1
|
Gao CA, Markov NS, Pickens C, Pawlowski A, Kang M, Walter JM, Singer BD, Wunderink RG. An Observational Cohort Study of Bronchoalveolar Lavage Fluid Galactomannan and Aspergillus Culture Positivity in Patients Requiring Mechanical Ventilation. Open Forum Infect Dis 2025; 12:ofaf090. [PMID: 40046892 PMCID: PMC11879572 DOI: 10.1093/ofid/ofaf090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 02/11/2025] [Indexed: 03/09/2025] Open
Abstract
Background Critically ill patients who develop invasive pulmonary aspergillosis (IPA) have high mortality rates despite antifungal therapy. Diagnosis is difficult in these patients and incidences vary in the literature. Bronchoalveolar lavage (BAL) fluid galactomannan (GM) is a helpful marker, although the optimal cutoff is unclear. Methods This was a single-center cohort study of patients requiring mechanical ventilation in the medical intensive care unit (ICU) from June 2018 to March 2023. Demographics, BAL, and outcome data were extracted from the electronic health record and compared between groups of patients who grew Aspergillus from BAL, those who had elevated BAL GM levels (>0.5, >0.8, or >1.0) but did not grow Aspergillus, and those with neither. Results Of >1700 BALs from 688 patients, only 18 BALs from 15 patients grew Aspergillus. Patients who grew Aspergillus had more intubated days (29 vs 11, P = .002) and more ICU days (34 vs 15, P = .002). BAL GM level was higher from samples that grew Aspergillus than those that did not (median optical density index: 7.08 vs 0.11, P < .001). Conclusions In this large cohort of critically ill patients, we found a low rate of Aspergillus growth and variable BAL GM elevation. These data suggest that the pretest probability of IPA should be considered low in a general ICU population undergoing BAL evaluation to define the etiology of pneumonia. Elevated BAL GM may not reliably indicate invasive disease, but lack of culture positivity may also miss true infection. Improved scoring systems are needed to enhance pretest probability for diagnostic test stewardship purposes, and tests must be interpreted in their own clinical contexts.
Collapse
Affiliation(s)
- Catherine A Gao
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Nikolay S Markov
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Chiagozie Pickens
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Anna Pawlowski
- Northwestern Medicine Enterprise Data Warehouse, Chicago, Illinois, USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - James M Walter
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Benjamin D Singer
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard G Wunderink
- Division of Pulmonary and Critical Care, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
2
|
Liu Y, Zhang Z, Zhou L, Lin T, Zhang R, Li M, Chen S, Liu X, Liu X. Invasive aspergillosis in critically ill patients with diabetes mellitus: a systematic review and meta-analysis. BMC Infect Dis 2025; 25:141. [PMID: 39885384 PMCID: PMC11783785 DOI: 10.1186/s12879-025-10560-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND In the intensive care unit (ICU), invasive aspergillosis (IA) has a poor prognosis. Some studies report a positive association between diabetes mellitus (DM) and IA in critically ill patients, but the relationship between DM and IA in the ICU remains controversial. We aimed to clarify the relationship between DM and IA among patients in the ICU in a systematic review and meta-analysis. METHODS We retrieved all reports published in PubMed, EMBASE, and the Cochrane Library databases before July 12, 2023. We calculated odds ratios (ORs) and 95% confidence intervals (CIs) to evaluate the relationship between DM and IA. Subgroup analyses were conducted to further analyze sources of heterogeneity. Heterogeneity was evaluated using the Cochran's Q test and I2 statistic. Additionally, we evaluated publication bias using funnel plots, Egger's test, and Begg's test. Finally, sensitivity analysis was conducted to evaluate the robustness of the results. RESULTS Twenty studies with 6155 participants were included in this meta-analysis. We found a positive association between DM and IA among patients in the ICU (OR = 1.18, 95% CI:1.01 to 1.39; p = 0.04). The heterogeneity was not significant (I² = 5%; p = 0.39) and publication bias was not significant (Egger's test: p = 0.654; Begg's test: p = 0.417). The results of sensitivity analysis supported a stable association between DM and IA. Subgroup analysis indicated that patients' comorbidities might be a potential source of heterogeneity. Additionally, patients with DM had a significantly higher risk of COVID-19-associated pulmonary aspergillosis (CAPA) than those without DM (OR = 1.40, 95% CI: 1.15 to 1.70; p < 0.001). The heterogeneity was not significant (I² = 0%; p = 0.91). In the subgroup with influenza, the OR of the relationship between DM and IA was 0.81 (95% CI: 0.54, 1.23; p = 0.32; heterogeneity: p = 0.36; I² = 8%). CONCLUSIONS Patients with DM in the ICU showed a higher risk of developing IA than patients in the ICU without DM. DM was a significant risk factor for IA, with the highest risk observed in critically ill patients diagnosed with CAPA.
Collapse
Affiliation(s)
- Yuhua Liu
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China
| | - Zhaopei Zhang
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China
| | - Liang Zhou
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China
| | - Tianlai Lin
- Department of Critical Care Medicine, Quanzhou First Hospital Affiliated to Fujian Medical University, Quanzhou, Fujian, China
| | - Rong Zhang
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China
| | - Manshu Li
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China
| | - Sihao Chen
- Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Xiaoqing Liu
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China.
| | - Xuesong Liu
- State Key Lab of Respiratory Diseases, Guangzhou Institute of Respiratory Health, Department of Critical Care Medicine, The First Affiliated Hospital of Guangzhou Medical University, 151 Yanjiang Street West, Guangzhou, 510120, Guangdong, China.
| |
Collapse
|
3
|
Gioia F, Walti LN, Orchanian-Cheff A, Husain S. Risk factors for COVID-19-associated pulmonary aspergillosis: a systematic review and meta-analysis. THE LANCET. RESPIRATORY MEDICINE 2024; 12:207-216. [PMID: 38185135 DOI: 10.1016/s2213-2600(23)00408-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 10/17/2023] [Accepted: 10/25/2023] [Indexed: 01/09/2024]
Abstract
BACKGROUND COVID-19-associated pulmonary aspergillosis (CAPA) has been reported to be an emerging and potentially fatal complication of severe COVID-19. However, risk factors for CAPA have not been systematically addressed to date. METHODS In this systematic review and meta-analysis to identify factors associated with CAPA, we comprehensively searched five medical databases: Ovid MEDLINE; Ovid Embase; the Cochrane Database of Systematic Reviews; the Cochrane Central Register of Controlled Trials; and the WHO COVID-19 Database. All case-control and cohort studies in adults (aged >18 years) that described at least six cases of CAPA and evaluated any risk factors for CAPA, published from Dec 1, 2019, to July 27, 2023, were screened and assessed for inclusion. Only studies with a control population of COVID-19-positive individuals without aspergillosis were included. Two reviewers independently screened search results and extracted outcome data as summary estimates from eligible studies. The primary outcome was to identify the factors associated with CAPA. Meta-analysis was done with random-effects models, with use of the Mantel-Haenszel method to assess dichotomous outcomes as potential risk factors, or the inverse variance method to assess continuous variables for potential association with CAPA. Publication bias was assessed with funnel plots for factors associated with CAPA. The study is registered with PROSPERO, CRD42022334405. FINDINGS Of 3561 records identified, 27 articles were included in the meta-analysis. 6848 patients with COVID-19 were included, of whom 1324 (19·3%) were diagnosed with CAPA. Diagnosis rates of CAPA ranged from 2·5% (14 of 566 patients) to 47·2% (58 of 123). We identified eight risk factors for CAPA. These factors included pre-existing comorbidities of chronic liver disease (odds ratio [OR] 2·70 [95% CI 1·21-6·04], p=0·02; I2=53%), haematological malignancies (OR 2·47 [1·27-4·83], p=0·008; I2=50%), chronic obstructive pulmonary disease (OR 2·00 [1·42-2·83], p<0·0001; I2=26%), and cerebrovascular disease (OR 1·31 [1·01-1·71], p=0·05; I2=46%). Use of invasive mechanical ventilation (OR 2·83; 95% CI 1·88-4·24; p<0·0001; I2=69%), use of renal replacement therapy (OR 2·26 [1·76-2·90], p<0·0001; I2=14%), treatment of COVID-19 with interleukin-6 inhibitors (OR 2·88 [1·52-5·43], p=0·001; I2=89%), and treatment of COVID-19 with corticosteroids (OR 1·88 [1·28-2·77], p=0·001; I2=66%) were also associated with CAPA. Patients with CAPA were typically older than those without CAPA (mean age 66·6 years [SD 3·6] vs 63·5 years [5·3]; mean difference 2·90 [1·48-4·33], p<0·0001; I2=86%). The duration of mechanical ventilation in patients with CAPA was longer than in those without CAPA (n=7 studies; mean duration 19·3 days [8·9] vs 13·5 days [6·8]; mean difference 5·53 days [1·30-9·77], p=0·01; I2=88%). In post-hoc analysis, patients with CAPA had higher all-cause mortality than those without CAPA (n=20 studies; OR 2·65 [2·04-3·45], p<0·0001; I2=51%). INTERPRETATION The identified risk factors for CAPA could eventually be addressed with targeted antifungal prophylaxis in patients with severe COVID-19. FUNDING None.
Collapse
Affiliation(s)
- Francesca Gioia
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada; Infectious Diseases Department, Hospital Ramón y Cajal, Consorcio Centro de Investigación Biomédica en Red (CB21/13/00084), Instituto de Salud Carlos III, Ministerio de Ciencia e Innovación, Madrid, Spain
| | - Laura N Walti
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada; Department of Infectious Diseases, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Ani Orchanian-Cheff
- Library and Information Services, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Shahid Husain
- Ajmera Transplant Centre, Division of Infectious Diseases, University Health Network, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Khodavaisy S, Sarrafnia H, Abdollahi A. Outcomes of Patients with COVID-19 and Fungal Coinfections: A Systematic Review and Meta-Analysis Study. IRANIAN JOURNAL OF PATHOLOGY 2024; 19:136-147. [PMID: 39118795 PMCID: PMC11304463 DOI: 10.30699/ijp.2024.2010087.3160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 11/16/2023] [Indexed: 08/10/2024]
Abstract
Background & Objective Fungal co-infections increase the incidence and mortality of viral respiratory tract infections. This study systematically reviews and conducts a meta-analysis to evaluate the prevalence of COVID-19 patients with fungal coinfections. The aim is to provide a concise overview of the impact of these infections on patient outcomes especially association with risk of mortality, informing future research and optimizing patient management strategies. Methods To identify relevant studies on COVID-19 patients, we conducted a systematic search of databases from the beginning of the year until July 2023, including fungal co-infections, mortality, and sequelae. Eligibility criteria were developed using the PICO framework, and data extraction was carried out separately by two authors using standard techniques. Statistical analysis was performed using the correlation model and differences between studies were evaluated using the I2 test. R and RStudio were used for statistical analysis and visualization. Results We initially identified 6,764 studies, and after checking for equivalence and consistency, 41 studies were included in the final analysis. The overall COVID-19 odds ratio for people who died from fungal infections was 2.65, indicating that patients infected with both COVID-19 and fungal infections had a higher risk of death compared to patients with COVID-19 alone. Specifically, COVID-19-associated pulmonary aspergillosis (CAPA) has a higher odds ratio of 3.36, while COVID-19-associated candidiasis (CAC) has an odds ratio of 1.84, and both are much more associated with death. However, coinfection of the fungus with other fungal species did not show a significant difference in the risk of mortality. Conclusion This study identified CAPA and CAC as the most common infections acquired in healthcare settings. Fungal coinfections may be associated with an increased risk of death in COVID-19 patients.
Collapse
Affiliation(s)
- Sadegh Khodavaisy
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Research center for antibiotic stewardship and antimicrobial resistance, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| | - Haleh Sarrafnia
- Faculty of Biological Sciences, Islamic Azad University, Tehran-North Branch, Tehran, Iran
| | - Alireza Abdollahi
- Department of Pathology, School of Medicine, Imam Khomeini Hospital Complex, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
5
|
Gao CA, Markov NS, Pickens C, Pawlowski A, Kang M, Walter JM, Singer BD, Wunderink RG. An observational cohort study of bronchoalveolar lavage fluid galactomannan and Aspergillus culture positivity in patients requiring mechanical ventilation. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.07.24302392. [PMID: 38370841 PMCID: PMC10871379 DOI: 10.1101/2024.02.07.24302392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Rationale Critically ill patients who develop invasive pulmonary aspergillosis (IPA) have high mortality rates despite antifungal therapy. Diagnosis is difficult in these patients. Bronchoalveolar lavage (BAL) fluid galactomannan (GM) is a helpful marker of infection, although the optimal cutoff for IPA is unclear. We aimed to evaluate the BAL fluid GM and fungal culture results, demographics, and outcomes among a large cohort of mechanically ventilated patients with suspected pneumonia. Methods A single-center cohort study of patients enrolled in the Successful Clinical Response in Pneumonia Therapy (SCRIPT) study from June 2018 to March 2023. Demographics, BAL results, and outcomes data were extracted from the electronic health record and compared between groups of patients who grew Aspergillus on a BAL fluid culture, those who had elevated BAL fluid GM levels (defined as >0.5 or >0.8) but did not grow Aspergillus on BAL fluid culture, and those with neither. Results Of over 1700 BAL samples from 688 patients, only 18 BAL samples grew Aspergillus. Patients who had a BAL sample grow Aspergillus (n=15) were older (median 71 vs 62 years, p=0.023), had more days intubated (29 vs 11, p=0.002), and more ICU days (34 vs 15, p=0.002) than patients whose BAL fluid culture was negative for Aspergillus (n=672). The BAL fluid galactomannan level was higher from samples that grew Aspergillus on culture than those that did not (median ODI 7.08 vs 0.11, p<0.001), though the elevation of BAL fluid GM varied across BAL samples for patients who had serial sampling. Patients who grew Aspergillus had a similar proportion of underlying immunocompromise compared with the patients who did not, and while no statistically significant difference in overall unfavorable outcome, had longer duration of ventilation and longer ICU stays. Conclusions In this large cohort of critically ill patients with a high number of BAL samples with GM levels, we found a relatively low rate of Aspergillus growth. Patients who eventually grew Aspergillus had inconsistently elevated BAL fluid GM, and many patients with elevated BAL fluid GM did not grow Aspergillus. These data suggest that the pre-test probability of invasive pulmonary aspergillosis should be considered low in a general ICU population undergoing BAL evaluation to define the etiology of pneumonia. Improved scoring systems are needed to enhance pre-test probability for diagnostic test stewardship purposes.
Collapse
Affiliation(s)
- Catherine A. Gao
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Nikolay S. Markov
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Chiagozie Pickens
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anna Pawlowski
- Northwestern Medicine Enterprise Data Warehouse, Chicago, IL, USA
| | - Mengjia Kang
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - James M. Walter
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Benjamin D. Singer
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Richard G. Wunderink
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
6
|
Hernández-Silva G, Corzo-León DE, Becerril-Vargas E, Peralta-Prado AB, Odalis RG, Morales-Villarreal F, Ríos-Ayala MA, Alonso TG, Agustín FLD, Ramón AF, Hugo ATV. Clinical characteristics, bacterial coinfections and outcomes in COVID-19-associated pulmonary aspergillosis in a third-level Mexican hospital during the COVID-19 pre-vaccination era. Mycoses 2024; 67:e13693. [PMID: 38214372 DOI: 10.1111/myc.13693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 12/19/2023] [Accepted: 12/22/2023] [Indexed: 01/13/2024]
Abstract
BACKGROUND Damage due to respiratory viruses increases the risk of bacterial and fungal coinfections and superinfections. High rates of invasive aspergillosis are seen in severe influenza and COVID-19. This report describes CAPA cases diagnosed during the first wave in the biggest reference centre for severe COVID-19 in Mexico. OBJECTIVES To describe the clinical, microbiological and radiological characteristics of patients with invasive pulmonary aspergillosis associated with critical COVID-19, as well as to describe the variables associated with mortality. METHODS This retrospective study identified CAPA cases among individuals with COVID-19 and ARDS, hospitalised from 1 March 2020 to 31 March 2021. CAPA was defined according to ECMM/ISHAM consensus criteria. Prevalence was estimated. Clinical and microbiological characteristics including bacterial superinfections, antifungal susceptibility testing and outcomes were documented. RESULTS Possible CAPA was diagnosed in 86 patients among 2080 individuals with severe COVID-19, representing 4.13% prevalence. All CAPA cases had a positive respiratory culture for Aspergillus species. Aspergillus fumigatus was the most frequent isolate (64%, n = 55/86). Seven isolates (9%, n = 7/80) were resistant to amphotericin B (A. fumigatus n = 5/55, 9%; A. niger, n = 2/7, 28%), two A. fumigatus isolates were resistant to itraconazole (3.6%, n = 2/55). Tracheal galactomannan values ranged between 1.2 and 4.05, while serum galactomannan was positive only in 11% (n = 3/26). Bacterial coinfection were documented in 46% (n = 40/86). Gram negatives were the most frequent cause (77%, n = 31/40 isolates), from which 13% (n = 4/31) were reported as multidrug-resistant bacteria. Mortality rate was 60% and worse prognosis was seen in older persons, high tracheal galactomannan index and high HbA1c level. CONCLUSIONS One in 10 individuals with CAPA carry a resistant Aspergillus isolate and/or will be affected by a MDR bacteria. High mortality rates are seen in this population.
Collapse
Affiliation(s)
- Graciela Hernández-Silva
- Infectious Diseases Department, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | - Eduardo Becerril-Vargas
- Microbiology Clinical Laboratory, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Amy Bethel Peralta-Prado
- Research Centre of Infectious Diseases, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | - Rodríguez-Ganes Odalis
- Pharmacology Department, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | | | | | | | | - Avilez-Félix Ramón
- Pneumology Service, Instituto Nacional de Enfermedades Respiratorias, Mexico City, Mexico
| | | |
Collapse
|
7
|
Hashim Z, Nath A, Khan A, Gupta M, Kumar A, Chatterjee R, Dhiman RK, Hoenigl M, Tripathy NK. Effect of glucocorticoids on the development of COVID-19-associated pulmonary aspergillosis: A meta-analysis of 21 studies and 5174 patients. Mycoses 2023; 66:941-952. [PMID: 37551043 DOI: 10.1111/myc.13637] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 07/27/2023] [Indexed: 08/09/2023]
Abstract
COVID-19-associated pulmonary aspergillosis (CAPA) remains a high mortality mycotic infection throughout the pandemic, and glucocorticoids (GC) may be its root cause. Our aim was to evaluate the effect of systemic GC treatment on the development of CAPA. We systematically searched the PubMed, Google Scholar, Scopus and Embase databases to collect eligible studies published until 31 December 2022. The pooled outcome of CAPA development was calculated as the log odds ratio (LOR) with 95% confidence intervals (CI) using a random effect model. A total of 21 studies with 5174 patients were included. Of these, 20 studies with 4675 patients consisting of 2565 treated with GC but without other immunomodulators (GC group) and 2110 treated without GC or other immunomodulators (controls) were analysed. The pooled LOR of CAPA development was higher for the GC group than for the controls (0.54; 95% CI: 0.22, 0.86; p < .01). In the subgroups, the pooled LOR was higher for high-dose GC (0.90; 95% CI: 0.17, 1.62: p = .01) and dexamethasone (0.71; 95% CI: 0.35, 1.07; p < .01) but had no significant difference for low-dose GC (0.41; 95% CI: -0.07, 0.89; p = .09), and non-dexamethasone GC (0.21; 95% CI: -0.36, 0.79; p = .47), treated patients versus controls. GC treatment increases the risk of CAPA development, and this risk is particularly associated with the use of high-dose GC or dexamethasone treatment.
Collapse
Affiliation(s)
- Zia Hashim
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Ajmal Khan
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Anup Kumar
- Department of Biostatistics and Health Informatics, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Riksoam Chatterjee
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Radha Krishan Dhiman
- Department of Hepatology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, Graz, Austria
| | - Naresh Kumar Tripathy
- Department of Hematology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| |
Collapse
|
8
|
Szabó BG, Czél E, Nagy I, Korózs D, Petrik B, Marosi B, Gáspár Z, Rajmon M, Di Giovanni M, Vályi-Nagy I, Sinkó J, Lakatos B, Bobek I. Clinical and Microbiological Outcomes and Follow-Up of Secondary Bacterial and Fungal Infections among Critically Ill COVID-19 Adult Patients Treated with and without Immunomodulation: A Prospective Cohort Study. Antibiotics (Basel) 2023; 12:1196. [PMID: 37508292 PMCID: PMC10376198 DOI: 10.3390/antibiotics12071196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/14/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
BACKGROUND Nearly 10% of COVID-19 cases will require admission to the intensive care unit (ICU). Our aim was to assess the clinical and microbiological outcomes of secondary infections among critically ill COVID-19 adult patients treated with/without immunomodulation. METHODS A prospective observational cohort study was performed between 2020 and 2022 at a single ICU. The diagnosis and severity classification were established by the ECDC and WHO criteria, respectively. Eligible patients were included consecutively at admission, and followed for +30 days post-inclusion. Bloodstream-infections (BSIs), ventilator-associated bacterial pneumonia (VAP), and COVID-19-associated invasive pulmonary aspergillosis (CAPA) were defined according to international guidelines. Patient stratification was performed by immunomodulatory therapy administration (dexamethasone, tocilizumab, baricitinib/ruxolitinib). The primary outcome was any microbiologically confirmed major infectious complication, secondary outcomes were invasive mechanical ventilation (IMV) requirement and all-cause mortality. RESULTS Altogether, 379 adults were included. At baseline, 249/379 (65.7%) required IMV and 196/379 (51.7%) had a cytokine storm. At +30 days post-inclusion, the rate of any microbiologically confirmed major infectious complication was 151/379 (39.8%), IMV requirement and all-cause mortality were 303/379 (79.9%) and 203/379 (53.6%), respectively. There were no statistically significant outcome differences after stratification. BSI, VAP, and CAPA episodes were mostly caused by Enterococcus faecalis (27/124, 22.1%), Pseudomonas aeruginosa (26/91, 28.6%), and Aspergillus fumigatus (20/20, 100%), respectively. Concerning the primary outcome, Kaplan-Meier analysis showed similar probability distributions between the treatment subgroups (118/299, 39.5% vs. 33/80, 41.3%, log-rank p = 0.22), and immunomodulation was not retained as its independent predictor in multivariate logistic regression. CONCLUSIONS Secondary infections among critically ill COVID-19 adult patients represent a relevant burden, probably irrespective of immunomodulatory treatment.
Collapse
Affiliation(s)
- Bálint Gergely Szabó
- Division of Infectology, Department of Haematology and Internal Medicine, Semmelweis University, Albert Florian ut 5-7, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Albert Florian ut 5-7, H-1097 Budapest, Hungary
| | - Eszter Czél
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Albert Florian ut 5-7, H-1097 Budapest, Hungary
| | - Imola Nagy
- Faculty of Medicine, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
| | - Dorina Korózs
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Albert Florian ut 5-7, H-1097 Budapest, Hungary
- Faculty of Medicine, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
| | - Borisz Petrik
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Albert Florian ut 5-7, H-1097 Budapest, Hungary
- Faculty of Medicine, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
| | - Bence Marosi
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Albert Florian ut 5-7, H-1097 Budapest, Hungary
- Faculty of Medicine, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
| | - Zsófia Gáspár
- Doctoral School of Clinical Medicine, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Albert Florian ut 5-7, H-1097 Budapest, Hungary
- Faculty of Medicine, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
| | - Martin Rajmon
- Faculty of Medicine, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
| | - Márk Di Giovanni
- Faculty of Medicine, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
| | - István Vályi-Nagy
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Albert Florian ut 5-7, H-1097 Budapest, Hungary
| | - János Sinkó
- Division of Infectology, Department of Haematology and Internal Medicine, Semmelweis University, Albert Florian ut 5-7, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Albert Florian ut 5-7, H-1097 Budapest, Hungary
| | - Botond Lakatos
- Division of Infectology, Department of Haematology and Internal Medicine, Semmelweis University, Albert Florian ut 5-7, H-1097 Budapest, Hungary
- Doctoral School of Clinical Medicine, Semmelweis University, Ulloi ut 26, H-1085 Budapest, Hungary
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Albert Florian ut 5-7, H-1097 Budapest, Hungary
| | - Ilona Bobek
- South Pest Central Hospital, National Institute of Hematology and Infectious Diseases, Albert Florian ut 5-7, H-1097 Budapest, Hungary
| |
Collapse
|
9
|
Ouranos K, Tsakiri K, Massa E, Dourliou V, Mouratidou C, Soundoulounaki S, Mouloudi E. COVID-19-associated pulmonary aspergillosis in patients with severe SARS-CoV-2 infection: A single-center observational study from Greece. Ann Thorac Med 2023; 18:116-123. [PMID: 37663880 PMCID: PMC10473063 DOI: 10.4103/atm.atm_14_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/20/2023] [Accepted: 02/27/2023] [Indexed: 09/05/2023] Open
Abstract
INTRODUCTION COVID-19-associated pulmonary aspergillosis (CAPA) is a serious complication affecting patients with severe SARS-CoV-2 infection, and is associated with increased mortality. OBJECTIVE The objective of this study was to investigate potential risk factors, and to estimate the incidence and mortality in patients diagnosed with CAPA. METHODS A single-center retrospective observational study was conducted on patients admitted to the intensive care unit (ICU) with severe COVID-19 from October 2020 to May 2022. Patients with deterioration of their clinical status were evaluated with serum galactomannan (GM) for probable CAPA. Baseline demographic patient characteristics, vaccination status, and time period during which each patient was infected with SARS-CoV-2 were obtained, and risk stratification according to underlying comorbidities was performed in an effort to assess various risk factors for CAPA. The incidence of CAPA in the entire cohort was measured, and mortality rates in the CAPA and non-CAPA groups were calculated and compared. RESULTS Of 488 patients admitted to the ICU, 95 (19.4%) had deterioration of their clinical status, which prompted testing with serum GM. Positive serum testing was observed in 39/95 patients, with an overall CAPA incidence in the entire study cohort reaching 7.9% (39/488). The mortality rate was 75% (42/56) in the non-CAPA group that was tested for serum GM, and 87.2% (34/39) in the CAPA group (P = 0.041). Multivariable Cox regression hazard models were tested for 28- and 90-day survival from ICU admission. An invasive pulmonary aspergillosis (IPA) risk-stratified cox regression model corrected for the SARS-CoV-2 variant of the patient identified the diagnosis of probable CAPA and elevated procalcitonin (PCT) levels measured at least 10 days after ICU admission, as significantly associated with death in the IPA-risk subgroup only, with hazard ratio (HR): 3.687 (95% confidence interval [CI], 1.030-13.199, P = 0.045) for the diagnosis of probable CAPA, and HR: 1.022 (95% CI, 1.003-1.042, P = 0.026) for every 1 ng/mL rise in PCT. CONCLUSIONS Patients in the IPA-risk subgroup that were diagnosed with CAPA had a lower 90-day survival when compared to patients in the same group without a CAPA diagnosis.
Collapse
Affiliation(s)
- Konstantinos Ouranos
- Department of Medicine, Hippokratio General Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kalliopi Tsakiri
- Department of Adult Intensive Care Unit, Hippokratio General Hospital, Thessaloniki, Greece
| | - Eleni Massa
- Department of Adult Intensive Care Unit, Hippokratio General Hospital, Thessaloniki, Greece
| | - Vassiliki Dourliou
- Department of Adult Intensive Care Unit, Hippokratio General Hospital, Thessaloniki, Greece
| | - Christina Mouratidou
- Department of Adult Intensive Care Unit, Hippokratio General Hospital, Thessaloniki, Greece
| | - Stella Soundoulounaki
- Department of Adult Intensive Care Unit, Hippokratio General Hospital, Thessaloniki, Greece
| | - Eleni Mouloudi
- Department of Adult Intensive Care Unit, Hippokratio General Hospital, Thessaloniki, Greece
| |
Collapse
|
10
|
Beltrame A, Stevens DA, Haiduven D. Mortality in ICU Patients with COVID-19-Associated Pulmonary Aspergillosis. J Fungi (Basel) 2023; 9:689. [PMID: 37367625 DOI: 10.3390/jof9060689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
A review of 38 studies involving 1437 COVID-19 patients admitted to intensive care units (ICUs) with pulmonary aspergillosis (CAPA) was conducted to investigate whether mortality has improved since the pandemic's onset. The study found that the median ICU mortality was 56.8%, ranging from 30% to 91.8%. These rates were higher for patients admitted during 2020-2021 (61.4%) compared to 2020 (52.3%), and prospective studies found higher ICU mortality (64.7%) than retrospective ones (56.4%). The studies were conducted in various countries and used different criteria to define CAPA. The percentage of patients who received antifungal therapy varied across studies. These results indicate that the mortality rate among CAPA patients is a growing concern, mainly since there has been an overall reduction in mortality among COVID-19 patients. Urgent action is needed to improve prevention and management strategies for CAPA, and additional research is needed to identify optimal treatment strategies to reduce mortality rates among these patients. This study serves as a call to action for healthcare professionals and policymakers to prioritize CAPA, a serious and potentially life-threatening complication of COVID-19.
Collapse
Affiliation(s)
- Anna Beltrame
- College of Public Health, University of South Florida, Tampa, FL 33622, USA
| | - David A Stevens
- California Institute for Medical Research, San Jose, CA 95128, USA
- Division of Infectious Diseases and Geographic Medicine, Stanford University Medical School, Stanford, CA 94305, USA
| | - Donna Haiduven
- College of Public Health, University of South Florida, Tampa, FL 33622, USA
| |
Collapse
|
11
|
Roman-Montes CM, Bojorges-Aguilar S, Corral-Herrera EA, Rangel-Cordero A, Díaz-Lomelí P, Cervantes-Sanchez A, Martinez-Guerra BA, Rajme-López S, Tamez-Torres KM, Martínez-Gamboa RA, González-Lara MF, Ponce-de-Leon A, Sifuentes-Osornio J. Fungal Infections in the ICU during the COVID-19 Pandemic in Mexico. J Fungi (Basel) 2023; 9:583. [PMID: 37233294 PMCID: PMC10219464 DOI: 10.3390/jof9050583] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/27/2023] Open
Abstract
Background: Invasive Fungal Infections (IFI) are emergent complications of COVID-19. In this study, we aim to describe the prevalence, related factors, and outcomes of IFI in critical COVID-19 patients. Methods: We conducted a nested case-control study of all COVID-19 patients in the intensive care unit (ICU) who developed any IFI and matched age and sex controls for comparison (1:1) to evaluate IFI-related factors. Descriptive and comparative analyses were made, and the risk factors for IFI were compared versus controls. Results: We found an overall IFI prevalence of 9.3% in COVID-19 patients in the ICU, 5.6% in COVID-19-associated pulmonary aspergillosis (CAPA), and 2.5% in invasive candidiasis (IC). IFI patients had higher SOFA scores, increased frequency of vasopressor use, myocardial injury, and more empirical antibiotic use. CAPA was classified as possible in 68% and 32% as probable by ECMM/ISHAM consensus criteria, and 57.5% of mortality was found. Candidemia was more frequent for C. parapsilosis Fluconazole resistant outbreak early in the pandemic, with a mortality of 28%. Factors related to IFI in multivariable analysis were SOFA score > 2 (aOR 5.1, 95% CI 1.5-16.8, p = 0.007) and empiric antibiotics for COVID-19 (aOR 30, 95% CI 10.2-87.6, p = <0.01). Conclusions: We found a 9.3% prevalence of IFIs in critically ill patients with COVID-19 in a single center in Mexico; factors related to IFI were associated with higher SOFA scores and empiric antibiotic use for COVID-19. CAPA is the most frequent type of IFI. We did not find a mortality difference.
Collapse
Affiliation(s)
- Carla M. Roman-Montes
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Saul Bojorges-Aguilar
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Ever Arturo Corral-Herrera
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Andrea Rangel-Cordero
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Paulette Díaz-Lomelí
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Axel Cervantes-Sanchez
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Bernardo A. Martinez-Guerra
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Sandra Rajme-López
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Karla María Tamez-Torres
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Rosa Areli Martínez-Gamboa
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Maria Fernanda González-Lara
- Infectious Diseases Department, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (C.M.R.-M.); (S.B.-A.); (E.A.C.-H.); (B.A.M.-G.); (S.R.-L.); (K.M.T.-T.)
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - Alfredo Ponce-de-Leon
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico; (A.R.-C.); (P.D.-L.); (A.C.-S.); (R.A.M.-G.); (A.P.-d.-L.)
| | - José Sifuentes-Osornio
- General Direction, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City 14080, Mexico;
| |
Collapse
|
12
|
Cornejo-Juárez P, Volkow-Fernández P, Vázquez-Marín CL, Álvarez-Romero N, García-Pineda B, Chavez-Chavez T, Vilar-Compte D. Impact of coronavirus disease 2019 (COVID-19) pandemic in hospital-acquired infections and bacterial resistance at an oncology hospital. ANTIMICROBIAL STEWARDSHIP & HEALTHCARE EPIDEMIOLOGY : ASHE 2023; 3:e70. [PMID: 37113204 PMCID: PMC10127242 DOI: 10.1017/ash.2023.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 03/02/2023] [Accepted: 03/04/2023] [Indexed: 04/29/2023]
Abstract
Objective Hospital-acquired infection (HAI) rates were negatively affected by the the coronavirus disease 2019 (COVID-19) pandemic. We describe the incidence of HAIs, main pathogens, and multidrug-resistant organisms (MDROs) isolated in cancer patients before and during the pandemic. Design This retrospective, comparative study included patients with HAIs. We compared 2 periods: the prepandemic period (2018, 2019, and the first 3 months of 2020) with the pandemic period (April-December 2020 and all of 2021). Setting Instituto Nacional de Cancerología, a tertiary-care oncology public hospital in Mexico City, Mexico. Methods Patients with the following HAIs were included: nosocomial pneumonia, ventilator-associated pneumonia (VAP), secondary bloodstream infection (BSI), central-line-associated bloodstream infection (CLBSI), and Clostridioides difficile infection (CDI). Demographic data, clinical characteristics, pathogens isolated, and MDRO data were included. Results We identified 639 HAIs: 381 (7.95 per 100 hospital discharges) in the prepandemic period and 258 (7.17 per 100 hospital discharges) in the pandemic period. Hematologic malignancy was documented in 263 (44.3%) patients; 251 (39.2%) were in cancer progression or relapse. Nosocomial pneumonia was more frequent during the pandemic period (40.3% vs 32.3%; P = .04). Total episodes of VAP were not different between the 2 periods (28.1% vs 22.1%; P = .08), but during the pandemic period, the VAP rate was higher among COVID-19 patients than non-COVID-19 patients (72.2% vs 8.8%; P < .001). Escherichia coli, Stenotrophomonas maltophilia, and Staphylococcus aureus bacteremia cases were more frequent in the pandemic period. Extended-spectrum β-lactamases (ESBL)-E. coli was the only MDRO that occurred more frequently during the pandemic period. Conclusions In cancer patients, nosocomial pneumonia was more frequent during the pandemic period. We did not observe a significant impact on other HAIs. MDROs did not significantly increase during the pandemic.
Collapse
Affiliation(s)
- Patricia Cornejo-Juárez
- Infectious Diseases Department, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | | | - Carla L. Vázquez-Marín
- Infectious Diseases Department, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Nancy Álvarez-Romero
- Infectious Diseases Department, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Bertha García-Pineda
- Infectious Diseases Department, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Tania Chavez-Chavez
- Infectious Diseases Department, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
| | - Diana Vilar-Compte
- Infectious Diseases Department, Instituto Nacional de Cancerología (INCan), Mexico City, Mexico
- Author for correspondence: Diana Vilar-Compte, MD, MSc, Instituto Nacional de Cancerología (INCan), Av. San Fernando No. 22, Col. Sección XVI, Alcaldía Tlalpan, 14000 Ciudad de México (CDMX), México. E-mail:
| |
Collapse
|
13
|
Castro-Fuentes CA, Reyes-Montes MDR, Frías-De-León MG, Valencia-Ledezma OE, Acosta-Altamirano G, Duarte-Escalante E. Aspergillus-SARS-CoV-2 Coinfection: What Is Known? Pathogens 2022; 11:1227. [PMID: 36364979 PMCID: PMC9694759 DOI: 10.3390/pathogens11111227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
COVID-19-associated pulmonary aspergillosis (CAPA) has had a high incidence. In addition, it has been associated with prolonged hospital stays, as well as several predisposing risk factors, such as fungal factors (nosocomial organism, the size of the conidia, and the ability of the Aspergillus spp. of colonizing the respiratory tract), environmental factors (remodeling in hospitals, use of air conditioning and negative pressure in intensive care units), comorbidities, and immunosuppressive therapies. In addition to these factors, SARS-CoV-2 per se is associated with significant dysfunction of the patient's immune system, involving both innate and acquired immunity, with reduced CD4+ and CD8+ T cell counts and cytokine storm. Therefore, this review aims to identify the factors influencing the fungus so that coinfection with SARS-CoV-2 can occur. In addition, we analyze the predisposing factors in the fungus, host, and the immune response alteration due to the pathogenicity of SARS-CoV-2 that causes the development of CAPA.
Collapse
Affiliation(s)
- Carlos Alberto Castro-Fuentes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - María del Rocío Reyes-Montes
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| | - María Guadalupe Frías-De-León
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Omar E. Valencia-Ledezma
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Gustavo Acosta-Altamirano
- Hospital Regional de Alta Especialidad de Ixtapaluca, Carretera Federal México-Puebla Km. 34.5, Pueblo de Zoquiapan, Ixtapaluca 56530, Mexico
| | - Esperanza Duarte-Escalante
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Avenida Universidad 3000, Ciudad Universitaria, Coyoacán, Mexico City 04510, Mexico
| |
Collapse
|
14
|
Shishido AA, Mathew M, Baddley JW. Overview of COVID-19-Associated Invasive Fungal Infection. CURRENT FUNGAL INFECTION REPORTS 2022; 16:87-97. [PMID: 35846240 PMCID: PMC9274633 DOI: 10.1007/s12281-022-00434-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2022] [Indexed: 12/04/2022]
Abstract
Purpose of Review Invasive fungal infections are a complication of COVID-19 disease. This article reviews literature characterizing invasive fungal infections associated with COVID-19. Recent Findings Multiple invasive fungal infections including aspergillosis, candidiasis, pneumocystosis, other non-Aspergillus molds, and endemic fungi have been reported in patients with COVID-19. Risk factors for COVID-19-associated fungal disease include underlying lung disease, diabetes, steroid or immunomodulator use, leukopenia, and malignancy. COVID-19-associated pulmonary aspergillosis (CAPA) and COVID-19-associated mucormycosis (CAM) are the most common fungal infections described. However, there is variability in the reported incidences related to use of differing diagnostic algorithms. Summary Fungal pathogens are important cause of infection in patients with COVID-19, and the diagnostic strategies continue to evolve. Mortality in these patients is increased, and providers should operate with a high index of suspicion. Further studies will be required to elucidate the associations and pathogenesis of these diseases and best management and prevention strategies.
Collapse
Affiliation(s)
- Akira A. Shishido
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 USA
| | - Minu Mathew
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 USA
| | - John W. Baddley
- Department of Medicine, Division of Infectious Diseases, University of Maryland School of Medicine, 725 West Lombard Street, Baltimore, MD 21201 USA
| |
Collapse
|
15
|
Hashim Z, Nath A, Khan A, Neyaz Z, Marak RSK, Areekkara P, Tiwari A, Srivastava S, Agarwal V, Saxena S, Tripathy N, Azim A, Gupta M, Mishra DP, Mishra P, Singh RK, Gupta D, Gupta A, Sanjeev OP, Ghatak T, Ghoshal U, Dhiman RK, Tripathy NK. New Insights into Development and Mortality of COVID-19-Associated Pulmonary Aspergillosis in a Homogenous Cohort of 1161 Intensive Care Patients. Mycoses 2022; 65:1010-1023. [PMID: 35716344 PMCID: PMC9349548 DOI: 10.1111/myc.13485] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND COVID-19-associated pulmonary aspergillosis (CAPA) has been widely reported but homogenous large cohort studies are needed to gain real-world insights about the disease. METHODS We collected clinical and laboratory data of 1161 patients hospitalized at our Institute from March 2020 to August 2021, defined their CAPA pathology, and analyzed the data of CAPA/non-CAPA and deceased/survived CAPA patients using univariable and multivariable models. RESULTS The overall prevalence and mortality of CAPA in our homogenous cohort of 1161 patients was 6.4% and 47.3%, respectively. The mortality of CAPA was higher than that of non-CAPA patients (Hazard ratio: 1.8 [95% confidence interval: 1.1-2.8]). Diabetes (odds ratio 1.92 [1.15-3.21]); persistent fever (2.54 [1.17- 5.53]); hemoptysis (7.91[4.45-14.06]); and lung lesions of cavitation (8.78 [2.27-34.03]), consolidation (9.06 [2.03-40.39]), and nodules (8.26 [2.39-28.58]) were associated with development of CAPA by multivariable analysis. Acute respiratory distress syndrome (ARDS) (2.68 [1.09-6.55]), a high computed tomography score index (OR 1.18 [1.08-1.29]; p<0.001), and pulse glucocorticoid treatment (HR 4.0 [1.3-9.2]) were associated with mortality of the disease. Whereas neutrophilic leukocytosis (development: 1.09 [1.03-1.15]; mortality: 1.17 [1.08-1.28]) and lymphopenia (development: 0.68 [0.51-0.91]; mortality: 0.40 [0.20-0.83]) were associated with the development as well as mortality of CAPA. CONCLUSION We observed a low but likely underestimated prevalence of CAPA in our study. CAPA is a disease with highly mortality and diabetes is a significant factor for its development while ARDS and pulse glucocorticoid treatment are significant factors for its mortality. The cellular immune dysregulation may have a central role in CAPA from its development to mortality.
Collapse
Affiliation(s)
- Zia Hashim
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Alok Nath
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Ajmal Khan
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Zafar Neyaz
- Department of Radiodiagnosis, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Rungmei S K Marak
- Department of Microbiology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Prasant Areekkara
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Atul Tiwari
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Shivani Srivastava
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Vikas Agarwal
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Swati Saxena
- Department of Molecular Medicine, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Nidhi Tripathy
- Department of Endocrinology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Afzal Azim
- Department of Critical Care Medicine, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Mansi Gupta
- Department of Pulmonary Medicine, Sanjay Gandhi Postgraduate Institute of Medical Sciences (SGPGIMS), Raebareli Road, Lucknow-226014, India
| | - Durga Prasanna Mishra
- Department of Clinical Immunology and Rheumatology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Prabhakar Mishra
- Department of Biostatistics and Health Informatics, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Ratender Kumar Singh
- Department of Emergency Medicine, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Devender Gupta
- Department of Anesthesiology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Anshul Gupta
- Department of Hematology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Om Prakash Sanjeev
- Department of Emergency Medicine, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Tanmoy Ghatak
- Department of Emergency Medicine, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | - Ujjala Ghoshal
- Department of Microbiology, SGPGIMS, Raebareli Road, Lucknow-226014, India
| | | | | |
Collapse
|
16
|
Román-Montes CM, Bojorges-Aguilar S, Díaz-Lomelí P, Cervantes-Sánchez A, Rangel-Cordero A, Martínez-Gamboa A, Sifuentes-Osornio J, Ponce-de-León A, González-Lara MF. Tracheal Aspirate Galactomannan Testing in COVID-19-Associated Pulmonary Aspergillosis. FRONTIERS IN FUNGAL BIOLOGY 2022; 3:855914. [PMID: 37746186 PMCID: PMC10512352 DOI: 10.3389/ffunb.2022.855914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Accepted: 03/09/2022] [Indexed: 09/26/2023]
Abstract
Among critically ill patients, COVID-19-associated pulmonary aspergillosis (CAPA) is a challenging complication. The recommended diagnostic methods for this disease are bronchoalveolar lavage (BAL) culture and galactomannan (GM) testing, which were not widely available during the pandemic. There is scarce information regarding GM testing in other respiratory specimens. Our objective was to compare the agreement of GM between BAL and tracheal aspirate (TA) samples. We selected patients with COVID-19 and those with suspected CAPA who were admitted in the intensive care unit (ICU). GM was routinely done in BAL. We performed GM in TA samples and compared the results. The agreement was evaluated with Cohen's Kappa coefficient. GM was considered positive when an OD index ≥ 1 in BAL and ≥ 2 in TA were found. Probable CAPA was considered when the ECMM/ISHAM criteria were met. A descriptive analysis of clinical characteristics and mortality was made. We included 20 patients with suspected CAPA from 54 patients with critical COVID-19, of which 5 (9%) met the probable category. Aspergillus fumigatus was the most frequent isolate. We found moderate agreement between BAL and TA GM (Kappa = 0.47, p = 0.01, 95% CI.04-0.9), whereas TA GM had 75% sensitivity (95% CI 19.4-99.4%), 81.2% specificity (95% CI 54.4-95.9%), 50% positive predictive value (95% CI 23.8-76.3%),] and 92.8% negative predictive value (95% CI 70.1-98.6%), and 80% accuracy (95% CI 56.3-94.3%). Lastly, three (60%) patients with CAPA died during hospitalization compared to 40% (6/15) without CAPA (p = 0.4). In conclusion, a moderate agreement between TA GM and BAL was found. Therefore, TA testing may aid in ruling out CAPA due to high negative predictive value when bronchoscopies are unavailable.
Collapse
Affiliation(s)
- Carla M. Román-Montes
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
- Medicine Direction, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Saúl Bojorges-Aguilar
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
- Medicine Direction, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Paulette Díaz-Lomelí
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Axel Cervantes-Sánchez
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Andrea Rangel-Cordero
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Areli Martínez-Gamboa
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - José Sifuentes-Osornio
- Infectious Diseases Department of Medicine, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Alfredo Ponce-de-León
- Medicine Direction, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| | - Maria F. González-Lara
- Clinical Microbiology Laboratory, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
- Medicine Direction, Instituto Nacional de Ciencias Médicas y Nutrición “Salvador Zubirán”, Mexico City, Mexico
| |
Collapse
|
17
|
Kurra N, Woodard PI, Gandrakota N, Gandhi H, Polisetty SR, Ang SP, Patel KP, Chitimalla V, Ali Baig MM, Samudrala G. Opportunistic Infections in COVID-19: A Systematic Review and Meta-Analysis. Cureus 2022; 14:e23687. [PMID: 35505698 PMCID: PMC9055976 DOI: 10.7759/cureus.23687] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/31/2022] [Indexed: 02/06/2023] Open
Abstract
The prevalence, incidence, and characteristics of bacterial infections in patients infected with severe acute respiratory syndrome coronavirus 2 are not well understood and have been raised as an important knowledge gap. Therefore, our study focused on the most common opportunistic infections/secondary infections/superinfections in coronavirus disease 2019 (COVID-19) patients. This systematic review and meta-analysis was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses. Eligible studies were identified using PubMed/Medline since inception to June 25, 2021. Studies meeting the inclusion criteria were selected. Statistical analysis was conducted in Review Manager 5.4.1. A random-effect model was used when heterogeneity was seen to pool the studies, and the result was reported as inverse variance and the corresponding 95% confidence interval. We screened 701 articles comprising 22 cohort studies which were included for analysis. The pooled prevalence of opportunistic infections/secondary infections/superinfections was 16% in COVID-19 patients. The highest prevalence of secondary infections was observed among viruses at 33%, followed by bacteria at 16%, fungi at 6%, and 25% among the miscellaneous group/wrong outcome. Opportunistic infections are more prevalent in critically ill patients. The isolated pathogens included Epstein-Barr virus, Pseudomonas aeruginosa, Escherichia coli, Acinetobacter baumannii, Hemophilus influenza, and invasive pulmonary aspergillosis. Large-scale studies are required to better identify opportunistic/secondary/superinfections in COVID-19 patients.
Collapse
Affiliation(s)
- Nithin Kurra
- Department of Neurology, University of Nebraska Medical Center, Omaha, USA
| | | | | | - Heli Gandhi
- Medicine and Surgery, Manipal Academy of Higher Education, Manipal, IND
| | | | - Song Peng Ang
- Medicine and Surgery, International Medical University, Kuala Lumpur, MYS
| | - Kinjalben P Patel
- Medicine and Surgery, Smt. B. K. Shah Medical Institute & Research Centre, Vadodara, IND
| | - Vishwaj Chitimalla
- Medicine and Surgery, Shri B M Patil Medical College Hospital and Research Centre, Bijapur Lingayat District Educational (BLDE) University, Vijayapura, IND
| | - Mirza M Ali Baig
- Department of Anaesthesiology, Dow University of Health Sciences, Karachi, PAK
| | - Gayathri Samudrala
- Obstetrics and Gynecology, National Board of Examinations, New Delhi, IND.,Medicine and Surgery, Dr. N. T. Ramarao University of Health Sciences, Vijayawada, IND
| |
Collapse
|
18
|
Defining COVID-19 associated pulmonary aspergillosis: systematic review and meta-analysis. Clin Microbiol Infect 2022; 28:920-927. [PMID: 35150878 PMCID: PMC8828380 DOI: 10.1016/j.cmi.2022.01.027] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 01/06/2023]
Abstract
Background Pulmonary aspergillosis may complicate coronavirus disease 2019 (COVID-19) and contribute to excess mortality in intensive care unit (ICU) patients. The disease is poorly understood, in part due to discordant definitions across studies. Objectives We sought to review the prevalence, diagnosis, treatment, and outcomes of COVID-19–associated pulmonary aspergillosis (CAPA) and compare research definitions. Data sources PubMed, Embase, Web of Science, and MedRxiv were searched from inception to October 12, 2021. Study eligibility criteria ICU cohort studies and CAPA case series including ≥3 patients were included. Participants Adult patients in ICUs with COVID-19. Interventions Patients were reclassified according to four research definitions. We assessed risk of bias with an adaptation of the Joanna Briggs Institute cohort checklist tool for systematic reviews. Methods We calculated CAPA prevalence using the Freeman-Tukey random effects method. Correlations between definitions were assessed with Spearman's rank test. Associations between antifungals and outcome were assessed with random effects meta-analysis. Results Fifty-one studies were included. Among 3297 COVID-19 patients in ICU cohort studies, 313 were diagnosed with CAPA (prevalence 10%; 95% CI 8%–13%). Two hundred seventy-seven patients had patient-level data allowing reclassification. Definitions had limited correlation with one another (ρ = 0.268–0.447; p < 0.001), with the exception of Koehler and Verweij (ρ = 0.893; p < 0.001); 33.9% of patients reported to have CAPA did not fulfill any research definitions. Patients were diagnosed after a median of 8 days (interquartile range 5–14) in ICUs. Tracheobronchitis occurred in 3% of patients examined with bronchoscopy. The mortality rate was high (59.2%). Applying CAPA research definitions did not strengthen the association between mould-active antifungals and survival. Conclusions The reported prevalence of CAPA is significant but may be exaggerated by nonstandard definitions.
Collapse
|
19
|
Salazar F, Bignell E, Brown GD, Cook PC, Warris A. Pathogenesis of Respiratory Viral and Fungal Coinfections. Clin Microbiol Rev 2022; 35:e0009421. [PMID: 34788127 PMCID: PMC8597983 DOI: 10.1128/cmr.00094-21] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Individuals suffering from severe viral respiratory tract infections have recently emerged as "at risk" groups for developing invasive fungal infections. Influenza virus is one of the most common causes of acute lower respiratory tract infections worldwide. Fungal infections complicating influenza pneumonia are associated with increased disease severity and mortality, with invasive pulmonary aspergillosis being the most common manifestation. Strikingly, similar observations have been made during the current coronavirus disease 2019 (COVID-19) pandemic. The copathogenesis of respiratory viral and fungal coinfections is complex and involves a dynamic interplay between the host immune defenses and the virulence of the microbes involved that often results in failure to return to homeostasis. In this review, we discuss the main mechanisms underlying susceptibility to invasive fungal disease following respiratory viral infections. A comprehensive understanding of these interactions will aid the development of therapeutic modalities against newly identified targets to prevent and treat these emerging coinfections.
Collapse
Affiliation(s)
- Fabián Salazar
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Elaine Bignell
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Gordon D. Brown
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Peter C. Cook
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| | - Adilia Warris
- Medical Research Council Centre for Medical Mycology, University of Exeter, Exeter, United Kingdom
| |
Collapse
|
20
|
Peghin M, Vena A, Graziano E, Giacobbe DR, Tascini C, Bassetti M. Improving management and antimicrobial stewardship for bacterial and fungal infections in hospitalized patients with COVID-19. Ther Adv Infect Dis 2022; 9:20499361221095732. [PMID: 35591884 PMCID: PMC9112312 DOI: 10.1177/20499361221095732] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 03/14/2022] [Indexed: 12/27/2022] Open
Abstract
SARS-CoV-2 (severe acute respiratory syndrome coronavirus-2) infection is being
one of the most significant challenges of health care systems worldwide.
Bacterial and fungal infections in hospitalized patients with coronavirus
disease 2019 (COVID-19) are uncommon but consumption of antibiotics and
antifungals has increased dramatically during the ongoing pandemic resulting in
increased selective pressure for global antimicrobial resistance. Nosocomial
bacterial superinfections appear to be more frequent than community-acquired
coinfections, particularly among patients admitted to the intensive care unit
(ICU) and those receiving immunosuppressive treatment. Fungal infections
associated with COVID-19 might be missed or misdiagnosed. Existing and new
antimicrobial stewardship (AMS) programmes can be utilized directly in COVID-19
pandemic and are urgently needed to contain the high rates of misdiagnosis and
antimicrobial prescription. The aim of this review is to describe the role of
bacterial and fungal infections and possible strategies of AMS to use in daily
practice for optimal management of COVID-19.
Collapse
Affiliation(s)
- Maddalena Peghin
- Clinica di Malattie Infettive, Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Presidio Ospedaliero Universitario Santa Maria della Misericordia, Piazzale Santa Maria della Misericordia 15, 33010 Udine, Italy
| | - Antonio Vena
- Infectious Diseases Unit, Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| | - Elena Graziano
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | | | - Carlo Tascini
- Infectious Diseases Division, Department of Medicine, University of Udine and Azienda Sanitaria Universitaria Friuli Centrale (ASUFC), Udine, Italy
| | - Matteo Bassetti
- Infectious Diseases Unit, Ospedale Policlinico San Martino-IRCCS, Genoa, Italy
| |
Collapse
|
21
|
Feys S, Almyroudi MP, Braspenning R, Lagrou K, Spriet I, Dimopoulos G, Wauters J. A Visual and Comprehensive Review on COVID-19-Associated Pulmonary Aspergillosis (CAPA). J Fungi (Basel) 2021; 7:1067. [PMID: 34947049 PMCID: PMC8708864 DOI: 10.3390/jof7121067] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 19 (COVID-19)-associated pulmonary aspergillosis (CAPA) is a severe fungal infection complicating critically ill COVID-19 patients. Numerous retrospective and prospective studies have been performed to get a better grasp on this lethal co-infection. We performed a qualitative review and summarized data from 48 studies in which 7047 patients had been included, of whom 820 had CAPA. The pooled incidence of proven, probable or putative CAPA was 15.1% among 2953 ICU-admitted COVID-19 patients included in 18 prospective studies. Incidences showed great variability due to multiple factors such as discrepancies in the rate and depth of the fungal work-up. The pathophysiology and risk factors for CAPA are ill-defined, but therapy with corticosteroids and anti-interleukin-6 therapy potentially confer the biggest risk. Sampling for mycological work-up using bronchoscopy is the cornerstone for diagnosis, as imaging is often aspecific. CAPA is associated with an increased mortality, but we do not have conclusive data whether therapy contributes to an increased survival in these patients. We conclude our review with a comparison between influenza-associated pulmonary aspergillosis (IAPA) and CAPA.
Collapse
Affiliation(s)
- Simon Feys
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
| | - Maria Panagiota Almyroudi
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Reinout Braspenning
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Isabel Spriet
- Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - George Dimopoulos
- ICU of 1st Department of Critical Care, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
22
|
Sivasubramanian G, Ghanem H, Maison-Fomotar M, Jain R, Libke R. COVID-19-Associated Pulmonary Aspergillosis: A Single-Center Experience in Central Valley, California, January 2020-March 2021. J Fungi (Basel) 2021; 7:jof7110948. [PMID: 34829235 PMCID: PMC8618928 DOI: 10.3390/jof7110948] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 12/14/2022] Open
Abstract
Reports of coronavirus disease 2019 (COVID-19)-associated pulmonary aspergillosis (CAPA) have been widely published across the world since the onset of the pandemic with varying incidence rates. We retrospectively studied all patients with severe COVID-19 infection who were admitted to our tertiary care center′s intensive care units between January 2020 and March 2021, who also had respiratory cultures positive for Aspergillus species. Among a large cohort of 970 patients admitted to the ICU with severe COVID-19 infections during our study period, 48 patients had Aspergillus species growing in respiratory cultures. Based on the 2020 European Confederation of Medical Mycology and the International Society for Human and Animal Mycology (ECMM/ISHAM) consensus criteria, 2 patients in the study had proven CAPA, 9 had probable CAPA, and 37 had possible CAPA. The incidence of CAPA was 5%. The mean duration from a positive COVID-19 test to Aspergillus spp. being recovered from the respiratory cultures was 16 days, and more than half of the patients had preceding fever or worsening respiratory failure despite adequate support and management. Antifungals were given for treatment in 44% of the patients for a mean duration of 13 days. The overall mortality rate in our study population was extremely high with death occurring in 40/48 patients (83%).
Collapse
Affiliation(s)
- Geetha Sivasubramanian
- Division of Infectious Diseases, Department of Internal Medicine, University of California, San Francisco, CA 93701, USA; (H.G.); (M.M.-F.); (R.L.)
- Correspondence: ; Tel.: +1-559-499-6484; Fax: +1-559-499-6501
| | - Hebah Ghanem
- Division of Infectious Diseases, Department of Internal Medicine, University of California, San Francisco, CA 93701, USA; (H.G.); (M.M.-F.); (R.L.)
| | - Michele Maison-Fomotar
- Division of Infectious Diseases, Department of Internal Medicine, University of California, San Francisco, CA 93701, USA; (H.G.); (M.M.-F.); (R.L.)
| | - Ratnali Jain
- UCSF Fresno Research Institute, University of California, San Francisco, CA 93701, USA;
| | - Robert Libke
- Division of Infectious Diseases, Department of Internal Medicine, University of California, San Francisco, CA 93701, USA; (H.G.); (M.M.-F.); (R.L.)
| |
Collapse
|
23
|
Casalini G, Giacomelli A, Ridolfo A, Gervasoni C, Antinori S. Invasive Fungal Infections Complicating COVID-19: A Narrative Review. J Fungi (Basel) 2021; 7:921. [PMID: 34829210 PMCID: PMC8620819 DOI: 10.3390/jof7110921] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/15/2022] Open
Abstract
Invasive fungal infections (IFIs) can complicate the clinical course of COVID-19 and are associated with a significant increase in mortality, especially in critically ill patients admitted to an intensive care unit (ICU). This narrative review concerns 4099 cases of IFIs in 58,784 COVID-19 patients involved in 168 studies. COVID-19-associated invasive pulmonary aspergillosis (CAPA) is a diagnostic challenge because its non-specific clinical/imaging features and the fact that the proposed clinically diagnostic algorithms do not really apply to COVID-19 patients. Forty-seven observational studies and 41 case reports have described a total of 478 CAPA cases that were mainly diagnosed on the basis of cultured respiratory specimens and/or biomarkers/molecular biology, usually without histopathological confirmation. Candidemia is a widely described secondary infection in critically ill patients undergoing prolonged hospitalisation, and the case reports and observational studies of 401 cases indicate high crude mortality rates of 56.1% and 74.8%, respectively. COVID-19 patients are often characterised by the presence of known risk factors for candidemia such as in-dwelling vascular catheters, mechanical ventilation, and broad-spectrum antibiotics. We also describe 3185 cases of mucormycosis (including 1549 cases of rhino-orbital mucormycosis (48.6%)), for which the main risk factor is a history of poorly controlled diabetes mellitus (>76%). Its diagnosis involves a histopathological examination of tissue biopsies, and its treatment requires anti-fungal therapy combined with aggressive surgical resection/debridement, but crude mortality rates are again high: 50.8% in case reports and 16% in observational studies. The presence of other secondary IFIs usually diagnosed in severely immunocompromised patients show that SARS-CoV-2 is capable of stunning the host immune system: 20 cases of Pneumocystis jirovecii pneumonia, 5 cases of cryptococcosis, 4 cases of histoplasmosis, 1 case of coccidioides infection, 1 case of pulmonary infection due to Fusarium spp., and 1 case of pulmonary infection due to Scedosporium.
Collapse
Affiliation(s)
- Giacomo Casalini
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (G.C.); (A.G.)
| | - Andrea Giacomelli
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (G.C.); (A.G.)
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (A.R.); (C.G.)
| | - Annalisa Ridolfo
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (A.R.); (C.G.)
| | - Cristina Gervasoni
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (A.R.); (C.G.)
| | - Spinello Antinori
- Luigi Sacco Department of Biomedical and Clinical Sciences, Università degli Studi di Milano, 20157 Milan, Italy; (G.C.); (A.G.)
- III Division of Infectious Diseases, ASST Fatebenefratelli Sacco, 20157 Milan, Italy; (A.R.); (C.G.)
| |
Collapse
|
24
|
Chong WH, Saha BK, Neu KP. Comparing the clinical characteristics and outcomes of COVID-19-associate pulmonary aspergillosis (CAPA): a systematic review and meta-analysis. Infection 2021; 50:43-56. [PMID: 34570355 PMCID: PMC8475405 DOI: 10.1007/s15010-021-01701-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 09/14/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE Invasive pulmonary aspergillosis has been increasingly recognized in COVID-19 patients, termed COVID-19-associate pulmonary aspergillosis (CAPA). Our meta-analysis aims to assess the clinical characteristics and outcomes of patients diagnosed with CAPA compared to those without CAPA. METHODS We searched the Pubmed, Cochrane Library, SCOPUS, and Web of Science databases for studies published between January 1, 2020 and August 1, 2021, containing comparative data of patients diagnosed with CAPA and those without CAPA. RESULTS Eight cohort studies involving 729 critically ill COVID-19 patients with comparative data were included. CAPA patients were older (mean age 66.58 vs. 59.25 years; P = 0.007) and had underlying chronic obstructive pulmonary disease (COPD) (13.7 vs. 6.1%; OR 2.75; P = 0.05). No differences in gender, body mass index (BMI), and comorbidities of diabetes and cancer were observed. CAPA patients were more likely to receive long-term corticosteroid treatment (15.0 vs. 5.3%; OR 3.53; P = 0.03). CAPA patients had greater severity of illness based on sequential organ failure assessment (SOFA) score with a higher all-cause in-hospital mortality rate (42.6 vs. 26.5%; OR 3.39; P < 0.001) and earlier ICU admission from illness onset (mean 11.00 vs. 12.00 days; P = 0.003). ICU length of stay (LOS), invasive mechanical ventilation (IMV) duration, the requirement of inotropic support and renal replacement therapy were comparable between the two groups. CONCLUSIONS CAPA patients are typically older with underlying COPD and received long-term corticosteroid treatment. Furthermore, CAPA is associated with higher SOFA scores, mortality, and earlier onset of ICU admission from illness onset.
Collapse
Affiliation(s)
- Woon Hean Chong
- Department of Pulmonary and Critical Care Medicine, Albany Medical Center, 43 New Scotland Avenue, Albany, NY, 12208, USA.
| | - Biplab K Saha
- Department of Pulmonary and Critical Care, Ozarks Medical Center, West Plains, MO, 65775, USA
| | - Kristoffer P Neu
- Department of Pulmonary and Critical Care, Albany Stratton VA Medical Center, Albany, NY, 12208, USA
| |
Collapse
|
25
|
Ezeokoli OT, Gcilitshana O, Pohl CH. Risk Factors for Fungal Co-Infections in Critically Ill COVID-19 Patients, with a Focus on Immunosuppressants. J Fungi (Basel) 2021; 7:545. [PMID: 34356924 PMCID: PMC8304654 DOI: 10.3390/jof7070545] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/28/2021] [Accepted: 06/29/2021] [Indexed: 12/15/2022] Open
Abstract
Severe cases of coronavirus disease 2019 (COVID-19) managed in the intensive care unit are prone to complications, including secondary infections with opportunistic fungal pathogens. Systemic fungal co-infections in hospitalized COVID-19 patients may exacerbate COVID-19 disease severity, hamper treatment effectiveness and increase mortality. Here, we reiterate the role of fungal co-infections in exacerbating COVID-19 disease severity as well as highlight emerging trends related to fungal disease burden in COVID-19 patients. Furthermore, we provide perspectives on the risk factors for fungal co-infections in hospitalized COVID-19 patients and highlight the potential role of prolonged immunomodulatory treatments in driving fungal co-infections, including COVID-19-associated pulmonary aspergillosis (CAPA), COVID-19-associated candidiasis (CAC) and mucormycosis. We reiterate the need for early diagnosis of suspected COVID-19-associated systemic mycoses in the hospital setting.
Collapse
Affiliation(s)
| | | | - Carolina H. Pohl
- Yeast Research Group, Department of Microbiology and Biochemistry, University of the Free State, Bloemfontein 9300, South Africa or (O.T.E.); (O.G.)
| |
Collapse
|
26
|
Senok A, Alfaresi M, Khansaheb H, Nassar R, Hachim M, Al Suwaidi H, Almansoori M, Alqaydi F, Afaneh Z, Mohamed A, Qureshi S, Ali A, Alkhajeh A, Alsheikh-Ali A. Coinfections in Patients Hospitalized with COVID-19: A Descriptive Study from the United Arab Emirates. Infect Drug Resist 2021; 14:2289-2296. [PMID: 34188495 PMCID: PMC8232897 DOI: 10.2147/idr.s314029] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Accepted: 05/19/2021] [Indexed: 12/15/2022] Open
Abstract
Purpose Microbial coinfections in COVID-19 patients carry a risk of poor outcomes. This study aimed to characterize the clinical and microbiological profiles of coinfections in patients with COVID-19. Methods A retrospective review of the clinical and laboratory records of COVID-19 patients with laboratory-confirmed infections with bacteria, fungi, and viruses was conducted. Only adult COVID-19 patients hospitalized at participating health-care facilities between February 1 and July 31, 2020 were included. Data were collected from the centralized electronic system of Dubai Health Authority hospitals and Sheikh Khalifa General Hospital Umm Al Quwain. Results Of 29,802 patients hospitalized with COVID-19, 392 (1.3%) had laboratory-confirmed coinfections. The mean age of patients with coinfections was 49.3±12.5 years, and a majority were male (n=330 of 392, 84.2%). Mean interval to commencement of empirical antibiotics was 1.2±3.6) days postadmission, with ceftriaxone, azithromycin, and piperacillin-tazobactam the most commonly used. Median interval between admission and first positive culture (mostly from blood, endotracheal aspirates, and urine specimens) was 15 (IQR 8-25) days. Pseudomonas aeruginosa, Klebsiella pneumoniae, and Escherichia coli were predominant in first positive cultures, with increased occurrence of Stenotrophomonas maltophilia, methicillin-resistant Staphylococcus aureus, Acinetobacter baumannii, Candida auris, and Candida parapsilosis in subsequent cultures. The top three Gram-positive organisms were Staphylococcus epidermidis, Enterococcus faecalis, and Staphylococcus aureus. There was variability in levels of sensitivity to antibiotics and isolates harboring mecA, ESBL, AmpC, and carbapenemase-resistance genes were prevalent. A total of 130 (33.2%) patients died, predominantly those in the intensive-care unit undergoing mechanical ventilation or extracorporeal membrane oxygenation. Conclusion Despite the low occurrence of coinfections among patients with COVID-19 in our setting, clinical outcomes remained poor. Predominance of Gram-negative pathogens, emergence of Candida species, and prevalence of isolates harboring drug-resistance genes are of concern.
Collapse
Affiliation(s)
- Abiola Senok
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Mubarak Alfaresi
- Sheikh Khalifa General Hospital, Umm Al Quwain, United Arab Emirates
| | | | - Rania Nassar
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Oral and Biomedical Sciences, School of Dentistry, Cardiff University, Cardiff, UK
| | - Mahmood Hachim
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Hanan Al Suwaidi
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates
| | - Majed Almansoori
- Sheikh Khalifa General Hospital, Umm Al Quwain, United Arab Emirates
| | - Fatma Alqaydi
- Sheikh Khalifa General Hospital, Umm Al Quwain, United Arab Emirates
| | - Zuhair Afaneh
- Sheikh Khalifa General Hospital, Umm Al Quwain, United Arab Emirates
| | - Aalya Mohamed
- Sheikh Khalifa General Hospital, Umm Al Quwain, United Arab Emirates
| | - Shahab Qureshi
- Sheikh Khalifa General Hospital, Umm Al Quwain, United Arab Emirates
| | - Ayman Ali
- Sheikh Khalifa General Hospital, Umm Al Quwain, United Arab Emirates
| | | | - Alawi Alsheikh-Ali
- College of Medicine, Mohammed Bin Rashid University of Medicine and Health Sciences, Dubai, United Arab Emirates.,Dubai Health Authority, Dubai, United Arab Emirates
| |
Collapse
|
27
|
Mitaka H, Kuno T, Takagi H, Patrawalla P. Incidence and mortality of COVID-19-associated pulmonary aspergillosis: A systematic review and meta-analysis. Mycoses 2021; 64:993-1001. [PMID: 33896063 PMCID: PMC8251156 DOI: 10.1111/myc.13292] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/13/2021] [Accepted: 04/18/2021] [Indexed: 12/15/2022]
Abstract
COVID-19-associated pulmonary aspergillosis (CAPA) has been reported worldwide. However, basic epidemiological characteristics have not been well established. In this systematic review and meta-analysis, we aimed to determine the incidence and mortality of CAPA in critically ill patients with COVID-19 to improve guidance on surveillance and prognostication. Observational studies reporting COVID-19-associated pulmonary aspergillosis were searched with PubMed and Embase databases, followed by an additional manual search in April 2021. We performed a one-group meta-analysis on the incidence and mortality of CAPA using a random-effect model. We identified 28 observational studies with a total of 3148 patients to be included in the meta-analysis. Among the 28 studies, 23 were conducted in Europe, two in Mexico and one each in China, Pakistan and the United States. Routine screening for secondary fungal infection was employed in 13 studies. The modified AspICU algorithm was utilised in 15 studies and was the most commonly used case definition and diagnostic algorithm for pulmonary aspergillosis. The incidence and mortality of CAPA in the ICU were estimated to be 10.2% (95% CI, 8.0-12.5; I2 = 82.0%) and 54.9% (95% CI, 45.6-64.2; I2 = 62.7%), respectively. In conclusion, our estimates may be utilised as a basis for surveillance of CAPA and prognostication in the ICU. Large, prospective cohort studies based on the new case definitions of CAPA are warranted to validate our estimates.
Collapse
Affiliation(s)
- Hayato Mitaka
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, New York, NY, USA
| | - Toshiki Kuno
- Department of Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, New York, NY, USA
| | - Hisato Takagi
- Division of Cardiovascular Surgery, Shizuoka Medical Center, Shizuoka, Japan
| | - Paru Patrawalla
- Division of Pulmonary and Critical Care Medicine, Icahn School of Medicine at Mount Sinai, Mount Sinai Beth Israel, New York, NY, USA
| |
Collapse
|
28
|
Chong WH, Neu KP. Incidence, diagnosis and outcomes of COVID-19-associated pulmonary aspergillosis (CAPA): a systematic review. J Hosp Infect 2021; 113:115-129. [PMID: 33891985 PMCID: PMC8057923 DOI: 10.1016/j.jhin.2021.04.012] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023]
Abstract
COVID-19-associated pulmonary aspergillosis (CAPA) is defined as invasive pulmonary aspergillosis occurring in COVID-19 patients. The purpose of this review was to discuss the incidence, characteristics, diagnostic criteria, biomarkers, and outcomes of hospitalized patients diagnosed with CAPA. A literature search was performed through Pubmed and Web of Science databases for articles published up to 20th March 2021. In 1421 COVID-19 patients, the overall CAPA incidence was 13.5% (range 2.5-35.0%). The majority required invasive mechanical ventilation (IMV). The time to CAPA diagnosis from illness onset varied between 8.0 and 16.0 days. However, the time to CAPA diagnosis from intensive care unit (ICU) admission and IMV initiation ranged between 4.0-15.0 days and 3.0-8.0 days. The most common diagnostic criteria were the modified AspICU-Dutch/Belgian Mycosis Study Group and IAPA-Verweij et al. A total of 77.6% of patients had positive lower respiratory tract cultures, other fungal biomarkers of bronchoalveolar lavage and serum galactomannan were positive in 45.3% and 18.2% of patients. The CAPA mortality rate was high at 48.4%, despite the widespread use of antifungals. Lengthy hospital and ICU stays ranging between 16.0-37.5 days and 10.5-37.0 days were observed. CAPA patients had prolonged IMV duration of 13.0-20.0 days. The true incidence of CAPA likely remains unknown as the diagnosis is limited by the lack of standardized diagnostic criteria that rely solely on microbiological data with direct or indirect detection of Aspergillus in respiratory specimens, particularly in clinical conditions with a low pretest probability. A well-designed, multi-centre study to determine the optimal diagnostic approach for CAPA is required.
Collapse
Affiliation(s)
- W H Chong
- Department of Pulmonary and Critical Care Medicine, Albany Medical Center, Albany, NY, USA.
| | - K P Neu
- Department of Pulmonary and Critical Care, Albany Stratton VA Medical Center, Albany, NY, USA
| |
Collapse
|