1
|
Matthiesen RL, Robertson AE. Effect of Infection Timing by Four Pythium spp. on Soybean Damping-Off Symptoms with and Without Cold Stress. PLANT DISEASE 2023; 107:3975-3983. [PMID: 37415355 DOI: 10.1094/pdis-01-23-0082-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Pythium spp. cause damping-off of soybean, especially when soil conditions at or shortly after planting are cool and wet. Soybean planting dates continue to shift to earlier dates, so germinating seed and seedlings are exposed to periods of cold stress at a time which favors infection by Pythium, and seedling disease occurs. The objective of this study was to assess infection timing and cold stress on soybean seedling disease severity caused by four Pythium spp. prevalent in Iowa, namely P. lutarium, P. oopapillum, P. sylvaticum, and P. torulosum. Each species was used individually to inoculate soybean cultivar 'Sloan' using a rolled towel assay. Two temperature treatments (continuous 18°C [C18]; a 48-h cold stress period at 10°C [CS]) were applied. Soybean seedling age was divided into five growth stages (GS1 to GS5). Root rot severity and root length were assessed at 2, 4, 7, and 10 days after inoculation (DAI). At C18, root rot was greatest when soybean was inoculated with P. lutarium or P. sylvaticum at GS1 (seed imbibes water) and with P. oopapillum or P. torulosum at GS1, GS2 (radicle elongation), and GS3 (hypocotyl emergence). After CS, soybean susceptibility to P. lutarium and P. sylvaticum was reduced compared to C18 for inoculation at all GSs except GS5 (unifoliate leaf emergence). Conversely, root rot by P. oopapillum and P. torulosum was greater after CS compared to C18. Data from this study demonstrate that greater root rot, and consequently more damping-off, is likely if infection occurs at early germination stages before seedling emergence.
Collapse
Affiliation(s)
- Rashelle L Matthiesen
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011
| | - Alison E Robertson
- Department of Plant Pathology, Entomology, and Microbiology, Iowa State University, Ames, IA 50011
| |
Collapse
|
2
|
Li X, Zhu P, Chen YJ, Huang L, Wang D, Newton DT, Hsu CC, Lin G, Tao WA, Staiger CJ, Zhang C. The EXO70 inhibitor Endosidin2 alters plasma membrane protein composition in Arabidopsis roots. FRONTIERS IN PLANT SCIENCE 2023; 14:1171957. [PMID: 37324680 PMCID: PMC10264680 DOI: 10.3389/fpls.2023.1171957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Accepted: 05/15/2023] [Indexed: 06/17/2023]
Abstract
To sustain normal growth and allow rapid responses to environmental cues, plants alter the plasma membrane protein composition under different conditions presumably by regulation of delivery, stability, and internalization. Exocytosis is a conserved cellular process that delivers proteins and lipids to the plasma membrane or extracellular space in eukaryotes. The octameric exocyst complex contributes to exocytosis by tethering secretory vesicles to the correct site for membrane fusion; however, whether the exocyst complex acts universally for all secretory vesicle cargo or just for specialized subsets used during polarized growth and trafficking is currently unknown. In addition to its role in exocytosis, the exocyst complex is also known to participate in membrane recycling and autophagy. Using a previously identified small molecule inhibitor of the plant exocyst complex subunit EXO70A1, Endosidin2 (ES2), combined with a plasma membrane enrichment method and quantitative proteomic analysis, we examined the composition of plasma membrane proteins in the root of Arabidopsis seedlings, after inhibition of the ES2-targetted exocyst complex, and verified our findings by live imaging of GFP-tagged plasma membrane proteins in root epidermal cells. The abundance of 145 plasma membrane proteins was significantly reduced following short-term ES2 treatments and these likely represent candidate cargo proteins of exocyst-mediated trafficking. Gene Ontology analysis showed that these proteins play diverse functions in cell growth, cell wall biosynthesis, hormone signaling, stress response, membrane transport, and nutrient uptake. Additionally, we quantified the effect of ES2 on the spatial distribution of EXO70A1 with live-cell imaging. Our results indicate that the plant exocyst complex mediates constitutive dynamic transport of subsets of plasma membrane proteins during normal root growth.
Collapse
Affiliation(s)
- Xiaohui Li
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Peipei Zhu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Yen-Ju Chen
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Lei Huang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - Diwen Wang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| | - David T. Newton
- Department of Statistics, Purdue University, West Lafayette, IN, United States
| | - Chuan-Chih Hsu
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
| | - Guang Lin
- Department of Mathematics, Purdue University, West Lafayette, IN, United States
- School of Mechanical Engineering, Purdue University, West Lafayette, IN, United States
| | - W. Andy Tao
- Department of Biochemistry, Purdue University, West Lafayette, IN, United States
- Department of Chemistry, Purdue University, West Lafayette, IN, United States
| | - Christopher J. Staiger
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
- Department of Biological Sciences, Purdue University, West Lafayette, IN, United States
| | - Chunhua Zhang
- Department of Botany and Plant Pathology, Purdue University, West Lafayette, IN, United States
- Center for Plant Biology, Purdue University, West Lafayette, IN, United States
| |
Collapse
|
3
|
Shi Y, Luo C, Xiang Y, Qian D. Rab GTPases, tethers, and SNAREs work together to regulate Arabidopsis cell plate formation. FRONTIERS IN PLANT SCIENCE 2023; 14:1120841. [PMID: 36844074 PMCID: PMC9950755 DOI: 10.3389/fpls.2023.1120841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Cell plates are transient structures formed by the fusion of vesicles at the center of the dividing plane; furthermore, these are precursors to new cell walls and are essential for cytokinesis. Cell plate formation requires a highly coordinated process of cytoskeletal rearrangement, vesicle accumulation and fusion, and membrane maturation. Tethering factors have been shown to interact with the Ras superfamily of small GTP binding proteins (Rab GTPases) and soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs), which are essential for cell plate formation during cytokinesis and are fundamental for maintaining normal plant growth and development. In Arabidopsis thaliana, members of the Rab GTPases, tethers, and SNAREs are localized in cell plates, and mutations in the genes encoding these proteins result in typical cytokinesis-defective phenotypes, such as the formation of abnormal cell plates, multinucleated cells, and incomplete cell walls. This review highlights recent findings on vesicle trafficking during cell plate formation mediated by Rab GTPases, tethers, and SNAREs.
Collapse
|
4
|
Žárský V. Exocyst functions in plants - secretion and autophagy. FEBS Lett 2022; 596:2324-2334. [PMID: 35729750 DOI: 10.1002/1873-3468.14430] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 06/03/2022] [Accepted: 06/03/2022] [Indexed: 11/09/2022]
Abstract
Tethering complexes mediate vesicle-target compartment contact. Octameric complex exocyst initiates vesicle exocytosis at specific cytoplasmic membrane domains. Plant exocyst is possibly stabilized at the membrane by a direct interaction between SEC3 and EXO70A. Land plants evolved three basic membrane-targeting EXO70 subfamilies, the evolution of which resulted in several types of exocyst with distinct functions within the same cell. Surprisingly, some of these EXO70-exocyst versions are implicated in autophagy as is animal exocyst or are involved in host defense, cell-wall fortification and secondary metabolites transport. Interestingly, EXO70Ds act as selective autophagy receptors in the regulation of cytokinin signalling pathway. Secretion of double membrane autophagy-related structures formed with the contribution of EXO70s to the apoplast hints at the possibility of secretory autophagy in plants.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University in Prague, Viničná 5, 128 44, Prague, Czech Republic.,Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová 263, 165 02, Prague, Czech Republic
| |
Collapse
|
5
|
Batystová K, Synek L, Klejchová M, Janková Drdová E, Sabol P, Potocký M, Žárský V, Hála M. Diversification of SEC15a and SEC15b isoforms of an exocyst subunit in seed plants is manifested in their specific roles in Arabidopsis sporophyte and male gametophyte. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1382-1396. [PMID: 35306706 DOI: 10.1111/tpj.15744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
The exocyst complex is an octameric evolutionarily conserved tethering complex engaged in the regulation of polarized secretion in eukaryotic cells. Here, we focus on the systematic comparison of two isoforms of the SEC15 exocyst subunit, SEC15a and SEC15b. We infer that SEC15 gene duplication and diversification occurred in the common ancestor of seed plants (Spermatophytes). In Arabidopsis, SEC15a represents the main SEC15 isoform in the male gametophyte, and localizes to the pollen tube tip at the plasma membrane. Although pollen tubes of sec15a mutants are impaired, sporophytes show no phenotypic deviations. Conversely, SEC15b is the dominant isoform in the sporophyte and localizes to the plasma membrane in root and leaf cells. Loss-of-function sec15b mutants exhibit retarded elongation of hypocotyls and root hairs, a loss of apical dominance, dwarfed plant stature and reduced seed coat mucilage formation. Surprisingly, the sec15b mutants also exhibit compromised pollen tube elongation in vitro, despite its very low expression in pollen, suggesting a non-redundant role for the SEC15b isoform there. In pollen tubes, SEC15b localizes to distinct cytoplasmic structures. Reciprocally to this, SEC15a also functions in the sporophyte, where it accumulates at plasmodesmata. Importantly, although overexpressed SEC15a could fully complement the sec15b phenotypic deviations in the sporophyte, the pollen-specific overexpression of SEC15b was unable to fully compensate for the loss of SEC15a function in pollen. We conclude that the SEC15a and SEC15b isoforms evolved in seed plants, with SEC15a functioning mostly in pollen and SEC15b functioning mostly in the sporophyte.
Collapse
Affiliation(s)
- Klára Batystová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| | - Lukáš Synek
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Martina Klejchová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Edita Janková Drdová
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Peter Sabol
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| | - Martin Potocký
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
| | - Viktor Žárský
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| | - Michal Hála
- Institute of Experimental Botany, Czech Academy of Sciences, Rozvojova 263, Prague, CZ-16502, Czech Republic
- Department of Experimental Plant Biology, Faculty of Science, Vinicna 5, Charles University, Prague, CZ-12844, Czech Republic
| |
Collapse
|
6
|
Boutet S, Barreda L, Perreau F, Totozafy JC, Mauve C, Gakière B, Delannoy E, Martin-Magniette ML, Monti A, Lepiniec L, Zanetti F, Corso M. Untargeted metabolomic analyses reveal the diversity and plasticity of the specialized metabolome in seeds of different Camelina sativa genotypes. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:147-165. [PMID: 34997644 DOI: 10.1111/tpj.15662] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 12/20/2021] [Indexed: 06/14/2023]
Affiliation(s)
- Stéphanie Boutet
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Léa Barreda
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - François Perreau
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Jean-Chrisologue Totozafy
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Caroline Mauve
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405, Orsay, France
| | - Bertrand Gakière
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405, Orsay, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405, Orsay, France
| | - Marie-Laure Martin-Magniette
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, University of Evry, Orsay, France
- Institute of Plant Sciences Paris Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405, Orsay, France
- UMR MIA-Paris, AgroParisTech, INRAE, Université Paris-Saclay, 75005, Paris, France
| | - Andrea Monti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Loïc Lepiniec
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| | - Federica Zanetti
- Department of Agricultural and Food Sciences, Alma Mater Studiorum - Università di Bologna, Viale G. Fanin 44, 40127, Bologna, Italy
| | - Massimiliano Corso
- Institut Jean-Pierre Bourgin, Université Paris-Saclay, INRAE, AgroParisTech, 78000, Versailles, France
| |
Collapse
|
7
|
Plasma membrane phospholipid signature recruits the plant exocyst complex via the EXO70A1 subunit. Proc Natl Acad Sci U S A 2021; 118:2105287118. [PMID: 34470819 DOI: 10.1073/pnas.2105287118] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Polarized exocytosis is essential for many vital processes in eukaryotic cells, where secretory vesicles are targeted to distinct plasma membrane domains characterized by their specific lipid-protein composition. Heterooctameric protein complex exocyst facilitates the vesicle tethering to a target membrane and is a principal cell polarity regulator in eukaryotes. The architecture and molecular details of plant exocyst and its membrane recruitment have remained elusive. Here, we show that the plant exocyst consists of two modules formed by SEC3-SEC5-SEC6-SEC8 and SEC10-SEC15-EXO70-EXO84 subunits, respectively, documenting the evolutionarily conserved architecture within eukaryotes. In contrast to yeast and mammals, the two modules are linked by a plant-specific SEC3-EXO70 interaction, and plant EXO70 functionally dominates over SEC3 in the exocyst recruitment to the plasma membrane. Using an interdisciplinary approach, we found that the C-terminal part of EXO70A1, the canonical EXO70 isoform in Arabidopsis, is critical for this process. In contrast to yeast and animal cells, the EXO70A1 interaction with the plasma membrane is mediated by multiple anionic phospholipids uniquely contributing to the plant plasma membrane identity. We identified several evolutionary conserved EXO70 lysine residues and experimentally proved their importance for the EXO70A1-phospholipid interactions. Collectively, our work has uncovered plant-specific features of the exocyst complex and emphasized the importance of the specific protein-lipid code for the recruitment of peripheral membrane proteins.
Collapse
|
8
|
Zhao J, Zhang H, Zhang X, Wang Z, Niu Y, Chen Y, Sun L, Wang H, Wang X, Xiao J. The Exocyst Complex Subunit EXO70E1-V From Haynaldia villosa Interacts With Wheat Powdery Mildew Resistance Gene CMPG1-V. FRONTIERS IN PLANT SCIENCE 2021; 12:652337. [PMID: 34305961 PMCID: PMC8295898 DOI: 10.3389/fpls.2021.652337] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 06/08/2021] [Indexed: 06/03/2023]
Abstract
EXO70 belongs to the exocyst complex subunit that plays a critical role in regulating plant cell polarity establishment and defense response. A previous study proved that the E3 ligase CMPG1-V from Haynaldia villosa, a diploid wheat relative, positively regulates the resistance to wheat powdery mildew (Pm), caused by fungus Blumeria graminis f.sp tritici (Bgt). In this study, a member of EXO70 superfamily named EXO70E1-V was isolated from H. villosa, and EXO70E1-V interacted with CMPG1-V were shown by yeast two-hybrid (Y2H), pull-down assay, bimolecular fluorescence complementation (BiFC) assay, and luciferase complementation imaging (LCI) assay. It is localized in various subcellular organs, i.e., plasma membrane (PM) and endoplasmic reticulum. Co-expression of EXO70E1-V and CMPG1-V showed dot-like structure fluorescence signals that were mainly in PM and nucleus. Expression of EXO70E1-V was relatively higher in leaf and was significantly induced by Bgt infection and exogenous application of hormones such as salicylic acid. Transient or stable overexpression of EXO70E1-V could not enhance/decrease the Pm resistance level, suggesting overexpression of EXO70E1-V alone has no impact on Pm resistance in wheat.
Collapse
Affiliation(s)
- Jia Zhao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- The Laboratory of Seed Science and Technology, Guangdong Key Laboratory of Plant Molecular Breeding, Guangdong Laboratory of Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, South China Agricultural University, Guangzhou, China
| | - Heng Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Institute of Virology and Biotechnology, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Xu Zhang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Zongkuan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Ying Niu
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Yiming Chen
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Li Sun
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Haiyan Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Xiue Wang
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| | - Jin Xiao
- State Key Lab of Crop Genetics and Germplasm Enhancement, Cytogenetics Institute, Nanjing Agricultural University/JiangSu Collaborative Innovation Center for Modern Crop Production, Nanjing, China
| |
Collapse
|
9
|
Chen D, He L, Lin M, Jing Y, Liang C, Liu H, Gao J, Zhang W, Wang M. A ras-related small GTP-binding protein, RabE1c, regulates stomatal movements and drought stress responses by mediating the interaction with ABA receptors. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 306:110858. [PMID: 33775364 DOI: 10.1016/j.plantsci.2021.110858] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 01/22/2021] [Accepted: 02/17/2021] [Indexed: 06/12/2023]
Abstract
Drought represents a leading constraint over crop productivity worldwide. The plant response to this stress is centered on the behavior of the cell membrane, where the transduction of abscisic acid (ABA) signaling occurs. Here, the Ras-related small GTP-binding protein RabE1c has been shown able to bind to an ABA receptor in the Arabidopsis thaliana plasma membrane, thereby positively regulating ABA signaling. RabE1c is highly induced by drought stress and expressed abundantly in guard cells. In the loss-of-function rabe1c mutant, both stomatal closure and the whole plant drought stress response showed a reduced sensitivity to ABA treatment, demonstrating that RabE1c is involved in the control over transpirative water loss through the stomata. Impairment of RabE1c's function suppressed the accumulation of the ABA receptor PYL4. The over-expression of RabE1c in A. thaliana enhanced the plants' ability to tolerate drought, and a similar phenotypic effect was achieved by constitutively expressing the gene in Chinese cabbage (Brassica rapassp. pekinensis). The leading conclusion was that RabE1c promotes the degradation of PYL4, suggesting a possible genetic strategy to engineer crop plants to better withstand drought stress.
Collapse
Affiliation(s)
- Donghua Chen
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Lilong He
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China; Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Minyan Lin
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Ying Jing
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Chaochao Liang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Huiping Liu
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Jianwei Gao
- Shandong Key Laboratory of Greenhouse Vegetable Biology, Institute of Vegetables and Flowers, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Wei Zhang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China
| | - Mei Wang
- Key Laboratory of Plant Development and Environmental Adaption Biology, Ministry of Education, School of Life Science, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
10
|
Marković V, Cvrčková F, Potocký M, Kulich I, Pejchar P, Kollárová E, Synek L, Žárský V. EXO70A2 Is Critical for Exocyst Complex Function in Pollen Development. PLANT PHYSIOLOGY 2020; 184:1823-1839. [PMID: 33051268 PMCID: PMC7723085 DOI: 10.1104/pp.19.01340] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 10/01/2020] [Indexed: 05/15/2023]
Abstract
Pollen development, pollen grain germination, and pollen tube elongation are crucial biological processes in angiosperm plants that need precise regulation to deliver sperm cells to ovules for fertilization. Highly polarized secretion at a growing pollen tube tip requires the exocyst tethering complex responsible for specific targeting of secretory vesicles to the plasma membrane. Here, we demonstrate that Arabidopsis (Arabidopsis thaliana) EXO70A2 (At5g52340) is the main exocyst EXO70 isoform in the male gametophyte, governing the conventional secretory function of the exocyst, analogous to EXO70A1 (At5g03540) in the sporophyte. Our analysis of a CRISPR-generated exo70a2 mutant revealed that EXO70A2 is essential for efficient pollen maturation, pollen grain germination, and pollen tube growth. GFP:EXO70A2 was localized to the nucleus and cytoplasm in developing pollen grains and later to the apical domain in growing pollen tube tips characterized by intensive exocytosis. Moreover, EXO70A2 could substitute for EXO70A1 function in the sporophyte, but not vice versa, indicating partial functional redundancy of these two closely related isoforms and higher specificity of EXO70A2 for pollen development-related processes. Phylogenetic analysis revealed that the ancient duplication of EXO70A, one of which is always highly expressed in pollen, occurred independently in monocots and dicots. In summary, EXO70A2 is a crucial component of the exocyst complex in Arabidopsis pollen that is required for efficient plant sexual reproduction.
Collapse
Affiliation(s)
- Vedrana Marković
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
| | - Martin Potocký
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Ivan Kulich
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
| | - Přemysl Pejchar
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Eva Kollárová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
| | - Lukáš Synek
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 12844 Prague 2, Czech Republic
- Institute of Experimental Botany, Czech Academy of Sciences, 16502 Prague 6, Czech Republic
| |
Collapse
|
11
|
Pečenková T, Potocká A, Potocký M, Ortmannová J, Drs M, Janková Drdová E, Pejchar P, Synek L, Soukupová H, Žárský V, Cvrčková F. Redundant and Diversified Roles Among Selected Arabidopsis thaliana EXO70 Paralogs During Biotic Stress Responses. FRONTIERS IN PLANT SCIENCE 2020; 11:960. [PMID: 32676093 PMCID: PMC7333677 DOI: 10.3389/fpls.2020.00960] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 06/11/2020] [Indexed: 05/28/2023]
Abstract
The heterooctameric vesicle-tethering complex exocyst is important for plant development, growth, and immunity. Multiple paralogs exist for most subunits of this complex; especially the membrane-interacting subunit EXO70 underwent extensive amplification in land plants, suggesting functional specialization. Despite this specialization, most Arabidopsis exo70 mutants are viable and free of developmental defects, probably as a consequence of redundancy among isoforms. Our in silico data-mining and modeling analysis, corroborated by transcriptomic experiments, pinpointed several EXO70 paralogs to be involved in plant biotic interactions. We therefore tested corresponding single and selected double mutant combinations (for paralogs EXO70A1, B1, B2, H1, E1, and F1) in their two biologically distinct responses to Pseudomonas syringae, root hair growth stimulation and general plant susceptibility. A shift in defense responses toward either increased or decreased sensitivity was found in several double mutants compared to wild type plants or corresponding single mutants, strongly indicating both additive and compensatory effects of exo70 mutations. In addition, our experiments confirm the lipid-binding capacity of selected EXO70s, however, without the clear relatedness to predicted C-terminal lipid-binding motifs. Our analysis uncovers that there is less of functional redundancy among isoforms than we could suppose from whole sequence phylogeny and that even paralogs with overlapping expression pattern and similar membrane-binding capacity appear to have exclusive roles in plant development and biotic interactions.
Collapse
Affiliation(s)
- Tamara Pečenková
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Martin Potocký
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | | | - Matěj Drs
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Edita Janková Drdová
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Přemysl Pejchar
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Lukáš Synek
- Institute of Experimental Botany, CAS, Prague, Czechia
| | | | - Viktor Žárský
- Institute of Experimental Botany, CAS, Prague, Czechia
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Prague, Czechia
| |
Collapse
|
12
|
Žárský V, Sekereš J, Kubátová Z, Pečenková T, Cvrčková F. Three subfamilies of exocyst EXO70 family subunits in land plants: early divergence and ongoing functional specialization. JOURNAL OF EXPERIMENTAL BOTANY 2020; 71:49-62. [PMID: 31647563 DOI: 10.1093/jxb/erz423] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 10/10/2019] [Indexed: 05/27/2023]
Abstract
Localized delivery of plasma membrane and cell wall components is an essential process in all plant cells. The vesicle-tethering complex, the exocyst, an ancient eukaryotic hetero-octameric protein cellular module, assists in targeted delivery of exocytosis vesicles to specific plasma membrane domains. Analyses of Arabidopsis and later other land plant genomes led to the surprising prediction of multiple putative EXO70 exocyst subunit paralogues. All land plant EXO70 exocyst subunits (including those of Bryophytes) form three distinct subfamilies-EXO70.1, EXO70.2, and EXO70.3. Interestingly, while the basal well-conserved EXO70.1 subfamily consists of multiexon genes, the remaining two subfamilies contain mostly single exon genes. Published analyses as well as public transcriptomic and proteomic data clearly indicate that most cell types in plants express and also use several different EXO70 isoforms. Here we sum up recent advances in the characterization of the members of the family of plant EXO70 exocyst subunits and present evidence that members of the EXO70.2 subfamily are often recruited to non-canonical functions in plant membrane trafficking pathways. Engagement of the most evolutionarily dynamic EXO70.2 subfamily of EXO70s in biotic interactions and defence correlates well with massive proliferation and conservation of new protein variants in this subfamily.
Collapse
Affiliation(s)
- Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Juraj Sekereš
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Zdeňka Kubátová
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| | - Tamara Pečenková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
- Institute of Experimental Botany, v.v.i., Czech Academy of Sciences, Rozvojová, Prague, Czech Republic
| | - Fatima Cvrčková
- Department of Experimental Plant Biology, Faculty of Science, Charles University, Viničná, Prague, Czech Republic
| |
Collapse
|
13
|
da Costa CT, Offringa R, Fett-Neto AG. The role of auxin transporters and receptors in adventitious rooting of Arabidopsis thaliana pre-etiolated flooded seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 290:110294. [PMID: 31779904 DOI: 10.1016/j.plantsci.2019.110294] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/29/2019] [Accepted: 09/30/2019] [Indexed: 05/05/2023]
Abstract
Adventitious roots (ARs) form from above-ground organs, and auxins are major regulators of AR development. TIR1/AFB F-box proteins act as well-established auxin receptors. Auxin transport involves the PINFORMED (PIN) auxin efflux carriers and AUXIN RESISTANT 1/LIKE AUX1 (AUX1/LAX1) influx carriers. To further elucidate the basis of AR development, we investigated the participation of these proteins and phosphorylation of PINs during adventitious rooting in hypocotyls of pre-etiolated flooded Arabidopsis thaliana seedlings. Mutant and GUS localization studies indicated that AFB2 is important in AR development. AUX1 loss-of-function reduced AR numbers, which could not be reversed by exogenous auxin. Single mutations in LAX1, LAX2 and LAX3 had no negative impact on AR development and the first and last mutations even promoted it. Double and triple mutants of AUX1, LAX1, LAX2 and LAX3 significantly reduced rooting, which was reversed by exogenous auxin. AUX1 was essential in AR establishment, with LAX3 apparently acting in conjunction. Proper phosphorylation of PINs by PID, WAG1 and WAG2 and auxin transport direction were equally essential for AR establishment. PIN1, AUX1 and AFB2 (overexpression) and LAX1, LAX3, PIN4 and PIN7 (downregulation) emerged as potential targets for genetic manipulation aiming at improving AR development.
Collapse
Affiliation(s)
- Cibele Tesser da Costa
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), CP 15005, Porto Alegre, RS, 91501-970, Brazil
| | - Remko Offringa
- Department of Plant Developmental Genetics, Institute of Biology Leiden, Sylvius Laboratory, Sylviusweg 72, 2333 CB, Leiden, the Netherlands.
| | - Arthur Germano Fett-Neto
- Plant Physiology Laboratory, Center for Biotechnology and Department of Botany, Federal University of Rio Grande do Sul (UFRGS), CP 15005, Porto Alegre, RS, 91501-970, Brazil.
| |
Collapse
|
14
|
Rodriguez-Furlan C, Minina EA, Hicks GR. Remove, Recycle, Degrade: Regulating Plasma Membrane Protein Accumulation. THE PLANT CELL 2019; 31:2833-2854. [PMID: 31628169 PMCID: PMC6925004 DOI: 10.1105/tpc.19.00433] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/23/2019] [Accepted: 10/17/2019] [Indexed: 05/21/2023]
Abstract
Interactions between plant cells and the environment rely on modulation of protein receptors, transporters, channels, and lipids at the plasma membrane (PM) to facilitate intercellular communication, nutrient uptake, environmental sensing, and directional growth. These functions are fine-tuned by cellular pathways maintaining or reducing particular proteins at the PM. Proteins are endocytosed, and their fate is decided between recycling and degradation to modulate localization, abundance, and activity. Selective autophagy is another pathway regulating PM protein accumulation in response to specific conditions or developmental signals. The mechanisms regulating recycling, degradation, and autophagy have been studied extensively, yet we are just now addressing their regulation and coordination. Here, we (1) provide context concerning regulation of protein accumulation, recycling, or degradation by overviewing endomembrane trafficking; (2) discuss pathways regulating recycling and degradation in terms of cellular roles and cargoes; (3) review plant selective autophagy and its physiological significance; (4) focus on two decision-making mechanisms: regulation of recycling versus degradation of PM proteins and coordination between autophagy and vacuolar degradation; and (5) identify future challenges.
Collapse
Affiliation(s)
- Cecilia Rodriguez-Furlan
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
| | - Elena A Minina
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
- Centre for Organismal Studies, Heidelberg University, 69120 Heidelberg, Germany
| | - Glenn R Hicks
- Department of Botany and Plant Sciences and Institute of Integrative Genome Biology, University of California, Riverside, California 92506
- Uppsala Bio Center, Swedish University of Agricultural Sciences, Uppsala SE-75007, Sweden
| |
Collapse
|