1
|
Pinheiro-Junior EL, Alirahimi E, Peigneur S, Isensee J, Schiffmann S, Erkoc P, Fürst R, Vilcinskas A, Sennoner T, Koludarov I, Hempel BF, Tytgat J, Hucho T, von Reumont BM. Diversely evolved xibalbin variants from remipede venom inhibit potassium channels and activate PKA-II and Erk1/2 signaling. BMC Biol 2024; 22:164. [PMID: 39075558 PMCID: PMC11288129 DOI: 10.1186/s12915-024-01955-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 07/09/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND The identification of novel toxins from overlooked and taxonomically exceptional species bears potential for various pharmacological applications. The remipede Xibalbanus tulumensis, an underwater cave-dwelling crustacean, is the only crustacean for which a venom system has been described. Its venom contains several xibalbin peptides that have an inhibitor cysteine knot (ICK) scaffold. RESULTS Our screenings revealed that all tested xibalbin variants particularly inhibit potassium channels. Xib1 and xib13 with their eight-cysteine domain similar to spider knottins also inhibit voltage-gated sodium channels. No activity was noted on calcium channels. Expanding the functional testing, we demonstrate that xib1 and xib13 increase PKA-II and Erk1/2 sensitization signaling in nociceptive neurons, which may initiate pain sensitization. Our phylogenetic analysis suggests that xib13 either originates from the common ancestor of pancrustaceans or earlier while xib1 is more restricted to remipedes. The ten-cysteine scaffolded xib2 emerged from xib1, a result that is supported by our phylogenetic and machine learning-based analyses. CONCLUSIONS Our functional characterization of synthesized variants of xib1, xib2, and xib13 elucidates their potential as inhibitors of potassium channels in mammalian systems. The specific interaction of xib2 with Kv1.6 channels, which are relevant to treating variants of epilepsy, shows potential for further studies. At higher concentrations, xib1 and xib13 activate the kinases PKA-II and ERK1/2 in mammalian sensory neurons, suggesting pain sensitization and potential applications related to pain research and therapy. While tested insect channels suggest that all probably act as neurotoxins, the biological function of xib1, xib2, and xib13 requires further elucidation. A novel finding on their evolutionary origin is the apparent emergence of X. tulumensis-specific xib2 from xib1. Our study is an important cornerstone for future studies to untangle the origin and function of these enigmatic proteins as important components of remipede but also other pancrustacean and arthropod venoms.
Collapse
Affiliation(s)
- Ernesto Lopes Pinheiro-Junior
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Ehsan Alirahimi
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Steve Peigneur
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Jörg Isensee
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Susanne Schiffmann
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Theodor-Stern-Kai 7, 60596, Frankfurt Am Main, Germany
| | - Pelin Erkoc
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Robert Fürst
- Institute of Pharmaceutical Biology, Goethe University Frankfurt, Max-Von-Laue-Str. 9, 60438, Frankfurt, Germany
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Andreas Vilcinskas
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
- Department of Bioresources, Fraunhofer Institute for Molecular Biology and Applied Ecology (IME-BR), Ohlebergsweg 14, 35394, Giessen, Germany
| | - Tobias Sennoner
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Munich, Germany
| | - Ivan Koludarov
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, 85748, Garching, Munich, Germany
| | - Benjamin-Florian Hempel
- Freie Unveristät Berlin, Veterinary Centre for Resistance Research (TZR), Robert-Von-Ostertag Str. 8, 14163, Berlin, Germany
| | - Jan Tytgat
- Toxicology and Pharmacology - Campus Gasthuisberg, University of Leuven (KU Leuven), Herestraat 49, PO Box 922, 3000, Louvain, Belgium
| | - Tim Hucho
- Department of Anesthesiology and Intensive Care Medicine, University Cologne, Translational Pain Research, University Hospital of Cologne, Cologne, Germany
| | - Björn M von Reumont
- LOEWE Center for Translational Biodiversity Genomics (LOEWE-TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.
- Faculty of Biological Sciences, Institute of Cell Biology and Neuroscience, Goethe, Frankfurt, Max-Von-Laue-Str 13, 60438, Frankfurt, Germany.
| |
Collapse
|
2
|
Schendel V, Müller CHG, Kenning M, Maxwell M, Jenner RA, Undheim EAB, Sombke A. The venom and telopodal defence systems of the centipede Lithobius forficatus are functionally convergent serial homologues. BMC Biol 2024; 22:135. [PMID: 38867210 PMCID: PMC11170834 DOI: 10.1186/s12915-024-01925-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 05/22/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Evolution of novelty is a central theme in evolutionary biology, yet studying the origins of traits with an apparently discontinuous origin remains a major challenge. Venom systems are a well-suited model for the study of this phenomenon because they capture several aspects of novelty across multiple levels of biological complexity. However, while there is some knowledge on the evolution of individual toxins, not much is known about the evolution of venom systems as a whole. One way of shedding light on the evolution of new traits is to investigate less specialised serial homologues, i.e. repeated traits in an organism that share a developmental origin. This approach can be particularly informative in animals with repetitive body segments, such as centipedes. RESULTS Here, we investigate morphological and biochemical aspects of the defensive telopodal glandular organs borne on the posterior legs of venomous stone centipedes (Lithobiomorpha), using a multimethod approach, including behavioural observations, comparative morphology, proteomics, comparative transcriptomics and molecular phylogenetics. We show that the anterior venom system and posterior telopodal defence system are functionally convergent serial homologues, where one (telopodal defence) represents a model for the putative early evolutionary state of the other (venom). Venom glands and telopodal glandular organs appear to have evolved from the same type of epidermal gland (four-cell recto-canal type) and while the telopodal defensive secretion shares a great degree of compositional overlap with centipede venoms in general, these similarities arose predominantly through convergent recruitment of distantly related toxin-like components. Both systems are composed of elements predisposed to functional innovation across levels of biological complexity that range from proteins to glands, demonstrating clear parallels between molecular and morphological traits in the properties that facilitate the evolution of novelty. CONCLUSIONS The evolution of the lithobiomorph telopodal defence system provides indirect empirical support for the plausibility of the hypothesised evolutionary origin of the centipede venom system, which occurred through functional innovation and gradual specialisation of existing epidermal glands. Our results thus exemplify how continuous transformation and functional innovation can drive the apparent discontinuous emergence of novelties on higher levels of biological complexity.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | - Carsten H G Müller
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, Greifswald, 17489, Germany
| | - Matthes Kenning
- Zoological Institute and Museum, University of Greifswald, Loitzer Strasse 26, Greifswald, 17489, Germany
| | - Michael Maxwell
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia
| | | | - Eivind A B Undheim
- Centre for Advanced Imaging, The University of Queensland, St. Lucia, QLD, 4072, Australia.
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, 0316, Norway.
| | - Andy Sombke
- Centre for Anatomy and Cell Biology, Cell and Developmental Biology, Medical University of Vienna, Schwarzspanierstrasse 17, Vienna, 1090, Austria.
- Department of Evolutionary Biology, Integrative Zoology, University of Vienna, Djerassiplatz 1, 1030, Austria.
| |
Collapse
|
3
|
Sofyantoro F, Septriani NI, Yudha DS, Wicaksono EA, Priyono DS, Putri WA, Primahesa A, Raharjeng ARP, Purwestri YA, Nuringtyas TR. Zebrafish as Versatile Model for Assessing Animal Venoms and Toxins: Current Applications and Future Prospects. Zebrafish 2024; 21:231-242. [PMID: 38608228 DOI: 10.1089/zeb.2023.0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2024] Open
Abstract
Animal venoms and toxins hold promise as sources of novel drug candidates, therapeutic agents, and biomolecules. To fully harness their potential, it is crucial to develop reliable testing methods that provide a comprehensive understanding of their effects and mechanisms of action. However, traditional rodent assays encounter difficulties in mimicking venom-induced effects in human due to the impractical venom dosage levels. The search for reliable testing methods has led to the emergence of zebrafish (Danio rerio) as a versatile model organism for evaluating animal venoms and toxins. Zebrafish possess genetic similarities to humans, rapid development, transparency, and amenability to high-throughput assays, making it ideal for assessing the effects of animal venoms and toxins. This review highlights unique attributes of zebrafish and explores their applications in studying venom- and toxin-induced effects from various species, including snakes, jellyfish, cuttlefish, anemones, spiders, and cone snails. Through zebrafish-based research, intricate physiological responses, developmental alterations, and potential therapeutic interventions induced by venoms are revealed. Novel techniques such as CRISPR/Cas9 gene editing, optogenetics, and high-throughput screening hold great promise for advancing venom research. As zebrafish-based insights converge with findings from other models, the comprehensive understanding of venom-induced effects continues to expand, guiding the development of targeted interventions and promoting both scientific knowledge and practical applications.
Collapse
Affiliation(s)
- Fajar Sofyantoro
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | | | - Ega Adhi Wicaksono
- Faculties of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Dwi Sendi Priyono
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Alfian Primahesa
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Anita Restu Puji Raharjeng
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Faculty of Science and Technology, Universitas Islam Negeri Raden Fatah Palembang, South Sumatera, Indonesia
| | - Yekti Asih Purwestri
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Tri Rini Nuringtyas
- Faculties of Biology, Universitas Gadjah Mada, Yogyakarta, Indonesia
- Research Center for Biotechnology, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
4
|
Surm JM, Landau M, Columbus-Shenkar YY, Moran Y. Sea Anemone Membrane Attack Complex/Perforin Superfamily Demonstrates an Evolutionary Transitional State between Venomous and Developmental Functions. Mol Biol Evol 2024; 41:msae082. [PMID: 38676945 PMCID: PMC11090067 DOI: 10.1093/molbev/msae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 04/08/2024] [Accepted: 04/25/2024] [Indexed: 04/29/2024] Open
Abstract
Gene duplication is a major force driving evolutionary innovation. A classic example is generating new animal toxins via duplication of physiological protein-encoding genes and recruitment into venom. While this process drives the innovation of many animal venoms, reverse recruitment of toxins into nonvenomous cells remains unresolved. Using comparative genomics, we find members of the Membrane Attack Complex and Perforin Family (MAC) have been recruited into venom-injecting cells (cnidocytes), in soft and stony corals and sea anemones, suggesting that the ancestral MAC was a cnidocyte expressed toxin. Further investigation into the model sea anemone Nematostella vectensis reveals that three members have undergone Nematostella-specific duplications leading to their reverse recruitment into endomesodermal cells. Furthermore, simultaneous knockdown of all three endomesodermally expressed MACs leads to mis-development, supporting that these paralogs have nonvenomous function. By resolving the evolutionary history and function of MACs in Nematostella, we provide the first proof for reverse recruitment from venom to organismal development.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Morani Landau
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yaara Y Columbus-Shenkar
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| |
Collapse
|
5
|
Barroso RA, Ramos L, Moreno H, Antunes A. Evolutionary Analysis of Cnidaria Small Cysteine-Rich Proteins (SCRiPs), an Enigmatic Neurotoxin Family from Stony Corals and Sea Anemones (Anthozoa: Hexacorallia). Toxins (Basel) 2024; 16:75. [PMID: 38393153 PMCID: PMC10892658 DOI: 10.3390/toxins16020075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 01/13/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Cnidarians (corals, sea anemones, and jellyfish) produce toxins that play central roles in key ecological processes, including predation, defense, and competition, being the oldest extant venomous animal lineage. Cnidaria small cysteine-rich proteins (SCRiPs) were the first family of neurotoxins detected in stony corals, one of the ocean's most crucial foundation species. Yet, their molecular evolution remains poorly understood. Moreover, the lack of a clear classification system has hindered the establishment of an accurate and phylogenetically informed nomenclature. In this study, we extensively surveyed 117 genomes and 103 transcriptomes of cnidarians to identify orthologous SCRiP gene sequences. We annotated a total of 168 novel putative SCRiPs from over 36 species of stony corals and 12 species of sea anemones. Phylogenetic reconstruction identified four distinct SCRiP subfamilies, according to strict discrimination criteria based on well-supported monophyly with a high percentage of nucleotide and amino acids' identity. Although there is a high prevalence of purifying selection for most SCRiP subfamilies, with few positively selected sites detected, a subset of Acroporidae sequences is influenced by diversifying positive selection, suggesting potential neofunctionalizations related to the fine-tuning of toxin potency. We propose a new nomenclature classification system relying on the phylogenetic distribution and evolution of SCRiPs across Anthozoa, which will further assist future proteomic and functional research efforts.
Collapse
Affiliation(s)
- Ricardo Alexandre Barroso
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (L.R.); (H.M.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Luana Ramos
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (L.R.); (H.M.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Hugo Moreno
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (L.R.); (H.M.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Agostinho Antunes
- CIIMAR/CIMAR, Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, s/n, 4450-208 Porto, Portugal; (R.A.B.); (L.R.); (H.M.)
- Department of Biology, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
6
|
Cheatle Jarvela AM, Wexler JR. Advances in genome sequencing reveal changes in gene content that contribute to arthropod macroevolution. Dev Genes Evol 2023; 233:59-76. [PMID: 37982820 DOI: 10.1007/s00427-023-00712-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023]
Abstract
Current sequencing technology allows for the relatively affordable generation of highly contiguous genomes. Technological advances have made it possible for researchers to investigate the consequences of diverse sorts of genomic variants, such as gene gain and loss. With the extraordinary number of high-quality genomes now available, we take stock of how these genomic variants impact phenotypic evolution. We take care to point out that the identification of genomic variants of interest is only the first step in understanding their impact. Painstaking lab or fieldwork is still required to establish causal relationships between genomic variants and phenotypic evolution. We focus mostly on arthropod research, as this phylum has an impressive degree of phenotypic diversity and is also the subject of much evolutionary genetics research. This article is intended to both highlight recent advances in the field and also to be a primer for learning about evolutionary genetics and genomics.
Collapse
Affiliation(s)
- Alys M Cheatle Jarvela
- Department of Entomology, University of Maryland, College Park, MD, USA.
- HHMI Janelia Research Campus, Ashburn, VA, USA.
| | - Judith R Wexler
- Department of Ecology, Evolution, and Behavior, The Hebrew University in Jerusalem, Jerusalem, Israel.
| |
Collapse
|
7
|
Sintsova O, Popkova D, Kalinovskii A, Rasin A, Borozdina N, Shaykhutdinova E, Klimovich A, Menshov A, Kim N, Anastyuk S, Kusaykin M, Dyachenko I, Gladkikh I, Leychenko E. Control of postprandial hyperglycemia by oral administration of the sea anemone mucus-derived α-amylase inhibitor (magnificamide). Biomed Pharmacother 2023; 168:115743. [PMID: 37862974 DOI: 10.1016/j.biopha.2023.115743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/15/2023] [Accepted: 10/16/2023] [Indexed: 10/22/2023] Open
Abstract
Diabetes mellitus is a serious threat to human health in both developed and developing countries. Optimal disease control requires the use of a diet and a combination of several medications, including oral hypoglycemic agents such as α-glucosidase inhibitors. Currently, the arsenal of available drugs is insufficient, which determines the relevance of studying new potent α-amylase inhibitors. We implemented the recombinant production of sea anemone derived α-amylase inhibitor magnificamide in Escherichia coli. Peptide was isolated by a combination of liquid chromatography techniques. Its folding and molecular weight was proved by 1H NMR and mass spectrometry. The Ki value of magnificamide against human pancreatic α-amylase is 3.1 nM according to Morrison equation for tight binding inhibitors. Our study of the thermodynamic characteristics of binding of magnificamide to human salivary and pancreatic α-amylases by isothermal titration calorimetry showed the presence of different binding mechanisms with Kd equal to 0.11 µM and 0.1 nM, respectively. Experiments in mice with streptozotocin-induced diabetes mimicking diabetes mellitus type 1 were used to study the efficiency of magnificamide against postprandial hyperglycemia. It was found that at a dose of 0.005 mg kg-1, magnificamide effectively blocks starch breakdown and prevents the development of postprandial hyperglycemia in T1D mice. Our results demonstrated the therapeutic potential of magnificamide for the control of postprandial hyperglycemia.
Collapse
Affiliation(s)
- Oksana Sintsova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Darya Popkova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Aleksandr Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Anton Rasin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Natalya Borozdina
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia
| | - Elvira Shaykhutdinova
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia
| | - Anna Klimovich
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Alexander Menshov
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Natalia Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Stanislav Anastyuk
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Mikhail Kusaykin
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Igor Dyachenko
- Branch of the Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Prospekt Nauki, 6, 142290 Pushchino, Russia
| | - Irina Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia
| |
Collapse
|
8
|
Koludarov I, Velasque M, Senoner T, Timm T, Greve C, Hamadou AB, Gupta DK, Lochnit G, Heinzinger M, Vilcinskas A, Gloag R, Harpur BA, Podsiadlowski L, Rost B, Jackson TNW, Dutertre S, Stolle E, von Reumont BM. Prevalent bee venom genes evolved before the aculeate stinger and eusociality. BMC Biol 2023; 21:229. [PMID: 37867198 PMCID: PMC10591384 DOI: 10.1186/s12915-023-01656-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/29/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND Venoms, which have evolved numerous times in animals, are ideal models of convergent trait evolution. However, detailed genomic studies of toxin-encoding genes exist for only a few animal groups. The hyper-diverse hymenopteran insects are the most speciose venomous clade, but investigation of the origin of their venom genes has been largely neglected. RESULTS Utilizing a combination of genomic and proteo-transcriptomic data, we investigated the origin of 11 toxin genes in 29 published and 3 new hymenopteran genomes and compiled an up-to-date list of prevalent bee venom proteins. Observed patterns indicate that bee venom genes predominantly originate through single gene co-option with gene duplication contributing to subsequent diversification. CONCLUSIONS Most Hymenoptera venom genes are shared by all members of the clade and only melittin and the new venom protein family anthophilin1 appear unique to the bee lineage. Most venom proteins thus predate the mega-radiation of hymenopterans and the evolution of the aculeate stinger.
Collapse
Affiliation(s)
- Ivan Koludarov
- Justus Liebig University of Gießen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 58, 35392, Giessen, Germany.
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany.
| | - Mariana Velasque
- Genomics & Regulatory Systems Unit, Okinawa Institute of Science & Technology, Tancha, Okinawa, 1919, Japan
| | - Tobias Senoner
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
| | - Thomas Timm
- Protein Analytics, Institute of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Carola Greve
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Alexander Ben Hamadou
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Deepak Kumar Gupta
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt, Germany
| | - Günter Lochnit
- Protein Analytics, Institute of Biochemistry, Justus Liebig University, Friedrichstrasse 24, 35392, Giessen, Germany
| | - Michael Heinzinger
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
| | - Andreas Vilcinskas
- Justus Liebig University of Gießen, Institute for Insect Biotechnology, Heinrich-Buff-Ring 58, 35392, Giessen, Germany
- Fraunhofer Institute for Molecular Biology and Applied Ecology, Department of Bioresources, Ohlebergsweg 12, 35392, Giessen, Germany
| | - Rosalyn Gloag
- Rosalyn Gloag - School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Brock A Harpur
- Brock A. Harpur - Department of Entomology, Purdue University, 901 W. State Street, West Lafayette, IN, 47907, USA
| | - Lars Podsiadlowski
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Centre of Molecular Biodiversity Research, Adenauerallee 160, 53113, Bonn, Germany
| | - Burkhard Rost
- Department of Informatics, Bioinformatics and Computational Biology, i12, Technical University of Munich, Boltzmannstr. 3, Garching, 85748, Munich, Germany
| | - Timothy N W Jackson
- Australian Venom Research Unit, Department of Biochemistry and Pharmacology, University of Melbourne, Grattan Street, Parkville, Viktoria, 3010, Australia
| | | | - Eckart Stolle
- Leibniz Institute for the Analysis of Biodiversity Change, Zoological Research Museum Alexander Koenig, Centre of Molecular Biodiversity Research, Adenauerallee 160, 53113, Bonn, Germany
| | - Björn M von Reumont
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Senckenberganlage 25, 60325, Frankfurt, Germany.
- Faculty of Biological Sciences, Group of Applied Bioinformatics, Goethe University Frankfurt, Max-Von-Laue Str. 13, 60438, Frankfurt, Germany.
| |
Collapse
|
9
|
Wu C, Li L, Wang Y, Wei S, Zhu J. Morphological, functional, compositional and transcriptional constraints shape the distinct venom profiles of the assassin bug Sycanus croceovittatus. Int J Biol Macromol 2023; 250:126162. [PMID: 37558034 DOI: 10.1016/j.ijbiomac.2023.126162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/03/2023] [Accepted: 08/04/2023] [Indexed: 08/11/2023]
Abstract
Predatory bugs employ a salivary venom apparatus to generate complex venoms for capturing and digesting prey. The venom apparatus consists of different glands for the production of distinct venom sets, but the underlying mechanisms behind this process remain poorly understood. Here we present a comprehensive analysis of the morphological, functional, compositional and transcriptional characteristics of venoms derived from posterior main gland (PMG), anterior main gland (AMG), and accessory gland (AG) of the assassin bug Sycanus croceovittatus. Structural observations revealed the intricate constructions of the venom apparatus, enabling the production and storage of three distinct venom sets in anatomically varied glands and allowing them to be modulated in a context-dependent manner upon utilization. There were remarkable differences in the biological activities exhibited by PMG, AMG, and AG venoms. Proteotranscriptomic analysis demonstrated that these venoms displayed compositional heterogeneity at both the quantity and variety levels of proteins. Transcriptional profiles of the identified venom proteins revealed gland-specific or biased expression patterns. These findings indicate that the divergence in venom profiles among different glands arises from morphological, functional, compositional and transcriptional constraints on the venom apparatus, reflecting remarkable morphogenesis and regulatory gene networks responsible for the compartmentalized production of venom proteins in different glands.
Collapse
Affiliation(s)
- Chaoyan Wu
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Lu Li
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Yuqin Wang
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China
| | - Shujun Wei
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China; Institute of Plant Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jiaying Zhu
- Key Laboeratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China; Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming, China.
| |
Collapse
|
10
|
Westfall AK, Gopalan SS, Perry BW, Adams RH, Saviola AJ, Mackessy SP, Castoe TA. Single-Cell Heterogeneity in Snake Venom Expression Is Hardwired by Co-Option of Regulators from Progressively Activated Pathways. Genome Biol Evol 2023; 15:evad109. [PMID: 37311204 PMCID: PMC10289209 DOI: 10.1093/gbe/evad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/07/2023] [Indexed: 06/15/2023] Open
Abstract
The ubiquitous cellular heterogeneity underlying many organism-level phenotypes raises questions about what factors drive this heterogeneity and how these complex heterogeneous systems evolve. Here, we use single-cell expression data from a Prairie rattlesnake (Crotalus viridis) venom gland to evaluate hypotheses for signaling networks underlying snake venom regulation and the degree to which different venom gene families have evolutionarily recruited distinct regulatory architectures. Our findings suggest that snake venom regulatory systems have evolutionarily co-opted trans-regulatory factors from extracellular signal-regulated kinase and unfolded protein response pathways that specifically coordinate expression of distinct venom toxins in a phased sequence across a single population of secretory cells. This pattern of co-option results in extensive cell-to-cell variation in venom gene expression, even between tandemly duplicated paralogs, suggesting this regulatory architecture has evolved to circumvent cellular constraints. While the exact nature of such constraints remains an open question, we propose that such regulatory heterogeneity may circumvent steric constraints on chromatin, cellular physiological constraints (e.g., endoplasmic reticulum stress or negative protein-protein interactions), or a combination of these. Regardless of the precise nature of these constraints, this example suggests that, in some cases, dynamic cellular constraints may impose previously unappreciated secondary constraints on the evolution of gene regulatory networks that favors heterogeneous expression.
Collapse
Affiliation(s)
| | | | - Blair W Perry
- Department of Biology, The University of Texas Arlington, Texas, USA
- School of Biological Sciences, Washington State University, Pullman, Washington, USA
| | - Richard H Adams
- Department of Entomology and Plant Pathology, University of Arkansas, Fayetteville, USA
| | - Anthony J Saviola
- Department of Biochemistry and Molecular Genetics, University of Colorado Denver, Aurora, USA
| | - Stephen P Mackessy
- School of Biological Sciences, University of Northern Colorado, Greeley, USA
| | - Todd A Castoe
- Department of Biology, The University of Texas Arlington, Texas, USA
| |
Collapse
|
11
|
Ashwood LM, Elnahriry KA, Stewart ZK, Shafee T, Naseem MU, Szanto TG, van der Burg CA, Smith HL, Surm JM, Undheim EAB, Madio B, Hamilton BR, Guo S, Wai DCC, Coyne VL, Phillips MJ, Dudley KJ, Hurwood DA, Panyi G, King GF, Pavasovic A, Norton RS, Prentis PJ. Genomic, functional and structural analyses elucidate evolutionary innovation within the sea anemone 8 toxin family. BMC Biol 2023; 21:121. [PMID: 37226201 DOI: 10.1186/s12915-023-01617-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 05/09/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND The ShK toxin from Stichodactyla helianthus has established the therapeutic potential of sea anemone venom peptides, but many lineage-specific toxin families in Actiniarians remain uncharacterised. One such peptide family, sea anemone 8 (SA8), is present in all five sea anemone superfamilies. We explored the genomic arrangement and evolution of the SA8 gene family in Actinia tenebrosa and Telmatactis stephensoni, characterised the expression patterns of SA8 sequences, and examined the structure and function of SA8 from the venom of T. stephensoni. RESULTS We identified ten SA8-family genes in two clusters and six SA8-family genes in five clusters for T. stephensoni and A. tenebrosa, respectively. Nine SA8 T. stephensoni genes were found in a single cluster, and an SA8 peptide encoded by an inverted SA8 gene from this cluster was recruited to venom. We show that SA8 genes in both species are expressed in a tissue-specific manner and the inverted SA8 gene has a unique tissue distribution. While the functional activity of the SA8 putative toxin encoded by the inverted gene was inconclusive, its tissue localisation is similar to toxins used for predator deterrence. We demonstrate that, although mature SA8 putative toxins have similar cysteine spacing to ShK, SA8 peptides are distinct from ShK peptides based on structure and disulfide connectivity. CONCLUSIONS Our results provide the first demonstration that SA8 is a unique gene family in Actiniarians, evolving through a variety of structural changes including tandem and proximal gene duplication and an inversion event that together allowed SA8 to be recruited into the venom of T. stephensoni.
Collapse
Affiliation(s)
- Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia.
- Cancer Program, QIMR Berghofer Medical Research Institute, Brisbane, QLD, 4006, Australia.
| | - Khaled A Elnahriry
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Zachary K Stewart
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Thomas Shafee
- Department of Animal Plant & Soil Sciences, La Trobe University, Melbourne, Australia
- Swinburne University of Technology, Melbourne, VIC, Australia
| | - Muhammad Umair Naseem
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Tibor G Szanto
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Chloé A van der Burg
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Hayden L Smith
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel
| | - Eivind A B Undheim
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis, University of Oslo, Blindern, PO Box 1066, 0316, Oslo, Norway
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, The University of Queensland, St Lucia, QLD, 4072, Australia
- Centre for Microscopy and Microanalysis, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Shaodong Guo
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
| | - Victoria L Coyne
- Research Infrastructure, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Matthew J Phillips
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Kevin J Dudley
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Research Infrastructure, Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - David A Hurwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, 4032, Debrecen, Hungary
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia
- ARC Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Ana Pavasovic
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC, 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC, 3052, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD, 4000, Australia
| |
Collapse
|
12
|
Zhu B, Jin P, Zhang Y, Shen Y, Wang W, Li S. Genomic and transcriptomic analyses support a silk gland origin of spider venom glands. BMC Biol 2023; 21:82. [PMID: 37055766 PMCID: PMC10099834 DOI: 10.1186/s12915-023-01581-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 03/29/2023] [Indexed: 04/15/2023] Open
Abstract
BACKGROUND Spiders comprise a hyperdiverse lineage of predators with venom systems, yet the origin of functionally novel spider venom glands remains unclear. Previous studies have hypothesized that spider venom glands originated from salivary glands or evolved from silk-producing glands present in early chelicerates. However, there is insufficient molecular evidence to indicate similarity among them. Here, we provide comparative analyses of genome and transcriptome data from various lineages of spiders and other arthropods to advance our understanding of spider venom gland evolution. RESULTS We generated a chromosome-level genome assembly of a model spider species, the common house spider (Parasteatoda tepidariorum). Module preservation, GO semantic similarity, and differentially upregulated gene similarity analyses demonstrated a lower similarity in gene expressions between the venom glands and salivary glands compared to the silk glands, which questions the validity of the salivary gland origin hypothesis but unexpectedly prefers to support the ancestral silk gland origin hypothesis. The conserved core network in the venom and silk glands was mainly correlated with transcription regulation, protein modification, transport, and signal transduction pathways. At the genetic level, we found that many genes in the venom gland-specific transcription modules show positive selection and upregulated expressions, suggesting that genetic variation plays an important role in the evolution of venom glands. CONCLUSIONS This research implies the unique origin and evolutionary path of spider venom glands and provides a basis for understanding the diverse molecular characteristics of venom systems.
Collapse
Affiliation(s)
- Bingyue Zhu
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Pengyu Jin
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yiming Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Yunxiao Shen
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 101408, China
| | - Wei Wang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Key Laboratory of Ecology and Environmental Protection of Rare and Endangered Animals and Plants, Ministry of Education, Guangxi Normal University, Guilin, 541004, China
| | - Shuqiang Li
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
13
|
Smith HL, Prentis PJ, Bryan SE, Norton RS, Broszczak DA. Acontia, a Specialised Defensive Structure, Has Low Venom Complexity in Calliactis polypus. Toxins (Basel) 2023; 15:218. [PMID: 36977109 PMCID: PMC10051995 DOI: 10.3390/toxins15030218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 03/08/2023] [Accepted: 03/10/2023] [Indexed: 03/14/2023] Open
Abstract
Phylum Cnidaria represents a unique group among venomous taxa, with its delivery system organised as individual organelles, known as nematocysts, heterogeneously distributed across morphological structures rather than packaged as a specialised organ. Acontia are packed with large nematocysts that are expelled from sea anemones during aggressive encounters with predatory species and are found in a limited number of species in the superfamily Metridioidea. Little is known about this specialised structure other than the commonly accepted hypothesis of its role in defence and a rudimentary understanding of its toxin content and activity. This study utilised previously published transcriptomic data and new proteomic analyses to expand this knowledge by identifying the venom profile of acontia in Calliactis polypus. Using mass spectrometry, we found limited toxin diversity in the proteome of acontia, with an abundance of a sodium channel toxin type I, and a novel toxin with two ShK-like domains. Additionally, genomic evidence suggests that the proposed novel toxin is ubiquitous across sea anemone lineages. Overall, the venom profile of acontia in Calliactis polypus and the novel toxin identified here provide the basis for future research to define the function of acontial toxins in sea anemones.
Collapse
Affiliation(s)
- Hayden L. Smith
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Peter J. Prentis
- School of Biology and Environmental Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Scott E. Bryan
- School of Earth and Atmospheric Sciences, Faculty of Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| | - Daniel A. Broszczak
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
14
|
Smith EG, Surm JM, Macrander J, Simhi A, Amir G, Sachkova MY, Lewandowska M, Reitzel AM, Moran Y. Micro and macroevolution of sea anemone venom phenotype. Nat Commun 2023; 14:249. [PMID: 36646703 PMCID: PMC9842752 DOI: 10.1038/s41467-023-35794-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023] Open
Abstract
Venom is a complex trait with substantial inter- and intraspecific variability resulting from strong selective pressures acting on the expression of many toxic proteins. However, understanding the processes underlying toxin expression dynamics that determine the venom phenotype remains unresolved. By interspecific comparisons we reveal that toxin expression in sea anemones evolves rapidly and that in each species different toxin family dictates the venom phenotype by massive gene duplication events. In-depth analysis of the sea anemone, Nematostella vectensis, revealed striking variation of the dominant toxin (Nv1) diploid copy number across populations (1-24 copies) resulting from independent expansion/contraction events, which generate distinct haplotypes. Nv1 copy number correlates with expression at both the transcript and protein levels with one population having a near-complete loss of Nv1 production. Finally, we establish the dominant toxin hypothesis which incorporates observations in other venomous lineages that animals have convergently evolved a similar strategy in shaping their venom.
Collapse
Affiliation(s)
- Edward G Smith
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA. .,School of Life Sciences, University of Warwick, Coventry, United Kingdom.
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| | - Jason Macrander
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA.,Florida Southern College, Biology Department, Lakeland, FL, USA
| | - Adi Simhi
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Guy Amir
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,The Hebrew University of Jerusalem, The School of Computer Science & Engineering, Jerusalem, Israel
| | - Maria Y Sachkova
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.,Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway
| | - Magda Lewandowska
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Adam M Reitzel
- University of North Carolina at Charlotte, Department of Biological Sciences, Charlotte, NC, USA
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
15
|
Monastyrnaya MM, Kalina RS, Kozlovskaya EP. The Sea Anemone Neurotoxins Modulating Sodium Channels: An Insight at Structure and Functional Activity after Four Decades of Investigation. Toxins (Basel) 2022; 15:8. [PMID: 36668828 PMCID: PMC9863223 DOI: 10.3390/toxins15010008] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022] Open
Abstract
Many human cardiovascular and neurological disorders (such as ischemia, epileptic seizures, traumatic brain injury, neuropathic pain, etc.) are associated with the abnormal functional activity of voltage-gated sodium channels (VGSCs/NaVs). Many natural toxins, including the sea anemone toxins (called neurotoxins), are an indispensable and promising tool in pharmacological researches. They have widely been carried out over the past three decades, in particular, in establishing different NaV subtypes functional properties and a specific role in various pathologies. Therefore, a large number of publications are currently dedicated to the search and study of the structure-functional relationships of new sea anemone natural neurotoxins-potential pharmacologically active compounds that specifically interact with various subtypes of voltage gated sodium channels as drug discovery targets. This review presents and summarizes some updated data on the structure-functional relationships of known sea anemone neurotoxins belonging to four structural types. The review also emphasizes the study of type 2 neurotoxins, produced by the tropical sea anemone Heteractis crispa, five structurally homologous and one unique double-stranded peptide that, due to the absence of a functionally significant Arg14 residue, loses toxicity but retains the ability to modulate several VGSCs subtypes.
Collapse
|
16
|
Delgado A, Benedict C, Macrander J, Daly M. Never, Ever Make an Enemy… Out of an Anemone: Transcriptomic Comparison of Clownfish Hosting Sea Anemone Venoms. Mar Drugs 2022; 20:730. [PMID: 36547877 PMCID: PMC9782873 DOI: 10.3390/md20120730] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/15/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022] Open
Abstract
Sea anemones are predatory marine invertebrates and have diverse venom arsenals. Venom is integral to their biology, and is used in competition, defense, and feeding. Three lineages of sea anemones are known to have independently evolved symbiotic relationships with clownfish, however the evolutionary impact of this relationship on the venom composition of the host is still unknown. Here, we investigate the potential of this symbiotic relationship to shape the venom profiles of the sea anemones that host clownfish. We use transcriptomic data to identify differences and similarities in venom profiles of six sea anemone species, representing the three known clades of clownfish-hosting sea anemones. We recovered 1121 transcripts matching verified toxins across all species, and show that hemolytic and hemorrhagic toxins are consistently the most dominant and diverse toxins across all species examined. These results are consistent with the known biology of sea anemones, provide foundational data on venom diversity of these species, and allow for a review of existing hierarchical structures in venomic studies.
Collapse
Affiliation(s)
- Alonso Delgado
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Charlotte Benedict
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| | - Jason Macrander
- Department of Biology, Florida Southern College, Lakeland, FL 33815, USA
| | - Marymegan Daly
- Department of Evolution, Ecology and Organismal Biology, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Gilbert E, Teeling C, Lebedeva T, Pedersen S, Chrismas N, Genikhovich G, Modepalli V. Molecular and cellular architecture of the larval sensory organ in the cnidarian Nematostella vectensis. Development 2022; 149:dev200833. [PMID: 36000354 PMCID: PMC9481973 DOI: 10.1242/dev.200833] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/18/2022] [Indexed: 11/29/2022]
Abstract
Cnidarians are the only non-bilaterian group to evolve ciliated larvae with an apical sensory organ, which is possibly homologous to the apical organs of bilaterian primary larvae. Here, we generated transcriptomes of the apical tissue in the sea anemone Nematostella vectensis and showed that it has a unique neuronal signature. By integrating previously published larval single-cell data with our apical transcriptomes, we discovered that the apical domain comprises a minimum of six distinct cell types. We show that the apical organ is compartmentalised into apical tuft cells (spot) and larval-specific neurons (ring). Finally, we identify ISX-like (NVE14554), a PRD class homeobox gene specifically expressed in apical tuft cells, as an FGF signalling-dependent transcription factor responsible for the formation of the apical tuft domain via repression of the neural ring fate in apical cells. With this study, we contribute a comparison of the molecular anatomy of apical organs, which must be carried out across phyla to determine whether this crucial larval structure evolved once or multiple times.
Collapse
Affiliation(s)
- Eleanor Gilbert
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Callum Teeling
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
- School of Biological and Marine Sciences, University of Plymouth, Plymouth, PL4 8AA, UK
| | - Tatiana Lebedeva
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
- Doctoral School of Ecology and Evolution, University of Vienna, Vienna, 1030, Austria
| | - Siffreya Pedersen
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Nathan Chrismas
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| | - Grigory Genikhovich
- Department of Neurosciences and Developmental Biology, Faculty of Life Sciences, University of Vienna, Vienna, 1030, Austria
| | - Vengamanaidu Modepalli
- Marine Biological Association of the UK, The Laboratory, Citadel Hill, Plymouth PL1 2PB, United Kingdom
| |
Collapse
|
18
|
Physiological constraints dictate toxin spatial heterogeneity in snake venom glands. BMC Biol 2022; 20:148. [PMID: 35761243 PMCID: PMC9238143 DOI: 10.1186/s12915-022-01350-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022] Open
Abstract
Background Venoms are ecological innovations that have evolved numerous times, on each occasion accompanied by the co-evolution of specialised morphological and behavioural characters for venom production and delivery. The close evolutionary interdependence between these characters is exemplified by animals that control the composition of their secreted venom. This ability depends in part on the production of different toxins in different locations of the venom gland, which was recently documented in venomous snakes. Here, we test the hypothesis that the distinct spatial distributions of toxins in snake venom glands are an adaptation that enables the secretion of venoms with distinct ecological functions. Results We show that the main defensive and predatory peptide toxins are produced in distinct regions of the venom glands of the black-necked spitting cobra (Naja nigricollis), but these distributions likely reflect developmental effects. Indeed, we detected no significant differences in venom collected via defensive ‘spitting’ or predatory ‘biting’ events from the same specimens representing multiple lineages of spitting cobra. We also found the same spatial distribution of toxins in a non-spitting cobra and show that heterogeneous toxin distribution is a feature shared with a viper with primarily predatory venom. Conclusions Our findings suggest that heterogeneous distributions of toxins are not an adaptation to controlling venom composition in snakes. Instead, it likely reflects physiological constraints on toxin production by the venom glands, opening avenues for future research on the mechanisms of functional differentiation of populations of protein-secreting cells within adaptive contexts. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01350-y.
Collapse
|
19
|
Martindale MQ. Emerging models: The "development" of the ctenophore Mnemiopsis leidyi and the cnidarian Nematostella vectensis as useful experimental models. Curr Top Dev Biol 2022; 147:93-120. [PMID: 35337468 DOI: 10.1016/bs.ctdb.2022.02.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The goal of this chapter is to explain the reasoning for developing two understudied invertebrate animal species for asking specific biological questions. The first is the ctenophore (comb jelly) Mnemiopsis leidyi and the second is the anthozoan cnidarian (starlet sea anemone) Nematostella vectensis. Although these two taxa belong to some of the earliest branching extant metazoan clades, their developmental features could hardly be more different from one another. This should serve as a general warning to be careful when extrapolating comparisons of one species to another. Two-taxon comparisons are especially flawed; and to interpret features in a phylogenetic context one must sample carefully within a given taxon to determine how representative certain features are before comparing with other clades. The other benefit of this comparison is to identify key practical factors when attempting to develop new species for experimental investigation.
Collapse
Affiliation(s)
- Mark Q Martindale
- Whitney Lab for Marine Bioscience, University of Florida, St. Augustine, FL, United States.
| |
Collapse
|
20
|
Li X, Ma X, Chen X, Wang T, Liu Q, Wang Y, Li Z, Hofer J, Li F, Xiao L, Sun X, Mo J. The medusa of Aurelia coerulea is similar to its polyps in molecular composition and different from the medusa of Stomolophus meleagris in toxicity. Toxicon 2022; 210:89-99. [DOI: 10.1016/j.toxicon.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 02/06/2022] [Accepted: 02/07/2022] [Indexed: 10/19/2022]
|
21
|
Ashwood LM, Undheim EAB, Madio B, Hamilton BR, Daly M, Hurwood DA, King GF, Prentis PJ. Venoms for all occasions: The functional toxin profiles of different anatomical regions in sea anemones are related to their ecological function. Mol Ecol 2021; 31:866-883. [PMID: 34837433 DOI: 10.1111/mec.16286] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 10/22/2021] [Accepted: 11/12/2021] [Indexed: 12/13/2022]
Abstract
The phylum Cnidaria is the oldest extant venomous group and is defined by the presence of nematocysts, specialized organelles responsible for venom production and delivery. Although toxin peptides and the cells housing nematocysts are distributed across the entire animal, nematocyte and venom profiles have been shown to differ across morphological structures in actiniarians. In this study, we explore the relationship between patterns of toxin expression and the ecological roles of discrete anatomical structures in Telmatactis stephensoni. Specifically, using a combination of proteomic and transcriptomic approaches, we examined whether there is a direct correlation between the functional similarity of regions and the similarity of their associated toxin expression profiles. We report that the regionalization of toxin production is consistent with the partitioning of the ecological roles of venom across envenomating structures, and that three major functional regions are present in T. stephensoni: tentacles, epidermis and gastrodermis. Additionally, we find that most structures that serve similar functions not only have comparable putative toxin profiles but also similar nematocyst types. There was no overlap in the putative toxins identified using proteomics and transcriptomics, but the expression patterns of specific milked venom peptides were conserved across RNA-sequencing and mass spectrometry imaging data sets. Furthermore, based on our data, it appears that acontia of T. stephensoni may be transcriptionally inactive and only mature nematocysts are present in the distal portions of the threads. Overall, we find that the venom profile of different anatomical regions in sea anemones varies according to its ecological functions.
Collapse
Affiliation(s)
- Lauren M Ashwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Eivind A B Undheim
- Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland, Australia.,Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, Oslo, Norway.,Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Bruno Madio
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia
| | - Brett R Hamilton
- Centre for Advanced Imaging, University of Queensland, St Lucia, Queensland, Australia.,Centre for Microscopy and Microscopy and Microanalysis, University of Queensland, St Lucia, Queensland, Australia
| | - Marymegan Daly
- Department of Evolution, Ecology & Organismal Biology, The Ohio State University, Columbus, Ohio, USA
| | - David A Hurwood
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia.,Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Glenn F King
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.,ARC Centre for Innovations in Peptide and Protein Science, The University of Queensland, St Lucia, Queensland, Australia
| | - Peter J Prentis
- School of Biology and Environmental Science, Faculty of Science, Queensland University of Technology, Brisbane, Queensland, Australia.,Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
22
|
The evolutionary dynamics of venom toxins made by insects and other animals. Biochem Soc Trans 2021; 48:1353-1365. [PMID: 32756910 DOI: 10.1042/bst20190820] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/11/2020] [Accepted: 07/14/2020] [Indexed: 12/15/2022]
Abstract
Animal venoms are recognised as unique biological systems in which to study molecular evolution. Venom use has evolved numerous times among the insects, and insects today use venom to capture prey, defend themselves from predators, or to subdue and modulate host responses during parasitism. However, little is known about most insect venom toxins or the mode and tempo by which they evolve. Here, I review the evolutionary dynamics of insect venom toxins, and argue that insects offer many opportunities to examine novel aspects of toxin evolution. The key questions addressed are: How do venomous animals evolve from non-venomous animals, and how does this path effect the composition and pharmacology of the venom? What genetic processes (gene duplication, co-option, neofunctionalisation) are most important in toxin evolution? What kinds of selection pressures are acting on toxin-encoding genes and their cognate targets in envenomated animals? The emerging evidence highlights that venom composition and pharmacology adapts quickly in response to changing selection pressures resulting from new ecological interactions, and that such evolution occurs through a stunning variety of genetic mechanisms. Insects offer many opportunities to investigate the evolutionary dynamics of venom toxins due to their evolutionary history rich in venom-related adaptations, and their quick generation time and suitability for culture in the laboratory.
Collapse
|
23
|
O'Hara E, Wilson D, Seymour J. The influence of ecological factors on cnidarian venoms. Toxicon X 2021; 9-10:100067. [PMID: 34142080 PMCID: PMC8182416 DOI: 10.1016/j.toxcx.2021.100067] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 05/17/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022] Open
Abstract
Venom research is often focussed on medical relevance, novel compounds and venom evolution, whilst studying the relationship between a venom and its environment – venom ecology - has been conducted to a lesser extent. Given the projected environmental changes envisioned to occur with global warming, it is pertinent now more than ever, to highlight this topic. Here we review literature examining the influence of ecological factors such as environmental temperature, salinity, ontogeny, geographic location and diet on cnidarian venoms. This review provides an exclusive focus on the cnidarian phylum and encompasses all available published, peer-reviewed literature to our knowledge regarding the ecological factors influencing venom. We find a startling lack of research into the effects of both environmental and biological factors on venoms, with very few to no studies available per category. Importantly, research does exist that suggest these ecological processes may influence other marine or terrestrial venoms, thus we recommend future research is needed to explore this concept in cnidarians. Cnidarian toxins are significantly affected by environment and biology, yet literature on the subject is scarce. Temperature, ontogeny, geographic location and diet can influence cnidarian venoms. Salinity can influence other marine toxins, but literature is lacking for cnidarians. More venom ecology research is needed in medically important species, if medical treatments are to advance.
Collapse
|
24
|
Klompen AML, Kayal E, Collins AG, Cartwright P. Phylogenetic and Selection Analysis of an Expanded Family of Putatively Pore-Forming Jellyfish Toxins (Cnidaria: Medusozoa). Genome Biol Evol 2021; 13:6248095. [PMID: 33892512 PMCID: PMC8214413 DOI: 10.1093/gbe/evab081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2021] [Indexed: 12/20/2022] Open
Abstract
Many jellyfish species are known to cause a painful sting, but box jellyfish (class Cubozoa) are a well-known danger to humans due to exceptionally potent venoms. Cubozoan toxicity has been attributed to the presence and abundance of cnidarian-specific pore-forming toxins called jellyfish toxins (JFTs), which are highly hemolytic and cardiotoxic. However, JFTs have also been found in other cnidarians outside of Cubozoa, and no comprehensive analysis of their phylogenetic distribution has been conducted to date. Here, we present a thorough annotation of JFTs from 147 cnidarian transcriptomes and document 111 novel putative JFTs from over 20 species within Medusozoa. Phylogenetic analyses show that JFTs form two distinct clades, which we call JFT-1 and JFT-2. JFT-1 includes all known potent cubozoan toxins, as well as hydrozoan and scyphozoan representatives, some of which were derived from medically relevant species. JFT-2 contains primarily uncharacterized JFTs. Although our analyses detected broad purifying selection across JFTs, we found that a subset of cubozoan JFT-1 sequences are influenced by gene-wide episodic positive selection compared with homologous toxins from other taxonomic groups. This suggests that duplication followed by neofunctionalization or subfunctionalization as a potential mechanism for the highly potent venom in cubozoans. Additionally, published RNA-seq data from several medusozoan species indicate that JFTs are differentially expressed, spatially and temporally, between functionally distinct tissues. Overall, our findings suggest a complex evolutionary history of JFTs involving duplication and selection that may have led to functional diversification, including variability in toxin potency and specificity.
Collapse
Affiliation(s)
- Anna M L Klompen
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA
| | - Ehsan Kayal
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,Sorbonne Université, CNRS, FR2424, Station Biologique de Roscoff, Place Georges Teissier, 29680, Roscoff, France
| | - Allen G Collins
- Department of Invertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, District of Columbia, USA.,National Systematics Laboratory of NOAA's Fisheries Service, Silver Spring, Maryland, USA
| | - Paulyn Cartwright
- Department of Ecology and Evolutionary Biology, University of Kansas, Lawrence, USA
| |
Collapse
|
25
|
Pinaud S, Tetreau G, Poteaux P, Galinier R, Chaparro C, Lassalle D, Portet A, Simphor E, Gourbal B, Duval D. New Insights Into Biomphalysin Gene Family Diversification in the Vector Snail Biomphalaria glabrata. Front Immunol 2021; 12:635131. [PMID: 33868258 PMCID: PMC8047071 DOI: 10.3389/fimmu.2021.635131] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 03/08/2021] [Indexed: 11/30/2022] Open
Abstract
Aerolysins initially characterized as virulence factors in bacteria are increasingly found in massive genome and transcriptome sequencing data from metazoans. Horizontal gene transfer has been demonstrated as the main way of aerolysin-related toxins acquisition in metazoans. However, only few studies have focused on their potential biological functions in such organisms. Herein, we present an extensive characterization of a multigene family encoding aerolysins - named biomphalysin - in Biomphalaria glabrata snail, the intermediate host of the trematode Schistosoma mansoni. Our results highlight that duplication and domestication of an acquired bacterial toxin gene in the snail genome result in the acquisition of a novel and diversified toxin family. Twenty-three biomphalysin genes were identified. All are expressed and exhibited a tissue-specific expression pattern. An in silico structural analysis was performed to highlight the central role played by two distinct domains i) a large lobe involved in the lytic function of these snail toxins which constrained their evolution and ii) a small lobe which is structurally variable between biomphalysin toxins and that matched to various functional domains involved in moiety recognition of targets cells. A functional approach suggests that the repertoire of biomphalysins that bind to pathogens, depends on the type of pathogen encountered. These results underline a neo-and sub-functionalization of the biomphalysin toxins, which have the potential to increase the range of effectors in the snail’s immune arsenal.
Collapse
Affiliation(s)
- Silvain Pinaud
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Guillaume Tetreau
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Pierre Poteaux
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Richard Galinier
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Cristian Chaparro
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Damien Lassalle
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Anaïs Portet
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Elodie Simphor
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - Benjamin Gourbal
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| | - David Duval
- IHPE, Univ Montpellier, CNRS, IFREMER, Univ Perpignan Via Domitia, Perpignan, France.,CNRS, IFREMER, University of Montpellier, Perpignan, France
| |
Collapse
|
26
|
Surm JM, Moran Y. Insights into how development and life-history dynamics shape the evolution of venom. EvoDevo 2021; 12:1. [PMID: 33413660 PMCID: PMC7791878 DOI: 10.1186/s13227-020-00171-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023] Open
Abstract
Venomous animals are a striking example of the convergent evolution of a complex trait. These animals have independently evolved an apparatus that synthesizes, stores, and secretes a mixture of toxic compounds to the target animal through the infliction of a wound. Among these distantly related animals, some can modulate and compartmentalize functionally distinct venoms related to predation and defense. A process to separate distinct venoms can occur within and across complex life cycles as well as more streamlined ontogenies, depending on their life-history requirements. Moreover, the morphological and cellular complexity of the venom apparatus likely facilitates the functional diversity of venom deployed within a given life stage. Intersexual variation of venoms has also evolved further contributing to the massive diversity of toxic compounds characterized in these animals. These changes in the biochemical phenotype of venom can directly affect the fitness of these animals, having important implications in their diet, behavior, and mating biology. In this review, we explore the current literature that is unraveling the temporal dynamics of the venom system that are required by these animals to meet their ecological functions. These recent findings have important consequences in understanding the evolution and development of a convergent complex trait and its organismal and ecological implications.
Collapse
Affiliation(s)
- Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 9190401, Jerusalem, Israel.
| |
Collapse
|
27
|
Krishnarjuna B, Sunanda P, Villegas-Moreno J, Csoti A, A V Morales R, Wai DCC, Panyi G, Prentis P, Norton RS. A disulfide-stabilised helical hairpin fold in acrorhagin I: An emerging structural motif in peptide toxins. J Struct Biol 2020; 213:107692. [PMID: 33387653 DOI: 10.1016/j.jsb.2020.107692] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Accepted: 12/24/2020] [Indexed: 12/22/2022]
Abstract
Acrorhagin I (U-AITX-Aeq5a) is a disulfide-rich peptide identified in the aggressive organs (acrorhagi) of the sea anemone Actinia equina. Previous studies (Toxicon 2005, 46:768-74) found that the peptide is toxic in crabs, although the structural and functional properties of acrorhagin I have not been reported. In this work, an Escherichia coli (BL21 strain) expression system was established for the preparation of 13C,15N-labelled acrorhagin I, and the solution structure was determined using NMR spectroscopy. Structurally, acrorhagin I is similar to B-IV toxin from the marine worm Cerebratulus lacteus (PDB id 1VIB), with a well-defined helical hairpin structure stabilised by four intramolecular disulfide bonds. The recombinant peptide was tested in patch-clamp electrophysiology assays against voltage-gated potassium and sodium channels, and in bacterial and fungal growth inhibitory assays and haemolytic assays. Acrorhagin I was not active against any of the ion channels tested and showed no activity in functional assays, indicating that this peptide may possess a different biological function. Metal ion interaction studies using NMR spectroscopy showed that acrorhagin I bound zinc and nickel, suggesting that its function might be modulated by metal ions or that it may be involved in regulating metal ion levels and their transport. The similarity between the structure of acrorhagin I and that of B-IV toxin from a marine worm suggests that this fold may prove to be a recurring motif in disulfide-rich peptides from marine organisms.
Collapse
Affiliation(s)
- Bankala Krishnarjuna
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Punnepalli Sunanda
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jessica Villegas-Moreno
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; Centro de Investigaciones Químicas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Agota Csoti
- Department of Biophysics and Cell Biology, University of Debrecen, 4032 Debrecen, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, 4032 Debrecen, Hungary
| | - Rodrigo A V Morales
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Dorothy C C Wai
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Gyorgy Panyi
- Department of Biophysics and Cell Biology, University of Debrecen, 4032 Debrecen, Hungary; MTA-DE-NAP B Ion Channel Structure-Function Research Group, RCMM, University of Debrecen, 4032 Debrecen, Hungary
| | - Peter Prentis
- School of Earth, Environmental and Biological Sciences, Science and Engineering Faculty, Queensland University of Technology, Brisbane, Australia; Institute for Future Environments, Queensland University of Technology, Brisbane, Australia
| | - Raymond S Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia; ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia.
| |
Collapse
|
28
|
Jackson TNW, Koludarov I. How the Toxin got its Toxicity. Front Pharmacol 2020; 11:574925. [PMID: 33381030 PMCID: PMC7767849 DOI: 10.3389/fphar.2020.574925] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 10/20/2020] [Indexed: 12/17/2022] Open
Abstract
Venom systems are functional and ecological traits, typically used by one organism to subdue or deter another. A predominant subset of their constituent molecules—“toxins”—share this ecological function and are therefore molecules that mediate interactions between organisms. Such molecules have been referred to as “exochemicals.” There has been debate within the field of toxinology concerning the evolutionary pathways leading to the “recruitment” of a gene product for a toxic role within venom. We review these discussions and the evidence interpreted in support of alternate pathways, along with many of the most popular models describing the origin of novel molecular functions in general. We note that such functions may arise with or without gene duplication occurring and are often the consequence of a gene product encountering a novel “environment,” i.e., a range of novel partners for molecular interaction. After stressing the distinction between “activity” and “function,” we describe in detail the results of a recent study which reconstructed the evolutionary history of a multigene family that has been recruited as a toxin and argue that these results indicate that a pluralistic approach to understanding the origin of novel functions is advantageous. This leads us to recommend that an expansive approach be taken to the definition of “neofunctionalization”—simply the origins of a novel molecular function by any process—and “recruitment”—the “weaponization” of a molecule via the acquisition of a toxic function in venom, by any process. Recruitment does not occur at the molecular level or even at the level of gene expression, but only when a confluence of factors results in the ecological deployment of a physiologically active molecule as a toxin. Subsequent to recruitment, the evolutionary regime of a gene family may shift into a more dynamic form of “birth-and-death.” Thus, recruitment leads to a form of “downwards causation,” in which a change at the ecological level at which whole organisms interact leads to a change in patterns of evolution at the genomic level.
Collapse
Affiliation(s)
- Timothy N W Jackson
- Australian Venom Research Unit, Department of Pharmacology and Therapeutics, University of Melbourne, Melbourne, Australia
| | - Ivan Koludarov
- Animal Venomics Group, Justus Leibig University, Giessen, Germany
| |
Collapse
|
29
|
Toxin-like neuropeptides in the sea anemone Nematostella unravel recruitment from the nervous system to venom. Proc Natl Acad Sci U S A 2020; 117:27481-27492. [PMID: 33060291 DOI: 10.1073/pnas.2011120117] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The sea anemone Nematostella vectensis (Anthozoa, Cnidaria) is a powerful model for characterizing the evolution of genes functioning in venom and nervous systems. Although venom has evolved independently numerous times in animals, the evolutionary origin of many toxins remains unknown. In this work, we pinpoint an ancestral gene giving rise to a new toxin and functionally characterize both genes in the same species. Thus, we report a case of protein recruitment from the cnidarian nervous to venom system. The ShK-like1 peptide has a ShKT cysteine motif, is lethal for fish larvae and packaged into nematocysts, the cnidarian venom-producing stinging capsules. Thus, ShK-like1 is a toxic venom component. Its paralog, ShK-like2, is a neuropeptide localized to neurons and is involved in development. Both peptides exhibit similarities in their functional activities: They provoke contraction in Nematostella polyps and are toxic to fish. Because ShK-like2 but not ShK-like1 is conserved throughout sea anemone phylogeny, we conclude that the two paralogs originated due to a Nematostella-specific duplication of a ShK-like2 ancestor, a neuropeptide-encoding gene, followed by diversification and partial functional specialization. ShK-like2 is represented by two gene isoforms controlled by alternative promoters conferring regulatory flexibility throughout development. Additionally, we characterized the expression patterns of four other peptides with structural similarities to studied venom components and revealed their unexpected neuronal localization. Thus, we employed genomics, transcriptomics, and functional approaches to reveal one venom component, five neuropeptides with two different cysteine motifs, and an evolutionary pathway from nervous to venom system in Cnidaria.
Collapse
|
30
|
D’Ambra I, Lauritano C. A Review of Toxins from Cnidaria. Mar Drugs 2020; 18:E507. [PMID: 33036158 PMCID: PMC7600780 DOI: 10.3390/md18100507] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/23/2020] [Accepted: 09/30/2020] [Indexed: 12/13/2022] Open
Abstract
Cnidarians have been known since ancient times for the painful stings they induce to humans. The effects of the stings range from skin irritation to cardiotoxicity and can result in death of human beings. The noxious effects of cnidarian venoms have stimulated the definition of their composition and their activity. Despite this interest, only a limited number of compounds extracted from cnidarian venoms have been identified and defined in detail. Venoms extracted from Anthozoa are likely the most studied, while venoms from Cubozoa attract research interests due to their lethal effects on humans. The investigation of cnidarian venoms has benefited in very recent times by the application of omics approaches. In this review, we propose an updated synopsis of the toxins identified in the venoms of the main classes of Cnidaria (Hydrozoa, Scyphozoa, Cubozoa, Staurozoa and Anthozoa). We have attempted to consider most of the available information, including a summary of the most recent results from omics and biotechnological studies, with the aim to define the state of the art in the field and provide a background for future research.
Collapse
Affiliation(s)
- Isabella D’Ambra
- Integrative Marine Ecology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy
| | - Chiara Lauritano
- Marine Biotechnology Department, Stazione Zoologica Anton Dohrn, Villa Comunale, 80121 Napoli, Italy;
| |
Collapse
|
31
|
Sachkova MY, Macrander J, Surm JM, Aharoni R, Menard-Harvey SS, Klock A, Leach WB, Reitzel AM, Moran Y. Some like it hot: population-specific adaptations in venom production to abiotic stressors in a widely distributed cnidarian. BMC Biol 2020; 18:121. [PMID: 32907568 PMCID: PMC7488265 DOI: 10.1186/s12915-020-00855-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 08/24/2020] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND In cnidarians, antagonistic interactions with predators and prey are mediated by their venom, whose synthesis may be metabolically expensive. The potentially high cost of venom production has been hypothesized to drive population-specific variation in venom expression due to differences in abiotic conditions. However, the effects of environmental factors on venom production have been rarely demonstrated in animals. Here, we explore the impact of specific abiotic stresses on venom production of distinct populations of the sea anemone Nematostella vectensis (Actiniaria, Cnidaria) inhabiting estuaries over a broad geographic range where environmental conditions such as temperatures and salinity vary widely. RESULTS We challenged Nematostella polyps with heat, salinity, UV light stressors, and a combination of all three factors to determine how abiotic stressors impact toxin expression for individuals collected across this species' range. Transcriptomics and proteomics revealed that the highly abundant toxin Nv1 was the most downregulated gene under heat stress conditions in multiple populations. Physiological measurements demonstrated that venom is metabolically costly to produce. Strikingly, under a range of abiotic stressors, individuals from different geographic locations along this latitudinal cline modulate differently their venom production levels. CONCLUSIONS We demonstrate that abiotic stress results in venom regulation in Nematostella. Together with anecdotal observations from other cnidarian species, our results suggest this might be a universal phenomenon in Cnidaria. The decrease in venom production under stress conditions across species coupled with the evidence for its high metabolic cost in Nematostella suggests downregulation of venom production under certain conditions may be highly advantageous and adaptive. Furthermore, our results point towards local adaptation of this mechanism in Nematostella populations along a latitudinal cline, possibly resulting from distinct genetics and significant environmental differences between their habitats.
Collapse
Affiliation(s)
- Maria Y Sachkova
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
- Sars International Centre for Marine Molecular Biology, University of Bergen, Bergen, Norway.
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
- Florida Southern College, Lakeland, FL, USA
| | - Joachim M Surm
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Reuven Aharoni
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shelcie S Menard-Harvey
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Amy Klock
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Whitney B Leach
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA
| | - Adam M Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC, USA.
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel.
| |
Collapse
|
32
|
Klompen AML, Macrander J, Reitzel AM, Stampar SN. Transcriptomic Analysis of Four Cerianthid (Cnidaria, Ceriantharia) Venoms. Mar Drugs 2020; 18:md18080413. [PMID: 32764303 PMCID: PMC7460484 DOI: 10.3390/md18080413] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 07/16/2020] [Accepted: 07/22/2020] [Indexed: 12/18/2022] Open
Abstract
Tube anemones, or cerianthids, are a phylogenetically informative group of cnidarians with complex life histories, including a pelagic larval stage and tube-dwelling adult stage, both known to utilize venom in stinging-cell rich tentacles. Cnidarians are an entirely venomous group that utilize their proteinaceous-dominated toxins to capture prey and defend against predators, in addition to several other ecological functions, including intraspecific interactions. At present there are no studies describing the venom for any species within cerianthids. Given their unique development, ecology, and distinct phylogenetic-placement within Cnidaria, our objective is to evaluate the venom-like gene diversity of four species of cerianthids from newly collected transcriptomic data. We identified 525 venom-like genes between all four species. The venom-gene profile for each species was dominated by enzymatic protein and peptide families, which is consistent with previous findings in other cnidarian venoms. However, we found few toxins that are typical of sea anemones and corals, and furthermore, three of the four species express toxin-like genes closely related to potent pore-forming toxins in box jellyfish. Our study is the first to provide a survey of the putative venom composition of cerianthids and contributes to our general understanding of the diversity of cnidarian toxins.
Collapse
Affiliation(s)
- Anna M. L. Klompen
- Department of Ecology and Evolutionary Biology, University of Kansas, 1200 Sunnyside Ave., Lawrence, KS 66045, USA
- Correspondence:
| | - Jason Macrander
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28262, USA; (J.M.); (A.M.R.)
- Department of Biology, Florida Southern College, 111 Lake Hollingsworth, Drive Lakeland, FL 33801, USA
| | - Adam M. Reitzel
- Department of Biological Sciences, University of North Carolina at Charlotte, 9201 University City Blvd, Charlotte, NC 28262, USA; (J.M.); (A.M.R.)
| | - Sérgio N. Stampar
- Department of Biological Sciences, Universidade Estadual Paulista “Júlio de Mesquita Filho” (UNESP), FCL, Assis, SP 19806, Brazil;
| |
Collapse
|
33
|
Zancolli G, Casewell NR. Venom Systems as Models for Studying the Origin and Regulation of Evolutionary Novelties. Mol Biol Evol 2020; 37:2777-2790. [DOI: 10.1093/molbev/msaa133] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Abstract
A central goal in biology is to determine the ways in which evolution repeats itself. One of the most remarkable examples in nature of convergent evolutionary novelty is animal venom. Across diverse animal phyla, various specialized organs and anatomical structures have evolved from disparate developmental tissues to perform the same function, that is, produce and deliver a cocktail of potent molecules to subdue prey or predators. Venomous organisms therefore offer unique opportunities to investigate the evolutionary processes of convergence of key adaptive traits, and the molecular mechanisms underlying the emergence of novel genes, cells, and tissues. Indeed, some venomous species have already proven to be highly amenable as models for developmental studies, and recent work with venom gland organoids provides manipulatable systems for directly testing important evolutionary questions. Here, we provide a synthesis of the current knowledge that could serve as a starting point for the establishment of venom systems as new models for evolutionary and molecular biology. In particular, we highlight the potential of various venomous species for the study of cell differentiation and cell identity, and the regulatory dynamics of rapidly evolving, highly expressed, tissue-specific, gene paralogs. We hope that this review will encourage researchers to look beyond traditional study organisms and consider venom systems as useful tools to explore evolutionary novelties.
Collapse
Affiliation(s)
- Giulia Zancolli
- Department of Ecology and Evolution, University of Lausanne, Lausanne, Switzerland
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| |
Collapse
|
34
|
Neurotoxin Merging: A Strategy Deployed by the Venom of the Spider Cupiennius salei to Potentiate Toxicity on Insects. Toxins (Basel) 2020; 12:toxins12040250. [PMID: 32290562 PMCID: PMC7232441 DOI: 10.3390/toxins12040250] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 12/19/2022] Open
Abstract
The venom of Cupiennius salei is composed of dozens of neurotoxins, with most of them supposed to act on ion channels. Some insecticidal monomeric neurotoxins contain an α-helical part besides their inhibitor cystine knot (ICK) motif (type 1). Other neurotoxins have, besides the ICK motif, an α-helical part of an open loop, resulting in a heterodimeric structure (type 2). Due to their low toxicity, it is difficult to understand the existence of type 2 peptides. Here, we show with the voltage clamp technique in oocytes of Xenopus laevis that a combined application of structural type 1 and type 2 neurotoxins has a much more pronounced cytolytic effect than each of the toxins alone. In biotests with Drosophila melanogaster, the combined effect of both neurotoxins was enhanced by 2 to 3 log units when compared to the components alone. Electrophysiological measurements of a type 2 peptide at 18 ion channel types, expressed in Xenopus laevis oocytes, showed no effect. Microscale thermophoresis data indicate a monomeric/heterodimeric peptide complex formation, thus a direct interaction between type 1 and type 2 peptides, leading to cell death. In conclusion, peptide mergers between both neurotoxins are the main cause for the high cytolytic activity of Cupiennius salei venom.
Collapse
|
35
|
Ashwood LM, Norton RS, Undheim EAB, Hurwood DA, Prentis PJ. Characterising Functional Venom Profiles of Anthozoans and Medusozoans within Their Ecological Context. Mar Drugs 2020; 18:E202. [PMID: 32283847 PMCID: PMC7230708 DOI: 10.3390/md18040202] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/31/2020] [Accepted: 04/06/2020] [Indexed: 12/13/2022] Open
Abstract
This review examines the current state of knowledge regarding toxins from anthozoans (sea anemones, coral, zoanthids, corallimorphs, sea pens and tube anemones). We provide an overview of venom from phylum Cnidaria and review the diversity of venom composition between the two major clades (Medusozoa and Anthozoa). We highlight that the functional and ecological context of venom has implications for the temporal and spatial expression of protein and peptide toxins within class Anthozoa. Understanding the nuances in the regulation of venom arsenals has been made possible by recent advances in analytical technologies that allow characterisation of the spatial distributions of toxins. Furthermore, anthozoans are unique in that ecological roles can be assigned using tissue expression data, thereby circumventing some of the challenges related to pharmacological screening.
Collapse
Affiliation(s)
- Lauren M. Ashwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Raymond S. Norton
- Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, Victoria 3052, Australia
| | - Eivind A. B. Undheim
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, PO Box 1066 Blindern, 0316 Oslo, Norway
- Centre for Advanced Imaging, University of Queensland, St Lucia, QLD 4072, Australia
| | - David A. Hurwood
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| | - Peter J. Prentis
- School of Biology and Environmental Science, Science and Engineering Faculty, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Institute of Future Environments, Queensland University of Technology, Brisbane, QLD 4000, Australia
| |
Collapse
|
36
|
Kalina RS, Peigneur S, Zelepuga EA, Dmitrenok PS, Kvetkina AN, Kim NY, Leychenko EV, Tytgat J, Kozlovskaya EP, Monastyrnaya MM, Gladkikh IN. New Insights into the Type II Toxins from the Sea Anemone Heteractis crispa. Toxins (Basel) 2020; 12:E44. [PMID: 31936885 PMCID: PMC7020476 DOI: 10.3390/toxins12010044] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 12/23/2022] Open
Abstract
Toxins modulating NaV channels are the most abundant and studied peptide components of sea anemone venom. Three type-II toxins, δ-SHTX-Hcr1f (= RpII), RTX-III, and RTX-VI, were isolated from the sea anemone Heteractis crispa. RTX-VI has been found to be an unusual analog of RTX-III. The electrophysiological effects of Heteractis toxins on nine NaV subtypes were investigated for the first time. Heteractis toxins mainly affect the inactivation of the mammalian NaV channels expressed in the central nervous system (NaV1.1-NaV1.3, NaV1.6) as well as insect and arachnid channels (BgNaV1, VdNaV1). The absence of Arg13 in the RTX-VI structure does not prevent toxin binding with the channel but it has changed its pharmacological profile and potency. According to computer modeling data, the δ-SHTX-Hcr1f binds within the extracellular region of the rNaV1.2 voltage-sensing domain IV and pore-forming domain I through a network of strong interactions, and an additional fixation of the toxin at the channel binding site is carried out through the phospholipid environment. Our data suggest that Heteractis toxins could be used as molecular tools for NaV channel studies or insecticides rather than as pharmacological agents.
Collapse
Affiliation(s)
- Rimma S. Kalina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N 2, Herestraat~49, P.O. Box 922, 3000 Leuven, Belgium
| | - Elena A. Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Pavel S. Dmitrenok
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Aleksandra N. Kvetkina
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Natalia Y. Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Elena V. Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N 2, Herestraat~49, P.O. Box 922, 3000 Leuven, Belgium
| | - Emma P. Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Margarita M. Monastyrnaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| | - Irina N. Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch of the Russian Academy of Science, 690022 Vladivostok, Russia; (E.A.Z.); (P.S.D.); (A.N.K.); (N.Y.K.); (E.V.L.); (E.P.K.); (M.M.M.)
| |
Collapse
|
37
|
Schendel V, Rash LD, Jenner RA, Undheim EAB. The Diversity of Venom: The Importance of Behavior and Venom System Morphology in Understanding Its Ecology and Evolution. Toxins (Basel) 2019; 11:E666. [PMID: 31739590 PMCID: PMC6891279 DOI: 10.3390/toxins11110666] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2019] [Revised: 11/06/2019] [Accepted: 11/12/2019] [Indexed: 12/22/2022] Open
Abstract
Venoms are one of the most convergent of animal traits known, and encompass a much greater taxonomic and functional diversity than is commonly appreciated. This knowledge gap limits the potential of venom as a model trait in evolutionary biology. Here, we summarize the taxonomic and functional diversity of animal venoms and relate this to what is known about venom system morphology, venom modulation, and venom pharmacology, with the aim of drawing attention to the importance of these largely neglected aspects of venom research. We find that animals have evolved venoms at least 101 independent times and that venoms play at least 11 distinct ecological roles in addition to predation, defense, and feeding. Comparisons of different venom systems suggest that morphology strongly influences how venoms achieve these functions, and hence is an important consideration for understanding the molecular evolution of venoms and their toxins. Our findings also highlight the need for more holistic studies of venom systems and the toxins they contain. Greater knowledge of behavior, morphology, and ecologically relevant toxin pharmacology will improve our understanding of the evolution of venoms and their toxins, and likely facilitate exploration of their potential as sources of molecular tools and therapeutic and agrochemical lead compounds.
Collapse
Affiliation(s)
- Vanessa Schendel
- Centre for Advanced Imaging, the University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Lachlan D. Rash
- School of Biomedical Sciences, the University of Queensland, St. Lucia, QLD 4072, Australia;
| | - Ronald A. Jenner
- Department of Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK;
| | - Eivind A. B. Undheim
- Centre for Advanced Imaging, the University of Queensland, St. Lucia, QLD 4072, Australia;
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway
- Centre for Ecological and Evolutionary Synthesis, Department of Biosciences, University of Oslo, P.O. Box 1066 Blindern, 0316 Oslo, Norway
| |
Collapse
|
38
|
Surm JM, Stewart ZK, Papanicolaou A, Pavasovic A, Prentis PJ. The draft genome of Actinia tenebrosa reveals insights into toxin evolution. Ecol Evol 2019; 9:11314-11328. [PMID: 31641475 PMCID: PMC6802032 DOI: 10.1002/ece3.5633] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 08/06/2019] [Accepted: 08/12/2019] [Indexed: 12/17/2022] Open
Abstract
Sea anemones have a wide array of toxic compounds (peptide toxins found in their venom) which have potential uses as therapeutics. To date, the majority of studies characterizing toxins in sea anemones have been restricted to species from the superfamily, Actinioidea. No highly complete draft genomes are currently available for this superfamily, however, highlighting our limited understanding of the genes encoding toxins in this important group. Here we have sequenced, assembled, and annotated a draft genome for Actinia tenebrosa. The genome is estimated to be approximately 255 megabases, with 31,556 protein-coding genes. Quality metrics revealed that this draft genome matches the quality and completeness of other model cnidarian genomes, including Nematostella, Hydra, and Acropora. Phylogenomic analyses revealed strong conservation of the Cnidaria and Hexacorallia core-gene set. However, we found that lineage-specific gene families have undergone significant expansion events compared with shared gene families. Enrichment analysis performed for both gene ontologies, and protein domains revealed that genes encoding toxins contribute to a significant proportion of the lineage-specific genes and gene families. The results make clear that the draft genome of A. tenebrosa will provide insight into the evolution of toxins and lineage-specific genes, and provide an important resource for the discovery of novel biological compounds.
Collapse
Affiliation(s)
- Joachim M. Surm
- Faculty of HealthSchool of Biomedical SciencesQueensland University of TechnologyKelvin GroveQldAustralia
- Institute of Health and Biomedical InnovationQueensland University of TechnologyKelvin GroveQldAustralia
| | - Zachary K. Stewart
- Science and Engineering FacultySchool of Earth, Environmental and Biological SciencesQueensland University of TechnologyBrisbaneQldAustralia
- Institute for Future EnvironmentsQueensland University of TechnologyBrisbaneQldAustralia
| | | | - Ana Pavasovic
- Faculty of HealthSchool of Biomedical SciencesQueensland University of TechnologyKelvin GroveQldAustralia
| | - Peter J. Prentis
- Science and Engineering FacultySchool of Earth, Environmental and Biological SciencesQueensland University of TechnologyBrisbaneQldAustralia
- Institute for Future EnvironmentsQueensland University of TechnologyBrisbaneQldAustralia
| |
Collapse
|
39
|
Sintsova O, Gladkikh I, Kalinovskii A, Zelepuga E, Monastyrnaya M, Kim N, Shevchenko L, Peigneur S, Tytgat J, Kozlovskaya E, Leychenko E. Magnificamide, a β-Defensin-Like Peptide from the Mucus of the Sea Anemone Heteractis magnifica, Is a Strong Inhibitor of Mammalian α-Amylases. Mar Drugs 2019; 17:md17100542. [PMID: 31546678 PMCID: PMC6835510 DOI: 10.3390/md17100542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Revised: 09/16/2019] [Accepted: 09/17/2019] [Indexed: 01/07/2023] Open
Abstract
Sea anemones’ venom is rich in peptides acting on different biological targets, mainly on cytoplasmic membranes and ion channels. These animals are also a source of pancreatic α-amylase inhibitors, which have the ability to control the glucose level in the blood and can be used for the treatment of prediabetes and type 2 diabetes mellitus. Recently we have isolated and characterized magnificamide (44 aa, 4770 Da), the major α-amylase inhibitor of the sea anemone Heteractis magnifica mucus, which shares 84% sequence identity with helianthamide from Stichodactyla helianthus. Herein, we report some features in the action of a recombinant analog of magnificamide. The recombinant peptide inhibits porcine pancreatic and human saliva α-amylases with Ki’s equal to 0.17 ± 0.06 nM and 7.7 ± 1.5 nM, respectively, and does not show antimicrobial or channel modulating activities. We have concluded that the main function of magnificamide is the inhibition of α-amylases; therefore, its functionally active recombinant analog is a promising agent for further studies as a potential drug candidate for the treatment of the type 2 diabetes mellitus.
Collapse
Affiliation(s)
- Oksana Sintsova
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Irina Gladkikh
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Aleksandr Kalinovskii
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
- School of Natural Sciences, Far Eastern Federal University, 8, Sukhanova St, Vladivostok 690090, Russia.
| | - Elena Zelepuga
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Margarita Monastyrnaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Natalia Kim
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Lyudmila Shevchenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Steve Peigneur
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, Leuven B-3000, Belgium.
| | - Jan Tytgat
- Toxicology and Pharmacology, University of Leuven (KU Leuven), Campus Gasthuisberg, O&N2, Herestraat 49, P.O. Box 922, Leuven B-3000, Belgium.
| | - Emma Kozlovskaya
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| | - Elena Leychenko
- G.B. Elyakov Pacific Institute of Bioorganic Chemistry, Far Eastern Branch, Russian Academy of Sciences, 159, Pr. 100 let Vladivostoku, Vladivostok 690022, Russia.
| |
Collapse
|
40
|
Yap WY, Tan KJSX, Hwang JS. Expansion of Hydra actinoporin-like toxin (HALT) gene family: Expression divergence and functional convergence evolved through gene duplication. Toxicon 2019; 170:10-20. [PMID: 31513812 DOI: 10.1016/j.toxicon.2019.09.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 08/27/2019] [Accepted: 09/03/2019] [Indexed: 11/15/2022]
Abstract
Hydra actinoporin-like toxin 1 (HALT-1) was previously shown to cause cytolysis and haemolysis in a number of human cells and has similar functional properties to the actinoporins equinatoxin and sticholysin. In addition to HALT-1, five other HALTs (HALTs 2, 3, 4, 6 and 7) were also isolated from Hydra magnipapillata and expressed as recombinant proteins in this study. We demonstrated that recombinant HALTs have cytolytic activity on HeLa cells but each exhibited a different range of toxicity. All six recombinant HALTs bound to sulfatide, while rHALT-1 and rHALT-3 bound to two additional sphingolipids, lysophosphatidic acid and sphingosine-1-phosphate as indicated by the protein-lipid overlay assay. When either tryptophan133 or tyrosine129 of HALT-1 was mutated, the mutant protein lost binding to sulfatide, lysophosphatidic acid and sphingosine-1-phosphate. As further verification of HALTs' binding to sulfatide, we performed ELISA for each HALT. To determine the cell-type specific gene expression of seven HALTs in Hydra, we searched for individual HALT expression in the single-cell RNA-seq data set of Single Cell Portal. The results showed that HALT-1, 4 and 7 were expressed in differentiating stenoteles. HALT-1 and HALT-6 were expressed in the female germline during oogenesis. HALT-2 was strongly expressed in the gland and mucous cells in the endoderm. Information on HALT-3 and HALT-5 could not be found in the single-cell data set. Our findings show that subfunctionalisation of gene expression following duplication enabled HALTs to become specialized in various cell types of the interstitial cell lineage.
Collapse
Affiliation(s)
- Wei Yuen Yap
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights Cheras, 56000, Kuala Lumpur, Malaysia
| | - Katrina Joan Shu Xian Tan
- Faculty of Applied Sciences, UCSI University, No. 1, Jalan Menara Gading, UCSI Heights Cheras, 56000, Kuala Lumpur, Malaysia
| | - Jung Shan Hwang
- Department of Medical Sciences, School of Healthcare and Medical Sciences, Sunway University, No. 5 Jalan Universiti, Bandar Sunway, 47500, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
41
|
Ramírez-Carreto S, Vera-Estrella R, Portillo-Bobadilla T, Licea-Navarro A, Bernaldez-Sarabia J, Rudiño-Piñera E, Verleyen JJ, Rodríguez E, Rodríguez-Almazán C. Transcriptomic and Proteomic Analysis of the Tentacles and Mucus of Anthopleura dowii Verrill, 1869. Mar Drugs 2019; 17:md17080436. [PMID: 31349621 PMCID: PMC6722582 DOI: 10.3390/md17080436] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 07/19/2019] [Accepted: 07/19/2019] [Indexed: 02/07/2023] Open
Abstract
Sea anemone venom contains a complex and diverse arsenal of peptides and proteins of pharmacological and biotechnological interest, however, only venom from a few species has been explored from a global perspective to date. In the present study, we identified the polypeptides present in the venom of the sea anemone Anthopleura dowii Verrill, 1869 through a transcriptomic and proteomic analysis of the tentacles and the proteomic profile of the secreted mucus. In our transcriptomic results, we identified 261 polypeptides related to or predicted to be secreted in the venom, including proteases, neurotoxins that could act as either potassium (K+) or sodium (Na+) channels inhibitors, protease inhibitors, phospholipases A2, and other polypeptides. Our proteomic data allowed the identification of 156 polypeptides—48 exclusively identified in the mucus, 20 in the tentacles, and 88 in both protein samples. Only 23 polypeptides identified by tandem mass spectrometry (MS/MS) were related to the venom and 21 exclusively identified in the mucus, most corresponding to neurotoxins and hydrolases. Our data contribute to the knowledge of evolutionary and venomic analyses of cnidarians, particularly of sea anemones.
Collapse
Affiliation(s)
- Santos Ramírez-Carreto
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Rosario Vera-Estrella
- Departamento de Biología Molecular de Plantas, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Tobías Portillo-Bobadilla
- Unidad de Bioinformática, Bioestadística y Biología Computacional. Red de Apoyo a la Investigación, Coordinación de la Investigación Científica, Universidad Nacional Autónoma de México-Instituto Nacional De Ciencias Médicas y Nutrición Salvador Zubirán, Calle Vasco de Quiroga 15, Tlalpan, C.P. 14080, Ciudad de México, México
| | - Alexei Licea-Navarro
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada, BC C.P. 22860, México
| | - Johanna Bernaldez-Sarabia
- Departamento de Innovación Biomédica, CICESE, Carretera Ensenada-Tijuana 3918, Ensenada, BC C.P. 22860, México
| | - Enrique Rudiño-Piñera
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Jerome J Verleyen
- Unidad Universitaria de Secuenciación Masiva y Bioinformática, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Estefanía Rodríguez
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024, USA
| | - Claudia Rodríguez-Almazán
- Departamento de Medicina Molecular y Bioprocesos, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Avenida Universidad 2001, Cuernavaca, Morelos 62210, México.
| |
Collapse
|