1
|
Ndiaye YD, Wong W, Thwing J, Schaffner SF, Brenneman KV, Tine A, Diallo MA, Deme AB, Sy M, Bei AK, Thiaw AB, Daniels R, Ndiaye T, Gaye A, Ndiaye IM, Toure M, Gadiaga N, Sene A, Sow D, Garba MN, Yade MS, Dieye B, Diongue K, Zoumarou D, Ndiaye A, Gomis JF, Fall FB, Ndiop M, Diallo I, Sene D, Macinnis B, Seck MC, Ndiaye M, Ngom B, Diedhiou Y, Mbaye AM, Ndiaye L, Sy N, Badiane AS, Hartl DL, Wirth DF, Volkman SK, Ndiaye D. Two decades of molecular surveillance in Senegal reveal rapid changes in known drug resistance mutations over time. Malar J 2024; 23:205. [PMID: 38982475 PMCID: PMC11234717 DOI: 10.1186/s12936-024-05024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 06/25/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Drug resistance in Plasmodium falciparum is a major threat to malaria control efforts. Pathogen genomic surveillance could be invaluable for monitoring current and emerging parasite drug resistance. METHODS Data from two decades (2000-2020) of continuous molecular surveillance of P. falciparum parasites from Senegal were retrospectively examined to assess historical changes in malaria drug resistance mutations. Several known drug resistance markers and their surrounding haplotypes were profiled using a combination of single nucleotide polymorphism (SNP) molecular surveillance and whole genome sequence based population genomics. RESULTS This dataset was used to track temporal changes in drug resistance markers whose timing correspond to historically significant events such as the withdrawal of chloroquine (CQ) and the introduction of sulfadoxine-pyrimethamine (SP) in 2003. Changes in the mutation frequency at Pfcrt K76T and Pfdhps A437G coinciding with the 2014 introduction of seasonal malaria chemoprevention (SMC) in Senegal were observed. In 2014, the frequency of Pfcrt K76T increased while the frequency of Pfdhps A437G declined. Haplotype-based analyses of Pfcrt K76T showed that this rapid increase was due to a recent selective sweep that started after 2014. DISCUSSION (CONCLUSION) The rapid increase in Pfcrt K76T is troubling and could be a sign of emerging amodiaquine (AQ) resistance in Senegal. Emerging AQ resistance may threaten the future clinical efficacy of artesunate-amodiaquine (ASAQ) and AQ-dependent SMC chemoprevention. These results highlight the potential of molecular surveillance for detecting rapid changes in parasite populations and stress the need to monitor the effectiveness of AQ as a partner drug for artemisinin-based combination therapy (ACT) and for chemoprevention.
Collapse
Affiliation(s)
- Yaye D Ndiaye
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Julie Thwing
- Malaria Branch, Division of Parasitic Diseases and Malaria, Global Health Center, Centers for Disease Control and Prevention, Atlanta, GA, USA
| | - Stephen F Schaffner
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Katelyn Vendrely Brenneman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, 02115, USA
| | - Abdoulaye Tine
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Mamadou A Diallo
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Awa B Deme
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Mouhamad Sy
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Amy K Bei
- Yale School of Public Health, 60 College St, New Haven, CT, 06510, USA
| | - Alphonse B Thiaw
- Department of Biochemistry and Functional Genomics, Sherbrooke University, 2500 Bd de L'Universite, Sherbrooke, QC, J1K 2R1, Canada
| | - Rachel Daniels
- RNA Therapeutics Institute, UMass Chan Medical School, 368 Plantation Street, Worcester, MA, 01605, USA
| | - Tolla Ndiaye
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Amy Gaye
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Ibrahima M Ndiaye
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Mariama Toure
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Nogaye Gadiaga
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Aita Sene
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Djiby Sow
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Mamane N Garba
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Mamadou S Yade
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Baba Dieye
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Khadim Diongue
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Daba Zoumarou
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Aliou Ndiaye
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Jules F Gomis
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Fatou B Fall
- National Malaria Control Programme (NMCP), 25270, Dakar, Senegal
| | - Medoune Ndiop
- National Malaria Control Programme (NMCP), 25270, Dakar, Senegal
| | - Ibrahima Diallo
- National Malaria Control Programme (NMCP), 25270, Dakar, Senegal
| | - Doudou Sene
- National Malaria Control Programme (NMCP), 25270, Dakar, Senegal
| | - Bronwyn Macinnis
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Mame C Seck
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Mouhamadou Ndiaye
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Bassirou Ngom
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Younouss Diedhiou
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Amadou M Mbaye
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Lamine Ndiaye
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Ngayo Sy
- Service de Lutte Antiparasitaire (SLAP), Thiès, Senegal
| | - Aida S Badiane
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
| | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, 16 Divinity Avenue, Cambridge, MA, 02138, USA
| | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, 02115, USA
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA
| | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, 02115, USA.
- Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA, 02142, USA.
- Simmons University, 300 The Fenway, Boston, MA, 02115, USA.
| | - Daouda Ndiaye
- International Research Training Center On Genomics and Health Surveillance (CIGASS), Cheikh Anta Diop University, 16477, Dakar, Senegal
- Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, 665 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
2
|
Kwiatkowski D. Modelling transmission dynamics and genomic diversity in a recombining parasite population. Wellcome Open Res 2024; 9:215. [PMID: 39554245 PMCID: PMC11569386 DOI: 10.12688/wellcomeopenres.19092.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 11/19/2024] Open
Abstract
The genomic diversity of a parasite population is shaped by its transmission dynamics but superinfection, cotranmission and recombination make this relationship complex and hard to analyse. This paper aims to simplify the problem by introducing the concept of a genomic transmission graph with three basic parameters: the effective number of hosts, the quantum of transmission and the crossing rate of transmission chains. This enables rapid simulation of coalescence times in a recombining parasite population with superinfection and cotransmission, and it also provides a mathematical framework for analysis of within-host variation. Taking malaria as an example, we use this theoretical model to examine how transmission dynamics and migration affect parasite genomic diversity, including the effective recombination rate and haplotypic metrics of recent common ancestry. We show how key transmission parameters can be inferred from deep sequencing data and as a proof of concept we estimate the Plasmodium falciparum transmission bottleneck. Finally we discuss the potential applications of this novel inferential framework in genomic surveillance for malaria control and elimination. Online tools for exploring the genomic transmission graph are available at d-kwiat.github.io/gtg.
Collapse
|
3
|
Coonahan E, Gage H, Chen D, Noormahomed EV, Buene TP, Mendes de Sousa I, Akrami K, Chambal L, Schooley RT, Winzeler EA, Cowell AN. Whole-genome surveillance identifies markers of Plasmodium falciparum drug resistance and novel genomic regions under selection in Mozambique. mBio 2023; 14:e0176823. [PMID: 37750720 PMCID: PMC10653802 DOI: 10.1128/mbio.01768-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 08/02/2023] [Indexed: 09/27/2023] Open
Abstract
IMPORTANCE Malaria is a devastating disease caused by Plasmodium parasites. The evolution of parasite drug resistance continues to hamper progress toward malaria elimination, and despite extensive efforts to control malaria, it remains a leading cause of death in Mozambique and other countries in the region. The development of successful vaccines and identification of molecular markers to track drug efficacy are essential for managing the disease burden. We present an analysis of the parasite genome in Mozambique, a country with one of the highest malaria burdens globally and limited available genomic data, revealing current selection pressure. We contribute additional evidence to limited prior studies supporting the effectiveness of SWGA in producing reliable genomic data from complex clinical samples. Our results provide the identity of genomic loci that may be associated with current antimalarial drug use, including artemisinin and lumefantrine, and reveal selection pressure predicted to compromise the efficacy of current vaccine candidates.
Collapse
Affiliation(s)
- Erin Coonahan
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Hunter Gage
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Daisy Chen
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California, USA
| | - Emilia Virginia Noormahomed
- School of Medicine, University of California San Diego, La Jolla, California, USA
- Department of Microbiology, Parasitology Laboratory, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
| | - Titos Paulo Buene
- Department of Microbiology, Parasitology Laboratory, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
| | - Irina Mendes de Sousa
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
- Biological Sciences Department, Faculty of Sciences, Eduardo Mondlane University, Maputo, Mozambique
| | - Kevan Akrami
- School of Medicine, University of California San Diego, La Jolla, California, USA
- Faculdade de Medicina da Bahia, Universidade Federal da Bahia, Salvador, Brazil
| | - Lucia Chambal
- Mozambique Institute of Health Education and Research (MIHER), Maputo, Mozambique
- Department of Internal Medicine, Faculty of Medicine, Eduardo Mondlane University, Maputo, Mozambique
- Maputo Central Hospital, Maputo, Mozambique
| | - Robert T. Schooley
- School of Medicine, University of California San Diego, La Jolla, California, USA
| | - Elizabeth A. Winzeler
- Department of Pediatrics, University of California San Diego (UCSD), La Jolla, California, USA
| | - Annie N. Cowell
- School of Medicine, University of California San Diego, La Jolla, California, USA
| |
Collapse
|
4
|
Xu SJ, Shen HM, Cui YB, Chen SB, Xu B, Chen JH. Genetic diversity and natural selection of rif gene (PF3D7_1254800) in the Plasmodium falciparum global populations. Mol Biochem Parasitol 2023; 254:111558. [PMID: 36918126 DOI: 10.1016/j.molbiopara.2023.111558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 02/10/2023] [Accepted: 03/08/2023] [Indexed: 03/14/2023]
Abstract
To reveal the genetic characteristics of one member of the Plasmodium falciparum repetitive interspersed family (rif), we sequenced the rif gene (PF3D7_1254800) in 53 field isolates collected from Ghana-imported cases into China and compared them with 350 publicly available P. falciparum rif sequences from global populations. In the Ghana-imported population, the nucleotide diversities were 0.05714 and 0.06616 for the full length and variable region of rif gene, respectively. Meanwhile, 22 and 20 haplotypes were identified for the full length and variable region of rif gene (Hd = 0.843 and 0.838, respectively). Diversity of rif gene in Ghana-imported population was higher than that observed in Cambodia, Thailand, Vietnam, Myanmar, Mali, Ghana, and Senegal populations. In this analysis, we found high genetic diversity of rif gene in global P. falciparum populations and identified 158 haplotypes. Tajima's D-test shows that there are large differences in the direction of selection between the conserved and variable region of rif gene. Tajima's D value for the variable region was 0.20074, indicating that balancing selection existed in this region. We found that the variable region was the main target of selection for positive diversification, and most mutation sites were located in this region. The population structure suggested optimized cluster values of K = 6. The five groups in Ghana-imported population included a unique subpopulation. Our results reveal the dynamics of the rif gene (PF3D7_1254800) in P. falciparum populations, which can aid in the rational design of P. falciparum rif-based vaccines.
Collapse
Affiliation(s)
- Shao-Jie Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Yan-Bing Cui
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Diseases Control and Prevention, (Chinese Center for Tropical Diseases Research), Shanghai 200025, PR China; National Health Commission of the People's Republic of China (NHC) Key Laboratory of Parasite and Vector Biology, Shanghai 200025, PR China; World Health Organization (WHO) Collaborating Center for Tropical Diseases, Shanghai 200025, PR China; National Centre for International Research on Tropical Diseases, Shanghai 200025, PR China; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China; School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou 310013, PR China.
| |
Collapse
|
5
|
Abstract
Population genetic diversity of Plasmodium falciparum antigenic loci is high despite large bottlenecks in population size during the parasite life cycle. The prevalence of genetically distinct haplotypes at these loci, while well characterized in humans, has not been thoroughly compared between human and mosquito hosts. We assessed parasite haplotype prevalence, diversity, and evenness using human and mosquito P. falciparum infections collected from the same households during a 14-month longitudinal cohort study using amplicon deep sequencing of two antigenic gene fragments (ama1 and csp). To a prior set of infected humans (n = 1,175/2,813; 86.2% sequencing success) and mosquito abdomens (n = 199/1,448; 95.5% sequencing success), we added sequences from infected mosquito heads (n = 134/1,448; 98.5% sequencing success). The overall and sample-level parasite populations were more diverse in mosquitoes than in humans. Additionally, haplotype prevalences were more even in the P. falciparum human population than in the mosquito population, consistent with balancing selection occurring at these loci in humans. In contrast, we observed that infections in humans were more likely to harbor a dominant haplotype than infections in mosquitoes, potentially due to removal of unfit strains by the human immune system. Finally, within a given mosquito, there was little overlap in genetic composition of abdomen and head infections, suggesting that infections may be cleared from the abdomen during a mosquito’s lifespan. Taken together, our observations provide evidence for the mosquito vector acting as a reservoir of sequence diversity in malaria parasite populations.
Collapse
|
6
|
Mayor A, da Silva C, Rovira-Vallbona E, Roca-Feltrer A, Bonnington C, Wharton-Smith A, Greenhouse B, Bever C, Chidimatembue A, Guinovart C, Proctor JL, Rodrigues M, Canana N, Arnaldo P, Boene S, Aide P, Enosse S, Saute F, Candrinho B. Prospective surveillance study to detect antimalarial drug resistance, gene deletions of diagnostic relevance and genetic diversity of Plasmodium falciparum in Mozambique: protocol. BMJ Open 2022; 12:e063456. [PMID: 35820756 PMCID: PMC9274532 DOI: 10.1136/bmjopen-2022-063456] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
INTRODUCTION Genomic data constitute a valuable adjunct to routine surveillance that can guide programmatic decisions to reduce the burden of infectious diseases. However, genomic capacities remain low in Africa. This study aims to operationalise a functional malaria molecular surveillance system in Mozambique for guiding malaria control and elimination. METHODS AND ANALYSES This prospective surveillance study seeks to generate Plasmodium falciparum genetic data to (1) monitor molecular markers of drug resistance and deletions in rapid diagnostic test targets; (2) characterise transmission sources in low transmission settings and (3) quantify transmission levels and the effectiveness of antimalarial interventions. The study will take place across 19 districts in nine provinces (Maputo city, Maputo, Gaza, Inhambane, Niassa, Manica, Nampula, Zambézia and Sofala) which span a range of transmission strata, geographies and malaria intervention types. Dried blood spot samples and rapid diagnostic tests will be collected across the study districts in 2022 and 2023 through a combination of dense (all malaria clinical cases) and targeted (a selection of malaria clinical cases) sampling. Pregnant women attending their first antenatal care visit will also be included to assess their value for molecular surveillance. We will use a multiplex amplicon-based next-generation sequencing approach targeting informative single nucleotide polymorphisms, gene deletions and microhaplotypes. Genetic data will be incorporated into epidemiological and transmission models to identify the most informative relationship between genetic features, sources of malaria transmission and programmatic effectiveness of new malaria interventions. Strategic genomic information will be ultimately integrated into the national malaria information and surveillance system to improve the use of the genetic information for programmatic decision-making. ETHICS AND DISSEMINATION The protocol was reviewed and approved by the institutional (CISM) and national ethics committees of Mozambique (Comité Nacional de Bioética para Saúde) and Spain (Hospital Clinic of Barcelona). Project results will be presented to all stakeholders and published in open-access journals. TRIAL REGISTRATION NUMBER NCT05306067.
Collapse
Affiliation(s)
- Alfredo Mayor
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
- Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- Spanish Consortium for Research in Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Department of Physiologic Sciences, Faculty of Medicine, Universidade Eduardo Mondlane, Maputo, Mozambique
| | - Clemente da Silva
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
| | - Eduard Rovira-Vallbona
- Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | | | | | - Bryan Greenhouse
- Department of Medicine, University of California San Francisco, San Francisco, California, USA
| | - Caitlin Bever
- Bill & Melinda Gates Foundation, Seattle, Washington, USA
| | | | - Caterina Guinovart
- Barcelona Institute for Global Health, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | | | | | | | | | - Simone Boene
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
| | - Pedro Aide
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
- Instituto Nacional de Saúde, Maputo, Mozambique
| | | | - Francisco Saute
- Centro de Investigação em Saúde de Manhiça, Manhiça, Maputo, Mozambique
| | | |
Collapse
|
7
|
Band G, Leffler EM, Jallow M, Sisay-Joof F, Ndila CM, Macharia AW, Hubbart C, Jeffreys AE, Rowlands K, Nguyen T, Gonçalves S, Ariani CV, Stalker J, Pearson RD, Amato R, Drury E, Sirugo G, d'Alessandro U, Bojang KA, Marsh K, Peshu N, Saelens JW, Diakité M, Taylor SM, Conway DJ, Williams TN, Rockett KA, Kwiatkowski DP. Malaria protection due to sickle haemoglobin depends on parasite genotype. Nature 2021; 602:106-111. [PMID: 34883497 PMCID: PMC8810385 DOI: 10.1038/s41586-021-04288-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 11/29/2021] [Indexed: 11/30/2022]
Abstract
Host genetic factors can confer resistance against malaria1, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples. The HbS-associated alleles include nonsynonymous variants in the gene for the acyl-CoA synthetase family member2–4PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The alleles are in strong linkage disequilibrium and have frequencies that covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations. A strong association has been found between three regions of the Plasmodium falciparum genome and sickle haemoglobin in children with severe malaria, suggesting parasites have adapted to overcome natural host immunity.
Collapse
Affiliation(s)
- Gavin Band
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK. .,Wellcome Sanger Institute, Hinxton, Cambridge, UK. .,Big Data Institute, Li Ka Shing Centre for Health and Information Discovery, Old Road Campus, Oxford, USA.
| | - Ellen M Leffler
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT, USA
| | - Muminatou Jallow
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia.,Edward Francis Small Teaching Hospital (formerly Royal Victoria Teaching Hospital), Independence Drive, Banjul, The Gambia
| | - Fatoumatta Sisay-Joof
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
| | - Carolyne M Ndila
- KEMRI-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya
| | | | - Christina Hubbart
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Anna E Jeffreys
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Kate Rowlands
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK
| | - Thuy Nguyen
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | | | | | - Jim Stalker
- Wellcome Sanger Institute, Hinxton, Cambridge, UK
| | - Richard D Pearson
- Wellcome Sanger Institute, Hinxton, Cambridge, UK.,Big Data Institute, Li Ka Shing Centre for Health and Information Discovery, Old Road Campus, Oxford, USA
| | | | | | - Giorgio Sirugo
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia.,Division of Translational Medicine and Human Genetics, University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - Umberto d'Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
| | - Kalifa A Bojang
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya.,Nuffield Department of Medicine, NDM Research Building, Roosevelt Drive, Headington, Oxford, UK
| | - Norbert Peshu
- KEMRI-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya
| | - Joseph W Saelens
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA
| | - Mahamadou Diakité
- Malaria Research and Training Center, University of Sciences, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Steve M Taylor
- Division of Infectious Diseases, Duke University School of Medicine, Durham, NC, USA.,Duke Global Health Institute, Duke University, Durham, NC, USA
| | - David J Conway
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, The Gambia.,Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London, UK
| | - Thomas N Williams
- KEMRI-Wellcome Trust Research Programme, PO Box 230, Kilifi, Kenya.,Institute for Global Health Innovation, Department of Surgery and Cancer, Imperial College, London, London, UK
| | - Kirk A Rockett
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK. .,Wellcome Sanger Institute, Hinxton, Cambridge, UK.
| | - Dominic P Kwiatkowski
- Wellcome Centre for Human Genetics, University of Oxford, Roosevelt Drive, Oxford, UK. .,Wellcome Sanger Institute, Hinxton, Cambridge, UK. .,Big Data Institute, Li Ka Shing Centre for Health and Information Discovery, Old Road Campus, Oxford, USA.
| |
Collapse
|
8
|
Brown TS, Arogbokun O, Buckee CO, Chang HH. Distinguishing gene flow between malaria parasite populations. PLoS Genet 2021; 17:e1009335. [PMID: 34928954 PMCID: PMC8726502 DOI: 10.1371/journal.pgen.1009335] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/04/2022] [Accepted: 10/12/2021] [Indexed: 11/19/2022] Open
Abstract
Measuring gene flow between malaria parasite populations in different geographic locations can provide strategic information for malaria control interventions. Multiple important questions pertaining to the design of such studies remain unanswered, limiting efforts to operationalize genomic surveillance tools for routine public health use. This report examines the use of population-level summaries of genetic divergence (FST) and relatedness (identity-by-descent) to distinguish levels of gene flow between malaria populations, focused on field-relevant questions about data size, sampling, and interpretability of observations from genomic surveillance studies. To do this, we use P. falciparum whole genome sequence data and simulated sequence data approximating malaria populations evolving under different current and historical epidemiological conditions. We employ mobile-phone associated mobility data to estimate parasite migration rates over different spatial scales and use this to inform our analysis. This analysis underscores the complementary nature of divergence- and relatedness-based metrics for distinguishing gene flow over different temporal and spatial scales and characterizes the data requirements for using these metrics in different contexts. Our results have implications for the design and implementation of malaria genomic surveillance studies.
Collapse
Affiliation(s)
- Tyler S. Brown
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Infectious Diseases Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Olufunmilayo Arogbokun
- Infectious Disease Epidemiology and Ecology Lab, University of North Carolina School of Medicine, Chapel Hill, North Carolina, United States of America
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Hsiao-Han Chang
- Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States of America
- Institute of Bioinformatics and Structural Biology, National Tsing Hua University, Hsinchu City, Taiwan
| |
Collapse
|
9
|
Rougeron V, Boundenga L, Arnathau C, Durand P, Renaud F, Prugnolle F. A population genetic perspective on the origin, spread and adaptation of the human malaria agents Plasmodium falciparum and Plasmodium vivax. FEMS Microbiol Rev 2021; 46:6373923. [PMID: 34550355 DOI: 10.1093/femsre/fuab047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 09/06/2021] [Indexed: 01/20/2023] Open
Abstract
Malaria is considered one of the most important scourges that humanity has faced during its history, being responsible every year for numerous deaths worldwide. The disease is caused by protozoan parasites, among which two species are responsible of the majority of the burden, Plasmodium falciparum and Plasmodium vivax. For these two parasite species, the questions of their origin (how and when they appeared in humans), of their spread throughout the world, as well as how they have adapted to humans have long been of interest to the scientific community. Here, we review the current knowledge that has accumulated on these different questions, thanks in particular to the analysis of the genetic and genomic variability of these parasites and comparison with related Plasmodium species infecting other host species (like non-human primates). In this paper we review the existing body of knowledge, including current research dealing with these questions, focusing particularly on genetic analysis and genomic variability of these parasites and comparison with related Plasmodium species infecting other species of host (such as non-human primates).
Collapse
Affiliation(s)
- Virginie Rougeron
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Larson Boundenga
- CIRMF, Centre Interdisciplinaire de Recherches Médicales de Franceville, Franceville, Gabon
| | - Céline Arnathau
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Patrick Durand
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - François Renaud
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| | - Franck Prugnolle
- Laboratory MIVEGEC, University of Montpellier, CNRS, IRD, 900 rue Jean François Breton, 34090 Montpellier, France.,CREES, Centre de Recherches en Écologie et Évolution de la Santé, Montpellier, France
| |
Collapse
|
10
|
Abstract
African apes harbor at least twelve Plasmodium species, some of which have been a source of human infection. It is now well established that Plasmodium falciparum emerged following the transmission of a gorilla parasite, perhaps within the last 10,000 years, while Plasmodium vivax emerged earlier from a parasite lineage that infected humans and apes in Africa before the Duffy-negative mutation eliminated the parasite from humans there. Compared to their ape relatives, both human parasites have greatly reduced genetic diversity and an excess of nonsynonymous mutations, consistent with severe genetic bottlenecks followed by rapid population expansion. A putative new Plasmodium species widespread in chimpanzees, gorillas, and bonobos places the origin of Plasmodium malariae in Africa. Here, we review what is known about the origins and evolutionary history of all human-infective Plasmodium species, the time and circumstances of their emergence, and the diversity, host specificity, and zoonotic potential of their ape counterparts.
Collapse
Affiliation(s)
- Paul M Sharp
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology and Centre for Immunity, Infection and Evolution, University of Edinburgh, EH9 3FL, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA;
| |
Collapse
|
11
|
Lozovsky ER, Daniels RF, Heffernan GD, Jacobus DP, Hartl DL. Relevance of Higher-Order Epistasis in Drug Resistance. Mol Biol Evol 2021; 38:142-151. [PMID: 32745183 PMCID: PMC7782864 DOI: 10.1093/molbev/msaa196] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
We studied five chemically distinct but related 1,3,5-triazine antifolates with regard to their effects on growth of a set of mutants in dihydrofolate reductase. The mutants comprise a combinatorially complete data set of all 16 possible combinations of four amino acid replacements associated with resistance to pyrimethamine in the malaria parasite Plasmodium falciparum. Pyrimethamine was a mainstay medication for malaria for many years, and it is still in use in intermittent treatment during pregnancy or as a partner drug in artemisinin combination therapy. Our goal was to investigate the extent to which the alleles yield similar adaptive topographies and patterns of epistasis across chemically related drugs. We find that the adaptive topographies are indeed similar with the same or closely related alleles being fixed in computer simulations of stepwise evolution. For all but one of the drugs the topography features at least one suboptimal fitness peak. Our data are consistent with earlier results indicating that third order and higher epistatic interactions appear to contribute only modestly to the overall adaptive topography, and they are largely conserved. In regard to drug development, our data suggest that higher-order interactions are likely to be of little value as an advisory tool in the choice of lead compounds.
Collapse
Affiliation(s)
- Elena R Lozovsky
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| | - Rachel F Daniels
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA
| | | | | | - Daniel L Hartl
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA
| |
Collapse
|
12
|
Derilus D, Rahman MZ, Serrano AE, Massey SE. Proteome size reduction in Apicomplexans is linked with loss of DNA repair and host redundant pathways. INFECTION GENETICS AND EVOLUTION 2020; 87:104642. [PMID: 33296723 DOI: 10.1016/j.meegid.2020.104642] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 11/07/2020] [Accepted: 11/23/2020] [Indexed: 11/29/2022]
Abstract
Apicomplexans are alveolate parasites which include Plasmodium falciparum, the main cause of malaria, one of the world's biggest killers from infectious disease. Apicomplexans are characterized by a reduction in proteome size, which appears to result from metabolic and functional simplification, commensurate with their parasitic lifestyle. However, other factors may also help to explain gene loss such as population bottlenecks experienced during transmission, and the effect of reducing the overall genomic information content. The latter constitutes an 'informational constraint', which is proposed to exert a selective pressure to evolve and maintain genes involved in informational fidelity and error correction, proportional to the quantity of information in the genome (which approximates to proteome size). The dynamics of gene loss was examined in 41 Apicomplexan genomes using orthogroup analysis. We show that loss of genes involved in amino acid metabolism and steroid biosynthesis can be explained by metabolic redundancy with the host. We also show that there is a marked tendency to lose DNA repair genes as proteome size is reduced. This may be explained by a reduction in size of the informational constraint and can help to explain elevated mutation rates in pathogens with reduced genome size. Multiple Sequentially Markovian Coalescent (MSMC) analysis indicates a recent bottleneck, consistent with predictions generated using allele-based population genetics approaches, implying that relaxed selection pressure due to reduced population size might have contributed to gene loss. However, the non-randomness of pathways that are lost challenges this scenario. Lastly, we identify unique orthogroups in malaria-causing Plasmodium species that infect humans, with a high proportion of membrane associated proteins. Thus, orthogroup analysis appears useful for identifying novel candidate pathogenic factors in parasites, when there is a wide sample of genomes available.
Collapse
Affiliation(s)
- D Derilus
- Environmental Sciences Department, University of Puerto Rico-Rio Piedras, United States of America
| | - M Z Rahman
- Biology Department, University of Puerto Rico-Rio Piedras, United States of America
| | - A E Serrano
- Department of Microbiology, University of Puerto Rico-School of Medicine, Medical Sciences, United States of America
| | - S E Massey
- Biology Department, University of Puerto Rico-Rio Piedras, United States of America.
| |
Collapse
|
13
|
Kassegne K, Komi Koukoura K, Shen HM, Chen SB, Fu HT, Chen YQ, Zhou XN, Chen JH, Cheng Y. Genome-Wide Analysis of the Malaria Parasite Plasmodium falciparum Isolates From Togo Reveals Selective Signals in Immune Selection-Related Antigen Genes. Front Immunol 2020; 11:552698. [PMID: 33193320 PMCID: PMC7645038 DOI: 10.3389/fimmu.2020.552698] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 09/02/2020] [Indexed: 12/19/2022] Open
Abstract
Malaria is a public health concern worldwide, and Togo has proven to be no exception. Effective approaches to provide information on biological insights for disease elimination are therefore a research priority. Local selection on malaria pathogens is due to multiple factors including host immunity. We undertook genome-wide analysis of sequence variation on a sample of 10 Plasmodium falciparum (Pf) clinical isolates from Togo to identify local-specific signals of selection. Paired-end short-read sequences were mapped and aligned onto > 95% of the 3D7 Pf reference genome sequence in high fold coverage. Data on 266 963 single nucleotide polymorphisms were obtained, with average nucleotide diversity π = 1.79 × 10−3. Both principal component and neighbor-joining tree analyses showed that the Togo parasites clustered according to their geographic (Africa) origin. In addition, the average genome-wide diversity of Pf from Togo was much higher than that from other African samples. Tajima’s D value of the Togo isolates was −0.56, suggesting evidence of directional selection and/or recent population expansion. Against this background, within-population analyses identifying loci of balancing and recent positive selections evidenced that host immunity has been the major selective agent. Importantly, 87 and 296 parasite antigen genes with Tajima’s D values > 1 and in the top 1% haplotype scores, respectively, include a significant representation of membrane proteins at the merozoite stage that invaded red blood cells (RBCs) and parasitized RBCs surface proteins that play roles in immunoevasion, adhesion, or rosetting. This is consistent with expectations that elevated signals of selection due to allele-specific acquired immunity are likely to operate on antigenic targets. Collectively, our data suggest a recent expansion of Pf population in Togo and evidence strong host immune selection on membrane/surface antigens reflected in signals of balancing/positive selection of important gene loci. Findings from this study provide a fundamental basis to engage studies for effective malaria control in Togo.
Collapse
Affiliation(s)
- Kokouvi Kassegne
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Komi Komi Koukoura
- Laboratoire des Sciences Biomédicales, Alimentaires et Santé Environnementale, Département des Analyses Biomédicales, Ecole Supérieure des Techniques Biologiques et Alimentaires, Université de Lomé, Lomé, Togo
| | - Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Hai-Tian Fu
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| | - Yong-Quan Chen
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China.,School of Food Science and Technology, State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiao-Nong Zhou
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention, Chinese Centre for Tropical Diseases Research, WHO Collaborating Centre for Tropical Diseases, National Centre for International Research on Tropical Diseases, Ministry of Science and Technology, Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, China.,National Institute of Parasitic Diseases, Chinese Centre for Disease Control and Prevention-Shenzhen Centre for Disease Control and Prevention Joint Laboratory for Imported Tropical Disease Control, Shanghai, China.,The School of Global Health, Chinese Centre for Tropical Diseases Research, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Yang Cheng
- Laboratory of Pathogen Infection and Immunity, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, Wuxi, China
| |
Collapse
|
14
|
de Oliveira TC, Corder RM, Early A, Rodrigues PT, Ladeia-Andrade S, Alves JMP, Neafsey DE, Ferreira MU. Population genomics reveals the expansion of highly inbred Plasmodium vivax lineages in the main malaria hotspot of Brazil. PLoS Negl Trop Dis 2020; 14:e0008808. [PMID: 33112884 PMCID: PMC7592762 DOI: 10.1371/journal.pntd.0008808] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/21/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Plasmodium vivax is a neglected human malaria parasite that causes significant morbidity in the Americas, the Middle East, Asia, and the Western Pacific. Population genomic approaches remain little explored to map local and regional transmission pathways of P. vivax across the main endemic sites in the Americas, where great progress has been made towards malaria elimination over the past decades. METHODOLOGY/PRINCIPAL FINDINGS We analyze 38 patient-derived P. vivax genome sequences from Mâncio Lima (ML)-the Amazonian malaria hotspot next to the Brazil-Peru border-and 24 sequences from two other sites in Acre State, Brazil, a country that contributes 23% of malaria cases in the Americas. We show that the P. vivax population of ML is genetically diverse (π = 4.7 × 10-4), with a high polymorphism particularly in genes encoding proteins putatively involved in red blood cell invasion. Paradoxically, however, parasites display strong genome-wide linkage disequilibrium, being fragmented into discrete lineages that are remarkably stable across time and space, with only occasional recombination between them. Using identity-by-descent approaches, we identified a large cluster of closely related sequences that comprises 16 of 38 genomes sampled in ML over 26 months. Importantly, we found significant ancestry sharing between parasites at a large geographic distance, consistent with substantial gene flow between regional P. vivax populations. CONCLUSIONS/SIGNIFICANCE We have characterized the sustained expansion of highly inbred P. vivax lineages in a malaria hotspot that can seed regional transmission. Potential source populations in hotspots represent a priority target for malaria elimination in the Amazon.
Collapse
Affiliation(s)
- Thaís Crippa de Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rodrigo M. Corder
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Angela Early
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Departament of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Simone Ladeia-Andrade
- Laboratory of Parasitic Diseases, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | - João Marcelo P. Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Daniel E. Neafsey
- Infectious Disease and Microbiome Program, Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Departament of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, United States of America
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
15
|
Morgan AP, Brazeau NF, Ngasala B, Mhamilawa LE, Denton M, Msellem M, Morris U, Filer DL, Aydemir O, Bailey JA, Parr JB, Mårtensson A, Bjorkman A, Juliano JJ. Falciparum malaria from coastal Tanzania and Zanzibar remains highly connected despite effective control efforts on the archipelago. Malar J 2020; 19:47. [PMID: 31992305 PMCID: PMC6988337 DOI: 10.1186/s12936-020-3137-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 01/22/2020] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Tanzania's Zanzibar archipelago has made significant gains in malaria control over the last decade and is a target for malaria elimination. Despite consistent implementation of effective tools since 2002, elimination has not been achieved. Importation of parasites from outside of the archipelago is thought to be an important cause of malaria's persistence, but this paradigm has not been studied using modern genetic tools. METHODS Whole-genome sequencing (WGS) was used to investigate the impact of importation, employing population genetic analyses of Plasmodium falciparum isolates from both the archipelago and mainland Tanzania. Ancestry, levels of genetic diversity and differentiation, patterns of relatedness, and patterns of selection between these two populations were assessed by leveraging recent advances in deconvolution of genomes from polyclonal malaria infections. RESULTS Significant decreases in the effective population sizes were inferred in both populations that coincide with a period of decreasing malaria transmission in Tanzania. Identity by descent analysis showed that parasites in the two populations shared long segments of their genomes, on the order of 5 cM, suggesting shared ancestry within the last 10 generations. Even with limited sampling, two of isolates between the mainland and Zanzibar were identified that are related at the expected level of half-siblings, consistent with recent importation. CONCLUSIONS These findings suggest that importation plays an important role for malaria incidence on Zanzibar and demonstrate the value of genomic approaches for identifying corridors of parasite movement to the island.
Collapse
Affiliation(s)
- Andrew P Morgan
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Billy Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Lwidiko E Mhamilawa
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Madeline Denton
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Mwinyi Msellem
- Training and Research, Mnazi Mmoja Hospital, Zanzibar, Tanzania
| | - Ulrika Morris
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Dayne L Filer
- Curriculum in Bioinformatics and Computational Biology, University of North Carolina, Chapel Hill, NC, 27599, USA
| | - Ozkan Aydemir
- Department of Laboratory Medicine and Pathology, Brown University, Providence, RI, 02912, USA
| | - Jeffrey A Bailey
- Department of Laboratory Medicine and Pathology, Brown University, Providence, RI, 02912, USA
| | - Jonathan B Parr
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA
| | - Andreas Mårtensson
- Department of Women's and Children's Health, International Maternal and Child Health (IMCH), Uppsala University, Uppsala, Sweden
| | - Anders Bjorkman
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, 17177, Stockholm, Sweden
| | - Jonathan J Juliano
- Division of Infectious Diseases, Department of Medicine, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599, USA.
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill, NC, 27599, USA.
- Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, 27599, USA.
| |
Collapse
|
16
|
Park Y, Kim Y. Partial protection from cyclical selection generates a high level of polymorphism at multiple non-neutral sites. Evolution 2019; 73:1564-1577. [PMID: 31273751 DOI: 10.1111/evo.13792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Accepted: 05/14/2019] [Indexed: 10/26/2022]
Abstract
Temporally varying selection is known to maintain genetic polymorphism under certain restricted conditions. However, if part of a population can escape from selective pressure, a condition called the "storage effect" is produced, which greatly promotes balanced polymorphism. We investigate whether seasonally fluctuating selection can maintain polymorphism at multiple loci, if cyclically fluctuating selection is not acting on a subpopulation called a "refuge." A phenotype with a seasonally oscillating optimum is determined by alleles at multiple sites, across which the effects of mutations on phenotype are distributed randomly. This model resulted in long-term polymorphism at multiple sites, during which allele frequencies oscillate heavily, greatly increasing the level of nonneutral polymorphism. The level of polymorphism at linked neutral sites was either higher or lower than expected for unlinked neutral loci. Overall, these results suggest that for a protein-coding sequence, the nonsynonymous-to-synonymous ratio of polymorphism may exceed one. In addition, under randomly perturbed environmental oscillation, different sets of sites may take turns harboring long-term polymorphism, thus making trans-species polymorphism (which has been predicted as a classical signature of balancing selection) less likely.
Collapse
Affiliation(s)
- Yeongseon Park
- Division of EcoScience, Ewha Womans University, Seoul, Korea
| | - Yuseob Kim
- Division of EcoScience, Ewha Womans University, Seoul, Korea.,Department of Life Science, Ewha Womans University, Seoul, Korea
| |
Collapse
|
17
|
Chang HH, Wesolowski A, Sinha I, Jacob CG, Mahmud A, Uddin D, Zaman SI, Hossain MA, Faiz MA, Ghose A, Sayeed AA, Rahman MR, Islam A, Karim MJ, Rezwan MK, Shamsuzzaman AKM, Jhora ST, Aktaruzzaman MM, Drury E, Gonçalves S, Kekre M, Dhorda M, Vongpromek R, Miotto O, Engø-Monsen K, Kwiatkowski D, Maude RJ, Buckee C. Mapping imported malaria in Bangladesh using parasite genetic and human mobility data. eLife 2019; 8:43481. [PMID: 30938289 PMCID: PMC6478433 DOI: 10.7554/elife.43481] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Accepted: 03/14/2019] [Indexed: 01/25/2023] Open
Abstract
For countries aiming for malaria elimination, travel of infected individuals between endemic areas undermines local interventions. Quantifying parasite importation has therefore become a priority for national control programs. We analyzed epidemiological surveillance data, travel surveys, parasite genetic data, and anonymized mobile phone data to measure the spatial spread of malaria parasites in southeast Bangladesh. We developed a genetic mixing index to estimate the likelihood of samples being local or imported from parasite genetic data and inferred the direction and intensity of parasite flow between locations using an epidemiological model integrating the travel survey and mobile phone calling data. Our approach indicates that, contrary to dogma, frequent mixing occurs in low transmission regions in the southwest, and elimination will require interventions in addition to reducing imported infections from forested regions. Unlike risk maps generated from clinical case counts alone, therefore, our approach distinguishes areas of frequent importation as well as high transmission.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, United States.,The Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, United States
| | - Ipsita Sinha
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Ayesha Mahmud
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, United States.,The Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, United States
| | - Didar Uddin
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Sazid Ibna Zaman
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Md Amir Hossain
- Department of Medicine, Chittagong Medical College, Chittagong, Bangladesh
| | - M Abul Faiz
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Dev Care Foundation, Dhaka, Bangladesh
| | | | | | | | | | | | - M Kamar Rezwan
- Vector-Borne Disease Control, World Health Organization, Dhaka, Bangladesh
| | | | - Sanya Tahmina Jhora
- Communicable Disease Control, Directorate General of Health Services, Dhaka, Bangladesh
| | | | - Eleanor Drury
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | | | - Mihir Kekre
- Wellcome Sanger Institute, Cambridge, United Kingdom
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom.,Worldwide Antimalarial Resistance Network, Asia Regional Centre, Bangkok, Thailand
| | - Ranitha Vongpromek
- Worldwide Antimalarial Resistance Network, Asia Regional Centre, Bangkok, Thailand
| | - Olivo Miotto
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Wellcome Sanger Institute, Cambridge, United Kingdom.,Big Data Institute, Oxford University, Oxford, United Kingdom
| | | | - Dominic Kwiatkowski
- Wellcome Sanger Institute, Cambridge, United Kingdom.,Big Data Institute, Oxford University, Oxford, United Kingdom
| | - Richard J Maude
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, United States.,The Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, United States.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Caroline Buckee
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, United States.,The Center for Communicable Disease Dynamics, Harvard T.H. Chan School of Public Health, Boston, United States
| |
Collapse
|
18
|
Shen HM, Chen SB, Cui YB, Xu B, Kassegne K, Abe EM, Wang Y, Chen JH. Whole-genome sequencing and analysis of Plasmodium falciparum isolates from China-Myanmar border area. Infect Dis Poverty 2018; 7:118. [PMID: 30445995 PMCID: PMC6240207 DOI: 10.1186/s40249-018-0493-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 10/16/2018] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND China has made progress in malaria control and aims to eliminate malaria nationwide, but implementing effective interventions along the border regions remain a huge task. The Plasmodium falciparum cases imported from Southeast Asia has frequently reported especially in the China-Myanmar border (CMB) area. Though, information is scant on P. falciparum genetic variability in this area. METHODS This study reported P. falciparum isolates genome sequence of six clinical isolates in the CMB area. Furthermore, we estimated the nucleotide diversity, Watterson's estimator and Tajima's D value for the whole genome mutation rate in slide window. RESULTS Our data were aligned onto 96.05-98.61% of the reference 3D7 genome in high fold coverages. Principal component analysis result showed that P. falciparum clustered generally according to their geographic origin. A total of 91 genes were identified as positive selection with Ka/Ks ratio significantly higher than 1, and most of them were multigene families encoding variant surface antigens (VSAs) such as var, rif and stevor. The enrichment of the positive selection on VSA genes implied that the environment complexity subjected CMB's P. falciparum to more pressure for survival. CONCLUSIONS Our research suggests that greater genetic diversity in CMB area and the positive selection signals in VSA genes, which allow P. falciparum to fit the host immune system well and aggravate the difficulty of treatment. Meanwhile, results obtained from this study will provide the fundamental basis for P. falciparum population genomic research in CMB area.
Collapse
Affiliation(s)
- Hai-Mo Shen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| | - Shen-Bo Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| | - Yan-Bing Cui
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| | - Bin Xu
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| | - Kokouvi Kassegne
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| | - Eniola Michael Abe
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| | - Yue Wang
- Institute of Parasitic Diseases, Zhejiang Academy of Medical Sciences, Hangzhou, 310013 China
- Department of Microbiology and Microbial Engineering, School of Life Science, Fudan University, Shanghai, 200433 China
| | - Jun-Hu Chen
- National Institute of Parasitic Diseases, Chinese Center for Disease Control and Prevention; Chinese Center for Tropical Diseases Research; WHO Collaborating Centre for Tropical Diseases, Shanghai, 200025 China
- National Center for International Research on Tropical Diseases, Ministry of Science and Technology; Key Laboratory of Parasite and Vector Biology, Ministry of Health, Shanghai, 200025 China
| |
Collapse
|
19
|
Sinha I, Woodrow CJ. Forces acting on codon bias in malaria parasites. Sci Rep 2018; 8:15984. [PMID: 30374097 PMCID: PMC6206010 DOI: 10.1038/s41598-018-34404-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 10/16/2018] [Indexed: 11/09/2022] Open
Abstract
Malaria parasite genomes have a range of codon biases, with Plasmodium falciparum one of the most AT-biased genomes known. We examined the make up of synonymous coding sites and stop codons in the core genomes of representative malaria parasites, showing first that local DNA context influences codon bias similarly across P. falciparum, P. vivax and P. berghei, with suppression of CpG dinucleotides and enhancement of CpC dinucleotides, both within and aross codons. Intense asexual phase gene expression in P. falciparum and P. berghei is associated with increased A3:G3 bias but reduced T3:C3 bias at 2-fold sites, consistent with adaptation of codons to tRNA pools and avoidance of wobble tRNA interactions that potentially slow down translation. In highly expressed genes, the A3:G3 ratio can exceed 30-fold while the T3:C3 ratio can be less than 1, according to the encoded amino acid and subsequent base. Lysine codons (AAA/G) show distinctive behaviour with substantially reduced A3:G3 bias in highly expressed genes, perhaps because of selection against frameshifting when the AAA codon is followed by another adenine. Intense expression is also associated with a strong bias towards TAA stop codons (found in 94% and 89% of highly expressed P. falciparum and P. berghei genes respectively) and a proportional rise in the TAAA stop ‘tetranucleotide’. The presence of these expression-linked effects in the relatively AT-rich malaria parasite species adds weight to the suggestion that AT-richness in the Plasmodium genus might be a fitness adaptation. Potential explanations for the relative lack of codon bias in P. vivax include the distinct features of its lifecycle and its effective population size over evolutionary time.
Collapse
Affiliation(s)
- I Sinha
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand.,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - C J Woodrow
- Mahidol-Oxford Tropical Medicine Research Unit (MORU), Mahidol University, Bangkok, Thailand. .,Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK.
| |
Collapse
|
20
|
Wesolowski A, Taylor AR, Chang HH, Verity R, Tessema S, Bailey JA, Alex Perkins T, Neafsey DE, Greenhouse B, Buckee CO. Mapping malaria by combining parasite genomic and epidemiologic data. BMC Med 2018; 16:190. [PMID: 30333020 PMCID: PMC6193293 DOI: 10.1186/s12916-018-1181-9] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/24/2018] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Recent global progress in scaling up malaria control interventions has revived the goal of complete elimination in many countries. Decreasing transmission intensity generally leads to increasingly patchy spatial patterns of malaria transmission in elimination settings, with control programs having to accurately identify remaining foci in order to efficiently target interventions. FINDINGS The role of connectivity between different pockets of local transmission is of increasing importance as programs near elimination since humans are able to transfer parasites beyond the limits of mosquito dispersal, thus re-introducing parasites to previously malaria-free regions. Here, we discuss recent advances in the quantification of spatial epidemiology of malaria, particularly Plasmodium falciparum, in the context of transmission reduction interventions. Further, we highlight the challenges and promising directions for the development of integrated mapping, modeling, and genomic approaches that leverage disparate datasets to measure both connectivity and transmission. CONCLUSION A more comprehensive understanding of the spatial transmission of malaria can be gained using a combination of parasite genetics and epidemiological modeling and mapping. However, additional molecular and quantitative methods are necessary to answer these public health-related questions.
Collapse
Affiliation(s)
- Amy Wesolowski
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.
| | - Aimee R Taylor
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.,Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA.,Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA
| | - Hsiao-Han Chang
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA.,Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Robert Verity
- Medical Research Council Centre for Global Infectious Disease Analysis, Department of Infectious Disease Epidemiology, Imperial College, London, UK
| | - Sofonias Tessema
- Department of Medicine, University of California - San Francisco, San Francisco, CA, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts, Worcester, MA, USA.,Division of Transfusion Medicine, Department of Medicine, University of Massachusetts, Worcester, MA, USA
| | - T Alex Perkins
- Department of Biological Sciences and Eck Institute for Global Health, University of Notre Dame, Notre Dame, IN, USA
| | - Daniel E Neafsey
- Infectious Disease and Microbiome Program, Broad Institute, Cambridge, MA, USA.,Department of Immunology and Infectious Diseases, Harvard TH Chan School of Public Health, Boston, MA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California - San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, 94158, USA
| | - Caroline O Buckee
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA, USA. .,Center for Communicable Disease Dynamics, Harvard TH Chan School of Public Health, Boston, MA, USA.
| |
Collapse
|
21
|
Loy DE, Plenderleith LJ, Sundararaman SA, Liu W, Gruszczyk J, Chen YJ, Trimboli S, Learn GH, MacLean OA, Morgan ALK, Li Y, Avitto AN, Giles J, Calvignac-Spencer S, Sachse A, Leendertz FH, Speede S, Ayouba A, Peeters M, Rayner JC, Tham WH, Sharp PM, Hahn BH. Evolutionary history of human Plasmodium vivax revealed by genome-wide analyses of related ape parasites. Proc Natl Acad Sci U S A 2018; 115:E8450-E8459. [PMID: 30127015 PMCID: PMC6130405 DOI: 10.1073/pnas.1810053115] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Wild-living African apes are endemically infected with parasites that are closely related to human Plasmodium vivax, a leading cause of malaria outside Africa. This finding suggests that the origin of P. vivax was in Africa, even though the parasite is now rare in humans there. To elucidate the emergence of human P. vivax and its relationship to the ape parasites, we analyzed genome sequence data of P. vivax strains infecting six chimpanzees and one gorilla from Cameroon, Gabon, and Côte d'Ivoire. We found that ape and human parasites share nearly identical core genomes, differing by only 2% of coding sequences. However, compared with the ape parasites, human strains of P. vivax exhibit about 10-fold less diversity and have a relative excess of nonsynonymous nucleotide polymorphisms, with site-frequency spectra suggesting they are subject to greatly relaxed purifying selection. These data suggest that human P. vivax has undergone an extreme bottleneck, followed by rapid population expansion. Investigating potential host-specificity determinants, we found that ape P. vivax parasites encode intact orthologs of three reticulocyte-binding protein genes (rbp2d, rbp2e, and rbp3), which are pseudogenes in all human P. vivax strains. However, binding studies of recombinant RBP2e and RBP3 proteins to human, chimpanzee, and gorilla erythrocytes revealed no evidence of host-specific barriers to red blood cell invasion. These data suggest that, from an ancient stock of P. vivax parasites capable of infecting both humans and apes, a severely bottlenecked lineage emerged out of Africa and underwent rapid population growth as it spread globally.
Collapse
Affiliation(s)
- Dorothy E Loy
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Lindsey J Plenderleith
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Sesh A Sundararaman
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| | - Weimin Liu
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jakub Gruszczyk
- Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia
| | - Yi-Jun Chen
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Stephanie Trimboli
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gerald H Learn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Oscar A MacLean
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Alex L K Morgan
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Yingying Li
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Alexa N Avitto
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jasmin Giles
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | | | | | | | - Sheri Speede
- Sanaga-Yong Chimpanzee Rescue Center, International Development Association-Africa, Portland, OR 97208
| | - Ahidjo Ayouba
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Martine Peeters
- Recherche Translationnelle Appliquée au VIH et aux Maladies Infectieuses, Institut de Recherche pour le Développement, University of Montpellier, INSERM, 34090 Montpellier, France
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Genome Campus, Hinxton Cambridgeshire CB10 1SA, United Kingdom
| | - Wai-Hong Tham
- Walter and Eliza Hall Institute of Medical Research, Parkville VIC 3052, Australia
- Department of Medical Biology, The University of Melbourne, Parkville VIC 3010, Australia
| | - Paul M Sharp
- Institute of Evolutionary Biology, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
- Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh EH9 3FL, United Kingdom
| | - Beatrice H Hahn
- Department of Medicine, University of Pennsylvania, Philadelphia, PA 19104;
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
22
|
Parobek CM, Parr JB, Brazeau NF, Lon C, Chaorattanakawee S, Gosi P, Barnett EJ, Norris LD, Meshnick SR, Spring MD, Lanteri CA, Bailey JA, Saunders DL, Lin JT, Juliano JJ. Partner-Drug Resistance and Population Substructuring of Artemisinin-Resistant Plasmodium falciparum in Cambodia. Genome Biol Evol 2018; 9:1673-1686. [PMID: 28854635 PMCID: PMC5522704 DOI: 10.1093/gbe/evx126] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2017] [Indexed: 12/13/2022] Open
Abstract
Plasmodium falciparum in western Cambodia has developed resistance to artemisinin and its partner drugs, causing frequent treatment failure. Understanding this evolution can inform the deployment of new therapies. We investigated the genetic architecture of 78 falciparum isolates using whole-genome sequencing, correlating results to in vivo and ex vivo drug resistance and exploring the relationship between population structure, demographic history, and partner drug resistance. Principle component analysis, network analysis and demographic inference identified a diverse central population with three clusters of clonally expanding parasite populations, each associated with specific K13 artemisinin resistance alleles and partner drug resistance profiles which were consistent with the sequential deployment of artemisinin combination therapies in the region. One cluster displayed ex vivo piperaquine resistance and mefloquine sensitivity with a high rate of in vivo failure of dihydroartemisinin-piperaquine. Another cluster displayed ex vivo mefloquine resistance and piperaquine sensitivity with high in vivo efficacy of dihydroartemisinin-piperaquine. The final cluster was clonal and displayed intermediate sensitivity to both drugs. Variations in recently described piperaquine resistance markers did not explain the difference in mean IC90 or clinical failures between the high and intermediate piperaquine resistance groups, suggesting additional loci may be involved in resistance. The results highlight an important role for partner drug resistance in shaping the P. falciparum genetic landscape in Southeast Asia and suggest that further work is needed to evaluate for other mutations that drive piperaquine resistance.
Collapse
Affiliation(s)
- Christian M Parobek
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill
| | - Jonathan B Parr
- Division of Infectious Diseases, University of North Carolina, Chapel Hill
| | - Nicholas F Brazeau
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Chanthap Lon
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Suwanna Chaorattanakawee
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Panita Gosi
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Eric J Barnett
- School of Medicine, Upstate Medical University, State University of New York, Syracuse
| | - Lauren D Norris
- Division of Infectious Diseases, University of North Carolina, Chapel Hill
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| | - Michele D Spring
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Charlotte A Lanteri
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, Division of Transfusion Medicine, University of Massachusetts Medical School
| | - David L Saunders
- Department of Immunology and Medicine, Armed Forces Research Institute of Medical Sciences, Bangkok, Thailand
| | - Jessica T Lin
- Division of Infectious Diseases, University of North Carolina, Chapel Hill
| | - Jonathan J Juliano
- Curriculum in Genetics and Molecular Biology, School of Medicine, University of North Carolina, Chapel Hill.,Division of Infectious Diseases, University of North Carolina, Chapel Hill.,Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, Chapel Hill
| |
Collapse
|
23
|
Bourgard C, Albrecht L, Kayano ACAV, Sunnerhagen P, Costa FTM. Plasmodium vivax Biology: Insights Provided by Genomics, Transcriptomics and Proteomics. Front Cell Infect Microbiol 2018; 8:34. [PMID: 29473024 PMCID: PMC5809496 DOI: 10.3389/fcimb.2018.00034] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 01/25/2018] [Indexed: 12/17/2022] Open
Abstract
During the last decade, the vast omics field has revolutionized biological research, especially the genomics, transcriptomics and proteomics branches, as technological tools become available to the field researcher and allow difficult question-driven studies to be addressed. Parasitology has greatly benefited from next generation sequencing (NGS) projects, which have resulted in a broadened comprehension of basic parasite molecular biology, ecology and epidemiology. Malariology is one example where application of this technology has greatly contributed to a better understanding of Plasmodium spp. biology and host-parasite interactions. Among the several parasite species that cause human malaria, the neglected Plasmodium vivax presents great research challenges, as in vitro culturing is not yet feasible and functional assays are heavily limited. Therefore, there are gaps in our P. vivax biology knowledge that affect decisions for control policies aiming to eradicate vivax malaria in the near future. In this review, we provide a snapshot of key discoveries already achieved in P. vivax sequencing projects, focusing on developments, hurdles, and limitations currently faced by the research community, as well as perspectives on future vivax malaria research.
Collapse
Affiliation(s)
- Catarina Bourgard
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Letusa Albrecht
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil.,Laboratory of Regulation of Gene Expression, Instituto Carlos Chagas, Curitiba, Brazil
| | - Ana C A V Kayano
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Fabio T M Costa
- Laboratory of Tropical Diseases, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas - UNICAMP, Campinas, Brazil
| |
Collapse
|
24
|
Miller RH, Hathaway NJ, Kharabora O, Mwandagalirwa K, Tshefu A, Meshnick SR, Taylor SM, Juliano JJ, Stewart VA, Bailey JA. A deep sequencing approach to estimate Plasmodium falciparum complexity of infection (COI) and explore apical membrane antigen 1 diversity. Malar J 2017; 16:490. [PMID: 29246158 PMCID: PMC5732508 DOI: 10.1186/s12936-017-2137-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Accepted: 12/06/2017] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Humans living in regions with high falciparum malaria transmission intensity harbour multi-strain infections comprised of several genetically distinct malaria haplotypes. The number of distinct malaria parasite haplotypes identified from an infected human host at a given time is referred to as the complexity of infection (COI). In this study, an amplicon-based deep sequencing method targeting the Plasmodium falciparum apical membrane antigen 1 (pfama1) was utilized to (1) investigate the relationship between P. falciparum prevalence and COI, (2) to explore the population genetic structure of P. falciparum parasites from malaria asymptomatic individuals participating in the 2007 Demographic and Health Survey (DHS) in the Democratic Republic of Congo (DRC), and (3) to explore selection pressures on geospatially divergent parasite populations by comparing AMA1 amino acid frequencies in the DRC and Mali. RESULTS A total of 900 P. falciparum infections across 11 DRC provinces were examined. Deep sequencing of both individuals, for COI analysis, and pools of individuals, to examine population structure, identified 77 unique pfama1 haplotypes. The majority of individual infections (64.5%) contained polyclonal (COI > 1) malaria infections based on the presence of genetically distinct pfama1 haplotypes. A minimal correlation between COI and malaria prevalence as determined by sensitive real-time PCR was identified. Population genetic analyses revealed extensive haplotype diversity, the vast majority of which was shared across the sites. AMA1 amino acid frequencies were similar between parasite populations in the DRC and Mali. CONCLUSIONS Amplicon-based deep sequencing is a useful tool for the detection of multi-strain infections that can aid in the understanding of antigen heterogeneity of potential malaria vaccine candidates, population genetics of malaria parasites, and factors that influence complex, polyclonal malaria infections. While AMA1 and other diverse markers under balancing selection may perform well for understanding COI, they may offer little geographic or temporal discrimination between parasite populations.
Collapse
Affiliation(s)
- Robin H Miller
- Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, USA
| | - Nicholas J Hathaway
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, 55 Lake Avenue North, Worcester, MA, USA
| | - Oksana Kharabora
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - Kashamuka Mwandagalirwa
- Ecole de Santé Publique, Université de Kinshasa, Commune de Lemba, P.O Box 11850, Kinshasa, Democratic Republic of Congo
| | - Antoinette Tshefu
- Ecole de Santé Publique, Université de Kinshasa, Commune de Lemba, P.O Box 11850, Kinshasa, Democratic Republic of Congo
| | - Steven R Meshnick
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - Steve M Taylor
- Division of Infectious Diseases and Duke Global Health Institute, Duke University Medical Center, 303 Research Drive, Durham, NC, USA
| | - Jonathan J Juliano
- University of North Carolina School of Medicine, 101 Manning Drive, Chapel Hill, NC, USA
| | - V Ann Stewart
- Uniformed Services University, 4301 Jones Bridge Road, Bethesda, MD, USA
| | - Jeffrey A Bailey
- Program in Bioinformatics and Integrative Biology, University of Massachusetts School of Medicine, 55 Lake Avenue North, Worcester, MA, USA.
| |
Collapse
|
25
|
Hamilton WL, Claessens A, Otto TD, Kekre M, Fairhurst RM, Rayner JC, Kwiatkowski D. Extreme mutation bias and high AT content in Plasmodium falciparum. Nucleic Acids Res 2017; 45:1889-1901. [PMID: 27994033 PMCID: PMC5389722 DOI: 10.1093/nar/gkw1259] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Accepted: 12/01/2016] [Indexed: 01/31/2023] Open
Abstract
For reasons that remain unknown, the Plasmodium falciparum genome has an exceptionally high AT content compared to other Plasmodium species and eukaryotes in general - nearly 80% in coding regions and approaching 90% in non-coding regions. Here, we examine how this phenomenon relates to genome-wide patterns of de novo mutation. Mutation accumulation experiments were performed by sequential cloning of six P. falciparum isolates growing in human erythrocytes in vitro for 4 years, with 279 clones sampled for whole genome sequencing at different time points. Genome sequence analysis of these samples revealed a significant excess of G:C to A:T transitions compared to other types of nucleotide substitution, which would naturally cause AT content to equilibrate close to the level seen across the P. falciparum reference genome (80.6% AT). These data also uncover an extremely high rate of small indel mutation relative to other species, primarily associated with repetitive AT-rich sequences, in addition to larger-scale structural rearrangements focused in antigen-coding var genes. In conclusion, high AT content in P. falciparum is driven by a systematic mutational bias and ultimately leads to an unusual level of microstructural plasticity, raising the question of whether this contributes to adaptive evolution.
Collapse
Affiliation(s)
- William L Hamilton
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,University of Cambridge School of Clinical Medicine, Cambridge Biomedical Campus, Hills Road, Cambridge, CB2 0SP, UK
| | - Antoine Claessens
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,Medical Research Council Unit The Gambia, Atlantic Road, Fajara, P.O. Box 273, Banjul, The Gambia.,Department of Pathogen Molecular Biology, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - Thomas D Otto
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Mihir Kekre
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, Maryland, USA
| | - Julian C Rayner
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK
| | - Dominic Kwiatkowski
- Malaria Programme, Wellcome Trust Sanger Institute, Hinxton, CB10 1SA, UK.,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, OX3 7BN, UK
| |
Collapse
|
26
|
de Oliveira TC, Rodrigues PT, Menezes MJ, Gonçalves-Lopes RM, Bastos MS, Lima NF, Barbosa S, Gerber AL, Loss de Morais G, Berná L, Phelan J, Robello C, de Vasconcelos ATR, Alves JMP, Ferreira MU. Genome-wide diversity and differentiation in New World populations of the human malaria parasite Plasmodium vivax. PLoS Negl Trop Dis 2017; 11:e0005824. [PMID: 28759591 PMCID: PMC5552344 DOI: 10.1371/journal.pntd.0005824] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/10/2017] [Accepted: 07/20/2017] [Indexed: 01/15/2023] Open
Abstract
Background The Americas were the last continent colonized by humans carrying malaria parasites. Plasmodium falciparum from the New World shows very little genetic diversity and greater linkage disequilibrium, compared with its African counterparts, and is clearly subdivided into local, highly divergent populations. However, limited available data have revealed extensive genetic diversity in American populations of another major human malaria parasite, P. vivax. Methods We used an improved sample preparation strategy and next-generation sequencing to characterize 9 high-quality P. vivax genome sequences from northwestern Brazil. These new data were compared with publicly available sequences from recently sampled clinical P. vivax isolates from Brazil (BRA, total n = 11 sequences), Peru (PER, n = 23), Colombia (COL, n = 31), and Mexico (MEX, n = 19). Principal findings/Conclusions We found that New World populations of P. vivax are as diverse (nucleotide diversity π between 5.2 × 10−4 and 6.2 × 10−4) as P. vivax populations from Southeast Asia, where malaria transmission is substantially more intense. They display several non-synonymous nucleotide substitutions (some of them previously undescribed) in genes known or suspected to be involved in antimalarial drug resistance, such as dhfr, dhps, mdr1, mrp1, and mrp-2, but not in the chloroquine resistance transporter ortholog (crt-o) gene. Moreover, P. vivax in the Americas is much less geographically substructured than local P. falciparum populations, with relatively little between-population genome-wide differentiation (pairwise FST values ranging between 0.025 and 0.092). Finally, P. vivax populations show a rapid decline in linkage disequilibrium with increasing distance between pairs of polymorphic sites, consistent with very frequent outcrossing. We hypothesize that the high diversity of present-day P. vivax lineages in the Americas originated from successive migratory waves and subsequent admixture between parasite lineages from geographically diverse sites. Further genome-wide analyses are required to test the demographic scenario suggested by our data. Plasmodium vivax is the most common human malaria parasite in the Americas, but how and when this species arrived in the New World remains unclear. Here we describe high-quality whole-genome sequence data for nine P. vivax isolates from Brazil, a country that accounts for 37% of the malaria burden in this continent, and compare these data with additional publicly available P. vivax genomes from Brazil, Peru, Colombia, and Mexico. P. vivax populations from the New World were found to be as diverse as their counterparts from areas with substantially higher malaria transmission, such as Southeast Asia, and to carry several non-synonymous substitutions in candidate drug-resistance genes. Moreover, genome-wide patterns of linkage disequilibrium between pairs of polymorphic sites are consistent with very frequent outcrossing in these populations. Interestingly, local P. vivax is more polymorphic, with less between-population differentiation, than sympatric populations of P. falciparum, possibly as a result of different demographic histories of these two species in the Americas. We hypothesize that local P. vivax lineages originated from successive migratory waves and subsequent admixture between parasites from geographically diverse sites.
Collapse
Affiliation(s)
- Thais C. de Oliveira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Priscila T. Rodrigues
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Maria José Menezes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Raquel M. Gonçalves-Lopes
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Melissa S. Bastos
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Nathália F. Lima
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Susana Barbosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Alexandra L. Gerber
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - Guilherme Loss de Morais
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - Luisa Berná
- Unit of Molecular Biology, Pasteur Institute of Montevideo, Montevideo, Uruguay
| | - Jody Phelan
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Carlos Robello
- Unit of Molecular Biology, Pasteur Institute of Montevideo, Montevideo, Uruguay
| | - Ana Tereza R. de Vasconcelos
- Unit of Computational Genomics Darcy Fontoura de Almeida, Laboratory of Bioinformatics, National Laboratory of Scientific Computation, Petrópolis, Brazil
| | - João Marcelo P. Alves
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Marcelo U. Ferreira
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
27
|
Oyebola KM, Idowu ET, Olukosi YA, Awolola TS, Amambua-Ngwa A. Pooled-DNA sequencing identifies genomic regions of selection in Nigerian isolates of Plasmodium falciparum. Parasit Vectors 2017; 10:320. [PMID: 28662682 PMCID: PMC5492182 DOI: 10.1186/s13071-017-2260-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Accepted: 06/22/2017] [Indexed: 01/22/2023] Open
Abstract
Background The burden of falciparum malaria is especially high in sub-Saharan Africa. Differences in pressure from host immunity and antimalarial drugs lead to adaptive changes responsible for high level of genetic variations within and between the parasite populations. Population-specific genetic studies to survey for genes under positive or balancing selection resulting from drug pressure or host immunity will allow for refinement of interventions. Methods We performed a pooled sequencing (pool-seq) of the genomes of 100 Plasmodium falciparum isolates from Nigeria. We explored allele-frequency based neutrality test (Tajima’s D) and integrated haplotype score (iHS) to identify genes under selection. Results Fourteen shared iHS regions that had at least 2 SNPs with a score > 2.5 were identified. These regions code for genes that were likely to have been under strong directional selection. Two of these genes were the chloroquine resistance transporter (CRT) on chromosome 7 and the multidrug resistance 1 (MDR1) on chromosome 5. There was a weak signature of selection in the dihydrofolate reductase (DHFR) gene on chromosome 4 and MDR5 genes on chromosome 13, with only 2 and 3 SNPs respectively identified within the iHS window. We observed strong selection pressure attributable to continued chloroquine and sulfadoxine-pyrimethamine use despite their official proscription for the treatment of uncomplicated malaria. There was also a major selective sweep on chromosome 6 which had 32 SNPs within the shared iHS region. Tajima’s D of circumsporozoite protein (CSP), erythrocyte-binding antigen (EBA-175), merozoite surface proteins - MSP3 and MSP7, merozoite surface protein duffy binding-like (MSPDBL2) and serine repeat antigen (SERA-5) were 1.38, 1.29, 0.73, 0.84 and 0.21, respectively. Conclusion We have demonstrated the use of pool-seq to understand genomic patterns of selection and variability in P. falciparum from Nigeria, which bears the highest burden of infections. This investigation identified known genomic signatures of selection from drug pressure and host immunity. This is evidence that P. falciparum populations explore common adaptive strategies that can be targeted for the development of new interventions. Electronic supplementary material The online version of this article (doi:10.1186/s13071-017-2260-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Kolapo M Oyebola
- Medical Research Council Unit The Gambia, Atlantic Road, Fajara, Gambia.,Parasitology and Bioinformatics, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria.,Nigerian Institute of Medical Research, Lagos, Nigeria
| | - Emmanuel T Idowu
- Parasitology and Bioinformatics, Department of Zoology, Faculty of Science, University of Lagos, Lagos, Nigeria
| | | | | | | |
Collapse
|
28
|
Wong W, Griggs AD, Daniels RF, Schaffner SF, Ndiaye D, Bei AK, Deme AB, MacInnis B, Volkman SK, Hartl DL, Neafsey DE, Wirth DF. Genetic relatedness analysis reveals the cotransmission of genetically related Plasmodium falciparum parasites in Thiès, Senegal. Genome Med 2017; 9:5. [PMID: 28118860 PMCID: PMC5260019 DOI: 10.1186/s13073-017-0398-0] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Accepted: 12/23/2016] [Indexed: 12/30/2022] Open
Abstract
Background As public health interventions drive parasite populations to elimination, genetic epidemiology models that incorporate population genomics can be powerful tools for evaluating the effectiveness of continued intervention. However, current genetic epidemiology models may not accurately simulate the population genetic profile of parasite populations, particularly with regard to polygenomic (multi-strain) infections. Current epidemiology models simulate polygenomic infections via superinfection (multiple mosquito bites), despite growing evidence that cotransmission (a single mosquito bite) may contribute to polygenomic infections. Methods Here, we quantified the relatedness of strains within 31 polygenomic infections collected from patients in Thiès, Senegal using a hidden Markov model to measure the proportion of the genome that is inferred to be identical by descent. Results We found that polygenomic infections can be composed of highly related parasites and that superinfection models drastically underestimate the relatedness of strains within polygenomic infections. Conclusions Our findings suggest that cotransmission is a major contributor to polygenomic infections in Thiès, Senegal. The incorporation of cotransmission into existing genetic epidemiology models may enhance our ability to characterize and predict changes in population structure associated with reduced transmission intensities and the emergence of important phenotypes like drug resistance that threaten to undermine malaria elimination activities. Electronic supplementary material The online version of this article (doi:10.1186/s13073-017-0398-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wesley Wong
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA
| | | | - Rachel F Daniels
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute, Cambridge, MA, 02142, USA
| | | | - Daouda Ndiaye
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Amy K Bei
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | - Awa B Deme
- Faculty of Medicine and Pharmacy, Cheikh Anta Diop University, Dakar, Senegal
| | | | - Sarah K Volkman
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Broad Institute, Cambridge, MA, 02142, USA.,School of Nursing and Health Sciences, Simmons College, Boston, MA, 02115, USA
| | - Daniel L Hartl
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA.,Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | | | - Dyann F Wirth
- Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, MA, 02115, USA. .,Broad Institute, Cambridge, MA, 02142, USA.
| |
Collapse
|
29
|
Chang HH, Worby CJ, Yeka A, Nankabirwa J, Kamya MR, Staedke SG, Dorsey G, Murphy M, Neafsey DE, Jeffreys AE, Hubbart C, Rockett KA, Amato R, Kwiatkowski DP, Buckee CO, Greenhouse B. THE REAL McCOIL: A method for the concurrent estimation of the complexity of infection and SNP allele frequency for malaria parasites. PLoS Comput Biol 2017; 13:e1005348. [PMID: 28125584 PMCID: PMC5300274 DOI: 10.1371/journal.pcbi.1005348] [Citation(s) in RCA: 90] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2016] [Revised: 02/09/2017] [Accepted: 01/05/2017] [Indexed: 12/24/2022] Open
Abstract
As many malaria-endemic countries move towards elimination of Plasmodium falciparum, the most virulent human malaria parasite, effective tools for monitoring malaria epidemiology are urgent priorities. P. falciparum population genetic approaches offer promising tools for understanding transmission and spread of the disease, but a high prevalence of multi-clone or polygenomic infections can render estimation of even the most basic parameters, such as allele frequencies, challenging. A previous method, COIL, was developed to estimate complexity of infection (COI) from single nucleotide polymorphism (SNP) data, but relies on monogenomic infections to estimate allele frequencies or requires external allele frequency data which may not available. Estimates limited to monogenomic infections may not be representative, however, and when the average COI is high, they can be difficult or impossible to obtain. Therefore, we developed THE REAL McCOIL, Turning HEterozygous SNP data into Robust Estimates of ALelle frequency, via Markov chain Monte Carlo, and Complexity Of Infection using Likelihood, to incorporate polygenomic samples and simultaneously estimate allele frequency and COI. This approach was tested via simulations then applied to SNP data from cross-sectional surveys performed in three Ugandan sites with varying malaria transmission. We show that THE REAL McCOIL consistently outperforms COIL on simulated data, particularly when most infections are polygenomic. Using field data we show that, unlike with COIL, we can distinguish epidemiologically relevant differences in COI between and within these sites. Surprisingly, for example, we estimated high average COI in a peri-urban subregion with lower transmission intensity, suggesting that many of these cases were imported from surrounding regions with higher transmission intensity. THE REAL McCOIL therefore provides a robust tool for understanding the molecular epidemiology of malaria across transmission settings.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Colin J. Worby
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Adoke Yeka
- Makerere University School of Public Health, College of Health Sciences, Kampala, Uganda
- Infectious Disease Research Collaboration, Kampala, Uganda
| | - Joaniter Nankabirwa
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Moses R. Kamya
- Infectious Disease Research Collaboration, Kampala, Uganda
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Sarah G. Staedke
- London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Maxwell Murphy
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| | - Daniel E. Neafsey
- Genome Sequencing and Analysis Program, Broad Institute, Cambridge, Massachusetts, United States
| | - Anna E. Jeffreys
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Christina Hubbart
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Kirk A. Rockett
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Roberto Amato
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Dominic P. Kwiatkowski
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Wellcome Trust Sanger Institute, Cambridge, United Kingdom
| | - Caroline O. Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts, United States
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States
| |
Collapse
|
30
|
Selective sweep suggests transcriptional regulation may underlie Plasmodium vivax resilience to malaria control measures in Cambodia. Proc Natl Acad Sci U S A 2016; 113:E8096-E8105. [PMID: 27911780 DOI: 10.1073/pnas.1608828113] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Cambodia, in which both Plasmodium vivax and Plasmodium falciparum are endemic, has been the focus of numerous malaria-control interventions, resulting in a marked decline in overall malaria incidence. Despite this decline, the number of P vivax cases has actually increased. To understand better the factors underlying this resilience, we compared the genetic responses of the two species to recent selective pressures. We sequenced and studied the genomes of 70 P vivax and 80 P falciparum isolates collected between 2009 and 2013. We found that although P falciparum has undergone population fracturing, the coendemic P vivax population has grown undisrupted, resulting in a larger effective population size, no discernable population structure, and frequent multiclonal infections. Signatures of selection suggest recent, species-specific evolutionary differences. Particularly, in contrast to P falciparum, P vivax transcription factors, chromatin modifiers, and histone deacetylases have undergone strong directional selection, including a particularly strong selective sweep at an AP2 transcription factor. Together, our findings point to different population-level adaptive mechanisms used by P vivax and P falciparum parasites. Although population substructuring in P falciparum has resulted in clonal outgrowths of resistant parasites, P vivax may use a nuanced transcriptional regulatory approach to population maintenance, enabling it to preserve a larger, more diverse population better suited to facing selective threats. We conclude that transcriptional control may underlie P vivax's resilience to malaria control measures. Novel strategies to target such processes are likely required to eradicate P vivax and achieve malaria elimination.
Collapse
|
31
|
Mutation tendency of mutator Plasmodium berghei with proofreading-deficient DNA polymerase δ. Sci Rep 2016; 6:36971. [PMID: 27845384 PMCID: PMC5109483 DOI: 10.1038/srep36971] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/21/2016] [Indexed: 12/05/2022] Open
Abstract
In this study, we investigated the mutation tendency of a mutator rodent malaria parasite, Plasmodium berghei, with proofreading-deficient DNA polymerase δ. Wild-type and mutator parasites were maintained in mice for over 24 weeks, and the genome-wide accumulated mutations were determined by high-throughput sequencing. The mutator P. berghei had a significant preference for C/G to A/T substitutions; thus, its genome had a trend towards a higher AT content. The mutation rate was influenced by the sequence context, and mutations were markedly elevated at TCT. Some genes mutated repeatedly in replicate passage lines. In particular, knockout mutations of the AP2-G gene were frequent, which conferred strong growth advantages on parasites during the blood stage but at the cost of losing the ability to form gametocytes. This is the first report to demonstrate a biased mutation tendency in malaria parasites, and its results help to promote our basic understanding of Plasmodium genetics.
Collapse
|
32
|
Auburn S, Barry AE. Dissecting malaria biology and epidemiology using population genetics and genomics. Int J Parasitol 2016; 47:77-85. [PMID: 27825828 DOI: 10.1016/j.ijpara.2016.08.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 08/09/2016] [Accepted: 08/25/2016] [Indexed: 10/20/2022]
Abstract
Molecular approaches have an increasingly recognized utility in surveillance of malaria parasite populations, not only in defining prevalence and incidence with higher sensitivity than traditional methods, but also in monitoring local and regional parasite transmission patterns. In this review, we provide an overview of population genetic and genomic studies of human-infecting Plasmodium species, highlighting recent advances in the field. In accordance with the renewed impetus for malaria eradication, many studies are now using genetic and genomic epidemiology to support local evidence-based intervention strategies. Microsatellite genotyping remains a popular approach for both Plasmodium falciparum and Plasmodium vivax. However, with the increasing availability of whole genome sequencing data enabling effective single nucleotide polymorphism-based panels tailored to a given study question and setting, this approach is gaining popularity. The availability of new reference genomes for Plasmodium malariae and Plasmodium ovale should see a surge in similar molecular studies on these currently neglected species. Genomic studies are revealing new insights into important adaptive mechanisms of the parasite including antimalarial drug resistance. The advent of new methodologies such as selective whole genome amplification for dealing with extensive human DNA in low density field isolates should see genome-wide approaches becoming routine for parasite surveillance once the economic costs outweigh the current cost benefits of targeted approaches.
Collapse
Affiliation(s)
- Sarah Auburn
- Global and Tropical Health Division, Menzies School of Health Research, Darwin, Australia
| | - Alyssa E Barry
- Division of Population Health and Immunity, Walter and Eliza Hall Institute of Medical Research, Melbourne, Australia; Department of Medical Biology, University of Melbourne, Melbourne, Australia.
| |
Collapse
|
33
|
Anderson TJC, Nair S, McDew-White M, Cheeseman IH, Nkhoma S, Bilgic F, McGready R, Ashley E, Pyae Phyo A, White NJ, Nosten F. Population Parameters Underlying an Ongoing Soft Sweep in Southeast Asian Malaria Parasites. Mol Biol Evol 2016; 34:131-144. [PMID: 28025270 PMCID: PMC5216669 DOI: 10.1093/molbev/msw228] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Multiple kelch13 alleles conferring artemisinin resistance (ART-R) are currently spreading through Southeast Asian malaria parasite populations, providing a unique opportunity to observe an ongoing soft selective sweep, investigate why resistance alleles have evolved multiple times and determine fundamental population genetic parameters for Plasmodium. We sequenced kelch13 (n = 1,876), genotyped 75 flanking SNPs, and measured clearance rate (n = 3,552) in parasite infections from Western Thailand (2001–2014). We describe 32 independent coding mutations including common mutations outside the kelch13 propeller associated with significant reductions in clearance rate. Mutations were first observed in 2003 and rose to 90% by 2014, consistent with a selection coefficient of ∼0.079. ART-R allele diversity rose until 2012 and then dropped as one allele (C580Y) spread to high frequency. The frequency with which adaptive alleles arise is determined by the rate of mutation and the population size. Two factors drive this soft sweep: (1) multiple kelch13 amino-acid mutations confer resistance providing a large mutational target—we estimate the target is 87–163 bp. (2) The population mutation parameter (Θ = 2Neμ) can be estimated from the frequency distribution of ART-R alleles and is ∼5.69, suggesting that short term effective population size is 88 thousand to 1.2 million. This is 52–705 times greater than Ne estimated from fluctuation in allele frequencies, suggesting that we have previously underestimated the capacity for adaptive evolution in Plasmodium. Our central conclusions are that retrospective studies may underestimate the complexity of selective events and the Ne relevant for adaptation for malaria is considerably higher than previously estimated.
Collapse
Affiliation(s)
| | - Shalini Nair
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Marina McDew-White
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Ian H Cheeseman
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Standwell Nkhoma
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Fatma Bilgic
- Department of Genetics, Texas Biomedical Research Institute, San Antonio, TX
| | - Rose McGready
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Elizabeth Ashley
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom
| | - Nicholas J White
- Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - François Nosten
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand.,Centre for Tropical Medicine, Nuffield Department of Medicine, Churchill Hospital, University of Oxford, Oxford, United Kingdom.,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
34
|
Chang HH, Childs LM, Buckee CO. Variation in infection length and superinfection enhance selection efficiency in the human malaria parasite. Sci Rep 2016; 6:26370. [PMID: 27193195 PMCID: PMC4872237 DOI: 10.1038/srep26370] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 04/28/2016] [Indexed: 01/08/2023] Open
Abstract
The capacity for adaptation is central to the evolutionary success of the human malaria parasite Plasmodium falciparum. Malaria epidemiology is characterized by the circulation of multiple, genetically diverse parasite clones, frequent superinfection, and highly variable infection lengths, a large number of which are chronic and asymptomatic. The impact of these characteristics on the evolution of the parasite is largely unknown, however, hampering our understanding of the impact of interventions and the emergence of drug resistance. In particular, standard population genetic frameworks do not accommodate variation in infection length or superinfection. Here, we develop a population genetic model of malaria including these variations, and show that these aspects of malaria infection dynamics enhance both the probability and speed of fixation for beneficial alleles in complex and non-intuitive ways. We find that populations containing a mixture of short- and long-lived infections promote selection efficiency. Interestingly, this increase in selection efficiency occurs even when only a small fraction of the infections are chronic, suggesting that selection can occur efficiently in areas of low transmission intensity, providing a hypothesis for the repeated emergence of drug resistance in the low transmission setting of Southeast Asia.
Collapse
Affiliation(s)
- Hsiao-Han Chang
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Lauren M Childs
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| | - Caroline O Buckee
- Center for Communicable Disease Dynamics, Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA 02115, USA
| |
Collapse
|
35
|
Carlton JM, Volkman SK, Uplekar S, Hupalo DN, Alves JMP, Cui L, Donnelly M, Roos DS, Harb OS, Acosta M, Read A, Ribolla PEM, Singh OP, Valecha N, Wassmer SC, Ferreira M, Escalante AA. Population Genetics, Evolutionary Genomics, and Genome-Wide Studies of Malaria: A View Across the International Centers of Excellence for Malaria Research. Am J Trop Med Hyg 2015; 93:87-98. [PMID: 26259940 PMCID: PMC4574278 DOI: 10.4269/ajtmh.15-0049] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022] Open
Abstract
The study of the three protagonists in malaria-the Plasmodium parasite, the Anopheles mosquito, and the human host-is key to developing methods to control and eventually eliminate the disease. Genomic technologies, including the recent development of next-generation sequencing, enable interrogation of this triangle to an unprecedented level of scrutiny, and promise exciting progress toward real-time epidemiology studies and the study of evolutionary adaptation. We discuss the use of genomics by the International Centers of Excellence for Malaria Research, a network of field sites and laboratories in malaria-endemic countries that undertake cutting-edge research, training, and technology transfer in malarious countries of the world.
Collapse
Affiliation(s)
- Jane M. Carlton
- *Address correspondence to Jane M. Carlton, Center for Genomics and Systems Biology, New York University, 12 Waverly Place, New York, NY 10003. E-mail:
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Duffy CW, Assefa SA, Abugri J, Amoako N, Owusu-Agyei S, Anyorigiya T, MacInnis B, Kwiatkowski DP, Conway DJ, Awandare GA. Comparison of genomic signatures of selection on Plasmodium falciparum between different regions of a country with high malaria endemicity. BMC Genomics 2015; 16:527. [PMID: 26173872 PMCID: PMC4502944 DOI: 10.1186/s12864-015-1746-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Accepted: 07/03/2015] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Genome wide sequence analyses of malaria parasites from widely separated areas of the world have identified contrasting population structures and signatures of selection. To compare relatively closely situated but ecologically contrasting regions within an endemic African country, population samples of Plasmodium falciparum clinical isolates were collected in Ghana from Kintampo in the central forest-savannah area, and Navrongo in a drier savannah area ~350 km to the north with more seasonally-restricted transmission. Parasite DNA was sequenced and paired-end reads mapped to the P. falciparum reference genome. RESULTS High coverage genome wide sequence data for 85 different clinical isolates enabled analysis of 121,712 single nucleotide polymorphisms (SNPs). The local populations had similar proportions of mixed genotype infections, similar SNP allele frequency distributions, and eleven chromosomal regions had elevated integrated haplotype scores (|iHS|) in both. A between-population Rsb metric comparing extended haplotype homozygosity indicated a stronger signal within Kintampo for one of these regions (on chromosome 14) and in Navrongo for two of these regions (on chromosomes 10 and 13). At least one gene in each of these identified regions is a potential target of locally varying selection. The candidates include genes involved in parasite development in mosquitoes, members of variant-expressed multigene families, and a leading vaccine-candidate target of immunity. CONCLUSIONS Against a background of very similar population structure and selection signatures in the P. falciparum populations of Ghana, three narrow genomic regions showed evidence indicating local differences in historical timing or intensity of selection. Sampling of closely situated populations across heterogeneous environments has potential to refine the mapping of important loci under temporally or spatially varying selection.
Collapse
Affiliation(s)
- Craig W Duffy
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | - Samuel A Assefa
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | - James Abugri
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Box LG 54, Volta Road, Legon, Accra, Ghana. .,Department of Applied Chemistry and Biochemistry, University for Development Studies, Tamale, Ghana.
| | | | - Seth Owusu-Agyei
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK. .,Kintampo Health Research Centre, Kintampo, Ghana.
| | | | | | - Dominic P Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton, UK. .,Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK.
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK.
| | - Gordon A Awandare
- West African Centre for Cell Biology of Infectious Pathogens (WACCBIP), Department of Biochemistry, Cell and Molecular Biology, University of Ghana, Box LG 54, Volta Road, Legon, Accra, Ghana.
| |
Collapse
|
37
|
Tyagi S, Das A. Mitochondrial population genomic analyses reveal population structure and demography of Indian Plasmodium falciparum. Mitochondrion 2015; 24:9-21. [PMID: 26149324 DOI: 10.1016/j.mito.2015.06.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 06/29/2015] [Accepted: 06/29/2015] [Indexed: 11/30/2022]
Abstract
Inference on the genetic diversity of Plasmodium falciparum populations could help in better management of malaria. A very recent study with mitochondrial (mt) genomes in global P. falciparum had revealed interesting evolutionary genetic patterns of Indian isolates in comparison to global ones. However, no population genetic study using the whole mt genome sequences of P. falciparum isolates collected in the entire distribution range in India has yet been performed. We herewith have analyzed 85 whole mt genomes (48 already published and 37 entirely new) sampled from eight differentially endemic Indian locations to estimate genetic diversity and infer population structure and historical demography of Indian P. falciparum. We found 19 novel Indian-specific Single Nucleotide Polymorphisms (SNPs) and 22 novel haplotypes segregating in Indian P. falciparum. Accordingly, high haplotype and nucleotide diversities were detected in Indian P. falciparum in comparison to many other global isolates. Indian P. falciparum populations were found to be moderately sub-structured with four different genetic clusters. Interestingly, group of local populations aggregate to form each cluster; while samples from Jharkhand and Odisha formed a single cluster, P. falciparum isolates from Asom formed an independent one. Similarly, Surat, Bilaspur and Betul formed a single cluster and Goa and Mangalore formed another. Interestingly, P. falciparum isolates from the two later populations were significantly genetically differentiated from isolates collected in other six Indian locations. Signature of historical population expansion was evident in five population samples, and the onset of expansion event was found to be very similar to African P. falciparum. In agreement with the previous finding, the estimated Time to Most Recent Common Ancestor (TMRCA) and the effective population size were high in Indian P. falciparum. All these genetic features of Indian P. falciparum with high mt genome diversity are somehow similar to Africa, but quite different from other Asian population samples.
Collapse
Affiliation(s)
- Suchi Tyagi
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, New Delhi, India
| | - Aparup Das
- Evolutionary Genomics and Bioinformatics Laboratory, Division of Genomics and Bioinformatics, National Institute of Malaria Research, New Delhi, India.
| |
Collapse
|
38
|
Hupalo DN, Bradic M, Carlton JM. The impact of genomics on population genetics of parasitic diseases. Curr Opin Microbiol 2014; 23:49-54. [PMID: 25461572 DOI: 10.1016/j.mib.2014.11.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 10/24/2022]
Abstract
Parasites, defined as eukaryotic microbes and parasitic worms that cause global diseases of human and veterinary importance, span many lineages in the eukaryotic Tree of Life. Historically challenging to study due to their complicated life-cycles and association with impoverished settings, their inherent complexities are now being elucidated by genome sequencing. Over the course of the last decade, projects in large sequencing centers, and increasingly frequently in individual research labs, have sequenced dozens of parasite reference genomes and field isolates from patient populations. This 'tsunami' of genomic data is answering questions about parasite genetic diversity, signatures of evolution orchestrated through anti-parasitic drug and host immune pressure, and the characteristics of populations. This brief review focuses on the state of the art of parasitic protist genomics, how the peculiar genomes of parasites are driving creative methods for their sequencing, and the impact that next-generation sequencing is having on our understanding of parasite population genomics and control of the diseases they cause.
Collapse
Affiliation(s)
- Daniel N Hupalo
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States
| | - Martina Bradic
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, 12 Waverly Place, New York, NY 10003, United States.
| |
Collapse
|
39
|
Ocholla H, Preston MD, Mipando M, Jensen ATR, Campino S, MacInnis B, Alcock D, Terlouw A, Zongo I, Oudraogo JB, Djimde AA, Assefa S, Doumbo OK, Borrmann S, Nzila A, Marsh K, Fairhurst RM, Nosten F, Anderson TJC, Kwiatkowski DP, Craig A, Clark TG, Montgomery J. Whole-genome scans provide evidence of adaptive evolution in Malawian Plasmodium falciparum isolates. J Infect Dis 2014; 210:1991-2000. [PMID: 24948693 PMCID: PMC4241944 DOI: 10.1093/infdis/jiu349] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Background Selection by host immunity and antimalarial drugs has driven extensive adaptive evolution in Plasmodium falciparum and continues to produce ever-changing landscapes of genetic variation. Methods We performed whole-genome sequencing of 69 P. falciparum isolates from Malawi and used population genetics approaches to investigate genetic diversity and population structure and identify loci under selection. Results High genetic diversity (π = 2.4 × 10−4), moderately high multiplicity of infection (2.7), and low linkage disequilibrium (500-bp) were observed in Chikhwawa District, Malawi, an area of high malaria transmission. Allele frequency–based tests provided evidence of recent population growth in Malawi and detected potential targets of host immunity and candidate vaccine antigens. Comparison of the sequence variation between isolates from Malawi and those from 5 geographically dispersed countries (Kenya, Burkina Faso, Mali, Cambodia, and Thailand) detected population genetic differences between Africa and Asia, within Southeast Asia, and within Africa. Haplotype-based tests of selection to sequence data from all 6 populations identified signals of directional selection at known drug-resistance loci, including pfcrt, pfdhps, pfmdr1, and pfgch1. Conclusions The sequence variations observed at drug-resistance loci reflect differences in each country's historical use of antimalarial drugs and may be useful in formulating local malaria treatment guidelines.
Collapse
Affiliation(s)
- Harold Ocholla
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Liverpool School of Tropical Medicine, Pembroke Place, Liverpool
| | - Mark D Preston
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine
| | - Mwapatsa Mipando
- Department of Physiology, College of Medicine, University of Malawi, Blantyre
| | - Anja T R Jensen
- Centre for Medical Parasitology, Department of International Health, Immunology and Microbiology, University of Copenhagen Department of Infectious Diseases, Copenhagen University Hospital, Denmark
| | | | | | | | - Anja Terlouw
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Liverpool School of Tropical Medicine, Pembroke Place, Liverpool
| | - Issaka Zongo
- Institut de Recherche en Sciences de la Sant, Bobo-Dioulasso, Burkina Faso
| | | | - Abdoulaye A Djimde
- Wellcome Trust Sanger Institute, Hinxton Malaria Research and Training Centre, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Mali
| | - Samuel Assefa
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine
| | - Ogobara K Doumbo
- Malaria Research and Training Centre, Faculty of Medicine, Pharmacy and Dentistry, University of Bamako, Mali
| | | | - Alexis Nzila
- Department of Biology, King Fahd University of Petroleum and Minerals, Dhahran, Saudi Arabia
| | - Kevin Marsh
- KEMRI-Wellcome Trust Research Programme, Kilifi, Kenya
| | - Rick M Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland
| | - Francois Nosten
- Centre for Tropical Medicine, Nuffield Department of Medicine, University of Oxford, United Kingdom Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | | | - Dominic P Kwiatkowski
- Wellcome Trust Sanger Institute, Hinxton Wellcome Trust Centre for Human Genetics, University of Oxford, United Kingdom
| | - Alister Craig
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool
| | - Taane G Clark
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine
| | - Jacqui Montgomery
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme Liverpool School of Tropical Medicine, Pembroke Place, Liverpool
| |
Collapse
|
40
|
Tyagi S, Pande V, Das A. New insights into the evolutionary history of Plasmodium falciparum from mitochondrial genome sequence analyses of Indian isolates. Mol Ecol 2014; 23:2975-87. [PMID: 24845521 DOI: 10.1111/mec.12800] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2013] [Revised: 05/16/2014] [Accepted: 05/16/2014] [Indexed: 12/31/2022]
Abstract
Estimating genetic diversity and inferring the evolutionary history of Plasmodium falciparum could be helpful in understanding origin and spread of virulent and drug-resistant forms of the malaria pathogen and therefore contribute to malaria control programme. Genetic diversity of the whole mitochondrial (mt) genome of P. falciparum sampled across the major distribution ranges had been reported, but no Indian P. falciparum isolate had been analysed so far, even though India is highly endemic to P. falciparum malaria. We have sequenced the whole mt genome of 44 Indian field isolates and utilized published data set of 96 genome sequences to present global genetic diversity and to revisit the evolutionary history of P. falciparum. Indian P. falciparum presents high genetic diversity with several characteristics of ancestral populations and shares many of the genetic features with African and to some extent Papua New Guinean (PNG) isolates. Similar to African isolates, Indian P. falciparum populations have maintained high effective population size and undergone rapid expansion in the past with oldest time to the most recent common ancestor (TMRCA). Interestingly, one of the four single nucleotide polymorphisms (SNPs) that differentiates P. falciparum from P. falciparum-like isolates (infecting non-human primates in Africa) was found to be segregating in five Indian P. falciparum isolates. This SNP was in tight linkage with other two novel SNPs that were found exclusively in these five Indian isolates. The results on the mt genome sequence analyses of Indian isolates on the whole add to the current understanding on the evolutionary history of P. falciparum.
Collapse
Affiliation(s)
- Suchi Tyagi
- Evolutionary Genomics and Bioinformatics Laboratory, National Institute of Malaria Research, Sector - 8 Dwarka, New Delhi, 110077, India
| | | | | |
Collapse
|
41
|
Yalcindag E, Rougeron V, Elguero E, Arnathau C, Durand P, Brisse S, Diancourt L, Aubouy A, Becquart P, D'Alessandro U, Fontenille D, Gamboa D, Maestre A, Ménard D, Musset L, Noya O, Veron V, Wide A, Carme B, Legrand E, Chevillon C, Ayala FJ, Renaud F, Prugnolle F. Patterns of selection onPlasmodium falciparumerythrocyte-binding antigens after the colonization of the New World. Mol Ecol 2014; 23:1979-93. [DOI: 10.1111/mec.12696] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Erhan Yalcindag
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
- Department of Botany and Zoology; Faculty of Science; Masaryk University; Kotlářská 2 611 37 Brno Czech Republic
| | - Virginie Rougeron
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
- Centre International de Recherches Médicales de Franceville (CIRMF); BP 769 Franceville Gabon
| | - Eric Elguero
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | - Céline Arnathau
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | - Patrick Durand
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | - Sylvain Brisse
- Institut Pasteur; Plate-forme Génotypage des Pathogènes et Santé Publique; 28 Rue du docteur Roux 75724 Paris France
| | - Laure Diancourt
- Institut Pasteur; Plate-forme Génotypage des Pathogènes et Santé Publique; 28 Rue du docteur Roux 75724 Paris France
| | - Agnes Aubouy
- Institut de Recherche pour le Développement (IRD); UMR152; Université Paul Sabatier; 35 Chemin des Maraîchers 31062 Toulouse France
| | - Pierre Becquart
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | | | - Didier Fontenille
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | - Dionicia Gamboa
- Instituto de Medicina Tropical Alexander Von Humboldt; Universidad Peruana Cayetano Heredia; AP 4314 Lima 100 Peru
| | - Amanda Maestre
- Grupo Salud y Comunidad; Facultad de Medicina; Universidad de Antioquía; Medellín Colombia
| | - Didier Ménard
- Molecular Epidemiology Unit; Pasteur Institute of Cambodia; 5 Boulevard Monivong - PO Box 983 Phnom Penh Cambodia
| | - Lise Musset
- Parasitology laboratory; Institut Pasteur de Guyane; BP6010 97306 Cayenne Cedex French Guiana
| | - Oscar Noya
- Centro para Estudios Sobre Malaria; Instituto de Altos Estudios en Salud “Dr. Arnoldo Gabaldón”-INH; Ministerio del Poder Popular para la Salud; Instituto de Medicina Tropical; Universidad Central de Venezuela; Caracas Venezuela
| | | | - Albina Wide
- Centro para Estudios Sobre Malaria; Instituto de Altos Estudios en Salud “Dr. Arnoldo Gabaldón”-INH; Ministerio del Poder Popular para la Salud; Instituto de Medicina Tropical; Universidad Central de Venezuela; Caracas Venezuela
| | - Bernard Carme
- Centre d'Investigation Clinique Epidémiologie Clinique Antilles; Guyane CIC-EC 802; Cayenne General Hospital; Cayenne French Guiana
| | - Eric Legrand
- Parasitology laboratory; Institut Pasteur de Guyane; BP6010 97306 Cayenne Cedex French Guiana
| | - Christine Chevillon
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | - Francisco J. Ayala
- Department of Ecology and Evolutionary Biology; University of California; Irvine CA 92697 USA
| | - François Renaud
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
| | - Franck Prugnolle
- MIVEGEC (Laboratoire Maladies Infectieuses et Vecteurs, Ecologie, Génétique, Evolution et Contrôle); UMR CNRS 5290/IRD 224; Université Montpellier 1; Université Montpellier 2; CHRU de Montpellier; 39 Avenue Charles Flahault 34295 Montpellier France
- Centre International de Recherches Médicales de Franceville (CIRMF); BP 769 Franceville Gabon
| |
Collapse
|
42
|
Mobegi VA, Duffy CW, Amambua-Ngwa A, Loua KM, Laman E, Nwakanma DC, MacInnis B, Aspeling-Jones H, Murray L, Clark TG, Kwiatkowski DP, Conway DJ. Genome-wide analysis of selection on the malaria parasite Plasmodium falciparum in West African populations of differing infection endemicity. Mol Biol Evol 2014; 31:1490-9. [PMID: 24644299 PMCID: PMC4032133 DOI: 10.1093/molbev/msu106] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Locally varying selection on pathogens may be due to differences in drug pressure, host immunity, transmission opportunities between hosts, or the intensity of between-genotype competition within hosts. Highly recombining populations of the human malaria parasite Plasmodium falciparum throughout West Africa are closely related, as gene flow is relatively unrestricted in this endemic region, but markedly varying ecology and transmission intensity should cause distinct local selective pressures. Genome-wide analysis of sequence variation was undertaken on a sample of 100 P. falciparum clinical isolates from a highly endemic region of the Republic of Guinea where transmission occurs for most of each year and compared with data from 52 clinical isolates from a previously sampled population from The Gambia, where there is relatively limited seasonal malaria transmission. Paired-end short-read sequences were mapped against the 3D7 P. falciparum reference genome sequence, and data on 136,144 single nucleotide polymorphisms (SNPs) were obtained. Within-population analyses identifying loci showing evidence of recent positive directional selection and balancing selection confirm that antimalarial drugs and host immunity have been major selective agents. Many of the signatures of recent directional selection reflected by standardized integrated haplotype scores were population specific, including differences at drug resistance loci due to historically different antimalarial use between the countries. In contrast, both populations showed a similar set of loci likely to be under balancing selection as indicated by very high Tajima’s D values, including a significant overrepresentation of genes expressed at the merozoite stage that invades erythrocytes and several previously validated targets of acquired immunity. Between-population FST analysis identified exceptional differentiation of allele frequencies at a small number of loci, most markedly for five SNPs covering a 15-kb region within and flanking the gdv1 gene that regulates the early stages of gametocyte development, which is likely related to the extreme differences in mosquito vector abundance and seasonality that determine the transmission opportunities for the sexual stage of the parasite.
Collapse
Affiliation(s)
- Victor A Mobegi
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United KingdomMedical Research Council Unit, Fajara, Banjul, The Gambia
| | - Craig W Duffy
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | | | - Kovana M Loua
- National Institute of Public Health, Conakry, Republic of Guinea
| | - Eugene Laman
- National Institute of Public Health, Conakry, Republic of Guinea
| | | | - Bronwyn MacInnis
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United Kingdom
| | - Harvey Aspeling-Jones
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Lee Murray
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Taane G Clark
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Dominic P Kwiatkowski
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge, United KingdomWellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - David J Conway
- Pathogen Molecular Biology Department, London School of Hygiene and Tropical Medicine, London, United KingdomMedical Research Council Unit, Fajara, Banjul, The Gambia
| |
Collapse
|
43
|
Abstract
Detecting signals of selection in the genome of malaria parasites is a key to identify targets for drug and vaccine development. Malaria parasites have a unique life cycle alternating between vector and host organism with a population bottleneck at each transition. These recurrent bottlenecks could influence the patterns of genetic diversity and the power of existing population genetic tools to identify sites under positive selection. We therefore simulated the site-frequency spectrum of a beneficial mutant allele through time under the malaria life cycle. We investigated the power of current population genetic methods to detect positive selection based on the site-frequency spectrum as well as temporal changes in allele frequency. We found that a within-host selective advantage is difficult to detect using these methods. Although a between-host transmission advantage could be detected, the power is decreased when compared with the classical Wright–Fisher (WF) population model. Using an adjusted null site-frequency spectrum that takes the malaria life cycle into account, the power of tests based on the site-frequency spectrum to detect positive selection is greatly improved. Our study demonstrates the importance of considering the life cycle in genetic analysis, especially in parasites with complex life cycles.
Collapse
|
44
|
Deme AB, Park DJ, Bei AK, Sarr O, Badiane AS, Gueye PEHO, Ahouidi A, Ndir O, Mboup S, Wirth DF, Ndiaye D, Volkman SK. Analysis of pfhrp2 genetic diversity in Senegal and implications for use of rapid diagnostic tests. Malar J 2014; 13:34. [PMID: 24472178 PMCID: PMC3913323 DOI: 10.1186/1475-2875-13-34] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2013] [Accepted: 01/27/2014] [Indexed: 11/30/2022] Open
Abstract
Background The Senegalese National Malaria Control Programme has recommended use of rapid diagnostic tests (RDTs) that target the histidine-rich protein 2 (HRP2), specific to Plasmodium falciparum, to diagnose malaria cases. The target antigen has been shown to be polymorphic, which may explain the variability in HRP2-based RDT results reported in field studies. The genetic diversity of the pfhrp2 gene has not been investigated in depth in many African countries. The goal of this study is to determine the extent of polymorphism in pfhrp2 among Senegal, Mali and Uganda parasite populations, and discuss the implications of these findings on the utility of RDTs that are based on HRP2 detection. Methods Sequencing data from the pfhrp2 locus were used to analyze the genetic diversity of this gene among three populations, with different transmission dynamics and malaria parasite ecologies. Nucleotide diversity (π) and non-synonymous nucleotide diversity (πNS) were studied in the pfhrp2 gene from isolates obtained in Senegal. Amino acid repeat length polymorphisms in the PfHRP2 antigen were characterized and parameters of genetic diversity, such as frequency and correlation between repeats in these populations, were assessed. Results The diversity survey of the pfhrp2 gene identified 29 SNPs as well as insertion and deletion polymorphisms within a 918 bp region. The Senegal pfhrp2 exhibited a substantial level of diversity [π = 0.00559 and πNS = 0.014111 (πS = 0.0291627)], similar to several polymorphic genes, such as msp1, involved in immune responses, and the gene encoding the SURFIN polymorphic antigen, which are surface exposed parasite proteins. Extensive repeat length polymorphisms in PfHRP2, as well as similar patterns in the number, organization and the type of predicted amino acid repeats were observed among the three populations, characterized by an occurrence of Type 2, Type 4 and Type 7 repeats. Conclusions These results warrant deeper monitoring of the RDT target antigen diversity and emphasize that development of other essential genes as a target for diagnostic tools is critical.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sarah K Volkman
- Broad Institute: The Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
45
|
Nwakanma DC, Duffy CW, Amambua-Ngwa A, Oriero EC, Bojang KA, Pinder M, Drakeley CJ, Sutherland CJ, Milligan PJ, Macinnis B, Kwiatkowski DP, Clark TG, Greenwood BM, Conway DJ. Changes in malaria parasite drug resistance in an endemic population over a 25-year period with resulting genomic evidence of selection. J Infect Dis 2013; 209:1126-35. [PMID: 24265439 PMCID: PMC3952670 DOI: 10.1093/infdis/jit618] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Background. Analysis of genome-wide polymorphism in many organisms has potential to identify genes under recent selection. However, data on historical allele frequency changes are rarely available for direct confirmation. Methods. We genotyped single nucleotide polymorphisms (SNPs) in 4 Plasmodium falciparum drug resistance genes in 668 archived parasite-positive blood samples of a Gambian population between 1984 and 2008. This covered a period before antimalarial resistance was detected locally, through subsequent failure of multiple drugs until introduction of artemisinin combination therapy. We separately performed genome-wide sequence analysis of 52 clinical isolates from 2008 to prospect for loci under recent directional selection. Results. Resistance alleles increased from very low frequencies, peaking in 2000 for chloroquine resistance-associated crt and mdr1 genes and at the end of the survey period for dhfr and dhps genes respectively associated with pyrimethamine and sulfadoxine resistance. Temporal changes fit a model incorporating likely selection coefficients over the period. Three of the drug resistance loci were in the top 4 regions under strong selection implicated by the genome-wide analysis. Conclusions. Genome-wide polymorphism analysis of an endemic population sample robustly identifies loci with detailed documentation of recent selection, demonstrating power to prospectively detect emerging drug resistance genes.
Collapse
|
46
|
Malaria life cycle intensifies both natural selection and random genetic drift. Proc Natl Acad Sci U S A 2013; 110:20129-34. [PMID: 24259712 DOI: 10.1073/pnas.1319857110] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Analysis of genome sequences of 159 isolates of Plasmodium falciparum from Senegal yields an extraordinarily high proportion (26.85%) of protein-coding genes with the ratio of nonsynonymous to synonymous polymorphism greater than one. This proportion is much greater than observed in other organisms. Also unusual is that the site-frequency spectra of synonymous and nonsynonymous polymorphisms are virtually indistinguishable. We hypothesized that the complicated life cycle of malaria parasites might lead to qualitatively different population genetics from that predicted from the classical Wright-Fisher (WF) model, which assumes a single random-mating population with a finite and constant population size in an organism with nonoverlapping generations. This paper summarizes simulation studies of random genetic drift and selection in malaria parasites that take into account their unusual life history. Our results show that random genetic drift in the malaria life cycle is more pronounced than under the WF model. Paradoxically, the efficiency of purifying selection in the malaria life cycle is also greater than under WF, and the relative efficiency of positive selection varies according to conditions. Additionally, the site-frequency spectrum under neutrality is also more skewed toward low-frequency alleles than expected with WF. These results highlight the importance of considering the malaria life cycle when applying existing population genetic tools based on the WF model. The same caveat applies to other species with similarly complex life cycles.
Collapse
|
47
|
Jiang PP, Corbett-Detig RB, Hartl DL, Lozovsky ER. Accessible mutational trajectories for the evolution of pyrimethamine resistance in the malaria parasite Plasmodium vivax. J Mol Evol 2013; 77:81-91. [PMID: 24071997 DOI: 10.1007/s00239-013-9582-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 08/31/2013] [Indexed: 10/26/2022]
Abstract
Antifolate antimalarials, such as pyrimethamine, have experienced a dramatic reduction in therapeutic efficacy as resistance has evolved in multiple malaria species. We present evidence from one such species, Plasmodium vivax, which has experienced sustained selection for pyrimethamine resistance at the dihydrofolate reductase (DHFR) locus since the 1970s. Using a transgenic Saccharomyces cerevisiae model expressing the P. vivax DHFR enzyme, we assayed growth rate and resistance of all 16 combinations of four DHFR amino acid substitutions. These substitutions were selected based on their known association with drug resistance, both in natural isolates and in laboratory settings, in the related malaria species P. falciparum. We observed a strong correlation between the resistance phenotypes for these 16 P. vivax alleles and previously observed resistance data for P. falciparum, which was surprising since nucleotide diversity levels and common polymorphic variants of DHFR differ between the two species. Similar results were observed when we expressed the P. vivax alleles in a transgenic bacterial system. This suggests common constraints on enzyme evolution in the orthologous DHFR proteins. The interplay of negative trade-offs between the evolution of novel resistance and compromised endogenous function varies at different drug dosages, and so too do the major trajectories for DHFR evolution. In simulations, it is only at very high drug dosages that the most resistant quadruple mutant DHFR allele is favored by selection. This is in agreement with common polymorphic DHFR data in P. vivax, from which this quadruple mutant is missing. We propose that clinical dosages of pyrimethamine may have historically been too low to select for the most resistant allele, or that the fitness cost of the most resistant allele was untenable without a compensatory mutation elsewhere in the genome.
Collapse
Affiliation(s)
- Pan-Pan Jiang
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA,
| | | | | | | |
Collapse
|