1
|
Lazzara FE, Rodriguez RE, Palatnik JF. Molecular mechanisms regulating GROWTH-REGULATING FACTORS activity in plant growth, development, and environmental responses. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4360-4372. [PMID: 38666596 DOI: 10.1093/jxb/erae179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/24/2024] [Indexed: 07/24/2024]
Abstract
Plants rely on complex regulatory mechanisms to ensure proper growth and development. As plants are sessile organisms, these mechanisms must be flexible enough to adapt to changes in the environment. GROWTH-REGULATING FACTORS (GRFs) are plant-specific transcription factors that act as a central hub controlling plant growth and development, which offer promising biotechnological applications to enhance plant performance. Here, we analyze the complex molecular mechanisms that regulate GRFs activity, and how their natural and synthetic variants can impact on plant growth and development. We describe the biological roles of the GRFs and examine how they regulate gene expression and contribute to the control of organ growth and plant responses to a changing environment. This review focuses on the premise that unlocking the full biotechnological potential of GRFs requires a thorough understanding of the various regulatory layers governing GRF activity, the functional divergence among GRF family members, and the gene networks that they regulate.
Collapse
Affiliation(s)
- Franco E Lazzara
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
| | - Ramiro E Rodriguez
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| | - Javier F Palatnik
- Instituto de Biología Molecular y Celular de Rosario (IBR), Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and Universidad Nacional de Rosario, Rosario, Santa Fe, 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario, Sante Fe, 2000, Argentina
| |
Collapse
|
2
|
Nagle MF, Yuan J, Kaur D, Ma C, Peremyslova E, Jiang Y, Goralogia GS, Magnuson A, Li JY, Muchero W, Fuxin L, Strauss SH. Genome-wide association study and network analysis of in vitro transformation in Populus trichocarpa support key roles of diverse phytohormone pathways and cross talk. THE NEW PHYTOLOGIST 2024. [PMID: 38650352 DOI: 10.1111/nph.19737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/06/2024] [Indexed: 04/25/2024]
Abstract
Wide variation in amenability to transformation and regeneration (TR) among many plant species and genotypes presents a challenge to the use of genetic engineering in research and breeding. To help understand the causes of this variation, we performed association mapping and network analysis using a population of 1204 wild trees of Populus trichocarpa (black cottonwood). To enable precise and high-throughput phenotyping of callus and shoot TR, we developed a computer vision system that cross-referenced complementary red, green, and blue (RGB) and fluorescent-hyperspectral images. We performed association mapping using single-marker and combined variant methods, followed by statistical tests for epistasis and integration of published multi-omic datasets to identify likely regulatory hubs. We report 409 candidate genes implicated by associations within 5 kb of coding sequences, and epistasis tests implicated 81 of these candidate genes as regulators of one another. Gene ontology terms related to protein-protein interactions and transcriptional regulation are overrepresented, among others. In addition to auxin and cytokinin pathways long established as critical to TR, our results highlight the importance of stress and wounding pathways. Potential regulatory hubs of signaling within and across these pathways include GROWTH REGULATORY FACTOR 1 (GRF1), PHOSPHATIDYLINOSITOL 4-KINASE β1 (PI-4Kβ1), and OBF-BINDING PROTEIN 1 (OBP1).
Collapse
Affiliation(s)
- Michael F Nagle
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jialin Yuan
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Damanpreet Kaur
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Cathleen Ma
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Ekaterina Peremyslova
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Yuan Jiang
- Statistics Department, Oregon State University, Corvallis, OR, 97331, USA
| | - Greg S Goralogia
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Anna Magnuson
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| | - Jia Yi Li
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Wellington Muchero
- Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, TN, 37996, USA
| | - Li Fuxin
- School of Electrical Engineering and Computer Science, Oregon State University, Corvallis, OR, 97331, USA
| | - Steven H Strauss
- Department of Forest Ecosystems & Society, Oregon State University, Corvallis, OR, 97331, USA
| |
Collapse
|
3
|
Gupta S, Petrov V, Garg V, Mueller-Roeber B, Fernie AR, Nikoloski Z, Gechev T. The genome of Haberlea rhodopensis provides insights into the mechanisms for tolerance to multiple extreme environments. Cell Mol Life Sci 2024; 81:117. [PMID: 38443747 PMCID: PMC10914886 DOI: 10.1007/s00018-024-05140-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 03/07/2024]
Abstract
Haberlea rhodopensis, a resurrection species, is the only plant known to be able to survive multiple extreme environments, including desiccation, freezing temperatures, and long-term darkness. However, the molecular mechanisms underlying tolerance to these stresses are poorly studied. Here, we present a high-quality genome of Haberlea and found that ~ 23.55% of the 44,306 genes are orphan. Comparative genomics analysis identified 89 significantly expanded gene families, of which 25 were specific to Haberlea. Moreover, we demonstrated that Haberlea preserves its resurrection potential even in prolonged complete darkness. Transcriptome profiling of plants subjected to desiccation, darkness, and low temperatures revealed both common and specific footprints of these stresses, and their combinations. For example, PROTEIN PHOSPHATASE 2C (PP2C) genes were substantially induced in all stress combinations, while PHYTOCHROME INTERACTING FACTOR 1 (PIF1) and GROWTH RESPONSE FACTOR 4 (GRF4) were induced only in darkness. Additionally, 733 genes with unknown functions and three genes encoding transcription factors specific to Haberlea were specifically induced/repressed upon combination of stresses, rendering them attractive targets for future functional studies. The study provides a comprehensive understanding of the genomic architecture and reports details of the mechanisms of multi-stress tolerance of this resurrection species that will aid in developing strategies that allow crops to survive extreme and multiple abiotic stresses.
Collapse
Affiliation(s)
- Saurabh Gupta
- Intercellular Macromolecular Transport, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
- Curtin Medical School, Curtin Health Innovation Research Institute (CHIRI), Curtin University, Perth, WA, 6102, Australia.
| | - Veselin Petrov
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel Str., 4023, Plovdiv, Bulgaria
- Department of Plant Physiology, Biochemistry and Genetics, Agricultural University Plovdiv, 12 Mendeleev Str., 4000, Plovdiv, Bulgaria
| | - Vanika Garg
- Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- State Agricultural Biotechnology Centre, Centre for Crop and Food Innovation, Food Futures Institute, Murdoch University, Murdoch, WA, 6150, Australia
| | - Bernd Mueller-Roeber
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel Str., 4023, Plovdiv, Bulgaria
- Molecular Biology, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Plant Signalling, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Alisdair R Fernie
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel Str., 4023, Plovdiv, Bulgaria
- Central Metabolism, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Zoran Nikoloski
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel Str., 4023, Plovdiv, Bulgaria
- Bioinformatics, Institute of Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Str. 24-25, 14476, Potsdam-Golm, Germany
- Systems Biology and Mathematical Modelling, Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany
| | - Tsanko Gechev
- Center of Plant Systems Biology and Biotechnology, 14 Knyaz Boris I Pokrastitel Str., 4023, Plovdiv, Bulgaria.
- Department of Plant Physiology and Molecular Biology, Plovdiv University, 24 Tsar Assen Str., 4000, Plovdiv, Bulgaria.
| |
Collapse
|
4
|
Chen X, Zhang J, Wang S, Cai H, Yang M, Dong Y. Genome-wide molecular evolution analysis of the GRF and GIF gene families in Plantae (Archaeplastida). BMC Genomics 2024; 25:74. [PMID: 38233778 PMCID: PMC10795294 DOI: 10.1186/s12864-024-10006-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Accepted: 01/11/2024] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Plant growth-regulating factors (GRFs) and GRF-interacting factors (GIFs) interact with each other and collectively have important regulatory roles in plant growth, development, and stress responses. Therefore, it is of great significance to explore the systematic evolution of GRF and GIF gene families. However, our knowledge and understanding of the role of GRF and GIF genes during plant evolution has been fragmentary. RESULTS In this study, a large number of genomic and transcriptomic datasets of algae, mosses, ferns, gymnosperms and angiosperms were used to systematically analyze the evolution of GRF and GIF genes during the evolution of plants. The results showed that GRF gene first appeared in the charophyte Klebsormidium nitens, whereas the GIF genes originated relatively early, and these two gene families were mainly expanded by segmental duplication events after plant terrestrialization. During the process of evolution, the protein sequences and functions of GRF and GIF family genes are relatively conservative. As cooperative partner, GRF and GIF genes contain the similar types of cis-acting elements in their promoter regions, which enables them to have similar transcriptional response patterns, and both show higher levels of expression in reproductive organs and tissues and organs with strong capacity for cell division. Based on protein-protein interaction analysis and verification, we found that the GRF-GIF protein partnership began to be established in pteridophytes and is highly conserved across different terrestrial plants. CONCLUSIONS These results provide a foundation for further exploration of the molecular evolution and biological functions of GRF and GIF genes.
Collapse
Affiliation(s)
- Xinghao Chen
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Jun Zhang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Shijie Wang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Hongyu Cai
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China
| | - Minsheng Yang
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China.
| | - Yan Dong
- Forest Department, Forestry College, Hebei Agricultural University, Baoding, China.
- Hebei Key Laboratory for Tree Genetic Resources and Forest Protection, 071000, Baoding, People's Republic of China.
| |
Collapse
|
5
|
Hawk T, Zadegan SB, Ozdemir S, Li P, Pantalone V, Staton M, Hewezi T. Conceptual Framework of Epigenetic Analyses of Plant Responses to Sedentary Endoparasitic Nematodes. Methods Mol Biol 2024; 2756:327-341. [PMID: 38427303 DOI: 10.1007/978-1-0716-3638-1_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Epigenetic modifications including miRNA regulation, DNA methylation, and histone modifications play fundamental roles in establishing the interactions between host plants and parasitic nematodes. Over the past decade, an increasing number of studies revealed the key functions of various components of the plant epigenome in the regulation of gene expression and shaping plant responses to nematode infection. In this chapter, we provide a conceptual framework for methods used to investigate epigenetic regulation during plant-nematode interactions. We focus specifically on current and emerging methods used to study miRNA regulation and function. We also highlight various methods and analytical tools used to profile DNA methylation patterns and histone modification marks at the genome level. Our intention is simply to explain the advantages of various methods and how to overcome some limitations. With rapid development of single-cell sequencing technology and genome editing, advanced and new methodologies are expected to emerge in the near future to further improve our understanding of epigenetic regulation and function during plant-nematode interactions.
Collapse
Affiliation(s)
- Tracy Hawk
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | | | - Selin Ozdemir
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Peitong Li
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Vince Pantalone
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA
| | - Meg Staton
- Department of Entomology and Plant Pathology, University of Tennessee, Knoxville, TN, USA
| | - Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, TN, USA.
| |
Collapse
|
6
|
Liu Z, Zhang T, Xu R, Liu B, Han Y, Dong W, Xie Q, Tang Z, Lei X, Wang C, Fu Y, Gao C. BpGRP1 acts downstream of BpmiR396c/BpGRF3 to confer salt tolerance in Betula platyphylla. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:131-147. [PMID: 37703500 PMCID: PMC10754015 DOI: 10.1111/pbi.14173] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/22/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
Glycine-rich RNA-binding proteins (GRPs) have been implicated in the responses of plants to environmental stresses, but the function of GRP genes involved in salt stress and the underlying mechanism remain unclear. In this study, we identified BpGRP1 (glycine-rich RNA-binding protein), a Betula platyphylla gene that is induced under salt stress. The physiological and molecular responses to salt tolerance were investigated in both BpGRP1-overexpressing and suppressed conditions. BpGRF3 (growth-regulating factor 3) was identified as a regulatory factor upstream of BpGRP1. We demonstrated that overexpression of BpGRF3 significantly increased the salt tolerance of birch, whereas the grf3-1 mutant exhibited the opposite effect. Further analysis revealed that BpGRF3 and its interaction partner, BpSHMT, function upstream of BpGRP1. We demonstrated that BpmiR396c, as an upstream regulator of BpGRF3, could negatively regulate salt tolerance in birch. Furthermore, we uncovered evidence showing that the BpmiR396c/BpGRF3 regulatory module functions in mediating the salt response by regulating the associated physiological pathways. Our results indicate that BpmiR396c regulates the expression of BpGRF3, which plays a role in salt tolerance by targeting BpGRP1.
Collapse
Affiliation(s)
- Zhongyuan Liu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- College of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbinChina
| | - Tengqian Zhang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Ruiting Xu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Baichao Liu
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yating Han
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Wenfang Dong
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Qingjun Xie
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Zihao Tang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Xiaojin Lei
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Chao Wang
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| | - Yujie Fu
- Key Laboratory of Forest Plant EcologyMinistry of EducationNortheast Forestry UniversityHarbinChina
- College of ChemistryChemical Engineering and Resource UtilizationNortheast Forestry UniversityHarbinChina
| | - Caiqiu Gao
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinChina
| |
Collapse
|
7
|
Kishore Sahoo R, Jeughale KP, Sarkar S, Selvaraj S, Singh NR, Swain N, Balasubramaniasai C, Chidambaranathan P, Katara JL, Nayak AK, Samantaray S. Growing Conditions and Varietal Ecologies Differently Regulates the Growth-regulating-factor (GRFs) Gene Family in Rice. IRANIAN JOURNAL OF BIOTECHNOLOGY 2024; 22:e3697. [PMID: 38827337 PMCID: PMC11139448 DOI: 10.30498/ijb.2024.394984.3697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 12/31/2023] [Indexed: 06/04/2024]
Abstract
Background Growth-regulating factors (GRFs) are crucial in rice for controlling plant growth and development. Among the rice cultivation practices, aerobic methods are water efficient but result in significant yield reduction relative to non-aerobic cultivation. Therefore, mechanistic insights into aerobic rice cultivation are important for improving the aerobic performance of rice. Objectives This study aimed to examine the evolution of GRFs in different rice species, analyse the phenotypic differences between aerobic and non-aerobic conditions in three rice varieties, and assess the expression of GRFs in these varieties under both aerobic and non-aerobic conditions. Materials and Methods This study comprehensively examined the GRFs gene family in 11 rice species (Oryza barthii, Oryza brachyantha, Oryza glaberrima, Oryza glumipatula, Oryza sativa subsp. indica, Oryza longistaminata, Oryza meridionalis, Oryza nivara, Oryza punctata, Oryza rufipogon, Oryza sativa subsp. japonica) focusing on phylogenetic analysis. Additionally, the expression patterns of 12 GRFs were investigated in three distinct genotypes of O. sativa subsp. indica rice, under both non-aerobic and aerobic conditions. Results Three major phylogenetic clades were formed based on conserved motifs in the 123 GRFs proteins in eleven rice species. Further, novel motifs were identified especially in O. longistaminata indicative of the species level evolutionary differences in rice. Among the trait performance, the number of tillers was reduced by ~ 36% under aerobic conditions, but the reduction was found to be less in CR Dhan 201, an aerobic variety. Besides, three GRFs namely GRF3, GRF4, and GRF7 were found to be distinct in expression between aerobic and non-aerobic conditions. Conclusion Three GRF genes namely GRF3, GRF4, and GRF7 could be associated with the aerobic adaptation in rice.
Collapse
Affiliation(s)
- Raj Kishore Sahoo
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
- Department of Botany, Ravenshaw University, Cuttack, India
| | | | - Suman Sarkar
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | | | | | - Nibedita Swain
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | | | | | - Jawahar Lal Katara
- Crop Improvement Division, ICAR-National Rice Research Institute, Cuttack, India
| | - Amaresh Kumar Nayak
- Crop Production Division, ICAR-National Rice Research Institute, Cuttack, India
| | | |
Collapse
|
8
|
Cheng Z, Wen S, Wu Y, Shang L, Wu L, Lyu D, Yu H, Wang J, Jian H. Comparatively Evolution and Expression Analysis of GRF Transcription Factor Genes in Seven Plant Species. PLANTS (BASEL, SWITZERLAND) 2023; 12:2790. [PMID: 37570944 PMCID: PMC10421444 DOI: 10.3390/plants12152790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 07/16/2023] [Accepted: 07/20/2023] [Indexed: 08/13/2023]
Abstract
Growth regulatory factors (GRF) are plant-specific transcription factors that play pivotal roles in growth and various abiotic stresses regulation. However, adaptive evolution of GRF gene family in land plants are still being elucidated. Here, we performed the evolutionary and expression analysis of GRF gene family from seven representative species. Extensive phylogenetic analyses and gene structure analysis revealed that the number of genes, QLQ domain and WRC domain identified in higher plants was significantly greater than those identified in lower plants. Besides, dispersed duplication and WGD/segmental duplication effectively promoted expansion of the GRF gene family. The expression patterns of GRF gene family and target genes were found in multiple floral organs and abundant in actively growing tissues. They were also found to be particularly expressed in response to various abiotic stresses, with stress-related elements in promoters, implying potential roles in floral development and abiotic stress. Our analysis in GRF gene family interaction network indicated the similar results that GRFs resist to abiotic stresses with the cooperation of other transcription factors like GIFs. This study provides insights into evolution in the GRF gene family, together with expression patterns valuable for future functional researches of plant abiotic stress biology.
Collapse
Affiliation(s)
- Zhihan Cheng
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Shiqi Wen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Yuke Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lina Shang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
| | - Lin Wu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Dianqiu Lyu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| | - Hongtao Yu
- Suihua Branch of Heilongjiang Academy of Agriculture Sciences, Suihua 152052, China;
| | - Jichun Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
| | - Hongju Jian
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Southwest University, Chongqing 400715, China; (Z.C.); (S.W.); (Y.W.); (L.S.); (L.W.); (D.L.); (J.W.)
- College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China
- State Cultivation Base of Crop Stress Biology for Southern Mountainous Land of Southwest University, Chongqing 400715, China
- Chongqing Key Laboratory of Biology and Genetic Breeding for Tuber and Root Crops, Chongqing 400715, China
| |
Collapse
|
9
|
Bennett M, Hawk TE, Lopes-Caitar VS, Adams N, Rice JH, Hewezi T. Establishment and maintenance of DNA methylation in nematode feeding sites. FRONTIERS IN PLANT SCIENCE 2023; 13:1111623. [PMID: 36704169 PMCID: PMC9873351 DOI: 10.3389/fpls.2022.1111623] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 12/07/2022] [Indexed: 06/18/2023]
Abstract
A growing body of evidence indicates that epigenetic mechanisms, particularly DNA methylation, play key regulatory roles in plant-nematode interactions. Nevertheless, the transcriptional activity of key genes mediating DNA methylation and active demethylation in the nematode feeding sites remains largely unknown. Here, we profiled the promoter activity of 12 genes involved in maintenance and de novo establishment of DNA methylation and active demethylation in the syncytia and galls induced respectively by the cyst nematode Heterodera schachtii and the root-knot nematode Meloidogyne incognita in Arabidopsis roots. The promoter activity assays revealed that expression of the CG-context methyltransferases is restricted to feeding site formation and development stages. Chromomethylase1 (CMT1), CMT2, and CMT3 and Domains Rearranged Methyltransferase2 (DRM2) and DRM3, which mediate non-CG methylation, showed similar and distinct expression patterns in the syncytia and galls at various time points. Notably, the promoters of various DNA demethylases were more active in galls as compared with the syncytia, particularly during the early stage of infection. Mutants impaired in CG or CHH methylation similarly enhanced plant susceptibility to H. schachtii and M. incognita, whereas mutants impaired in CHG methylation reduced plant susceptibility only to M. incognita. Interestingly, hypermethylated mutants defective in active DNA demethylation exhibited contrasting responses to infection by H. schachtii and M. incognita, a finding most likely associated with differential regulation of defense-related genes in these mutants upon nematode infection. Our results point to methylation-dependent mechanisms regulating plant responses to infection by cyst and root-knot nematodes.
Collapse
|
10
|
Hu Q, Jiang B, Wang L, Song Y, Tang X, Zhao Y, Fan X, Gu Y, Zheng Q, Cheng J, Zhang H. Genome-wide analysis of growth-regulating factor genes in grape (Vitis vinifera L.): identification, characterization and their responsive expression to osmotic stress. PLANT CELL REPORTS 2023; 42:107-121. [PMID: 36284021 DOI: 10.1007/s00299-022-02939-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Identification, characterization and osmotic stress responsive expression of growth-regulating factor genes in grape. The growth and fruit production of grape vine are severely affected by adverse environmental conditions. Growth-regulating factors (GRFs) play a vital role in the regulation of plant growth, reproduction and stress tolerance. However, their biological functions in fruit vine crops are still largely unknown. In the present study, a total number of nine VvGRFs were identified in the grape genome. Phylogenetic and collinear relationship analysis revealed that they formed seven subfamilies, and have gone through three segmental duplication events. All VvGRFs were predicted to be nucleic localized and contained both the conserved QLQ and WRC domains at their N-terminals, one of the typical structural features of GRF proteins. Quantitative real-time PCR analyses demonstrated that all VvGRFs, with a predominant expression of VvGRF7, were constitutively expressed in roots, leaves and stems of grape plants, and showed responsive expression to osmotic stress. Further growth phenotypic analysis demonstrated that ectopic expression of VvGRF7 promoted the growth and sensitivity of transgenic Arabidopsis plants to osmotic stress. Our findings provide important information for the future study of VvGRF gene functions, and potential gene resources for the genetic breeding of new fruit vine varieties with improved fruit yield and stress tolerance.
Collapse
Affiliation(s)
- Qiang Hu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- Yantai Institute, China Agricultural University, 2006 Binhaizhong Road, Yantai, 264670, Shandong Province, China
| | - Binyu Jiang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Liru Wang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yanjing Song
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China
| | - Xiaoli Tang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yanhong Zhao
- College of Agriculture, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Xiaobin Fan
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
| | - Yafeng Gu
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China
- Yantai Institute, China Agricultural University, 2006 Binhaizhong Road, Yantai, 264670, Shandong Province, China
| | - Qiuling Zheng
- Yantai Academy of Agricultural Sciences, 26 West Gangcheng Avenue, Yantai, 265599, Shandong Province, China
| | - Jieshan Cheng
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
| | - Hongxia Zhang
- The Engineering Research Institute of Agriculture and Forestry, Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
- Shandong Institute of Sericulture, Shandong Academy of Agricultural Sciences, 21 Zhichubei Road, Yantai, 264001, Shandong Province, China.
- Key Laboratory of Molecular Module-Based Breeding of High Yield and Abiotic Resistant Plants in Universities of Shandong (Ludong University), Ludong University, 186 Hongqizhong Road, Yantai, 264025, Shandong Province, China.
| |
Collapse
|
11
|
Liu ZY, Han YT, Wang CY, Lei XJ, Wang YY, Dong WF, Xie QJ, Fu YJ, Gao CQ. The growth-regulating factor PdbGRF1 positively regulates the salt stress response in Populus davidiana × P. bolleana. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 326:111502. [PMID: 36252856 DOI: 10.1016/j.plantsci.2022.111502] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 08/26/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Growth-regulating factor (GRF) is a transcription factor unique to plants that plays a crucial role in the growth, development and stress adaptation of plants. However, information on the GRFs related to salt stress in Populus davidiana × P. bolleana is lacking. In this study, we characterized the activity of PdbGRF1 in transgenic Populus davidiana × P. bolleana under salt stress. qRTPCR analyses showed that PdbGRF1 was highly expressed in young leaves and that the pattern of PdbGRF1 expression was significantly changed at most time points under salt stress, which suggests that PdbGRF1 expression may be related to the salt stress response. Moreover, PdbGRF1 overexpression enhanced tolerance to salt stress. A physiological parameter analysis showed that the overexpression of PdbGRF1 significantly decreased the contents of hydrogen peroxide (H2O2) and malondialdehyde (MDA) and increased the activities of antioxidant enzymes (SOD and POD) and the proline content. A molecular analysis showed that PdbGRF1 regulated the expression of PdbPOD17 and PdbAKT1 by binding to the DRE ('A/GCCGAC') in their respective promoters. Together, our results demonstrate that the binding of PdbGRF1 to DRE regulates genes related to stress tolerance and activates the associated physiological pathways, and these effects increase the ROS scavenging ability, reduce the degree of damage to the plasma membrane and ultimately enhance the salt stress response in Populus davidiana × P. bolleana.
Collapse
Affiliation(s)
- Zhong-Yuan Liu
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ya-Ting Han
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Chun-Yao Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Xiao-Jin Lei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yuan-Yuan Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Wen-Fang Dong
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Qing-Jun Xie
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China
| | - Yu-Jie Fu
- Key Laboratory of Forest Plant Ecology, Ministry of Education, Northeast Forestry University, Harbin 150040, China; College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China.
| | - Cai-Qiu Gao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China.
| |
Collapse
|
12
|
Zhang S, Wu Z, Ma D, Zhai J, Han X, Jiang Z, Liu S, Xu J, Jiao P, Li Z. Chromosome-scale assemblies of the male and female Populus euphratica genomes reveal the molecular basis of sex determination and sexual dimorphism. Commun Biol 2022; 5:1186. [PMCID: PMC9636151 DOI: 10.1038/s42003-022-04145-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 10/20/2022] [Indexed: 11/06/2022] Open
Abstract
Reference-quality genomes of both sexes are essential for studying sex determination and sex-chromosome evolution, as their gene contents and expression profiles differ. Here, we present independent chromosome-level genome assemblies for the female (XX) and male (XY) genomes of desert poplar (Populus euphratica), resolving a 22.7-Mb X and 24.8-Mb Y chromosome. We also identified a relatively complete 761-kb sex-linked region (SLR) in the peritelomeric region on chromosome 14 (Y). Within the SLR, recombination around the partial repeats for the feminizing factor ARR17 (ARABIDOPSIS RESPONSE REGULATOR 17) was potentially suppressed by flanking palindromic arms and the dense accumulation of retrotransposons. The inverted small segments S1 and S2 of ARR17 exhibited relaxed selective pressure and triggered sex determination by generating 24-nt small interfering RNAs that induce male-specific hyper-methylation at the promoter of the autosomal targeted ARR17. We also detected two male-specific fusion genes encoding proteins with NB-ARC domains at the breakpoint region of an inversion in the SLR that may be responsible for the observed sexual dimorphism in immune responses. Our results show that the SLR appears to follow proposed evolutionary dynamics for sex chromosomes and advance our understanding of sex determination and the evolution of sex chromosomes in Populus. Reference-quality genomes of both sexes of the dioecious tree species, Populus euphratica, provide further insight into the evolution of Populus sex chromosomes and highlight male-specific fusion genes that may contribute to sexual dimorphism.
Collapse
Affiliation(s)
- Shanhe Zhang
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhihua Wu
- grid.453534.00000 0001 2219 2654College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, 321004 China
| | - De Ma
- grid.410753.4Novogene Bioinformatics Institute, Beijing, 100083 China
| | - Juntuan Zhai
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Xiaoli Han
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhenbo Jiang
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Shuo Liu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074 China
| | - Jingdong Xu
- Hubei Provincial Key Laboratory for Protection and Application of Special Plant Germplasm in Wuling Area of China, College of Life Sciences, South-Central Minzu University, Wuhan, 430074 China
| | - Peipei Jiao
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| | - Zhijun Li
- grid.443240.50000 0004 1760 4679College of Life Sciences and Technology, Tarim University/Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin, Xinjiang Production & Construction Corps/Research Center of Populus Euphratica, Aral, 843300 China
| |
Collapse
|
13
|
Joshi S, Dar AI, Acharya A, Joshi R. Charged Gold Nanoparticles Promote In Vitro Proliferation in Nardostachys jatamansi by Differentially Regulating Chlorophyll Content, Hormone Concentration, and Antioxidant Activity. Antioxidants (Basel) 2022; 11:antiox11101962. [PMID: 36290684 PMCID: PMC9598260 DOI: 10.3390/antiox11101962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022] Open
Abstract
Nardostachys jatamansi is a critically endangered medicinal plant and endemic to the Himalayas, having high commercial demand globally. The accumulation of various secondary metabolites in its shoots and roots with antioxidant potential are well-documented in traditional as well as modern medicine systems. In the present study, we first attempted to investigate the impact of citrate (−ve charge, 11.1 ± 1.9 nm) and CTAB (+ve charge, 19.5 ± 3.2 nm) coated gold nanoparticles (AuNPs) on the in vitro proliferation and antioxidant activities of N. jatamansi. Both the nanoparticles differentially affected the morphological and biochemical parameters, chlorophyll content, internal hormone concentration, and antioxidant activities in a concentration-dependent (10–100 µM) manner. Vigorous shooting was observed in half strength MS medium supplemented with IAA (1 mg/L) with 60 µM citrate-AuNPs (46.4 ± 3.7 mm) and 40 µM CTAB-AuNPs (42.2 ± 3.2 mm). Similarly, the maximum number of roots (5.00 ± 0.67 and 5.33 ± 0.58) and root length (29.9 ± 1.5 mm and 27.3 ± 4.8 mm) was reported in half-strength MS medium with IAA (1 mg/L) supplemented with 60 µM citrate-AuNPs and 40 µM CTAB-AuNPs, respectively. In addition, plants growing on MS medium supplemented with 60 µM citrate-AuNPs and 40 µM CTAB-AuNPs showed significantly enhanced photosynthetic pigments (chlorophyll a and b, carotenoids, and total chlorophyll), internal hormone concentration (GA3, IAA, and ABA), and antioxidant activities (total phenolics, flavonoids, DPPH, and SOD enzyme activity). Moreover, the transcript analysis of ANR1, ARF18, PLY9, SAUR28, GID1A, GRF1, SOD, and CAT further confirmed the role of 60 µM citrate-AuNPs and 40 µM CTAB-AuNPs in the improvement in the growth and antioxidant activities of N. jatamansi. Bearing in mind the urgent requirements of the effective conservation measures of this endangered species, the present findings suggest the elicitation of citrate-AuNPs and CTAB-AuNPs would significantly improve the potential applications of N. jatamansi in the medicinal plant-based industry.
Collapse
Affiliation(s)
- Shubham Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Aqib I. Dar
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Amitabha Acharya
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
| | - Rohit Joshi
- Division of Biotechnology, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur 176061, Himachal Pradesh, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-HRDC Campus, Ghaziabad 201002, Uttar Pradesh, India
- Correspondence: or
| |
Collapse
|
14
|
Xia W, Zong J, Zheng K, Wang Y, Zhang D, Guo S, Sun G. DgCspC gene overexpression improves cotton yield and tolerance to drought and salt stress comparison with wild-type plants. FRONTIERS IN PLANT SCIENCE 2022; 13:985900. [PMID: 36147229 PMCID: PMC9485673 DOI: 10.3389/fpls.2022.985900] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 08/18/2022] [Indexed: 06/16/2023]
Abstract
Drought and high salinity are key limiting factors for cotton quality and yield. Therefore, research is increasingly focused on mining effective genes to improve the stress resistance of cotton. Few studies have demonstrated that bacterial Cold shock proteins (Csps) overexpression can enhance plants stress tolerance. Here, we first identified and cloned a gene DgCspC encoding 88 amino acids (aa) with an open reading frame (ORF) of 264 base pairs (bp) from a Deinococcus gobiensis I-0 with high resistance to strong radiation, drought, and high temperature. In this study, heterologous expression of DgCspC promoted cotton growth, as exhibited by larger leaf size and higher plant height than the wild-type plants. Moreover, transgenic cotton lines showed higher tolerance to drought and salts stresses than wild-type plants, as revealed by susceptibility phenotype and physiological indexes. Furthermore, the enhanced stresses tolerance was attributed to high capacity of cellular osmotic regulation and ROS scavenging resulted from DgCspC expression modulating relative genes upregulated to cause proline and betaine accumulation. Meanwhile, photosynthetic efficiency and yield were significantly higher in the transgenic cotton than in the wild-type control under field conditions. This study provides a newly effective gene resource to cultivate new cotton varieties with high stresses resistance and yield.
Collapse
Affiliation(s)
- Wenwen Xia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- Hainan Yazhou Bay Seed Lab, Sanya, China
| | - Jiahang Zong
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Kai Zheng
- College of Agriculture, Xinjiang Agricultural University, Urumqi, China
| | - Yuan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Dongling Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sandui Guo
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Guoqing Sun
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
15
|
Khan R, Ma X, Hussain Q, Asim M, Iqbal A, Ren X, Shah S, Chen K, Shi Y. Application of 2,4-Epibrassinolide Improves Drought Tolerance in Tobacco through Physiological and Biochemical Mechanisms. BIOLOGY 2022; 11:biology11081192. [PMID: 36009819 PMCID: PMC9405153 DOI: 10.3390/biology11081192] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 08/05/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
Drought stress is a major abiotic stress that hinders plant growth and development. Brassinosteroids (BR), including 2,4-epibrassinolide (EBR), play important roles in plant growth, development, and responses to abiotic stresses, including drought stress. This work investigates exogenous EBR application roles in improving drought tolerance in tobacco. Tobacco plants were divided into three groups: WW (well-watered), DS (drought stress), and DSB (drought stress + 0.05 mM EBR). The results revealed that DS decreased the leaf thickness (LT), whereas EBR application upregulated genes related to cell expansion, which were induced by the BR (DWF4, HERK2, and BZR1) and IAA (ARF9, ARF6, PIN1, SAUR19, and ABP1) signaling pathway. This promoted LT by 28%, increasing plant adaptation. Furthermore, EBR application improved SOD (22%), POD (11%), and CAT (5%) enzyme activities and their related genes expression (FeSOD, POD, and CAT) along with a higher accumulation of osmoregulatory substances such as proline (29%) and soluble sugars (14%) under DS and conferred drought tolerance. Finally, EBR application augmented the auxin (IAA) (21%) and brassinolide (131%) contents and upregulated genes related to drought tolerance induced by the BR (BRL3 and BZR2) and IAA (YUCCA6, SAUR32, and IAA26) signaling pathways. These results suggest that it could play an important role in improving mechanisms of drought tolerance in tobacco.
Collapse
Affiliation(s)
- Rayyan Khan
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Xinghua Ma
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
- Correspondence:
| | - Quaid Hussain
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, 666 Wusu Street, Hangzhou 311300, China
| | - Muhammad Asim
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Anas Iqbal
- College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaochun Ren
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Shahen Shah
- Department of Agronomy, The University of Agriculture Peshawar, Peshawar 25130, Pakistan
| | - Keling Chen
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| | - Yi Shi
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China
| |
Collapse
|
16
|
Bennett M, Piya S, Baum TJ, Hewezi T. miR778 mediates gene expression, histone modification, and DNA methylation during cyst nematode parasitism. PLANT PHYSIOLOGY 2022; 189:2432-2453. [PMID: 35579365 PMCID: PMC9342967 DOI: 10.1093/plphys/kiac228] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 04/27/2022] [Indexed: 05/20/2023]
Abstract
Despite the known critical regulatory functions of microRNAs, histone modifications, and DNA methylation in reprograming plant epigenomes in response to pathogen infection, the molecular mechanisms underlying the tight coordination of these components remain poorly understood. Here, we show how Arabidopsis (Arabidopsis thaliana) miR778 coordinately modulates the root transcriptome, histone methylation, and DNA methylation via post-transcriptional regulation of the H3K9 methyltransferases SU(var)3-9 homolog 5 (SUVH5) and SUVH6 upon infection by the beet cyst nematode Heterodera schachtii. miR778 post-transcriptionally silences SUVH5 and SUVH6 upon nematode infection. Manipulation of the expression of miR778 and its two target genes significantly altered plant susceptibility to H. schachtii. RNA-seq analysis revealed a key role of SUVH5 and SUVH6 in reprograming the transcriptome of Arabidopsis roots upon H. schachtii infection. In addition, chromatin immunoprecipitation (ChIP)-seq analysis established SUVH5 and SUVH6 as the main enzymes mediating H3K9me2 deposition in Arabidopsis roots in response to nematode infection. ChIP-seq analysis also showed that these methyltransferases possess distinct DNA binding preferences in that they are targeting transposable elements under noninfected conditions and protein-coding genes in infected plants. Further analyses indicated that H3K9me2 deposition directed by SUVH5 and SUVH6 contributes to gene expression changes both in roots and in nematode feeding sites and preferentially associates with CG DNA methylation. Together, our results uncovered multi-layered epigenetic regulatory mechanisms coordinated by miR778 during Arabidopsis-H. schachtii interactions.
Collapse
Affiliation(s)
- Morgan Bennett
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Sarbottam Piya
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Thomas J Baum
- Department of Plant Pathology and Microbiology, Iowa State University, Ames, Iowa 50011, USA
| | | |
Collapse
|
17
|
Kaur G, Yadav IS, Bhatia D, Vikal Y, Neelam K, Dhillon NK, Praba UP, Mangat GS, Singh K. BSA-seq Identifies a Major Locus on Chromosome 6 for Root-Knot Nematode (Meloidogyne graminicola) Resistance From Oryza glaberrima. Front Genet 2022; 13:871833. [PMID: 35774507 PMCID: PMC9237506 DOI: 10.3389/fgene.2022.871833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Root-knot nematode (Meloidogyne graminicola) is one of the emerging threats to rice production worldwide that causes substantial yield reductions. There is a progressive shift of the cropping system from traditional transplanting to direct-seeded water-saving rice production that favored the development of M. graminicola. Scouting and deploying new resistance genes is an economical approach to managing the root-knot nematodes. Here, we report that the inheritance of root-knot nematode resistance in Oryza glaberrima acc. IRGC102206 is governed by a single dominant gene. Traditional mapping coupled with BSA-seq is used to map nematode resistance gene(s) using the BC1F1 population derived from a cross of O. sativa cv. PR121 (S) and O. glaberrima acc. IRGC102206 (R). One major novel genomic region spanning a 3.0-Mb interval on chromosome 6 and two minor QTLs on chromosomes 2 and 4 are the potential genomic regions associated with rice root-knot nematode resistance. Within the QTL regions, 19 putative candidate genes contain 81 non-synonymous variants. The detected major candidate region could be fine mapped to accelerate marker-assisted breeding for root-knot nematode resistance in rice.
Collapse
Affiliation(s)
- Gurwinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Inderjit Singh Yadav
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Dharminder Bhatia
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Yogesh Vikal
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- *Correspondence: Yogesh Vikal,
| | - Kumari Neelam
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | | | - Umesh Preethi Praba
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
| | - Gurjit Singh Mangat
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Kuldeep Singh
- School of Agricultural Biotechnology, Punjab Agricultural University, Ludhiana, India
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Hyderabad, India
| |
Collapse
|
18
|
Identification of Fruit Traits Related QTLs and a Candidate Gene, CaBRX, Controlling Locule Number in Pepper (Capsicum annuum L.). HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8020146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Fruit traits are important in pepper (Capsicum annuum L.) and affect its quality and yield. These traits are controlled by quantitative trait loci (QTLs). In this study, we identified many major QTLs that control fruit length (Ftl), fruit diameter (Ftd), fruit shape (Fts), fruit weight (Ftw) and locule number (Lcn) in the F2 and F2:3 populations developed from the QTL mapping of GS6 (P1) and Qiemen (P2). A total of 111 simple sequence repeats and insertion/deletion markers were utilized to construct a linkage map with 12 linkage groups over a length of 1320.72 cM. An inclusive composite interval mapping analysis indicated that many QTLs were detected and included ftl2.1, ftd2.1, fts1.1, ftw2.1 and lcn1.1. As a novel QTL, lcn1.1 was located between HM1112 and EPMS709, and the genetic distance was 3.18 cM covering 60 predicted genes. Within the region, we identified Capana01g004285 as a candidate gene by functional annotation and expression analysis and found that it encodes the BREVIS RADIX (BRX) protein. Knockdown of CaBRX through the virus-induced gene silencing approach in GS6 reduced the number of locules and influenced the expressions of genes related to flower and locule development, suggesting that CaBRX plays an important function in the development of locules.
Collapse
|
19
|
Liu JN, Ma X, Yan L, Liang Q, Fang H, Wang C, Dong Y, Chai Z, Zhou R, Bao Y, Wang L, Gai S, Lang X, Yang KQ, Chen R, Wu D. MicroRNA and Degradome Profiling Uncover Defense Response of Fraxinus velutina Torr. to Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:847853. [PMID: 35432418 PMCID: PMC9011107 DOI: 10.3389/fpls.2022.847853] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/23/2022] [Indexed: 05/13/2023]
Abstract
Soil salinization is a major environmental problem that seriously threatens the sustainable development of regional ecosystems and local economies. Fraxinus velutina Torr. is an excellent salt-tolerant tree species, which is widely planted in the saline-alkaline soils in China. A growing body of evidence shows that microRNAs (miRNAs) play important roles in the defense response of plants to salt stress; however, how miRNAs in F. velutina exert anti-salt stress remains unclear. We previously identified two contrasting F. velutina cuttings clones, salt-tolerant (R7) and salt-sensitive (S4) and found that R7 exhibits higher salt tolerance than S4. To identify salt-responsive miRNAs and their target genes, the leaves and roots of R7 and S4 exposed to salt stress were subjected to miRNA and degradome sequencing analysis. The results showed that compared with S4, R7 showed 89 and 138 differentially expressed miRNAs in leaves and roots, respectively. Specifically, in R7 leaves, miR164d, miR171b/c, miR396a, and miR160g targeting NAC1, SCL22, GRF1, and ARF18, respectively, were involved in salt tolerance. In R7 roots, miR396a, miR156a/b, miR8175, miR319a/d, and miR393a targeting TGA2.3, SBP14, GR-RBP, TCP2/4, and TIR1, respectively, participated in salt stress responses. Taken together, the findings presented here revealed the key regulatory network of miRNAs in R7 responding to salt stress, thereby providing new insights into improving salt tolerance of F. velutina through miRNA manipulation.
Collapse
Affiliation(s)
- Jian Ning Liu
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Xinmei Ma
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Liping Yan
- Shandong Provincial Academy of Forestry, Jinan, China
| | - Qiang Liang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
| | - Hongcheng Fang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
| | - Changxi Wang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yuhui Dong
- College of Forestry, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
| | - Zejia Chai
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Rui Zhou
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Yan Bao
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Lichang Wang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Shasha Gai
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Xinya Lang
- College of Forestry, Shandong Agricultural University, Tai’an, China
| | - Ke Qiang Yang
- College of Forestry, Shandong Agricultural University, Tai’an, China
- Shandong Taishan Forest Ecosystem Research Station, Shandong Agricultural University, Tai’an, China
- State Forestry and Grassland Administration Key Laboratory of Silviculture in Downstream Areas of the Yellow River, Shandong Agricultural University, Tai’an, China
- *Correspondence: Ke Qiang Yang,
| | - Rong Chen
- Culaishan Forest Farm, Tai’an, China
- Rong Chen,
| | - Dejun Wu
- Shandong Provincial Academy of Forestry, Jinan, China
- Dejun Wu,
| |
Collapse
|
20
|
Salgado FF, Vieira LR, Silva VNB, Leão AP, Grynberg P, do Carmo Costa MM, Togawa RC, de Sousa CAF, Júnior MTS. Expression analysis of miRNAs and their putative target genes confirm a preponderant role of transcription factors in the early response of oil palm plants to salinity stress. BMC PLANT BIOLOGY 2021; 21:518. [PMID: 34749653 PMCID: PMC8573918 DOI: 10.1186/s12870-021-03296-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 10/26/2021] [Indexed: 05/04/2023]
Abstract
BACKGROUND Several mechanisms regulating gene expression contribute to restore and reestablish cellular homeostasis so that plants can adapt and survive in adverse situations. MicroRNAs (miRNAs) play roles important in the transcriptional and post-transcriptional regulation of gene expression, emerging as a regulatory molecule key in the responses to plant stress, such as cold, heat, drought, and salt. This work is a comprehensive and large-scale miRNA analysis performed to characterize the miRNA population present in oil palm (Elaeis guineensis Jacq.) exposed to a high level of salt stress, to identify miRNA-putative target genes in the oil palm genome, and to perform an in silico comparison of the expression profile of the miRNAs and their putative target genes. RESULTS A group of 79 miRNAs was found in oil palm, been 52 known miRNAs and 27 new ones. The known miRNAs found belonged to 28 families. Those miRNAs led to 229 distinct miRNA-putative target genes identified in the genome of oil palm. miRNAs and putative target genes differentially expressed under salinity stress were then selected for functional annotation analysis. The regulation of transcription, DNA-templated, and the oxidation-reduction process were the biological processes with the highest number of hits to the putative target genes, while protein binding and DNA binding were the molecular functions with the highest number of hits. Finally, the nucleus was the cellular component with the highest number of hits. The functional annotation of the putative target genes differentially expressed under salinity stress showed several ones coding for transcription factors which have already proven able to result in tolerance to salinity stress by overexpression or knockout in other plant species. CONCLUSIONS Our findings provide new insights into the early response of young oil palm plants to salinity stress and confirm an expected preponderant role of transcription factors - such as NF-YA3, HOX32, and GRF1 - in this response. Besides, it points out potential salt-responsive miRNAs and miRNA-putative target genes that one can utilize to develop oil palm plants tolerant to salinity stress.
Collapse
Affiliation(s)
| | - Letícia Rios Vieira
- PGBV - Universidade Federal de Lavras - UFLA, CEP 37200-000, Lavras, MG, Brazil
| | | | | | - Priscila Grynberg
- Embrapa Recursos Genéticos e Biotecnologia, CEP 70770-917, Brasília, DF, Brazil
| | | | | | | | - Manoel Teixeira Souza Júnior
- PGBV - Universidade Federal de Lavras - UFLA, CEP 37200-000, Lavras, MG, Brazil.
- Embrapa Agroenergia, CEP 70770-901, Brasília, DF, Brazil.
| |
Collapse
|
21
|
Uncovering Transcriptional Responses to Fractional Gravity in Arabidopsis Roots. Life (Basel) 2021; 11:life11101010. [PMID: 34685382 PMCID: PMC8539686 DOI: 10.3390/life11101010] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022] Open
Abstract
Although many reports characterize the transcriptional response of Arabidopsis seedlings to microgravity, few investigate the effect of partial or fractional gravity on gene expression. Understanding plant responses to fractional gravity is relevant for plant growth on lunar and Martian surfaces. The plant signaling flight experiment utilized the European Modular Cultivation System (EMCS) onboard the International Space Station (ISS). The EMCS consisted of two rotors within a controlled chamber allowing for two experimental conditions, microgravity (stationary rotor) and simulated gravity in space. Seedlings were grown for 5 days under continuous light in seed cassettes. The arrangement of the seed cassettes within each experimental container results in a gradient of fractional g (in the spinning rotor). To investigate whether gene expression patterns are sensitive to fractional g, we carried out transcriptional profiling of root samples exposed to microgravity or partial g (ranging from 0.53 to 0.88 g). Data were analyzed using DESeq2 with fractional g as a continuous variable in the design model in order to query gene expression across the gravity continuum. We identified a subset of genes whose expression correlates with changes in fractional g. Interestingly, the most responsive genes include those encoding transcription factors, defense, and cell wall-related proteins and heat shock proteins.
Collapse
|
22
|
Bennett M, Cleaves K, Hewezi T. Expression Patterns of DNA Methylation and Demethylation Genes during Plant Development and in Response to Phytohormones. Int J Mol Sci 2021; 22:ijms22189681. [PMID: 34575855 PMCID: PMC8470644 DOI: 10.3390/ijms22189681] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 01/02/2023] Open
Abstract
DNA methylation and demethylation precisely and effectively modulate gene expression during plant growth and development and in response to stress. However, expression profiles of genes involved in DNA methylation and demethylation during plant development and their responses to phytohormone treatments remain largely unknown. We characterized the spatiotemporal expression patterns of genes involved in de novo methylation, methyl maintenance, and active demethylation in roots, shoots, and reproductive organs using β-glucuronidase (GUS) reporter lines. Promoters of DNA demethylases were generally more highly active at the mature root tissues, whereas the promoters of genes involved in DNA methylation were more highly active at fast-growing root tissues. The promoter activity also implies that methylation status in shoot apex, leaf primordia, floral organs, and developing embryos is under tight equilibrium through the activity of genes involved in DNA methylation and demethylation. The promoter activity of DNA methylation and demethylation-related genes in response to various phytohormone treatments revealed that phytohormones can alter DNA methylation status in specific and redundant ways. Overall, our results illustrate that DNA methylation and demethylation pathways act synergistically and antagonistically in various tissues and in response to phytohormone treatments and point to the existence of hormone-linked methylome regulation mechanisms that may contribute to tissue differentiation and development.
Collapse
|
23
|
Khanna K, Ohri P, Bhardwaj R. Genetic toolbox and regulatory circuits of plant-nematode associations. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 165:137-146. [PMID: 34038810 DOI: 10.1016/j.plaphy.2021.05.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 05/16/2021] [Indexed: 06/12/2023]
Abstract
Plant-nematode associations are the most imperative area of study that forms the basis to understand their regulatory networks and coordinated functional aspects. Nematodes are highly parasitic organisms known so far, to cause relentless damage towards agricultural crops on a global scale. They pierce the roots of host plants and form neo-plastic feeding structures to extract out resources for their functional development. Moreover, they undergo re-differentiation within plant cells to form giant multi-nucleate feeding structures or syncytium. All these processes are facilitated by numerous transcriptomic, proteomic, metabolomic and epigenetic modifications, that regulate different biological attractions among plants and nematodes. Nevertheless, these mechanisms are quite remarkable and have been explored in the present review. Here, we have shed light on genomic as well as genetic approaches to acquire an effective understanding regarding plant-nematode associations. Transcriptomics have revealed an extensive network to unravel feeding mechanism of nematodes through gene-expression programming of target genes. Also, the regulatory circuits of epigenetic alterations through DNA-methylation, non-coding RNAs and histone modifications very well explain epigenetic profiling within plants. Since decades, research have observed many intricacies to elucidate the dynamic nature of epigenetic modulations in plant-nematode attractions. By this review, we have highlighted the functional aspects of small RNAs in inducing plant-nematode parasitism along with the putative role of miRNAs. These RNAs act as chief genetic elements to mediate the expressional changes in plants through post-transcriptional silencing of various effector proteins as well as transcriptional factors. A pragmatic role of miRNAs in modulating gene expression in nematode infection and feeding site development have also been reviewed. Hence, they have been considered master regulators for functional reprogramming the expression during establishment of feeding sites. We have also encapsulated the advancement of genome-broadened DNA-methylation and untangled the nematode mediated dynamic alterations within plant methylome along with assessing transcriptional activities of various genes and transposons. In particular, we have highlighted the role of effector proteins in stimulating epigenetic changes. Finally, we have emerged towards a molecular-based core understanding about plant-nematode associations.
Collapse
Affiliation(s)
- Kanika Khanna
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Puja Ohri
- Department of Zoology, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| | - Renu Bhardwaj
- Department of Botanical and Environmental Sciences, Guru Nanak Dev University, Amritsar, 143005, Punjab, India.
| |
Collapse
|
24
|
Beltramino M, Debernardi JM, Ferela A, Palatnik JF. ARF2 represses expression of plant GRF transcription factors in a complementary mechanism to microRNA miR396. PLANT PHYSIOLOGY 2021; 185:1798-1812. [PMID: 33580700 PMCID: PMC8133599 DOI: 10.1093/plphys/kiab014] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Members of the GROWTH REGULATING FACTOR (GRF) family of transcription factors play key roles in the promotion of plant growth and development. Many GRFs are post-transcriptionally repressed by microRNA (miRNA) miR396, an evolutionarily conserved small RNA, which restricts their expression to proliferative tissue. We performed a comprehensive analysis of the GRF family in eudicot plants and found that in many species all the GRFs have a miR396-binding site. Yet, we also identified GRFs with mutations in the sequence recognized by miR396, suggesting a partial or complete release of their post-transcriptional repression. Interestingly, Brassicaceae species share a group of GRFs that lack miR396 regulation, including Arabidopsis GRF5 and GRF6. We show that instead of miR396-mediated post-transcriptional regulation, the spatiotemporal control of GRF5 is achieved through evolutionarily conserved promoter sequences, and that AUXIN RESPONSE FACTOR 2 (ARF2) binds to such conserved sequences to repress GRF5 expression. Furthermore, we demonstrate that the unchecked expression of GRF5 in arf2 mutants is responsible for the increased cell number of arf2 leaves. The results describe a switch in the repression mechanisms that control the expression of GRFs and mechanistically link the control of leaf growth by miR396, GRFs, and ARF2 transcription factors.
Collapse
Affiliation(s)
- Matías Beltramino
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Juan Manuel Debernardi
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Antonella Ferela
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
| | - Javier F Palatnik
- Instituto de Biología Molecular y Celular de Rosario (IBR), CONICET and Universidad Nacional de Rosario, Rosario 2000, Argentina
- Centro de Estudios Interdisciplinarios, Universidad Nacional de Rosario, Rosario 2000, Argentina
| |
Collapse
|
25
|
Wu W, Li J, Wang Q, Lv K, Du K, Zhang W, Li Q, Kang X, Wei H. Growth-regulating factor 5 (GRF5)-mediated gene regulatory network promotes leaf growth and expansion in poplar. THE NEW PHYTOLOGIST 2021; 230:612-628. [PMID: 33423287 PMCID: PMC8048564 DOI: 10.1111/nph.17179] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/28/2020] [Indexed: 05/07/2023]
Abstract
Although polyploid plants have larger leaves than their diploid counterparts, the molecular mechanisms underlying this difference (or trait) remain elusive. Differentially expressed genes (DEGs) between triploid and full-sib diploid poplar trees were identified from two transcriptomic data sets followed by a gene association study among DEGs to identify key leaf growth regulators. Yeast one-hybrid system, electrophoretic mobility shift assay, and dual-luciferase assay were employed to substantiate that PpnGRF5-1 directly regulated PpnCKX1. The interactions between PpnGRF5-1 and growth-regulating factor (GRF)-interacting factors (GIFs) were experimentally validated and a multilayered hierarchical regulatory network (ML-hGRN)-mediated by PpnGRF5-1 was constructed with top-down graphic Gaussian model (GGM) algorithm by combining RNA-sequencing data from its overexpression lines and DAP-sequencing data. PpnGRF5-1 is a negative regulator of PpnCKX1. Overexpression of PpnGRF5-1 in diploid transgenic lines resulted in larger leaves resembling those of triploids, and significantly increased zeatin and isopentenyladenine in the apical buds and third leaves. PpnGRF5-1 also interacted with GIFs to increase its regulatory diversity and capacity. An ML-hGRN-mediated by PpnGRF5-1 was obtained and could largely elucidate larger leaves. PpnGRF5-1 and the ML-hGRN-mediated by PpnGRF5-1 were underlying the leaf growth and development.
Collapse
Affiliation(s)
- Wenqi Wu
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijing100083China
| | - Jiang Li
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijing100083China
| | - Qiao Wang
- State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijing100091China
| | - Kaiwen Lv
- State Key Laboratory of Tree Genetics and BreedingNortheast Forestry UniversityHarbinHeilongjiang150040China
| | - Kang Du
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijing100083China
| | - Wenli Zhang
- State Key Laboratory for Crop Genetics and Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu210095China
| | - Quanzi Li
- State Key Laboratory of Tree Genetics and BreedingChinese Academy of ForestryBeijing100091China
| | - Xiangyang Kang
- Beijing Advanced Innovation Center for Tree Breeding by Molecular DesignBeijing Forestry UniversityBeijing100083China
| | - Hairong Wei
- College of Forest Resources and Environmental ScienceMichigan Technological UniversityHoughtonMI49931USA
| |
Collapse
|
26
|
Dou D, Han S, Cao L, Ku L, Liu H, Su H, Ren Z, Zhang D, Zeng H, Dong Y, Liu Z, Zhu F, Zhao Q, Xie J, Liu Y, Cheng H, Chen Y. CLA4 regulates leaf angle through multiple hormone signaling pathways in maize. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1782-1794. [PMID: 33270106 DOI: 10.1093/jxb/eraa565] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Leaf angle is an important agronomic trait in cereals and shares a close relationship with crop architecture and grain yield. Although it has been previously reported that ZmCLA4 can influence leaf angle, the underlying mechanism remains unclear. In this study, we used the Gal4-LexA/UAS system and transactivation analysis to demonstrate in maize (Zea mays) that ZmCLA4 is a transcriptional repressor that regulates leaf angle. DNA affinity purification sequencing (DAP-Seq) analysis revealed that ZmCLA4 mainly binds to promoters containing the EAR motif (CACCGGAC) as well as to two other motifs (CCGARGS and CDTCNTC) to inhibit the expression of its target genes. Further analysis of ZmCLA4 target genes indicated that ZmCLA4 functions as a hub of multiple plant hormone signaling pathways: ZmCLA4 was found to directly bind to the promoters of multiple genes including ZmARF22 and ZmIAA26 in the auxin transport pathway, ZmBZR3 in the brassinosteroid signaling pathway, two ZmWRKY genes involved in abscisic acid metabolism, ZmCYP genes (ZmCYP75B1, ZmCYP93D1) related to jasmonic acid metabolism, and ZmABI3 involved in the ethylene response pathway. Overall, our work provides deep insights into the ZmCLA4 regulatory network in controlling leaf angle in maize.
Collapse
Affiliation(s)
- Dandan Dou
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Shengbo Han
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Liru Cao
- Henan Academy of Agricultural Science, Zhengzhou, Henan, China
| | - Lixia Ku
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Huafeng Liu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Huihui Su
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Zhenzhen Ren
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Dongling Zhang
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Haixia Zeng
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Yahui Dong
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Zhixie Liu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Fangfang Zhu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Qiannan Zhao
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Jiarong Xie
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Yajing Liu
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Haiyang Cheng
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| | - Yanhui Chen
- College of Agronomy, Synergetic Innovation Center of Henan Grain Crops and National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengdong New Area, Zhengzhou, Henan, China
| |
Collapse
|
27
|
Fracasso A, Vallino M, Staropoli A, Vinale F, Amaducci S, Carra A. Increased water use efficiency in miR396-downregulated tomato plants. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 303:110729. [PMID: 33487336 DOI: 10.1016/j.plantsci.2020.110729] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 06/12/2023]
Abstract
MicroRNAs regulate plant development and responses to biotic and abiotic stresses but their impact on water use efficiency (WUE) is poorly known. Increasing WUE is a major task in crop improvement programs aimed to meet the challenges posed by the reduction in water availability associated with the ongoing climatic change. We have examined the physiological and molecular response to water stress of tomato (Solanum lycopersicum L.) plants downregulated for miR396 by target mimicry. In water stress conditions, miR396-downregulated plants displayed reduced transpiration and a less then proportional decrease in the photosynthetic rate that resulted in higher WUE. The increase in WUE was associated with faster foliar accumulation of abscisic acid (ABA), with the induction of several drought-protective genes and with the activation of the jasmonic acid (JA) and γ-aminobutyric acid (GABA) pathways. We propose a model in which the downregulation of miR396 leads to the activation of a complex molecular response to water stress. This response acts synergistically with a set of leaf morphological modifications to increase stomatal closure and preserve the efficiency of the photosynthetic activity, ultimately resulting in higher WUE.
Collapse
Affiliation(s)
- Alessandra Fracasso
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Marta Vallino
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), 10135 Torino, Italy
| | - Alessia Staropoli
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), 80055 Portici, Italy
| | - Francesco Vinale
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), 80055 Portici, Italy; Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, 80137, Italy
| | - Stefano Amaducci
- Department of Sustainable Crop Production, Università Cattolica del Sacro Cuore, 29122 Piacenza, Italy
| | - Andrea Carra
- Institute for Sustainable Plant Protection, National Research Council (IPSP-CNR), 10135 Torino, Italy.
| |
Collapse
|
28
|
Moreno JC, Martinez-Jaime S, Kosmacz M, Sokolowska EM, Schulz P, Fischer A, Luzarowska U, Havaux M, Skirycz A. A Multi-OMICs Approach Sheds Light on the Higher Yield Phenotype and Enhanced Abiotic Stress Tolerance in Tobacco Lines Expressing the Carrot lycopene β -cyclase1 Gene. FRONTIERS IN PLANT SCIENCE 2021; 12:624365. [PMID: 33613605 PMCID: PMC7893089 DOI: 10.3389/fpls.2021.624365] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/18/2021] [Indexed: 05/17/2023]
Abstract
Recently, we published a set of tobacco lines expressing the Daucus carota (carrot) DcLCYB1 gene with accelerated development, increased carotenoid content, photosynthetic efficiency, and yield. Because of this development, DcLCYB1 expression might be of general interest in crop species as a strategy to accelerate development and increase biomass production under field conditions. However, to follow this path, a better understanding of the molecular basis of this phenotype is essential. Here, we combine OMICs (RNAseq, proteomics, and metabolomics) approaches to advance our understanding of the broader effect of LCYB expression on the tobacco transcriptome and metabolism. Upon DcLCYB1 expression, the tobacco transcriptome (~2,000 genes), proteome (~700 proteins), and metabolome (26 metabolites) showed a high number of changes in the genes involved in metabolic processes related to cell wall, lipids, glycolysis, and secondary metabolism. Gene and protein networks revealed clusters of interacting genes and proteins mainly involved in ribosome and RNA metabolism and translation. In addition, abiotic stress-related genes and proteins were mainly upregulated in the transgenic lines. This was well in line with an enhanced stress (high light, salt, and H2O2) tolerance response in all the transgenic lines compared with the wild type. Altogether, our results show an extended and coordinated response beyond the chloroplast (nucleus and cytosol) at the transcriptome, proteome, and metabolome levels, supporting enhanced plant growth under normal and stress conditions. This final evidence completes the set of benefits conferred by the expression of the DcLCYB1 gene, making it a very promising bioengineering tool to generate super crops.
Collapse
Affiliation(s)
- Juan C. Moreno
- Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
- *Correspondence: Juan C. Moreno
| | | | - Monika Kosmacz
- Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Biological and Environmental Science and Engineering Division, Center for Desert Agriculture, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Philipp Schulz
- Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Axel Fischer
- Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Urszula Luzarowska
- Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
| | - Michel Havaux
- Aix-Marseille Univ., CEA, CNRS UMR7265, BIAM, CEA/Cadarache, Saint-Paul-lez-Durance, France
| | - Aleksandra Skirycz
- Max Planck Institut für Molekulare Pflanzenphysiologie, Potsdam, Germany
- Boyce Thompson Institute, Cornell University, Ithaca, NY, United States
- Aleksandra Skirycz
| |
Collapse
|
29
|
Zheng X, Li H, Chen M, Zhang J, Tan R, Zhao S, Wang Z. smi-miR396b targeted SmGRFs, SmHDT1, and SmMYB37/4 synergistically regulates cell growth and active ingredient accumulation in Salvia miltiorrhiza hairy roots. PLANT CELL REPORTS 2020; 39:1263-1283. [PMID: 32607753 DOI: 10.1007/s00299-020-02562-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
MIR396b had been cloned and overexpressed in Salvia miltiorrhiza hairy roots. MiR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to regulate cell growth and secondary metabolism in S. miltiorrhiza hairy roots. Danshen (Salvia miltiorrhiza Bunge) is a valuable medicinal herb with two kinds of clinically used natural products, salvianolic acids and tanshinones. miR396 is a conserved microRNA and plays extensive roles in plants. However, it is still unclear how miR396 works in S. miltiorrhiza. In this study, an smi-MIR396b has been cloned from S. miltiorrhiza. Overexpression of miR396b in danshen hairy roots inhibited hairy root growth, reduced salvianolic acid concentration, but enhanced tanshinone accumulation, resulting in the biomass and total salvianolic acids respectively reduced to 55.5 and 72.1% of the control and total tanshinones increased up to 1.91-fold of the control. Applied degradome sequencing, 5'RLM-RACE, and qRT-PCR, 13 targets for miR396b were identified including seven conserved SmGRF1-7 and six novel ones. Comparative transcriptomics and microRNomics analysis together with qRT-PCR results confirmed that miR396b targets SmGRFs, SmHDT1, and SmMYB37/4 to mediate the phytohormone, especially gibberellin signaling pathways and consequentially resulted in the phenotype variation of miR396b-OE hairy roots. Furthermore, miR396b could be activated by methyl jasmonate, abscisic acid, gibberellin, salt, and drought stresses. The findings in this study indicated that smi-miR396b acts as an upstream and central regulator in cell growth and the biosynthesis of tanshinones and salvianolic acids, shedding light on the coordinated regulation of plant growth and biosynthesis of active ingredients in S. miltiorrhiza.
Collapse
Affiliation(s)
- Xiaoyu Zheng
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Hang Li
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Min Chen
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Jinjia Zhang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Ronghui Tan
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China
| | - Shujuan Zhao
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| | - Zhengtao Wang
- The SATCM Key Laboratory for New Resources and Quality Evaluation of Chinese Medicine, The MOE Key Laboratory for Standardization of Chinese Medicines and Shanghai Key Laboratory of Compound Chinese Medicines, Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Pudong New District, Shanghai, 201203, People's Republic of China.
| |
Collapse
|
30
|
Abstract
Epigenetic mechanisms play fundamental roles in regulating numerous biological processes in various developmental and environmental contexts. Three highly interconnected epigenetic control mechanisms, including small noncoding RNAs, DNA methylation, and histone modifications, contribute to the establishment of plant epigenetic profiles. During the past decade, a growing body of experimental work has revealed the intricate, diverse, and dynamic roles that epigenetic modifications play in plant-nematode interactions. In this review, I summarize recent progress regarding the functions of small RNAs in mediating plant responses to infection by cyst and root-knot nematodes, with a focus on the functions of microRNAs. I also recapitulate recent advances in genome-wide DNA methylation analysis and discuss how cyst nematodes induce extensive and dynamic changes in the plant methylome that impact the transcriptional activity of genes and transposable elements. Finally, the potential role of nematode effector proteins in triggering such epigenome changes is discussed.
Collapse
Affiliation(s)
- Tarek Hewezi
- Department of Plant Sciences, University of Tennessee, Knoxville, Tennessee 37996, USA;
| |
Collapse
|
31
|
Jiang Y, Wang M, Zhang R, Xie J, Duan X, Shan H, Xu G, Kong H. Identification of the target genes of AqAPETALA3-3 (AqAP3-3) in Aquilegia coerulea (Ranunculaceae) helps understand the molecular bases of the conserved and nonconserved features of petals. THE NEW PHYTOLOGIST 2020; 227:1235-1248. [PMID: 32285943 DOI: 10.1111/nph.16601] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Identification and comparison of the conserved and variable downstream genes of floral organ identity regulators are critical to understanding the mechanisms underlying the commonalities and peculiarities of floral organs. Yet, because of the lack of studies in nonmodel species, a general picture of the regulatory evolution between floral organ identity genes and their targets is still lacking. Here, by conducting extensive chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq), electrophoretic mobility shift assay and bioinformatic analyses, we identify and predict the target genes of a petal identity gene, AqAPETALA3-3 (AqAP3-3), in Aquilegia coerulea (Ranunculaceae) and compare them with those of its counterpart in Arabidopsis thaliana, AP3. In total, 7049 direct target genes are identified for AqAP3-3, of which 2394 are highly confident and 1085 are shared with AP3. Gene Ontology enrichment analyses further indicate that conserved targets are largely involved in the formation of identity-related features, whereas nonconserved targets are mostly required for the formation of species-specific features. These results not only help understand the molecular bases of the conserved and nonconserved features of petals, but also pave the way to studying the regulatory evolution between floral organ identity genes and their targets.
Collapse
Affiliation(s)
- Yongchao Jiang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Meimei Wang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Zhang
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Jinghe Xie
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoshan Duan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongyan Shan
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Guixia Xu
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Hongzhi Kong
- State Key Laboratory of Systematic and Evolutionary Botany, CAS Center for Excellence in Molecular Plant Sciences, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
32
|
Muhammad II, Kong SL, Akmar Abdullah SN, Munusamy U. RNA-seq and ChIP-seq as Complementary Approaches for Comprehension of Plant Transcriptional Regulatory Mechanism. Int J Mol Sci 2019; 21:E167. [PMID: 31881735 PMCID: PMC6981605 DOI: 10.3390/ijms21010167] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 12/19/2019] [Accepted: 12/23/2019] [Indexed: 02/07/2023] Open
Abstract
The availability of data produced from various sequencing platforms offer the possibility to answer complex questions in plant research. However, drawbacks can arise when there are gaps in the information generated, and complementary platforms are essential to obtain more comprehensive data sets relating to specific biological process, such as responses to environmental perturbations in plant systems. The investigation of transcriptional regulation raises different challenges, particularly in associating differentially expressed transcription factors with their downstream responsive genes. In this paper, we discuss the integration of transcriptional factor studies through RNA sequencing (RNA-seq) and Chromatin Immunoprecipitation sequencing (ChIP-seq). We show how the data from ChIP-seq can strengthen information generated from RNA-seq in elucidating gene regulatory mechanisms. In particular, we discuss how integration of ChIP-seq and RNA-seq data can help to unravel transcriptional regulatory networks. This review discusses recent advances in methods for studying transcriptional regulation using these two methods. It also provides guidelines for making choices in selecting specific protocols in RNA-seq pipelines for genome-wide analysis to achieve more detailed characterization of specific transcription regulatory pathways via ChIP-seq.
Collapse
Affiliation(s)
- Isiaka Ibrahim Muhammad
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
| | - Sze Ling Kong
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
| | - Siti Nor Akmar Abdullah
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
- Department of Agriculture Technology, Faculty of Agriculture, Universiti Putra Malaysia, Selangor 43400, Malaysia
| | - Umaiyal Munusamy
- Laboratory of Plantation Science and Technology, Institute of Plantation Studies, Universiti Putra Malaysia, Selangor 43400, Malaysia; (I.I.M.); (S.L.K.); (U.M.)
| |
Collapse
|