1
|
Rawale KS, Gutierrez-Zamora GR, Venditto NA, Gill KS. Identification of Pathogen-Specific Novel Sources of Genetic Resistance Against Ascochyta Blight and Identification of Their Underlying Genetic Control. PLANT DISEASE 2024; 108:2367-2375. [PMID: 38332491 DOI: 10.1094/pdis-10-23-2176-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
Global chickpea production is restricted by Ascochyta blight caused by the necrotrophic fungi Ascochyta rabiei. Developing locally adapted disease-resistant cultivars is an economically and environmentally sustainable approach to combat this disease. However, the lack of genetic variability in cultivated chickpeas and breeder-friendly markers poses a significant challenge to Ascochyta blight-resistant breeding efforts in chickpeas. In this study, we screened the mini-core germplasm of Cicer reticulatum against a local pathotype of A. rabiei. A modified mini-dome screening approach resulted in the identification of five accessions showing a high level of resistance. The mean disease score of resistant accessions ranged between 1.75 ± 0.3 and 2.88 ± 0.4 compared to susceptible accessions, where the mean disease score ranged between 3.59 ± 0.62 and 8.86 ± 0.14. Genome-wide association study revealed a strong association on chromosome 5, explaining ∼58% of the phenotypic variance. The underlying region contained two candidate genes (Cr_14190.1_v2 and Cr_14189.1_v2), the characterization of which showed the presence of a DNA-binding domain (cl28899 and cd18793) in Cr_14190.1_v2 and its orthologs in C. arietinum, whereas Cr_14190.1_v2 carried an additional N-terminal domain (cl31759). qPCR expression analysis in resistant and susceptible accessions revealed ∼3- and ∼110-fold higher transcript abundance for Cr_14189.1 and Cr_14190.1, respectively.
Collapse
|
2
|
Ye M, Gao J, Li J, Yu W, Bai F, Zhou YJ. Promoter engineering enables precise metabolic regulation towards efficient β-elemene production in Ogataea polymorpha. Synth Syst Biotechnol 2024; 9:234-241. [PMID: 38385152 PMCID: PMC10877135 DOI: 10.1016/j.synbio.2024.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/01/2024] [Accepted: 02/04/2024] [Indexed: 02/23/2024] Open
Abstract
Precisely controlling gene expression is beneficial for optimizing biosynthetic pathways for improving the production. However, promoters in nonconventional yeasts such as Ogataea polymorpha are always limited, which results in incompatible gene modulation. Here, we expanded the promoter library in O. polymorpha based on transcriptional data, among which 13 constitutive promoters had the strengths ranging from 0-55% of PGAP, the commonly used strong constitutive promoter, and 2 were growth phase-dependent promoters. Subsequently, 2 hybrid growth phase-dependent promoters were constructed and characterized, which had 2-fold higher activities. Finally, promoter engineering was applied to precisely regulate cellular metabolism for efficient production of β-elemene. The glyceraldehyde-3-phosphate dehydrogenase gene GAP was downregulated to drive more flux into pentose phosphate pathway (PPP) and then to enhance the supply of acetyl-CoA by using phosphoketolase-phosphotransacetylase (PK-PTA) pathway. Coupled with the phase-dependent expression of synthase module (ERG20∼LsLTC2 fusion), the highest titer of 5.24 g/L with a yield of 0.037 g/(g glucose) was achieved in strain YY150U under fed-batch fermentation in shake flasks. This work characterized and engineered a series of promoters, that can be used to fine-tune genes for constructing efficient yeast cell factories.
Collapse
Affiliation(s)
- Min Ye
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Jingjing Li
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Fan Bai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yongjin J. Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| |
Collapse
|
3
|
Duy DL, Kim N. Yeast transcription factor Msn2 binds to G4 DNA. Nucleic Acids Res 2023; 51:9643-9657. [PMID: 37615577 PMCID: PMC10570036 DOI: 10.1093/nar/gkad684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 08/03/2023] [Accepted: 08/15/2023] [Indexed: 08/25/2023] Open
Abstract
Sequences capable of forming quadruplex or G4 DNA are prevalent in the promoter regions. The transformation from canonical to non-canonical secondary structure apparently regulates transcription of a number of human genes. In the budding yeast Saccharomyces cerevisiae, we identified 37 genes with a G4 motif in the promoters including 20 genes that contain stress response element (STRE) overlapping a G4 motif. STRE is the binding site of stress response regulators Msn2 and Msn4, transcription factors belonging to the C2H2 zinc-finger protein family. We show here that Msn2 binds directly to the G4 DNA structure through its zinc-finger domain with a dissociation constant similar to that of STRE-binding and that, in a stress condition, Msn2 is enriched at G4 DNA-forming loci in the yeast genome. For a large fraction of genes with G4/STRE-containing promoters, treating with G4-ligands led to significant elevations in transcription levels. Such transcriptional elevation was greatly diminished in a msn2Δ msn4Δ background and was partly muted when the G4 motif was disrupted. Taken together, our data suggest that G4 DNA could be an alternative binding site of Msn2 in addition to STRE, and that G4 DNA formation could be an important element of transcriptional regulation in yeast.
Collapse
Affiliation(s)
- Duong Long Duy
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Nayun Kim
- Department of Microbiology and Molecular Genetics, University of Texas Health Science Center at Houston, Houston, TX 77030, USA
- MD Anderson Cancer Center UT Health Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
4
|
Branham EM, McLean SA, Deliwala I, Mauck MC, Zhao Y, McKibben LA, Lee A, Spencer AB, Zannas AS, Lechner M, Danza T, Velilla MA, Hendry PL, Pearson C, Peak DA, Jones J, Rathlev NK, Linnstaedt SD. CpG Methylation Levels in HPA Axis Genes Predict Chronic Pain Outcomes Following Trauma Exposure. THE JOURNAL OF PAIN 2023; 24:1127-1141. [PMID: 36906051 PMCID: PMC10330094 DOI: 10.1016/j.jpain.2023.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/21/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023]
Abstract
Chronic post-traumatic musculoskeletal pain (CPTP) is a common outcome of traumatic stress exposure. Biological factors that influence the development of CPTP are poorly understood, though current evidence indicates that the hypothalamic-pituitary-adrenal (HPA) axis plays a critical role in its development. Little is known about molecular mechanisms underlying this association, including epigenetic mechanisms. Here, we assessed whether peritraumatic DNA methylation levels at 248 5'-C-phosphate-G-3' (CpG) sites in HPA axis genes (FKBP5, NR3C1, CRH, CRHR1, CRHR2, CRHBP, POMC) predict CPTP and whether identified CPTP-associated methylation levels influence expression of those genes. Using participant samples and data collected from trauma survivors enrolled into longitudinal cohort studies (n = 290), we used linear mixed modeling to assess the relationship between peritraumatic blood-based CpG methylation levels and CPTP. A total of 66 (27%) of the 248 CpG sites assessed in these models statistically significantly predicted CPTP, with the three most significantly associated CpG sites originating from the POMC gene region (ie, cg22900229 [β = .124, P < .001], cg16302441 [β = .443, P < .001], cg01926269 [β = .130, P < .001]). Among the genes analyzed, both POMC (z = 2.36, P = .018) and CRHBP (z = 4.89, P < .001) were enriched in CpG sites significantly associated with CPTP. Further, POMC expression was inversely correlated with methylation levels in a CPTP-dependent manner (6-months NRS<4: r = -.59, P < .001; 6-months NRS ≥ 4: r = -.18, P = .2312). Our results suggest that methylation of HPA axis genes including POMC and CRHBP predict risk for and may contribute to vulnerability to CPTP. PERSPECTIVE: Peritraumatic blood levels of CpG methylation sites in HPA axis genes, particularly CpG sites in the POMC gene, predict CPTP development. This data substantially advances our understanding of epigenetic predictors and potential mediators of CPTP, a highly common, morbid, and hard-to-treat form of chronic pain.
Collapse
Affiliation(s)
- Erica M Branham
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina
| | - Samuel A McLean
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Department of Emergency Medicine, University of North Carolina, Chapel Hill, North Carolina
| | - Ishani Deliwala
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Matthew C Mauck
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Ying Zhao
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Lauren A McKibben
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Aaron Lee
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Alex B Spencer
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | - Anthony S Zannas
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Psychiatry, University of North Carolina, Chapel Hill, North Carolina; Department of Genetics, University of North Carolina, Chapel Hill, North Carolina; Carolina Stress Initiative, University of North Carolina, Chapel Hill, North Carolina
| | - Megan Lechner
- Forensic Nursing Program, Memorial Health System, Colorado Springs, Colorado
| | - Teresa Danza
- Forensic Nursing Program, Albuquerque SANE Collaborative, Albuquerque, New Mexico
| | | | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Florida
| | - Claire Pearson
- Department of Emergency Medicine, Detroit Receiving, Detroit, Michigan
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Jeffrey Jones
- Department of Emergency Medicine, Spectrum Health Butterworth Campus, Grand Rapids, Michigan
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Chan Medical School Baystate, Springfield, Massachusetts
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, University of North Carolina, Chapel Hill, North Carolina; Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina; Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, North Carolina.
| |
Collapse
|
5
|
Xu H, Li C, Xu C, Zhang J. Chance promoter activities illuminate the origins of eukaryotic intergenic transcriptions. Nat Commun 2023; 14:1826. [PMID: 37005399 PMCID: PMC10067814 DOI: 10.1038/s41467-023-37610-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 03/23/2023] [Indexed: 04/04/2023] Open
Abstract
It is debated whether the pervasive intergenic transcription from eukaryotic genomes has functional significance or simply reflects the promiscuity of RNA polymerases. We approach this question by comparing chance promoter activities with the expression levels of intergenic regions in the model eukaryote Saccharomyces cerevisiae. We build a library of over 105 strains, each carrying a 120-nucleotide, chromosomally integrated, completely random sequence driving the potential transcription of a barcode. Quantifying the RNA concentration of each barcode in two environments reveals that 41-63% of random sequences have significant, albeit usually low, promoter activities. Therefore, even in eukaryotes, where the presence of chromatin is thought to repress transcription, chance transcription is prevalent. We find that only 1-5% of yeast intergenic transcriptions are unattributable to chance promoter activities or neighboring gene expressions, and these transcriptions exhibit higher-than-expected environment-specificity. These findings suggest that only a minute fraction of intergenic transcription is functional in yeast.
Collapse
Affiliation(s)
- Haiqing Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Chuan Li
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Microsoft, Redmond, WA, USA
| | - Chuan Xu
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA
- Bio-X Institutes, Shanghai Jiao Tong University, Shanghai, China
| | - Jianzhi Zhang
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
6
|
Nguyen-Vo TH, Trinh QH, Nguyen L, Nguyen-Hoang PU, Rahardja S, Nguyen BP. iPromoter-Seqvec: identifying promoters using bidirectional long short-term memory and sequence-embedded features. BMC Genomics 2022; 23:681. [PMID: 36192696 PMCID: PMC9531353 DOI: 10.1186/s12864-022-08829-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Promoters, non-coding DNA sequences located at upstream regions of the transcription start site of genes/gene clusters, are essential regulatory elements for the initiation and regulation of transcriptional processes. Furthermore, identifying promoters in DNA sequences and genomes significantly contributes to discovering entire structures of genes of interest. Therefore, exploration of promoter regions is one of the most imperative topics in molecular genetics and biology. Besides experimental techniques, computational methods have been developed to predict promoters. In this study, we propose iPromoter-Seqvec - an efficient computational model to predict TATA and non-TATA promoters in human and mouse genomes using bidirectional long short-term memory neural networks in combination with sequence-embedded features extracted from input sequences. The promoter and non-promoter sequences were retrieved from the Eukaryotic Promoter database and then were refined to create four benchmark datasets. RESULTS The area under the receiver operating characteristic curve (AUCROC) and the area under the precision-recall curve (AUCPR) were used as two key metrics to evaluate model performance. Results on independent test sets showed that iPromoter-Seqvec outperformed other state-of-the-art methods with AUCROC values ranging from 0.85 to 0.99 and AUCPR values ranging from 0.86 to 0.99. Models predicting TATA promoters in both species had slightly higher predictive power compared to those predicting non-TATA promoters. With a novel idea of constructing artificial non-promoter sequences based on promoter sequences, our models were able to learn highly specific characteristics discriminating promoters from non-promoters to improve predictive efficiency. CONCLUSIONS iPromoter-Seqvec is a stable and robust model for predicting both TATA and non-TATA promoters in human and mouse genomes. Our proposed method was also deployed as an online web server with a user-friendly interface to support research communities. Links to our source codes and web server are available at https://github.com/mldlproject/2022-iPromoter-Seqvec .
Collapse
Affiliation(s)
- Thanh-Hoang Nguyen-Vo
- School of Mathematics and Statistics, Victoria University of Wellington, Gate 7, Kelburn Parade, 6140 Wellington, New Zealand
| | - Quang H. Trinh
- School of Information and Communication Technology, Hanoi University of Science and Technology, 1 Dai Co Viet, 100000 Hanoi, Vietnam
| | - Loc Nguyen
- School of Mathematics and Statistics, Victoria University of Wellington, Gate 7, Kelburn Parade, 6140 Wellington, New Zealand
| | - Phuong-Uyen Nguyen-Hoang
- Computational Biology Center, International University - VNU HCMC, Quarter 6, Linh Trung Ward, Thu Duc District, 700000 Ho Chi Minh City, Vietnam
| | - Susanto Rahardja
- School of Marine Science and Technology, Northwestern Polytechnical University, 127 West Youyi Road, 710072 Xi’an, China
- Infocomm Technology Cluster, Singapore Institute of Technology, 10 Dover Drive, 138683 Singapore, Singapore
| | - Binh P. Nguyen
- School of Mathematics and Statistics, Victoria University of Wellington, Gate 7, Kelburn Parade, 6140 Wellington, New Zealand
| |
Collapse
|
7
|
Erden-Karaoğlan F, Karaoğlan M. Applicability of the heterologous yeast promoters for recombinant protein production in Pichia pastoris. Appl Microbiol Biotechnol 2022; 106:7073-7083. [PMID: 36163554 DOI: 10.1007/s00253-022-12183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/02/2022]
Abstract
Promoter choice is an important step in recombinant protein production, which directly determines the expression manner as constitutive or inducible and the expression level of the recombinant protein. This study aims to investigate the applicability of heterologous yeast promoters (Kluyveromyces marxianus TPI, Hansenula polymorpha PMA, Candida tropicalis ICL, and Saccharomyces cerevisiae CUP) in Pichia pastoris. The regulation mode of the CtICL and ScCUP promoters in P. pastoris was found to be inducible and that of the KmTPI and HpPMA was constitutive. The carbon sources in which the promoters exhibited the highest activity were determined as glycerol for PMA and TPI, glucose for CUP, and ethanol for ICL. The DNA region showing the highest activity was determined as 1000 bp for all promoters by promoter deletion analysis. Results from the study demonstrate the potential of inducible and constitutive heterologous promoters allowing expression under different conditions in the P. pastoris expression system and offers alternatives to frequently used promoters. KEY POINTS: • Heterologous promoters exhibited similar expression pattern in P. pastoris with its native host. • HpPMA has the highest promoter activity among the heterologous promoters tested. • Reporter gene expression with ScCUP is responsive to elevating Cu2+in P. pastoris.
Collapse
Affiliation(s)
- Fidan Erden-Karaoğlan
- Department of Food Engineering, Erzincan Binali Yıldırım University, Erzincan, Türkiye.
| | - Mert Karaoğlan
- Department of Food Engineering, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| |
Collapse
|
8
|
Chang T, Li G, Ding Z, Li W, Zhu P, Lei W, Shangguan D. Potential G-quadruplexes within the Promoter Nuclease Hypersensitive Sites of the Heat-responsive Genes in Rice. Chembiochem 2022; 23:e202200405. [PMID: 36006168 DOI: 10.1002/cbic.202200405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/21/2022] [Indexed: 11/11/2022]
Abstract
G-quadruplexes (G4s) have been shown to be involved in the regulation of multiple cellular processes. Exploring putative G4-forming sequences (PQSs) in heat-responsive genes of rice and their folding structures under different conditions will help to understand the mechanism in response to heat stress. In this work, we discovered a prevalence of PQSs in nuclease hypersensitive sites within the promoters of heat-responsive genes. Moreover, 50% of the searched G3 PQSs ((G3+L1-7)3+G3+) locate in heat shock transcription factors. Circular dichroism spectroscopy, thermal difference spectroscopy, and UV melting analysis demonstrated the representative PQSs could adopt stable G4s at physiological temperature and potassium concentration. These PQSs were able to stall Klenow Fragment (KF) DNA polymerase by the formation of G4s. However, the G4s with Tm values around 50 - 60 oC could be increasingly unwound by KF with the increase of temperatures from 25 to 50 oC, implying these G4s could sense the changes in temperature by structural switch. This work offers fresh clue to understand the potential of G4-involved functions of PQSs and the molecular events in plants in the response to heat stress.
Collapse
Affiliation(s)
- Tianjun Chang
- Henan Polytechnic University, Institute of Enveiroment and Resoures, 2001 Shiji Avenue, 454003, Jiaozuo, CHINA
| | - Guangping Li
- Henan Polytechnic University, Institute of Resources and Environment, CHINA
| | - Zhan Ding
- Henan Polytechnic University, Institute of Resources and Environment, CHINA
| | - Weiguo Li
- Henan Polytechnic University, Institute of Resources and Environment, CHINA
| | - Panpan Zhu
- Henan Polytechnic University, Institute of Resources and Environment, CHINA
| | - Wei Lei
- Henan Polytechnic University, Institute of Resources and Environment, CHINA
| | - Dihua Shangguan
- Institute of Chemistry Chinese Academy of Sciences, Beijing National Laboratory for Molecular Sciences, Key Labor-atory of Analytical Chemistry for Living Biosystems, CAS Re-search/Education Center for Excellence in Molecular Sciences, CHINA
| |
Collapse
|
9
|
Krieger G, Lupo O, Wittkopp P, Barkai N. Evolution of transcription factor binding through sequence variations and turnover of binding sites. Genome Res 2022; 32:1099-1111. [PMID: 35618416 PMCID: PMC9248875 DOI: 10.1101/gr.276715.122] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 05/20/2022] [Indexed: 01/08/2023]
Abstract
Variations in noncoding regulatory sequences play a central role in evolution. Interpreting such variations, however, remains difficult even in the context of defined attributes such as transcription factor (TF) binding sites. Here, we systematically link variations in cis-regulatory sequences to TF binding by profiling the allele-specific binding of 27 TFs expressed in a yeast hybrid, in which two related genomes are present within the same nucleus. TFs localize preferentially to sites containing their known consensus motifs but occupy only a small fraction of the motif-containing sites available within the genomes. Differential binding of TFs to the orthologous alleles was well explained by variations that alter motif sequence, whereas differences in chromatin accessibility between alleles were of little apparent effect. Motif variations that abolished binding when present in only one allele were still bound when present in both alleles, suggesting evolutionary compensation, with a potential role for sequence conservation at the motif's vicinity. At the level of the full promoter, we identify cases of binding-site turnover, in which binding sites are reciprocally gained and lost, yet most interspecific differences remained uncompensated. Our results show the flexibility of TFs to bind imprecise motifs and the fast evolution of TF binding sites between related species.
Collapse
Affiliation(s)
- Gat Krieger
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Offir Lupo
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Patricia Wittkopp
- Department of Ecology and Evolutionary Biology, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - Naama Barkai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
10
|
Szymczyk P, Szymańska G, Kuźma Ł, Jeleń A, Balcerczak E. Methyl Jasmonate Activates the 2C Methyl-D-erithrytol 2,4-cyclodiphosphate Synthase Gene and Stimulates Tanshinone Accumulation in Salvia miltiorrhiza Solid Callus Cultures. Molecules 2022; 27:molecules27061772. [PMID: 35335134 PMCID: PMC8950807 DOI: 10.3390/molecules27061772] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 02/25/2022] [Accepted: 03/05/2022] [Indexed: 01/25/2023] Open
Abstract
The present study characterizes the 5′ regulatory region of the SmMEC gene. The isolated fragment is 1559 bp long and consists of a promoter, 5′UTR and 31 nucleotide 5′ fragments of the CDS region. In silico bioinformatic analysis found that the promoter region contains repetitions of many potential cis-active elements. Cis-active elements associated with the response to methyl jasmonate (MeJa) were identified in the SmMEC gene promoter. Co-expression studies combined with earlier transcriptomic research suggest the significant role of MeJa in SmMEC gene regulation. These findings were in line with the results of the RT-PCR test showing SmMEC gene expression induction after 72 h of MeJa treatment. Biphasic total tanshinone accumulation was observed following treatment of S. miltiorrhiza solid callus cultures with 50–500 μM methyl jasmonate, with peaks observed after 10–20 and 50–60 days. An early peak of total tanshinone concentration (0.08%) occurred after 20 days of 100 μM MeJa induction, and a second, much lower one, was observed after 50 days of 50 μM MeJa stimulation (0.04%). The dominant tanshinones were cryptotanshinone (CT) and dihydrotanshinone (DHT). To better understand the inducing effect of MeJa treatment on tanshinone biosynthesis, a search was performed for methyl jasmonate-responsive cis-active motifs in the available sequences of gene proximal promoters associated with terpenoid precursor biosynthesis. The results indicate that MeJa has the potential to induce a significant proportion of the presented genes, which is in line with available transcriptomic and RT-PCR data.
Collapse
Affiliation(s)
- Piotr Szymczyk
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
- Correspondence:
| | - Grażyna Szymańska
- Department of Pharmaceutical Biotechnology, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
| | - Łukasz Kuźma
- Department of Biology and Pharmaceutical Botany, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland;
| | - Agnieszka Jeleń
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland; (A.J.); (E.B.)
| | - Ewa Balcerczak
- Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Medical University of Łódź, Muszyńskiego 1, 90-151 Łódź, Poland; (A.J.); (E.B.)
| |
Collapse
|
11
|
Hsieh EJ, Lin WD, Schmidt W. Genomically Hardwired Regulation of Gene Activity Orchestrates Cellular Iron Homeostasis in Arabidopsis. RNA Biol 2021; 19:143-161. [PMID: 35067184 PMCID: PMC8786333 DOI: 10.1080/15476286.2021.2024024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 12/09/2021] [Accepted: 12/26/2021] [Indexed: 10/26/2022] Open
Abstract
Iron (Fe) is an essential micronutrient which plays pivotal roles as electron donor and catalyst across organisms. In plants, variable, often insufficient Fe supply necessitates mechanisms that constantly attune Fe uptake rates and recalibrate cellular Fe homoeostasis. Here, we show that short-term (0.5, 6, and 12 h) exposure of Arabidopsis thaliana plants to Fe deficiency triggered massive changes in gene activity governed by transcription and alternative splicing (AS), regulatory layers that were to a large extent mutually exclusive. Such preclusion was not observed for genes that are directly involved in the acquisition of Fe, which appears to be concordantly regulated by both expression and AS. Generally, genes with lower splice site strengths and higher intron numbers were more likely to be regulated by AS, no dependence on gene architecture was observed for transcriptionally controlled genes. Conspicuously, specific processes were associated with particular genomic features and biased towards either regulatory mode, suggesting that genomic hardwiring is functionally biased. Early changes in splicing patterns were, in many cases, congruent with later changes in transcript or protein abundance, thus contributing to the pronounced transcriptome-proteome discordance observed in plants.
Collapse
Affiliation(s)
- En-Jung Hsieh
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wen-Dar Lin
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
| | - Wolfgang Schmidt
- Institute of Plant and Microbial Biology, Academia Sinica, Taipei, Taiwan
- Biotechnology Center, National Chung-Hsing University, Taichung, Taiwan
- Genome and Systems Biology Degree Program, College of Life Science, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
12
|
Duveau F, Vande Zande P, Metzger BP, Diaz CJ, Walker EA, Tryban S, Siddiq MA, Yang B, Wittkopp PJ. Mutational sources of trans-regulatory variation affecting gene expression in Saccharomyces cerevisiae. eLife 2021; 10:67806. [PMID: 34463616 PMCID: PMC8456550 DOI: 10.7554/elife.67806] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/03/2021] [Indexed: 12/15/2022] Open
Abstract
Heritable variation in a gene’s expression arises from mutations impacting cis- and trans-acting components of its regulatory network. Here, we investigate how trans-regulatory mutations are distributed within the genome and within a gene regulatory network by identifying and characterizing 69 mutations with trans-regulatory effects on expression of the same focal gene in Saccharomyces cerevisiae. Relative to 1766 mutations without effects on expression of this focal gene, we found that these trans-regulatory mutations were enriched in coding sequences of transcription factors previously predicted to regulate expression of the focal gene. However, over 90% of the trans-regulatory mutations identified mapped to other types of genes involved in diverse biological processes including chromatin state, metabolism, and signal transduction. These data show how genetic changes in diverse types of genes can impact a gene’s expression in trans, revealing properties of trans-regulatory mutations that provide the raw material for trans-regulatory variation segregating within natural populations.
Collapse
Affiliation(s)
- Fabien Duveau
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Laboratory of Biology and Modeling of the Cell, Ecole Normale Supérieure de Lyon, CNRS, Université Claude Bernard Lyon, Université de Lyon, Lyon, France
| | - Petra Vande Zande
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Brian Ph Metzger
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Crisandra J Diaz
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Elizabeth A Walker
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Stephen Tryban
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Mohammad A Siddiq
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States
| | - Bing Yang
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Patricia J Wittkopp
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, United States.,Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
13
|
Transcription at a Distance in the Budding Yeast Saccharomyces cerevisiae. Appl Microbiol 2021. [DOI: 10.3390/applmicrobiol1010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Proper transcriptional regulation depends on the collaboration of multiple layers of control simultaneously. Cells tightly balance cellular resources and integrate various signaling inputs to maintain homeostasis during growth, development and stressors, among other signals. Many eukaryotes, including the budding yeast Saccharomyces cerevisiae, exhibit a non-random distribution of functionally related genes throughout their genomes. This arrangement coordinates the transcription of genes that are found in clusters, and can occur over long distances. In this work, we review the current literature pertaining to gene regulation at a distance in budding yeast.
Collapse
|
14
|
Ksouri N, Castro-Mondragón JA, Montardit-Tarda F, van Helden J, Contreras-Moreira B, Gogorcena Y. Tuning promoter boundaries improves regulatory motif discovery in nonmodel plants: the peach example. PLANT PHYSIOLOGY 2021; 185:1242-1258. [PMID: 33744946 PMCID: PMC8133646 DOI: 10.1093/plphys/kiaa091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/07/2020] [Indexed: 05/04/2023]
Abstract
The identification of functional elements encoded in plant genomes is necessary to understand gene regulation. Although much attention has been paid to model species like Arabidopsis (Arabidopsis thaliana), little is known about regulatory motifs in other plants. Here, we describe a bottom-up approach for de novo motif discovery using peach (Prunus persica) as an example. These predictions require pre-computed gene clusters grouped by their expression similarity. After optimizing the boundaries of proximal promoter regions, two motif discovery algorithms from RSAT::Plants (http://plants.rsat.eu) were tested (oligo and dyad analysis). Overall, 18 out of 45 co-expressed modules were enriched in motifs typical of well-known transcription factor (TF) families (bHLH, bZip, BZR, CAMTA, DOF, E2FE, AP2-ERF, Myb-like, NAC, TCP, and WRKY) and a few uncharacterized motifs. Our results indicate that small modules and promoter window of [-500 bp, +200 bp] relative to the transcription start site (TSS) maximize the number of motifs found and reduce low-complexity signals in peach. The distribution of discovered regulatory sites was unbalanced, as they accumulated around the TSS. This approach was benchmarked by testing two different expression-based clustering algorithms (network-based and hierarchical) and, as control, genes grouped for harboring ChIPseq peaks of the same Arabidopsis TF. The method was also verified on maize (Zea mays), a species with a large genome. In summary, this article presents a glimpse of the peach regulatory components at genome scale and provides a general protocol that can be applied to other species. A Docker software container is released to facilitate the reproduction of these analyses.
Collapse
Affiliation(s)
- Najla Ksouri
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Jaime A Castro-Mondragón
- Aix-Marseille Univ, INSERM UMR_S 1090, Theory and Approaches of Genome Complexity (TAGC), F-13288 Marseille, France
- Centre for Molecular Medicine Norway (NCMM), Nordic EMBL Partnership, University of Oslo, 0318 Oslo, Norway
| | - Francesc Montardit-Tarda
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
| | - Jacques van Helden
- Aix-Marseille Univ, INSERM UMR_S 1090, Theory and Approaches of Genome Complexity (TAGC), F-13288 Marseille, France
- CNRS, Institut Français de Bioinformatique, IFB-core, UMS 3601, Evry, France
| | - Bruno Contreras-Moreira
- Laboratory of Computational and Structural Biology, Department of Genetics and Plant Production, Estación Experimental de Aula Dei–Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Fundación ARAID, Zaragoza, Spain
- Present address: European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Yolanda Gogorcena
- Laboratory of Genomics, Genetics and Breeding of Fruits and Grapevine, Estación Experimental de Aula Dei-Consejo Superior de Investigaciones Científicas, Zaragoza, Spain
- Author for communication:
| |
Collapse
|
15
|
Menon AM, Dakal TC. Genomic scanning of the promoter sequence in osmo/halo-tolerance related QTLs in Zygosaccharomyces rouxii. Meta Gene 2020. [DOI: 10.1016/j.mgene.2020.100809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
16
|
Tang J, Chisholm SA, Yeoh LM, Gilson PR, Papenfuss AT, Day KP, Petter M, Duffy MF. Histone modifications associated with gene expression and genome accessibility are dynamically enriched at Plasmodium falciparum regulatory sequences. Epigenetics Chromatin 2020; 13:50. [PMID: 33225957 PMCID: PMC7682024 DOI: 10.1186/s13072-020-00365-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 09/29/2020] [Indexed: 12/15/2022] Open
Abstract
Background The malaria parasite Plasmodium falciparum has an unusually euchromatic genome with poorly conserved positioning of nucleosomes in intergenic sequences and poorly understood mechanisms of gene regulation. Variant histones and histone modifications determine nucleosome stability and recruit trans factors, but their combinatorial contribution to gene regulation is unclear. Results Here, we show that the histone H3 acetylations H3K18ac and H3K27ac and the variant histone Pf H2A.Z are enriched together at regulatory sites upstream of genes. H3K18ac and H3K27ac together dynamically mark regulatory regions of genes expressed during the asexual life cycle. In contrast, H3K4me1 is depleted in intergenic sequence and dynamically depleted upstream of expressed genes. The temporal pattern of H3K27ac and H3K18ac enrichment indicates that they accumulate during S phase and mitosis and are retained at regulatory sequences until at least G1 phase and after cessation of expression of the cognate genes. We integrated our ChIPseq data with existing datasets to show that in schizont stages H3K18ac, H3K27ac and Pf H2A.Z colocalise with the transcription factor PfAP2-I and the bromodomain protein PfBDP1 and are enriched at stably positioned nucleosomes within regions of exposed DNA at active transcriptional start sites. Using transient transfections we showed that sequences enriched with colocalised H3K18ac, H3K27ac and Pf H2A.Z possess promoter activity in schizont stages, but no enhancer-like activity. Conclusions The dynamic H3 acetylations define P. falciparum regulatory sequences and contribute to gene activation. These findings expand the knowledge of the chromatin landscape that regulates gene expression in P. falciparum.
Collapse
Affiliation(s)
- Jingyi Tang
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.,School of Medicine, Faculty of Health, Deakin University, Geelong Waurn Ponds Campus, Waurn Ponds, VIC, 3216, Australia
| | - Scott A Chisholm
- School of BioSciences, The University of Melbourne, Parkville, VIC, 3052, Australia.,Bio21 Institute, Parkville, VIC, 3052, Australia
| | - Lee M Yeoh
- Bio21 Institute, Parkville, VIC, 3052, Australia.,Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia
| | - Paul R Gilson
- Macfarlane Burnet Institute for Medical Research and Public Health, Melbourne, VIC, 3004, Australia.,Monash University, Melbourne, VIC, 3800, Australia
| | - Anthony T Papenfuss
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, Australia.,Department of Mathematics and Statistics, University of Melbourne, Victoria, Australia.,Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia.,Sir Peter MacCallum, Department of Oncology, University of Melbourne, Parkville, VIC, Australia
| | - Karen P Day
- Bio21 Institute, Parkville, VIC, 3052, Australia.,Peter Doherty Institute, Melbourne, VIC, 3000, Australia.,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia
| | - Michaela Petter
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia.,Erlangen University, 91054, Erlangen, Germany
| | - Michael F Duffy
- Department of Medicine, The University of Melbourne, Royal Melbourne Hospital, Parkville, VIC, 3050, Australia. .,Bio21 Institute, Parkville, VIC, 3052, Australia. .,Peter Doherty Institute, Melbourne, VIC, 3000, Australia. .,Department of Microbiology and Immunology, The University of Melbourne, Victoria, 3000, Australia.
| |
Collapse
|
17
|
Mondeel TDGA, Holland P, Nielsen J, Barberis M. ChIP-exo analysis highlights Fkh1 and Fkh2 transcription factors as hubs that integrate multi-scale networks in budding yeast. Nucleic Acids Res 2019; 47:7825-7841. [PMID: 31299083 PMCID: PMC6736057 DOI: 10.1093/nar/gkz603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2018] [Revised: 06/23/2019] [Accepted: 07/11/2019] [Indexed: 01/18/2023] Open
Abstract
The understanding of the multi-scale nature of molecular networks represents a major challenge. For example, regulation of a timely cell cycle must be coordinated with growth, during which changes in metabolism occur, and integrate information from the extracellular environment, e.g. signal transduction. Forkhead transcription factors are evolutionarily conserved among eukaryotes, and coordinate a timely cell cycle progression in budding yeast. Specifically, Fkh1 and Fkh2 are expressed during a lengthy window of the cell cycle, thus are potentially able to function as hubs in the multi-scale cellular environment that interlocks various biochemical networks. Here we report on a novel ChIP-exo dataset for Fkh1 and Fkh2 in both logarithmic and stationary phases, which is analyzed by novel and existing software tools. Our analysis confirms known Forkhead targets from available ChIP-chip studies and highlights novel ones involved in the cell cycle, metabolism and signal transduction. Target genes are analyzed with respect to their function, temporal expression during the cell cycle, correlation with Fkh1 and Fkh2 as well as signaling and metabolic pathways they occur in. Furthermore, differences in targets between Fkh1 and Fkh2 are presented. Our work highlights Forkhead transcription factors as hubs that integrate multi-scale networks to achieve proper timing of cell division in budding yeast.
Collapse
Affiliation(s)
- Thierry D G A Mondeel
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, Surrey, UK.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| | - Petter Holland
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE412 96, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, SE412 96, Sweden.,Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, DK2800 Kgs., Denmark
| | - Matteo Barberis
- Systems Biology, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, GU2 7XH Guildford, Surrey, UK.,Synthetic Systems Biology and Nuclear Organization, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, 1098 XH, The Netherlands
| |
Collapse
|
18
|
Kochan E, Balcerczak E, Szymczyk P, Sienkiewicz M, Zielińska-Bliźniewska H, Szymańska G. Abscisic Acid Regulates the 3-Hydroxy-3-methylglutaryl CoA Reductase Gene Promoter and Ginsenoside Production in Panax quinquefolium Hairy Root Cultures. Int J Mol Sci 2019; 20:ijms20061310. [PMID: 30875925 PMCID: PMC6471273 DOI: 10.3390/ijms20061310] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/12/2019] [Accepted: 03/13/2019] [Indexed: 12/22/2022] Open
Abstract
Panax quinquefolium hairy root cultures synthesize triterpenoid saponins named ginsenosides, that have multidirectional pharmacological activity. The first rate-limiting enzyme in the process of their biosynthesis is 3-hydroxy-3-methylglutaryl CoA reductase (HMGR). In this study, a 741 bp fragment of the P. quinquefoliumHMGR gene (PqHMGR), consisting of a proximal promoter, 5′UTR (5′ untranslated region) and 5′CDS (coding DNA sequence) was isolated. In silico analysis of an isolated fragment indicated a lack of tandem repeats, miRNA binding sites, and CpG/CpNpG elements. However, the proximal promoter contained potential cis-elements involved in the response to light, salicylic, and abscisic acid (ABA) that was represented by the motif ABRE (TACGTG). The functional significance of ABA on P. quinquefolium HMGR gene expression was evaluated, carrying out quantitative RT-PCR experiments at different ABA concentrations (0.1, 0.25, 0.5, and 1 mg·L−1). Additionally, the effect of abscisic acid and its time exposure on biomass and ginsenoside level in Panax quinquefolium hairy root was examined. The saponin content was determined using HPLC. The 28 day elicitation period with 1 mg·L−1 ABA was the most efficient for Rg2 and Re (17.38 and 1.83 times increase, respectively) accumulation; however, the protopanaxadiol derivative content decreased in these conditions.
Collapse
Affiliation(s)
- Ewa Kochan
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego l, 90-151 Lodz, Poland.
| | - Ewa Balcerczak
- Laboratory of Molecular Diagnostics and Pharmacogenomics, Department of Pharmaceutical Biochemistry and Molecular Diagnostics, Interfaculty Cathedral of Laboratory and Molecular Diagnostics, Medical University of Lodz, Muszyńskiego 1, 90-151 Lodz, Poland.
| | - Piotr Szymczyk
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego l, 90-151 Lodz, Poland.
| | - Monika Sienkiewicz
- Department of Allergology and Respiratory Rehabilitation, 2nd Chair of Otolaryngology, Medical University of Lodz, Żeligowskiego 7/9, 90-725, Lodz, Poland.
| | - Hanna Zielińska-Bliźniewska
- Department of Allergology and Respiratory Rehabilitation, 2nd Chair of Otolaryngology, Medical University of Lodz, Żeligowskiego 7/9, 90-725, Lodz, Poland.
| | - Grażyna Szymańska
- Department of Pharmaceutical Biotechnology, Medical University of Lodz, Muszyńskiego l, 90-151 Lodz, Poland.
| |
Collapse
|
19
|
Knoll ER, Zhu ZI, Sarkar D, Landsman D, Morse RH. Role of the pre-initiation complex in Mediator recruitment and dynamics. eLife 2018; 7:39633. [PMID: 30540252 PMCID: PMC6322861 DOI: 10.7554/elife.39633] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/12/2018] [Indexed: 12/19/2022] Open
Abstract
The Mediator complex stimulates the cooperative assembly of a pre-initiation complex (PIC) and recruitment of RNA Polymerase II (Pol II) for gene activation. The core Mediator complex is organized into head, middle, and tail modules, and in budding yeast (Saccharomyces cerevisiae), Mediator recruitment has generally been ascribed to sequence-specific activators engaging the tail module triad of Med2-Med3-Med15 at upstream activating sequences (UASs). We show that yeast lacking Med2-Med3-Med15 are viable and that Mediator and PolII are recruited to promoters genome-wide in these cells, albeit at reduced levels. To test whether Mediator might alternatively be recruited via interactions with the PIC, we examined Mediator association genome-wide after depleting PIC components. We found that depletion of Taf1, Rpb3, and TBP profoundly affected Mediator association at active gene promoters, with TBP being critical for transit of Mediator from UAS to promoter, while Pol II and Taf1 stabilize Mediator association at proximal promoters.
Collapse
Affiliation(s)
- Elisabeth R Knoll
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, United States
| | - Z Iris Zhu
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, Bethesda, United States
| | - Debasish Sarkar
- Wadsworth Center, New York State Department of Health, Albany, United States
| | - David Landsman
- Computational Biology Branch, National Center for Biotechnology Information, National Library of Medicine, Bethesda, United States
| | - Randall H Morse
- Department of Biomedical Sciences, School of Public Health, University at Albany, Albany, United States.,Wadsworth Center, New York State Department of Health, Albany, United States
| |
Collapse
|
20
|
Evolution of Brain Active Gene Promoters in Human Lineage Towards the Increased Plasticity of Gene Regulation. Mol Neurobiol 2017; 55:1871-1904. [PMID: 28233272 DOI: 10.1007/s12035-017-0427-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 01/26/2017] [Indexed: 01/31/2023]
Abstract
Adaptability to a variety of environmental conditions is a prominent feature of Homo sapiens. We hypothesize that this feature can be explained by evolutionary changes in gene promoters active in the brain prefrontal cortex leading to a more flexible gene regulation network. The genotype-dependent range of gene expression can be broader in humans than in other higher primates. Thus, we searched for specific signatures of evolutionary changes in promoter architectures of multiple hominid genes, including the genes active in human cortical neurons that may indicate an increase of variability of gene expression rather than just changes in the level of expression, such as downregulation or upregulation of the genes. We performed a whole-genome search for genetic-based alterations that may impact gene regulation "flexibility" in a process of hominids evolution, such as (i) CpG dinucleotide content, (ii) predicted nucleosome-DNA dissociation constant, and (iii) predicted affinities for TATA-binding protein (TBP) in gene promoters. We tested all putative promoter regions across the human genome and especially gene promoters in active chromatin state in neurons of prefrontal cortex, the brain region critical for abstract thinking and social and behavioral adaptation. Our data imply that the origin of modern man has been associated with an increase of flexibility of promoter-driven gene regulation in brain. In contrast, after splitting from the ancestral lineages of H. sapiens, the evolution of ape species is characterized by reduced flexibility of gene promoter functioning, underlying reduced variability of the gene expression.
Collapse
|
21
|
Permissiveness of lepidopteran hosts is linked to differential expression of bracovirus genes. Virology 2016; 492:259-72. [DOI: 10.1016/j.virol.2016.02.023] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Revised: 02/22/2016] [Accepted: 02/23/2016] [Indexed: 01/01/2023]
|
22
|
Kilaru S, Ma W, Schuster M, Courbot M, Steinberg G. Conditional promoters for analysis of essential genes in Zymoseptoria tritici. Fungal Genet Biol 2016; 79:166-73. [PMID: 26092803 PMCID: PMC4502454 DOI: 10.1016/j.fgb.2015.03.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/12/2015] [Accepted: 03/19/2015] [Indexed: 10/31/2022]
Abstract
Development of new fungicides, needed for sustainable control of fungal plant pathogens, requires identification of novel anti-fungal targets. Essential fungal-specific proteins are good candidates, but due to their importance, gene deletion mutants are not viable. Consequently, their cellular role often remains elusive. This hindrance can be overcome by the use of conditional mutants, where expression is controlled by an inducible/repressible promoter. Here, we introduce 5 inducible/repressible promoter systems to study essential genes in the wheat pathogen Zymoseptoria tritici. We fused the gene for enhanced green-fluorescent protein (egfp) to the promoter region of Z. tritici nitrate reductase (Pnar1; induced by nitrogen and repressed by ammonium), 1,4-β-endoxylanase A (Pex1A; induced by xylose and repressed by maltodextrin), l-arabinofuranosidase B (PlaraB; induced by arabinose and repressed by glucose), galactose-1-phosphate uridylyltransferase 7 (Pgal7; induced by galactose and repressed by glucose) and isocitrate lyase (Picl1; induced by sodium acetate and repressed by glucose). This was followed by quantitative analysis of cytoplasmic reporter fluorescence under induced and repressed conditions. We show that Pnar1, PlaraB and Pex1A drive very little or no egfp expression when repressed, but induce moderate protein production when induced. In contrast, Pgal7 and Picl1 show considerable egfp expression when repressed, and were strongly induced in the presence of their inducers. Normalising the expression levels of all promoters to that of the α-tubulin promoter Ptub2 revealed that PlaraB was the weakest promoter (∼20% of Ptub2), whereas Picl1 strongly expressed the reporter (∼250% of Ptub2). The use of these tools promises a better understanding of essential genes, which will help developing novel control strategies that protect wheat from Z. tritici.
Collapse
Affiliation(s)
- S Kilaru
- Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| | - W Ma
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Schuster
- Biosciences, University of Exeter, Exeter EX4 4QD, UK
| | - M Courbot
- Syngenta Crop Protection AG, Schaffhauserstrasse, 4332 Stein, Switzerland
| | - G Steinberg
- Biosciences, University of Exeter, Exeter EX4 4QD, UK.
| |
Collapse
|
23
|
Vogl T, Sturmberger L, Kickenweiz T, Wasmayer R, Schmid C, Hatzl AM, Gerstmann MA, Pitzer J, Wagner M, Thallinger GG, Geier M, Glieder A. A Toolbox of Diverse Promoters Related to Methanol Utilization: Functionally Verified Parts for Heterologous Pathway Expression in Pichia pastoris. ACS Synth Biol 2016; 5:172-86. [PMID: 26592304 DOI: 10.1021/acssynbio.5b00199] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
The heterologous expression of biosynthetic pathways for pharmaceutical or fine chemical production requires suitable expression hosts and vectors. In eukaryotes, the pathway flux is typically balanced by stoichiometric fine-tuning of reaction steps by varying the transcript levels of the genes involved. Regulated (inducible) promoters are desirable to allow a separation of pathway expression from cell growth. Ideally, the promoter sequences used should not be identical to avoid loss by recombination. The methylotrophic yeast Pichia pastoris is a commonly used protein production host, and single genes have been expressed at high levels using the methanol-inducible, strong, and tightly regulated promoter of the alcohol oxidase 1 gene (PAOX1). Here, we have studied the regulation of the P. pastoris methanol utilization (MUT) pathway to identify a useful set of promoters that (i) allow high coexpression and (ii) differ in DNA sequence to increase genetic stability. We noticed a pronounced involvement of the pentose phosphate pathway (PPP) and genes involved in the defense of reactive oxygen species (ROS), providing strong promoters that, in part, even outperform PAOX1 and offer novel regulatory profiles. We have applied these tightly regulated promoters together with novel terminators as useful tools for the expression of a heterologous biosynthetic pathway. With the synthetic biology toolbox presented here, P. pastoris is now equipped with one of the largest sets of strong and co-regulated promoters of any microbe, moving it from a protein production host to a general industrial biotechnology host.
Collapse
Affiliation(s)
- Thomas Vogl
- Institute
of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Lukas Sturmberger
- Institute
of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Thomas Kickenweiz
- Institute
of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Richard Wasmayer
- Institute
of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Christian Schmid
- Institute
of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Anna-Maria Hatzl
- Institute
of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Michaela A. Gerstmann
- Institute
of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Julia Pitzer
- Institute
of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
| | - Marlies Wagner
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, Graz 8010, Austria
| | - Gerhard G. Thallinger
- Institute
of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
- Omics Center Graz, Stiftingtalstrasse
24, 8036 Graz, Austria
| | - Martina Geier
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, Graz 8010, Austria
| | - Anton Glieder
- Institute
of Molecular Biotechnology, NAWI Graz, Graz University of Technology, Petersgasse 14, Graz 8010, Austria
- Austrian Centre of Industrial Biotechnology (ACIB GmbH), Petersgasse 14, Graz 8010, Austria
| |
Collapse
|
24
|
Dong X, Chen K, Cuevas-Diaz Duran R, You Y, Sloan SA, Zhang Y, Zong S, Cao Q, Barres BA, Wu JQ. Comprehensive Identification of Long Non-coding RNAs in Purified Cell Types from the Brain Reveals Functional LncRNA in OPC Fate Determination. PLoS Genet 2015; 11:e1005669. [PMID: 26683846 PMCID: PMC4980008 DOI: 10.1371/journal.pgen.1005669] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 10/23/2015] [Indexed: 02/01/2023] Open
Abstract
Long non-coding RNAs (lncRNAs) (> 200 bp) play crucial roles in transcriptional regulation during numerous biological processes. However, it is challenging to comprehensively identify lncRNAs, because they are often expressed at low levels and with more cell-type specificity than are protein-coding genes. In the present study, we performed ab initio transcriptome reconstruction using eight purified cell populations from mouse cortex and detected more than 5000 lncRNAs. Predicting the functions of lncRNAs using cell-type specific data revealed their potential functional roles in Central Nervous System (CNS) development. We performed motif searches in ENCODE DNase I digital footprint data and Mouse ENCODE promoters to infer transcription factor (TF) occupancy. By integrating TF binding and cell-type specific transcriptomic data, we constructed a novel framework that is useful for systematically identifying lncRNAs that are potentially essential for brain cell fate determination. Based on this integrative analysis, we identified lncRNAs that are regulated during Oligodendrocyte Precursor Cell (OPC) differentiation from Neural Stem Cells (NSCs) and that are likely to be involved in oligodendrogenesis. The top candidate, lnc-OPC, shows highly specific expression in OPCs and remarkable sequence conservation among placental mammals. Interestingly, lnc-OPC is significantly up-regulated in glial progenitors from experimental autoimmune encephalomyelitis (EAE) mouse models compared to wild-type mice. OLIG2-binding sites in the upstream regulatory region of lnc-OPC were identified by ChIP (chromatin immunoprecipitation)-Sequencing and validated by luciferase assays. Loss-of-function experiments confirmed that lnc-OPC plays a functional role in OPC genesis. Overall, our results substantiated the role of lncRNA in OPC fate determination and provided an unprecedented data source for future functional investigations in CNS cell types. We present our datasets and analysis results via the interactive genome browser at our laboratory website that is freely accessible to the research community. This is the first lncRNA expression database of collective populations of glia, vascular cells, and neurons. We anticipate that these studies will advance the knowledge of this major class of non-coding genes and their potential roles in neurological development and diseases. Between 70 and 90% of the mammalian genome is transcribed at some point during development; however, only < 2% of the genome is associated with protein-coding genes. Emerging evidence suggests that long non-coding RNAs (lncRNAs; > 200 bp) play important roles in cell fate determination. In the present study, we broadened the lncRNA catalog by ab initio reconstruction of the transcriptomes of purified mouse cortex cell populations. More than 5000 lncRNAs were detected in the brain cell types studied. Predicting lncRNA functions using a ‘guilt-by-association’ approach revealed potential functions of lncRNAs in Central Nervous System development. Additionally, we analyzed transcription factor occupancy in the upstream regulatory regions of the lncRNAs. By integrating differential gene expression and transcription factor occupancy information, lncRNAs that are likely involved in oligodendrocyte precursor cell formation were identified. Loss-of-function experiments confirmed that the top candidate, lnc-OPC (long non-coding RNA in OPC), significantly reduces OPC differentiation from NSCs. Interestingly, lnc-OPC is up-regulated in glial progenitors of mouse models for multiple sclerosis. Our results demonstrated the role of lncRNA in the context of oligodendrocyte cell fate determination, and provided an extensive resource and a powerful analysis framework for future functional investigations of lncRNAs in CNS cell types.
Collapse
Affiliation(s)
- Xiaomin Dong
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, United States of America
| | - Kenian Chen
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, United States of America
| | - Raquel Cuevas-Diaz Duran
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, United States of America
| | - Yanan You
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, United States of America
| | - Steven A. Sloan
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ye Zhang
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Shan Zong
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, United States of America
| | - Qilin Cao
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, United States of America
| | - Ben A. Barres
- Department of Neurobiology, Stanford University School of Medicine, Stanford, California, United States of America
| | - Jia Qian Wu
- The Vivian L. Smith Department of Neurosurgery, The University of Texas Health Science Center at Houston Medical School, Houston, Texas, United States of America
- Center for Stem Cell and Regenerative Medicine, The Brown Foundation Institute of Molecular Medicine for the Prevention of Human Diseases, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
25
|
Klein JC, Lajoie MJ, Schwartz JJ, Strauch EM, Nelson J, Baker D, Shendure J. Multiplex pairwise assembly of array-derived DNA oligonucleotides. Nucleic Acids Res 2015; 44:e43. [PMID: 26553805 PMCID: PMC4797260 DOI: 10.1093/nar/gkv1177] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
While the cost of DNA sequencing has dropped by five orders of magnitude in the past decade, DNA synthesis remains expensive for many applications. Although DNA microarrays have decreased the cost of oligonucleotide synthesis, the use of array-synthesized oligos in practice is limited by short synthesis lengths, high synthesis error rates, low yield and the challenges of assembling long constructs from complex pools. Toward addressing these issues, we developed a protocol for multiplex pairwise assembly of oligos from array-synthesized oligonucleotide pools. To evaluate the method, we attempted to assemble up to 2271 targets ranging in length from 192–252 bases using pairs of array-synthesized oligos. Within sets of complexity ranging from 131–250 targets, we observed error-free assemblies for 90.5% of all targets. When all 2271 targets were assembled in one reaction, we observed error-free constructs for 70.6%. While the assembly method intrinsically increased accuracy to a small degree, we further increased accuracy by using a high throughput ‘Dial-Out PCR’ protocol, which combines Illumina sequencing with an in-house set of unique PCR tags to selectively amplify perfect assemblies from complex synthetic pools. This approach has broad applicability to DNA assembly and high-throughput functional screens.
Collapse
Affiliation(s)
- Jason C Klein
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Marc J Lajoie
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jerrod J Schwartz
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
| | - Eva-Maria Strauch
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - Jorgen Nelson
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA Department of Biochemistry, University of Washington, Seattle, WA 98195, USA
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA 98195, USA Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| | - Jay Shendure
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
26
|
Analysis of Polygenic Mutants Suggests a Role for Mediator in Regulating Transcriptional Activation Distance in Saccharomyces cerevisiae. Genetics 2015; 201:599-612. [PMID: 26281848 DOI: 10.1534/genetics.115.181164] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 08/17/2015] [Indexed: 12/24/2022] Open
Abstract
Studies of natural populations of many organisms have shown that traits are often complex, caused by contributions of mutations in multiple genes. In contrast, genetic studies in the laboratory primarily focus on studying the phenotypes caused by mutations in a single gene. However, the single mutation approach may be limited with respect to the breadth and degree of new phenotypes that can be found. We have taken the approach of isolating complex, or polygenic mutants in the lab to study the regulation of transcriptional activation distance in yeast. While most aspects of eukaryotic transcription are conserved from yeast to human, transcriptional activation distance is not. In Saccharomyces cerevisiae, the upstream activating sequence (UAS) is generally found within 450 base pairs of the transcription start site (TSS) and when the UAS is moved too far away, activation no longer occurs. In contrast, metazoan enhancers can activate from as far as several hundred kilobases from the TSS. Previously, we identified single mutations that allow transcription activation to occur at a greater-than-normal distance from the GAL1 UAS. As the single mutant phenotypes were weak, we have now isolated polygenic mutants that possess strong long-distance phenotypes. By identification of the causative mutations we have accounted for most of the heritability of the phenotype in each strain and have provided evidence that the Mediator coactivator complex plays both positive and negative roles in the regulation of transcription activation distance.
Collapse
|
27
|
Chen J, Burke JJ. Developing fiber specific promoter-reporter transgenic lines to study the effect of abiotic stresses on fiber development in cotton. PLoS One 2015; 10:e0129870. [PMID: 26030401 PMCID: PMC4451078 DOI: 10.1371/journal.pone.0129870] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 05/12/2015] [Indexed: 12/30/2022] Open
Abstract
Cotton is one of the most important cash crops in US agricultural industry. Environmental stresses, such as drought, high temperature and combination of both, not only reduce the overall growth of cotton plants, but also greatly decrease cotton lint yield and fiber quality. The impact of environmental stresses on fiber development is poorly understood due to technical difficulties associated with the study of developing fiber tissues and lack of genetic materials to study fiber development. To address this important question and provide the need for scientific community, we have generated transgenic cotton lines harboring cotton fiber specific promoter (CFSP)-reporter constructs from six cotton fiber specific genes (Expansin, E6, Rac13, CelA1, LTP, and Fb late), representing genes that are expressed at different stages of fiber development. Individual CFSP::GUS or CFSP::GFP construct was introduced into Coker 312 via Agrobacterium mediated transformation. Transgenic cotton lines were evaluated phenotypically and screened for the presence of selectable marker, reporter gene expression, and insertion numbers. Quantitative analysis showed that the patterns of GUS reporter gene activity during fiber development in transgenic cotton lines were similar to those of the native genes. Greenhouse drought and heat stress study showed a correlation between the decrease in promoter activities and decrease in fiber length, increase in micronaire and changes in other fiber quality traits in transgenic lines grown under stressed condition. These newly developed materials provide new molecular tools for studying the effects of abiotic stresses on fiber development and may be used in study of cotton fiber development genes and eventually in the genetic manipulation of fiber quality.
Collapse
Affiliation(s)
- Junping Chen
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, Agricultural Research Service, United State Department of Agriculture, Lubbock, Texas, United States of America
- * E-mail:
| | - John J. Burke
- Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory, Agricultural Research Service, United State Department of Agriculture, Lubbock, Texas, United States of America
| |
Collapse
|
28
|
Noble LM, Andrianopoulos A. Fungal genes in context: genome architecture reflects regulatory complexity and function. Genome Biol Evol 2013; 5:1336-52. [PMID: 23699226 PMCID: PMC3730340 DOI: 10.1093/gbe/evt077] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Gene context determines gene expression, with local chromosomal environment most influential. Comparative genomic analysis is often limited in scope to conserved or divergent gene and protein families, and fungi are well suited to this approach with low functional redundancy and relatively streamlined genomes. We show here that one aspect of gene context, the amount of potential upstream regulatory sequence maintained through evolution, is highly predictive of both molecular function and biological process in diverse fungi. Orthologs with large upstream intergenic regions (UIRs) are strongly enriched in information processing functions, such as signal transduction and sequence-specific DNA binding, and, in the genus Aspergillus, include the majority of experimentally studied, high-level developmental and metabolic transcriptional regulators. Many uncharacterized genes are also present in this class and, by implication, may be of similar importance. Large intergenic regions also share two novel sequence characteristics, currently of unknown significance: they are enriched for plus-strand polypyrimidine tracts and an information-rich, putative regulatory motif that was present in the last common ancestor of the Pezizomycotina. Systematic consideration of gene UIR in comparative genomics, particularly for poorly characterized species, could help reveal organisms’ regulatory priorities.
Collapse
Affiliation(s)
- Luke M Noble
- Department of Genetics, University of Melbourne, Victoria, Australia
| | | |
Collapse
|
29
|
Reverse engineering the neuroblastoma regulatory network uncovers MAX as one of the master regulators of tumor progression. PLoS One 2013; 8:e82457. [PMID: 24349289 PMCID: PMC3857773 DOI: 10.1371/journal.pone.0082457] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2013] [Accepted: 10/23/2013] [Indexed: 12/17/2022] Open
Abstract
Neuroblastoma is the most common extracranial tumor and a major cause of infant cancer mortality worldwide. Despite its importance, little is known about its molecular mechanisms. A striking feature of this tumor is its clinical heterogeneity. Possible outcomes range from aggressive invasion to other tissues, causing patient death, to spontaneous disease regression or differentiation into benign ganglioneuromas. Several efforts have been made in order to find tumor progression markers. In this work, we have reconstructed the neuroblastoma regulatory network using an information-theoretic approach in order to find genes involved in tumor progression and that could be used as outcome predictors or as therapeutic targets. We have queried the reconstructed neuroblastoma regulatory network using an aggressive neuroblastoma metastasis gene signature in order to find its master regulators (MRs). MRs expression profiles were then investigated in other neuroblastoma datasets so as to detect possible clinical significance. Our analysis pointed MAX as one of the MRs of neuroblastoma progression. We have found that higher MAX expression correlated with favorable patient outcomes. We have also found that MAX expression and protein levels were increased during neuroblastoma SH-SY5Y cells differentiation. We propose that MAX is involved in neuroblastoma progression, possibly increasing cell differentiation by means of regulating the availability of MYC:MAX heterodimers. This mechanism is consistent with the results found in our SH-SY5Y differentiation protocol, suggesting that MAX has a more central role in these cells differentiation than previously reported. Overexpression of MAX has been identified as anti-tumorigenic in other works, but, to our knowledge, this is the first time that the link between the expression of this gene and malignancy was verified under physiological conditions.
Collapse
|
30
|
Identification and characterization of P GCW14 : a novel, strong constitutive promoter of Pichia pastoris. Biotechnol Lett 2013; 35:1865-71. [PMID: 23801118 DOI: 10.1007/s10529-013-1265-8] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 06/07/2013] [Indexed: 10/26/2022]
Abstract
The available promoters in the Pichia pastoris expression platform are still limited. We selected and identified a novel strong constitutive promoter, P GCW14 , and tested its promoter activity using enhanced green fluorescent protein (EGFP) as a reporter. Potential promoter regions of P GCW14 were cloned upstream of the EGFP gene and promoter activity was analyzed by measuring fluorescence intensity. P GCW14 exhibited significantly stronger promoter activity than the classic strong constitutive promoters P TEF1 and P GAP under various carbon sources, suggesting that P GCW14 is a strong and constitutive promoter. Hence, P GCW14 can be used as a promoter for high-level expression of heterologous proteins.
Collapse
|
31
|
Genome-wide prediction and functional validation of promoter motifs regulating gene expression in spore and infection stages of Phytophthora infestans. PLoS Pathog 2013; 9:e1003182. [PMID: 23516354 PMCID: PMC3597505 DOI: 10.1371/journal.ppat.1003182] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 12/20/2012] [Indexed: 01/18/2023] Open
Abstract
Most eukaryotic pathogens have complex life cycles in which gene expression networks orchestrate the formation of cells specialized for dissemination or host colonization. In the oomycete Phytophthora infestans, the potato late blight pathogen, major shifts in mRNA profiles during developmental transitions were identified using microarrays. We used those data with search algorithms to discover about 100 motifs that are over-represented in promoters of genes up-regulated in hyphae, sporangia, sporangia undergoing zoosporogenesis, swimming zoospores, or germinated cysts forming appressoria (infection structures). Most of the putative stage-specific transcription factor binding sites (TFBSs) thus identified had features typical of TFBSs such as position or orientation bias, palindromy, and conservation in related species. Each of six motifs tested in P. infestans transformants using the GUS reporter gene conferred the expected stage-specific expression pattern, and several were shown to bind nuclear proteins in gel-shift assays. Motifs linked to the appressoria-forming stage, including a functionally validated TFBS, were over-represented in promoters of genes encoding effectors and other pathogenesis-related proteins. To understand how promoter and genome architecture influence expression, we also mapped transcription patterns to the P. infestans genome assembly. Adjacent genes were not typically induced in the same stage, including genes transcribed in opposite directions from small intergenic regions, but co-regulated gene pairs occurred more than expected by random chance. These data help illuminate the processes regulating development and pathogenesis, and will enable future attempts to purify the cognate transcription factors. The genus Phytophthora includes over one hundred species of plant pathogens that have devastating effects worldwide in agriculture and natural environments. Its most notorious member is P. infestans, which causes the late blight diseases of potato and tomato. Their success as pathogens is dependent on the formation of specialized cells for plant-to-plant transmission and host infection, but little is known about how this is regulated. Recognizing that changes in gene expression drive the formation of these cell types, we used a computational approach to predict the sequences of about one hundred transcription factor binding sites associated with expression in either of five life stages, including several types of spores and infection structures. We then used a functional testing strategy to prove their biological activity by showing that the DNA motifs enabled the stage-specific expression of a transgene. Our work lays the groundwork for dissecting the molecular mechanisms that regulate life-stage transitions and pathogenesis in Phytophthora. A similar approach should be useful for other plant and animal pathogens.
Collapse
|
32
|
Dynamics and innovations within oomycete genomes: insights into biology, pathology, and evolution. EUKARYOTIC CELL 2012; 11:1304-12. [PMID: 22923046 DOI: 10.1128/ec.00155-12] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The eukaryotic microbes known as oomycetes are common inhabitants of terrestrial and aquatic environments and include saprophytes and pathogens. Lifestyles of the pathogens extend from biotrophy to necrotrophy, obligate to facultative pathogenesis, and narrow to broad host ranges on plants or animals. Sequencing of several pathogens has revealed striking variation in genome size and content, a plastic set of genes related to pathogenesis, and adaptations associated with obligate biotrophy. Features of genome evolution include repeat-driven expansions, deletions, gene fusions, and horizontal gene transfer in a landscape organized into gene-dense and gene-sparse sectors and influenced by transposable elements. Gene expression profiles are also highly dynamic throughout oomycete life cycles, with transcriptional polymorphisms as well as differences in protein sequence contributing to variation. The genome projects have set the foundation for functional studies and should spur the sequencing of additional species, including more diverse pathogens and nonpathogens.
Collapse
|
33
|
The Schizosaccharomyces pombe inv1+ regulatory region is unusually large and contains redundant cis-acting elements that function in a SAGA- and Swi/Snf-dependent fashion. EUKARYOTIC CELL 2012; 11:1067-74. [PMID: 22707486 DOI: 10.1128/ec.00141-12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The Schizosaccharomyces pombe inv1(+) gene encodes invertase, the enzyme required for hydrolysis of sucrose and raffinose. Transcription of inv1(+) is regulated by glucose levels, with transcription tightly repressed in high glucose and strongly induced in low glucose. To understand this regulation, we have analyzed the inv1(+) cis-regulatory region and the requirement for the trans-acting coactivators SAGA and Swi/Snf. Surprisingly, deletion of the entire 1-kilobase intergenic region between the inv1(+) TATA element and the upstream open reading frame SPCC191.10 does not significantly alter regulation of inv1(+) transcription. However, a longer deletion that extends through SPCC191.10 abolishes inv1(+) induction in low glucose. Additional analysis demonstrates that there are multiple, redundant regulatory regions spread over 1.5 kb 5' of inv1(+), including within SPCC191.10, that can confer glucose-mediated transcriptional regulation to inv1(+). Furthermore, SPCC191.10 can regulate inv1(+) transcription in an orientation-independent fashion and from a distance as great as 3 kb. With respect to trans-acting factors, both SAGA and Swi/Snf are recruited to SPCC191.10 and to other locations in the large inv1(+) regulatory region in a glucose-dependent fashion, and both are required for inv1(+) derepression. Taken together, these results demonstrate that inv1(+) regulation in S. pombe occurs via the use of multiple regulatory elements and that activation can occur over a great distance, even from elements within other open reading frames.
Collapse
|
34
|
Environmental Comparative Pharmacology: Theory and Application. EMERGING TOPICS IN ECOTOXICOLOGY 2012. [DOI: 10.1007/978-1-4614-3473-3_5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
35
|
Dai Z, Dai X, Xiang Q. Genome-wide DNA sequence polymorphisms facilitate nucleosome positioning in yeast. ACTA ACUST UNITED AC 2011; 27:1758-64. [PMID: 21551148 DOI: 10.1093/bioinformatics/btr290] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
MOTIVATION The intrinsic DNA sequence is an important determinant of nucleosome positioning. Some DNA sequence patterns can facilitate nucleosome formation, while others can inhibit nucleosome formation. Nucleosome positioning influences the overall rate of sequence evolution. However, its impacts on specific patterns of sequence evolution are still poorly understood. RESULTS Here, we examined whether nucleosomal DNA and nucleosome-depleted DNA show distinct polymorphism patterns to maintain adequate nucleosome architecture on a genome scale in yeast. We found that sequence polymorphisms in nucleosomal DNA tend to facilitate nucleosome formation, whereas polymorphisms in nucleosome-depleted DNA tend to inhibit nucleosome formation, which is especially evident at nucleosome-disfavored sequences in nucleosome-free regions at both ends of genes. Sequence polymorphisms facilitating nucleosome positioning correspond to stable nucleosome positioning. These results reveal that sequence polymorphisms are under selective constraints to maintain nucleosome positioning. CONTACT zhimdai@gmail.com; issdxh@mail.sysu.edu.cn
Collapse
Affiliation(s)
- Zhiming Dai
- Department of Electronic, School of Information Science and Technology, Sun Yat-Sen University, Guangzhou 510006, China.
| | | | | |
Collapse
|
36
|
Wysocki R, Tamás MJ. How Saccharomyces cerevisiae copes with toxic metals and metalloids. FEMS Microbiol Rev 2011; 34:925-51. [PMID: 20374295 DOI: 10.1111/j.1574-6976.2010.00217.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Toxic metals and metalloids are widespread in nature and can locally reach fairly high concentrations. To ensure cellular protection and survival in such environments, all organisms possess systems to evade toxicity and acquire tolerance. This review provides an overview of the molecular mechanisms that contribute to metal toxicity, detoxification and tolerance acquisition in budding yeast Saccharomyces cerevisiae. We mainly focus on the metals/metalloids arsenic, cadmium, antimony, mercury, chromium and selenium, and emphasize recent findings on sensing and signalling mechanisms and on the regulation of tolerance and detoxification systems that safeguard cellular and genetic integrity.
Collapse
Affiliation(s)
- Robert Wysocki
- Institute of Genetics and Microbiology, University of Wroclaw, Wroclaw, Poland
| | | |
Collapse
|
37
|
Zhang Z, Bryan JL, DeLassus E, Chang LW, Liao W, Sandell LJ. CCAAT/enhancer-binding protein β and NF-κB mediate high level expression of chemokine genes CCL3 and CCL4 by human chondrocytes in response to IL-1β. J Biol Chem 2010; 285:33092-33103. [PMID: 20702408 PMCID: PMC2963416 DOI: 10.1074/jbc.m110.130377] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Revised: 06/16/2010] [Indexed: 11/06/2022] Open
Abstract
A large set of chemokines is highly up-regulated in human chondrocytes in response to IL-1β (Sandell, L. J., Xing, X., Franz, C., Davies, S., Chang, L. W., and Patra, D. (2008) Osteoarthr. Cartil. 16, 1560-1571). To investigate the mechanism of transcriptional regulation, deletion constructs of selected chemokine gene promoters, the human CCL3 (MIP-1α) and CCL4 (MIP-1β), were transfected into human chondrocytes with or without IL-1β. The results show that an IL-1β-responsive element is located between bp -300 and -140 of the CCL3 promoter and between bp -222 and -100 of the CCL4 promoter. Because both of these elements contain CCAAT/enhancer-binding protein β (C/EBPβ) motifs, the function of C/EBPβ was examined. IL-1β stimulated the expression of C/EBPβ, and the direct binding of C/EBPβ to the C/EBPβ motif was confirmed by EMSA and ChIP analyses. The -300 bp CCL3 promoter and -222 bp CCL4 promoter were strongly up-regulated by co-transfection with the C/EBPβ expression vector. Mutation of the C/EBPβ motif and reduction of C/EBPβ expression by siRNA decreased the up-regulation. Additionally, another cytokine-related transcription factor, NF-κB, was also shown to be involved in the up-regulation of chemokines in response to IL-1β, and the binding site was identified. The regulation of C/EBPβ and NF-κB was confirmed by the inhibition by C/EBPβ and NF-κB and by transfection with C/EBPβ and NF-κB expression vectors in the presence or absence of IL-1β. Taken together, our results suggest that C/EBPβ and NF-κB are both involved in the IL-1β-responsive up-regulation of chemokine genes in human chondrocytes. Time course experiments indicated that C/EBPβ gradually and steadily induces chemokine up-regulation, whereas NF-κB activity was highest at the early stage of chemokine up-regulation.
Collapse
Affiliation(s)
- Zhiqi Zhang
- From the Departments of Orthopaedic Surgery, St. Louis, Missouri 63110; Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Jennifer L Bryan
- From the Departments of Orthopaedic Surgery, St. Louis, Missouri 63110
| | | | - Li-Wei Chang
- Pathology and Immunology, St. Louis, Missouri 63110
| | - Weiming Liao
- Department of Orthopaedic Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong 510080, China
| | - Linda J Sandell
- From the Departments of Orthopaedic Surgery, St. Louis, Missouri 63110; Cell Biology and Physiology, Washington University School of Medicine at Barnes-Jewish Hospital, St. Louis, Missouri 63110.
| |
Collapse
|
38
|
Chen L, Lopes JM. Multiple bHLH proteins regulate CIT2 expression in Saccharomyces cerevisiae. Yeast 2010; 27:345-59. [PMID: 20162531 DOI: 10.1002/yea.1757] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The basic helix-loop-helix (bHLH) proteins comprise a eukaryotic transcription factor family involved in multiple biological processes. They have the ability to form multiple dimer combinations and most of them also bind a 6 bp site (E-box) with limited specificity. These properties make them ideal for combinatorial regulation of gene expression. The Saccharomyces cerevisiae CIT2 gene, which encodes citrate synthase, was previously known to be induced by the bHLH proteins Rtg1p and Rtg3p in response to mitochondrial damage. Rtg1p-Rtg3p dimers bind two R-boxes (modified E-boxes) in the CIT2 promoter. The current study tested the ability of all nine S. cerevisiae bHLH proteins to regulate the CIT2 gene. The results showed that expression of CIT2-lacZ reporter was induced in a rho(0) strain by the presence of inositol via the Ino2p and Ino4p bHLH proteins, which are known regulators of phospholipid synthesis. Promoter mutations revealed that inositol induction required a distal E-box in the CIT2 promoter. Interestingly, deleting the INO2, INO4 genes or the cognate E-box revealed phosphate induction of CIT2 expression. This layer of expression required the two R-boxes and the Pho4p bHLH protein, which is known to be required for phosphate-specific regulation. Lastly, the data show that the Hms1p and Sgc1p bHLH proteins also play important roles in repression of CIT2-lacZ expression. Collectively, these results support the model that yeast bHLH proteins coordinate different biological pathways.
Collapse
Affiliation(s)
- Linan Chen
- Department of Biological Sciences, Wayne State University, Detroit, MI 48202, USA
| | | |
Collapse
|
39
|
Zeitlinger J, Stark A. Developmental gene regulation in the era of genomics. Dev Biol 2010; 339:230-9. [PMID: 20045679 DOI: 10.1016/j.ydbio.2009.12.039] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2009] [Revised: 12/04/2009] [Accepted: 12/23/2009] [Indexed: 01/30/2023]
Abstract
Genetic experiments over the last few decades have identified many developmental control genes critical for pattern formation and cell fate specification during the development of multicellular organisms. A large fraction of these genes encode transcription factors and signaling molecules, show highly dynamic expression patterns during development, and are deeply evolutionarily conserved and deregulated in various human diseases such as cancer. Because of their importance in development, evolution, and disease, a fundamental question in biology is how these developmental control genes are regulated in such an extensive and precise fashion. Using genomics methods, it has become clear that developmental control genes are a distinct group of genes with special regulatory characteristics. However, a systematic analysis of these characteristics has not been presented. Here we review how developmental control genes were discovered, evaluate their genome-wide regulation and gene structure, discuss emerging evidence for their mode of regulation, and estimate their overall abundance in the genome. Understanding the global regulation of developmental control genes may provide a new perspective on development in the era genomics.
Collapse
Affiliation(s)
- Julia Zeitlinger
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA.
| | | |
Collapse
|
40
|
Kristiansson E, Asker N, Förlin L, Larsson DGJ. Characterization of the Zoarces viviparus liver transcriptome using massively parallel pyrosequencing. BMC Genomics 2009; 10:345. [PMID: 19646242 PMCID: PMC2725146 DOI: 10.1186/1471-2164-10-345] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2009] [Accepted: 07/31/2009] [Indexed: 11/16/2022] Open
Abstract
Background The teleost Zoarces viviparus (eelpout) lives along the coasts of Northern Europe and has long been an established model organism for marine ecology and environmental monitoring. The scarce information about this species genome has however restrained the use of efficient molecular-level assays, such as gene expression microarrays. Results In the present study we present the first comprehensive characterization of the Zoarces viviparus liver transcriptome. From 400,000 reads generated by massively parallel pyrosequencing, more than 50,000 pieces of putative transcripts were assembled, annotated and functionally classified. The data was estimated to cover roughly 40% of the total transcriptome and homologues for about half of the genes of Gasterosteus aculeatus (stickleback) were identified. The sequence data was consequently used to design an oligonucleotide microarray for large-scale gene expression analysis. Conclusion Our results show that one run using a Genome Sequencer FLX from 454 Life Science/Roche generates enough genomic information for adequate de novo assembly of a large number of genes in a higher vertebrate. The generated sequence data, including the validated microarray probes, are publicly available to promote genome-wide research in Zoarces viviparus.
Collapse
|