingly reported for many mycorrhizal plants, but there are few reports on maize. Here, we have identified the maize NPF family and screened for arbuscular mycorrhiza fungi (AMF) induced NPFs. In this study, a systematic analysis of the maize NPF gene family was performed. A total of 82 NPF genes were identified in maize. ZmNPF4.5 was strongly induced by AMF in both low and high nitrogen. Lotus japonicus hairy root-induced transformation experiments showed that ZmNPF4.5 promoter-driven GUS activity was restricted to cells containing tufts. Yeast backfill experiments indicate that ZmNPF4.5 functions in nitrate uptake. Therefore, we speculate that ZmNPF4.5 is a key gene for nitrate-nitrogen uptake in maize through the mycorrhizal pathway. This is a reference value for further exploring the acquisition of nitrate-nitrogen by maize through AMF pathway. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-024-01464-3.
Collapse
Affiliation(s)
- Qiang Xu
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Yanping Wang
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Wen Sun
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Yuanhao Li
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Yunjian Xu
- Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, School of Ecology and Environmental Science, Yunnan University, Kunming, China
| | - Beijiu Cheng
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| | - Xiaoyu Li
- Key Laboratory of Crop Stress Resistance and High Quality Biology of Anhui Province, Anhui Agricultural University, Hefei, China
| |
Collapse
|
17
|
Yuan M, Wu G, Wang J, Liu C, Hu Y, Hu R, Zhou Y, Zhang X, Wang W, Sun Y. Blended controlled-release nitrogen fertilizer increases rice post-anthesis nitrogen accumulation, translocation and nitrogen-use efficiency. FRONTIERS IN PLANT SCIENCE 2024; 15:1354384. [PMID: 38742214 PMCID: PMC11089134 DOI: 10.3389/fpls.2024.1354384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/03/2024] [Indexed: 05/16/2024]
Abstract
One-time application of blended controlled-release nitrogen fertilizer (CRN) has the potential to solve the difficulty of top-dressing fertilizer in the cultivation of rice and reduce the cost of CRN fertilizer application. However, its effects on rice dry matter and nitrogen (N) accumulation and translocation, yield and N-use efficiency (NUE) remain uncertain. Field experiments were carried out at three sites (Mingguang, Chaohu, and Guichi) in the Yangtze River Delta in China to compare the effects of the conventional split applications of urea and the blended CRN and on post-anthesis dry matter and N accumulation and translocation, yield, and NUE in rice at 0, 60, 120, 180, and 240 kg N ha-1. The results showed that at the equal N application rates, compared under the conventional N fertilizer treatment, the blended CRN application significantly increased the rice yield by an average of 0.9-6.9%, mainly due to increase the number of spikelets per panicle. The highest yield achieved with blended CRN treatment occurred at 200 kg N ha-1, with an NUE of 45.9%. Moreover, in comparison to the conventional N fertilizer, the blended CRN treatment increased pre-anthesis N translocation (Pre-NT) by 1.0-19.8%, and the contribution of pre-NT to grain N by 0.2-8.7%, and NUE by 3.2-28.4%. Meanwhile, the blended CRN treatment reduced labor costs by 1800 Yuan ha-1 and enhanced the economic gains by 21.5-68.8%. Therefore, one-time application of blended CRN ≤ 200 kg N ha-1 application rate improved rice yield, NUE, and economic profit compared to equivalent rates of split applied conventional N fertilizers.
Collapse
Affiliation(s)
- Manman Yuan
- Key Laboratory of Nutrient Cycling, Resources and Environment of Anhui, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Gang Wu
- Key Laboratory of Nutrient Cycling, Resources and Environment of Anhui, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Jiabao Wang
- Key Laboratory of Nutrient Cycling, Resources and Environment of Anhui, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Chuang Liu
- Key Laboratory of Nutrient Cycling, Resources and Environment of Anhui, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yegong Hu
- Agricultural Technology Promotion Center of Mingguang, Chuzhou, China
| | - Run Hu
- Chizhou Academy of Agricultural Science, Chizhou, China
| | - Yan Zhou
- Chaohu Agricultural Technology Promotion Center, Hefei, China
| | - Xiangming Zhang
- Key Laboratory of Nutrient Cycling, Resources and Environment of Anhui, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Wenjun Wang
- Key Laboratory of Nutrient Cycling, Resources and Environment of Anhui, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| | - Yixiang Sun
- Key Laboratory of Nutrient Cycling, Resources and Environment of Anhui, Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei, China
| |
Collapse
|
18
|
Jing Y, Shen C, Li W, Peng L, Hu M, Zhang Y, Zhao X, Teng W, Tong Y, He X. TaLBD41 interacts with TaNAC2 to regulate nitrogen uptake and metabolism in response to nitrate availability. THE NEW PHYTOLOGIST 2024; 242:641-657. [PMID: 38379453 DOI: 10.1111/nph.19579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/17/2024] [Indexed: 02/22/2024]
Abstract
Nitrate is the main source of nitrogen (N) available to plants and also is a signal that triggers complex regulation of transcriptional networks to modulate a wide variety of physiological and developmental responses in plants. How plants adapt to soil nitrate fluctuations is a complex process involving a fine-tuned response to nitrate provision and N starvation, the molecular mechanisms of which remain largely uncharted. Here, we report that the wheat transcription factor TaLBD41 interacts with the nitrate-inducible transcription factor TaNAC2 and is repressed by nitrate provision. Electrophoretic mobility shift assay and dual-luciferase system show that the TaLBD41-NAC2 interaction confers homeostatic coordination of nitrate uptake, reduction, and assimilation by competitively binding to TaNRT2.1, TaNR1.2, and TaNADH-GOGAT. Knockdown of TaLBD41 expression enhances N uptake and assimilation, increases spike number, grain yield, and nitrogen harvest index under different N supply conditions. We also identified an elite haplotype of TaLBD41-2B associated with increased spike number and grain yield. Our study uncovers a novel mechanism underlying the interaction between two transcription factors in mediating wheat adaptation to nitrate availability by antagonistically regulating nitrate uptake and assimilation, providing a potential target for designing varieties with efficient N use in wheat (Triticum aestivum).
Collapse
Affiliation(s)
- Yanfu Jing
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chuncai Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wenjing Li
- Yazhouwan National Laboratory, Sanya, 572024, China
| | - Lei Peng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengyun Hu
- The Institute for Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Yingjun Zhang
- The Institute for Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Shijiazhuang, 050035, China
| | - Xueqiang Zhao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Wan Teng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiping Tong
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xue He
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| |
Collapse
|
19
|
Apodiakou A, Alseekh S, Hoefgen R, Whitcomb SJ. Overexpression of SLIM1 transcription factor accelerates vegetative development in Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2024; 15:1327152. [PMID: 38571711 PMCID: PMC10988502 DOI: 10.3389/fpls.2024.1327152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 03/01/2024] [Indexed: 04/05/2024]
Abstract
The transcription factor Sulfur Limitation 1 (SLIM1) belongs to the plant-specific Ethylene Insenstive3-Like transcription factor family and is known to coordinate gene expression in response to sulfur deficiency. However, the roles of SLIM1 in nutrient-sufficient conditions have not been characterized. Employing constitutive SLIM1 overexpression (35S::SLIM1) and CRISPR/Cas9 mutant plants (slim1-cr), we identified several distinct phenotypes in nutrient-sufficient conditions in Arabidopsis thaliana. Overexpression of SLIM1 results in plants with approximately twofold greater rosette area throughout vegetative development. 35S::SLIM1 plants also bolt earlier and exhibit earlier downregulation of photosynthesis-associated genes and earlier upregulation of senescence-associated genes than Col-0 and slim1-cr plants. This suggests that overexpression of SLIM1 accelerates development in A. thaliana. Genome-wide differential gene expression analysis relative to Col-0 at three time points with slim1-cr and two 35S::SLIM1 lines allowed us to identify 1,731 genes regulated directly or indirectly by SLIM1 in vivo.
Collapse
Affiliation(s)
- Anastasia Apodiakou
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Saleh Alseekh
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rainer Hoefgen
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Sarah J. Whitcomb
- Department of Molecular Physiology, Max-Planck-Institute of Molecular Plant Physiology, Potsdam, Germany
- Cereal Crops Research Unit, United States Department of Agriculture - Agricultural Research Service, Madison, WI, United States
| |
Collapse
|
20
|
Chen N, Ma T, Xia S, Li C, Liu Y, Wang J, Qu G, Liu H, Zheng H, Yang L, Zou D, Wang J, Xin W. Mapping of Candidate Genes for Nitrogen Uptake and Utilization in Japonica Rice at Seedling Stage. Genes (Basel) 2024; 15:327. [PMID: 38540386 PMCID: PMC10970145 DOI: 10.3390/genes15030327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 06/14/2024] Open
Abstract
Nitrogen (N) is one of the essential nutrients for the growth and development of crops. The adequate application of N not only increases the yield of crops but also improves the quality of agricultural products, but the excessive application of N can cause many adverse effects on ecology and the environment. In this study, genome-wide association analysis (GWAS) was performed under low- and high-N conditions based on 788,396 SNPs and phenotypic traits relevant to N uptake and utilization (N content and N accumulation). A total of 75 QTLs were obtained using GWAS, which contained 811 genes. Of 811 genes, 281 genes showed different haplotypes, and 40 genes had significant phenotypic differences among different haplotypes. Of these 40 genes, 5 differentially expressed genes (Os01g0159250, Os02g0618200, Os02g0618400, Os02g0630300, and Os06g0619000) were finally identified as the more valuable candidate genes based on the transcriptome data sequenced from Longjing31 (low-N-tolerant variety) and Songjing 10 (low-N-sensitive variety) under low- and high-N treatments. These new findings enrich the genetic resources for N uptake and utilization in rice, as well as lay a theoretical foundation for improving the efficiency of N uptake and utilization in rice.
Collapse
Affiliation(s)
- Ning Chen
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Tianze Ma
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Sijia Xia
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Chengxin Li
- Harbin Academy of Agricultural Sciences, Harbin 150030, China;
| | - Yinuo Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Jiaqi Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Guize Qu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Hualong Liu
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Hongliang Zheng
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Luomiao Yang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Detang Zou
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Jingguo Wang
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
| | - Wei Xin
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China; (N.C.); (T.M.); (S.X.); (Y.L.); (J.W.); (G.Q.); (H.L.); (H.Z.); (L.Y.); (D.Z.)
- Key Laboratory of Germplasm Enhancement and Physiology & Ecology of Food Crop in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
21
|
Beerling DJ, Epihov DZ, Kantola IB, Masters MD, Reershemius T, Planavsky NJ, Reinhard CT, Jordan JS, Thorne SJ, Weber J, Val Martin M, Freckleton RP, Hartley SE, James RH, Pearce CR, DeLucia EH, Banwart SA. Enhanced weathering in the US Corn Belt delivers carbon removal with agronomic benefits. Proc Natl Acad Sci U S A 2024; 121:e2319436121. [PMID: 38386712 PMCID: PMC10907306 DOI: 10.1073/pnas.2319436121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 12/30/2023] [Indexed: 02/24/2024] Open
Abstract
Terrestrial enhanced weathering (EW) of silicate rocks, such as crushed basalt, on farmlands is a promising scalable atmospheric carbon dioxide removal (CDR) strategy that urgently requires performance assessment with commercial farming practices. We report findings from a large-scale replicated EW field trial across a typical maize-soybean rotation on an experimental farm in the heart of the United Sates Corn Belt over 4 y (2016 to 2020). We show an average combined loss of major cations (Ca2+ and Mg2+) from crushed basalt applied each fall over 4 y (50 t ha-1 y-1) gave a conservative time-integrated cumulative CDR potential of 10.5 ± 3.8 t CO2 ha-1. Maize and soybean yields increased significantly (P < 0.05) by 12 to 16% with EW following improved soil fertility, decreased soil acidification, and upregulation of root nutrient transport genes. Yield enhancements with EW were achieved with significantly (P < 0.05) increased key micro- and macronutrient concentrations (including potassium, magnesium, manganese, phosphorus, and zinc), thus improving or maintaining crop nutritional status. We observed no significant increase in the content of trace metals in grains of maize or soybean or soil exchangeable pools relative to controls. Our findings suggest that widespread adoption of EW across farming sectors has the potential to contribute significantly to net-zero greenhouse gas emissions goals while simultaneously improving food and soil security.
Collapse
Affiliation(s)
- David J. Beerling
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Dimitar Z. Epihov
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Ilsa B. Kantola
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Michael D. Masters
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Tom Reershemius
- Yale Center for Natural Carbon Capture, Department of Earth & Planetary Sciences, Yale University, New Haven, CT 06511
| | - Noah J. Planavsky
- Yale Center for Natural Carbon Capture, Department of Earth & Planetary Sciences, Yale University, New Haven, CT 06511
| | - Christopher T. Reinhard
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332
| | | | - Sarah J. Thorne
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - James Weber
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Maria Val Martin
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Robert P. Freckleton
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Sue E. Hartley
- Leverhulme Centre for Climate Change Mitigation, School of Biosciences, University of Sheffield, SheffieldS10 2TN, United Kingdom
| | - Rachael H. James
- School of Ocean and Earth Science, National Oceanography Centre Southampton, University of Southampton, SouthamptonSO14 3ZH, United Kingdom
| | | | - Evan H. DeLucia
- Institute for Sustainability, Energy, and Environment, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Steven A. Banwart
- Global Food and Environment Institute, University of Leeds, LeedsLS2 9JT, United Kingdom
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, United Kingdom
| |
Collapse
|
22
|
Li J, Li Q, Guo N, Xian Q, Lan B, Nangia V, Mo F, Liu Y. Polyamines mediate the inhibitory effect of drought stress on nitrogen reallocation and utilization to regulate grain number in wheat. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1016-1035. [PMID: 37813095 DOI: 10.1093/jxb/erad393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/05/2023] [Indexed: 10/11/2023]
Abstract
Drought stress poses a serious threat to grain formation in wheat. Nitrogen (N) plays crucial roles in plant organ development; however, the physiological mechanisms by which drought stress affects plant N availability and mediates the formation of grains in spikes of winter wheat are still unclear. In this study, we determined that pre-reproductive drought stress significantly reduced the number of fertile florets and the number of grains formed. Transcriptome analysis demonstrated that this was related to N metabolism, and in particular, the metabolism pathways of arginine (the main precursor for synthesis of polyamine) and proline. Continuous drought stress restricted plant N accumulation and reallocation rates, and plants preferentially allocated more N to spike development. As the activities of amino acid biosynthesis enzymes and catabolic enzymes were inhibited, more free amino acids accumulated in young spikes. The expression of polyamine synthase genes was down-regulated under drought stress, whilst expression of genes encoding catabolic enzymes was enhanced, resulting in reductions in endogenous spermidine and putrescine. Treatment with exogenous spermidine optimized N allocation in young spikes and leaves, which greatly alleviated the drought-induced reduction in the number of grains per spike. Overall, our results show that pre-reproductive drought stress affects wheat grain numbers by regulating N redistribution and polyamine metabolism.
Collapse
Affiliation(s)
- Juan Li
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Qi Li
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Nian Guo
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Qinglin Xian
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Bing Lan
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Vinay Nangia
- International Center for Agricultural Research in the Dry Areas (ICARDA), P.O. Box 6299-10112, Rabat, Morocco
| | - Fei Mo
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| | - Yang Liu
- College of Agronomy, Northwest A&F University, Taicheng Road 3, Yangling, Shaanxi, 712100, PR China
| |
Collapse
|
23
|
Cao H, Liu Z, Guo J, Jia Z, Shi Y, Kang K, Peng W, Wang Z, Chen L, Neuhaeuser B, Wang Y, Liu X, Hao D, Yuan L. ZmNRT1.1B (ZmNPF6.6) determines nitrogen use efficiency via regulation of nitrate transport and signalling in maize. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:316-329. [PMID: 37786281 PMCID: PMC10826987 DOI: 10.1111/pbi.14185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/04/2023]
Abstract
Nitrate (NO3 - ) is crucial for optimal plant growth and development and often limits crop productivity under low availability. In comparison with model plant Arabidopsis, the molecular mechanisms underlying NO3 - acquisition and utilization remain largely unclear in maize. In particular, only a few genes have been exploited to improve nitrogen use efficiency (NUE). Here, we demonstrated that NO3 - -inducible ZmNRT1.1B (ZmNPF6.6) positively regulated NO3 - -dependent growth and NUE in maize. We showed that the tandem duplicated proteoform ZmNRT1.1C is irrelevant to maize seedling growth under NO3 - supply; however, the loss of function of ZmNRT1.1B significantly weakened plant growth under adequate NO3 - supply under both hydroponic and field conditions. The 15 N-labelled NO3 - absorption assay indicated that ZmNRT1.1B mediated the high-affinity NO3 - -transport and root-to-shoot NO3 - translocation. Transcriptome analysis further showed, upon NO3 - supply, ZmNRT1.1B promotes cytoplasmic-to-nuclear shuttling of ZmNLP3.1 (ZmNLP8), which co-regulates the expression of genes involved in NO3 - response, cytokinin biosynthesis and carbon metabolism. Remarkably, overexpression of ZmNRT1.1B in modern maize hybrids improved grain yield under N-limiting fields. Taken together, our study revealed a crucial role of ZmNRT1.1B in high-affinity NO3 - transport and signalling and offers valuable genetic resource for breeding N use efficient high-yield cultivars.
Collapse
Affiliation(s)
- Huairong Cao
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Zhi Liu
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Jia Guo
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Zhongtao Jia
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Yandong Shi
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Kai Kang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Wushuang Peng
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Zhangkui Wang
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| | - Limei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, Center for Crop Functional Genomics and Molecular BreedingChina Agricultural UniversityBeijingChina
| | - Benjamin Neuhaeuser
- Department of Nutritional Crop Physiology, Institute of Crop ScienceUniversity of HohenheimStuttgartGermany
| | - Yong Wang
- National Key Laboratory of Wheat Improvement, College of Life SciencesShandong Agricultural UniversityTai'anShandongChina
| | - Xiangguo Liu
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Dongyun Hao
- Key Laboratory for Agricultural Biotechnology of Jilin ProvincialInstitute of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences (JAAS)JilinChina
| | - Lixing Yuan
- State Key Laboratory of Nutrient Use and Management, College of Resources and Environmental Sciences, National Academy of Agriculture Green DevelopmentChina Agricultural UniversityBeijingChina
| |
Collapse
|
24
|
Nan Y, Xie Y, He H, Wu H, Gao L, Atif A, Zhang Y, Tian H, Hui J, Gao Y. Integrated BSA-seq and RNA-seq analysis to identify candidate genes associated with nitrogen utilization efficiency (NUtE) in rapeseed (Brassica napus L.). Int J Biol Macromol 2024; 254:127771. [PMID: 38287600 DOI: 10.1016/j.ijbiomac.2023.127771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/26/2023] [Accepted: 10/27/2023] [Indexed: 01/31/2024]
Abstract
Rapeseed (Brassica napus L.) is one of the important oil crops, with a high demand for nitrogen (N). It is essential to explore the potential of rapeseed to improve nitrogen utilization efficiency (NUtE). Rapeseed is an allotetraploid crop with a relatively large and complex genome, and there are few studies on the mapping of genes related to NUtE regulation. In this study, we used the combination of bulk segregant analysis sequencing (BSA-Seq) and RNA sequencing (RNA-Seq) to analyze the N-efficient genotype 'Zheyou 18' and N-inefficient genotype 'Sollux', to identify the genetic regulatory mechanisms. Several candidate genes were screened, such as the high-affinity nitrate transporter gene NRT2.1 (BnaC08g43370D) and the abscisic acid (ABA) signal transduction-related genes (BnaC02g14540D, BnaA03g20760D, and BnaA05g01330D). BnaA05g01330D was annotated as ABA-INDUCIBLE bHLH-TYPE TRANSCRIPTION FACTOR (AIB/bHLH17), which was highly expressed in the root. The results showed that the primary root length of the ataib mutant was significantly longer than that of the wild type under low N conditions. Overexpression of BnaA5.AIB could reduce the NUtE under low N levels in Arabidopsis (Arabidopsis thaliana). Candidate genes identified in this study may be involved in the regulation of NUtE in rapeseed, and new functions of AIB in orchestrating N uptake and utilization have been revealed. It is indicated that BnaA5.AIB may be the key factor that links ABA to N signaling and a negative regulator of NUtE. It will provide a theoretical basis and application prospect for resource conservation, environmental protection, and sustainable agricultural development.
Collapse
Affiliation(s)
- Yunyou Nan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuyu Xie
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Huiying He
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Han Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Lixing Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Ayub Atif
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling, Shaanxi, China
| | - Hui Tian
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.
| | - Jing Hui
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yajun Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, China; Key Laboratory of Plant Nutrition and the Agri-environment in Northwest China, Ministry of Agriculture, Yangling, Shaanxi, China.
| |
Collapse
|
25
|
Seo JS, Kim SH, Shim JS, Um T, Oh N, Park T, Kim YS, Oh SJ, Kim JK. The rice NUCLEAR FACTOR-YA5 and MICRORNA169a module promotes nitrogen utilization during nitrogen deficiency. PLANT PHYSIOLOGY 2023; 194:491-510. [PMID: 37723121 PMCID: PMC10756765 DOI: 10.1093/plphys/kiad504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/20/2023]
Abstract
Nitrogen (N) is essential for plant growth and development. Therefore, understanding its utilization is essential for improving crop productivity. However, much remains to be learned about plant N sensing and signaling. Here, rice (Oryza sativa) NUCLEAR FACTOR-YA5 (OsNF-YA5) expression was tightly regulated by N status and induced under N-deficient conditions. Overexpression (OE) of OsNF-YA5 in rice resulted in increased chlorophyll levels and delayed senescence compared to control plants under normal N conditions. Agronomic traits were significantly improved in OE plants and impaired in knockout mutants under N-deficient conditions. Using a dexamethasone-inducible system, we identified the putative targets of OsNF-YA5 that include amino acid, nitrate/peptide transporters, and NITRATE TRANSPORTER 1.1A (OsNRT1.1A), which functions as a key transporter in rice. OsNF-YA5 directly enhanced OsNRT1.1A expression and N uptake rate under N-deficient conditions. Besides, overexpression of OsNF-YA5 also enhanced the expression of GLUTAMINE SYNTHETASE 1/2 (GS1/2) and GLUTAMINE OXOGLUTARATE AMINOTRANSFERASE 1/2 (GOGAT1/2), increasing free amino acid contents under N-deficient conditions. Osa-miR169a expression showed an opposite pattern with OsNF-YA5 depending on N status. Further analysis revealed that osa-miR169a negatively regulates OsNF-YA5 expression and N utilization, demonstrating that an OsNF-YA5/osa-miR169a module tightly regulates rice N utilization for adaptation to N status.
Collapse
Affiliation(s)
- Jun Sung Seo
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Sung Hwan Kim
- Crop Biotechnology Institute, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Jae Sung Shim
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Taeyoung Um
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Nuri Oh
- Crop Biotechnology Institute, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Taehyeon Park
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Youn Shic Kim
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
| | - Se-Jun Oh
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| | - Ju-Kon Kim
- GreenBio Science & Technology, Seoul National University, Pyeongchang 25354, Korea
- Crop Biotechnology Institute, Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Korea
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea
- LaSemilla Co. Ltd., Pyeongchang 25354, Korea
| |
Collapse
|
26
|
Wang J, Wang L, Zhang X, Li S, Wang X, Yang L, Wu F, Su H. Genome-wide identification of nitrate transporter 1/peptide transporter family (NPF) genes reveals that PaNPF5.5 enhances nitrate uptake in sweet cherry under high nitrate condition. Gene 2023; 888:147797. [PMID: 37708922 DOI: 10.1016/j.gene.2023.147797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/10/2023] [Accepted: 09/11/2023] [Indexed: 09/16/2023]
Abstract
NITRATE TRANSPORTER 1 (NRT1)/PEPTIDETRANSPORTER (PTR) family (NPF) plays a significant role in nitrate transport. However, little is known about the NPF genes in sweet cherry. In this study, a total of 60 PaNPF genes in sweet cherry were identified by bioinformatics, which were divided into 8 families. Transcriptomic analysis showed that most PaNPF genes responded to both low and high nitrate conditions, especially PaNPF5.5, which was highly up-regulated under high nitrate condition. Molecular analysis showed that PaNPF5.5 was a transporter localized to the cell membrane. Further functional studies found that PaNPF5.5 overexpression promoted the growth of sweet cherry rootstock Gisela 6 by accelerating the nitrogen absorption process under high nitrate environment. Taken together, we believe that PaNPF5.5 plays an important role in regulating the transport of nitrate at high nitrate conditions, and provides a promising method for improving nitrate absorption efficiency at nitrogen excess environment.
Collapse
Affiliation(s)
- Jingtao Wang
- School of Agriculture, Ludong University, Yantai 264025, China; College of Life Sciences, Ludong University, Yantai 264025, China
| | - Lei Wang
- College of Life Sciences, Ludong University, Yantai 264025, China
| | - Xu Zhang
- Yantai Academy of Agricultural Sciences, Yantai, Shandong 264025, China
| | - Songlin Li
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Xiaohui Wang
- School of Agriculture, Ludong University, Yantai 264025, China
| | - Lina Yang
- Department of Genetics and Cell Biology, Basic Medical College, Qingdao University, Qingdao 266071, China
| | - Fanlin Wu
- School of Agriculture, Ludong University, Yantai 264025, China.
| | - Hongyan Su
- College of Agriculture and Forestry Sciences, Linyi University, Linyi 276000, China.
| |
Collapse
|
27
|
Soto-Cerda BJ, Larama G, Cloutier S, Fofana B, Inostroza-Blancheteau C, Aravena G. The Genetic Dissection of Nitrogen Use-Related Traits in Flax ( Linum usitatissimum L.) at the Seedling Stage through the Integration of Multi-Locus GWAS, RNA-seq and Genomic Selection. Int J Mol Sci 2023; 24:17624. [PMID: 38139451 PMCID: PMC10743809 DOI: 10.3390/ijms242417624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 12/10/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
Nitrogen (N), the most important macro-nutrient for plant growth and development, is a key factor that determines crop yield. Yet its excessive applications pollute the environment and are expensive. Hence, studying nitrogen use efficiency (NUE) in crops is fundamental for sustainable agriculture. Here, an association panel consisting of 123 flax accessions was evaluated for 21 NUE-related traits at the seedling stage under optimum N (N+) and N deficiency (N-) treatments to dissect the genetic architecture of NUE-related traits using a multi-omics approach integrating genome-wide association studies (GWAS), transcriptome analysis and genomic selection (GS). Root traits exhibited significant and positive correlations with NUE under N- conditions (r = 0.33 to 0.43, p < 0.05). A total of 359 QTLs were identified, accounting for 0.11% to 23.1% of the phenotypic variation in NUE-related traits. Transcriptomic analysis identified 1034 differentially expressed genes (DEGs) under contrasting N conditions. DEGs involved in N metabolism, root development, amino acid transport and catabolism and others, were found near the QTLs. GS models to predict NUE stress tolerance index (NUE_STI) trait were tested using a random genome-wide SNP dataset and a GWAS-derived QTLs dataset. The latter produced superior prediction accuracy (r = 0.62 to 0.79) compared to the genome-wide SNP marker dataset (r = 0.11) for NUE_STI. Our results provide insights into the QTL architecture of NUE-related traits, identify candidate genes for further studies, and propose genomic breeding tools to achieve superior NUE in flax under low N input.
Collapse
Affiliation(s)
- Braulio J. Soto-Cerda
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile
| | - Giovanni Larama
- Center of Plant, Soil Interaction and Natural Resources Biotechnology, Scientific and Technological Bioresource Nucleus, Universidad de La Frontera, Temuco 4811230, Chile;
- Biocontrol Research Laboratory, Universidad de La Frontera, Temuco 4811230, Chile
| | - Sylvie Cloutier
- Ottawa Research and Development Centre, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada;
| | - Bourlaye Fofana
- Charlottetown Research and Development Centre, Agriculture and Agri-Food Canada, 440 University Avenue, Charlottetown, PE C1A 4N6, Canada
| | - Claudio Inostroza-Blancheteau
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
- Núcleo de Investigación en Producción Alimentaria, Facultad de Recursos Naturales, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile
| | - Gabriela Aravena
- Departamento de Ciencias Agropecuarias y Acuícolas, Universidad Católica de Temuco, Rudecindo Ortega 02950, Temuco 4781312, Chile; (C.I.-B.); (G.A.)
| |
Collapse
|
28
|
Li X, Xu L, Li M, He N. High-resolution maps of vegetation nitrogen density on the Tibetan Plateau: An intensive field-investigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:167233. [PMID: 37739084 DOI: 10.1016/j.scitotenv.2023.167233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/05/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Nitrogen (N) is a vital macronutrient in plant growth and development that plays a crucial role in the regulation of numerous physiological processes. The Tibetan Plateau is among the most species-diverse vegetation zones in the world, and is sensitive to climate change; however, research on vegetation N in the region remains limited. This study used field grid-sampling of 2040 plant communities to investigate the spatial variation and driving factors of vegetation N on the Tibetan Plateau. The results yielded an average N content, density and storage in vegetation of 8.48 mg g-1, 27.02 g m-2, and 29.84Tg, respectively. The ratio-based optimal partitioning hypothesis appears to be more suitable than the isometric allocation hypothesis to explain variation in vegetation N on the Tibetan Plateau. Variation in vegetation N density, was influenced by several environmental factors of which the most significant was radiation. Based on these results, a Random Forest model was used to predict a N density distribution map at 1 km resolution, achieving an accuracy (R2) of 0.72 (aboveground N density), 0.61 (belowground N density), and 0.69 (total vegetation N density). Trends for high densities were predicted in the southeast and low densities in the northwest of the region. Our findings and maps could be used to provide key N cycle parameters, contributing to future remote sensing, radar analyses, modeling and ecological management.
Collapse
Affiliation(s)
- Xin Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 10049, China
| | - Li Xu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Mingxu Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Nianpeng He
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 10049, China; Center for Ecological Research, Northeast Forestry University, 150040 Harbin, China.
| |
Collapse
|
29
|
Zhang H, Jin Z, Cui F, Zhao L, Zhang X, Chen J, Zhang J, Li Y, Li Y, Niu Y, Zhang W, Gao C, Fu X, Tong Y, Wang L, Ling HQ, Li J, Xiao J. Epigenetic modifications regulate cultivar-specific root development and metabolic adaptation to nitrogen availability in wheat. Nat Commun 2023; 14:8238. [PMID: 38086830 PMCID: PMC10716289 DOI: 10.1038/s41467-023-44003-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
The breeding of crops with improved nitrogen use efficiency (NUE) is crucial for sustainable agriculture, but the involvement of epigenetic modifications remains unexplored. Here, we analyze the chromatin landscapes of two wheat cultivars (KN9204 and J411) that differ in NUE under varied nitrogen conditions. The expression of nitrogen metabolism genes is closely linked to variation in histone modification instead of differences in DNA sequence. Epigenetic modifications exhibit clear cultivar-specificity, which likely contributes to distinct agronomic traits. Additionally, low nitrogen (LN) induces H3K27ac and H3K27me3 to significantly enhance root growth in KN9204, while remarkably inducing NRT2 in J411. Evidence from histone deacetylase inhibitor treatment and transgenic plants with loss function of H3K27me3 methyltransferase shows that changes in epigenetic modifications could alter the strategy preference for root development or nitrogen uptake in response to LN. Here, we show the importance of epigenetic regulation in mediating cultivar-specific adaptation to LN in wheat.
Collapse
Affiliation(s)
- Hao Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhiyuan Jin
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Fa Cui
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China
| | - Long Zhao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoyu Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jinchao Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jing Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yanyan Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Yongpeng Li
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Yanxiao Niu
- Ministry of Education Key Laboratory of Molecular and Cellular Biology, Hebei Research Center of the Basic Discipline of Cell Biology, Hebei Key Laboratory of Molecular and Cellular Biology, Hebei Normal University, Shijiazhuang, 050024, China
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm Enhancement and Utilization, CICMCP, Nanjing Agricultural University, Nanjing, 210095, Jiangsu, China
| | - Caixia Gao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiangdong Fu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiping Tong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Wang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan, China.
| | - Junming Li
- Hebei Collaboration Innovation Center for Cell Signaling, Shijiazhuang, 050024, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong, College of Agriculture, Ludong University, Yantai, 264025, China.
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, 050022, Hebei, China.
| | - Jun Xiao
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Centre of Excellence for Plant and Microbial Science (CEPAMS), JIC-CAS, Beijing, China.
| |
Collapse
|
30
|
Fortunato S, Nigro D, Lasorella C, Marcotuli I, Gadaleta A, de Pinto MC. The Role of Glutamine Synthetase (GS) and Glutamate Synthase (GOGAT) in the Improvement of Nitrogen Use Efficiency in Cereals. Biomolecules 2023; 13:1771. [PMID: 38136642 PMCID: PMC10742212 DOI: 10.3390/biom13121771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/06/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Cereals are the most broadly produced crops and represent the primary source of food worldwide. Nitrogen (N) is a critical mineral nutrient for plant growth and high yield, and the quality of cereal crops greatly depends on a suitable N supply. In the last decades, a massive use of N fertilizers has been achieved in the desire to have high yields of cereal crops, leading to damaging effects for the environment, ecosystems, and human health. To ensure agricultural sustainability and the required food source, many attempts have been made towards developing cereal crops with a more effective nitrogen use efficiency (NUE). NUE depends on N uptake, utilization, and lastly, combining the capability to assimilate N into carbon skeletons and remobilize the N assimilated. The glutamine synthetase (GS)/glutamate synthase (GOGAT) cycle represents a crucial metabolic step of N assimilation, regulating crop yield. In this review, the physiological and genetic studies on GS and GOGAT of the main cereal crops will be examined, giving emphasis on their implications in NUE.
Collapse
Affiliation(s)
- Stefania Fortunato
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Domenica Nigro
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Cecilia Lasorella
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| | - Ilaria Marcotuli
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Agata Gadaleta
- Department of Soil, Plant and Food Sciences, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (D.N.); (I.M.)
| | - Maria Concetta de Pinto
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Via Orabona 4, 70125 Bari, Italy; (S.F.)
| |
Collapse
|
31
|
Zou Y, Zhang Y, Cui J, Gao J, Guo L, Zhang Q. Nitrogen fertilization application strategies improve yield of the rice cultivars with different yield types by regulating phytohormones. Sci Rep 2023; 13:21803. [PMID: 38071312 PMCID: PMC10710506 DOI: 10.1038/s41598-023-48491-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Rice (Oryza sativa L.) is the most important food crop worldwide, and its sustainable development is essential to ensure global food security. Panicle morphological and physiological characteristics plays an important role in rice yield formation. However, under different nitrogen (N) fertilization strategies, it is not clear whether the morphological and physiological state of panicles at panicle development stage affects the formation of yield. To understand how the panicle differentiation and development, and grain yield are affected by the N fertilization strategies, and clarify the relationship between related traits and yield in the process of panicle development in different cultivars. In this study consisted of no N fertilizer and four N fertilization strategies, a panicle weight type (PWT) rice cultivar, Dongfu 114 (DF114) and a panicle number type (PNT) rice cultivar, Longdao 11 (LD11) were grown in the field. The results showed that N fertilization strategies could improve the nitrogen use efficiency and yield of rice, but the response of different rice varieties to N fertilizer strategies was different. Different from the DF114, the further increase of panicle N fertilizer ratio could not further improve the yield of LD11, and the highest grain yield of DF114 and LD11 was obtained under N4 and N3 conditions, respectively. In addition, this study found that N fertilizer strategies can affect the content of phytohormones in rice at the panicle differentiation stage, and then regulate the differentiation and development of rice panicles to affect yield. It is of great significance to optimize the application mode of N fertilizer according to the characteristics of varieties to improve rice yield and ensure food security.
Collapse
Affiliation(s)
- Yue Zou
- Agronomy College Jilin Agricultural University, Changchun, 130118, China
- Key Laboratory of Germplasm Innovation and Physiological Ecology of Grain Crops in Cold Region, Ministry of Education, Harbin, 150030, China
| | - Yuchen Zhang
- Agronomy College Jilin Agricultural University, Changchun, 130118, China
| | - Jiehao Cui
- Agronomy College Jilin Agricultural University, Changchun, 130118, China
| | - Jiacong Gao
- Agronomy College Jilin Agricultural University, Changchun, 130118, China
| | - Liying Guo
- Agronomy College Jilin Agricultural University, Changchun, 130118, China.
| | - Qiang Zhang
- Agronomy College Jilin Agricultural University, Changchun, 130118, China.
- Key Laboratory of Germplasm Innovation and Physiological Ecology of Grain Crops in Cold Region, Ministry of Education, Harbin, 150030, China.
| |
Collapse
|
32
|
Prasanna JA, Mandal VK, Kumar D, Chakraborty N, Raghuram N. Nitrate-responsive transcriptome analysis of rice RGA1 mutant reveals the role of G-protein alpha subunit in negative regulation of nitrogen-sensitivity and use efficiency. PLANT CELL REPORTS 2023; 42:1987-2010. [PMID: 37874341 DOI: 10.1007/s00299-023-03078-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 09/19/2023] [Indexed: 10/25/2023]
Abstract
KEY MESSAGE Nitrate-responsive transcriptomic, phenotypic and physiological analyses of rice RGA1 mutant revealed many novel RGA1-regulated genes/processes/traits related to nitrogen use efficiency, and provided robust genetic evidence of RGA1-regulation of NUE. Nitrogen (N) use efficiency (NUE) is important for sustainable agriculture. G-protein signalling was implicated in N-response/NUE in rice, but needed firm genetic characterization of the role of alpha subunit (RGA1). The knock-out mutant of RGA1 in japonica rice exhibited lesser nitrate-dose sensitivity than the wild type (WT), in yield and NUE. We, therefore, investigated its genomewide nitrate-response relative to WT. It revealed 3416 differentially expressed genes (DEGs), including 719 associated with development, grain yield and phenotypic traits for NUE. The upregulated DEGs were related to photosynthesis, chlorophyll, tetrapyrrole and porphyrin biosynthesis, while the downregulated DEGs belonged to cellular protein metabolism and transport, small GTPase signalling, cell redox homeostasis, etc. We validated 26 nitrate-responsive DEGs across functional categories by RT-qPCR. Physiological validation of nitrate-response in the mutant and the WT at 1.5 and 15 mM doses revealed higher chlorophyll and stomatal length but decreased stomatal density, conductance and transpiration. The consequent increase in photosynthesis and water use efficiency may have contributed to better yield and NUE in the mutant, whereas the WT was N-dose sensitive. The mutant was not as N-dose-responsive as the WT in shoot/root growth, productive tillers and heading date, but equally responsive as WT in total N and protein content. The RGA1 mutant was less impacted by higher N-dose or salt stress in terms of yield, protein content, photosynthetic performance, relative water content, water use efficiency and catalase activity. PPI network analyses revealed known NUE-related proteins as RGA1 interactors. Therefore, RGA1 negatively regulates N-dose sensitivity and NUE in rice.
Collapse
Affiliation(s)
- Jangam Annie Prasanna
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
| | - Vikas Kumar Mandal
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India
- Prof. H.S. Srivastava Foundation for Science and Society, 10B/7, Madan Mohan Malviya Marg, Lucknow, India
| | - Dinesh Kumar
- Division of Agronomy, ICAR-Indian Agricultural Research Institute, Pusa Campus, New Delhi, India
| | - Navjyoti Chakraborty
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| | - Nandula Raghuram
- Centre for Sustainable Nitrogen and Nutrient Management, School of Biotechnology, Guru Gobind Singh Indraprastha University, Sector 16C, Dwarka, New Delhi, 110078, India.
| |
Collapse
|
33
|
Zhang Y, Ritonga FN, Zhang S, Wang F, Li J, Gao J. Genome-Wide Identification of the NRT1 Family Members and Their Expression under Low-Nitrate Conditions in Chinese Cabbage ( Brassica rapa L. ssp. pekinensis). PLANTS (BASEL, SWITZERLAND) 2023; 12:3882. [PMID: 38005779 PMCID: PMC10675746 DOI: 10.3390/plants12223882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023]
Abstract
Nitrate transporters (NRTs) actively take up and transform nitrate (N) to form a large family with many members and distinct functions in plant growth and development. However, few studies have identified them in the context of low nitrate concentrations in Chinese cabbage (Brassica rapa L. ssp. Pekinensis), an important vegetable in China. This study focuses on the identification and analysis of the nitrate transporter 1 (NRT1) gene family as well as various aspects, including its phylogenic distribution, chromosomal position, gene structure, conserved motifs, and duplication pattern. Using bioinformatics methods, we identified and analyzed 84 BrNRT1 genes distributed on ten chromosomes. Furthermore, we conducted an analysis of the expression profile of the NRT1 gene in various tissues of Chinese cabbage exposed to varying nitrate concentrations. A phylogenetic analysis revealed that BrNRT1s members are distributed in six distinct groups. Based on an analysis of gene structure and conserved motifs, it can be inferred that BrNRT1 exhibits a generally conserved structural pattern. The promoters of BrNRT1 were discovered to contain moosefs (MFS) elements, suggesting their potential role in the regulation of NO3- transport across the cell membrane in Chinese cabbage. A transcriptome study and a subsequent RT-qPCR analysis revealed that the expression patterns of some BrNRT1 genes were distinct to specific tissues. This observation implies these genes may contribute to nitrate uptake and transport in various tissues or organs. The results offer fundamental insights into investigating the NRT1 gene family in Chinese cabbage. These results provide basic information for future research on the functional characterization of NRT1 genes in Chinese cabbage and the elucidation of the molecular mechanisms underlying low nitrogen tolerance in Chinese cabbage.
Collapse
Affiliation(s)
- Yihui Zhang
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Science, Jinan 250100, China; (Y.Z.); (F.N.R.); (S.Z.); (F.W.)
| | - Faujiah Nurhasanah Ritonga
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Science, Jinan 250100, China; (Y.Z.); (F.N.R.); (S.Z.); (F.W.)
- Graduate School, Padjadjaran University, Bandung 40132, West Java, Indonesia
| | - Shu Zhang
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Science, Jinan 250100, China; (Y.Z.); (F.N.R.); (S.Z.); (F.W.)
| | - Fengde Wang
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Science, Jinan 250100, China; (Y.Z.); (F.N.R.); (S.Z.); (F.W.)
| | - Jingjuan Li
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Science, Jinan 250100, China; (Y.Z.); (F.N.R.); (S.Z.); (F.W.)
| | - Jianwei Gao
- Shandong Branch of National Vegetable Improvement Center, Institute of Vegetables, Shandong Academy of Agricultural Science, Jinan 250100, China; (Y.Z.); (F.N.R.); (S.Z.); (F.W.)
| |
Collapse
|
34
|
Chen E, Qin L, Li F, Yang Y, Liu Z, Wang R, Yu X, Niu J, Zhang H, Wang H, Liu B, Guan Y. Physiological and Transcriptomic Analysis Provides Insights into Low Nitrogen Stress in Foxtail Millet ( Setaria italica L.). Int J Mol Sci 2023; 24:16321. [PMID: 38003509 PMCID: PMC10671652 DOI: 10.3390/ijms242216321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
Foxtail millet (Setaria italica (L.) P. Beauv) is an important food and forage crop that is well adapted to nutrient-poor soils. However, our understanding of how different LN-tolerant foxtail millet varieties adapt to long-term low nitrogen (LN) stress at the physiological and molecular levels remains limited. In this study, two foxtail millet varieties with contrasting LN tolerance properties were investigated through analyses of physiological parameters and transcriptomics. The physiological results indicate that JG20 (high tolerance to LN) exhibited superior biomass accumulation both in its shoots and roots, and higher nitrogen content, soluble sugar concentration, soluble protein concentration, zeatin concentration in shoot, and lower soluble sugar and soluble protein concentration in its roots compared to JG22 (sensitive to LN) under LN, this indicated that the LN-tolerant foxtail millet variety can allocate more functional substance to its shoots to sustain aboveground growth and maintain high root activity by utilizing low soluble sugar and protein under LN conditions. In the transcriptomics analysis, JG20 exhibited a greater number of differentially expressed genes (DEGs) compared to JG22 in both its shoots and roots in response to LN stress. These LN-responsive genes were enriched in glycolysis metabolism, photosynthesis, hormone metabolism, and nitrogen metabolism. Furthermore, in the shoots, the glutamine synthetase gene SiGS5, chlorophyll apoprotein of photosystem II gene SiPsbQ, ATP synthase subunit gene Sib, zeatin synthesis genes SiAHP1, and aldose 1-epimerase gene SiAEP, and, in the roots, the high-affinity nitrate transporter genes SiNRT2.3, SiNRT2.4, glutamate synthase gene SiGOGAT2, fructose-bisphosphate aldolase gene SiFBA5, were important genes involved in the LN tolerance of the foxtail millet variety. Hence, our study implies that the identified genes and metabolic pathways contribute valuable insights into the mechanisms underlying LN tolerance in foxtail millet.
Collapse
Affiliation(s)
- Erying Chen
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Ling Qin
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Feifei Li
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Yanbing Yang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Zhenyu Liu
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Runfeng Wang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Xiao Yu
- College of Life Science, Shandong Normal University, Jinan 250014, China; (X.Y.); (J.N.)
| | - Jiahong Niu
- College of Life Science, Shandong Normal University, Jinan 250014, China; (X.Y.); (J.N.)
| | - Huawen Zhang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Hailian Wang
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Bin Liu
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
| | - Yanan Guan
- Featured Crops Engineering Laboratory of Shandong Province, Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan 250100, China; (E.C.); (L.Q.); (F.L.); (Y.Y.); (Z.L.); (R.W.); (H.Z.); (H.W.); (B.L.)
- College of Life Science, Shandong Normal University, Jinan 250014, China; (X.Y.); (J.N.)
| |
Collapse
|
35
|
Jiang M, Song Y, Yang R, Zheng C, Zheng Y, Zhang H, Li S, Tan Y, Huang J, Shu Q, Li R. Melatonin activates the OsbZIP79-OsABI5 module that orchestrates nitrogen and ROS homeostasis to alleviate nitrogen-limitation stress in rice. PLANT COMMUNICATIONS 2023; 4:100674. [PMID: 37598294 PMCID: PMC10721462 DOI: 10.1016/j.xplc.2023.100674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/09/2023] [Accepted: 08/16/2023] [Indexed: 08/21/2023]
Abstract
Melatonin (Mel) has previously been reported to effectively alleviate nitrogen-limitation (N-L) stress and thus increase nitrogen-use efficiency (NUE) in several plants, but the underlying mechanism remains obscure. Here, we revealed that OsbZIP79 (BASIC LEUCINE ZIPPER 79) is transcriptionally activated under N-L conditions, and its expression is further enhanced by exogenous Mel. By the combined use of omics, genetics, and biological techniques, we revealed that the OsbZIP79-OsABI5 (ABSCISIC ACID INSENSITIVE 5) module stimulated regulation of reactive oxygen species (ROS) homeostasis and the uptake and metabolism of nitrogen under conditions of indoor nitrogen limitation (1/16 normal level). OsbZIP79 activated the transcription of OsABI5, and OsABI5 then bound to the promoters of target genes, including genes involved in ROS homeostasis and nitrogen metabolism, activating their transcription. This module was also indispensable for upregulation of several other genes involved in abscisic acid catabolism, nitrogen uptake, and assimilation under N-L and Mel treatment, although these genes were not directly transactivated by OsABI5. Field experiments demonstrated that Mel significantly improved rice growth under low nitrogen (L-N, half the normal level) by the same mechanism revealed in the nitrogen-limitation study. Mel application produced a 28.6% yield increase under L-N and thus similar increases in NUE. Also, two OsbZIP79-overexpression lines grown in L-N field plots had significantly higher NUE (+13.7% and +21.2%) than their wild types. Together, our data show that an OsbZIP79-OsABI5 module regulates the rice response to N insufficiency (N limitation or low N), which is important for increasing NUE in rice production.
Collapse
Affiliation(s)
- Meng Jiang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Yue Song
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Ruifang Yang
- Crop Breeding and Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chenfan Zheng
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Yunchao Zheng
- School of Life Sciences, Westlake University, Hangzhou, China
| | - Huali Zhang
- State Key Laboratory of Rice Breeding and Biology and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, China
| | - Shan Li
- National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Yuanyuan Tan
- National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China
| | - Jianzhong Huang
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China
| | - Qingyao Shu
- Hainan Institute, Zhejiang University, Yazhou Bay Sci-Tech City, Sanya, China; National Key Laboratory of Rice Breeding and Biology and Zhejiang Provincial Key Laboratory of Crop Germplasm, The Advanced Seed Institute, Zhejiang University, Hangzhou, China.
| | - Ruiqing Li
- College of Agronomy, Anhui Agricultural University, Hefei, China.
| |
Collapse
|
36
|
Zhang C, Wang ST, Li JZ, Feng YL. Molecular bases for the stronger plastic response to high nitrate in the invasive plant Xanthium strumarium compared with its native congener. PLANTA 2023; 258:61. [PMID: 37542564 DOI: 10.1007/s00425-023-04220-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/27/2023] [Indexed: 08/07/2023]
Abstract
MAIN CONCLUSION High expressions of nitrate use and photosynthesis-related transcripts contribute to the stronger plasticity to high nitrate for the invader relative to its native congener, which may be driven by hormones. Strong phenotypic plasticity is often considered as one of the main mechanisms underlying exotic plant invasions. However, few studies have been conducted to investigate the related molecular mechanisms. Here, we determined the differences in the plastic responses to high nitrate between the invasive plant X. strumarium and its native congener, and the molecular bases by transcriptome analysis and quantitative real-time PCR validation. Our results showed that the invader had higher plasticity of growth, nitrogen accumulation and photosynthesis in responses to high nitrate than its native congener. Compared with its congener, more N utilization-related transcripts, including nitrate transporter 1/peptide transporter family 6.2 and nitrate reductase 1, were induced by high nitrate in the root of X. strumarium, improving its N utilization ability. More transcripts coding for photosynthetic antenna proteins were also induced by high nitrate in the shoot of X. strumarium, enhancing its photosynthesis. Hormones may be involved in the regulation of the plastic responses to high nitrate in the two species. Our study contributes to understanding the molecular mechanisms underlying the stronger plasticity of the invader in responses to high nitrate, and the potential function of plant hormones in these processes, providing bases for precise control of invasive plants using modern molecular techniques.
Collapse
Affiliation(s)
- Chang Zhang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Shi-Ting Wang
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Jian-Zhi Li
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China
| | - Yu-Long Feng
- Liaoning Key Laboratory for Biological Invasions and Global Changes, College of Bioscience and Biotechnology, Shenyang Agricultural University, Shenyang, 110866, Liaoning, China.
| |
Collapse
|
37
|
Paunescu RA, Bonciu E, Rosculete E, Paunescu G, Rosculete CA. The Effect of Different Cropping Systems on Yield, Quality, Productivity Elements, and Morphological Characters in Wheat ( Triticum aestivum). PLANTS (BASEL, SWITZERLAND) 2023; 12:2802. [PMID: 37570955 PMCID: PMC10420832 DOI: 10.3390/plants12152802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023]
Abstract
The aim of this work was to study how certain applied cropping systems (conventional systems differentiated by fertilization level or sowing season and subsistence farming) influence yield, quality, productivity elements, and morphological characters in a collection of Romanian and foreign wheat cultivars. The following indicators were evaluated: productive potential (yield), quality (test weight, protein content, wet gluten content, deformation index, sedimentation index, and gluten index), as well as other elements that determine yield (number of ears/square meter, thousand kernel weight, number of grains/ear, and weight of grains/ear) and plant height. The results show that the cropping systems influenced all the elements studied except the thousand-kernel weight. The only characteristics influenced by higher nitrogen fertilization were test weight, protein content, wet gluten content, deformation index, and gluten index. The superiority of a delayed conventional system was shown by the number of grains/wheat ear and the deformation index. Protein content was differentiated between the conventional and the subsistence system, but especially between the low-input and the conventional system. Nitrogen supply is the most important factor for determining wheat productivity and grain quality.
Collapse
Affiliation(s)
- Ramona Aida Paunescu
- Syngenta Agro Romania, 73-81 Bucuresti-Ploiesti Street, 013685 Bucharest, Romania;
| | - Elena Bonciu
- Department of Agricultural and Forestry Technology, Faculty of Agronomy, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania;
| | - Elena Rosculete
- Department of Land Measurement, Management, Mechanization, Faculty of Agronomy, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania
| | - Gabriela Paunescu
- SCDA Caracal, University of Craiova, 106 Vasile Alecsandri Street, 235200 Caracal, Romania;
| | - Catalin Aurelian Rosculete
- Department of Agricultural and Forestry Technology, Faculty of Agronomy, University of Craiova, 13 A.I. Cuza Street, 200585 Craiova, Romania;
| |
Collapse
|
38
|
Chen M, Zhu K, Xie J, Liu J, Qiao Z, Tan P, Peng F. Ammonium-nitrate mixtures dominated by NH 4+-N promote the growth of pecan ( Carya illinoinensis) through enhanced N uptake and assimilation. FRONTIERS IN PLANT SCIENCE 2023; 14:1186818. [PMID: 37313261 PMCID: PMC10258329 DOI: 10.3389/fpls.2023.1186818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/27/2023] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) limits plant productivity, and its uptake and assimilation may be regulated by N sources, N assimilating enzymes, and N assimilation genes. Mastering the regulatory mechanisms of N uptake and assimilation is a key way to improve plant nitrogen use efficiency (NUE). However, it is poorly known how these factors interact to influence the growth process of pecans. In this study, the growth, nutrient uptake and N assimilation characteristics of pecan were analyzed by aeroponic cultivation at varying NH4 +/NO3 - ratios (0/0, 0/100,25/75, 50/50, 75/25,100/0 as CK, T1, T2, T3, T4, and T5). The results showed that T4 and T5 treatments optimally promoted the growth, nutrient uptake and N assimilating enzyme activities of pecan, which significantly increased aboveground biomass, average relative growth rate (RGR), root area, root activity, free amino acid (FAA) and total organic carbon (TOC) concentrations, nitrate reductase (NR), nitrite reductase (NiR), glutamine synthetase (GS), glutamate synthase (Fd-GOGAT and NADH-GOGAT), and glutamate dehydrogenase (GDH) activities. According to the qRT-PCR results, most of the N assimilation genes were expressed at higher levels in leaves and were mainly significantly up-regulated under T1 and T4 treatments. Correlation analysis showed that a correlation between N assimilating enzymes and N assimilating genes did not necessarily exist. The results of partial least squares path model (PLS-PM) analysis indicated that N assimilation genes could affect the growth of pecan by regulating N assimilation enzymes and nutrients. In summary, we suggested that the NH4 +/NO3 - ratio of 75:25 was more beneficial to improve the growth and NUE of pecan. Meanwhile, we believe that the determination of plant N assimilation capacity should be the result of a comprehensive analysis of N concentration, N assimilation enzymes and related genes.
Collapse
Affiliation(s)
- Mengyun Chen
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Kaikai Zhu
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Junyi Xie
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Department of Ecology, Nanjing Forestry University, Nanjing, China
| | - Junping Liu
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Zhenbing Qiao
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Pengpeng Tan
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Fangren Peng
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry, Nanjing Forestry University, Nanjing, China
| |
Collapse
|
39
|
Theerawitaya C, Supaibulwatana K, Tisarum R, Samphumphuang T, Chungloo D, Singh HP, Cha-Um S. Expression levels of nitrogen assimilation-related genes, physiological responses, and morphological adaptations of three indica rice (Oryza sativa L. ssp. indica) genotypes subjected to nitrogen starvation conditions. PROTOPLASMA 2023; 260:691-705. [PMID: 36056227 DOI: 10.1007/s00709-022-01806-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Nitrogen (N) is an essential nutrient available to the plants in form of nitrate and ammonium. It is a macronutrient important for the plant growth and development, especially in cereal crops, which consume it for the production of amino acids, proteins/enzymes, nucleic acids, cell wall complexes, plant hormones, and vitamins. In rice production, 17 kg N uptake is required to produce 1 ton of rice. Considering this, many techniques have been developed to evaluate leaf greenness or SPAD value for assessing the amount of N application in the rice cultivar to maximize the grain yield. The aim of the present study was to investigate the morpho-physiological characteristics and relative expression level of N assimilation in three different rice genotypes (MT2, RD31, KDML105) under 1.00 × (full N), 0.50 × , 0.25 × (N depletion), and 0.00 × (N deficiency) at seedling stage and the morpho-physiological traits and the grain yield attributes under 1.00 × (full N) and 0.25 × (N depletion) were compared. Leaf chlorosis and growth inhibition in rice seedlings under N deficiency were evidently observed. Shoot height, number of leaves, shoot fresh weight, shoot dry weight, and root fresh weight in KDML105 under N deficiency were decreased by 27.65%, 42.11%, 65.44%, 47.90%, and 54.09% over the control (full N). Likewise, leaf greenness was lowest in KDML105 under N deficiency (78.57% reduction over the full N), leading to low photosynthetic abilities. In addition, expression of nitrogen assimilation-related genes, OsNR1, OsGln1;1, and OsGln2, in KDML105 under N depletion were increased within 3 h and then declined after the long incubation period, whereas those were unchanged in cvs. MT2 and RD31. Similarly, relative expression level of OsNADH-GOGAT, OsFd-GOGAT, and OsAspAt1 in KDML105 was peaked when subjected to 0.50 × N for 6 h and then declined after the long incubation period. Moreover, overall growth characters and physiological changes in cv. RD31 at vegetative stage under 0.25 × N were retained better than those in cvs. KDML105 and MT2, resulting in high yield at the harvesting process. In summary, N assimilated-related genes in rice seedlings under N depletion were rapidly regulated within 3-6 h, especially cv. KDML105 and MT2, then downregulated, resulting in physiological changes, growth inhibition, and yield reduction.
Collapse
Affiliation(s)
- Cattarin Theerawitaya
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Kanyaratt Supaibulwatana
- Department of Biotechnology, Faculty of Science, Mahidol University, Ratchathewi, Bangkok, 10400, Thailand
| | - Rujira Tisarum
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Thapanee Samphumphuang
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Daonapa Chungloo
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand
| | - Harminder Pal Singh
- Department of Environment Studies, Faculty of Science, Panjab University, Chandigarh, 160014, India
| | - Suriyan Cha-Um
- National Center for Genetic Engineering and Biotechnology (BIOTEC), National Science and Technology Development Agency (NSTDA), 113 Thailand Science Park, Paholyothin Road, Khlong Nueng, Khlong Luang, 12120, Pathum Thani, Thailand.
| |
Collapse
|
40
|
Zhao Y, Islam S, Alhabbar Z, Zhang J, O'Hara G, Anwar M, Ma W. Current Progress and Future Prospect of Wheat Genetics Research towards an Enhanced Nitrogen Use Efficiency. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091753. [PMID: 37176811 PMCID: PMC10180859 DOI: 10.3390/plants12091753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 05/15/2023]
Abstract
To improve the yield and quality of wheat is of great importance for food security worldwide. One of the most effective and significant approaches to achieve this goal is to enhance the nitrogen use efficiency (NUE) in wheat. In this review, a comprehensive understanding of the factors involved in the process of the wheat nitrogen uptake, assimilation and remobilization of nitrogen in wheat were introduced. An appropriate definition of NUE is vital prior to its precise evaluation for the following gene identification and breeding process. Apart from grain yield (GY) and grain protein content (GPC), the commonly recognized major indicators of NUE, grain protein deviation (GPD) could also be considered as a potential trait for NUE evaluation. As a complex quantitative trait, NUE is affected by transporter proteins, kinases, transcription factors (TFs) and micro RNAs (miRNAs), which participate in the nitrogen uptake process, as well as key enzymes, circadian regulators, cross-talks between carbon metabolism, which are associated with nitrogen assimilation and remobilization. A series of quantitative genetic loci (QTLs) and linking markers were compiled in the hope to help discover more efficient and useful genetic resources for breeding program. For future NUE improvement, an exploration for other criteria during selection process that incorporates morphological, physiological and biochemical traits is needed. Applying new technologies from phenomics will allow high-throughput NUE phenotyping and accelerate the breeding process. A combination of multi-omics techniques and the previously verified QTLs and molecular markers will facilitate the NUE QTL-mapping and novel gene identification.
Collapse
Affiliation(s)
- Yun Zhao
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Institute of Cereal and Oil Crops, Hebei Academy of Agriculture and Forestry Sciences, Laboratory of Crop Genetics and Breeding of Hebei, Shijiazhuang 050035, China
| | - Shahidul Islam
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- Department of Plant Sciences, North Dakota State University, Fargo, ND 58108, USA
| | - Zaid Alhabbar
- Department of Field Crops, College of Agriculture and Forestry, University of Mosul, Mosul 41002, Iraq
| | - Jingjuan Zhang
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Graham O'Hara
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Masood Anwar
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
| | - Wujun Ma
- Food Futures Institute & College of Science, Health, Engineering and Education, Murdoch University, Perth 6150, Australia
- College of Agronomy, Qingdao Agriculture University, Qingdao 266109, China
| |
Collapse
|
41
|
Huang XJ, Jian SF, Wan S, Miao JH, Zhong C. Exogenous γ-aminobutyric acid (GABA) alleviates nitrogen deficiency by mediating nitrate uptake and assimilation in Andrographis paniculata seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 198:107700. [PMID: 37086691 DOI: 10.1016/j.plaphy.2023.107700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
γ-Aminobutyric acid (GABA) plays significant metabolic and signaling roles in plant stress responses. Recent studies have proposed that GABA alleviates plant nitrogen (N) deficient stress; however, the mechanism by which GABA mediates plant N deficiency adaptation remains not yet well understood. Herein we found in a medicinal plant Andrographis paniculata that 5 mmol L-1 exogenous GABA promoted plant growth under N deficient (1 mmol L-1 NO3-) condition, with remarkably increments in total N and NO3- concentrations in plants. GABA increased N assimilation and protein synthesis by up-regulating the activities and expression of N metabolic enzymes. GABA also increased the accumulation of α-ketoglutarate and malate, which could facilitate the assimilation of NO3-. Inhibition of NR by Na2WO4 counteracted the promoting effects of GABA on plant growth, and the effects of GABA were not affected by L-DABA and 3-MP, the inhibitors of GABA transaminase (GABA-T) and glutamate decarboxylase (GAD), respectively. These results suggested that the nutritional role of GABA was excluded in promoting plant growth under low N condition. The results of 15N isotopic tracing and NRTs transcription indicated that exogenous GABA could up-regulate NRT2.4 and NRT3.2 to increase plant NO3- uptake under N deficient condition. Interestingly, primidone, an inhibitor of GABA receptor, impeded the effects of GABA on plant growth and N accumulation. Thus, our results revealed that exogenous GABA acted as a signal to up-regulate NRTs via its receptor to increase NO3- uptake, and subsequently promoted NO3- assimilation to alleviate N deficiency in A. paniculata.
Collapse
Affiliation(s)
- Xue-Jing Huang
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China
| | - Shao-Fen Jian
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Si Wan
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China
| | - Jian-Hua Miao
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Pharmaceutical College, Guangxi Medical University, Nanning, 530021, China.
| | - Chu Zhong
- Guangxi Key Laboratory of Medicinal Resource Protection and Genetic Improvement, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China; Guangxi Engineering Research Centre of TCM Intelligent Creation, Guangxi Botanical Garden of Medicinal Plants, Nanning, 530023, China.
| |
Collapse
|
42
|
Fukai C, Tanabata T, Nishizawa T, Koizumi M, Kutsuwada K, Kusano M. A developed system to extract specific responses of increment length in rice shoots under gradient changes in nitrogen concentration regimes. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2023; 40:1-8. [PMID: 38213927 PMCID: PMC10777135 DOI: 10.5511/plantbiotechnology.22.1107a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/07/2022] [Indexed: 01/13/2024]
Abstract
Nitrogen (N) fertilization is one of the most crucial factors that contribute to increasing food production requiring the generation of rice cultivars with improved N use efficiency (NUE) to maintain yield during low N fertilizer application. To assay NUE extent, we developed a screening system to evaluate shoot growth of each rice cultivar under gradient changes in N concentrations. This system comprises a gradient hydroponic culture and growth visualization systems. The former allows gradient changes in ammonium concentrations, while the latter records the increment in shoot length of individual rice seedlings at given time periods using a fixed-point camera. We chose 69 cultivars including two controls (Oryza sativa L. cv. Nipponbare [WRC01] and Kasalath [WRC02]) from the World Rice Core Collection to investigate shoot growth responses under ammonium-sufficient, ammonium-limited, and low ammonium concentration gradients without transplanting stress. We observed three growth patterns in response to different ammonium concentrations. Subsequently, we selected three representative cultivars (Kasalath, WRC03, and WRC05) for the characteristic responses under the different ammonium environments. Distinct expression patterns of glutamine synthetase 1;2 (OsGS1;2) but OsGS1;1 were observed in response to varying ammonium concentration regimes, indicating that the expression patterns of OsGS1;2 may be a growth marker in terms of shoot growth when transitioning from ammonium-limited to low ammonium concentrations. This system with the level of OsGS1;2 allows us to screen for candidate cultivars that return high NUE in low N environments.
Collapse
Affiliation(s)
- Chihaya Fukai
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | | | - Tomoko Nishizawa
- Riken Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Mikiko Koizumi
- Riken Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
| | - Keisuke Kutsuwada
- Graduate School of Life and Environmental Science, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Miyako Kusano
- Riken Center for Sustainable Resource Science, Yokohama, Kanagawa 230-0045, Japan
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
- Tsukuba-Plant Innovation Research Center (T-PIRC), University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
43
|
Transcriptome and Co-Expression Network Analysis Reveals the Molecular Mechanism of Rice Root Systems in Response to Low-Nitrogen Conditions. Int J Mol Sci 2023; 24:ijms24065290. [PMID: 36982364 PMCID: PMC10048922 DOI: 10.3390/ijms24065290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 03/03/2023] [Accepted: 03/07/2023] [Indexed: 03/12/2023] Open
Abstract
Nitrogen is an important nutrient for plant growth and essential metabolic processes. Roots integrally obtain nutrients from soil and are closely related to the growth and development of plants. In this study, the morphological analysis of rice root tissues collected at different time points under low-nitrogen and normal nitrogen conditions demonstrated that, compared with normal nitrogen treatment, the root growth and nitrogen use efficiency (NUE) of rice under low-nitrogen treatment were significantly improved. To better understand the molecular mechanisms of the rice root system’s response to low-nitrogen conditions, a comprehensive transcriptome analysis of rice seedling roots under low-nitrogen and control conditions was conducted in this study. As a result, 3171 differentially expressed genes (DEGs) were identified. Rice seedling roots enhance NUE and promote root development by regulating the genes related to nitrogen absorption and utilization, carbon metabolism, root growth and development, and phytohormones, thereby adapting to low-nitrogen conditions. A total of 25,377 genes were divided into 14 modules using weighted gene co-expression network analysis (WGCNA). Two modules were significantly associated with nitrogen absorption and utilization. A total of 8 core genes and 43 co-expression candidates related to nitrogen absorption and utilization were obtained in these two modules. Further studies on these genes will contribute to the understanding of low-nitrogen adaptation and nitrogen utilization mechanisms in rice.
Collapse
|
44
|
Zhang S, Li G, Wang Y, Anwar A, He B, Zhang J, Chen C, Hao Y, Chen R, Song S. Genome-wide identification of BcGRF genes in flowering Chinese cabbage and preliminary functional analysis of BcGRF8 in nitrogen metabolism. FRONTIERS IN PLANT SCIENCE 2023; 14:1144748. [PMID: 36968362 PMCID: PMC10034182 DOI: 10.3389/fpls.2023.1144748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
Growth-regulating factors (GRFs) are a unique family of transcription factors with well-characterized functions in plant growth and development. However, few studies have evaluated their roles in the absorption and assimilation of nitrate. In this study, we characterized the GRF family genes of flowering Chinese cabbage (Brassica campestris), an important vegetable crop in South China. Using bioinformatics methods, we identified BcGRF genes and analyzed their evolutionary relationships, conserved motifs, and sequence characteristics. Through genome-wide analysis, we identified 17 BcGRF genes distributed on seven chromosomes. A phylogenetic analysis revealed that the BcGRF genes could be categorized into five subfamilies. RT-qPCR analysis showed that BcGRF1, 8, 10, and 17 expression clearly increased in response to nitrogen (N) deficiency, particularly at 8 h after treatment. BcGRF8 expression was the most sensitive to N deficiency and was significantly correlated with the expression patterns of most key genes related to N metabolism. Using yeast one-hybrid and dual-luciferase assays, we discovered that BcGRF8 strongly enhances the driving activity of the BcNRT1.1 gene promoter. Next, we investigated the molecular mechanism by which BcGRF8 participates in nitrate assimilation and N signaling pathways by expressing it in Arabidopsis. BcGRF8 was localized in the cell nucleus and BcGRF8 overexpression significantly increased the shoot and root fresh weights, seedling root length, and lateral root number in Arabidopsis. In addition, BcGRF8 overexpression considerably reduced the nitrate contents under both nitrate-poor and -rich conditions in Arabidopsis. Finally, we found that BcGRF8 broadly regulates genes related to N uptake, utilization, and signaling. Our results demonstrate that BcGRF8 substantially accelerates plant growth and nitrate assimilation under both nitrate-poor and -rich conditions by increasing the number of lateral roots and the expression of genes involved in N uptake and assimilation, providing a basis for crop improvement.
Collapse
Affiliation(s)
- Shuaiwei Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Guangguang Li
- Guangzhou Institute of Agriculture Science, Guangzhou, China
| | - Yudan Wang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ali Anwar
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Bin He
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Jiewen Zhang
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Changming Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yanwei Hao
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Riyuan Chen
- College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Shiwei Song
- College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
45
|
Alam I, Zhang H, Du H, Rehman NU, Manghwar H, Lei X, Batool K, Ge L. Bioengineering Techniques to Improve Nitrogen Transformation and Utilization: Implications for Nitrogen Use Efficiency and Future Sustainable Crop Production. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:3921-3938. [PMID: 36842151 DOI: 10.1021/acs.jafc.2c08051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is crucial for plant growth and development, especially in physiological and biochemical processes such as component of different proteins, enzymes, nucleic acids, and plant growth regulators. Six categories, such as transporters, nitrate absorption, signal molecules, amino acid biosynthesis, transcription factors, and miscellaneous genes, broadly encompass the genes regulating NUE in various cereal crops. Herein, we outline detailed research on bioengineering modifications of N metabolism to improve the different crop yields and biomass. We emphasize effective and precise molecular approaches and technologies, including N transporters, transgenics, omics, etc., which are opening up fascinating opportunities for a complete analysis of the molecular elements that contribute to NUE. Moreover, the detection of various types of N compounds and associated signaling pathways within plant organs have been discussed. Finally, we highlight the broader impacts of increasing NUE in crops, crucial for better agricultural yield and in the greater context of global climate change.
Collapse
Affiliation(s)
- Intikhab Alam
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- College of Life Sciences, SCAU, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Hanyin Zhang
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Huan Du
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- College of Life Sciences, SCAU, Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Naveed Ur Rehman
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Hakim Manghwar
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry and Landscape Architecture, SCAU, Guangzhou 510642, China
| | - Xiao Lei
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| | - Khadija Batool
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liangfa Ge
- College of Forestry and Landscape Architecture, Department of Grassland Science, South China Agricultural University (SCAU), Guangzhou 510642, China
- Guangdong Subcenter of the National Center for Soybean Improvement, SCAU, Guangzhou 510642, China
| |
Collapse
|
46
|
Lei L, Cao L, Ding G, Zhou J, Luo Y, Bai L, Xia T, Chen L, Wang J, Liu K, Lei Q, Xie T, Yang G, Wang X, Sun S, Lai Y. OsBBX11 on qSTS4 links to salt tolerance at the seeding stage in Oryza sativa L. ssp. Japonica. FRONTIERS IN PLANT SCIENCE 2023; 14:1139961. [PMID: 36968393 PMCID: PMC10030886 DOI: 10.3389/fpls.2023.1139961] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Rice has been reported to be highly sensitive to salt stress at the seedling stage. However, the lack of target genes that can be used for improving salt tolerance has resulted in several saline soils unsuitable for cultivation and planting. To characterize new salt-tolerant genes, we used 1,002 F2:3 populations derived from Teng-Xi144 and Long-Dao19 crosses as the phenotypic source to systematically characterize seedlings' survival days and ion concentration under salt stress. Utilizing QTL-seq resequencing technology and a high-density linkage map based on 4,326 SNP markers, we identified qSTS4 as a major QTL influencing seedling salt tolerance, which accounted for 33.14% of the phenotypic variation. Through functional annotation, variation detection and qRT-PCR analysis of genes within 46.9 Kb of qSTS4, it was revealed that there was one SNP in the promoter region of OsBBX11, which resulted in a significant response difference between the two parents to salt stress. Transgenic plants using knockout-based technology and demonstrated that Na+ and K+ in the roots of the functional-loss-type OsBBX11 were translocated largely to the leaves under 120 mmol/L NaCl compared with the wild-type, causing osbbx11 leaves to die after 12 days of salt stress due to an imbalance in osmotic pressure. In conclusion, this study identified OsBBX11 as a salt-tolerance gene, and one SNPs in the OsBBX11 promoter region can be used to identify its interacting transcription factors. This provides a theoretical basis for finding the molecular mechanism of OsBBX11 upstream and downstream regulation of salt tolerance and molecular design breeding in the future.
Collapse
Affiliation(s)
- Lei Lei
- Postdoctoral Scientific Research Station of Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Liangzi Cao
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Guohua Ding
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Jinsong Zhou
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Yu Luo
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Liangming Bai
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
| | - Tianshu Xia
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Lei Chen
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Jiangxu Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Kai Liu
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Qingjun Lei
- Branch of Animal Husbandry and Veterinary of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Tingting Xie
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Guang Yang
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xueyang Wang
- Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Shichen Sun
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Heilongjiang Rice Quality Improvement and Genetic Breeding Engineering Research Center, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| | - Yongcai Lai
- Institute of Crop Cultivation and Tillage, Heilongjiang Academy of Agricultural Sciences, Harbin, China
- Northeast of National Center of Technology Innovation for Saline-Alkali Tolerant Rice, Harbin, China
| |
Collapse
|
47
|
Transcriptome and Metabolome Reveal the Molecular Mechanism of Barley Genotypes Underlying the Response to Low Nitrogen and Resupply. Int J Mol Sci 2023; 24:ijms24054706. [PMID: 36902137 PMCID: PMC10003240 DOI: 10.3390/ijms24054706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/16/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
Nitrogen is one of the most important mineral elements for plant growth and development. Excessive nitrogen application not only pollutes the environment, but also reduces the quality of crops. However, are few studies on the mechanism of barley tolerance to low nitrogen at both the transcriptome and metabolomics levels. In this study, the nitrogen-efficient genotype (W26) and the nitrogen-sensitive genotype (W20) of barley were treated with low nitrogen (LN) for 3 days and 18 days, then treated with resupplied nitrogen (RN) from 18 to 21 days. Later, the biomass and the nitrogen content were measured, and RNA-seq and metabolites were analyzed. The nitrogen use efficiency (NUE) of W26 and W20 treated with LN for 21 days was estimated by nitrogen content and dry weight, and the values were 87.54% and 61.74%, respectively. It turned out to have a significant difference in the two genotypes under the LN condition. According to the transcriptome analysis, 7926 differentially expressed genes (DEGs) and 7537 DEGs were identified in the leaves of W26 and W20, respectively, and 6579 DEGs and 7128 DEGs were found in the roots of W26 and W20, respectively. After analysis of the metabolites, 458 differentially expressed metabolites (DAMs) and 425 DAMs were found in the leaves of W26 and W20, respectively, and 486 DAMs and 368 DAMs were found in the roots of W26 and W20, respectively. According to the KEGG joint analysis of DEGs and DAMs, it was discovered that glutathione (GSH) metabolism was the pathway of significant enrichment in the leaves of both W26 and W20. In this study, the metabolic pathways of nitrogen metabolism and GSH metabolism of barley under nitrogen were constructed based on the related DAMs and DEGs. In leaves, GSH, amino acids, and amides were the main identified DAMs, while in roots, GSH, amino acids, and phenylpropanes were mainly found DAMs. Finally, some nitrogen-efficient candidate genes and metabolites were selected based on the results of this study. The responses of W26 and W20 to low nitrogen stress were significantly different at the transcriptional and metabolic levels. The candidate genes that have been screened will be verified in future. These data not only provide new insights into how barley responds to LN, but also provide new directions for studying the molecular mechanisms of barley under abiotic stress.
Collapse
|
48
|
Aluko OO, Kant S, Adedire OM, Li C, Yuan G, Liu H, Wang Q. Unlocking the potentials of nitrate transporters at improving plant nitrogen use efficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1074839. [PMID: 36895876 PMCID: PMC9989036 DOI: 10.3389/fpls.2023.1074839] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 01/16/2023] [Indexed: 05/27/2023]
Abstract
Nitrate ( NO 3 - ) transporters have been identified as the primary targets involved in plant nitrogen (N) uptake, transport, assimilation, and remobilization, all of which are key determinants of nitrogen use efficiency (NUE). However, less attention has been directed toward the influence of plant nutrients and environmental cues on the expression and activities of NO 3 - transporters. To better understand how these transporters function in improving plant NUE, this review critically examined the roles of NO 3 - transporters in N uptake, transport, and distribution processes. It also described their influence on crop productivity and NUE, especially when co-expressed with other transcription factors, and discussed these transporters' functional roles in helping plants cope with adverse environmental conditions. We equally established the possible impacts of NO 3 - transporters on the uptake and utilization efficiency of other plant nutrients while suggesting possible strategic approaches to improving NUE in plants. Understanding the specificity of these determinants is crucial to achieving better N utilization efficiency in crops within a given environment.
Collapse
Affiliation(s)
- Oluwaseun Olayemi Aluko
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Surya Kant
- Agriculture Victoria, Grains Innovation Park, Horsham, VIC, Australia
- School of Applied Systems Biology, La Trobe University, Bundoora, VIC, Australia
| | | | - Chuanzong Li
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guang Yuan
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing, China
| | - Haobao Liu
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| | - Qian Wang
- Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, China
| |
Collapse
|
49
|
Xiao C, Fang Y, Wang S, He K. The alleviation of ammonium toxicity in plants. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2023. [PMID: 36790049 DOI: 10.1111/jipb.13467] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/14/2023] [Indexed: 06/18/2023]
Abstract
Nitrogen (N) is an essential macronutrient for plants and profoundly affects crop yields and qualities. Ammonium (NH4 + ) and nitrate (NO3 - ) are major inorganic N forms absorbed by plants from the surrounding environments. Intriguingly, NH4 + is usually toxic to plants when it serves as the sole or dominant N source. It is thus important for plants to coordinate the utilization of NH4 + and the alleviation of NH4 + toxicity. To fully decipher the molecular mechanisms underlying how plants minimize NH4 + toxicity may broadly benefit agricultural practice. In the current minireview, we attempt to discuss recent discoveries in the strategies for mitigating NH4 + toxicity in plants, which may provide potential solutions for improving the nitrogen use efficiency (NUE) and stress adaptions in crops.
Collapse
Affiliation(s)
- Chengbin Xiao
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Yuan Fang
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Suomin Wang
- State Key Laboratory of Grassland Agro-Ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730000, China
| | - Kai He
- Ministry of Education Key Laboratory of Cell Activities and Stress Adaptations, School of Life Sciences, Lanzhou University, Lanzhou, 730000, China
| |
Collapse
|
50
|
Ahmad N, Jiang Z, Zhang L, Hussain I, Yang X. Insights on Phytohormonal Crosstalk in Plant Response to Nitrogen Stress: A Focus on Plant Root Growth and Development. Int J Mol Sci 2023; 24:ijms24043631. [PMID: 36835044 PMCID: PMC9958644 DOI: 10.3390/ijms24043631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Nitrogen (N) is a vital mineral component that can restrict the growth and development of plants if supplied inappropriately. In order to benefit their growth and development, plants have complex physiological and structural responses to changes in their nitrogen supply. As higher plants have multiple organs with varying functions and nutritional requirements, they coordinate their responses at the whole-plant level based on local and long-distance signaling pathways. It has been suggested that phytohormones are signaling substances in such pathways. The nitrogen signaling pathway is closely associated with phytohormones such as auxin (AUX), abscisic acid (ABA), cytokinins (CKs), ethylene (ETH), brassinosteroid (BR), strigolactones (SLs), jasmonic acid (JA), and salicylic acid (SA). Recent research has shed light on how nitrogen and phytohormones interact to modulate physiology and morphology. This review provides a summary of the research on how phytohormone signaling affects root system architecture (RSA) in response to nitrogen availability. Overall, this review contributes to identifying recent developments in the interaction between phytohormones and N, as well as serving as a foundation for further study.
Collapse
Affiliation(s)
- Nazir Ahmad
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Zhengjie Jiang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Lijun Zhang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
| | - Iqbal Hussain
- Department of Horticulture, Institute of Vegetable Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Xiping Yang
- State Key Laboratory of Conservation and Utilization of Subtropical Agro-Bioresources, Guangxi Key Laboratory of Sugarcane Biology, Guangxi University, Nanning 530004, China
- National Demonstration Center for Experimental Plant Science Education, College of Agriculture, Guangxi University, Nanning 530004, China
- Correspondence:
| |
Collapse
|