1
|
King CP, Chitre AS, Leal‐Gutiérrez JD, Tripi JA, Netzley AH, Horvath AP, Lamparelli AC, George A, Martin C, St. Pierre CL, Missfeldt Sanches T, Bimschleger HV, Gao J, Cheng R, Nguyen K, Holl KL, Polesskaya O, Ishiwari K, Chen H, Robinson TE, Flagel SB, Solberg Woods LC, Palmer AA, Meyer PJ. Genetic Loci Influencing Cue-Reactivity in Heterogeneous Stock Rats. GENES, BRAIN, AND BEHAVIOR 2025; 24:e70018. [PMID: 40049657 PMCID: PMC11884905 DOI: 10.1111/gbb.70018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 01/23/2025] [Accepted: 02/12/2025] [Indexed: 03/10/2025]
Abstract
Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues. Both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1596 heterogeneous stock (HS) rats. Rats underwent a Pavlovian conditioned approach task that characterized the responses to food-associated stimuli ("cues"). Responses ranged from cue-directed "sign-tracking" behavior to food-cup directed "goal-tracking" behavior (12 measures, SNP heritability: 0.051-0.215). Next, rats performed novel operant responses for unrewarded presentations of the cue using the conditioned reinforcement procedure. GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits across both tasks. Interval sizes of these QTLs varied widely. Seven traits shared a QTL on chromosome 1 that contained a few genes (e.g., Tenm4, Mir708) that have been associated with substance use disorders and other psychiatric disorders in humans. Other candidate genes (e.g., Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on addiction-related behaviors in HS rats and found that the QTL on chromosome 1 was also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive motivational processes and provide further support for a relationship between the attribution of incentive salience and drug abuse-related traits.
Collapse
Affiliation(s)
- Christopher P. King
- Department of PsychologyUniversity at BuffaloBuffaloNew YorkUSA
- Clinical and Research Institute on AddictionsBuffaloNew YorkUSA
| | - Apurva S. Chitre
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | | | - Jordan A. Tripi
- Department of PsychologyUniversity at BuffaloBuffaloNew YorkUSA
| | - Alesa H. Netzley
- Department of Emergency MedicineUniversity of MichiganAnn ArborMichiganUSA
| | - Aidan P. Horvath
- Department of PsychologyUniversity of MichiganAnn ArborMichiganUSA
| | | | - Anthony George
- Clinical and Research Institute on AddictionsBuffaloNew YorkUSA
| | - Connor Martin
- Clinical and Research Institute on AddictionsBuffaloNew YorkUSA
| | | | | | | | - Jianjun Gao
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Riyan Cheng
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Khai‐Minh Nguyen
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Katie L. Holl
- Department of PhysiologyMedical College of WisconsinMilwaukeeWisconsinUSA
| | - Oksana Polesskaya
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
| | - Keita Ishiwari
- Clinical and Research Institute on AddictionsBuffaloNew YorkUSA
- Department of Pharmacology and ToxicologyUniversity at BuffaloBuffaloNew YorkUSA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and ToxicologyUniversity of Tennessee Health Science CenterMemphisTennesseeUSA
| | | | - Shelly B. Flagel
- Department of PsychiatryUniversity of MichiganAnn ArborMichiganUSA
- Michigan Neuroscience Institute, University of MichiganAnn ArborMichiganUSA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and MetabolismWake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - Abraham A. Palmer
- Department of PsychiatryUniversity of California San DiegoLa JollaCaliforniaUSA
- Institute for Genomic Medicine, University of California San DiegoLa JollaCaliforniaUSA
| | - Paul J. Meyer
- Department of PsychologyUniversity at BuffaloBuffaloNew YorkUSA
| |
Collapse
|
2
|
Adams JC, Tucker RP. The evolution of tenascins. BMC Ecol Evol 2024; 24:121. [PMID: 39277743 PMCID: PMC11401434 DOI: 10.1186/s12862-024-02306-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 09/03/2024] [Indexed: 09/17/2024] Open
Abstract
BACKGROUND The evolution of extracellular matrix is tightly linked to the evolution of organogenesis in metazoans. Tenascins are extracellular matrix glycoproteins of chordates that participate in integrin-signaling and morphogenetic events. Single tenascins are encoded by invertebrate chordates, and multiple tenascin paralogs are found in vertebrates (designated tenascin-C, tenascin-R, tenascin-W and tenascin-X) yet, overall, the evolution of this family has remained unclear. RESULTS This study examines the genomes of hemichordates, cephalochordates, tunicates, agnathans, cartilaginous fishes, lobe-finned fishes, ray-finned fishes and representative tetrapods to identify predicted tenascin proteins. We comprehensively assess their evolutionary relationships by sequence conservation, molecular phylogeny and examination of conservation of synteny of the encoding genes. The resulting new evolutionary model posits the origin of tenascin in an ancestral chordate, with tenascin-C-like and tenascin-R-like paralogs emerging after a whole genome duplication event in an ancestral vertebrate. Tenascin-X appeared following a second round of whole genome duplication in an ancestral gnathostome, most likely from duplication of the gene encoding the tenascin-R homolog. The fourth gene, encoding tenascin-W (also known as tenascin-N), apparently arose from a local duplication of tenascin-R. CONCLUSIONS The diversity of tenascin paralogs observed in agnathans and gnathostomes has evolved through selective retention of novel genes that arose from a combination of whole genome and local duplication events. The evolutionary appearance of specific tenascin paralogs coincides with the appearance of vertebrate-specific cell and tissue types where the paralogs are abundantly expressed, such as the endocranium and facial skeleton (tenascin-C), an expanded central nervous system (tenascin-R), and bone (tenascin-W).
Collapse
Affiliation(s)
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, CA, 95616, USA.
| |
Collapse
|
3
|
Gogou C, Beugelink JW, Frias CP, Kresik L, Jaroszynska N, Drescher U, Janssen BJC, Hindges R, Meijer DH. Alternative splicing controls teneurin-3 compact dimer formation for neuronal recognition. Nat Commun 2024; 15:3648. [PMID: 38684645 PMCID: PMC11058771 DOI: 10.1038/s41467-024-47763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 04/11/2024] [Indexed: 05/02/2024] Open
Abstract
Neuronal network formation is facilitated by recognition between synaptic cell adhesion molecules at the cell surface. Alternative splicing of cell adhesion molecules provides additional specificity in forming neuronal connections. For the teneurin family of cell adhesion molecules, alternative splicing of the EGF-repeats and NHL domain controls synaptic protein-protein interactions. Here we present cryo-EM structures of the compact dimeric ectodomain of two teneurin-3 isoforms that harbour the splice insert in the EGF-repeats. This dimer is stabilised by an EGF8-ABD contact between subunits. Cryo-EM reconstructions of all four splice variants, together with SAXS and negative stain EM, reveal compacted dimers for each, with variant-specific dimeric arrangements. This results in specific trans-cellular interactions, as tested in cell clustering and stripe assays. The compact conformations provide a structural basis for teneurin homo- and heterophilic interactions. Altogether, our findings demonstrate how alternative splicing results in rearrangements of the dimeric subunits, influencing neuronal recognition and likely circuit wiring.
Collapse
Affiliation(s)
- Christos Gogou
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, van der Maasweg 9, Delft, the Netherlands
| | - J Wouter Beugelink
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, the Netherlands
| | - Cátia P Frias
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, van der Maasweg 9, Delft, the Netherlands
| | - Leanid Kresik
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, van der Maasweg 9, Delft, the Netherlands
| | - Natalia Jaroszynska
- Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
| | - Uwe Drescher
- Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Bert J C Janssen
- Structural Biochemistry, Bijvoet Centre for Biomolecular Research, Faculty of Science, Utrecht University, Universiteitsweg 99, Utrecht, the Netherlands
| | - Robert Hindges
- Centre for Developmental Neurobiology, King's College London, Guy's Campus, London, UK
- MRC Centre for Neurodevelopmental Disorders, King's College London, London, UK
| | - Dimphna H Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, van der Maasweg 9, Delft, the Netherlands.
| |
Collapse
|
4
|
King CP, Chitre AS, Leal-Gutiérrez JD, Tripi JA, Hughson AR, Horvath AP, Lamparelli AC, George A, Martin C, Pierre CLS, Sanches T, Bimschleger HV, Gao J, Cheng R, Nguyen KM, Holl KL, Polesskaya O, Ishiwari K, Chen H, Woods LCS, Palmer AA, Robinson TE, Flagel SB, Meyer PJ. Genomic Loci Influencing Cue-Reactivity in Heterogeneous Stock Rats. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584852. [PMID: 38559127 PMCID: PMC10980002 DOI: 10.1101/2024.03.13.584852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Addiction vulnerability is associated with the tendency to attribute incentive salience to reward predictive cues; both addiction and the attribution of incentive salience are influenced by environmental and genetic factors. To characterize the genetic contributions to incentive salience attribution, we performed a genome-wide association study (GWAS) in a cohort of 1,645 genetically diverse heterogeneous stock (HS) rats. We tested HS rats in a Pavlovian conditioned approach task, in which we characterized the individual responses to food-associated stimuli ("cues"). Rats exhibited either cue-directed "sign-tracking" behavior or food-cup directed "goal-tracking" behavior. We then used the conditioned reinforcement procedure to determine whether rats would perform a novel operant response for unrewarded presentations of the cue. We found that these measures were moderately heritable (SNP heritability, h2 = .189-.215). GWAS identified 14 quantitative trait loci (QTLs) for 11 of the 12 traits we examined. Interval sizes of these QTLs varied widely. 7 traits shared a QTL on chromosome 1 that contained a few genes (e.g. Tenm4, Mir708) that have been associated with substance use disorders and other mental health traits in humans. Other candidate genes (e.g. Wnt11, Pak1) in this region had coding variants and expression-QTLs in mesocorticolimbic regions of the brain. We also conducted a Phenome-Wide Association Study (PheWAS) on other behavioral measures in HS rats and found that regions containing QTLs on chromosome 1 were also associated with nicotine self-administration in a separate cohort of HS rats. These results provide a starting point for the molecular genetic dissection of incentive salience and provide further support for a relationship between attribution of incentive salience and drug abuse-related traits.
Collapse
Affiliation(s)
- Christopher P. King
- Department of Psychology, University at Buffalo, Buffalo, USA
- Clinical and Research Institute on Addictions, Buffalo, USA
| | - Apurva S. Chitre
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | - Jordan A. Tripi
- Department of Psychology, University at Buffalo, Buffalo, USA
| | - Alesa R. Hughson
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | - Aidan P. Horvath
- Department of Psychology, University of Michigan, Ann Arbor, USA
| | | | - Anthony George
- Clinical and Research Institute on Addictions, Buffalo, USA
| | - Connor Martin
- Clinical and Research Institute on Addictions, Buffalo, USA
| | | | - Thiago Sanches
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | | | - Jianjun Gao
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Riyan Cheng
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Khai-Minh Nguyen
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Katie L. Holl
- Department of Physiology, Medical College of Wisconsin, Milwaukee, USA
| | - Oksana Polesskaya
- Department of Psychiatry, University of California San Diego, La Jolla, USA
| | - Keita Ishiwari
- Clinical and Research Institute on Addictions, Buffalo, USA
- Department of Pharmacology and Toxicology, University at Buffalo, Buffalo USA
| | - Hao Chen
- Department of Pharmacology, Addiction Science and Toxicology, University of Tennessee Health Science Center, Memphis, USA
| | - Leah C. Solberg Woods
- Department of Internal Medicine, Molecular Medicine, Center on Diabetes, Obesity and Metabolism, Wake Forest School of Medicine, Winston-Salem, USA
| | - Abraham A. Palmer
- Department of Psychiatry, University of California San Diego, La Jolla, USA
- Institute for Genomic Medicine, University of California San Diego, La Jolla, USA
| | | | - Shelly B. Flagel
- Department of Psychiatry, University of Michigan, Ann Arbor, USA
- Michigan Neuroscience Institute, University of Michigan, Ann Arbor, USA
| | - Paul J. Meyer
- Department of Psychology, University at Buffalo, Buffalo, USA
| |
Collapse
|
5
|
González-Magaña A, Tascón I, Altuna-Alvarez J, Queralt-Martín M, Colautti J, Velázquez C, Zabala M, Rojas-Palomino J, Cárdenas M, Alcaraz A, Whitney JC, Ubarretxena-Belandia I, Albesa-Jové D. Structural and functional insights into the delivery of a bacterial Rhs pore-forming toxin to the membrane. Nat Commun 2023; 14:7808. [PMID: 38016939 PMCID: PMC10684867 DOI: 10.1038/s41467-023-43585-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023] Open
Abstract
Bacterial competition is a significant driver of toxin polymorphism, which allows continual compensatory evolution between toxins and the resistance developed to overcome their activity. Bacterial Rearrangement hot spot (Rhs) proteins represent a widespread example of toxin polymorphism. Here, we present the 2.45 Å cryo-electron microscopy structure of Tse5, an Rhs protein central to Pseudomonas aeruginosa type VI secretion system-mediated bacterial competition. This structural insight, coupled with an extensive array of biophysical and genetic investigations, unravels the multifaceted functional mechanisms of Tse5. The data suggest that interfacial Tse5-membrane binding delivers its encapsulated pore-forming toxin fragment to the target bacterial membrane, where it assembles pores that cause cell depolarisation and, ultimately, bacterial death.
Collapse
Affiliation(s)
- Amaia González-Magaña
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Igor Tascón
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Jon Altuna-Alvarez
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
| | - María Queralt-Martín
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - Jake Colautti
- Department of Biochemistry and Biomedical Sciences, Michael DeGroote Institute for Infectious Disease Research, and David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Carmen Velázquez
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Maialen Zabala
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain
| | - Jessica Rojas-Palomino
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - Marité Cárdenas
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
| | - Antonio Alcaraz
- Laboratory of Molecular Biophysics, Department of Physics, University Jaume I, 12071, Castellón, Spain
| | - John C Whitney
- Department of Biochemistry and Biomedical Sciences, Michael DeGroote Institute for Infectious Disease Research, and David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
| | - Iban Ubarretxena-Belandia
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| | - David Albesa-Jové
- Instituto Biofisika (CSIC, UPV/EHU), Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), 48940, Leioa, Spain.
- Departamento de Bioquímica y Biología Molecular, University of the Basque Country, 48940, Leioa, Spain.
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain.
| |
Collapse
|
6
|
Cortés E, Pak JS, Özkan E. Structure and evolution of neuronal wiring receptors and ligands. Dev Dyn 2023; 252:27-60. [PMID: 35727136 PMCID: PMC10084454 DOI: 10.1002/dvdy.512] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 06/13/2022] [Accepted: 06/14/2022] [Indexed: 01/04/2023] Open
Abstract
One of the fundamental properties of a neuronal circuit is the map of its connections. The cellular and developmental processes that allow for the growth of axons and dendrites, selection of synaptic targets, and formation of functional synapses use neuronal surface receptors and their interactions with other surface receptors, secreted ligands, and matrix molecules. Spatiotemporal regulation of the expression of these receptors and cues allows for specificity in the developmental pathways that wire stereotyped circuits. The families of molecules controlling axon guidance and synapse formation are generally conserved across animals, with some important exceptions, which have consequences for neuronal connectivity. Here, we summarize the distribution of such molecules across multiple taxa, with a focus on model organisms, evolutionary processes that led to the multitude of such molecules, and functional consequences for the diversification or loss of these receptors.
Collapse
Affiliation(s)
- Elena Cortés
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Joseph S Pak
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| | - Engin Özkan
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, Illinois, USA.,The Neuroscience Institute, University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
7
|
Cheung A, Schachermayer G, Biehler A, Wallis A, Missaire M, Hindges R. Teneurin paralogues are able to localise synaptic sites driven by the intracellular domain and have the potential to form cis-heterodimers. Front Neurosci 2022; 16:915149. [PMID: 36408396 PMCID: PMC9670113 DOI: 10.3389/fnins.2022.915149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 10/07/2022] [Indexed: 11/06/2022] Open
Abstract
Synaptic specificity during neurodevelopment is driven by combinatorial interactions between select cell adhesion molecules expressed at the synaptic membrane. These protein-protein interactions are important for instructing the correct connectivity and functionality of the nervous system. Teneurins are one family of synaptic adhesion molecules, highly conserved and widely expressed across interconnected areas during development. These type-II transmembrane glycoproteins are involved in regulating key neurodevelopmental processes during the establishment of neural connectivity. While four teneurin paralogues are found in vertebrates, their subcellular distribution within neurons and interaction between these different paralogues remains largely unexplored. Here we show, through fluorescently tagging teneurin paralogues, that true to their function as synaptic adhesion molecules, all four paralogues are found in a punctate manner and partially localised to synapses when overexpressed in neurons in vitro. Interestingly, each paralogue is differentially distributed across different pre- and post-synaptic sites. In organotypic cultures, Tenm3 is similarly localised to dendritic spines in CA1 neurons, particularly to spine attachment points. Furthermore, we show that the intracellular domain of teneurin plays an important role for synaptic localisation. Finally, while previous studies have shown that the extracellular domain of teneurins allows for active dimer formation and transsynaptic interactions, we find that all paralogues are able to form the full complement of homodimers and cis-heterodimers. This suggests that the combinatorial power to generate distinct molecular teneurin complexes underlying synaptic specificity is even higher than previously thought. The emerging link between teneurin with cancers and neurological disorders only serves to emphasise the importance of further elucidating the molecular mechanisms of teneurin function and their relation to human health and disease.
Collapse
Affiliation(s)
- Angela Cheung
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Greta Schachermayer
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Aude Biehler
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Amber Wallis
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Mégane Missaire
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
| | - Robert Hindges
- Centre for Developmental Neurobiology, King’s College London, London, United Kingdom
- MRC Centre for Neurodevelopmental Disorders, King’s College London, London, United Kingdom
| |
Collapse
|
8
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
9
|
Dodsworth TL, Lovejoy DA. Role of Teneurin C-Terminal Associated Peptides (TCAP) on Intercellular Adhesion and Communication. Front Neurosci 2022; 16:868541. [PMID: 35585927 PMCID: PMC9108700 DOI: 10.3389/fnins.2022.868541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/17/2022] [Indexed: 11/25/2022] Open
Abstract
The teneurin C-terminal associated peptides (TCAP) are encoded by the terminal exon of all metazoan teneurin genes. Evidence supports the liberation of a soluble TCAP peptide either by proteolytic cleavage from the mature transmembrane teneurin protein or by a separately transcribed mRNA. Synthetic versions of TCAP, based on its genomic structure, are efficacious at regulating intercellular communication by promoting neurite outgrowth and increasing dendritic spine density in vitro and in vivo in rodent models. This is achieved through cytoskeletal re-arrangement and metabolic upregulation. The putative receptors for TCAPs are the latrophilin (LPHN) family of adhesion G-protein coupled receptors, which facilitate TCAP’s actions through G-proteins associated with cAMP and calcium-regulating signalling pathways. The teneurin/TCAP and latrophilin genes are phylogenetically ancient, likely serving primitive functions in cell adhesion and energy regulation which have been since adapted for a more complex role in synaptogenesis in vertebrate nervous systems.
Collapse
|
10
|
Meijer DH, Frias CP, Beugelink JW, Deurloo YN, Janssen BJC. Teneurin4 dimer structures reveal a calcium‐stabilized compact conformation supporting homomeric trans‐interactions. EMBO J 2022; 41:e107505. [PMID: 35099835 PMCID: PMC9058538 DOI: 10.15252/embj.2020107505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/18/2022] Open
Abstract
Establishment of correct synaptic connections is a crucial step during neural circuitry formation. The Teneurin family of neuronal transmembrane proteins promotes cell–cell adhesion via homophilic and heterophilic interactions, and is required for synaptic partner matching in the visual and hippocampal systems in vertebrates. It remains unclear how individual Teneurins form macromolecular cis‐ and trans‐synaptic protein complexes. Here, we present a 2.7 Å cryo‐EM structure of the dimeric ectodomain of human Teneurin4. The structure reveals a compact conformation of the dimer, stabilized by interactions mediated by the C‐rich, YD‐shell, and ABD domains. A 1.5 Å crystal structure of the C‐rich domain shows three conserved calcium binding sites, and thermal unfolding assays and SAXS‐based rigid‐body modeling demonstrate that the compactness and stability of Teneurin4 dimers are calcium‐dependent. Teneurin4 dimers form a more extended conformation in conditions that lack calcium. Cellular assays reveal that the compact cis‐dimer is compatible with homomeric trans‐interactions. Together, these findings support a role for teneurins as a scaffold for macromolecular complex assembly and the establishment of cis‐ and trans‐synaptic interactions to construct functional neuronal circuits.
Collapse
Affiliation(s)
- Dimphna H Meijer
- Department of Bionanoscience Kavli Institute of Nanoscience Delft University of Technology Delft The Netherlands
- Department of Chemistry Faculty of Science Structural Biochemistry Bijvoet Center for Biomolecular Research Utrecht University Utrecht The Netherlands
| | - Cátia P Frias
- Department of Bionanoscience Kavli Institute of Nanoscience Delft University of Technology Delft The Netherlands
| | - J Wouter Beugelink
- Department of Chemistry Faculty of Science Structural Biochemistry Bijvoet Center for Biomolecular Research Utrecht University Utrecht The Netherlands
| | - Yanthi N Deurloo
- Department of Bionanoscience Kavli Institute of Nanoscience Delft University of Technology Delft The Netherlands
| | - Bert J C Janssen
- Department of Chemistry Faculty of Science Structural Biochemistry Bijvoet Center for Biomolecular Research Utrecht University Utrecht The Netherlands
| |
Collapse
|
11
|
Role and Involvement of TENM4 and miR-708 in Breast Cancer Development and Therapy. Cells 2022; 11:cells11010172. [PMID: 35011736 PMCID: PMC8750459 DOI: 10.3390/cells11010172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/31/2021] [Accepted: 01/02/2022] [Indexed: 12/20/2022] Open
Abstract
Teneurin 4 (TENM4) is a transmembrane protein that is codified by the ODZ4 gene and is involved in nervous system development, neurite outgrowth, and neuronal differentiation. In line with its involvement in the nervous system, TENM4 has also been implicated in several mental disorders such as bipolar disorder, schizophrenia, and autism. TENM4 mutations and rearrangements have recently been identified in a number of tumors. This, combined with impaired expression in tumors, suggests that it may potentially be involved in tumorigenesis. Most of the TENM4 mutations that are observed in tumors occur in breast cancer, in which TENM4 plays a role in cells’ migration and stemness. However, the functional role that TENM4 plays in breast cancer still needs to be better evaluated, and further studies are required to better understand the involvement of TENM4 in breast cancer progression. Herein, we review the currently available data for TENM4′s role in breast cancer and propose its use as both a novel target with which to ameliorate patient prognosis and as a potential biomarker. Moreover, we also report data on the tumorigenic role of miR-708 deregulation and the possible use of this miRNA as a novel therapeutic molecule, as miR-708 is spliced out from TENM4 mRNA.
Collapse
|
12
|
Abramov T, Suwansa-ard S, da Silva PM, Wang T, Dove M, O’Connor W, Parker L, Lovejoy DA, Cummins SF, Elizur A. Teneurin and TCAP Phylogeny and Physiology: Molecular Analysis, Immune Activity, and Transcriptomic Analysis of the Stress Response in the Sydney Rock Oyster ( Saccostrea glomerata) Hemocytes. Front Endocrinol (Lausanne) 2022; 13:891714. [PMID: 35784537 PMCID: PMC9248207 DOI: 10.3389/fendo.2022.891714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 05/11/2022] [Indexed: 11/13/2022] Open
Abstract
Teneurin C-terminal associated peptide (TCAP) is an ancient bioactive peptide that is highly conserved in metazoans. TCAP administration reduces cellular and behavioral stress in vertebrate and urochordate models. There is little information for invertebrates regarding the existence or function of a TCAP. This study used the Sydney rock oyster (SRO) as a molluscan model to characterize an invertebrate TCAP, from molecular gene analysis to its physiological effects associated with hemocyte phagocytosis. We report a single teneurin gene (and 4 teneurin splice variants), which encodes a precursor with TCAP that shares a vertebrate-like motif, and is similar to that of other molluscan classes (gastropod, cephalopod), arthropods and echinoderms. TCAP was identified in all SRO tissues using western blotting at 1-2 different molecular weights (~22 kDa and ~37kDa), supporting precursor cleavage variation. In SRO hemolymph, TCAP was spatially localized to the cytosol of hemocytes, and with particularly high density immunoreactivity in granules. Based on 'pull-down' assays, the SRO TCAP binds to GAPDH, suggesting that TCAP may protect cells from apoptosis under oxidative stress. Compared to sham injection, the intramuscular administration of TCAP (5 pmol) into oysters modulated their immune system by significantly reducing hemocyte phagocytosis under stress conditions (low salinity and high temperature). TCAP administration also significantly reduced hemocyte reactive oxygen species production at ambient conditions and after 48 h stress, compared to sham injection. Transcriptomic hemocyte analysis of stressed oysters administered with TCAP demonstrated significant changes in expression of genes associated with key metabolic, protective and immune functions. In summary, this study established a role for TCAP in oysters through modulation of physiological and molecular functions associated with energy conservation, stress and cellular defense.
Collapse
Affiliation(s)
- Tomer Abramov
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Saowaros Suwansa-ard
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Patricia Mirella da Silva
- Invertebrate Immunology and Pathology Laboratory, Department of Molecular Biology, Federal University of Paraíba, João Pessoa, Brazil
| | - Tianfang Wang
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Michael Dove
- New South Wales (NSW) Department of Primary Industries, Port Stephens Fisheries Institute, João Pessoa, Para´ıba, Taylors Beach, NSW, Australia
| | - Wayne O’Connor
- New South Wales (NSW) Department of Primary Industries, Port Stephens Fisheries Institute, João Pessoa, Para´ıba, Taylors Beach, NSW, Australia
| | - Laura Parker
- School of Biological, Earth and Environmental Sciences, University of New South Wales, Kensington, NSW, Australia
| | - David A. Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Scott F. Cummins
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD, Australia
| | - Abigail Elizur
- Centre for Bioinnovation, University of the Sunshine Coast, Sippy Downs, QLD, Australia
- *Correspondence: Abigail Elizur,
| |
Collapse
|
13
|
Günther P, Quentin D, Ahmad S, Sachar K, Gatsogiannis C, Whitney JC, Raunser S. Structure of a bacterial Rhs effector exported by the type VI secretion system. PLoS Pathog 2022; 18:e1010182. [PMID: 34986192 PMCID: PMC8765631 DOI: 10.1371/journal.ppat.1010182] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/18/2022] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
The type VI secretion system (T6SS) is a widespread protein export apparatus found in Gram-negative bacteria. The majority of T6SSs deliver toxic effector proteins into competitor bacteria. Yet, the structure, function, and activation of many of these effectors remains poorly understood. Here, we present the structures of the T6SS effector RhsA from Pseudomonas protegens and its cognate T6SS spike protein, VgrG1, at 3.3 Å resolution. The structures reveal that the rearrangement hotspot (Rhs) repeats of RhsA assemble into a closed anticlockwise β-barrel spiral similar to that found in bacterial insecticidal Tc toxins and in metazoan teneurin proteins. We find that the C-terminal toxin domain of RhsA is autoproteolytically cleaved but remains inside the Rhs ‘cocoon’ where, with the exception of three ordered structural elements, most of the toxin is disordered. The N-terminal ‘plug’ domain is unique to T6SS Rhs proteins and resembles a champagne cork that seals the Rhs cocoon at one end while also mediating interactions with VgrG1. Interestingly, this domain is also autoproteolytically cleaved inside the cocoon but remains associated with it. We propose that mechanical force is required to remove the cleaved part of the plug, resulting in the release of the toxin domain as it is delivered into a susceptible bacterial cell by the T6SS. Bacteria have developed a variety of strategies to compete for nutrients and limited resources. One system widely used by Gram-negative bacteria is the T6 secretion system which delivers a plethora of effectors into competing bacterial cells. Known functions of effectors are degradation of the cell wall, the depletion of essential metabolites such as NAD+ or the cleavage of DNA. RhsA is an effector from the widespread plant-protecting bacteria Pseudomonas protegens. We found that RhsA forms a closed cocoon similar to that found in bacterial Tc toxins and metazoan teneurin proteins. The effector cleaves its polypeptide chain by itself in three pieces, namely the N-terminal domain including a seal, the cocoon and the actual toxic component which potentially cleaves DNA. The toxic component is encapsulated in the large cocoon, so that the effector producing bacterium is protected from the toxin. In order for the toxin to exit the cocoon, we propose that the seal, which closes the cocoon at one end, is removed by mechanical forces during injection of the effector by the T6 secretion system. We further hypothesize about different scenarios for the delivery of the toxin into the cytoplasm of the host cell. Together, our findings expand the knowledge of the mechanism of action of the T6 secretion system and its essential role in interbacterial competition.
Collapse
Affiliation(s)
- Patrick Günther
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Dennis Quentin
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Shehryar Ahmad
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Kartik Sachar
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
| | - Christos Gatsogiannis
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - John C. Whitney
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Canada
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Canada
- David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Canada
- * E-mail: (J.C.W.); (S.R.)
| | - Stefan Raunser
- Department of Structural Biochemistry, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- * E-mail: (J.C.W.); (S.R.)
| |
Collapse
|
14
|
Mounting, structure and autocleavage of a type VI secretion-associated Rhs polymorphic toxin. Nat Commun 2021; 12:6998. [PMID: 34853317 PMCID: PMC8636562 DOI: 10.1038/s41467-021-27388-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 11/15/2021] [Indexed: 12/30/2022] Open
Abstract
Bacteria have evolved toxins to outcompete other bacteria or to hijack host cell pathways. One broad family of bacterial polymorphic toxins gathers multidomain proteins with a modular organization, comprising a C-terminal toxin domain fused to a N-terminal domain that adapts to the delivery apparatus. Polymorphic toxins include bacteriocins, contact-dependent growth inhibition systems, and specialized Hcp, VgrG, PAAR or Rhs Type VI secretion (T6SS) components. We recently described and characterized Tre23, a toxin domain fused to a T6SS-associated Rhs protein in Photorhabdus laumondii, Rhs1. Here, we show that Rhs1 forms a complex with the T6SS spike protein VgrG and the EagR chaperone. Using truncation derivatives and cross-linking mass spectrometry, we demonstrate that VgrG-EagR-Rhs1 complex formation requires the VgrG C-terminal β-helix and the Rhs1 N-terminal region. We then report the cryo-electron-microscopy structure of the Rhs1-EagR complex, demonstrating that the Rhs1 central region forms a β-barrel cage-like structure that encapsulates the C-terminal toxin domain, and provide evidence for processing of the Rhs1 protein through aspartyl autoproteolysis. We propose a model for Rhs1 loading on the T6SS, transport and delivery into the target cell.
Collapse
|
15
|
Matriano DM, Alegado RA, Conaco C. Detection of horizontal gene transfer in the genome of the choanoflagellate Salpingoeca rosetta. Sci Rep 2021; 11:5993. [PMID: 33727612 PMCID: PMC7971027 DOI: 10.1038/s41598-021-85259-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 02/28/2021] [Indexed: 01/31/2023] Open
Abstract
Horizontal gene transfer (HGT), the movement of heritable materials between distantly related organisms, is crucial in eukaryotic evolution. However, the scale of HGT in choanoflagellates, the closest unicellular relatives of metazoans, and its possible roles in the evolution of animal multicellularity remains unexplored. We identified at least 175 candidate HGTs in the genome of the colonial choanoflagellate Salpingoeca rosetta using sequence-based tests. The majority of these were orthologous to genes in bacterial and microalgal lineages, yet displayed genomic features consistent with the rest of the S. rosetta genome-evidence of ancient acquisition events. Putative functions include enzymes involved in amino acid and carbohydrate metabolism, cell signaling, and the synthesis of extracellular matrix components. Functions of candidate HGTs may have contributed to the ability of choanoflagellates to assimilate novel metabolites, thereby supporting adaptation, survival in diverse ecological niches, and response to external cues that are possibly critical in the evolution of multicellularity in choanoflagellates.
Collapse
Affiliation(s)
- Danielle M Matriano
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines
| | - Rosanna A Alegado
- Department of Oceanography, Hawai'i Sea Grant, Daniel K. Inouye Center for Microbial Oceanography: Research and Education, University of Hawai'i at Manoa, Honolulu, USA
| | - Cecilia Conaco
- Marine Science Institute, University of the Philippines, Diliman, Quezon City, Philippines.
| |
Collapse
|
16
|
Ros-Rocher N, Pérez-Posada A, Leger MM, Ruiz-Trillo I. The origin of animals: an ancestral reconstruction of the unicellular-to-multicellular transition. Open Biol 2021; 11:200359. [PMID: 33622103 PMCID: PMC8061703 DOI: 10.1098/rsob.200359] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
How animals evolved from a single-celled ancestor, transitioning from a unicellular lifestyle to a coordinated multicellular entity, remains a fascinating question. Key events in this transition involved the emergence of processes related to cell adhesion, cell–cell communication and gene regulation. To understand how these capacities evolved, we need to reconstruct the features of both the last common multicellular ancestor of animals and the last unicellular ancestor of animals. In this review, we summarize recent advances in the characterization of these ancestors, inferred by comparative genomic analyses between the earliest branching animals and those radiating later, and between animals and their closest unicellular relatives. We also provide an updated hypothesis regarding the transition to animal multicellularity, which was likely gradual and involved the use of gene regulatory mechanisms in the emergence of early developmental and morphogenetic plans. Finally, we discuss some new avenues of research that will complement these studies in the coming years.
Collapse
Affiliation(s)
- Núria Ros-Rocher
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Alberto Pérez-Posada
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Centro Andaluz de Biología del Desarrollo (CSIC-Universidad Pablo de Olavide), Carretera de Utrera Km 1, 41013 Sevilla, Andalusia, Spain
| | - Michelle M Leger
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain
| | - Iñaki Ruiz-Trillo
- Institut de Biologia Evolutiva (CSIC-Universitat Pompeu Fabra), Passeig Marítim de la Barceloneta 37-49, 08003 Barcelona, Catalonia, Spain.,Departament de Genètica, Microbiologia i Estadística, Institut de Recerca de la Biodiversitat, Universitat de Barcelona, Avinguda Diagonal 643, 08028 Barcelona, Catalonia, Spain.,ICREA, Passeig Lluís Companys 23, 08010 Barcelona, Catalonia, Spain
| |
Collapse
|
17
|
Ruiu R, Barutello G, Arigoni M, Riccardo F, Conti L, Peppino G, Annaratone L, Marchiò C, Mengozzi G, Calogero RA, Cavallo F, Quaglino E. Identification of TENM4 as a Novel Cancer Stem Cell-Associated Molecule and Potential Target in Triple Negative Breast Cancer. Cancers (Basel) 2021; 13:cancers13040894. [PMID: 33672732 PMCID: PMC7924390 DOI: 10.3390/cancers13040894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/18/2022] Open
Abstract
Simple Summary Patients with triple negative breast cancer (TNBC) experience shorter overall survival compared to non-TNBC patients because of the high incidence of recurrences and metastases. This is due to the capacity of aggressive cancer cell subpopulations named cancer stem cells (CSC) to resist current therapies. To design more effective therapeutic strategies for TNBC patients, in this study we sought to identify functional targets expressed on CSC. Our analyses led us to propose teneurin 4 (TENM4) as a promising candidate for drug- and immune-based therapies due to its role in CSC self-renewal and migratory capacity and the inverse correlation between its expression and survival of TNBC patients. In addition, TENM4 detection in the plasma of tumor-bearing patients endorses its potentiality as a disease detection marker. Abstract Triple-negative breast cancer (TNBC) is insensitive to endocrine and Her2-directed therapies, making the development of TNBC-targeted therapies an unmet medical need. Since patients with TNBC frequently show a quicker relapse and metastatic progression compared to other breast cancer subtypes, we hypothesized that cancer stem cells (CSC) could have a role in TNBC. To identify putative TNBC CSC-associated targets, we compared the gene expression profiles of CSC-enriched tumorspheres and their parental cells grown as monolayer. Among the up-regulated genes coding for cell membrane-associated proteins, we selected Teneurin 4 (TENM4), involved in cell differentiation and deregulated in tumors of different histotypes, as the object for this study. Meta-analysis of breast cancer datasets shows that TENM4 mRNA is up-regulated in invasive carcinoma specimens compared to normal breast and that high expression of TENM4 correlates with a shorter relapse-free survival in TNBC patients. TENM4 silencing in mammary cancer cells significantly impaired tumorsphere-forming ability, migratory capacity and Focal Adhesion Kinase (FAK) phosphorylation. Moreover, we found higher levels of TENM4 in plasma from tumor-bearing mice and TNBC patients compared to the healthy controls. Overall, our results indicate that TENM4 may act as a novel biomarker and target for the treatment of TNBC.
Collapse
Affiliation(s)
- Roberto Ruiu
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (R.R.); (G.B.); (M.A.); (F.R.); (L.C.); (G.P.); (R.A.C.); (F.C.)
| | - Giuseppina Barutello
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (R.R.); (G.B.); (M.A.); (F.R.); (L.C.); (G.P.); (R.A.C.); (F.C.)
| | - Maddalena Arigoni
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (R.R.); (G.B.); (M.A.); (F.R.); (L.C.); (G.P.); (R.A.C.); (F.C.)
| | - Federica Riccardo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (R.R.); (G.B.); (M.A.); (F.R.); (L.C.); (G.P.); (R.A.C.); (F.C.)
| | - Laura Conti
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (R.R.); (G.B.); (M.A.); (F.R.); (L.C.); (G.P.); (R.A.C.); (F.C.)
| | - Giulia Peppino
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (R.R.); (G.B.); (M.A.); (F.R.); (L.C.); (G.P.); (R.A.C.); (F.C.)
| | - Laura Annaratone
- Unit of Pathology, Candiolo Cancer Institute, FPO IRCCS, 10060 Candiolo, Italy; (L.A.); (C.M.)
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy;
| | - Caterina Marchiò
- Unit of Pathology, Candiolo Cancer Institute, FPO IRCCS, 10060 Candiolo, Italy; (L.A.); (C.M.)
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy;
| | - Giulio Mengozzi
- Department of Medical Sciences, University of Torino, 10126 Torino, Italy;
- Clinical Biochemistry Laboratory, Department of Laboratory Medicine, AOU Città della Salute e della Scienza di Torino, 10126 Torino, Italy
| | - Raffaele Adolfo Calogero
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (R.R.); (G.B.); (M.A.); (F.R.); (L.C.); (G.P.); (R.A.C.); (F.C.)
| | - Federica Cavallo
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (R.R.); (G.B.); (M.A.); (F.R.); (L.C.); (G.P.); (R.A.C.); (F.C.)
| | - Elena Quaglino
- Molecular Biotechnology Center, Department of Molecular Biotechnology and Health Sciences, University of Torino, Via Nizza 52, 10126 Torino, Italy; (R.R.); (G.B.); (M.A.); (F.R.); (L.C.); (G.P.); (R.A.C.); (F.C.)
- Correspondence: ; Tel.: +39-0116706457
| |
Collapse
|
18
|
Marutani-Hert M, Hert AP, Tudor-Nelson SM, Preston JF, Minsavage GV, Stall RE, Roberts PD, Timilsina S, Hurlbert JC, Jones JB. Characterization of three novel genetic loci encoding bacteriocins associated with Xanthomonas perforans. PLoS One 2020; 15:e0233301. [PMID: 32469926 PMCID: PMC7259588 DOI: 10.1371/journal.pone.0233301] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/02/2020] [Indexed: 11/18/2022] Open
Abstract
Bacterial spot is a destructive disease of tomato in Florida that prior to the early 1990s was caused by Xanthomonas euvesicatoria. X. perforans was first identified in Florida in 1991 and by 2006 was the only xanthomonad associated with bacterial spot disease in tomato. The ability of an X. perforans strain to outcompete X. euvesicatoria both in vitro and in vivo was at least in part associated with the production of three bacteriocins designated Bcn-A, Bcn-B, and Bcn-C. The objective of this study was to characterize the genetic determinants of these bacteriocins. Bcn-A activity was confined to one locus consisting of five ORFs of which three (ORFA, ORF2 and ORF4) were required for bacteriocin activity. The fifth ORF is predicted to encode an immunity protein to Bcn-A based on in vitro and in vivo assays. The first ORF encodes Bcn-A, a 1,398 amino acid protein, which bioinformatic analysis predicts to be a member of the RHS family of toxins. Based on results of homology modeling, we hypothesize that the amino terminus of Bcn-A interacts with a protein in the outer membrane of X. euvesicatoria. The carboxy terminus of the protein may interact with an as yet unknown protein(s) and puncture the X. euvesicatoria membrane, thereby delivering the accessory proteins into the target and causing cell death. Bcn-A appears to be activated upon secretion based on cell fractionation assays. The other two loci were each shown to be single ORFs encoding Bcn-B and Bcn-C. Both gene products possess homology toward known proteases. Proteinase activity for both Bcn-B and Bcn-C was confirmed using a milk agar assay. Bcn-B is predicted to be an ArgC-like serine protease, which was confirmed by PMSF inhibition of proteolytic activity, whereas Bcn-C has greater than 50% amino acid sequence identity to two zinc metalloproteases.
Collapse
Affiliation(s)
- Mizuri Marutani-Hert
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Aaron P. Hert
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Simone M. Tudor-Nelson
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - James F. Preston
- Microbiology and Cell Sciences, University of Florida, Gainesville, Florida, United States of America
| | - Gerald V. Minsavage
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Robert E. Stall
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
| | - Pamela D. Roberts
- Southwest Florida Research and Education Center, University of Florida, Immokalee, Florida, United States of America
| | - Sujan Timilsina
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (JBJ); (JCH); (ST)
| | - Jason C. Hurlbert
- College of Arts and Sciences, Winthrop University, Rock Hill, South Carolina, United States of America
- * E-mail: (JBJ); (JCH); (ST)
| | - Jeffrey B. Jones
- Department of Plant Pathology, University of Florida, Gainesville, Florida, United States of America
- * E-mail: (JBJ); (JCH); (ST)
| |
Collapse
|
19
|
Pei TT, Li H, Liang X, Wang ZH, Liu G, Wu LL, Kim H, Xie Z, Yu M, Lin S, Xu P, Dong TG. Intramolecular chaperone-mediated secretion of an Rhs effector toxin by a type VI secretion system. Nat Commun 2020; 11:1865. [PMID: 32313027 PMCID: PMC7170923 DOI: 10.1038/s41467-020-15774-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 03/27/2020] [Indexed: 12/31/2022] Open
Abstract
Bacterial Rhs proteins containing toxic domains are often secreted by type VI secretion systems (T6SSs) through unclear mechanisms. Here, we show that the T6SS Rhs-family effector TseI of Aeromonas dhakensis is subject to self-cleavage at both the N- and the C-terminus, releasing the middle Rhs core and two VgrG-interacting domains (which we name VIRN and VIRC). VIRC is an endonuclease, and the immunity protein TsiI protects against VIRC toxicity through direct interaction. Proteolytic release of VIRC and VIRN is mediated, respectively, by an internal aspartic protease activity and by two conserved glutamic residues in the Rhs core. Mutations abolishing self-cleavage do not block secretion, but reduce TseI toxicity. Deletion of VIRN or the Rhs core abolishes secretion. TseI homologs from Pseudomonas syringae, P. aeruginosa, and Vibrio parahaemolyticus are also self-cleaved. VIRN and VIRC interact with protein VgrG1, while the Rhs core interacts with protein TecI. We propose that VIRN and the Rhs core act as T6SS intramolecular chaperones to facilitate toxin secretion and function.
Collapse
Affiliation(s)
- Tong-Tong Pei
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Hao Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Xiaoye Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China.,Department of Ecosystem and Public Health, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N4Z6, Canada
| | - Zeng-Hang Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Guangfeng Liu
- National Center for Protein Science Shanghai, Shanghai Advanced Research Institute, Chinese Academy of Sciences, 201204, Shanghai, China
| | - Li-Li Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Haeun Kim
- Department of Ecosystem and Public Health, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N4Z6, Canada
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ming Yu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Tao G Dong
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 200240, Shanghai, China. .,Department of Ecosystem and Public Health, University of Calgary, 3330 Hospital Dr. NW, Calgary, AB, T2N4Z6, Canada.
| |
Collapse
|
20
|
Stårsta M, Hammarlöf DL, Wäneskog M, Schlegel S, Xu F, Heden Gynnå A, Borg M, Herschend S, Koskiniemi S. RHS-elements function as type II toxin-antitoxin modules that regulate intra-macrophage replication of Salmonella Typhimurium. PLoS Genet 2020; 16:e1008607. [PMID: 32053596 PMCID: PMC7043789 DOI: 10.1371/journal.pgen.1008607] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Revised: 02/26/2020] [Accepted: 01/12/2020] [Indexed: 11/19/2022] Open
Abstract
RHS elements are components of conserved toxin-delivery systems, wide-spread within the bacterial kingdom and some of the most positively selected genes known. However, very little is known about how Rhs toxins affect bacterial biology. Salmonella Typhimurium contains a full-length rhs gene and an adjacent orphan rhs gene, which lacks the conserved delivery part of the Rhs protein. Here we show that, in addition to the conventional delivery, Rhs toxin-antitoxin pairs encode for functional type-II toxin-antitoxin (TA) loci that regulate S. Typhimurium proliferation within macrophages. Mutant S. Typhimurium cells lacking both Rhs toxins proliferate 2-times better within macrophages, mainly because of an increased growth rate. Thus, in addition to providing strong positive selection for the rhs loci under conditions when there is little or no toxin delivery, internal expression of the toxin-antitoxin system regulates growth in the stressful environment found inside macrophages. Bacteria that reside and multiply inside of phagocytic cells are hard to treat with common antibiotics, partly because subpopulations of bacteria are non-growing. Very little is known about how bacteria regulate their growth in the phagocytic vesicle. We show that RHS elements, previously known to function as mobilizable toxins that inhibit growth of neighboring bacteria, also function as internally expressed toxin-antitoxin systems that regulate Salmonella Typhimurium growth in macrophages. RHS elements were discovered more than 30 years ago, but their role in biology has long remained unclear even though they are some of the most positively selected genes known. Our results suggest an explanation to why rhs genes are under such strong positive selection in addition to suggesting a novel function for these toxins in regulating bacterial growth.
Collapse
Affiliation(s)
- Magnus Stårsta
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Disa L. Hammarlöf
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Marcus Wäneskog
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Susan Schlegel
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Feifei Xu
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Arvid Heden Gynnå
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Malin Borg
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sten Herschend
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Sanna Koskiniemi
- Department of Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
- * E-mail:
| |
Collapse
|
21
|
Del Toro D, Carrasquero-Ordaz MA, Chu A, Ruff T, Shahin M, Jackson VA, Chavent M, Berbeira-Santana M, Seyit-Bremer G, Brignani S, Kaufmann R, Lowe E, Klein R, Seiradake E. Structural Basis of Teneurin-Latrophilin Interaction in Repulsive Guidance of Migrating Neurons. Cell 2020; 180:323-339.e19. [PMID: 31928845 PMCID: PMC6978801 DOI: 10.1016/j.cell.2019.12.014] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 10/15/2019] [Accepted: 12/11/2019] [Indexed: 02/07/2023]
Abstract
Teneurins are ancient metazoan cell adhesion receptors that control brain development and neuronal wiring in higher animals. The extracellular C terminus binds the adhesion GPCR Latrophilin, forming a trans-cellular complex with synaptogenic functions. However, Teneurins, Latrophilins, and FLRT proteins are also expressed during murine cortical cell migration at earlier developmental stages. Here, we present crystal structures of Teneurin-Latrophilin complexes that reveal how the lectin and olfactomedin domains of Latrophilin bind across a spiraling beta-barrel domain of Teneurin, the YD shell. We couple structure-based protein engineering to biophysical analysis, cell migration assays, and in utero electroporation experiments to probe the importance of the interaction in cortical neuron migration. We show that binding of Latrophilins to Teneurins and FLRTs directs the migration of neurons using a contact repulsion-dependent mechanism. The effect is observed with cell bodies and small neurites rather than their processes. The results exemplify how a structure-encoded synaptogenic protein complex is also used for repulsive cell guidance. Crystal structures reveal binding site for Latrophilin on the Teneurin YD shell A ternary Latrophilin-Teneurin-FLRT complex forms in vitro and in vivo Latrophilin controls cortical migration by binding to Teneurins and FLRTs Latrophilin elicits repulsion of cortical cell bodies/small neurites but not axons
Collapse
Affiliation(s)
- Daniel Del Toro
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany; Department of Biological Sciences, Institute of Neurosciences, IDIBAPS, CIBERNED, University of Barcelona, Barcelona, Spain
| | | | - Amy Chu
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Tobias Ruff
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Meriam Shahin
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Verity A Jackson
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | | | | | - Goenuel Seyit-Bremer
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Sara Brignani
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany
| | - Rainer Kaufmann
- Center for Structural Systems Biology, University of Hamburg, Hamburg 22607, Germany; Department of Physics, University of Hamburg, Hamburg 20355, Germany
| | - Edward Lowe
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK
| | - Rüdiger Klein
- Max Planck Institute of Neurobiology, Am Klopferspitz 18, Martinsried 82152, Germany.
| | - Elena Seiradake
- Department of Biochemistry, Oxford University, Oxford OX1 3QU, UK.
| |
Collapse
|
22
|
Maugars G, Nourizadeh-Lillabadi R, Weltzien FA. New Insights Into the Evolutionary History of Melatonin Receptors in Vertebrates, With Particular Focus on Teleosts. Front Endocrinol (Lausanne) 2020; 11:538196. [PMID: 33071966 PMCID: PMC7541902 DOI: 10.3389/fendo.2020.538196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 08/24/2020] [Indexed: 12/15/2022] Open
Abstract
In order to improve our understanding of melatonin signaling, we have reviewed and revised the evolutionary history of melatonin receptor genes (mtnr) in vertebrates. All gnathostome mtnr genes have a conserved gene organization with two exons, except for mtnr1b paralogs of some teleosts that show intron gains. Phylogeny and synteny analyses demonstrate the presence of four mtnr subtypes, MTNR1A, MTNR1B, MTNR1C, MTNR1D that arose from duplication of an ancestral mtnr during the vertebrate tetraploidizations (1R and 2R). In tetrapods, mtnr1d was lost, independently, in mammals, in archosaurs and in caecilian amphibians. All four mtnr subtypes were found in two non-teleost actinopterygian species, the spotted gar and the reedfish. As a result of teleost tetraploidization (3R), up to seven functional mtnr genes could be identified in teleosts. Conservation of the mtnr 3R-duplicated paralogs differs among the teleost lineages. Synteny analysis showed that the mtnr1d was conserved as a singleton in all teleosts resulting from an early loss after tetraploidization of one of the teleost 3R and salmonid 4R paralogs. Several teleosts including the eels and the piranha have conserved both 3R-paralogs of mtnr1a, mtnr1b, and mtnr1c. Loss of one of the 3R-paralogs depends on the lineage: mtnr1ca was lost in euteleosts whereas mtnr1cb was lost in osteoglossomorphs and several ostariophysians including the zebrafish. We investigated the tissue distribution of mtnr expression in a large range of tissues in medaka. The medaka has conserved the four vertebrate paralogs, and these are expressed in brain and retina, and, differentially, in peripheral tissues. Photoperiod affects mtnr expression levels in a gene-specific and tissue-specific manner. This study provides new insights into the repertoire diversification and functional evolution of the mtnr gene family in vertebrates.
Collapse
|
23
|
Michalec OM, Chang BSW, Lovejoy NR, Lovejoy DA. Corticotropin-Releasing Factor: An Ancient Peptide Family Related to the Secretin Peptide Superfamily. Front Endocrinol (Lausanne) 2020; 11:529. [PMID: 32973673 PMCID: PMC7481443 DOI: 10.3389/fendo.2020.00529] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Accepted: 06/29/2020] [Indexed: 02/05/2023] Open
Abstract
Corticotropin-releasing factor (CRF) is the hypothalamic releasing peptide that regulates the hypothalamic-pituitary-adrenal/inter-renal (HPA/I) axis in vertebrates. Over the last 25 years, there has been considerable discussion on its paralogs genes, urotensin-I/urocortin-1, and urocortins-2 and-3 and their subsequent role in the vertebrate stress response. Phylogenetically, the CRF family of peptides also belong to the diverse assemblage of Secretin- and Calcitonin-based peptides as evidenced by comparative-based studies of both their ligand and G-protein-coupled receptor (GPCR) structures. Despite this, the common origin of this large assemblage of peptides has not been ascertained. An unusual peptide, teneurin-C-terminal associated peptide (TCAP), reported in 2004, comprises the distal extracellular tip of the teneurin transmembrane proteins. Further studies indicated that this teneurin region binds to the latrophilin family of GPCRs. Initially thought to be a member of the Secretin GPCR family, evidence indicates that the latrophilins are a member of the Adhesion family of GPCRs and are related to the common ancestor of both Adhesion and Secretin GPCR families. In this study, we posit that TCAP may be a distantly related ancestor of the CRF-Calcitonin-Secretin peptide family and evolved near the base of metazoan phylogeny.
Collapse
Affiliation(s)
- Ola M Michalec
- Department of Cell and Systems Biology, University of Toronto - St. George Campus, Toronto, ON, Canada
| | - Belinda S W Chang
- Department of Cell and Systems Biology, University of Toronto - St. George Campus, Toronto, ON, Canada
| | - Nathan R Lovejoy
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto - St. George Campus, Toronto, ON, Canada
| |
Collapse
|
24
|
Lovejoy DA, Hogg DW, Dodsworth TL, Jurado FR, Read CC, D'Aquila AL, Barsyte-Lovejoy D. Synthetic Peptides as Therapeutic Agents: Lessons Learned From Evolutionary Ancient Peptides and Their Transit Across Blood-Brain Barriers. Front Endocrinol (Lausanne) 2019; 10:730. [PMID: 31781029 PMCID: PMC6861216 DOI: 10.3389/fendo.2019.00730] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 10/10/2019] [Indexed: 11/18/2022] Open
Abstract
Peptides play a major role in the transmission of information to and from the central nervous system. However, because of their structural complexity, the development of pharmacological peptide-based therapeutics has been challenged by the lack of understanding of endogenous peptide evolution. The teneurin C-terminal associated peptides (TCAP) possess many of the required attributes of a practical peptide therapeutic. TCAPs, associated with the teneurin transmembrane proteins that bind to the latrophilins, members of the Adhesion family of G-protein-coupled receptors (GPCR). Together, this ligand-receptor unit plays an integral role in synaptogenesis, neurological development, and maintenance, and is present in most metazoans. TCAP has structural similarity to corticotropin-releasing factor (CRF), and related peptides, such as calcitonin and the secretin-based peptides and inhibits the (CRF)-associated stress response. Latrophilins are structurally related to the secretin family of GPCRs. TCAP is a soluble peptide that crosses the blood-brain barrier and regulates glucose transport into the brain. We posit that TCAP represents a phylogenetically older peptide system that evolved before the origin of the CRF-calcitonin-secretin clade of peptides and plays a fundamental role in the regulation of cell-to-cell energy homeostasis. Moreover, it may act as a phylogenetically older peptide system that evolved as a natural antagonist to the CRF-mediated stress response. Thus, TCAP's actions on the CNS may provide new insights into the development of peptide therapeutics for the treatment of CNS disorders.
Collapse
Affiliation(s)
- David A. Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Protagenic Therapeutics Inc., New York, NY, United States
| | - David W. Hogg
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Thomas L. Dodsworth
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Fernando R. Jurado
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Casey C. Read
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Andrea L. D'Aquila
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- Department of Pediatrics, University of Alabama, Birmingham, AL, United States
| | | |
Collapse
|
25
|
Araç D, Li J. Teneurin Structure: Splice Variants of a Bacterial Toxin Homolog Specifies Synaptic Connections. Front Neurosci 2019; 13:838. [PMID: 31440135 PMCID: PMC6693077 DOI: 10.3389/fnins.2019.00838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/26/2019] [Indexed: 11/20/2022] Open
Abstract
Teneurins are a conserved family of cell-surface adhesion molecules that mediate cellular communication, and play key roles in embryonic and neural development. Their mechanisms of action remained unclear due in part to their unknown structures. In recent years, the structures of teneurins have been reported at atomic resolutions and revealed a clear homology to bacterial Tc toxins with no similarity to other eukaryotic proteins. Another surprising observation was that alternatively spliced variants of teneurins interact with distinct ligands, and thus specify excitatory vs. inhibitory synapses. In this review, we discuss teneurin structures that together with structure-guided biochemical and functional analyses, provide insights for the mechanisms of trans-cellular communication at the synapse and other cell-cell contact sites.
Collapse
Affiliation(s)
- Demet Araç
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, United States.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, United States
| | - Jingxian Li
- Department of Biochemistry & Molecular Biology, The University of Chicago, Chicago, IL, United States.,Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
26
|
Hogg DW, Husić M, Wosnick D, Dodsworth T, D'Aquila AL, Lovejoy DA. Activity of the Carboxy-Terminal Peptide Region of the Teneurins and Its Role in Neuronal Function and Behavior in Mammals. Front Neurosci 2019; 13:581. [PMID: 31417336 PMCID: PMC6685443 DOI: 10.3389/fnins.2019.00581] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 05/22/2019] [Indexed: 01/08/2023] Open
Abstract
Teneurin C-terminal associated peptides (TCAPs) are an evolutionarily ancient family of 40- to 41-residue bioactive peptides located on the extracellular end of each of the four teneurin transmembrane proteins. TCAP-1 may exist as a tethered peptide at the teneurin-1 carboxy end or as an independent peptide that is either released via post-transcriptional cleavage from its teneurin-1 pro-protein or independently expressed as its own mRNA. In neurons, soluble TCAP-1 acts as a paracrine factor to regulate cellular activity and neuroplastic interactions. In vitro studies indicate that, by itself, synthetic TCAP-1 promotes neuron growth and protects cells from chemical insult. In vivo, TCAP-1 increases hippocampal neuron spine density, reduces stress-induced behavior and ablates cocaine-seeking behaviors. Together, these studies suggest that the physiological effects of TCAP-1 are a result of an inhibition of corticotropin-releasing factor (CRF) activity leading to increased energy production. This hypothesis is supported by in vivo functional positron emissions tomography studies, which demonstrate that TCAP-1 significantly increases glucose uptake in rat brain. Complimentary in vitro studies show that enhanced glucose uptake is the result of TCAP-1-induced insertion of the glucose transporter into the neuronal plasma membrane, leading to increased glucose uptake and ATP production. Interestingly, TCAP-1-mediated glucose uptake occurs through a novel insulin-independent pathway. This review will focus on examining the role of TCAP on neuronal energy metabolism in the central nervous system.
Collapse
Affiliation(s)
- David W Hogg
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Mia Husić
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David Wosnick
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Thomas Dodsworth
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Andrea L D'Aquila
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
27
|
Tessarin GWL, Michalec OM, Torres-da-Silva KR, Da Silva AV, Cruz-Rizzolo RJ, Gonçalves A, Gasparini DC, Horta-Júnior JAC, Ervolino E, Bittencourt JC, Lovejoy DA, Casatti CA. A Putative Role of Teneurin-2 and Its Related Proteins in Astrocytes. Front Neurosci 2019; 13:655. [PMID: 31316338 PMCID: PMC6609321 DOI: 10.3389/fnins.2019.00655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 06/07/2019] [Indexed: 11/13/2022] Open
Abstract
Teneurins are type II transmembrane proteins comprised of four phylogenetically conserved homologs (Ten-1-4) that are highly expressed during neurogenesis. An additional bioactive peptide named teneurin C-terminal-associated peptide (TCAP-1-4) is present at the carboxyl terminal of teneurins. The possible correlation between the Ten/TCAP system and brain injuries has not been explored yet. Thus, this study examined the expression of these proteins in the cerebral cortex after mechanical brain injury. Adult rats were subjected to cerebral cortex injury by needle-insertion lesion and sacrificed at various time points. This was followed by analysis of the lesion area by immunohistochemistry and conventional RT-PCR techniques. Control animals (no brain injury) showed only discrete Ten-2-like immunoreactive pyramidal neurons in the cerebral cortex. In contrast, Ten-2 immunoreactivity was significantly up-regulated in the reactive astrocytes in all brain-injured groups (p < 0.0001) when compared to the control group. Interestingly, reactive astrocytes also showed intense immunoreactivity to LPHN-1, an endogenous receptor for the Ten-2 splice variant named Lasso. Semi-quantitative analysis of Ten-2 and TCAP-2 expression revealed significant increases of both at 48 h, 3 days and 5 days (p < 0.0001) after brain injury compared to the remaining groups. Immortalized cerebellar astrocytes were also evaluated for Ten/TCAP expression and intracellular calcium signaling by fluorescence microscopy after TCAP-1 treatment. Immortalized astrocytes expressed additional Ten/TCAP homologs and exhibited significant increases in intracellular calcium concentrations after TCAP-1 treatment. This study is the first to demonstrate that Ten-2/TCAP-2 and LPHN-1 are upregulated in reactive astrocytes after a mechanical brain injury. Immortalized cerebellar astrocytes expressed Ten/TCAP homologs and TCAP-1 treatment stimulated intracellular calcium signaling. These findings disclose a new functional role of the Ten/TCAP system in astrocytes during tissue repair of the CNS.
Collapse
Affiliation(s)
- Gestter W L Tessarin
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Ola M Michalec
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Kelly R Torres-da-Silva
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - André V Da Silva
- Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil.,School of Medicine, Federal University of Mato Grosso do Sul (UFMS), Três Lagoas, Brazil
| | - Roelf J Cruz-Rizzolo
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Alaide Gonçalves
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Daniele C Gasparini
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - José A C Horta-Júnior
- Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| | - Edilson Ervolino
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil
| | - Jackson C Bittencourt
- Department of Anatomy, Institute of Biomedical Sciences, São Paulo University (USP), São Paulo, Brazil
| | - David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Cláudio A Casatti
- Department of Basic Sciences, School of Dentistry of Araçatuba, São Paulo State University (UNESP), Araçatuba, Brazil.,Department of Anatomy, Institute of Biosciences of Botucatu, São Paulo State University (UNESP), Botucatu, Brazil
| |
Collapse
|
28
|
Burbach JPH, Meijer DH. Latrophilin's Social Protein Network. Front Neurosci 2019; 13:643. [PMID: 31297045 PMCID: PMC6608557 DOI: 10.3389/fnins.2019.00643] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/05/2019] [Indexed: 01/06/2023] Open
Abstract
Latrophilins (LPHNs) are adhesion GPCRs that are originally discovered as spider's toxin receptors, but are now known to be involved in brain development and linked to several neuronal and non-neuronal disorders. Latrophilins act in conjunction with other cell adhesion molecules and may play a leading role in its network organization. Here, we focus on the main protein partners of latrophilins, namely teneurins, FLRTs and contactins and summarize their respective temporal and spatial expression patterns, links to neurodevelopmental disorders as well as their structural characteristics. We discuss how more recent insights into the separate cell biological functions of these proteins shed light on the central role of latrophilins in this network. We postulate that latrophilins control the refinement of synaptic properties of specific subtypes of neurons, requiring discrete combinations of proteins.
Collapse
Affiliation(s)
- J Peter H Burbach
- Department of Translational Neuroscience, UMCU Brain Center, University Medical Center Utrecht, Utrecht, Netherlands
| | - Dimphna H Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, Netherlands
| |
Collapse
|
29
|
Leamey CA, Sawatari A. Teneurins: Mediators of Complex Neural Circuit Assembly in Mammals. Front Neurosci 2019; 13:580. [PMID: 31231187 PMCID: PMC6560073 DOI: 10.3389/fnins.2019.00580] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 05/22/2019] [Indexed: 01/27/2023] Open
Abstract
The teneurins (Ten-m/Odz) are a family of evolutionarily ancient transmembrane molecules whose complex and multi-faceted roles in the generation of mammalian neural circuits are only beginning to be appreciated. In mammals there are four family members (Ten-m1-4). Initial expression studies in vertebrates revealed intriguing expression patterns in interconnected populations of neurons. These observations, together with biochemical and over-expression studies, led to the hypothesis that homophilic interactions between teneurins on afferent and target cells may help to guide the assembly of neural circuits. This review will focus on insights gained on teneurin function in vivo in mammals using mouse knockout models. These studies provide support for the hypothesis that homophilic interactions between teneurin molecules can guide the formation of neural connections with largely consistent results obtained in hippocampal and striatal circuits. Mapping changes obtained in the mouse visual pathway, however, suggest additional roles for these glycoproteins in the formation and specification of circuits which subserve binocular vision.
Collapse
Affiliation(s)
- Catherine A Leamey
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Atomu Sawatari
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
30
|
Sita LV, Diniz GB, Horta-Junior JAC, Casatti CA, Bittencourt JC. Nomenclature and Comparative Morphology of the Teneurin/TCAP/ADGRL Protein Families. Front Neurosci 2019; 13:425. [PMID: 31130838 PMCID: PMC6510184 DOI: 10.3389/fnins.2019.00425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/15/2019] [Indexed: 01/01/2023] Open
Affiliation(s)
- Luciane V. Sita
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giovanne B. Diniz
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - José A. C. Horta-Junior
- Department of Anatomy, Institute of Biosciences, São Paulo State University, São Paulo, Brazil
| | - Claudio A. Casatti
- Department of Basic Sciences, São Paulo State University, São Paulo, Brazil
| | - Jackson C. Bittencourt
- Laboratory of Chemical Neuroanatomy, Department of Anatomy, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Center for Neuroscience and Behavior, Department of Experimental Psychology, Institute of Psychology, University of São Paulo, São Paulo, Brazil
- *Correspondence: Jackson C. Bittencourt,
| |
Collapse
|
31
|
Araç D, Li J. Teneurins and latrophilins: two giants meet at the synapse. Curr Opin Struct Biol 2019; 54:141-151. [PMID: 30952063 DOI: 10.1016/j.sbi.2019.01.028] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/10/2019] [Accepted: 01/22/2019] [Indexed: 12/19/2022]
Abstract
Teneurins and latrophilins are both conserved families of cell adhesion proteins that mediate cellular communication and play critical roles in embryonic and neural development. However, their mechanisms of action remain poorly understood. In the past several years, three-dimensional structures of teneurins and latrophilins have been reported at atomic resolutions and revealed distinct protein folds and unique structural features. In this review, we discuss these structures which, together with structure-guided biochemical and functional analyses, provide hints for the mechanisms of trans-cellular communication at the synapse and other cell-cell contact sites.
Collapse
Affiliation(s)
- Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, IL 60637, USA.
| | - Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, IL 60637, USA
| |
Collapse
|
32
|
Wides R. The Natural History of Teneurins: A Billion Years of Evolution in Three Key Steps. Front Neurosci 2019; 13:109. [PMID: 30930727 PMCID: PMC6428715 DOI: 10.3389/fnins.2019.00109] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/29/2019] [Indexed: 12/14/2022] Open
Abstract
The entire evolutionary history of the animal gene family, Teneurin, can be summed up in three key steps, plus three salient footnotes. In a shared ancestor of all bilaterians, the first step began with gene fusions that created a protein with an amino-terminal intracellular domain bridged via a single transmembrane helix to extracellular EGF-like domains. This first step was completed with a further gene fusion: an additional carboxy-terminal stretch of about 2000 amino acids (aa) was adopted, as-a-whole, from bacteria. The 2000 aa structure in Teneurin was recently solved in three dimensions. The 2000 aa region appears in a number of bacteria, yet was co-opted solely into Teneurin, and into no other eukaryotic proteins. Outside of bilaterian animals, no Teneurins exist, with a “Monosiga brevicollis caveat” brought below, as ‘the third footnote.” Subsequent to the “urTeneurin’s” genesis-by-fusions, all bilaterians bore a single Teneurin gene, always encoding an extraordinarily conserved Type II transmembrane protein with invariant domain content and order. The second key step was a duplication that led to an exception to singleton Teneurin genomes. A pair of Teneurin paralogs, Ten-a and Ten-m, are found in representatives of all four Arthropod sub-phyla, in: insects, crustaceans, myriapods, and chelicerates. In contrast, in every other protostome species’ genome, including those of all non-Arthropod ecdysozoan phyla, only a single Teneurin gene occurs. The closest, sister, phylum of arthropods, the Onychophorans (velvet worms), bear a singleton Teneurin. Ten-a and Ten-m therefore arose from a duplication in an urArthropod only after Arthropods split from Onychophorans, but before the splits that led to the four Arthropod sub-phyla. The third key step was a quadruplication of Teneurins at the root of vertebrate radiation. Four Teneurin paralogs (Teneurins 1 through 4) arose first by a duplication of a single chordate gene likely leading to one 1/4–type gene, and one 2/3-type gene: the two copies found in extant jawless vertebrates. Relatively soon thereafter, a second duplication round yielded the -1, -2, -3, and -4 paralog types now found in all jawed vertebrates, from sharks to humans. It is possible to assert that these duplication events correlate well to the Ohno hypothesized 2R (two round) vertebrate whole genome duplication (WGD), as refined in more recent treatments. The quadruplication can therefore be placed at approximately 400 Myr ago. Echinoderms, hemichordates, cephalochordates, and urochordates have only a single copy of Teneurin in their genomes. These deuterostomes and non-vertebrate chordates provide the anchor showing that the quadruplication happened at the root of vertebrates. A first footnote must be brought concerning some of the ‘invertebrate’ relatives of vertebrates, among Deuterostomes. A family of genes that encode 7000 aa proteins was derived from, but is distinct from, the Teneurin family. This distinct family arose early in deuterostomes, yet persists today only in hemichordate and cephalochordate genomes. They are named here TRIPs (Teneurin-related immense proteins). As a second of three ‘footnotes’: a limited number of species exist with additional Teneurin gene copies. However, these further duplications of Teneurins occur for paralog types (a, m, or 1–4) only in specific lineages within Arthropods or Vertebrates. All examples are paralog duplications that evidently arose in association with lineage specific WGDs. The increased Teneurin paralog numbers correlate with WGDs known and published in bony fish, Xenopus, plus select Chelicerates lineages and Crustaceans. The third footnote, alluded to above, is that a Teneurin occurs in one unicellular species: Monosiga brevicollis. Teneurins are solely a metazoan, bilaterian-specific family, to the exclusion of the Kingdoms of prokaryotes, plants, fungi, and protists. The single exception occurs among the unicellular, opisthokont, closest relatives of metazoans, the choanoflagellates. There is a Teneurin in Monosiga brevicollis, one species of the two fully sequenced choanoflagellate species. In contrast, outside of triploblast-bilaterians, there are no Teneurins in any diploblast genomes, including even sponges – those metazoans closest to choanoflagellates. Perhaps the ‘birth’ of the original Teneurin occurred in a shared ancestor of M. brevicollis and metazoans, then was lost in M. brevicollis’ sister species, and was serially and repeatedly lost in all diploblast metazoans. Alternatively, and as favored above, it first arose in the ‘urBilaterian,’ then was subsequently acquired from some bilaterian via horizontal transfer by a single choanoflagellate clade. The functional partnership of Teneurins and Latrophilins was discovered in rodents through the LPH1-TENM2 interaction. Recent work extends this to further members of each family. Surveying when the interacting domains of Teneurins and Latrophilins co-exist within different organisms can give an indication of how widespread their functional cooperation might be, across bilaterians. Paralog number for the two families is relatively correlated among bilaterians, and paralog numbers underwent co-increase in the WGDs mentioned above. With co-increasing paralog numbers, the possible combinatorial pairs grow factorially. This should have a significant impact for increasing nervous system complexity. The 3 key events in the ‘natural history’ of the Teneurins and their Latrophilin partners coincide with the ascendance of particularly successful metazoan clades: bilaterians; arthropods; and vertebrates. Perhaps we can attribute some of this success to the unique Teneurin family, and to its partnership with Latrophilins.
Collapse
Affiliation(s)
- Ron Wides
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan, Israel
| |
Collapse
|
33
|
Jackson VA, Busby JN, Janssen BJC, Lott JS, Seiradake E. Teneurin Structures Are Composed of Ancient Bacterial Protein Domains. Front Neurosci 2019; 13:183. [PMID: 30930731 PMCID: PMC6425310 DOI: 10.3389/fnins.2019.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 02/15/2019] [Indexed: 11/16/2022] Open
Abstract
Pioneering bioinformatic analysis using sequence data revealed that teneurins evolved from bacterial tyrosine-aspartate (YD)-repeat protein precursors. Here, we discuss how structures of the C-terminal domain of teneurins, determined using X-ray crystallography and electron microscopy, support the earlier findings on the proteins’ ancestry. This chapter describes the structure of the teneurin scaffold with reference to a large family of teneurin-like proteins that are widespread in modern prokaryotes. The central scaffold of modern eukaryotic teneurins is decorated by additional domains typically found in bacteria, which are re-purposed in eukaryotes to generate highly multifunctional receptors. We discuss how alternative splicing contributed to further diversifying teneurin structure and thereby function. This chapter traces the evolution of teneurins from a structural point of view and presents the state-of-the-art of how teneurin function is encoded by its specific structural features.
Collapse
Affiliation(s)
| | - Jason N Busby
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, Utrecht, Netherlands
| | - J Shaun Lott
- School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Elena Seiradake
- Department of Biochemistry, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
34
|
Cheung A, Trevers KE, Reyes-Corral M, Antinucci P, Hindges R. Expression and Roles of Teneurins in Zebrafish. Front Neurosci 2019; 13:158. [PMID: 30914911 PMCID: PMC6423166 DOI: 10.3389/fnins.2019.00158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 02/12/2019] [Indexed: 12/21/2022] Open
Abstract
The teneurins, also known as Ten-m/Odz, are highly conserved type II transmembrane glycoproteins widely expressed throughout the nervous system. Functioning as dimers, these large cell-surface adhesion proteins play a key role in regulating neurodevelopmental processes such as axon targeting, synaptogenesis and neuronal wiring. Synaptic specificity is driven by molecular interactions, which can occur either in a trans-homophilic manner between teneurins or through a trans-heterophilic interaction across the synaptic cleft between teneurins and other cell-adhesion molecules, such as latrophilins. The significance of teneurins interactions during development is reflected in the widespread expression pattern of the four existing paralogs across interconnected regions of the nervous system, which we demonstrate here via in situ hybridization and the generation of transgenic BAC reporter lines in zebrafish. Focusing on the visual system, we will also highlight the recent developments that have been made in furthering our understanding of teneurin interactions and their functionality, including the instructive role of teneurin-3 in specifying the functional wiring of distinct amacrine and retinal ganglion cells in the vertebrate visual system underlying a particular functionality. Based on the distinct expression pattern of all teneurins in different retinal cells, it is conceivable that the combination of different teneurins is crucial for the generation of discrete visual circuits. Finally, mutations in all four human teneurin genes have been linked to several types of neurodevelopmental disorders. The opportunity therefore arises that findings about the roles of zebrafish teneurins or their orthologs in other species shed light on the molecular mechanisms in the etiology of such human disorders.
Collapse
Affiliation(s)
- Angela Cheung
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Katherine E Trevers
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| | - Marta Reyes-Corral
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Paride Antinucci
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom
| | - Robert Hindges
- Centre for Developmental Neurobiology, King's College London, London, United Kingdom.,MRC Centre for Neurodevelopmental Disorders, King's College London, London, United Kingdom
| |
Collapse
|
35
|
Schöneberg T, Prömel S. Latrophilins and Teneurins in Invertebrates: No Love for Each Other? Front Neurosci 2019; 13:154. [PMID: 30914910 PMCID: PMC6422961 DOI: 10.3389/fnins.2019.00154] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 02/11/2019] [Indexed: 01/08/2023] Open
Abstract
Transsynaptic connections enabling cell–cell adhesion and cellular communication are a vital part of synapse formation, maintenance and function. A recently discovered interaction between the Adhesion GPCRs Latrophilins and the type II single transmembrane proteins Teneurins at mammalian synapses is vital for synapse formation and dendrite branching. While the understanding of the effects and the molecular interplay of this Latrophilin-Teneurin partnership is not entirely understood, its significance is highlighted by behavioral and neurological phenotypes in various animal models. As both groups of molecules, Latrophilins and Teneurins, are generally highly conserved, have overlapping expression and often similar functions across phyla, it can be speculated that this interaction, which has been proven essential in mammalian systems, also occurs in invertebrates to control shaping of synapses. Knowledge of the generality of this interaction is especially of interest due to its possible involvement in neuropathologies. Further, several invertebrates serve as model organisms for addressing various neurobiological research questions. So far, an interaction of Latrophilins and Teneurins has not been observed in invertebrates, but our knowledge on both groups of molecules is by far not complete. In this review, we give an overview on existing experimental evidence arguing for as well as against a potential Latrophilin-Teneurin interaction beyond mammals. By combining these insights with evolutionary aspects on each of the interaction partners we provide and discuss a comprehensive picture on the functions of both molecules in invertebrates and the likeliness of an evolutionary conservation of their interaction.
Collapse
Affiliation(s)
- Torsten Schöneberg
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| | - Simone Prömel
- Medical Faculty, Rudolf Schönheimer Institute of Biochemistry, Leipzig University, Leipzig, Germany
| |
Collapse
|
36
|
Topf U, Drabikowski K. Ancient Function of Teneurins in Tissue Organization and Neuronal Guidance in the Nematode Caenorhabditis elegans. Front Neurosci 2019; 13:205. [PMID: 30906249 PMCID: PMC6418043 DOI: 10.3389/fnins.2019.00205] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 02/22/2019] [Indexed: 01/04/2023] Open
Abstract
The nematode Caenorhabditis elegans expresses the ten-1 gene that encodes teneurin. TEN-1 protein is expressed throughout the life of C. elegans. The loss of ten-1 function results in embryonic and larval lethality, highlighting its importance for fundamental processes during development. TEN-1 is expressed in the epidermis and neurons. Defects in neuronal pathfinding and epidermal closure are characteristic of ten-1 loss-of-function mutations. The molecular mechanisms of TEN-1 function in neurite outgrowth, neuronal pathfinding, and dendritic morphology in C. elegans are largely unknown. Its genetic redundancy with the extracellular matrix receptors integrin and dystroglycan and genetic interactions with several basement membrane components suggest a role for TEN-1 in the maintenance of basement membrane integrity, which is essential for neuronal guidance. Identification of the lat-1 gene in C. elegans, which encodes latrophilin, as an interaction partner of ten-1 provides further mechanistic insights into TEN-1 function in neuronal development. However, receptor-ligand interactions between LAT-1 and TEN-1 remain to be experimentally proven. The present review discusses the function of teneurin in C. elegans, with a focus on its involvement in the formation of receptor signaling complexes and neuronal networks.
Collapse
Affiliation(s)
- Ulrike Topf
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - Krzysztof Drabikowski
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
37
|
Reid RM, Freij KW, Maples JC, Biga PR. Teneurins and Teneurin C-Terminal Associated Peptide (TCAP) in Metabolism: What's Known in Fish? Front Neurosci 2019; 13:177. [PMID: 30890915 PMCID: PMC6411802 DOI: 10.3389/fnins.2019.00177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 02/14/2019] [Indexed: 11/13/2022] Open
Abstract
Teneurins have well established roles in function and maintenance of the central nervous systems of vertebrates. In addition, teneurin c-terminal associated peptide (TCAP), a bioactive peptide found on the c-terminal portion of teneurins, has been shown to regulate glucose metabolism. Although, the majority of research conducted on the actions of teneurins and TCAPs has strictly focused on neurological systems in rodents, TCAP was first identified in rainbow trout after screening trout hypothalamic cDNA. This suggests a conserved functional role of TCAP across vertebrates, however, the current depth of literature on teneurins and TCAPs in fish is limited. In addition, the overall function of TCAP in regulating metabolism is unclear. This review will highlight work that has been conducted specifically in fish species in relation to the teneurin system and metabolism in order to identify areas of research that are needed for future work.
Collapse
Affiliation(s)
| | | | | | - Peggy R. Biga
- Department of Biology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
38
|
Li J, Shalev-Benami M, Sando R, Jiang X, Kibrom A, Wang J, Leon K, Katanski C, Nazarko O, Lu YC, Südhof TC, Skiniotis G, Araç D. Structural Basis for Teneurin Function in Circuit-Wiring: A Toxin Motif at the Synapse. Cell 2019; 173:735-748.e15. [PMID: 29677516 DOI: 10.1016/j.cell.2018.03.036] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Revised: 02/14/2018] [Accepted: 03/15/2018] [Indexed: 11/28/2022]
Abstract
Teneurins (TENs) are cell-surface adhesion proteins with critical roles in tissue development and axon guidance. Here, we report the 3.1-Å cryoelectron microscopy structure of the human TEN2 extracellular region (ECR), revealing a striking similarity to bacterial Tc-toxins. The ECR includes a large β barrel that partially encapsulates a C-terminal domain, which emerges to the solvent through an opening in the mid-barrel region. An immunoglobulin (Ig)-like domain seals the bottom of the barrel while a β propeller is attached in a perpendicular orientation. We further show that an alternatively spliced region within the β propeller acts as a switch to regulate trans-cellular adhesion of TEN2 to latrophilin (LPHN), a transmembrane receptor known to mediate critical functions in the central nervous system. One splice variant activates trans-cellular signaling in a LPHN-dependent manner, whereas the other induces inhibitory postsynaptic differentiation. These results highlight the unusual structural organization of TENs giving rise to their multifarious functions.
Collapse
Affiliation(s)
- Jingxian Li
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Moran Shalev-Benami
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA
| | - Richard Sando
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Xian Jiang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Amanuel Kibrom
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Jie Wang
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Katherine Leon
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Christopher Katanski
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Olha Nazarko
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Yue C Lu
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Thomas C Südhof
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA.
| | - Georgios Skiniotis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA 94305, USA; Department of Structural Biology, Stanford University, Stanford, CA 94305, USA.
| | - Demet Araç
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute for Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
39
|
Husić M, Barsyte-Lovejoy D, Lovejoy DA. Teneurin C-Terminal Associated Peptide (TCAP)-1 and Latrophilin Interaction in HEK293 Cells: Evidence for Modulation of Intercellular Adhesion. Front Endocrinol (Lausanne) 2019; 10:22. [PMID: 30774623 PMCID: PMC6367273 DOI: 10.3389/fendo.2019.00022] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 01/14/2019] [Indexed: 11/24/2022] Open
Abstract
The teneurins are a family of four transmembrane proteins essential to intercellular adhesion processes, and are required for the development and maintenance of tissues. The Adhesion G protein-coupled receptor (GPCR) subclass latrophilins (ADGRL), or simply the latrophilins (LPHN), are putative receptors of the teneurins and act, in part, to mediate intercellular adhesion via binding with the teneurin extracellular region. At the distal tip of the extracellular region of each teneurin lies a peptide sequence termed the teneurin C-terminal associated peptide (TCAP). TCAP-1, associated with teneurin-1, is itself bioactive, suggesting that TCAP is a critical functional region of teneurin. However, the role of TCAP-1 has not been established with respect to its ability to interact with LPHN to induce downstream effects. To establish that TCAP-1 binds to LPHN1, a FLAG-tagged hormone binding domain (HBD) of LPHN1 and a GFP-tagged TCAP-1 peptide were co-expressed in HEK293 cells. Both immunoreactive epitopes were co-localized as a single band after immunoprecipitation, indicating an association between the two proteins. Moreover, fluorescent co-labeling occurred at the plasma membrane of LPHN1 over-expressing cells when treated with a FITC-tagged TCAP-1 variant. Expression of LPHN1 and treatment with TCAP-1 modulated the actin-based cytoskeleton in these cells in a manner consistent with previously reported actions of TCAP-1 and affected the overall morphology and aggregation of the cells. This study indicates that TCAP-1 may associate directly with LPHN1 and could play a role in the modulation of cytoskeletal organization and intercellular adhesion and aggregation via this interaction.
Collapse
Affiliation(s)
- Mia Husić
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | | | - David A. Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
- *Correspondence: David A. Lovejoy
| |
Collapse
|
40
|
Tucker RP. Teneurins: Domain Architecture, Evolutionary Origins, and Patterns of Expression. Front Neurosci 2018; 12:938. [PMID: 30618567 PMCID: PMC6297184 DOI: 10.3389/fnins.2018.00938] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 11/28/2018] [Indexed: 12/24/2022] Open
Abstract
Disruption of teneurin expression results in abnormal neural networks, but just how teneurins support the development of the central nervous system remains an area of active research. This review summarizes some of what we know about the functions of the various domains of teneurins, the possible evolution of teneurins from a bacterial toxin, and the intriguing patterns of teneurin expression. Teneurins are a family of type-2 transmembrane proteins. The N-terminal intracellular domain can be processed and localized to the nucleus, but the significance of this nuclear localization is unknown. The extracellular domain of teneurins is largely composed of tyrosine-aspartic acid repeats that fold into a hollow barrel, and the C-terminal domains of teneurins are stuffed, and least partly, into the barrel. A 6-bladed beta-propeller is found at the other end of the barrel. The same arrangement-6-bladed beta-propeller, tyrosine-aspartic acid repeat barrel, and the C-terminal domain inside the barrel-is seen in toxic proteins from bacteria, and there is evidence that teneurins may have evolved from a gene encoding a prokaryotic toxin via horizontal gene transfer into an ancestral choanoflagellate. Patterns of teneurin expression are often, but not always, complementary. In the central nervous system, where teneurins are best studied, interconnected populations of neurons often express the same teneurin. For example, in the chicken embryo neurons forming the tectofugal pathway express teneurin-1, whereas neurons forming the thalamofugal pathway express teneurin-2. In Drosophila melanogaster, Caenorhabditis elegans, zebrafish and mice, misexpression or knocking out teneurin expression leads to abnormal connections in the neural networks that normally express the relevant teneurin. Teneurins are also expressed in non-neuronal tissue during development, and in at least some regions the patterns of non-neuronal expression are also complementary. The function of teneurins outside the nervous system remains unclear.
Collapse
Affiliation(s)
- Richard P. Tucker
- Department of Cell Biology and Human Anatomy, University of California at Davis, Davis, CA, United States
| |
Collapse
|
41
|
Rebolledo-Jaramillo B, Ziegler A. Teneurins: An Integrative Molecular, Functional, and Biomedical Overview of Their Role in Cancer. Front Neurosci 2018; 12:937. [PMID: 30618566 PMCID: PMC6297388 DOI: 10.3389/fnins.2018.00937] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 11/28/2018] [Indexed: 12/16/2022] Open
Abstract
Teneurins are large transmembrane proteins originally identified in Drosophila. Their essential role in development of the central nervous system is conserved throughout species, and evidence supports their involvement in organogenesis of additional tissues. Homophilic and heterophilic interactions between Teneurin paralogues mediate cellular adhesion in crucial processes such as neuronal pathfinding and synaptic organization. At the molecular level, Teneurins are proteolytically processed into distinct subdomains that have been implicated in extracellular and intracellular signaling, and in transcriptional regulation. Phylogenetic studies have shown a high degree of intra- and interspecies conservation of Teneurin genes. Accordingly, the occurrence of genetic variants has been associated with functional and phenotypic alterations in experimental systems, and with some inherited or sporadic conditions. Recently, tumor-related variations in Teneurin gene expression have been associated with patient survival in different cancers. Although these findings were incidental and molecular mechanisms were not addressed, they suggested a potential utility of Teneurin transcript levels as biomarkers for disease prognosis. Mutations and chromosomal alterations affecting Teneurin genes have been found occasionally in tumors, but literature remains scarce. The analysis of open-access molecular and clinical datasets derived from large oncologic cohorts provides an invaluable resource for the identification of additional somatic mutations. However, Teneurin variants have not been classified in terms of pathogenic risk and their phenotypic impact remains unknown. On this basis, is it plausible to hypothesize that Teneurins play a role in carcinogenesis? Does current evidence support a tumor suppressive or rather oncogenic function for these proteins? Here, we comprehensively discuss available literature with integration of molecular evidence retrieved from open-access databases. We show that Teneurins undergo somatic changes comparable to those of well-established cancer genes, and discuss their involvement in cancer-related signaling pathways. Current data strongly suggest a functional contribution of Teneurins to human carcinogenesis.
Collapse
Affiliation(s)
| | - Annemarie Ziegler
- Center for Genetics and Genomics, Facultad de Medicina, Clínica Alemana Universidad del Desarrollo, Santiago, Chile
| |
Collapse
|
42
|
Hogg DW, Chen Y, D'Aquila AL, Xu M, Husić M, Tan LA, Bull C, Lovejoy DA. A novel role of the corticotrophin-releasing hormone regulating peptide, teneurin C-terminal associated peptide 1, on glucose uptake into the brain. J Neuroendocrinol 2018; 30:e12579. [PMID: 29411913 DOI: 10.1111/jne.12579] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 01/11/2018] [Accepted: 01/31/2018] [Indexed: 02/06/2023]
Abstract
Teneurin C-terminal associated peptide (TCAP) is an ancient paracrine signalling agent that evolved via lateral gene transfer from prokaryotes into an early metazoan ancestor. Although it bears structural similarity to corticotrophin-releasing hormone (CRH), it inhibits the in vivo actions of CRH. The TCAPs are highly expressed in neurones, where they induce rapid cytoskeletal rearrangement and are neuroprotective. Because these processes are highly energy-dependent, this suggests that TCAP has the potential to regulate glucose uptake because glucose is the primary energy substrate in brain, and neurones require a steady supply to meet the high metabolic demands of neuronal communication. Therefore, the objective of the present study was to assess the effect of TCAP-mediated glucose uptake in the brain and in neuronal cell models. TCAP-mediated 18 F-deoxyglucose (FDG) uptake into brain tissue was assessed in male wild-type Wistar rats by functional positron emission tomography. TCAP-1 increased FDG uptake by over 40% into cortical regions of the brain, demonstrating that TCAP-1 can significantly enhance glucose supply. Importantly, a single nanomolar injection of TCAP-1 increased brain glucose after 3 days and decreased blood glucose after 1 week. This is corroborated by a decreased serum concentration of insulin and an increased serum concentration of glucagon. In immortalised hypothalamic neurones, TCAP-1 increased ATP production and enhanced glucose uptake by increasing glucose transporter recruitment to the plasma membrane likely via AKT and mitogen-activated protein kinase/ERK phosphorylation events. Taken together, these data demonstrate that TCAP-1 increases glucose metabolism in neurones, and may represent a peptide signalling agent that regulated glucose uptake before insulin and related peptides.
Collapse
Affiliation(s)
- D W Hogg
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - Y Chen
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - A L D'Aquila
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - M Xu
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - M Husić
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - L A Tan
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| | - C Bull
- Molecular Imaging Inc., Ann Arbor, MI, USA
| | - D A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
43
|
Ferralli J, Tucker RP, Chiquet-Ehrismann R. The teneurin C-terminal domain possesses nuclease activity and is apoptogenic. Biol Open 2018; 7:7/3/bio031765. [PMID: 29555638 PMCID: PMC5898268 DOI: 10.1242/bio.031765] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Teneurins are type 2 transmembrane proteins expressed by developing neurons during periods of synaptogenesis and apoptosis. Neurons expressing teneurin-1 synapse with other teneurin-1-expressing neurons, and neurons expressing teneurin-2 synapse with other teneurin-2-expressing neurons. Knockdowns and mutations of teneurins lead to abnormal neuronal connections, but the mechanisms underlying teneurin action remain unknown. Teneurins appear to have evolved via horizontal gene transfer from prokaryotic proteins involved in bacterial self-recognition. The bacterial teneurin-like proteins contain a cytotoxic C-terminal domain that is encapsulated in a tyrosine-aspartic acid repeat barrel. Teneurins are likely to be organized in the same way, but it is unclear if the C-terminal domains of teneurins have cytotoxic properties. Here we show that expression of teneurin C-terminal domains or the addition of purified teneurin C-terminal domains leads to an increase in apoptosis in vitro. The C-terminal domains of teneurins are most similar to bacterial nucleases, and purified C-terminal domains of teneurins linearize pcDNA3 and hydrolyze mitochondrial DNA. We hypothesize that yet to be identified stimuli lead to the release of the encapsulated teneurin C-terminal domain into the intersynaptic region, resulting in programmed cell death or the disruption of mitochondrial DNA and the subsequent pruning of inappropriate contacts. Summary: Teneurins are transmembrane proteins found in the developing nervous system that are related to bacterial toxins. Teneurins also have cytotoxic properties that may help regulate apoptosis or pruning.
Collapse
Affiliation(s)
- Jacqueline Ferralli
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel CH-4058, Switzerland
| | - Richard P Tucker
- Department of Cell Biology and Human Anatomy, University of California, Davis, California 95616-8643, United States of America
| | - Ruth Chiquet-Ehrismann
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel CH-4058, Switzerland.,Faculty of Science, University of Basel, Basel CH-4056, Switzerland
| |
Collapse
|
44
|
Jackson VA, Meijer DH, Carrasquero M, van Bezouwen LS, Lowe ED, Kleanthous C, Janssen BJC, Seiradake E. Structures of Teneurin adhesion receptors reveal an ancient fold for cell-cell interaction. Nat Commun 2018. [PMID: 29540701 PMCID: PMC5851990 DOI: 10.1038/s41467-018-03460-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Teneurins are ancient cell–cell adhesion receptors that are vital for brain development and synapse organisation. They originated in early metazoan evolution through a horizontal gene transfer event when a bacterial YD-repeat toxin fused to a eukaryotic receptor. We present X-ray crystallography and cryo-EM structures of two Teneurins, revealing a ~200 kDa extracellular super-fold in which eight sub-domains form an intricate structure centred on a spiralling YD-repeat shell. An alternatively spliced loop, which is implicated in homophilic Teneurin interaction and specificity, is exposed and thus poised for interaction. The N-terminal side of the shell is ‘plugged’ via a fibronectin-plug domain combination, which defines a new class of YD proteins. Unexpectedly, we find that these proteins are widespread amongst modern bacteria, suggesting early metazoan receptor evolution from a distinct class of proteins, which today includes both bacterial proteins and eukaryotic Teneurins. Teneurins are cell-cell adhesion receptors that evolved through horizontal gene transfer in which a bacterial YD-repeat protein fused to a eukaryotic receptor. Here the authors present crystallographic and cryo-EM structures of two Teneurins, revealing an ancient YD-repeat protein super-fold.
Collapse
Affiliation(s)
- Verity A Jackson
- Department of Biochemistry, Oxford University, OX1 3QU, Oxford, UK.
| | - Dimphna H Meijer
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | | | - Laura S van Bezouwen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands.,Cryo-electron Microscopy, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Edward D Lowe
- Department of Biochemistry, Oxford University, OX1 3QU, Oxford, UK
| | - Colin Kleanthous
- Department of Biochemistry, Oxford University, OX1 3QU, Oxford, UK
| | - Bert J C Janssen
- Crystal and Structural Chemistry, Bijvoet Center for Biomolecular Research, Faculty of Science, Utrecht University, 3584 CH, Utrecht, The Netherlands
| | - Elena Seiradake
- Department of Biochemistry, Oxford University, OX1 3QU, Oxford, UK.
| |
Collapse
|
45
|
Berns DS, DeNardo LA, Pederick DT, Luo L. Teneurin-3 controls topographic circuit assembly in the hippocampus. Nature 2018; 554:328-333. [PMID: 29414938 PMCID: PMC7282895 DOI: 10.1038/nature25463] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Accepted: 12/19/2017] [Indexed: 12/28/2022]
Abstract
Brain functions rely on specific patterns of connectivity. Teneurins are evolutionarily conserved transmembrane proteins that instruct synaptic partner matching in Drosophila and are required for vertebrate visual system development. The roles of vertebrate teneurins in connectivity beyond the visual system remain largely unknown and their mechanisms of action have not been demonstrated. Here we show that mouse teneurin-3 is expressed in multiple topographically interconnected areas of the hippocampal region, including proximal CA1, distal subiculum, and medial entorhinal cortex. Viral-genetic analyses reveal that teneurin-3 is required in both CA1 and subicular neurons for the precise targeting of proximal CA1 axons to distal subiculum. Furthermore, teneurin-3 promotes homophilic adhesion in vitro in a splicing isoform-dependent manner. These findings demonstrate striking genetic heterogeneity across multiple hippocampal areas and suggest that teneurin-3 may orchestrate the assembly of a complex distributed circuit in the mammalian brain via matching expression and homophilic attraction.
Collapse
Affiliation(s)
- Dominic S Berns
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
- Neurosciences Graduate Program, Stanford University, Stanford, California 94305, USA
| | - Laura A DeNardo
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Daniel T Pederick
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | - Liqun Luo
- Howard Hughes Medical Institute, Stanford University, Stanford, California 94305, USA
- Department of Biology, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
46
|
Glendining KA, Liu SC, Nguyen M, Dharmaratne N, Nagarajah R, Iglesias MA, Sawatari A, Leamey CA. Downstream mediators of Ten-m3 signalling in the developing visual pathway. BMC Neurosci 2017; 18:78. [PMID: 29207951 PMCID: PMC5718065 DOI: 10.1186/s12868-017-0397-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 11/28/2017] [Indexed: 11/14/2022] Open
Abstract
Background The formation of visuotopically-aligned projections in the brain is required for the generation of functional binocular circuits. The mechanisms which underlie this process are unknown. Ten-m3 is expressed in a broad high-ventral to low-dorsal gradient across the retina and in topographically-corresponding gradients in primary visual centres. Deletion of Ten-m3 causes profound disruption of binocular visual alignment and function. Surprisingly, one of the most apparent neuroanatomical changes—dramatic mismapping of ipsilateral, but not contralateral, retinal axons along the representation of the nasotemporal retinal axis—does not correlate well with Ten-m3’s expression pattern, raising questions regarding mechanism. The aim of this study was to further our understanding of the molecular interactions which enable the formation of functional binocular visual circuits. Methods Anterograde tracing, gene expression studies and protein pull-down experiments were performed. Statistical significance was tested using a Kolmogorov–Smirnov test, pairwise-fixed random reallocation tests and univariate ANOVAs. Results We show that the ipsilateral retinal axons in Ten-m3 knockout mice are mismapped as a consequence of early axonal guidance defects. The aberrant invasion of the ventral-most region of the dorsal lateral geniculate nucleus by ipsilateral retinal axons in Ten-m3 knockouts suggested changes in the expression of other axonal guidance molecules, particularly members of the EphA–ephrinA family. We identified a consistent down-regulation of EphA7, but none of the other EphA–ephrinA genes tested, as well as an up-regulation of ipsilateral-determinants Zic2 and EphB1 in visual structures. We also found that Zic2 binds specifically to the intracellular domain of Ten-m3 in vitro. Conclusion Our findings suggest that Zic2, EphB1 and EphA7 molecules may work as effectors of Ten-m3 signalling, acting together to enable the wiring of functional binocular visual circuits. Electronic supplementary material The online version of this article (10.1186/s12868-017-0397-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kelly A Glendining
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Sam C Liu
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Marvin Nguyen
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Nuwan Dharmaratne
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Rajini Nagarajah
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Miguel A Iglesias
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Atomu Sawatari
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia
| | - Catherine A Leamey
- Discipline of Physiology, School of Medical Sciences and Bosch Institute, F13, University of Sydney, Sydney, NSW, 2006, Australia.
| |
Collapse
|
47
|
Torres-da-Silva KR, Tessarin GWL, Dias CA, Guiati IZ, Ervolino E, Gonçalves A, Beneti IM, Lovejoy DA, Casatti CA. Teneurin-2 presence in rat and human odontoblasts. PLoS One 2017; 12:e0184794. [PMID: 28926618 PMCID: PMC5604987 DOI: 10.1371/journal.pone.0184794] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Accepted: 08/31/2017] [Indexed: 01/04/2023] Open
Abstract
Teneurins are transmembrane proteins consisting of four paralogues (Ten-1-4), notably expressed in the central nervous system during development. All teneurins contain a bioactive peptide in their carboxyl terminal named teneurin C-terminal associated peptide (TCAP). The present study analyzed the detailed distribution of teneurin-2-like immunoreactive (Ten-2-LI) cells in developing and mature rat molar teeth, as well as in mature human dental pulps. Ten-2 and TCAP-2 genic expressions were also evaluated in rat and human dental pulps. Finally, Ten-2-LI cells were analyzed during the repair process after dentin-pulp complex injury in rat lower molar teeth. For this, histological sections of rat molar teeth and human dental pulps were submitted to immunohistochemical techniques, while total RNA from developing rat teeth and mature human dental pulps were submitted to conventional RT-PCR. Ten-2-LI cells were evident in the initial bell stage of rat molar teeth development, especially in ectomesenchymal cells of the dental papilla. Ten-2-LI odontoblasts showed strong immunoreactivity in rat and human mature teeth. Ten-2 and TCAP-2 genic expressions were confirmed in rat and human dental pulps. Dentin-pulp complex injury resulted in a decrease of Ten-2-LI odontoblasts after traumatic injury. Interestingly, Ten-2-LI cells were also evident in the pulp cell-rich zone in all postoperative days. In conclusion, Ten-2-LI presence in rat and human odontoblasts was demonstrated for the first time and Ten-2/TCAP-2 genic expressions were confirmed in rat and human dental pulps. Furthermore, it was revealed that Ten-2-LI rat odontoblasts can be modulated during the regenerative process.
Collapse
Affiliation(s)
- K. R. Torres-da-Silva
- Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - G. W. L. Tessarin
- Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
| | - C. A. Dias
- Basic Sciences Department, School of Dentistry of Araçatuba, São Paulo State University, Araçatuba, São Paulo, Brazil
- Restorative Dentistry Department, School of Dentistry of Araçatuba, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - I. Z. Guiati
- Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- Basic Sciences Department, School of Dentistry of Araçatuba, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - E. Ervolino
- Basic Sciences Department, School of Dentistry of Araçatuba, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - A. Gonçalves
- Basic Sciences Department, School of Dentistry of Araçatuba, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - I. M. Beneti
- Department of Surgery and Integrated Clinic, School of Dentistry of Araçatuba, São Paulo State University, Araçatuba, São Paulo, Brazil
| | - D. A. Lovejoy
- Cell and Systems Biology Department, University of Toronto, Toronto, Ontario, Canada
| | - C. A. Casatti
- Institute of Biosciences of Botucatu, São Paulo State University, Botucatu, São Paulo, Brazil
- Basic Sciences Department, School of Dentistry of Araçatuba, São Paulo State University, Araçatuba, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
48
|
Faissner A, Roll L, Theocharidis U. Tenascin-C in the matrisome of neural stem and progenitor cells. Mol Cell Neurosci 2017; 81:22-31. [DOI: 10.1016/j.mcn.2016.11.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 11/03/2016] [Accepted: 11/07/2016] [Indexed: 01/16/2023] Open
|
49
|
D'Aquila AL, Hsieh AHR, Hsieh AHM, De Almeida R, Lovejoy SR, Lovejoy DA. Expression and actions of corticotropin-releasing factor/diuretic hormone-like peptide (CDLP) and teneurin C-terminal associated peptide (TCAP) in the vase tunicate, Ciona intestinalis: Antagonism of the feeding response. Gen Comp Endocrinol 2017; 246:105-115. [PMID: 27292788 DOI: 10.1016/j.ygcen.2016.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 05/24/2016] [Accepted: 06/08/2016] [Indexed: 11/19/2022]
Abstract
Teneurin C-terminal associated peptide (TCAP) is a neuropeptide that bears some structural similarity to the corticotropin-releasing factor (CRF) family of peptides. TCAP and CRF are both implicated in the regulation of stress-related behaviors, as established in rodent models. However, in vertebrates, both TCAP and CRF possess three additional paralogous forms making vertebrate models difficult to assess with respect to TCAP-CRF interaction. As a urochordate, this species possesses single homologs of TCAP and of a CRF/Diuretic-like peptide (CDLP) in the genome, thereby establishing Ciona intestinalis as an excellent model organism to examine the interaction of these peptide systems. However, the lack of C. intestinalis synthetic peptides and specific antisera has complicated experimentation. We, therefore, prepared synthetic versions of CDLP and TCAP to prepare specific antisera and to investigate their bioactivity in this species. To analyze stress-related behaviors, a novel behavioral assay was used to characterize different types of contraction-based behaviors, using buccal opening contractions, cloacal opening contractions, lateral contractions, longitudinal contractions and expulsions. Protein and mRNA expression data indicate that the mature versions of both peptides are present in a number of tissues. With respect to behavioral activity, both TCAP- and CDLP-treated animals had distinct contraction profiles under ambient conditions. Moreover, food stimulation tests revealed that whereas CDLP-treated animals displayed a strong expulsion behavior in response to feeding, TCAP-treated animals did not show this effect. These actions are consistent with previous studies done in vertebrates.
Collapse
Affiliation(s)
- Andrea L D'Aquila
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Alan Hwa-Ruey Hsieh
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Adam Hwa-Ming Hsieh
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Reuben De Almeida
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - Sabine R Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada
| | - David A Lovejoy
- Department of Cell and Systems Biology, University of Toronto, Ontario, Canada.
| |
Collapse
|
50
|
Hunding A, Baumgartner S. Ancient role of ten-m/ odz in segmentation and the transition from sequential to syncytial segmentation. Hereditas 2017; 154:8. [PMID: 28461810 PMCID: PMC5408475 DOI: 10.1186/s41065-017-0029-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 04/11/2017] [Indexed: 02/07/2023] Open
Abstract
Background Until recently, mechanisms of segmentation established for Drosophila served as a paradigm for arthropod segmentation. However, with the discovery of gene expression waves in vertebrate segmentation, another paradigm based on oscillations linked to axial growth was established. The Notch pathway and hairy delay oscillator are basic components of this mechanism, as is the wnt pathway. With the establishment of oscillations during segmentation of the beetle Tribolium, a common segmentation mechanism may have been present in the last common ancestor of vertebrates and arthropods. However, the Notch pathway is not involved in segmentation of the initial Drosophila embryo. In arthropods, the engrailed, wingless pair has a much more conserved function in segmentation than most of the hierarchy established for Drosophila. Results Here, we work backwards from this conserved pair by discussing possible mechanisms which could have taken over the role of the Notch pathway. We propose a pivotal role for the large transmembrane protein Ten-m/Odz. Ten-m/Odz may have had an ancient role in cell-cell communication, parallel to the Notch and wnt pathways. The Ten-m protein binds to the membrane with properties which resemble other membrane-based biochemical oscillators. Conclusion We propose that such a simple transition could have formed the initial scaffold, on top of which the hierarchy, observed in the syncytium of dipterans, could have evolved.
Collapse
Affiliation(s)
- Axel Hunding
- Biophysical Chemistry, Department of Chemistry S01, H. C. 0rsted Institute, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen, Denmark
| | - Stefan Baumgartner
- Department of Experimental Medical Sciences, Lund University, BMC D10, 22184 Lund, Sweden
| |
Collapse
|