1
|
Brazel AJ, Manoj NS, Turck F, Ó'Maoiléidigh DS. Measuring CO 2 assimilation of Arabidopsis thaliana whole plants and seedlings. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 350:112295. [PMID: 39423916 DOI: 10.1016/j.plantsci.2024.112295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 10/14/2024] [Accepted: 10/15/2024] [Indexed: 10/21/2024]
Abstract
Photosynthesis is an essential process in plants that synthesizes sugars used for growth and development, highlighting the importance of establishing robust methods to monitor photosynthetic activity. Infrared gas analysis (IRGA) can be used to track photosynthetic rates by measuring plant CO2 assimilation and release. Although much progress has been made in the development of IRGA technologies, challenges remain when using this technique on small herbaceous plants such as Arabidopsis thaliana. The use of whole plant chambers can overcome the difficulties associated with applying bulky leaf clamps to small delicate leaves. However, respiration from the roots and from soil-based microorganisms may skew these gas exchange measurements. Here, we present a simple method to efficiently perform IRGA on A. thaliana plants using a whole plant chamber that removes the confounding effects of respiration from roots and soil-based microorganisms from the measurements. We show that this method can be used to detect subtle changes in photosynthetic rates measured at different times of day, under different growth conditions, and between wild-type and plants with deficiencies in the photosynthetic machinery. Furthermore, we show that this method can be used to detect changes in photosynthetic rates even at very young developmental stages such as 10 d-old seedlings. This method contributes to the array of techniques currently used to perform IRGA on A. thaliana and can allow for the monitoring of photosynthetic rates of whole plants from young ages.
Collapse
Affiliation(s)
- Ailbhe J Brazel
- Department of Biology, Maynooth University, W23 F2K6, Ireland; Max Plank Institute for Plant Breeding Research, Cologne D-50829, Germany.
| | | | - Franziska Turck
- Max Plank Institute for Plant Breeding Research, Cologne D-50829, Germany.
| | - Diarmuid S Ó'Maoiléidigh
- Department of Biology, Maynooth University, W23 F2K6, Ireland; Department of Biochemistry and Systems Biology, The University of Liverpool, L69 7ZB, United Kingdom.
| |
Collapse
|
2
|
Kalachanis D, Chondrogiannis C, Petropoulou Y. Photosynthetic Traits of Quercus coccifera Green Fruits: A Comparison with Corresponding Leaves during Mediterranean Summer. PLANTS (BASEL, SWITZERLAND) 2024; 13:2867. [PMID: 39458814 PMCID: PMC11511256 DOI: 10.3390/plants13202867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/22/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024]
Abstract
Fruit photosynthesis occurs in an internal microenvironment seldom encountered by a leaf (hypoxic and extremely CO2-enriched) due to its metabolic and anatomical features. In this study, the anatomical and photosynthetic traits of fully exposed green fruits of Quercus coccifera L. were assessed during the period of fruit production (summer) and compared to their leaf counterparts. Our results indicate that leaf photosynthesis, transpiration and stomatal conductance drastically reduced during the summer drought, while they recovered significantly after the autumnal rainfalls. In acorns, gas exchange with the surrounding atmosphere is hindered by the complete absence of stomata; hence, credible CO2 uptake measurements could not be applied in the field. The linear electron transport rates (ETRs) in ambient air were similar in intact leaves and pericarps (i.e., when the physiological internal atmosphere of each tissue is maintained), while the leaf NPQ was significantly higher, indicating enhanced needs for harmless energy dissipation. The ETR measurements performed on leaf and pericarp discs at different CO2/O2 partial pressures in the supplied air mixture revealed that pericarps displayed significantly lower values at ambient gas levels, yet they increased by ~45% under high CO2/O2 ratios (i.e., at gas concentrations simulating the fruit's interior). Concomitantly, NPQ declined gradually in both tissues as the CO2/O2 ratio increased, yet the decrease was more pronounced in pericarps. Furthermore, net CO2 assimilation rates for both leaf and pericarp segments were low in ambient air and increased almost equally at high CO2, while pericarps exhibited significantly higher respiration. It is suggested that during summer, when leaves suffer from photoinhibition, acorns could contribute to the overall carbon balance, through the re-assimilation of respiratory CO2, thereby reducing the reproductive cost.
Collapse
Affiliation(s)
- Dimitrios Kalachanis
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece;
| | | | - Yiola Petropoulou
- Laboratory of Plant Physiology, Department of Biology, University of Patras, 26504 Patras, Greece;
| |
Collapse
|
3
|
Paiva DC, Roddy AB. Flower longevity and size are coordinated with ecophysiological traits in a tropical montane ecosystem. THE NEW PHYTOLOGIST 2024; 244:344-350. [PMID: 39103979 DOI: 10.1111/nph.20027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024]
Affiliation(s)
- Dario C Paiva
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
4
|
Dong X, Lin H, Wang F, Shi S, Wang Z, Sharifi S, Ma J, He X. Impacts of Elevated CO 2 and a Nitrogen Supply on the Growth of Faba Beans ( Vicia faba L.) and the Nitrogen-Related Soil Bacterial Community. PLANTS (BASEL, SWITZERLAND) 2024; 13:2483. [PMID: 39273967 PMCID: PMC11397150 DOI: 10.3390/plants13172483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Ecosystems that experience elevated CO2 (eCO2) are crucial interfaces where intricate interactions between plants and microbes occur. This study addressed the impact of eCO2 and a N supply on faba bean (Vicia faba L.) growth and the soil microbial community in auto-controlled growth chambers. In doing so, two ambient CO2 concentrations (aCO2, daytime/nighttime = 410/460 ppm; eCO2, 550/610 ppm) and two N supplement levels (without a N supply-N0-and 100 mg N as urea per kg of soil-N100) were applied. The results indicated that eCO2 mitigated the inhibitory effects of a N deficiency on legume photosynthesis and affected the CO2 assimilation efficiency, in addition to causing reduced nodulation. While the N addition counteracted the reductions in the N concentrations across the faba beans' aboveground and belowground plant tissues under eCO2, the CO2 concentrations did not significantly alter the soil NH4+-N or NO3--N responses to a N supply. Notably, under both aCO2 and eCO2, a N supply significantly increased the relative abundance of Nitrososphaeraceae and Nitrosomonadaceae, while eCO2 specifically reduced the Rhizobiaceae abundance with no significant changes under aCO2. A redundancy analysis (RDA) highlighted that the soil pH (p < 0.01) had the most important influence on the soil microbial community. Co-occurrence networks indicated that the eCO2 conditions mitigated the impact of a N supply on the reduced structural complexity of the soil microbial communities. These findings suggest that a combination of eCO2 and a N supply to crops can provide potential benefits for managing future climate change impacts on crop production.
Collapse
Affiliation(s)
- Xingshui Dong
- National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region, Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Hui Lin
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Feng Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Songmei Shi
- National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region, Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhihui Wang
- State Key Laboratory of Hydraulics and Mountain River Engineering and College of Water Resource and Hydropower, Sichuan University, Chengdu 610065, China
| | - Sharifullah Sharifi
- National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region, Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Junwei Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Environment, Resource, Soil and Fertilizers, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xinhua He
- National Base of International S&T Collaboration on Water Environmental Monitoring and Simulation in the Three Gorges Reservoir Region, Centre of Excellence for Soil Biology, College of Resources and Environment, Southwest University, Chongqing 400715, China
- Department of Land, Air and Water Resources, University of California at Davis, Davis, CA 90616, USA
- School of Biological Sciences, University of Western Australia, Perth 6009, Australia
| |
Collapse
|
5
|
Yiotis C, Chondrogiannis C. Reduced diffusional limitations in carnation stems facilitate higher photosynthetic rates and reduced photorespiratory losses compared with leaves. PHYSIOLOGIA PLANTARUM 2024; 176:e14573. [PMID: 39400364 DOI: 10.1111/ppl.14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 09/04/2024] [Accepted: 09/19/2024] [Indexed: 10/15/2024]
Abstract
Green stem photosynthesis has been shown to be relatively inefficient but can occasionally contribute significantly to the carbon budget of desert plants. Although the possession of green photosynthetic stems is a common trait, little is known about their photosynthetic characteristics in non-desert species. Dianthus caryophyllus is a semi-woody species with prominent green stems, which show similar photosynthetic anatomy with leaves. In the present study, we used a combination of gas exchange and chlorophyll fluorescence measurements, some of which were taken under varying O2 and CO2 partial pressures, to investigate whether the apparent anatomical similarities between the species' leaves and stems translate into similar photosynthetic physiology and capacity for CO2 assimilation. Both organs displayed high photosynthetic electron transport rates (ETR) and similar values of steady-state non-photochemical quenching (NPQ), albeit leaves could attain them faster. The analysis of OJIP transients showed that the quantum efficiencies and energy fluxes along the photosynthetic electron transport chain are largely similar between leaves and stems. Stems displayed higher total conductance to CO2 diffusion, similar biochemical properties, significantly higher photosynthetic rates and lower water use efficiency than leaves. Leaf ETR was more sensitive to sub-ambient O2 and super-ambient CO2 partial pressures, while leaves also displayed a higher relative rate of Rubisco oxygenation. We conclude that the highly responsive NPQ and the enhanced photorespiration and WUE in leaves represent photoprotective and water-conserving adaptations to the high incident light intensities they experience naturally, at the expense of higher CO2 assimilation rates, which the vertically orientated stems can readily attain.
Collapse
Affiliation(s)
- Charilaos Yiotis
- Department of Biological Applications and Technology, University of Ioannina, Ioannina, Greece
| | - Christos Chondrogiannis
- Botany, School of Natural Sciences, Trinity College Dublin, Dublin 2, Ireland
- Laboratory of Plant Physiology, Department of Biology, University of Patras, Patras, Greece
| |
Collapse
|
6
|
Huang Y, Schnurbusch T. The Birth and Death of Floral Organs in Cereal Crops. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:427-458. [PMID: 38424062 DOI: 10.1146/annurev-arplant-060223-041716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Florets of cereal crops are the basic reproductive organs that produce grains for food or feed. The birth of a floret progresses through meristem initiation and floral organ identity specification and maintenance. During these processes, both endogenous and external cues can trigger a premature floral organ death, leading to reproductive failure. Recent advances in different cereal crops have identified both conserved and distinct regulators governing the birth of a floret. However, the molecular underpinnings of floral death are just beginning to be understood. In this review, we first provide a general overview of the current findings in the field of floral development in major cereals and outline different forms of floral deaths, particularly in the Triticeae crops. We then highlight the importance of vascular patterning and photosynthesis in floral development and reproductive success and argue for an expanded knowledge of floral birth-death balance in the context of agroecology.
Collapse
Affiliation(s)
- Yongyu Huang
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
| | - Thorsten Schnurbusch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Seeland, Germany; ,
- Faculty of Natural Sciences III, Institute of Agricultural and Nutritional Sciences, Martin Luther University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
7
|
Song B, Chen J, Lev-Yadun S, Niu Y, Gao Y, Ma R, Armbruster WS, Sun H. Multifunctionality of angiosperm floral bracts: a review. Biol Rev Camb Philos Soc 2024; 99:1100-1120. [PMID: 38291834 DOI: 10.1111/brv.13060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/02/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
Floral bracts (bracteoles, cataphylls) are leaf-like organs that subtend flowers or inflorescences but are of non-floral origin; they occur in a wide diversity of species, representing multiple independent origins, and exhibit great variation in form and function. Although much attention has been paid to bracts over the past 150 years, our understanding of their adaptive significance remains remarkably incomplete. This is because most studies of bract function and evolution focus on only one or a few selective factors. It is widely recognised that bracts experience selection mediated by pollinators, particularly for enhancing pollinator attraction through strong visual, olfactory, or echo-acoustic contrast with the background and through signalling the presence of pollinator rewards, either honestly (providing rewards for pollinators), or deceptively (attraction without reward or even trapping pollinators). However, studies in recent decades have demonstrated that bract evolution is also affected by agents other than pollinators. Bracts can protect flowers, fruits, or seeds from herbivores by displaying warning signals, camouflaging conspicuous reproductive organs, or by providing physical barriers or toxic chemicals. Reviews of published studies show that bracts can also promote seed dispersal and ameliorate the effects of abiotic stressors, such as low temperature, strong ultraviolet radiation, heavy rain, drought, and/or mechanical abrasion, on reproductive organs or for the plants' pollinators. In addition, green bracts and greening of colourful bracts after pollination promote photosynthetic activity, providing substantial carbon (photosynthates) for fruit or seed development, especially late in a plant's life cycle or season, when leaves have started to senesce. A further layer of complexity derives from the fact that the agents of selection driving the evolution of bracts vary between species and even between different developmental stages within a species, and selection by one agent can be reinforced or opposed by other agents. In summary, our survey of the literature reveals that bracts are multifunctional and subject to multiple agents of selection. To understand fully the functional and evolutionary significance of bracts, it is necessary to consider multiple selection agents throughout the life of the plant, using integrative approaches to data collection and analysis.
Collapse
Affiliation(s)
- Bo Song
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Jiaqi Chen
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
- School of Life Sciences, Yunnan University, Huannan Road, East of University Town, Chenggong New Area, Kunming, 650500, China
| | - Simcha Lev-Yadun
- Department of Biology and Environment, Faculty of Natural Sciences, University of Haifa at Oranim, Kiryat Tiv'on, 36006, Israel
| | - Yang Niu
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - Yongqian Gao
- Yunnan Forestry Technological College, 1 Jindian, Kunming, 650224, China
| | - Rong Ma
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| | - W Scott Armbruster
- School of Biological Sciences, University of Portsmouth, King Henry Building, King Henry I Street, Portsmouth, PO1 2DY, UK
- Institute of Arctic Biology, University of Alaska, PO Box 757000, Fairbanks, AK, 99775, USA
| | - Hang Sun
- Key Laboratory for Plant Diversity and Biogeography of East Asia/Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations, Kunming Institute of Botany, Chinese Academy of Sciences, 132 Lanhei Road, Kunming, 650201, China
| |
Collapse
|
8
|
Gao L, Hu Y. Editorial: Environmental and endogenous signals: crop yield and quality regulation. FRONTIERS IN PLANT SCIENCE 2023; 14:1271918. [PMID: 37670873 PMCID: PMC10476621 DOI: 10.3389/fpls.2023.1271918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 09/07/2023]
Affiliation(s)
| | - Yufeng Hu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
9
|
Garrido A, Conde A, Serôdio J, De Vos RCH, Cunha A. Fruit Photosynthesis: More to Know about Where, How and Why. PLANTS (BASEL, SWITZERLAND) 2023; 12:2393. [PMID: 37446953 DOI: 10.3390/plants12132393] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Not only leaves but also other plant organs and structures typically considered as carbon sinks, including stems, roots, flowers, fruits and seeds, may exhibit photosynthetic activity. There is still a lack of a coherent and systematized body of knowledge and consensus on the role(s) of photosynthesis in these "sink" organs. With regard to fruits, their actual photosynthetic activity is influenced by a range of properties, including fruit anatomy, histology, physiology, development and the surrounding microclimate. At early stages of development fruits generally contain high levels of chlorophylls, a high density of functional stomata and thin cuticles. While some plant species retain functional chloroplasts in their fruits upon subsequent development or ripening, most species undergo a disintegration of the fruit chloroplast grana and reduction in stomata functionality, thus limiting gas exchange. In addition, the increase in fruit volume hinders light penetration and access to CO2, also reducing photosynthetic activity. This review aimed to compile information on aspects related to fruit photosynthesis, from fruit characteristics to ecological drivers, and to address the following challenging biological questions: why does a fruit show photosynthetic activity and what could be its functions? Overall, there is a body of evidence to support the hypothesis that photosynthesis in fruits is key to locally providing: ATP and NADPH, which are both fundamental for several demanding biosynthetic pathways (e.g., synthesis of fatty acids); O2, to prevent hypoxia in its inner tissues including seeds; and carbon skeletons, which can fuel the biosynthesis of primary and secondary metabolites important for the growth of fruits and for spreading, survival and germination of their seed (e.g., sugars, flavonoids, tannins, lipids). At the same time, both primary and secondary metabolites present in fruits and seeds are key to human life, for instance as sources for nutrition, bioactives, oils and other economically important compounds or components. Understanding the functions of photosynthesis in fruits is pivotal to crop management, providing a rationale for manipulating microenvironmental conditions and the expression of key photosynthetic genes, which may help growers or breeders to optimize development, composition, yield or other economically important fruit quality aspects.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - João Serôdio
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, Campus de Santiago, 3810-193 Aveiro, Portugal
| | - Ric C H De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research Centre (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| |
Collapse
|
10
|
Bauerle WL. Humulus lupulus L. Strobilus Photosynthetic Capacity and Carbon Assimilation. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12091816. [PMID: 37176874 PMCID: PMC10180558 DOI: 10.3390/plants12091816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/16/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023]
Abstract
The economic value of Humulus lupulus L. (hop) is recognized, but the primary metabolism of the hop strobilus has not been quantified in response to elevated CO2. The photosynthetic contribution of hop strobili to reproductive effort may be important for growth and crop yield. This component could be useful in hop breeding for enhanced performance in response to environmental signals. The objective of this study was to assess strobilus gas exchange, specifically the response to CO2 and light. Hop strobili were measured under controlled environment conditions to assess the organ's contribution to carbon assimilation and lupulin gland filling during the maturation phase. Leaf defoliation and bract photosynthetic inhibition were deployed to investigate the glandular trichome lupulin carbon source. Strobilus-level physiological response parameters were extrapolated to estimate strobilus-specific carbon budgets under current and future atmospheric CO2 conditions. Under ambient atmospheric CO2, the strobilus carbon balance was 92% autonomous. Estimated strobilus carbon uptake increased by 21% from 415 to 600 µmol mol-1 CO2, 14% from 600 to 900 µmol mol-1, and another 8%, 4%, and 3% from 900 to 1200, 1500, and 1800 µmol mol-1, respectively. We show that photosynthetically active bracts are a major source of carbon assimilation and that leaf defoliation had no effect on lupulin production or strobilus photosynthesis, whereas individual bract photosynthesis was linked to lupulin production. In conclusion, hop strobili can self-generate enough carbon assimilation under elevated CO2 conditions to function autonomously, and strobilus bracts are the primary carbon source for lupulin biosynthesis.
Collapse
Affiliation(s)
- William L Bauerle
- Department of Horticulture and Landscape Architecture, 1173 Campus Delivery, Fort Collins, CO 80523-1173, USA
| |
Collapse
|
11
|
Lawson T, Milliken AL. Photosynthesis - beyond the leaf. THE NEW PHYTOLOGIST 2023; 238:55-61. [PMID: 36509710 PMCID: PMC10953325 DOI: 10.1111/nph.18671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 11/19/2022] [Indexed: 06/17/2023]
Abstract
Although leaves are considered the main site for photosynthesis, other green nonfoliar tissues can carry out considerable amounts of photosynthetic carbon assimilation. With photosynthesis, a potential target for improving crop productivity, physiology and contribution of nonfoliar tissues to overall plant carbon acquisition is gaining increasing attention. This review will provide an overview of nonfoliar photosynthesis, the role of stomata in these tissues and methodologies for quantification and the contribution to overall carbon gain.
Collapse
Affiliation(s)
- Tracy Lawson
- School of Life SciencesUniversity of EssexColchesterCO4 3SQUK
| | | |
Collapse
|
12
|
Okada M, Yang Z, Mas P. Circadian autonomy and rhythmic precision of the Arabidopsis female reproductive organ. Dev Cell 2022; 57:2168-2180.e4. [PMID: 36115345 DOI: 10.1016/j.devcel.2022.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 07/12/2022] [Accepted: 08/26/2022] [Indexed: 11/03/2022]
Abstract
The plant circadian clock regulates essential biological processes including flowering time or petal movement. However, little is known about how the clock functions in flowers. Here, we identified the circadian components and transcriptional networks contributing to the generation of rhythms in pistils, the female reproductive organ. When detached from the rest of the flower, pistils sustain highly precise rhythms, indicating organ-specific circadian autonomy. Analyses of clock mutants and chromatin immunoprecipitation assays showed distinct expression patterns and specific regulatory functions for clock activators and repressors in pistils. Genetic interaction studies also suggested a hierarchy of the repressing activities that provide robustness and precision to the pistil clock. Globally, the circadian function in pistils primarily governs responses to environmental stimuli and photosynthesis and controls pistil growth and seed weight and production. Understanding the circadian intricacies in reproductive organs may prove useful for optimizing plant reproduction and productivity.
Collapse
Affiliation(s)
- Masaaki Okada
- Centre for Research in Agricultural Genomics (CRAG), CSIC, IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Zhiyuan Yang
- Centre for Research in Agricultural Genomics (CRAG), CSIC, IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Paloma Mas
- Centre for Research in Agricultural Genomics (CRAG), CSIC, IRTA-UAB-UB, Campus UAB, Bellaterra, 08193 Barcelona, Spain; Consejo Superior de Investigaciones Científicas (CSIC), 08028 Barcelona, Spain.
| |
Collapse
|
13
|
Borghi M, Perez de Souza L, Tohge T, Mi J, Melandri G, Proost S, Martins MCM, Al-Babili S, Bouwmeester HJ, Fernie AR. High-energy-level metabolism and transport occur at the transition from closed to open flowers. PLANT PHYSIOLOGY 2022; 190:319-339. [PMID: 35640120 PMCID: PMC9434183 DOI: 10.1093/plphys/kiac253] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/29/2022] [Indexed: 06/15/2023]
Abstract
During the maturation phase of flower development, the onset of anthesis visibly marks the transition from buds to open flowers, during which petals stretch out, nectar secretion commences, and pollination occurs. Analysis of the metabolic changes occurring during this developmental transition has primarily focused on specific classes of metabolites, such as pigments and scent emission, and far less on the whole network of primary and secondary metabolites. To investigate the metabolic changes occurring at anthesis, we performed multi-platform metabolomics alongside RNA sequencing in individual florets harvested from the main inflorescence of Arabidopsis (Arabidopsis thaliana) ecotype Col-0. To trace metabolic fluxes at the level of the whole inflorescence and individual florets, we further integrated these studies with radiolabeled experiments. These extensive analyses revealed high-energy-level metabolism and transport of carbohydrates and amino acids, supporting intense metabolic rearrangements occurring at the time of this floral transition. These comprehensive data are discussed in the context of our current understanding of the metabolic shifts underlying flower opening. We envision that this analysis will facilitate the introgression of floral metabolic traits promoting pollination in crop species for which a comprehensive knowledge of flower metabolism is still limited.
Collapse
Affiliation(s)
- Monica Borghi
- Department of Biology, Utah State University, Logan, Utah 84321-5305, USA
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
| | | | - Takayuki Tohge
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Nara Institute of Science and Technology, Nara 630-0192, Japan
| | - Jianing Mi
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | - Giovanni Melandri
- Laboratory of Plant Physiology, Wageningen University and Research, Wageningen 6708 PB, The Netherlands
- INRAE, University of Bordeaux, UMR BFP, Villenave d’Ornon 33140, France
| | - Sebastian Proost
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- Laboratory of Molecular Bacteriology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, Leuven, Belgium
- Center for Microbiology, VIB, Leuven 3000, Belgium
| | - Marina C M Martins
- Max Planck Institute of Molecular Plant Physiology, 14476 Potsdam, Germany
- In Press—Consultoria e Comunicação Científica, São Paulo 05089-030, Brazil
| | - Salim Al-Babili
- The Bioactives Lab, Biological and Environmental Sciences and Engineering Division, King Abdullah University of Science and Technology, Thuwal 23955-6900, Saudi Arabia
| | | | | |
Collapse
|
14
|
Vignati E, Lipska M, Dunwell JM, Caccamo M, Simkin AJ. Fruit Development in Sweet Cherry. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11121531. [PMID: 35736682 PMCID: PMC9227597 DOI: 10.3390/plants11121531] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 06/02/2022] [Accepted: 06/04/2022] [Indexed: 05/19/2023]
Abstract
Fruits are an important source of vitamins, minerals and nutrients in the human diet. They also contain several compounds of nutraceutical importance that have significant antioxidant and anti-inflammatory roles, which can protect the consumer from diseases, such as cancer, and cardiovascular disease as well as having roles in reducing the build-up of LDL-cholesterol in blood plasma and generally reduce the risks of disease and age-related decline in health. Cherries contain high concentrations of bioactive compounds and minerals, including calcium, phosphorous, potassium and magnesium, and it is, therefore, unsurprising that cherry consumption has a positive impact on health. This review highlights the development of sweet cherry fruit, the health benefits of cherry consumption, and the options for increasing consumer acceptance and consumption.
Collapse
Affiliation(s)
- Edoardo Vignati
- NIAB, New Road, East Malling ME19 6BJ, UK; (E.V.); (M.L.)
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK;
| | - Marzena Lipska
- NIAB, New Road, East Malling ME19 6BJ, UK; (E.V.); (M.L.)
| | - Jim M. Dunwell
- School of Agriculture, Policy and Development, University of Reading, Whiteknights, Reading RG6 6EU, UK;
| | - Mario Caccamo
- NIAB, Cambridge Crop Research, Lawrence Weaver Road, Cambridge CB3 0LE, UK;
| | - Andrew J. Simkin
- NIAB, New Road, East Malling ME19 6BJ, UK; (E.V.); (M.L.)
- School of Biosciences, University of Kent, Canterbury CT2 7NJ, UK
- Correspondence:
| |
Collapse
|
15
|
He X, Chavan SG, Hamoui Z, Maier C, Ghannoum O, Chen ZH, Tissue DT, Cazzonelli CI. Smart Glass Film Reduced Ascorbic Acid in Red and Orange Capsicum Fruit Cultivars without Impacting Shelf Life. PLANTS (BASEL, SWITZERLAND) 2022; 11:985. [PMID: 35406965 PMCID: PMC9003265 DOI: 10.3390/plants11070985] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 03/31/2022] [Accepted: 04/01/2022] [Indexed: 11/27/2022]
Abstract
Smart Glass Film (SGF) is a glasshouse covering material designed to permit 80% transmission of photosynthetically active light and block heat-generating solar energy. SGF can reduce crop water and nutrient consumption and improve glasshouse energy use efficiency yet can reduce crop yield. The effect of SGF on the postharvest shelf life of fruits remains unknown. Two capsicum varieties, Red (Gina) and Orange (O06614), were cultivated within a glasshouse covered in SGF to assess fruit quality and shelf life during the winter season. SGF reduced cuticle thickness in the Red cultivar (5%) and decreased ascorbic acid in both cultivars (9-14%) without altering the overall morphology of the mature fruits. The ratio of total soluble solids (TSSs) to titratable acidity (TA) was significantly higher in Red (29%) and Orange (89%) cultivars grown under SGF. The Red fruits had a thicker cuticle that reduced water loss and extended shelf life when compared to the Orange fruits, yet neither water loss nor firmness were impacted by SGF. Reducing the storage temperature to 2 °C and increasing relative humidity to 90% extended the shelf life in both cultivars without evidence of chilling injury. In summary, SGF had minimal impact on fruit development and postharvest traits and did not compromise the shelf life of mature fruits. SGF provides a promising technology to block heat-generating solar radiation energy without affecting fruit ripening and marketable quality of capsicum fruits grown during the winter season.
Collapse
Affiliation(s)
- Xin He
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Sachin G. Chavan
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Ziad Hamoui
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia;
| | - Chelsea Maier
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Oula Ghannoum
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| | - Zhong-Hua Chen
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia;
| | - David T. Tissue
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
- Global Centre for Land Based Innovation, Western Sydney University, Hawkesbury Campus, Richmond, NSW 2753, Australia
| | - Christopher I. Cazzonelli
- National Vegetable Protected Cropping Centre, Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW 2751, Australia; (X.H.); (S.G.C.); (C.M.); (O.G.); (Z.-H.C.); (D.T.T.)
| |
Collapse
|
16
|
Mursalimov S, Glagoleva A, Khlestkina E, Shoeva O. Chlorophyll deficiency delays but does not prevent melanogenesis in barley seed melanoplasts. PROTOPLASMA 2022; 259:317-326. [PMID: 34032929 DOI: 10.1007/s00709-021-01669-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Plant melanin is a dark polymerized polyphenolic substance that can by synthesized in seed tissues. Unlike well-defined enzymatic browning reaction leading to melanin synthesis in senescent and damaged plant tissues, melanin formation in intact tissues was not studied properly. Recently, melanin synthesis was demonstrated in chloroplast-derived melanoplasts in pericarp and husk cells of barley seeds. In barley, there are two independent genes, Blp1 and Alm1, affecting respectively the biosynthesis of melanin and chlorophyll in seeds. Even though different genetic systems are responsible for these traits, the localization of these biosynthetic pathways in the same organelle prompted us to conduct an in-depth study of the i:Bwalm1Blp1 line characterized by simultaneous chlorophyll deficiency caused by recessive allele alm1 and melanin accumulation controlled by dominant allele Blp1. This barley line and parental ones-Bowman, i:BwBlp1, and i:Bwalm1, which are characterized by different combinations of pigments chlorophyll and melanin in seeds-were subjected to a comparative cytological analysis. Three markers were analyzed: the presence of visible pigments, chlorophyll, and PsbA protein (a thylakoid membrane marker). Plastids of the barley pericarp and husk showed prominent differences among the lines, with internal structures that are more developed in husk cells. Although chlorophyll deficiency did not prevent melanogenesis in the spike of the hybrid line, a 7-day delay in melanization initiation and a decrease in its magnitude were observed in comparison with the melanin-and-chlorophyll-containing line. Thus, melanin biosynthesis is not related to photosynthetic processes directly but may be dependent on the presence of plastids with well-developed internal membranes.
Collapse
Affiliation(s)
- S Mursalimov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, 630090, Russia.
| | - A Glagoleva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, 630090, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
| | - E Khlestkina
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, 630090, Russia
- N.I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), St. Petersburg, 190000, Russia
| | - O Shoeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (ICG SB RAS), Novosibirsk, 630090, Russia
- Kurchatov Genomics Center, Institute of Cytology and Genetics, SB RAS, Novosibirsk, 630090, Russia
| |
Collapse
|
17
|
Zhang Q, Tang W, Peng S, Li Y. Limiting factors for panicle photosynthesis at the anthesis and grain filling stages in rice (Oryza sativa L.). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:77-91. [PMID: 34704647 DOI: 10.1111/tpj.15554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/20/2021] [Accepted: 10/22/2021] [Indexed: 06/13/2023]
Abstract
Panicle photosynthesis is crucial for grain yield in cereal crops; however, the limiting factors for panicle photosynthesis are poorly understood, greatly impeding improvement in this trait. In the present study, pot experiments were conducted to investigate the limiting factors for panicle photosynthesis at the anthesis stage in seven rice genotypes and to examine the temporal variations in photosynthesis during the grain filling stage in the Liangyou 287 genotype. At the anthesis stage, leaf and panicle photosynthesis was positively correlated with stomatal conductance and maximum carboxylation rate, which were in turn associated with hydraulic conductance and nitrogen content, respectively. Panicle hydraulic conductance was positively correlated with the area of bundle sheaths in the panicle neck. During grain filling, leaf and panicle photosynthesis remained constant at the early stage but dramatically decreased from 8 to 9 days after anthesis. The trends of variations in panicle photosynthesis were consistent with those in stomatal conductance but not with those in maximum carboxylation rate. At first, the maximum carboxylation rate and respiration rate in the panicle increased, through elevated panicle nitrogen content, but then drastically decreased, as a result of dehydration. The present study systematically investigated the limiting factors for panicle photosynthesis, which are vital for improving photosynthesis and crop yield.
Collapse
Affiliation(s)
- Qiangqiang Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Wei Tang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Shaobing Peng
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Yong Li
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Ministry of Agriculture Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
18
|
Garrido A, De Vos RCH, Conde A, Cunha A. Light Microclimate-Driven Changes at Transcriptional Level in Photosynthetic Grape Berry Tissues. PLANTS 2021; 10:plants10091769. [PMID: 34579302 PMCID: PMC8465639 DOI: 10.3390/plants10091769] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/20/2021] [Accepted: 08/21/2021] [Indexed: 12/18/2022]
Abstract
Viticulture practices that change the light distribution in the grapevine canopy can interfere with several physiological mechanisms, such as grape berry photosynthesis and other metabolic pathways, and consequently impact the berry biochemical composition, which is key to the final wine quality. We previously showed that the photosynthetic activity of exocarp and seed tissues from a white cultivar (Alvarinho) was in fact responsive to the light microclimate in the canopy (low and high light, LL and HL, respectively), and that these different light microclimates also led to distinct metabolite profiles, suggesting a berry tissue-specific interlink between photosynthesis and metabolism. In the present work, we analyzed the transcript levels of key genes in exocarps and seed integuments of berries from the same cultivar collected from HL and LL microclimates at three developmental stages, using real-time qPCR. In exocarp, the expression levels of genes involved in carbohydrate metabolism (VvSuSy1), phenylpropanoid (VvPAL1), stilbenoid (VvSTS1), and flavan-3-ol synthesis (VvDFR, VvLAR2, and VvANR) were highest at the green stage. In seeds, the expression of several genes associated with both phenylpropanoid (VvCHS1 and VvCHS3) and flavan-3-ol synthesis (VvDFR and VvLAR2) showed a peak at the véraison stage, whereas that of RuBisCO was maintained up to the mature stage. Overall, the HL microclimate, compared to that of LL, resulted in a higher expression of genes encoding elements associated with both photosynthesis (VvChlSyn and VvRuBisCO), carbohydrate metabolism (VvSPS1), and photoprotection (carotenoid pathways genes) in both tissues. HL also induced the expression of the VvFLS1 gene, which was translated into a higher activity of the FLS enzyme producing flavonol-type flavonoids, whereas the expression of several other flavonoid pathway genes (e.g., VvCHS3, VvSTS1, VvDFR, and VvLDOX) was reduced, suggesting a specific role of flavonols in photoprotection of berries growing in the HL microclimate. This work suggests a possible link at the transcriptional level between berry photosynthesis and pathways of primary and secondary metabolism, and provides relevant information for improving the management of the light microenvironment at canopy level of the grapes.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Correspondence: (A.G.); (A.C.)
| | - Ric C. H. De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands;
| | - Artur Conde
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
| | - Ana Cunha
- Centre of Molecular and Environmental Biology (CBMA), Department of Biology, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Trás-os-Montes e Alto Douro, Quinta de Prados, 5000-801 Vila Real, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.G.); (A.C.)
| |
Collapse
|
19
|
Zhang G, Cui X, Niu J, Ma F, Li P. Visible light regulates anthocyanin synthesis via malate dehydrogenases and the ethylene signaling pathway in plum (Prunus salicina L.). PHYSIOLOGIA PLANTARUM 2021; 172:1739-1749. [PMID: 33665852 DOI: 10.1111/ppl.13383] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 02/09/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Light regulates anthocyanins synthesis in plants. Upon exposure to visible light, the inhibition of photosynthetic electron transfer significantly lowered the contents of anthocyanins and the expression levels of key genes involved in anthocyanins synthesis in plum fruit peel. Meanwhile, the expression levels of PsmMDH2 (encoding the malate dehydrogenase in mitochondria) and PschMDH (encoding the malate dehydrogenase in chloroplasts) decreased significantly. The contents of anthocyanins and the levels of the key genes involved in anthocyanin synthesis decreased significantly with the treatment of 1-MCP (an inhibitor of ethylene perception) but were enhanced by the exogenous application of ethylene. The ethylene treatment could also recover the anthocyanin synthesis capacity lowered by the photosynthetic electron transfer inhibition. Silencing PsmMDH2 and PschMDH significantly lowered the contents of anthocyanins in plum fruit. At low temperature, visible light irradiation induced anthocyanin accumulation in Arabidopsis leaves. However, the mmdh, chmdh, and etr1-1 mutants had significantly lower anthocyanins content and expressions of the key genes involved in anthocyanins synthesis compared to wild type. Overall, the present study demonstrates that both photosynthesis and respiration were involved in the regulation of anthocyanin synthesis in visible light. The visible light regulates anthocyanin synthesis by controlling the malate metabolism via MDHs and the ethylene signaling pathway.
Collapse
Affiliation(s)
- Guojing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Xiaohui Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Junping Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| | - Pengmin Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, College of Horticulture, Northwest A&F University, Yangling, China
| |
Collapse
|
20
|
Liu B, Zhang D, Sun M, Li M, Ma X, Jia S, Mao P. PSII Activity Was Inhibited at Flowering Stage with Developing Black Bracts of Oat. Int J Mol Sci 2021; 22:ijms22105258. [PMID: 34067635 PMCID: PMC8156022 DOI: 10.3390/ijms22105258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
The color of bracts generally turns yellow or black from green during cereal grain development. However, the impact of these phenotypic changes on photosynthetic physiology during black bract formation remains unclear. Two oat cultivars (Avena sativa L.), ‘Triple Crown’ and ‘Qinghai 444’, with yellow and black bracts, respectively, were found to both have green bracts at the heading stage, but started to turn black at the flowering stage and become blackened at the milk stage for ‘Qinghai 444’. Their photosynthetic characteristics were analyzed and compared, and the key genes, proteins and regulatory pathways affecting photosynthetic physiology were determined in ‘Triple Crown’ and ‘Qinghai 444’ bracts. The results show that the actual PSII photochemical efficiency and PSII electron transfer rate of ‘Qinghai 444’ bracts had no significant changes at the heading and milk stages but decreased significantly (p < 0.05) at the flowering stage compared with ‘Triple Crown’. The chlorophyll content decreased, the LHCII involved in the assembly of supercomplexes in the thylakoid membrane was inhibited, and the expression of Lhcb1 and Lhcb5 was downregulated at the flowering stage. During this critical stage, the expression of Bh4 and C4H was upregulated, and the biosynthetic pathway of p-coumaric acid using tyrosine and phenylalanine as precursors was also enhanced. Moreover, the key upregulated genes (CHS, CHI and F3H) of anthocyanin biosynthesis might complement the impaired PSII activity until recovered at the milk stage. These findings provide a new insight into how photosynthesis alters during the process of oat bract color transition to black.
Collapse
Affiliation(s)
- Bei Liu
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (B.L.); (D.Z.); (M.S.); (M.L.); (X.M.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Di Zhang
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (B.L.); (D.Z.); (M.S.); (M.L.); (X.M.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Ming Sun
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (B.L.); (D.Z.); (M.S.); (M.L.); (X.M.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Manli Li
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (B.L.); (D.Z.); (M.S.); (M.L.); (X.M.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Xiqing Ma
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (B.L.); (D.Z.); (M.S.); (M.L.); (X.M.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Shangang Jia
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (B.L.); (D.Z.); (M.S.); (M.L.); (X.M.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
| | - Peisheng Mao
- Forage Seed Laboratory, College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China; (B.L.); (D.Z.); (M.S.); (M.L.); (X.M.); (S.J.)
- Key Laboratory of Pratacultural Science, Beijing Municipality, Yuanmingyuan West Road, Haidian District, Beijing 100193, China
- Correspondence: ; Tel.: +86-010-6273-3311
| |
Collapse
|
21
|
Kivivirta KI, Herbert D, Roessner C, de Folter S, Marsch-Martinez N, Becker A. Transcriptome analysis of gynoecium morphogenesis uncovers the chronology of gene regulatory network activity. PLANT PHYSIOLOGY 2021; 185:1076-1090. [PMID: 33793890 PMCID: PMC8133673 DOI: 10.1093/plphys/kiaa090] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 12/04/2020] [Indexed: 05/12/2023]
Abstract
The gynoecium is the most complex organ formed by the flowering plants. It encloses the ovules, provides a surface for pollen contact and self-incompatibility reactions, allows pollen tube growth, and, post fertilization, develops into the fruit. Consequently, the regulation of gynoecium morphogenesis is complex and appropriate timing of this process in part determines reproductive success. However, little is known about the global control of gynoecium development, even though many regulatory genes have been characterized. Here, we characterized dynamic gene expression changes using laser-microdissected gynoecium tissue from four developmental stages in Arabidopsis. We provide a high-resolution map of global expression dynamics during gynoecium morphogenesis and link these to the gynoecium interactome. We reveal groups of genes acting together early and others acting late in morphogenesis. Clustering of co-expressed genes enables comparisons between the leaf, shoot apex, and gynoecium transcriptomes, allowing the dissection of common and distinct regulators. Furthermore, our results lead to the discovery of genes with putative transcription factor activity (B3LF1, -2, DOFLF1), which, when mutated, lead to impaired gynoecium expansion, illustrating that global transcriptome analyses reveal yet unknown developmental regulators. Our data show that genes encoding highly interacting proteins, such as SEPALLATA3, AGAMOUS, and TOPLESS, are expressed evenly during development but switch interactors over time, whereas stage-specific proteins tend to have fewer interactors. Our analysis connects specific transcriptional regulator activities, protein interactions, and underlying metabolic processes, contributing toward a dynamic network model for gynoecium development.
Collapse
Affiliation(s)
- Kimmo I Kivivirta
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Denise Herbert
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Clemens Roessner
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
| | - Stefan de Folter
- Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Unidad de Genómica Avanzada (UGA-LANGEBIO), CP 36824 Irapuato, Mexico
| | | | - Annette Becker
- Plant Development Group, Institute of Botany, Justus-Liebig-University, Heinrich-Buff-Ring 38, 35392 Gießen, Germany
- Author for communication:
| |
Collapse
|
22
|
Garrido A, Engel J, Mumm R, Conde A, Cunha A, De Vos RCH. Metabolomics of Photosynthetically Active Tissues in White Grapes: Effects of Light Microclimate and Stress Mitigation Strategies. Metabolites 2021; 11:metabo11040205. [PMID: 33808188 PMCID: PMC8067353 DOI: 10.3390/metabo11040205] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/19/2021] [Accepted: 03/26/2021] [Indexed: 12/17/2022] Open
Abstract
The effects of climate change are becoming a real concern for the viticulture sector, with impacts on both grapevine physiology and the quality of the fresh berries and wine. Short-term mitigation strategies, like foliar kaolin application and smart irrigation regimes, have been implemented to overcome these problems. We previously showed that these strategies also influence the photosynthetic activity of the berries themselves, specifically in the exocarp and seed. In the present work, we assessed the modulating effects of both canopy-light microclimate, kaolin and irrigation treatments on the metabolic profiles of the exocarp and seed, as well as the potential role of berry photosynthesis herein. Berries from the white variety Alvarinho were collected at two contrasting light microclimate positions within the vine canopy (HL—high light and LL—low light) from both irrigated and kaolin-treated plants, and their respective controls, at three fruit developmental stages (green, véraison and mature). Untargeted liquid chromatography mass spectrometry (LCMS) profiling of semi-polar extracts followed by multivariate statistical analysis indicate that both the light microclimate and irrigation influenced the level of a series of phenolic compounds, depending on the ripening stage of the berries. Moreover, untargeted gas chromatography mass spectrometry (GCMS) profiling of polar extracts show that amino acid and sugar levels were influenced mainly by the interaction of irrigation and kaolin treatments. The results reveal that both photosynthetically active berry tissues had a distinct metabolic profile in response to the local light microclimate, which suggests a specific role of photosynthesis in these tissues. A higher light intensity within the canopy mainly increased the supply of carbon precursors to the phenylpropanoid/flavonoid pathway, resulting in increased levels of phenolic compounds in the exocarp, while in seeds, light mostly influenced compounds related to carbon storage and seed development. In addition, our work provides new insights into the influence of abiotic stress mitigation strategies on the composition of exocarps and seeds, which are both important tissues for the quality of grape-derived products.
Collapse
Affiliation(s)
- Andreia Garrido
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Correspondence: (A.G.); (A.C.)
| | - Jasper Engel
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.E.); (R.M.); (R.C.H.D.V.)
- Business Unit Biometris, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands
| | - Roland Mumm
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.E.); (R.M.); (R.C.H.D.V.)
| | - Artur Conde
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | - Ana Cunha
- Centre for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal;
- Centre of Molecular and Environmental Biology (CBMA), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Centre of Biological Engineering (CEB), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
- Correspondence: (A.G.); (A.C.)
| | - Ric C. H. De Vos
- Business Unit Bioscience, Wageningen Plant Research, Wageningen University and Research (Wageningen-UR), P.O. Box 16, 6700 AA Wageningen, The Netherlands; (J.E.); (R.M.); (R.C.H.D.V.)
| |
Collapse
|
23
|
Li J, Hou F, Ren J. Grazing Intensity Alters Leaf and Spike Photosynthesis, Transpiration, and Related Parameters of Three Grass Species on an Alpine Steppe in the Qilian Mountains. PLANTS 2021; 10:plants10020294. [PMID: 33557165 PMCID: PMC7913976 DOI: 10.3390/plants10020294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/19/2021] [Accepted: 01/29/2021] [Indexed: 11/16/2022]
Abstract
The effect of grazing on leaf photosynthesis has been extensively studied. However, the influence of grazing on photosynthesis in other green tissues, especially spike, has remained poorly understood. This study investigated the impact of different grazing intensities (light grazing (LG), medium grazing (MG), and heavy grazing (HG)) on leaf and spike photosynthesis parameters and photosynthetic pigments of three grass species (Stipa purpurea, Achnatherum inebrians, and Leymus secalinus) on an alpine steppe in the Qilian Mountains. Grazing promoted leaf photosynthesis rate in S. purpurea and L. secalinus but reduced it in A. inebrians. Conversely, spike photosynthesis rate decreased in S. purpurea and L. secalinus under intense grazing, while there was no significant difference in spike photosynthesis rate in A. inebrians. The leaf and spike net photosynthetic rate (Pn) and transpiration rate (Tr) in S. purpurea were the greatest among the three species, while their organ temperatures were the lowest. On the other hand, grazing stimulated leaf chlorophyll biosynthesis in S. purpurea and L. secalinus but accelerated leaf chlorophyll degradation in A. inebrians. Furthermore, spike chlorophyll biosynthesis was inhibited in the three species under grazing, and only L. secalinus had the ability to recover from the impairment. Grazing had a positive effect on leaf photosynthesis parameters of S. purpurea and L. secalinus but a negative effect on those of A. inebrians. However, spike photosynthesis parameters were negatively influenced by grazing. Among the three species investigated, S. purpurea displayed the greatest ability for leaf and spike photosynthesis to withstand and acclimate to grazing stress. This study suggests that moderate grazing enhanced leaf photosynthetic capacity of S. purpurea and L. secalinus but reduced it in A. inebrians. However, spike photosynthetic capacity of three grass species decreased in response to grazing intensities.
Collapse
|
24
|
McNinch C, Chen K, Dennison T, Lopez M, Yandeau-Nelson MD, Lauter N. A multigenotype maize silk expression atlas reveals how exposure-related stresses are mitigated following emergence from husk leaves. THE PLANT GENOME 2020; 13:e20040. [PMID: 33090730 DOI: 10.1002/tpg2.20040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 05/11/2020] [Accepted: 06/05/2020] [Indexed: 06/11/2023]
Abstract
The extraordinarily long stigmatic silks of corn (Zea mays L.) are critical for grain production but the biology of their growth and emergence from husk leaves has remained underexplored. Accordingly, gene expression was assayed for inbreds 'B73' and 'Mo17' across five contiguous silk sections. Half of the maize genes (∼20,000) are expressed in silks, mostly in spatiotemporally dynamic patterns. In particular, emergence triggers strong differential expression of ∼1,500 genes collectively enriched for gene ontology terms associated with abiotic and biotic stress responses, hormone signaling, cell-cell communication, and defense metabolism. Further, a meta-analysis of published maize transcriptomic studies on seedling stress showed that silk emergence elicits an upregulated transcriptomic response that overlaps strongly with both abiotic and biotic stress responses. Although the two inbreds revealed similar silk transcriptomic programs overall, genotypic expression differences were observed for 5,643 B73-Mo17 syntenic gene pairs and collectively account for >50% of genome-wide expression variance. Coexpression clusters, including many based on genotypic divergence, were identified and interrogated via ontology-term enrichment analyses to generate biological hypotheses for future research. Ultimately, dissecting how gene expression changes along the length of silks and between husk-encased and emerged states offers testable models for silk development and plant response to environmental stresses.
Collapse
Affiliation(s)
- Colton McNinch
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
| | - Keting Chen
- Bioinformatics & Computational Biology Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
| | - Tesia Dennison
- Genetics & Genomics Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
| | - Miriam Lopez
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State Univ., Ames, IA, 50011, USA
| | - Marna D Yandeau-Nelson
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
- Bioinformatics & Computational Biology Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
- Genetics & Genomics Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
- Department of Genetics, Development and Cell Biology, Iowa State Univ., Ames, IA, 50011, USA
| | - Nick Lauter
- Molecular, Cellular, and Developmental Biology Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
- Genetics & Genomics Graduate Program, Iowa State Univ., Ames, IA, 50011, USA
- USDA-ARS Corn Insects and Crop Genetics Research Unit, Iowa State Univ., Ames, IA, 50011, USA
| |
Collapse
|
25
|
Hernández-Montes E, Escalona JM, Tomàs M, Medrano H. Plant water status and genotype affect fruit respiration in grapevines. PHYSIOLOGIA PLANTARUM 2020; 169:544-554. [PMID: 32187689 DOI: 10.1111/ppl.13093] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 02/09/2020] [Accepted: 02/10/2020] [Indexed: 06/10/2023]
Abstract
An understanding of fruit gas exchange is necessary to determine the carbon balance in grapevines, but little attention has been paid to the relationships among fruit respiration, plant water status and genetic variability. The effect of plant water status and genotype on cluster respiration was studied over two seasons (2013 and 2014) under field conditions using a whole cluster respiration chamber. Whole cluster CO2 fluxes were measured in growing grapevines at hard-green, veraison and ripening stages under irrigated and non-irrigated conditions, and under light and dark conditions in two grapevine varieties, Tempranillo and Grenache. A direct relationship between cluster CO2 efflux and plant water status was found at hard-green stage. Genotype influenced the fruit CO2 efflux that resulted in higher carbon losses in Tempranillo than in Grenache. Fruit respiration rates decreased from the first berry developmental stages to ripening stage. The integration of fruit respiration rates under light and dark conditions showed the magnitude of fruit carbon losses and gains as well as interesting variety and environmental conditions effects on those processes.
Collapse
Affiliation(s)
- Esther Hernández-Montes
- Research Group in Plant Biology under Mediterranean Conditions, Biology Department, Balearic Island University (UIB), 07122, Palma de Mallorca, Spain
- Irrigated Agriculture Research and Extension Center, Washington State University, 24106 N. Bunn Road, Prosser, WA, 99350, USA
| | - José Mariano Escalona
- Research Group in Plant Biology under Mediterranean Conditions, Biology Department, Balearic Island University (UIB), 07122, Palma de Mallorca, Spain
| | - Magdalena Tomàs
- Research Group in Plant Biology under Mediterranean Conditions, Biology Department, Balearic Island University (UIB), 07122, Palma de Mallorca, Spain
| | - Hipólito Medrano
- Research Group in Plant Biology under Mediterranean Conditions, Biology Department, Balearic Island University (UIB), 07122, Palma de Mallorca, Spain
| |
Collapse
|
26
|
Borghi M, Fernie AR. Outstanding questions in flower metabolism. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 103:1275-1288. [PMID: 32410253 DOI: 10.1111/tpj.14814] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 04/29/2020] [Accepted: 05/05/2020] [Indexed: 06/11/2023]
Abstract
The great diversity of flowers, their color, odor, taste, and shape, is mostly a result of the metabolic processes that occur in this reproductive organ when the flower and its tissues develop, grow, and finally die. Some of these metabolites serve to advertise flowers to animal pollinators, other confer protection towards abiotic stresses, and a large proportion of the molecules of the central metabolic pathways have bioenergetic and signaling functions that support growth and the transition to fruits and seeds. Although recent studies have advanced our general understanding of flower metabolism, several questions still await an answer. Here, we have compiled a list of open questions on flower metabolism encompassing molecular aspects, as well as topics of relevance for agriculture and the ecosystem. These questions include the study of flower metabolism through development, the biochemistry of nectar and its relevance to promoting plant-pollinator interaction, recycling of metabolic resources after flowers whiter and die, as well as the manipulation of flower metabolism by pathogens. We hope with this review to stimulate discussion on the topic of flower metabolism and set a reference point to return to in the future when assessing progress in the field.
Collapse
Affiliation(s)
- Monica Borghi
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| | - Alisdair R Fernie
- Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, Potsdam, 14476, Germany
| |
Collapse
|
27
|
Huang R, Zhang Y, Zhang Q, Huang J, Hänninen H, Huang Y, Hu Y. Photosynthetic Mechanisms of Metaxenia Responsible for Enlargement of Carya cathayensis Fruits at Late Growth Stages. FRONTIERS IN PLANT SCIENCE 2020; 11:84. [PMID: 32180777 PMCID: PMC7058182 DOI: 10.3389/fpls.2020.00084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 01/21/2020] [Indexed: 06/10/2023]
Abstract
Fruits of hickory (Carya cathayensis) are larger and their peel is greener after interspecific pollination by pecan (Carya illinoinensis; later pp fruits) than after intraspecific pollination by hickory (later ph fruits). Previous studies have found little genetic differences between offspring and their maternal parent, indicating that the observed trait differences between pp and ph fruits are due to metaxenia. Fruit development depends on the amount of photosynthetic assimilate available. Since there is no difference in photosynthesis of the associated leaves between pp and ph fruits, the larger size of the pp fruits might be attributed to changes in fruit photosynthesis caused by the different pollen sources. To elucidate to the photosynthetic mechanisms behind the metaxenia effect on fruit development in hickory, the effects of intraspecific and interspecific pollination regimes were examined in the present study. We observed the photosynthetic capacity in the peel of fruits and the related ecophysiological and morphological traits of both ph and pp fruits over a period of 120 days after pollination. Significant differences in the appearance and dry weight between ph and pp fruits were observed at 50 days after pollination (DAP). More than 70% of dry matter accumulation of the fruits was completed during 60-120 DAP, while the true photosynthetic rate of the associated leaves significantly decreased by about 50% during the same period. In several cell layers of the peel, the number of chloroplasts per cell was significantly higher in pp than in ph fruits. Similarly, the ribulose 1, 5-bisphosphate carboxylase (Rubisco) activity, the total chlorophyll content, and the nitrogen content were all significantly higher in pp than in ph fruits during all growth stages; and all of these physiological quantities were positively correlated with the gross photosynthetic rate of the fruits. We conclude that the enhanced photosynthetic capacity of pp fruits contributes to their fast dry matter accumulation and oil formation. This result will provide a theoretical basis for improving hickory fruit yields in practical cultivation.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yuanyuan Hu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Hangzhou, China
| |
Collapse
|
28
|
Chang TG, Song QF, Zhao HL, Chang S, Xin C, Qu M, Zhu XG. An in situ approach to characterizing photosynthetic gas exchange of rice panicle. PLANT METHODS 2020; 16:92. [PMID: 32647532 PMCID: PMC7336644 DOI: 10.1186/s13007-020-00633-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 06/24/2020] [Indexed: 05/05/2023]
Abstract
BACKGROUND Photosynthesis of reproductive organs in C3 cereals is generally regarded as important to crop yield. Whereas, photosynthetic characteristics of reproductive organs are much less understood as compared to leaf photosynthesis, mainly due to methodological limitations. To date, many indirect methods have been developed to study photosynthesis of reproductive organs and its contribution to grain yield, such as organ shading, application of herbicides and photosynthetic measurement of excised organs or tissues, which might be intrusive and cause biases. Thus, a robust and in situ approach needs to be developed. RESULTS Here we report the development of a custom-built panicle photosynthesis chamber (P-chamber), which can be connected to standard infrared gas analyzers to study photosynthetic/respiratory rate of a rice panicle. With the P-chamber, we measured panicle photosynthetic characteristics of seven high-yielding elite japonica, japonica-indica hybrid and indica rice cultivars. Results show that, (1) rice panicle is photosynthetically active during grain filling, and there are substantial inter-cultivar variations in panicle photosynthetic and respiratory rates, no matter on a whole panicle basis, on an area basis or on a single spikelet basis; (2) among the seven testing cultivars, whole-panicle gross photosynthetic rates are 17-54 nmol s-1 5 days after heading under photon flux density (PFD) of 2000 μmol (photons) m-2 s-1, which represent some 20-38% of that of the corresponding flag leaves; (3) rice panicle photosynthesis has higher apparent CO2 compensation point, light compensation point and apparent CO2 saturation point, as compared to that of a typical leaf; (4) there is a strong and significant positive correlation between gross photosynthetic rate 5 days after heading on a single spikelet basis and grain setting rate at harvest (Pearson correlation coefficient r = 0.93, p value < 0.0001). CONCLUSIONS Rice panicle gross photosynthesis is significant, has great natural variation, and plays an underappreciated role in grain yield formation. The P-Chamber can be used as a tool to study in situ photosynthetic characteristics of irregular non-foliar plant organs, such as ears, culms, leaf sheaths, fruits and branches, which is a relatively less explored area in current cereal breeding community.
Collapse
Affiliation(s)
- Tian-Gen Chang
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Qing-Feng Song
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Hong-Long Zhao
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Shuoqi Chang
- State Key Laboratory of Hybrid Rice, Hunan Hybrid Rice Research Center, Changsha, China
| | - Changpeng Xin
- CAS Key Laboratory for Computational Biology, CAS-MPG Partner Institute for Computational Biology, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Mingnan Qu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
| | - Xin-Guang Zhu
- National Key Laboratory for Plant Molecular Genetics, Center of Excellence for Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200031 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
29
|
Genome-wide analysis of spatiotemporal gene expression patterns during floral organ development in Brassica rapa. Mol Genet Genomics 2019; 294:1403-1420. [PMID: 31222475 DOI: 10.1007/s00438-019-01585-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 06/10/2019] [Indexed: 12/12/2022]
Abstract
Flowering is a key agronomic trait that directly influences crop yield and quality and serves as a model system for elucidating the molecular basis that controls successful reproduction, adaptation, and diversification of flowering plants. Adequate knowledge of continuous series of expression data from the floral transition to maturation is lacking in Brassica rapa. To unravel the genome expression associated with the development of early small floral buds (< 2 mm; FB2), early large floral buds (2-4 mm; FB4), stamens (STs) and carpels (CPs), transcriptome profiling was carried out with a Br300K oligo microarray. The results showed that at least 6848 known nonredundant genes (30% of the genes of the Br300K) were differentially expressed during the floral transition from vegetative tissues to maturation. Functional annotation of the differentially expressed genes (DEGs) (fold change ≥ 5) by comparison with a close relative, Arabidopsis thaliana, revealed 6552 unigenes (4579 upregulated; 1973 downregulated), including 131 Brassica-specific and 116 functionally known floral Arabidopsis homologs. Additionally, 1723, 236 and 232 DEGs were preferentially expressed in the tissues of STs, FB2, and CPs. These DEGs also included 43 transcription factors, mainly AP2/ERF-ERF, NAC, MADS-MIKC, C2H2, bHLH, and WRKY members. The differential gene expression during flower development induced dramatic changes in activities related to metabolic processes (23.7%), cellular (22.7%) processes, responses to the stimuli (7.5%) and reproduction (1%). A relatively large number of DEGs were observed in STs and were overrepresented by photosynthesis-related activities. Subsequent analysis via semiquantitative RT-PCR, histological analysis performed with in situ hybridization of BrLTP1 and transgenic reporter lines (BrLTP promoter::GUS) of B. rapa ssp. pekinensis supported the spatiotemporal expression patterns. Together, these results suggest that a temporally and spatially regulated process of the selective expression of distinct fractions of the same genome leads to the development of floral organs. Interestingly, most of the differentially expressed floral transcripts were located on chromosomes 3 and 9. This study generated a genome expression atlas of the early floral transition to maturation that represented the flowering regulatory elements of Brassica rapa.
Collapse
|
30
|
Flood PJ. Using natural variation to understand the evolutionary pressures on plant photosynthesis. CURRENT OPINION IN PLANT BIOLOGY 2019; 49:68-73. [PMID: 31284076 DOI: 10.1016/j.pbi.2019.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 05/23/2019] [Accepted: 06/03/2019] [Indexed: 06/09/2023]
Abstract
Photosynthesis is the gateway of the Sun's energy into the biosphere and the source of the ozone layer; thus it is both provider and protector of life as we know it. Despite its pivotal role we know surprisingly little about the genetic basis of variation in photosynthesis and the selective pressures giving rise to or maintaining this variation. In this review, I will briefly summarise our current knowledge of intraspecific and interspecific variation in photosynthesis to understand the main selective constraints on photosynthesis and what this means for the future of nature and agriculture in a changing world.
Collapse
Affiliation(s)
- Pádraic J Flood
- Department of Plant Developmental Biology, Max Planck Institute for Plant Breeding Research, Cologne, Germany.
| |
Collapse
|
31
|
Feder A, Chayut N, Gur A, Freiman Z, Tzuri G, Meir A, Saar U, Ohali S, Baumkoler F, Gal-On A, Shnaider Y, Wolf D, Katzir N, Schaffer A, Burger J, Li L, Tadmor Y. The Role of Carotenogenic Metabolic Flux in Carotenoid Accumulation and Chromoplast Differentiation: Lessons From the Melon Fruit. FRONTIERS IN PLANT SCIENCE 2019; 10:1250. [PMID: 31736986 PMCID: PMC6833967 DOI: 10.3389/fpls.2019.01250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 09/09/2019] [Indexed: 05/19/2023]
Abstract
Carotenoids have various roles in plant physiology. Plant carotenoids are synthesized in plastids and are highly abundant in the chromoplasts of ripening fleshy fruits. Considerable research efforts have been devoted to elucidating mechanisms that regulate carotenoid biosynthesis, yet, little is known about the mechanism that triggers storage capacity, mainly through chromoplast differentiation. The Orange gene (OR) product stabilizes phytoene synthase protein (PSY) and triggers chromoplast differentiation. OR underlies carotenoid accumulation in orange cauliflower and melon. The OR's 'golden SNP', found in melon, alters the highly evolutionary conserved Arginine108 to Histidine and controls β-carotene accumulation in melon fruit, in a mechanism yet to be elucidated. We have recently shown that similar carotenogenic metabolic flux is active in non-orange and orange melon fruit. This flux probably leads to carotenoid turnover but known carotenoid turnover products are not detected in non-orange fruit. Arrest of this metabolic flux, using chemical inhibitors or mutations, induces carotenoid accumulation and biogenesis of chromoplasts, regardless of the allelic state of OR. We suggest that the 'golden SNP' induces β-carotene accumulation probably by negatively affecting the capacity to synthesize downstream compounds. The accumulation of carotenoids induces chromoplast biogenesis through a metabolite-induced mechanism. Carotenogenic turnover flux can occur in non-photosynthetic tissues, which do not accumulate carotenoids. Arrest of this flux by the 'golden SNP' or other flux-arrest mutations is a potential tool for the biofortification of agricultural products with carotenoids.
Collapse
Affiliation(s)
- Ari Feder
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Noam Chayut
- Germplasm Resource Unit, John Innes Center, Norwich, United Kingdom
| | - Amit Gur
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Zohar Freiman
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Galil Tzuri
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ayala Meir
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Uzi Saar
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Shachar Ohali
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Fabian Baumkoler
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Amit Gal-On
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Yula Shnaider
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Dalia Wolf
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Nurit Katzir
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Ari Schaffer
- Agricultural Research Organization, Volcani Center, Rishon LeZion, Israel
| | - Joseph Burger
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-ARS, Cornell University, Ithaca, NY, United States
| | - Yaakov Tadmor
- Newe Ya’ar Research Center, Agricultural Research Organization, Ramat Yishay, Israel
- *Correspondence: Yaakov Tadmor,
| |
Collapse
|