1
|
Che W, Li X, Piao J, Zhang Y, Miao S, Wang H, Xie L, Jin F. Biochar Improves Yield by Reducing Saline-Alkaline Stress, Enhancing Filling Rate of Rice in Soda Saline-Alkaline Paddy Fields. PLANTS (BASEL, SWITZERLAND) 2024; 13:2237. [PMID: 39204674 PMCID: PMC11360614 DOI: 10.3390/plants13162237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024]
Abstract
Soda saline-alkaline stress significantly impedes the rice grain filling process and ultimately impacts rice yield. Biochar has been shown to mitigate the negative impacts of saline-alkaline stress on plants. However, the exact mechanism by which biochar influences the rice grain-filling rate in soda saline-alkaline soil is still not fully understood. A two-year field experiment was conducted with two nitrogen fertilizer levels (0 and 225 kg ha-1) and five biochar application rates [0% (B0), 0.5% (B1), 1.5% (B2), 3.0% (B3), and 4.5% (B4) biochar, w/w]. The results demonstrated that biochar had a significant impact on reducing the Na+ concentration and Na+/K+ ratio in rice grown in soda saline-alkaline lands, while also improving its stress physiological conditions. B1, B2, B3, and B4 showed a notable increase in the average grain-filling rate by 5.76%, 6.59%, 9.80%, and 10.79%, respectively, compared to B0; the time to reach the maximum grain-filling rate and the maximum grain weight saw increases ranging from 6.02% to 12.47% and from 7.85% to 14.68%, respectively. Meanwhile, biochar, particularly when used in conjunction with nitrogen fertilizer, notably enhanced the activities of sucrose synthase (SuSase), ADPG pyrophosphorylase (AGPase), starch synthase (StSase), and starch branching enzyme (SBE) of rice grains in soda saline-alkaline lands. Furthermore, rice yield increased by 11.95-42.74% in the B1, B2, B3, and B4 treatments compared to the B0 treatment. These findings showed that biochar improves yield by regulating ionic balance, physiological indicators, starch synthesis key enzyme activities, and the grain-filling rate in soda saline-alkaline paddy fields.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Feng Jin
- Agronomy College, Jilin Agricultural University, Changchun 130118, China; (W.C.); (X.L.); (J.P.); (Y.Z.); (S.M.); (H.W.); (L.X.)
| |
Collapse
|
2
|
Jiadkong K, Fauzia AN, Yamaguchi N, Ueda A. Exogenous riboflavin (vitamin B2) application enhances salinity tolerance through the activation of its biosynthesis in rice seedlings under salinity stress. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 339:111929. [PMID: 38007197 DOI: 10.1016/j.plantsci.2023.111929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 11/16/2023] [Accepted: 11/19/2023] [Indexed: 11/27/2023]
Abstract
Salinity stress triggers the accumulation of reactive oxygen species (ROS), leading to impaired plant growth. Riboflavin (RIB; vitamin B2) is synthesized by plants, fungi, and microorganisms and is a precursor of the coenzymes, flavin adenine dinucleotide (FAD) and flavin mononucleotide (FMN), which are important for cellular metabolism. In this study, we aimed to elucidate the mechanistic basis of the RIB-mediated alleviation of salinity stress in rice. We observed higher biomass accumulation and lower concentrations of malondialdehyde (MDA) and hydrogen peroxide (H2O2) in RIB-pretreated seedlings under salinity stress. In vitro assays showed that H2O2 was scavenged as the RIB concentration increased, implying that RIB may function as a non-enzymatic antioxidant in ROS detoxification. RIB-pretreated seedlings accumulated more Na+ in the roots than in the leaf blades because of the contributions of OsHKT2;1, OsNHX1, and OsHKT1;4 in the roots and leaf sheaths, respectively. Liquid chromatography-mass spectrometry (LC-MS/MS) analysis revealed increased RIB concentration in roots and shoots and upregulation of key genes (OsRIBA1, OsGCHI, OsLS, and OsRS) involved in RIB biosynthesis in the roots of RIB-pretreated seedlings. Taken together, our findings suggest that RIB pretreatment ameliorates salinity stress in rice by improving (1) oxidative stress tolerance, as increased RIB concentration may function as a non-enzymatic antioxidant, and (2) ionic stress tolerance, as RIB pretreatment limits Na+ accumulation in the leaf blades and maintains a favorable Na+/K+ balance.
Collapse
Affiliation(s)
- Kamonthip Jiadkong
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan
| | - Anisa Nazera Fauzia
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan; Department of Biology, Faculty of Science and Technology, Universitas Islam Negeri Sunan Kalijaga Yogyakarta, Jl. Laksda Adisucipto, Yogyakarta 55281, Indonesia
| | - Nobuo Yamaguchi
- Natural Science Center for Basic Research and Development, Hiroshima University, 1-4-2 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-0046, Japan
| | - Akihiro Ueda
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima 739-8528, Japan.
| |
Collapse
|
3
|
Peng Z, Rehman A, Li X, Jiang X, Tian C, Wang X, Li H, Wang Z, He S, Du X. Comprehensive Evaluation and Transcriptome Analysis Reveal the Salt Tolerance Mechanism in Semi-Wild Cotton ( Gossypium purpurascens). Int J Mol Sci 2023; 24:12853. [PMID: 37629034 PMCID: PMC10454576 DOI: 10.3390/ijms241612853] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/27/2023] Open
Abstract
Elevated salinity significantly threatens cotton growth, particularly during the germination and seedling stages. The utilization of primitive species of Gossypium hirsutum, specifically Gossypium purpurascens, has the potential to facilitate the restoration of genetic diversity that has been depleted due to selective breeding in modern cultivars. This investigation evaluated 45 G. purpurascens varieties and a salt-tolerant cotton variety based on 34 morphological, physiological, and biochemical indicators and comprehensive salt tolerance index values. This study effectively identified a total of 19 salt-tolerant and two salt-resistant varieties. Furthermore, transcriptome sequencing of a salt-tolerant genotype (Nayanmian-2; NY2) and a salt-sensitive genotype (Sanshagaopao-2; GP2) revealed 2776, 6680, 4660, and 4174 differentially expressed genes (DEGs) under 0.5, 3, 12, and 24 h of salt stress. Gene ontology enrichment analysis indicated that the DEGs exhibited significant enrichment in biological processes like metabolic (GO:0008152) and cellular (GO:0009987) processes. MAPK signaling, plant-pathogen interaction, starch and sucrose metabolism, plant hormone signaling, photosynthesis, and fatty acid metabolism were identified as key KEGG pathways involved in salinity stress. Among the DEGs, including NAC, MYB, WRKY, ERF, bHLH, and bZIP, transcription factors, receptor-like kinases, and carbohydrate-active enzymes were crucial in salinity tolerance. Weighted gene co-expression network analysis (WGCNA) unveiled associations of salt-tolerant genotypes with flavonoid metabolism, carbon metabolism, and MAPK signaling pathways. Identifying nine hub genes (MYB4, MYB105, MYB36, bZIP19, bZIP43, FRS2 SMARCAL1, BBX21, F-box) across various intervals offered insights into the transcriptional regulation mechanism of salt tolerance in G. purpurascens. This study lays the groundwork for understanding the important pathways and gene networks in response to salt stress, thereby providing a foundation for enhancing salt tolerance in upland cotton.
Collapse
Affiliation(s)
- Zhen Peng
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Abdul Rehman
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Xiawen Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Xuran Jiang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Chunyan Tian
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Xiaoyang Wang
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
| | - Hongge Li
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Zhenzhen Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
| | - Shoupu He
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| | - Xiongming Du
- Zhengzhou Research Base, National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou 450001, China; (Z.P.); (A.R.); (X.L.); (X.J.); (C.T.); (X.W.); (H.L.)
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China;
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572025, China
| |
Collapse
|
4
|
Karumanchi AR, Sivan P, Kummari D, Rajasheker G, Kumar SA, Reddy PS, Suravajhala P, Podha S, Kishor PBK. Root and Leaf Anatomy, Ion Accumulation, and Transcriptome Pattern under Salt Stress Conditions in Contrasting Genotypes of Sorghum bicolor. PLANTS (BASEL, SWITZERLAND) 2023; 12:2400. [PMID: 37446963 DOI: 10.3390/plants12132400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/11/2023] [Accepted: 06/15/2023] [Indexed: 07/15/2023]
Abstract
Roots from salt-susceptible ICSR-56 (SS) sorghum plants display metaxylem elements with thin cell walls and large diameter. On the other hand, roots with thick, lignified cell walls in the hypodermis and endodermis were noticed in salt-tolerant CSV-15 (ST) sorghum plants. The secondary wall thickness and number of lignified cells in the hypodermis have increased with the treatment of sodium chloride stress to the plants (STN). Lignin distribution in the secondary cell wall of sclerenchymatous cells beneath the lower epidermis was higher in ST leaves compared to the SS genotype. Casparian thickenings with homogenous lignin distribution were observed in STN roots, but inhomogeneous distribution was evident in SS seedlings treated with sodium chloride (SSN). Higher accumulation of K+ and lower Na+ levels were noticed in ST compared to the SS genotype. To identify the differentially expressed genes among SS and ST genotypes, transcriptomic analysis was carried out. Both the genotypes were exposed to 200 mM sodium chloride stress for 24 h and used for analysis. We obtained 70 and 162 differentially expressed genes (DEGs) exclusive to SS and SSN and 112 and 26 DEGs exclusive to ST and STN, respectively. Kyoto Encyclopaedia of Genes and Genomes (KEGG) and Gene Ontology (GO) enrichment analysis unlocked the changes in metabolic pathways in response to salt stress. qRT-PCR was performed to validate 20 DEGs in each SSN and STN sample, which confirms the transcriptomic results. These results surmise that anatomical changes and higher K+/Na+ ratios are essential for mitigating salt stress in sorghum apart from the genes that are differentially up- and downregulated in contrasting genotypes.
Collapse
Affiliation(s)
- Appa Rao Karumanchi
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 209, India
| | - Pramod Sivan
- Department of Chemistry, Division of Glycoscience, KTH Royal Institute of Technology, School of Engineering Sciences in Chemistry, Biotechnology and Health, Albanova University Center, SE-10691 Stockholm, Sweden
| | - Divya Kummari
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | - G Rajasheker
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| | - S Anil Kumar
- Department of Biotechnology, Vignan's Foundation for Science, Technology & Research (Deemed to Be University), Guntur 522 213, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), Patancheru, Hyderabad 502 324, India
| | | | - Sudhakar Podha
- Department of Biotechnology, Acharya Nagarjuna University, Nagarjuna Nagar, Guntur 522 209, India
| | - P B Kavi Kishor
- Department of Genetics, Osmania University, Hyderabad 500 007, India
| |
Collapse
|
5
|
Li Y, Guo D. Transcriptome and DNA Methylome Analysis of Two Contrasting Rice Genotypes under Salt Stress during Germination. Int J Mol Sci 2023; 24:ijms24043978. [PMID: 36835386 PMCID: PMC9965394 DOI: 10.3390/ijms24043978] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 02/18/2023] Open
Abstract
With climate change and labor shortages, direct-seeding rice cultivation is becoming popular worldwide, especially in Asia. Salinity stress negatively affects rice seed germination in the direct-seeding process, and the cultivation of suitable direct-seeding rice varieties under salinity stress is necessary. However, little is known about the underlying mechanism of salt responses during seed germination under salt stress. To investigate the salt tolerance mechanism at the seed germination stage, two contrasting rice genotypes differing in salt tolerance, namely, FL478 (salt-tolerant) and IR29 (salt-sensitive), were used in this study. We observed, that compared to IR29, FL478 appeared to be more tolerant to salt stress with a higher germination rate. GD1 (germination defective 1), which was involved in seed germination by regulating alpha-amylase, was upregulated significantly in the salt-sensitive IR29 strain under salt stress during germination. Transcriptomic data showed that salt-responsive genes tended to be up/downregulated in IR29 but not in FL478. Furthermore, we investigated the epigenetic changes in FL478 and IR29 during germination under saline treatment using whole genome bisulfite DNA sequencing (BS-seq) technology. BS-seq data showed that the global CHH methylation level increased dramatically under salinity stress in both strains, and the hyper CHH differentially methylated regions (DMRs) were predominantly located within the transposable elements regions. Compared with FL478, differentially expressed genes with DMRs in IR29 were mainly related to gene ontology terms such as response to water deprivation, response to salt stress, seed germination, and response to hydrogen peroxide pathways. These results may provide valuable insights into the genetic and epigenetic basis of salt tolerance at the seed germination stage, which is important for direct-seeding rice breeding.
Collapse
|
6
|
Gutiérrez N, Pégard M, Balko C, Torres AM. Genome-wide association analysis for drought tolerance and associated traits in faba bean ( Vicia faba L.). FRONTIERS IN PLANT SCIENCE 2023; 14:1091875. [PMID: 36818887 PMCID: PMC9928957 DOI: 10.3389/fpls.2023.1091875] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/16/2023] [Indexed: 06/18/2023]
Abstract
Faba bean (Vicia faba L.) is an important high protein legume adapted to diverse climatic conditions with multiple benefits for the overall sustainability of the cropping systems. Plant-based protein demand is being expanded and faba bean is a good candidate to cover this need. However, the crop is very sensitive to abiotic stresses, especially drought, which severely affects faba bean yield and development worldwide. Therefore, identifying genes associated with drought stress tolerance is a major challenge in faba bean breeding. Although the faba bean response to drought stress has been widely studied, the molecular approaches to improve drought tolerance in this crop are still limited. Here we built on recent genomic advances such as the development of the first high-density SNP genotyping array, to conduct a genome-wide association study (GWAS) using thousands of genetic polymorphisms throughout the entire faba bean genome. A worldwide collection of 100 faba bean accessions was grown under control and drought conditions and 10 morphological, phenological and physiological traits were evaluated to identify single nucleotide polymorphism (SNP) markers associated with drought tolerance. We identified 29 SNP markers significantly correlated with these traits under drought stress conditions. The flanking sequences were blasted to the Medicago truncatula reference genomes in order to annotate potential candidate genes underlying the causal variants. Three of the SNPs for chlorophyll content after the stress, correspond to uncharacterized proteins indicating the presence of novel genes associated with drought tolerance in faba bean. The significance of stress-inducible signal transducers provides valuable information on the possible mechanisms underlying the faba bean response to drought stress, thus providing a foundation for future marker-assisted breeding in the crop.
Collapse
Affiliation(s)
- Natalia Gutiérrez
- Área de Mejora y Biotecnología, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centro Alameda del Obispo, Córdoba, Spain
| | - Marie Pégard
- INRAE P3F, 86600 Lusignan, France, INRA, Centre Nouvelle-Aquitaine-Poitiers, Lusignan, France
| | - Christiane Balko
- Julius Kühn-Institut (JKI), Federal Research Centre for Cultivated Plants, Institute for Resistance Research and Stress Tolerance, Sanitz, Germany
| | - Ana M. Torres
- Área de Mejora y Biotecnología, Andalusian Institute of Agricultural and Fisheries Research and Training (IFAPA), Centro Alameda del Obispo, Córdoba, Spain
| |
Collapse
|
7
|
Karam A, El-Assal SEDS, Hussein BA, Atia MAM. Transcriptome data mining towards characterization of single nucleotide polymorphisms (SNPs) controlling salinity tolerance in bread wheat. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2081516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- Ahmed Karam
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | | | | | - Mohamed Atia Mohamed Atia
- Genome Mapping Department, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| |
Collapse
|
8
|
Shelake RM, Kadam US, Kumar R, Pramanik D, Singh AK, Kim JY. Engineering drought and salinity tolerance traits in crops through CRISPR-mediated genome editing: Targets, tools, challenges, and perspectives. PLANT COMMUNICATIONS 2022; 3:100417. [PMID: 35927945 PMCID: PMC9700172 DOI: 10.1016/j.xplc.2022.100417] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/07/2022] [Accepted: 07/27/2022] [Indexed: 05/10/2023]
Abstract
Prolonged periods of drought triggered by climate change hamper plant growth and cause substantial agricultural yield losses every year. In addition to drought, salinity is one of the major abiotic stresses that severely affect crop health and agricultural production. Plant responses to drought and salinity involve multiple processes that operate in a spatiotemporal manner, such as stress sensing, perception, epigenetic modifications, transcription, post-transcriptional processing, translation, and post-translational changes. Consequently, drought and salinity stress tolerance are polygenic traits influenced by genome-environment interactions. One of the ideal solutions to these challenges is the development of high-yielding crop varieties with enhanced stress tolerance, together with improved agricultural practices. Recently, genome-editing technologies, especially clustered regularly interspaced short palindromic repeats (CRISPR) tools, have been effectively applied to elucidate how plants deal with drought and saline environments. In this work, we aim to portray that the combined use of CRISPR-based genome engineering tools and modern genomic-assisted breeding approaches are gaining momentum in identifying genetic determinants of complex traits for crop improvement. This review provides a synopsis of plant responses to drought and salinity stresses at the morphological, physiological, and molecular levels. We also highlight recent advances in CRISPR-based tools and their use in understanding the multi-level nature of plant adaptations to drought and salinity stress. Integrating CRISPR tools with modern breeding approaches is ideal for identifying genetic factors that regulate plant stress-response pathways and for the introgression of beneficial traits to develop stress-resilient crops.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea.
| | - Ulhas Sopanrao Kadam
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Ritesh Kumar
- Department of Agronomy & Plant Genetics, University of Minnesota, Saint Paul, MN 55108, USA
| | - Dibyajyoti Pramanik
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea
| | - Anil Kumar Singh
- ICAR-National Institute for Plant Biotechnology, LBS Centre, Pusa Campus, New Delhi 110012, India
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju 52828, Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
| |
Collapse
|
9
|
Zhou L, Zong Y, Li L, Wu S, Duan M, Lu R, Liu C, Chen Z. Integrated analysis of transcriptome and metabolome reveals molecular mechanisms of salt tolerance in seedlings of upland rice landrace 17SM-19. FRONTIERS IN PLANT SCIENCE 2022; 13:961445. [PMID: 36186007 PMCID: PMC9515574 DOI: 10.3389/fpls.2022.961445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 07/18/2022] [Indexed: 06/16/2023]
Abstract
Salt stress is a major abiotic stress that threatens global rice production. It is particularly important to improve salt tolerance in upland rice because of its growth environment. Upland rice landrace 17SM-19 with high salt tolerance was obtained from a previous study. In this study, an integrated analysis of transcriptome and metabolome was performed to determine the responses of the rice seedling to salt stress. When treated with 100 mm NaCl, the rice seedling growth was significantly inhibited at 5 d, with inhibition first observed in shoot dry weight (SDW). Changes in potassium (K+) content were associated with changes in SDW. In omics analyses, 1,900 differentially expressed genes (DEGs) and 659 differentially abundant metabolites (DAMs) were identified at 3 d after salt stress (DAS), and 1,738 DEGs and 657 DAMs were identified at 5 DAS. Correlation analyses between DEGs and DAMs were also conducted. The results collectively indicate that salt tolerance of upland rice landrace 17SM-19 seedlings involves many molecular mechanisms, such as those involved with osmotic regulation, ion balance, and scavenging of reactive oxygen species.
Collapse
Affiliation(s)
- Longhua Zhou
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Yingjie Zong
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Luli Li
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Shujun Wu
- Crop Breeding & Cultivation Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | | | - Ruiju Lu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Chenghong Liu
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Zhiwei Chen
- Shanghai Key Laboratory of Agricultural Genetics and Breeding, Biotechnology Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
| |
Collapse
|
10
|
Niu J, Li Z, Zhu J, Wu R, Kong L, Niu T, Li X, Cheng X, Li J, Dai L. Genome-wide identification and characterization of the C2 domain family in Sorghum bicolor (L.) and expression profiles in response to saline-alkali stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1695-1711. [PMID: 36387979 PMCID: PMC9636366 DOI: 10.1007/s12298-022-01222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
The C2 domain family proteins in plants has been recently shown to be involved in the response to abiotic stress such as salt and drought stress. However, less information on C2 domain family members has been reported in Sorghum bicolor (L.), which is a tolerant cereal crop. To elaborate the mechanism of C2 domain family members in response to abiotic stress, bioinformatic methods were used to analyze this family. The results indicated that 69 C2 domain genes belonging to 5 different groups were first identified within the sorghum genome, and each group possessed various gene structures and conserved functional domains. Second, those C2 family genes were localized on 10 chromosomes 3 tandem repeat genes and 1 pair of repeat gene fragments were detected. The family members further presented a variety of stress responsive cis-elements. Third, in addition to being the major integral component of the membrane, sorghum C2 domain family proteins mainly played roles in response to abiotic and biotic stress with their organic transport and catalytic activity by specific location in the cell on the basis of gene ontology analysis. C2 family genes were differentially expressed in root, shoot or leaf, and shown different expression profiling after saline-alkali stress, which indicated that C2 family members played an important role in response to saline-alkali stress based on the transcription profiles of RNA-seq data and expression analysis by quantitative real-time polymerase chain reaction. Besides, most C2 family members were mainly located in cytoplasmi and nucleus. Weighted gene co-expression network analysis revealed three modules (turquoise, dark magenta and pink) that were associated with stress resistance, respectively. Therefore, the present research provides comprehensive information for further analysis of the molecular function of C2 domain family genes in sorghum. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01222-3.
Collapse
Affiliation(s)
- Jiangshuai Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang Province China
| | - Jiarui Zhu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Rong Wu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Lingxin Kong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Tingli Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Xueying Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Xinran Cheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Jianying Li
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, 163319 Heilongjiang Province China
| | - Lingyan Dai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| |
Collapse
|
11
|
Abid M, Gu S, Zhang YJ, Sun S, Li Z, Bai DF, Sun L, Qi XJ, Zhong YP, Fang JB. Comparative transcriptome and metabolome analysis reveal key regulatory defense networks and genes involved in enhanced salt tolerance of Actinidia (kiwifruit). HORTICULTURE RESEARCH 2022; 9:uhac189. [PMID: 36338850 PMCID: PMC9630968 DOI: 10.1093/hr/uhac189] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 08/16/2022] [Indexed: 05/25/2023]
Abstract
The Actinidia (kiwifruit) is an emerging fruit plant that is severely affected by salt stress in northern China. Plants have evolved several signaling network mechanisms to cope with the detrimental effects of salt stress. To date, no reported work is available on metabolic and molecular mechanisms involved in kiwifruit salt tolerance. Therefore, the present study aims to decipher intricate adaptive responses of two contrasting salt tolerance kiwifruit species Actinidia valvata [ZMH (an important genotype), hereafter referred to as R] and Actinidia deliciosa ['Hayward' (an important green-fleshed cultivar), hereafter referred to as H] under 0.4% (w/w) salt stress for time courses of 0, 12, 24, and 72 hours (hereafter refered to as h) by combined transcriptome and metabolome analysis. Data revealed that kiwifruit displayed specific enrichment of differentially expressed genes (DEGs) under salt stress. Interestingly, roots of R plants showed a differential expression pattern for up-regulated genes. The KEGG pathway analysis revealed the enrichment of DEGs related to plant hormone signal transduction, glycine metabolism, serine and threonine metabolism, glutathione metabolism, and pyruvate metabolism in the roots of R under salt stress. The WGCNA resulted in the identification of five candidate genes related to glycine betaine (GB), pyruvate, total soluble sugars (TSS), and glutathione biosynthesis in kiwifruit. An integrated study of transcriptome and metabolome identified several genes encoding metabolites involved in pyruvate metabolism. Furthermore, several genes encoding transcription factors were mainly induced in R under salt stress. Functional validation results for overexpression of a candidate gene betaine aldehyde dehydrogenase (AvBADH, R_transcript_80484) from R showed significantly improved salt tolerance in Arabidopsis thaliana (hereafter referred to as At) and Actinidia chinensis ['Hongyang' (an important red-fleshed cultivar), hereafter referred to as Ac] transgenic plants than in WT plants. All in all, salt stress tolerance in kiwifruit roots is an intricate regulatory mechanism that consists of several genes encoding specific metabolites.
Collapse
Affiliation(s)
- Muhammad Abid
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Shichao Gu
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yong-Jie Zhang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Shihang Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Zhi Li
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Dan-Feng Bai
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Leiming Sun
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Xiu-Juan Qi
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Yun-Peng Zhong
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| | - Jin-Bao Fang
- Key Laboratory for Fruit Tree Growth, Development and Quality Control, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou 450009, China
| |
Collapse
|
12
|
Bandara WW, Wijesundera WSS, Hettiarachchi C. Rice and Arabidopsis BBX proteins: toward genetic engineering of abiotic stress resistant crops. 3 Biotech 2022; 12:164. [PMID: 36092969 PMCID: PMC9452616 DOI: 10.1007/s13205-022-03228-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 06/17/2022] [Indexed: 11/01/2022] Open
Abstract
Productivity of crop plants are enormously affected by biotic and abiotic stresses. The co-occurrence of several abiotic stresses may lead to death of crop plants. Hence, it is the responsibility of plant scientists to develop crop plants equipped with multistress tolerance pathways. A subgroup of zinc finger transcription factor family, known as B-box (BBX) proteins, play a key role in light and hormonal regulation pathways. In addition, BBX proteins act as key regulatory proteins in many abiotic stress regulatory pathways, including Ultraviolet-B (UV-B), salinity, drought, heat and cold, and heavy metal stresses. Most of the BBX proteins identified in Arabidopsis and rice respond to more than one abiotic stress. Considering the requirement of improving rice for multistress tolerance, this review discusses functionally characterized Arabidopsis and rice BBX proteins in the development of abiotic stress responses. Furthermore, it highlights the participation of BBX proteins in multistress regulation and crop improvement through genetic engineering.
Collapse
|
13
|
Dai L, Li P, Li Q, Leng Y, Zeng D, Qian Q. Integrated Multi-Omics Perspective to Strengthen the Understanding of Salt Tolerance in Rice. Int J Mol Sci 2022; 23:ijms23095236. [PMID: 35563627 PMCID: PMC9105537 DOI: 10.3390/ijms23095236] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/03/2022] [Accepted: 05/04/2022] [Indexed: 11/29/2022] Open
Abstract
Salt stress is one of the major constraints to rice cultivation worldwide. Thus, the development of salt-tolerant rice cultivars becomes a hotspot of current rice breeding. Achieving this goal depends in part on understanding how rice responds to salt stress and uncovering the molecular mechanism underlying this trait. Over the past decade, great efforts have been made to understand the mechanism of salt tolerance in rice through genomics, transcriptomics, proteomics, metabolomics, and epigenetics. However, there are few reviews on this aspect. Therefore, we review the research progress of omics related to salt tolerance in rice and discuss how these advances will promote the innovations of salt-tolerant rice breeding. In the future, we expect that the integration of multi-omics salt tolerance data can accelerate the solution of the response mechanism of rice to salt stress, and lay a molecular foundation for precise breeding of salt tolerance.
Collapse
Affiliation(s)
- Liping Dai
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Peiyuan Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Qing Li
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
| | - Yujia Leng
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genetics and Physiology/Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou 225009, China
- Correspondence: (Y.L.); (Q.Q.)
| | - Dali Zeng
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- The Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, Zhejiang A & F University, Hangzhou 311300, China
| | - Qian Qian
- State Key Laboratory for Rice Biology, China National Rice Research Institute, Hangzhou 310006, China; (L.D.); (P.L.); (Q.L.); (D.Z.)
- Correspondence: (Y.L.); (Q.Q.)
| |
Collapse
|
14
|
Hasseb NM, Sallam A, Karam MA, Gao L, Wang RRC, Moursi YS. High-LD SNP markers exhibiting pleiotropic effects on salt tolerance at germination and seedlings stages in spring wheat. PLANT MOLECULAR BIOLOGY 2022; 108:585-603. [PMID: 35217965 PMCID: PMC8967789 DOI: 10.1007/s11103-022-01248-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 01/25/2022] [Indexed: 06/01/2023]
Abstract
Salt tolerance at germination and seedling growth stages was investigated. GWAS revealed nine genomic regions with pleiotropic effects on salt tolerance. Salt tolerant genotypes were identified for future breeding program. With 20% of the irrigated land worldwide affected by it, salinity is a serious threat to plant development and crop production. While wheat is the most stable food source worldwide, it has been classified as moderately tolerant to salinity. In several crop plants; such as barley, maize and rice, it has been shown that salinity tolerance at seed germination and seedling establishment is under polygenic control. As yield was the ultimate goal of breeders and geneticists, less attention has been paid to understanding the genetic architecture of salt tolerance at early stages. Thus, the genetic control of salt tolerance at these stages is poorly understood relative to the late stages. In the current study, 176 genotypes of spring wheat were tested for salinity tolerance at seed germination and seedling establishment. Genome-Wide Association Study (GWAS) has been used to identify the genomic regions/genes conferring salt tolerance at seed germination and seedling establishment. Salinity stress negatively impacted all germination and seedling development parameters. A set of 137 SNPs showed significant association with the traits of interest. Across the whole genome, 33 regions showed high linkage disequilibrium (LD). These high LD regions harbored 15 SNPs with pleiotropic effect (i.e. SNPs that control more than one trait). Nine genes belonging to different functional groups were found to be associated with the pleiotropic SNPs. Noteworthy, chromosome 2B harbored the gene TraesCS2B02G135900 that acts as a potassium transporter. Remarkably, one SNP marker, reported in an early study, associated with salt tolerance was validated in this study. Our findings represent potential targets of genetic manipulation to understand and improve salinity tolerance in wheat.
Collapse
Affiliation(s)
- Nouran M Hasseb
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Ahmed Sallam
- Department of Genetics, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt.
| | - Mohamed A Karam
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| | - Liangliang Gao
- Department of Plant Pathology and Wheat Genetics Resource Center, Kansas State Univ, Manhattan, KS, 66502, USA
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Buxin Road 97, Dapeng-District, Shenzhen, 518120, Guangdong, China
| | - Richard R C Wang
- USDA-ARS Forage and Range Research Lab, Utah State University, Logan, UT, 84322-6300, USA
| | - Yasser S Moursi
- Department of Botany, Faculty of Science, Fayoum University, Fayoum, 63514, Egypt
| |
Collapse
|
15
|
Bundó M, Martín-Cardoso H, Pesenti M, Gómez-Ariza J, Castillo L, Frouin J, Serrat X, Nogués S, Courtois B, Grenier C, Sacchi GA, San Segundo B. Integrative Approach for Precise Genotyping and Transcriptomics of Salt Tolerant Introgression Rice Lines. FRONTIERS IN PLANT SCIENCE 2022; 12:797141. [PMID: 35126422 PMCID: PMC8813771 DOI: 10.3389/fpls.2021.797141] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 12/13/2021] [Indexed: 05/24/2023]
Abstract
Rice is the most salt sensitive cereal crop and its cultivation is particularly threatened by salt stress, which is currently worsened due to climate change. This study reports the development of salt tolerant introgression lines (ILs) derived from crosses between the salt tolerant indica rice variety FL478, which harbors the Saltol quantitative trait loci (QTL), and the salt-sensitive japonica elite cultivar OLESA. Genotyping-by-sequencing (GBS) and Kompetitive allele specific PCR (KASPar) genotyping, in combination with step-wise phenotypic selection in hydroponic culture, were used for the identification of salt-tolerant ILs. Transcriptome-based genotyping allowed the fine mapping of indica genetic introgressions in the best performing IL (IL22). A total of 1,595 genes were identified in indica regions of IL22, which mainly located in large introgressions at Chromosomes 1 and 3. In addition to OsHKT1;5, an important number of genes were identified in the introgressed indica segments of IL22 whose expression was confirmed [e.g., genes involved in ion transport, callose synthesis, transcriptional regulation of gene expression, hormone signaling and reactive oxygen species (ROS) accumulation]. These genes might well contribute to salt stress tolerance in IL22 plants. Furthermore, comparative transcript profiling revealed that indica introgressions caused important alterations in the background gene expression of IL22 plants (japonica cultivar) compared with its salt-sensitive parent, both under non-stress and salt-stress conditions. In response to salt treatment, only 8.6% of the salt-responsive genes were found to be commonly up- or down-regulated in IL22 and OLESA plants, supporting massive transcriptional reprogramming of gene expression caused by indica introgressions into the recipient genome. Interactions among indica and japonica genes might provide novel regulatory networks contributing to salt stress tolerance in introgression rice lines. Collectively, this study illustrates the usefulness of transcriptomics in the characterization of new rice lines obtained in breeding programs in rice.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | | | - Michele Pesenti
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Jorge Gómez-Ariza
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Laia Castillo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
| | - Julien Frouin
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Xavier Serrat
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Salvador Nogués
- Departament de Biologia Evolutiva, Ecologia i Ciències Ambientals, Secció de Fisiologia Vegetal, Universitat de Barcelona, Barcelona, Spain
| | - Brigitte Courtois
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Cécile Grenier
- CIRAD, UMR AGAP, Montpellier, France
- AGAP, CIRAD, INRAE, Institut Agro, University of Montpellier, Montpellier, France
| | - Gian Attilio Sacchi
- Department of Agricultural and Environmental Sciences – Production, Landscape, Agroenergy – DiSAA, University of Milan, Milan, Italy
| | - Blanca San Segundo
- Centre for Research in Agricultural Genomics, CSIC-IRTA-UAB-UB, Bellaterra, Spain
- Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
16
|
Cartagena JA, Yao Y, Mitsuya S, Tsuge T. Comparative transcriptome analysis of root types in salt tolerant and sensitive rice varieties in response to salinity stress. PHYSIOLOGIA PLANTARUM 2021; 173:1629-1642. [PMID: 34510489 DOI: 10.1111/ppl.13553] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/12/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Salinity tolerance in rice is a very important trait, especially in areas that are affected by soil salinity, such as tsunami-devastated areas and coastal regions in rice-producing countries. The roots are the key organs that first detect and respond to salinity stress; thus, it is important to have an understanding of how roots contribute to salinity tolerance in agricultural crops. After salinity treatment of the salt tolerant (Mulai) and sensitive (IR29) rice varieties, it appeared that among the three types of roots, the L-type lateral roots (LLR) were the most sensitive to salinity stress in Mulai and the most tolerant in IR29. The nodal roots (NR) and the S-type lateral roots (SLR) were all negatively affected by salinity treatment in both rice varieties. In order to elucidate the molecular mechanism of the difference in stress response among rice root types, the RNA-seq transcriptome profiles of NR, LLR, and SLR were analyzed in Mulai and IR29. Between the two rice varieties, more transporters were found to participate in the regulation of salt tolerance in Mulai roots, such as those involved in ion and sugar transport. In IR29, many of the genes detected were associated with transcription regulation, including stress-inducible genes such as NAC, WRKY and MYB. Among the different root types, gene expression in LLR and SLR were significantly regulated in both rice varieties. Taken together, the genes identified in this study may be utilized in the varietal improvement of rice with very specific root traits that can enhance tolerance to salinity stress.
Collapse
Affiliation(s)
- Joyce A Cartagena
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Yao Yao
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Shiro Mitsuya
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| | - Takashi Tsuge
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Aichi, Japan
| |
Collapse
|
17
|
Yu H, Du Q, Campbell M, Yu B, Walia H, Zhang C. Genome-wide discovery of natural variation in pre-mRNA splicing and prioritising causal alternative splicing to salt stress response in rice. THE NEW PHYTOLOGIST 2021; 230:1273-1287. [PMID: 33453070 PMCID: PMC8048671 DOI: 10.1111/nph.17189] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 01/04/2021] [Indexed: 05/14/2023]
Abstract
Pre-mRNA splicing is an essential step for the regulation of gene expression. In order to specifically capture splicing variants in plants for genome-wide association studies (GWAS), we developed a software tool to quantify and visualise Variations of Splicing in Population (VaSP). VaSP can quantify splicing variants from short-read RNA-seq datasets and discover genotype-specific splicing (GSS) events, which can be used to prioritise causal pre-mRNA splicing events in GWAS. We applied our method to an RNA-seq dataset with 328 samples from 82 genotypes from a rice diversity panel exposed to optimal and saline growing conditions. In total, 764 significant GSS events were identified in salt stress conditions. GSS events were used as markers for a GWAS with the shoot Na+ accumulation, which identified six GSS events in five genes significantly associated with the shoot Na+ content. Two of these genes, OsNUC1 and OsRAD23 emerged as top candidate genes with splice variants that exhibited significant divergence between the variants for shoot growth under salt stress conditions. VaSP is a versatile tool for alternative splicing analysis in plants and a powerful tool for prioritising candidate causal pre-mRNA splicing and corresponding genomic variations in GWAS.
Collapse
Affiliation(s)
- Huihui Yu
- School of Biological SciencesUniversity of NebraskaLincolnNE68588USA
| | - Qian Du
- School of Biological SciencesUniversity of NebraskaLincolnNE68588USA
| | - Malachy Campbell
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNE68583USA
- Department of Plant BiologyCornell UniversityIthacaNY14850USA
| | - Bin Yu
- School of Biological SciencesUniversity of NebraskaLincolnNE68588USA
- Center for Plant Science and InnovationUniversity of NebraskaLincolnNE68588USA
| | - Harkamal Walia
- Department of Agronomy and HorticultureUniversity of NebraskaLincolnNE68583USA
- Center for Plant Science and InnovationUniversity of NebraskaLincolnNE68588USA
| | - Chi Zhang
- School of Biological SciencesUniversity of NebraskaLincolnNE68588USA
- Center for Plant Science and InnovationUniversity of NebraskaLincolnNE68588USA
| |
Collapse
|
18
|
Pabuayon ICM, Kitazumi A, Gregorio GB, Singh RK, de los Reyes BG. Contributions of Adaptive Plant Architecture to Transgressive Salinity Tolerance in Recombinant Inbred Lines of Rice: Molecular Mechanisms Based on Transcriptional Networks. Front Genet 2020; 11:594569. [PMID: 33193743 PMCID: PMC7644915 DOI: 10.3389/fgene.2020.594569] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 10/05/2020] [Indexed: 11/30/2022] Open
Abstract
Genetic novelties are important nucleators of adaptive speciation. Transgressive segregation is a major mechanism that creates genetic novelties with morphological and developmental attributes that confer adaptive advantages in certain environments. This study examined the morpho-developmental and physiological profiles of recombinant inbred lines (RILs) from the salt-sensitive IR29 and salt-tolerant Pokkali rice, representing the total range of salt tolerance including the outliers at both ends of the spectrum. Morpho-developmental and physiological profiles were integrated with a hypothesis-driven interrogation of mRNA and miRNA transcriptomes to uncover the critical genetic networks that have been rewired for novel adaptive architecture. The transgressive super-tolerant FL510 had a characteristic small tiller angle and wider, more erect, sturdier, and darker green leaves. This unique morphology resulted in lower transpiration rate, which also conferred a special ability to retain water more efficiently for osmotic avoidance. The unique ability for water retention conferred by such adaptive morphology appeared to enhance the efficacy of defenses mediated by Na+ exclusion mechanism (SalTol-effects) inherited from Pokkali. The super-tolerant FL510 and super-sensitive FL499 had the smallest proportions of differentially expressed genes with little overlaps. Genes that were steadily upregulated in FL510 comprised a putative cytokinin-regulated genetic network that appeared to maintain robust growth under salt stress through well-orchestrated cell wall biogenesis and cell expansion, likely through major regulatory (OsRR23, OsHK5) and biosynthetic (OsIPT9) genes in the cytokinin signaling pathway. Meanwhile, a constitutively expressed cluster in FL510 prominently featured two transcription factors (OsIBH1, TAC3) that control tiller angle and growth habit through the brassinosteroid signaling pathway. Both the putative cytokinin-mediated and brassinosteroid-mediated clusters appeared to function as highly coordinated network synergies in FL510. In contrast, both networks appeared to be sub-optimal and inferior in the other RILs and parents as they were disjointed and highly fragmented. Transgressively expressed miRNAs (miR169, miR397, miR827) were also identified as prominent signatures of FL510, with functional implications to mechanisms that support robust growth, homeostasis, and osmotic stress avoidance. Results of this study demonstrate how genetic recombination creates novel morphology that complements inducible defenses hence transgressive adaptive phenotypes.
Collapse
Affiliation(s)
| | - Ai Kitazumi
- Department of Plant and Soil Science, Texas Tech University, Lubbock, TX, United States
| | | | | | | |
Collapse
|
19
|
Guo RZ, Yan HY, Li XX, Zou XX, Zhang XJ, Yu XN, Ci DW, Wang YF, Si T. Green leaf volatile (Z)-3-hexeny-1-yl acetate reduces salt stress in peanut by affecting photosynthesis and cellular redox homeostasis. PHYSIOLOGIA PLANTARUM 2020; 170:75-92. [PMID: 32306425 DOI: 10.1111/ppl.13110] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 04/10/2020] [Accepted: 04/15/2020] [Indexed: 05/25/2023]
Abstract
Green leaf volatiles (GLVs) are released by plants when they encounter biotic stress, but their functions in the response to abiotic stress have not been determined. We have previously shown that exogenous application of (Z)-3-hexeny-1-yl acetate (Z-3-HAC), a kind of GLV, could alleviate salt stress in peanut (Arachis hypogaea L.) seedlings; however, notably little is known concerning the transcription regulation mechanisms of Z-3-HAC. In this study, we comprehensively characterized the transcriptomes and physiological indices of peanut seedlings exposed to Z-3-HAC and/or salt stress. Analysis of transcriptome data showed that 1420 genes were upregulated in the seedlings primed with Z-3-HAC under salt stress compared with the non-primed treatment. Interestingly, these genes were significantly enriched in the photosynthetic and ascorbate metabolism-related categories, as well as several plant hormone metabolism pathways. The physiological data revealed that Z-3-HAC significantly increased the net photosynthetic rate, SPAD value, plant height and shoot biomass compared with the non-primed peanut seedlings under salt stress. A significantly higher ratio of K+ :Na+ , reduced-to-oxidized glutathione (GSH:GSSG), and ascorbate-to-dehydroascorbate (AsA:DHA) were also observed for the plants primed with Z-3-HAC compared with the salt stress control. Meanwhile, Z-3-HAC significantly increased the activity of enzymes in the AsA-GSH cycle. Taken together, these results highlight the importance of Z-3-HAC in protecting peanut seedlings against salt stress by affecting photosynthesis, cellular redox homeostasis, K+ :Na+ homeostasis, and phytohormones.
Collapse
Affiliation(s)
- Run-Ze Guo
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Heng-Yu Yan
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xi-Xu Li
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Xia Zou
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Jun Zhang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Xiao-Na Yu
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Dun-Wei Ci
- Shandong Peanut Research Institute, Qingdao, China
| | - Yue-Fu Wang
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| | - Tong Si
- Shandong Provincial Key Laboratory of Dryland Farming Technology, College of Agronomy, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
20
|
Identification and characterization of differentially expressed genes in the rice root following exogenous application of spermidine during salt stress. Genomics 2020; 112:4125-4136. [PMID: 32650100 DOI: 10.1016/j.ygeno.2020.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 12/26/2019] [Accepted: 07/02/2020] [Indexed: 11/24/2022]
Abstract
Salinity is a major limiting factor in crop production. Exogenous spermidine (spd) effectively ameliorates salt injury, though the underlying molecular mechanism is poorly understood. We have used a suppression subtractive hybridization method to construct a cDNA library that has identified up-regulated genes from rice root under the treatment of spd and salt. Total 175 high-quality ESTs of about 100-500 bp in length with an average size of 200 bp are isolated, clustered and assembled into a collection of 62 unigenes. Gene ontology analysis using the KEGG pathway annotation database has classified the unigenes into 5 main functional categories and 13 subcategories. The transcripts abundance has been validated using Real-Time PCR. We have observed seven different types of post-translational modifications in the DEPs. 44 transmembrane helixes are predicted in 6 DEPs. This above information can be used as first-hand data for dissecting the administrative role of spd during salinity.
Collapse
|
21
|
De novo transcriptome assembly and analysis of Phragmites karka, an invasive halophyte, to study the mechanism of salinity stress tolerance. Sci Rep 2020; 10:5192. [PMID: 32251358 PMCID: PMC7089983 DOI: 10.1038/s41598-020-61857-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 02/27/2020] [Indexed: 01/04/2023] Open
Abstract
With the rapidly deteriorating environmental conditions, the development of stress tolerant plants has become a priority for sustaining agricultural productivity. Therefore, studying the process of stress tolerance in naturally tolerant species hold significant promise. Phragmites karka is an invasive plant species found abundantly in tropical and sub tropical regions, fresh water regions and brackish marshy areas, such as river banks and lake shores. The plant possesses the ability to adapt and survive under conditions of high salinity. We subjected P. karka seedlings to salt stress and carried out whole transcriptome profiling of leaf and root tissues. Assessing the global transcriptome changes under salt stress resulted in the identification of several genes that are differentially regulated under stress conditions in root and leaf tissue. A total of 161,403 unigenes were assembled and used as a reference for digital gene expression analysis. A number of key metabolic pathways were found to be over-represented. Digital gene expression analysis was validated using qRT-PCR. In addition, a number of different transcription factor families including WRKY, MYB, CCCH, NAC etc. were differentially expressed under salinity stress. Our data will facilitate further characterisation of genes involved in salinity stress tolerance in P. karka. The DEGs from our results are potential candidates for understanding and engineering abiotic stress tolerance in plants.
Collapse
|
22
|
Chakraborty K, Chattaopadhyay K, Nayak L, Ray S, Yeasmin L, Jena P, Gupta S, Mohanty SK, Swain P, Sarkar RK. Ionic selectivity and coordinated transport of Na + and K + in flag leaves render differential salt tolerance in rice at the reproductive stage. PLANTA 2019; 250:1637-1653. [PMID: 31399792 DOI: 10.1007/s00425-019-03253-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 08/01/2019] [Indexed: 05/27/2023]
Abstract
The present study shows that salt tolerance in the reproductive stage of rice is primarily governed by the selective Na+ and K+ transport from the root to upper plant parts. Ionic discrimination at the flag leaf, governed by differential expression of Na+- and K+-specific transporters/ion pumps, is associated with reduced spikelet sterility and reproductive stage salt tolerance. Reproductive stage salt tolerance is crucial in rice to guarantee yield under saline condition. In the present study, differential ionic selectivity and the coordinated transport (from root to flag leaf) of Na+ and K+ were investigated to assess their impact on reproductive stage salt tolerance. Four rice genotypes having differential salt sensitivity were subjected to reproductive stage salinity stress in pots. The selective Na+ and K+ transport from the root to upper plant parts was observed in tolerant genotypes. We noticed that prolonged salt exposure did not alter flag leaf greenness even up to 6 weeks; however, it had a detrimental effect on panicle development especially in the salt-susceptible genotype Sabita. But more precise chlorophyll fluorescence imaging analysis revealed salinity-induced damages in Sabita. The salt-tolerant genotype Pokkali (AC41585), a potential Na+ excluder, managed to sequester higher Na+ load in the roots with little upward transport as evident from greater expression of HKT1 and HKT2 transporters. In contrast, the moderately salt-tolerant Lunidhan was less selective in Na+ transport, but possessed a higher capacity to Na+ sequestration in leaves. Higher K+ uptake and tissue-specific redistribution mediated by HAK and AKT transporters showed robust control in selective K+ movement from the root to flag leaf and developing panicles. On the contrary, expressions of Na+-specific transporters in developing panicles were either down-regulated or unaffected in tolerant and moderately tolerant genotypes. Yet, in the panicles of the susceptible genotype Sabita, some of the Na+-specific transporter genes (SOS1, HKT1;5, HKT2;4) were upregulated. Apart from the ionic regulation strategy, cellular energy balance mediated by different plasma-membrane and tonoplastic H+-pumps were also associated with the reproductive stage salt tolerance in rice.
Collapse
Affiliation(s)
| | | | - Lopamudra Nayak
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Soham Ray
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Lucina Yeasmin
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Priyanka Jena
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sunanda Gupta
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Sangram K Mohanty
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Padmini Swain
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| | - Ramani K Sarkar
- ICAR, National Rice Research Institute, Cuttack, Odisha, 753006, India
| |
Collapse
|
23
|
Huang Y, Cao H, Yang L, Chen C, Shabala L, Xiong M, Niu M, Liu J, Zheng Z, Zhou L, Peng Z, Bie Z, Shabala S. Tissue-specific respiratory burst oxidase homolog-dependent H2O2 signaling to the plasma membrane H+-ATPase confers potassium uptake and salinity tolerance in Cucurbitaceae. JOURNAL OF EXPERIMENTAL BOTANY 2019; 70:5879-5893. [PMID: 31290978 PMCID: PMC6812723 DOI: 10.1093/jxb/erz328] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 07/03/2019] [Indexed: 05/02/2023]
Abstract
Potassium (K+) is a critical determinant of salinity tolerance, and H2O2 has been recognized as an important signaling molecule that mediates many physiological responses. However, the details of how H2O2 signaling regulates K+ uptake in the root under salt stress remain elusive. In this study, salt-sensitive cucumber and salt-tolerant pumpkin which belong to the same family, Cucurbitaceae, were used to answer the above question. We show that higher salt tolerance in pumpkin was related to its superior ability for K+ uptake and higher H2O2 accumulation in the root apex. Transcriptome analysis showed that salinity induced 5816 (3005 up- and 2811 down-) and 4679 (3965 up- and 714 down-) differentially expressed genes (DEGs) in cucumber and pumpkin, respectively. DEGs encoding NADPH oxidase (respiratory burst oxidase homolog D; RBOHD), 14-3-3 protein (GRF12), plasma membrane H+-ATPase (AHA1), and potassium transporter (HAK5) showed higher expression in pumpkin than in cucumber under salinity stress. Treatment with the NADPH oxidase inhibitor diphenylene iodonium resulted in lower RBOHD, GRF12, AHA1, and HAK5 expression, reduced plasma membrane H+-ATPase activity, and lower K+ uptake, leading to a loss of the salinity tolerance trait in pumpkin. The opposite results were obtained when the plants were pre-treated with exogenous H2O2. Knocking out of RBOHD in pumpkin by CRISPR/Cas9 [clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9] editing of coding sequences resulted in lower root apex H2O2 and K+ content and GRF12, AHA1, and HAK5 expression, ultimately resulting in a salt-sensitive phenotype. However, ectopic expression of pumpkin RBOHD in Arabidopsis led to the opposite effect. Taken together, this study shows that RBOHD-dependent H2O2 signaling in the root apex is important for pumpkin salt tolerance and suggests a novel mechanism that confers this trait, namely RBOHD-mediated transcriptional and post-translational activation of plasma membrane H+-ATPase operating upstream of HAK5 K+ uptake transporters.
Collapse
Affiliation(s)
- Yuan Huang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Haishun Cao
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Li Yang
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Chen Chen
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Lana Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Mu Xiong
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Mengliang Niu
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Juan Liu
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
| | - Zuhua Zheng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Lijian Zhou
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Zhaowen Peng
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Zhilong Bie
- College of Horticulture and Forestry Sciences, Huazhong Agricultural University and Key Laboratory of Horticultural Plant Biology, Ministry of Education, Wuhan, PR China
| | - Sergey Shabala
- Tasmanian Institute for Agriculture, College of Science and Engineering, University of Tasmania, Hobart, Tasmania, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, PR China
| |
Collapse
|
24
|
Chuamnakthong S, Nampei M, Ueda A. Characterization of Na + exclusion mechanism in rice under saline-alkaline stress conditions. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2019; 287:110171. [PMID: 31481219 DOI: 10.1016/j.plantsci.2019.110171] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 05/22/2019] [Accepted: 06/12/2019] [Indexed: 05/23/2023]
Abstract
This study was designed to elucidate the physiological responses of two rice genotypes to different pH levels under high saline stress. A salt-tolerant cultivar, FL478, and a salt-sensitive cultivar, IR29, were exposed to saline-alkaline solutions supplemented with 50 mM Na at pH 9 (severe), pH 8 (moderate), and pH 7 (mild) for three weeks. The results indicated that FL478 is relatively saline-alkaline tolerant compared to IR29, and this was evident from its higher dry mass production, lower Na+ concentration in the leaf blades, and maintenance of water balance under both mild and moderate saline-alkaline stress conditions. In both cultivars, Na+ concentrations in the leaf blades were considerably higher at pH 8 than at pH 7, indicating that high alkaline stress promoted Na+ accumulation under highly saline conditions. FL478 plants had lower Na+/K+ ratios in leaf blades and leaf sheaths than IR29 plants under saline-alkaline stress at both pH 7 and pH 8. To understand the mechanisms behind the difference in saline-alkaline tolerance between the two rice genotypes, transcript levels of the genes encoding Na+ transport proteins were analyzed. In response to mild and moderate saline-alkaline stress conditions, salt-tolerant FL478 had highly induced expression of the OsHKT1;5 gene in the roots, corresponding to lower Na+ accumulation in the leaf blades. Induction of high expression of the OsSOS1 gene in the roots of FL478 implied that Na may be effectively exported from cytosols to apoplasts in the roots resulting in sequestration of Na+ to outside of the roots and loading Na+ in xylem transpiration stream. On the other hand, the salt-sensitive IR29 had lower expression of the genes related to Na+ transporters, such as the OsHKT1;5 gene and the OsSOS1 gene, in the roots, leading to higher Na+ accumulation in the shoots. Expression of the determinant genes for alkaline tolerance, such as K+ and Fe acquisition and acidification of the rhizosphere was highly induced in FL478, but not in IR29. Thus, molecular analysis suggested that genes encoding Na+ transport proteins are involved in regulating Na+ transport under saline-alkaline stress in both salt-tolerant and salt-sensitive rice cultivars, and this is useful information for improving saline-alkaline tolerance traits of rice in the future.
Collapse
Affiliation(s)
- Sumana Chuamnakthong
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Mami Nampei
- Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan
| | - Akihiro Ueda
- Graduate School of Biosphere Science, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan; Graduate School of Integrated Sciences for Life, Hiroshima University, 1-4-4 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8528, Japan.
| |
Collapse
|
25
|
Fu S, Fu L, Zhang X, Huang J, Yang G, Wang Z, Liu YG, Zhang G, Wu D, Xia J. OsC2DP, a Novel C2 Domain-Containing Protein Is Required for Salt Tolerance in Rice. PLANT & CELL PHYSIOLOGY 2019; 60:2220-2230. [PMID: 31198970 DOI: 10.1093/pcp/pcz115] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 05/31/2019] [Indexed: 05/27/2023]
Abstract
Salt stress is one of the major factors limiting crop production globally, including rice (Oryza sativa). Although a number of genes involved in salt tolerance have been functionally identified, the mechanism underlying salt tolerance in rice is still poorly understood. Here, we reported a novel C2 domain-containing protein, OsC2DP required for salt tolerance in rice. OsC2DP was predominately expressed in the roots and its expression was repressed by salt stress. Transient expression of OsC2DP in rice protoplast cells showed that it was localized in the cytosol. Immunostaining further showed that OsC2DP was able to translocate from the cytosol to plasma membrane under salt conditions. Knockout of OsC2DP did not affect Na+ concentration in the roots, but increased shoot Na+ concentration, resulting in a significant sensitivity of rice to salt stress. Furthermore, the quantitative Real-time PCR and transcriptomic analysis showed that the expression level of some genes related to salt tolerance were indirectly regulated by OsC2DP, especially OsSOS1 and OsNHX4. These results indicate that OsC2DP has an important role in salt tolerance and these findings provide new insights into the regulation of OsC2DP gene for rice breeding with high salt tolerance.
Collapse
Affiliation(s)
- Shan Fu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Liangbo Fu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Xiang Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Jingjing Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Guangzhe Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Zhigang Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Sciences, South China Agricultural University, Guangzhou, China
| | - Guoping Zhang
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Dezhi Wu
- Department of Agronomy, Key Laboratory of Crop Germplasm Resource of Zhejiang Province, Zhejiang University, Hangzhou, China
| | - Jixing Xia
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, China
| |
Collapse
|
26
|
Analysis of genetic diversity and population structure using SSR markers and validation of a Cleavage Amplified Polymorphic Sequences (CAPS) marker involving the sodium transporter OsHKT1;5 in saline tolerant rice (Oryza sativa L.) landraces. Gene 2019; 713:143976. [PMID: 31306715 DOI: 10.1016/j.gene.2019.143976] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 07/11/2019] [Accepted: 07/11/2019] [Indexed: 11/21/2022]
Abstract
Naturally evolved saline tolerant rice landraces found along the coastline of India are a valuable genomic resource to explore the complex, polygenic nature of salinity tolerance. In the present study, a set of 28 genome wide SSR markers, 11 salt responsive genic SSR markers and 8 Saltol QTL linked SSR markers were used to estimate genetic relatedness and population structure within a collection of 47 rice landraces (including a tolerant and 2 sensitive checks) originating from geographically divergent coastal regions of India. All three marker types identified substantial genetic variation among the landraces, as evident from their higher PIC values (0.53 for genomic SSRs, 0.43 for Genic SSRs and 0.59 for Saltol SSRs). The markers RM431, RM484 (Genomic SSRs), OsCAX (D), OsCAX (T) (Genic SSRs) and RM562 (Saltol SSR) were identified as good candidates to be used in breeding programs for improving salinity tolerance in rice. STRUCTURE analysis divided the landraces into five distinct populations, with classification correlating with their geographical locations. Principal coordinate and hierarchical cluster analyses (UPGMA and neighbor joining) are in close agreement with STRUCTURE results. AMOVA analysis indicated a higher magnitude of genetic differentiation within individuals of groups (58%), than among groups (42%). We also report the development and validation of a new Cleavage Amplified Polymorphic Sequence (CAPS) marker (OsHKT1;5V395) that targets a codon in the sodium transporter gene OsHKT1;5 (Saltol/SKC1 locus) that is associated with sodium transport rates in the above rice landraces. The CAPS marker was found to be present in all landraces except in IR29, Kamini, Gheus, Matla 1 and Matla 2. Significant molecular genetic diversity established among the analyzed salt tolerant rice landraces will aid in future association mapping; the CAPS marker, OsHKT1;5V395 can be used to map rice landraces for the presence of the SNP (Single Nucleotide Polymorphism) associated with increased sodium transport rates and concomitant salinity tolerance in rice.
Collapse
|
27
|
Wang J, Kuang L, Wang X, Liu G, Dun X, Wang H. Temporal genetic patterns of root growth in Brassica napus L. revealed by a low-cost, high-efficiency hydroponic system. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2019; 132:2309-2323. [PMID: 31101925 DOI: 10.1007/s00122-019-03356-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 05/02/2019] [Indexed: 06/09/2023]
Abstract
Application of a low-cost and high-efficiency hydroponic system in a rapeseed population verified two types of genetic factors ("persistent" and "stage-specific") that control root development. The root system is a vital plant component for nutrient and water acquisition and is targeted to enhance plant productivity. Genetic dissection of the root system generally focuses on a single stage, but roots grow continuously during plant development. To reveal the temporal genetic patterns of root development, we measured nine root-related traits in a rapeseed recombinant inbred line population at six continuous stages during vegetative growth, using a modified hydroponic system with low-cost and high-efficiency features that could synchronize plant growth under controlled conditions. Phenotypic correlation and growth dynamic analysis suggested the existence of two types of genetic factors ("persistent" and "stage-specific") that control root development. Dynamic (unconditional and conditional) quantitative trait loci (QTL) mapping detected 28 stage-specific and 23 persistent QTLs related to root growth. Among them, 13 early stage-specific, 19 persistent and 8 later stage-specific QTLs were detected at 7 DAS (days after sowing), 16 DAS and 5 EL (expanding leaf stage), respectively, providing efficient and adaptable stages for QTL identification. The effective prediction of biomass accumulation using root morphological traits (up to 96.6% or 92.64% at a specific stage or the final stage, respectively) verified that root growth allocation with maximum root uptake area facilitated biomass accumulation. Furthermore, marker-assistant selection, which combined the "persistent" and "stage-specific" QTLs, proved their effectiveness for root improvement with an excellent uptake area. Our results highlight the potential of high-throughput and precise phenotyping to assess the dynamic genetics of root growth and provide new insights into ideotype root system-based biomass breeding.
Collapse
Affiliation(s)
- Jie Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Lieqiong Kuang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Xinfa Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Guihua Liu
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China
| | - Xiaoling Dun
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
| | - Hanzhong Wang
- Oil Crops Research Institute of the Chinese Academy of Agricultural Sciences/Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture, Wuhan, 430062, China.
| |
Collapse
|
28
|
Smita S, Katiyar A, Lenka SK, Dalal M, Kumar A, Mahtha SK, Yadav G, Chinnusamy V, Pandey DM, Bansal KC. Gene network modules associated with abiotic stress response in tolerant rice genotypes identified by transcriptome meta-analysis. Funct Integr Genomics 2019; 20:29-49. [PMID: 31286320 DOI: 10.1007/s10142-019-00697-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 05/31/2019] [Accepted: 06/19/2019] [Indexed: 10/26/2022]
Abstract
Abiotic stress tolerance is a complex trait regulated by multiple genes and gene networks in plants. A range of abiotic stresses are known to limit rice productivity. Meta-transcriptomics has emerged as a powerful approach to decipher stress-associated molecular network in model crops. However, retaining specificity of gene expression in tolerant and susceptible genotypes during meta-transcriptome analysis is important for understanding genotype-dependent stress tolerance mechanisms. Addressing this aspect, we describe here "abiotic stress tolerant" (ASTR) genes and networks specifically and differentially expressing in tolerant rice genotypes in response to different abiotic stress conditions. We identified 6,956 ASTR genes, key hub regulatory genes, transcription factors, and functional modules having significant association with abiotic stress-related ontologies and cis-motifs. Out of the 6956 ASTR genes, 73 were co-located within the boundary of previously identified abiotic stress trait-related quantitative trait loci. Functional annotation of 14 uncharacterized ASTR genes is proposed using multiple computational methods. Around 65% of the top ASTR genes were found to be differentially expressed in at least one of the tolerant genotypes under different stress conditions (cold, salt, drought, or heat) from publicly available RNAseq data comparison. The candidate ASTR genes specifically associated with tolerance could be utilized for engineering rice and possibly other crops for broad-spectrum tolerance to abiotic stresses.
Collapse
Affiliation(s)
- Shuchi Smita
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Amit Katiyar
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
- ICMR-AIIMS Computational Genomics Center, Div. of I.S.R.M., Indian Council of Medical Research, Ansari Nagar, New Delhi, 110029, India
| | - Sangram Keshari Lenka
- TERI-Deakin Nanobiotechnology Center, The Energy and Resources Institute, Gurgaon, Haryana, 122001, India
| | - Monika Dalal
- ICAR-National Research Center on Plant Biotechnology, Indian Agricultural Research Institute Campus, New Delhi, 110012, India
| | - Amish Kumar
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Sanjeet Kumar Mahtha
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Gitanjali Yadav
- Computational Biology Laboratory, National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Viswanathan Chinnusamy
- ICAR-Division of Plant Physiology, Indian Agricultural Research Institute, New Delhi, 110012, India.
| | - Dev Mani Pandey
- Department of Bio-Engineering, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, 835215, India
| | - Kailash Chander Bansal
- ICAR-National Bureau of Plant Genetic Resources, Indian Agricultural Research Institute Campus, New Delhi, 110012, India.
- TERI-Deakin Nanobiotechnology Center, The Energy and Resources Institute, Gurgaon, Haryana, 122001, India.
| |
Collapse
|
29
|
Mirdar Mansuri R, Shobbar ZS, Babaeian Jelodar N, Ghaffari MR, Nematzadeh GA, Asari S. Dissecting molecular mechanisms underlying salt tolerance in rice: a comparative transcriptional profiling of the contrasting genotypes. RICE (NEW YORK, N.Y.) 2019; 12:13. [PMID: 30830459 PMCID: PMC6399358 DOI: 10.1186/s12284-019-0273-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/22/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Salinity expansion in arable land is a threat to crop plants. Rice is the staple food crop across several countries worldwide; however, its salt sensitive nature severely affects its growth under excessive salinity. FL478 is a salt tolerant indica recombinant inbred line, which can be a good source of salt tolerance at the seedling stage in rice. To learn about the genetic basis of its tolerance to salinity, we compared transcriptome profiles of FL478 and its sensitive parent (IR29) using RNA-seq technique. RESULTS A total of 1714 and 2670 genes were found differentially expressed (DEGs) under salt stress compared to normal conditions in FL478 and IR29, respectively. Gene ontology analysis revealed the enrichment of transcripts involved in salinity response, regulation of gene expression, and transport in both genotypes. Comparative transcriptome analysis revealed that 1063 DEGs were co-expressed, while 338/252 and 572/908 DEGs were exclusively up/down-regulated in FL478 and IR29, respectively. Further, some biological processes (e.g. iron ion transport, response to abiotic stimulus, and oxidative stress) and molecular function terms (e.g. zinc ion binding and cation transmembrane transporter activity) were specifically enriched in FL478 up-regulated transcripts. Based on the metabolic pathways analysis, genes encoding transport and major intrinsic proteins transporter superfamily comprising aquaporin subfamilies and genes involved in MAPK signaling and signaling receptor kinases were specifically enriched in FL478. A total of 1135 and 1894 alternative splicing events were identified in transcripts of FL478 and IR29, respectively. Transcripts encoding two potassium transporters and two major facilitator family transporters were specifically up-regulated in FL478 under salt stress but not in the salt sensitive genotype. Remarkably, 11 DEGs were conversely regulated in the studied genotypes; for example, OsZIFL, OsNAAT, OsGDSL, and OsELIP genes were up-regulated in FL478, while they were down-regulated in IR29. CONCLUSIONS The achieved results suggest that FL478 employs more efficient mechanisms (especially in signal transduction of salt stress, influx and transport of k+, ionic and osmotic homeostasis, as well as ROS inhibition) to respond to the salt stress compared to its susceptible parent.
Collapse
Affiliation(s)
- Raheleh Mirdar Mansuri
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
- Department of Plant breeding and Biotechnology, Faculty of Crop Science, Sari Agricultural Science and Natural Resources University, Sari, Mazandaran, 578, Iran
| | - Zahra-Sadat Shobbar
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran.
| | - Nadali Babaeian Jelodar
- Department of Plant breeding and Biotechnology, Faculty of Crop Science, Sari Agricultural Science and Natural Resources University, Sari, Mazandaran, 578, Iran
| | - Mohammad Reza Ghaffari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| | - Ghorban-Ali Nematzadeh
- Department of Plant breeding and Biotechnology, Faculty of Crop Science, Sari Agricultural Science and Natural Resources University, Sari, Mazandaran, 578, Iran
| | - Saeedeh Asari
- Department of Systems Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research, Education and Extension Organization (AREEO), PO Box 31535-1897, Karaj, Iran
| |
Collapse
|
30
|
Hussain S, Bai Z, Huang J, Cao X, Zhu L, Zhu C, Khaskheli MA, Zhong C, Jin Q, Zhang J. 1-Methylcyclopropene Modulates Physiological, Biochemical, and Antioxidant Responses of Rice to Different Salt Stress Levels. FRONTIERS IN PLANT SCIENCE 2019; 10:124. [PMID: 30846992 PMCID: PMC6393328 DOI: 10.3389/fpls.2019.00124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Accepted: 01/24/2019] [Indexed: 05/03/2023]
Abstract
Salt stress in soil is a critical constraint that affects the production of rice. Salt stress hinders plant growth through osmotic stress, ionic stress, and a hormonal imbalance (especially ethylene), therefore, thoughtful efforts are needed to devise salt tolerance management strategies. 1-Methylcyclopropene (1-MCP) is an ethylene action inhibitor, which could significantly reduce ethylene production in crops and fruits. However, 1-MCPs response to the physiological, biochemical and antioxidant features of rice under salt stress, are not clear. The present study analyzed whether 1-MCP could modulate salt tolerance for different rice cultivars. Pot culture experiments were conducted in a greenhouse in 2016-2017. Two rice cultivars, Nipponbare (NPBA) and Liangyoupeijiu (LYP9) were used in this trial. The salt stress included four salt levels, 0 g NaCl/kg dry soil (control, CK), 1.5 g NaCl/ kg dry soil (Low Salt stress, LS), 4.5 g NaCl/kg dry soil (Medium Salt stress, MS), and 7.5 g NaCl/kg dry soil (Heavy Salt stress, HS). Two 1-MCP levels, 0 g (CT) and 0.04 g/pot (1-MCP) were applied at the rice booting stage in 2016 and 2017. The results showed that applying 1-MCP significantly reduced ethylene production in rice spikelets from LYP9 and NPBA by 40.2 and 23.9% (CK), 44.3 and 28.6% (LS), 28 and 25.9% (MS), respectively. Rice seedlings for NPBA died under the HS level, while application of 1-MCP reduced the ethylene production in spikelets for LYP9 by 27.4% compared with those that received no 1-MCP treatment. Applying 1-MCP improved the photosynthesis rate and SPAD value in rice leaves for both cultivars. 1-MCP enhanced the superoxide dismutase production, protein synthesis, chlorophyll contents (chl a, b, carotenoids), and decreased malondialdehyde, H2O2, and proline accumulation in rice leaves. Application of 1-MCP also modulated the aboveground biomass, and grain yield for LYP9 and NPBA by 19.4 and 15.1% (CK), 30.3 and 24% (LS), 26.4 and 55.4% (MS), respectively, and 34.5% (HS) for LYP9 compared with those that received no 1-MCP treatment. However, LYP9 displayed a better tolerance than NPBA. The results revealed that 1-MCP could be employed to modulate physiology, biochemical, and antioxidant activities in rice plants, at different levels of salt stress, as a salt stress remedy.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qianyu Jin
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| | - Junhua Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou, China
| |
Collapse
|
31
|
Li J, Gao Z, Zhou L, Li L, Zhang J, Liu Y, Chen H. Comparative transcriptome analysis reveals K + transporter gene contributing to salt tolerance in eggplant. BMC PLANT BIOLOGY 2019; 19:67. [PMID: 30744551 PMCID: PMC6371450 DOI: 10.1186/s12870-019-1663-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Accepted: 01/25/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUND Soil salinization is one of the most crucial abiotic stresses that limit the growth and production of eggplant. The existing researches in eggplant were mostly focused on salt-induced morphological, biochemical and physiological changes, with only limited works centered on salt-response genes in eggplant at the transcriptomic level. RESULTS Our preliminary work found that Zhusiqie (No.118) is salt-tolerant and Hongqie (No.30) is salt-sensitive. Consequently, they were re-named as ST118 and SS30, respectively. ST118 showed less damaged on growth and higher K+/Na+ ratios in leaves than SS30. Comparative-transcriptome analysis was used as a powerful approach to understand the salt-response mechanisms in the leaves and roots of SS30 and ST118. And it revealed that genotype-specific and organ-specific manners exist in eggplant in response to salt stress. Strikingly, the genotype-specific differentially expressed genes (DEGs) in ST118 were considered crucial to its higher salt-tolerance, because the expression patterns of common DEGs in the leaves/roots of the two eggplant genotypes were almost the same. Among them, some transcription factors have been reported to be in response to elevated external salinity, including the members of C2C2-CO-like, WRKY, MYB and NAC family. In addition, the AKT1, KAT1 and SOS1 were up-regulated only in the leaves of ST118. Furthermore, the complementation assays demonstrated that the salt-tolerances of both yeast and Arabidopsis akt1 mutants were enhanced by heterologous expression of SmAKT1. CONCLUSION The comparative-transcriptome analysis indicated that the salt-tolerance can be increased by higher transcript level of some genotype-specific genes. This work revealed that eggplants seem to be more inclined to absorb K+ rather than to exclude Na+ under salt stress conditions because seven K+ transporters were significantly up-regulated, while only one Na+ transporter was similarly regulated. Finally, the complementation assays of SmAKT1, which is genotype-specific up-regulated in ST118, suggest that the other TFs and K+ transport genes were worthy of future investigation for their functions in salinity tolerance.
Collapse
Affiliation(s)
- Jing Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Zhen Gao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Lu Zhou
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Linzhi Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Junhao Zhang
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Yang Liu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| | - Huoying Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang District, Shanghai, 200240 China
| |
Collapse
|
32
|
Liu J, Shabala S, Shabala L, Zhou M, Meinke H, Venkataraman G, Chen Z, Zeng F, Zhao Q. Tissue-Specific Regulation of Na + and K + Transporters Explains Genotypic Differences in Salinity Stress Tolerance in Rice. FRONTIERS IN PLANT SCIENCE 2019; 10:1361. [PMID: 31737000 PMCID: PMC6838216 DOI: 10.3389/fpls.2019.01361] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 10/03/2019] [Indexed: 05/20/2023]
Abstract
Rice (Oryza sativa) is a staple food that feeds more than half the world population. As rice is highly sensitive to soil salinity, current trends in soil salinization threaten global food security. To better understand the mechanistic basis of salinity tolerance in rice, three contrasting rice cultivars-Reiziq (tolerant), Doongara (moderately tolerant), and Koshihikari (sensitive)-were examined and the differences in operation of key ion transporters mediating ionic homeostasis in these genotypes were evaluated. Tolerant varieties had reduced Na+ translocation from roots to shoots. Electrophysiological and quantitative reverse transcription PCR experiments showed that tolerant genotypes possessed 2-fold higher net Na+ efflux capacity in the root elongation zone. Interestingly, this efflux was only partially mediated by the plasma membrane Na+/H+ antiporter (OsSOS1), suggesting involvement of some other exclusion mechanisms. No significant difference in Na+ exclusion from the mature root zones was found between cultivars, and the transcriptional changes in the salt overly sensitive signaling pathway genes in the elongation zone were not correlated with the genetic variability in salinity tolerance amongst genotypes. The most important hallmark of differential salinity tolerance was in the ability of the plant to retain K+ in both root zones. This trait was conferred by at least three complementary mechanisms: (1) its superior ability to activate H+-ATPase pump operation, both at transcriptional and functional levels; (2) reduced sensitivity of K+ efflux channels to reactive oxygen species; and (3) smaller upregulation in OsGORK and higher upregulation of OsAKT1 in tolerant cultivars in response to salt stress. These traits should be targeted in breeding programs aimed to improve salinity tolerance in commercial rice cultivars.
Collapse
Affiliation(s)
- Juan Liu
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Sergey Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
- International Research Centre for Environmental Membrane Biology, Foshan University, Foshan, China
- *Correspondence: Sergey Shabala, ; Quanzhi Zhao,
| | - Lana Shabala
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Meixue Zhou
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Holger Meinke
- Tasmanian Institute of Agriculture, University of Tasmania, Hobart, TAS, Australia
| | - Gayatri Venkataraman
- Plant Molecular Biology Laboratory, M.S. Swaminathan Research Foundation, Chennai, India
| | - Zhonghua Chen
- School of Science and Health, Western Sydney University, Penrith, NSW, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW, Australia
| | - Fanrong Zeng
- Department of Agronomy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Quanzhi Zhao
- Collaborative Innovation Center of Henan Grain Crops, Henan Key Laboratory of Rice Biology, Henan Agricultural University, Zhengzhou, China
- *Correspondence: Sergey Shabala, ; Quanzhi Zhao,
| |
Collapse
|
33
|
Li YF, Zheng Y, Vemireddy LR, Panda SK, Jose S, Ranjan A, Panda P, Govindan G, Cui J, Wei K, Yaish MW, Naidoo GC, Sunkar R. Comparative transcriptome and translatome analysis in contrasting rice genotypes reveals differential mRNA translation in salt-tolerant Pokkali under salt stress. BMC Genomics 2018; 19:935. [PMID: 30598105 PMCID: PMC6311934 DOI: 10.1186/s12864-018-5279-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Background Soil salinity is one of the primary causes of yield decline in rice. Pokkali (Pok) is a highly salt-tolerant landrace, whereas IR29 is a salt-sensitive but widely cultivated genotype. Comparative analysis of these genotypes may offer a better understanding of the salinity tolerance mechanisms in rice. Although most stress-responsive genes are regulated at the transcriptional level, in many cases, changes at the transcriptional level are not always accompanied with the changes in protein abundance, which suggests that the transcriptome needs to be studied in conjunction with the proteome to link the phenotype of stress tolerance or sensitivity. Published reports have largely underscored the importance of transcriptional regulation during salt stress in these genotypes, but the regulation at the translational level has been rarely studied. Using RNA-Seq, we simultaneously analyzed the transcriptome and translatome from control and salt-exposed Pok and IR29 seedlings to unravel molecular insights into gene regulatory mechanisms that differ between these genotypes. Results Clear differences were evident at both transcriptional and translational levels between the two genotypes even under the control condition. In response to salt stress, 57 differentially expressed genes (DEGs) were commonly upregulated at both transcriptional and translational levels in both genotypes; the overall number of up/downregulated DEGs in IR29 was comparable at both transcriptional and translational levels, whereas in Pok, the number of upregulated DEGs was considerably higher at the translational level (544 DEGs) than at the transcriptional level (219 DEGs); in contrast, the number of downregulated DEGs (58) was significantly less at the translational level than at the transcriptional level (397 DEGs). These results imply that Pok stabilizes mRNAs and also efficiently loads mRNAs onto polysomes for translation during salt stress. Conclusion Under salt stress, Pok is more efficient in maintaining cell wall integrity, detoxifying reactive oxygen species (ROS), translocating molecules and maintaining photosynthesis. The present study confirmed the known salt stress-associated genes and also identified a number of putative new salt-responsive genes. Most importantly, the study revealed that the translational regulation under salinity plays an important role in salt-tolerant Pok, but such regulation was less evident in the salt-sensitive IR29. Electronic supplementary material The online version of this article (10.1186/s12864-018-5279-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yong-Fang Li
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China. .,Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| | - Yun Zheng
- Yunnan Key Lab of Primate Biomedicine Research; Institute of Primate Translational Medicine, Kunming University of Science and Technology, Kunming, Yunnan, 650500, China
| | | | - Sanjib Kumar Panda
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Smitha Jose
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Alok Ranjan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Piyalee Panda
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Ganesan Govindan
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA
| | - Junxia Cui
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Kangning Wei
- College of Life Sciences, Henan Normal University, Xinxiang, 453007, Henan, China
| | - Mahmoud W Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | | | - Ramanjulu Sunkar
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, 74078, USA.
| |
Collapse
|
34
|
Bhatta M, Morgounov A, Belamkar V, Baenziger PS. Genome-Wide Association Study Reveals Novel Genomic Regions for Grain Yield and Yield-Related Traits in Drought-Stressed Synthetic Hexaploid Wheat. Int J Mol Sci 2018; 19:E3011. [PMID: 30279375 PMCID: PMC6212811 DOI: 10.3390/ijms19103011] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 01/09/2023] Open
Abstract
Synthetic hexaploid wheat (SHW; 2n = 6x = 42, AABBDD, Triticum aestivum L.) is produced from an interspecific cross between durum wheat (2n = 4x = 28, AABB, T. turgidum L.) and goat grass (2n = 2x = 14, DD, Aegilops tauschii Coss.) and is reported to have significant novel alleles-controlling biotic and abiotic stresses resistance. A genome-wide association study (GWAS) was conducted to unravel these loci [marker⁻trait associations (MTAs)] using 35,648 genotyping-by-sequencing-derived single nucleotide polymorphisms in 123 SHWs. We identified 90 novel MTAs (45, 11, and 34 on the A, B, and D genomes, respectively) and haplotype blocks associated with grain yield and yield-related traits including root traits under drought stress. The phenotypic variance explained by the MTAs ranged from 1.1% to 32.3%. Most of the MTAs (120 out of 194) identified were found in genes, and of these 45 MTAs were in genes annotated as having a potential role in drought stress. This result provides further evidence for the reliability of MTAs identified. The large number of MTAs (53) identified especially on the D-genome demonstrate the potential of SHWs for elucidating the genetic architecture of complex traits and provide an opportunity for further improvement of wheat under rapidly changing climatic conditions.
Collapse
Affiliation(s)
- Madhav Bhatta
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - Alexey Morgounov
- International Maize and Wheat Improvement Center (CIMMYT), 06511 Emek, Ankara, Turkey.
| | - Vikas Belamkar
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| | - P Stephen Baenziger
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
35
|
Patankar HV, Al-Harrasi I, Al-Yahyai R, Yaish MW. Identification of Candidate Genes Involved in the Salt Tolerance of Date Palm (Phoenix dactylifera L.) Based on a Yeast Functional Bioassay. DNA Cell Biol 2018; 37:524-534. [DOI: 10.1089/dna.2018.4159] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Affiliation(s)
- Himanshu V. Patankar
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Ibtisam Al-Harrasi
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| | - Rashid Al-Yahyai
- Department of Crop Sciences, College of Agricultural and Marine Sciences, Sultan Qaboos University, Muscat, Oman
| | - Mahmoud W. Yaish
- Department of Biology, College of Science, Sultan Qaboos University, Muscat, Oman
| |
Collapse
|
36
|
Singh J, Singh V, Sharma PC. Elucidating the role of osmotic, ionic and major salt responsive transcript components towards salinity tolerance in contrasting chickpea ( Cicer arietinum L.) genotypes. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2018; 24:441-453. [PMID: 29692552 PMCID: PMC5911262 DOI: 10.1007/s12298-018-0517-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 01/23/2018] [Accepted: 01/31/2018] [Indexed: 05/25/2023]
Abstract
The growth of chickpea (Cicer arietinum L.) is extremely hampered by salt stress. Understanding of physio-biochemical and molecular attributes along with morphological traits contributing to the salinity tolerance is important for developing salt tolerant chickpea varieties. To explore these facts, two genotypes CSG8962 and HC5 with contrasting salt tolerance were evaluated in the salinity stress (Control and 120 mM NaCl) conditions. CSG8962 maintained lower Na/K ratio in root and shoot, trammeled Na translocation to the shoots from roots compared to HC5 which ascribed to better exclusion of salt from its roots and compartmentation in the shoot. In chickpea, salt stress specifically induced genes/sequences involved at several levels in the salt stress signaling pathway. Higher induction of trehalose 6 phosphate synthase and protein kinase genes pertaining to the osmotic and signaling modules, respectively, were evident in CSG8962 compared to HC5. Further transcripts of late embryogenesis abundant, non-specific lipid transfer protein, HI and 219 genes/sequences were also highly induced in CSG8962 compared to HC5 which emphasizes the better protection of cellular membranous network and membrane-bound macromolecules under salt stress. This further suppressed the stress enhanced electrolyte leakage, loss of turgidity, promoted the higher compatible solute accumulation and maintained better cellular ion homoeostasis in CSG8962 compared to HC5. Our study further adds to the importance of these genes in salt tolerance by comparing their behavior in contrasting chickpea genotypes.
Collapse
Affiliation(s)
- Jogendra Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - Vijayata Singh
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| | - P. C. Sharma
- ICAR-Central Soil Salinity Research Institute, Karnal, Haryana 132001 India
| |
Collapse
|
37
|
Mishra P, Singh N, Jain A, Jain N, Mishra V, G P, Sandhya KP, Singh NK, Rai V. Identification of cis-regulatory elements associated with salinity and drought stress tolerance in rice from co-expressed gene interaction networks. Bioinformation 2018; 14:123-131. [PMID: 29785071 PMCID: PMC5953860 DOI: 10.6026/97320630014123] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 09/28/2017] [Accepted: 10/30/2017] [Indexed: 11/14/2022] Open
Abstract
Rice, a staple food crop, is often subjected to drought and salinity stresses thereby limiting its yield potential. Since there is a cross talk between these abiotic stresses, identification of common and/or overlapping regulatory elements is pivotal for generating rice cultivars that showed tolerance towards them. Analysis of the gene interaction network (GIN) facilitates identifying the role of individual genes and their interactions with others that constitute important molecular determinants in sensing and signaling cascade governing drought and/or salinity stresses. Identification of the various cis-regulatory elements of the genes constituting GIN is equally important. Here, in this study graphical Gaussian model (GGM) was used for generating GIN for an array of genes that were differentially regulated during salinity and/or drought stresses to contrasting rice cultivars (salt-tolerant [CSR11], salt-sensitive [VSR156], drought-tolerant [Vandana], drought-sensitive [IR64]). Whole genome transcriptom profiling by using microarray were employed in this study. Markov Chain completed co-expression analyses of differentially expressed genes using Dynamic Bayesian Network, Probabilistic Boolean Network and Steady State Analysis. A compact GIN was identified for commonly co-expressed genes during salinity and drought stresses with three major hubs constituted by Myb2 transcription factor (TF), phosphoglycerate kinase and heat shock protein (Hsp). The analysis suggested a pivotal role of these genes in salinity and/or drought stress responses. Further, analysis of cis-regulatory elements (CREs) of commonly differentially expressed genes during salinity and drought stresses revealed the presence of 20 different motifs.
Collapse
Affiliation(s)
- Pragya Mishra
- National Research Centre on Plant Biotechnology, Indian Agriculture Research Institute, New Delhi, India
- Banasthali University, Tonk, Rajasthan
| | - Nisha Singh
- National Research Centre on Plant Biotechnology, Indian Agriculture Research Institute, New Delhi, India
| | - Ajay Jain
- National Research Centre on Plant Biotechnology, Indian Agriculture Research Institute, New Delhi, India
| | - Neha Jain
- National Research Centre on Plant Biotechnology, Indian Agriculture Research Institute, New Delhi, India
| | - Vagish Mishra
- National Research Centre on Plant Biotechnology, Indian Agriculture Research Institute, New Delhi, India
| | - Pushplatha G
- National Research Centre on Plant Biotechnology, Indian Agriculture Research Institute, New Delhi, India
| | | | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, Indian Agriculture Research Institute, New Delhi, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Indian Agriculture Research Institute, New Delhi, India
| |
Collapse
|
38
|
Wanniarachchi VR, Dametto L, Sweetman C, Shavrukov Y, Day DA, Jenkins CLD, Soole KL. Alternative Respiratory Pathway Component Genes (AOX and ND) in Rice and Barley and Their Response to Stress. Int J Mol Sci 2018; 19:E915. [PMID: 29558397 PMCID: PMC5877776 DOI: 10.3390/ijms19030915] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 03/15/2018] [Accepted: 03/16/2018] [Indexed: 11/24/2022] Open
Abstract
Plants have a non-energy conserving bypass of the classical mitochondrial cytochrome c pathway, known as the alternative respiratory pathway (AP). This involves type II NAD(P)H dehydrogenases (NDs) on both sides of the mitochondrial inner membrane, ubiquinone, and the alternative oxidase (AOX). The AP components have been widely characterised from Arabidopsis, but little is known for monocot species. We have identified all the genes encoding components of the AP in rice and barley and found the key genes which respond to oxidative stress conditions. In both species, AOX is encoded by four genes; in rice OsAOX1a, 1c, 1d and 1e representing four clades, and in barley, HvAOX1a, 1c, 1d1 and 1d2, but no 1e. All three subfamilies of plant ND genes, NDA, NDB and NDC are present in both rice and barley, but there are fewer NDB genes compared to Arabidopsis. Cyanide treatment of both species, along with salt treatment of rice and drought treatment of barley led to enhanced expression of various AP components; there was a high level of co-expression of AOX1a and AOX1d, along with NDB3 during the stress treatments, reminiscent of the co-expression that has been well characterised in Arabidopsis for AtAOX1a and AtNDB2.
Collapse
Affiliation(s)
- Vajira R Wanniarachchi
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| | - Lettee Dametto
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| | - Crystal Sweetman
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| | - Yuri Shavrukov
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| | - David A Day
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| | - Colin L D Jenkins
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| | - Kathleen L Soole
- College of Science and Engineering, Flinders University of South Australia, GPO Box 5100, Adelaide, SA 5001, Australia.
| |
Collapse
|
39
|
Henderson SW, Dunlevy JD, Wu Y, Blackmore DH, Walker RR, Edwards EJ, Gilliham M, Walker AR. Functional differences in transport properties of natural HKT1;1 variants influence shoot Na + exclusion in grapevine rootstocks. THE NEW PHYTOLOGIST 2018; 217:1113-1127. [PMID: 29160564 DOI: 10.1111/nph.14888] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Accepted: 10/09/2017] [Indexed: 05/20/2023]
Abstract
Under salinity, Vitis spp. rootstocks can mediate salt (NaCl) exclusion from grafted V. vinifera scions enabling higher grapevine yields and production of superior wines with lower salt content. Until now, the genetic and mechanistic elements controlling sodium (Na+ ) exclusion in grapevine were unknown. Using a cross between two Vitis interspecific hybrid rootstocks, we mapped a dominant quantitative trait locus (QTL) associated with leaf Na+ exclusion (NaE) under salinity stress. The NaE locus encodes six high-affinity potassium transporters (HKT). Transcript profiling and functional characterization in heterologous systems identified VisHKT1;1 as the best candidate gene for controlling leaf Na+ exclusion. We characterized four proteins encoded by unique VisHKT1;1 alleles from the parents, and revealed that the dominant HKT variants exhibit greater Na+ conductance with less rectification than the recessive variants. Mutagenesis of VisHKT1;1 and TaHKT1.5-D from bread wheat, demonstrated that charged amino acid residues in the eighth predicted transmembrane domain of HKT proteins reduces inward Na+ conductance, and causes inward rectification of Na+ transport. The origin of the recessive VisHKT1;1 alleles was traced to V. champinii and V. rupestris. We propose that the genetic and functional data presented here will assist with breeding Na+ -tolerant grapevine rootstocks.
Collapse
Affiliation(s)
- Sam W Henderson
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia, 5064, Australia
| | - Jake D Dunlevy
- CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Yue Wu
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia, 5064, Australia
| | - Deidre H Blackmore
- CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Rob R Walker
- CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Everard J Edwards
- CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| | - Matthew Gilliham
- ARC Centre of Excellence in Plant Energy Biology, School of Agriculture, Food and Wine, University of Adelaide, PMB1, Glen Osmond, South Australia, 5064, Australia
| | - Amanda R Walker
- CSIRO Agriculture & Food, Locked Bag 2, Glen Osmond, South Australia, 5064, Australia
| |
Collapse
|
40
|
Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Sci Rep 2017; 7:10031. [PMID: 28855698 PMCID: PMC5577154 DOI: 10.1038/s41598-017-10730-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
Salinity affects growth and development of plants, but mangroves exhibit exceptional salt tolerance. With direct exposure to salinity, mangrove roots possess specific adaptations to tolerate salt stress. Therefore, studying the early effects of salt on mangrove roots can help us better understand the tolerance mechanisms. Using two-month-old greenhouse-grown seedlings of the mangrove tree Avicennia officinalis subjected to NaCl treatment, we profiled gene expression changes in the roots by RNA-sequencing. Of the 6547 genes that were differentially regulated in response to salt treatment, 1404 and 5213 genes were significantly up- and down-regulated, respectively. By comparative genomics, 93 key salt tolerance-related genes were identified of which 47 were up-regulated. Upon placing all the differentially expressed genes (DEG) in known signaling pathways, it was evident that most of the DEGs involved in ethylene and auxin signaling were up-regulated while those involved in ABA signaling were down-regulated. These results imply that ABA-independent signaling pathways also play a major role in salt tolerance of A. officinalis. Further, ethylene response factors (ERFs) were abundantly expressed upon salt treatment and the Arabidopsis mutant aterf115, a homolog of AoERF114 is characterized. Overall, our results would help in understanding the possible molecular mechanism underlying salt tolerance in plants.
Collapse
|
41
|
Li Q, Yang A, Zhang WH. Comparative studies on tolerance of rice genotypes differing in their tolerance to moderate salt stress. BMC PLANT BIOLOGY 2017; 17:141. [PMID: 28814283 PMCID: PMC5559854 DOI: 10.1186/s12870-017-1089-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 08/07/2017] [Indexed: 05/28/2023]
Abstract
BACKGROUND Moderate salt stress, which often occurs in most saline agriculture land, suppresses crop growth and reduces crop yield. Rice, as an important food crop, is sensitive to salt stress and rice genotypes differ in their tolerance to salt stress. Despite extensive studies on salt tolerance of rice, a few studies have specifically investigated the mechanism by which rice plants respond and tolerate to moderate salt stress. Two rice genotypes differing in their tolerance to saline-alkaline stress, Dongdao-4 and Jigeng-88, were used to explore physiological and molecular mechanisms underlying tolerance to moderate salt stress. RESULTS Dongdao-4 plants displayed higher biomass, chlorophyll contents, and photosynthetic rates than Jigeng-88 under conditions of salt stress. No differences in K+ concentrations, Na+ concentrations and Na+/K+ ratio in shoots between Dongdao-4 and Jigeng-88 plants were detected when challenged by salt stress, suggesting that Na+ toxicity may not underpin the greater tolerance of Dongdao-4 to salt stress than that of Jigeng-88. We further demonstrated that Dongdao-4 plants had greater capacity to accumulate soluble sugars and proline (Pro) than Jigeng-88, thus conferring greater tolerance of Dongdao-4 to osmotic stress than Jigeng-88. Moreover, Dongdao-4 suffered from less oxidative stress than Jigeng-88 under salt stress due to higher activities of catalase (CAT) in Dongdao-4 seedlings. Finally, RNA-seq revealed that Dongdao-4 and Jigeng-88 differed in their gene expression in response to salt stress, such that salt stress changed expression of 456 and 740 genes in Dongdao-4 and Jigeng-88, respectively. CONCLUSION Our results revealed that Dongdao-4 plants were capable of tolerating to salt stress by enhanced accumulation of Pro and soluble sugars to tolerate osmotic stress, increasing the activities of CAT to minimize oxidative stress, while Na+ toxicity is not involved in the greater tolerance of Dongdao-4 to moderate salt stress.
Collapse
Affiliation(s)
- Qian Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - An Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 People’s Republic of China
| | - Wen-Hao Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing, 100093 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
- Research Network of Global Change Biology, Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing, 100093 China
| |
Collapse
|
42
|
Zhang Z, Mao C, Shi Z, Kou X. The Amino Acid Metabolic and Carbohydrate Metabolic Pathway Play Important Roles during Salt-Stress Response in Tomato. FRONTIERS IN PLANT SCIENCE 2017; 8:1231. [PMID: 28769946 PMCID: PMC5511834 DOI: 10.3389/fpls.2017.01231] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Accepted: 06/29/2017] [Indexed: 05/26/2023]
Abstract
Salt stress affects the plant quality, which affects the productivity of plants and the quality of water storage. In a recent study, we conducted the Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) analysis and RNA-Seq, bioinformatics study methods, and detection of the key genes with qRT-PCR. Our findings suggested that the optimum salt treatment conditions are 200 mM and 19d for the identification of salt tolerance in tomato. Based on the RNA-Seq, we found 17 amino acid metabolic and 17 carbohydrate metabolic pathways enriched in the biological metabolism during the response to salt stress in tomato. We found 7 amino acid metabolic and 6 carbohydrate metabolic pathways that were significantly enriched in the adaption to salt stress. Moreover, we screened 17 and 19 key genes in 7 amino acid metabolic and 6 carbohydrate metabolic pathways respectively. We chose some of the key genes for verifying by qRT-PCR. The results showed that the expression of these genes was the same as that of RNA-seq. We found that these significant pathways and vital genes occupy an important roles in a whole process of adaptation to salt stress. These results provide valuable information, improve the ability to resist pressure, and improve the quality of the plant.
Collapse
Affiliation(s)
- Zhi Zhang
- School of Food Science and Nutrition Engineering, China Agricultural UniversityBeijing, China
| | - Cuiyu Mao
- School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
| | - Zheng Shi
- School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
| | - Xiaohong Kou
- School of Chemical Engineering and Technology, Tianjin UniversityTianjin, China
| |
Collapse
|
43
|
Mishra S, Singh B, Panda K, Singh BP, Singh N, Misra P, Rai V, Singh NK. Association of SNP Haplotypes of HKT Family Genes with Salt Tolerance in Indian Wild Rice Germplasm. RICE (NEW YORK, N.Y.) 2016; 35:2295-2308. [PMID: 27025598 DOI: 10.1007/s00299-016-2035-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Accepted: 07/26/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rice is one of the most important crops for global food security but its productivity is adversely affected by salt stress prevalent in about 30 % of the cultivated land. For developing salt-tolerant rice varieties through conventional breeding or biotechnological interventions, there is an urgent need to identify natural allelic variants that may confer salt tolerance. Here, 299 wild rice accessions collected from different agro-climatic regions of India were evaluated during growth under salt stress. Of these 95 representative accessions were sequenced for members of HKT ion transporter family genes by employing Ion Torrent PGM sequencing platform. RESULTS Haplotype analysis revealed haplotypes H5 and H1 of HKT1;5 and HKT2;3, respectively associated with high salinity tolerance. This is the first study of allele mining of eight members of HKT gene family from Indian wild rice reporting a salt tolerant allele of HKT2;3. HKT1;5 also showed a salt tolerant allele from wild rice. Phylogenetic analysis based on the nucleotide sequences showed different grouping of the HKT family genes as compared to the prevailing protein sequence based classification. CONCLUSIONS The salt tolerant alleles of the HKT genes from wild rice may be introgressed into modern high yielding cultivars to widen the existing gene pool and enhance rice production in the salt affected areas.
Collapse
Affiliation(s)
- Shefali Mishra
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kabita Panda
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Bikram Pratap Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nisha Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Pragati Misra
- Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
44
|
Mishra S, Singh B, Panda K, Singh BP, Singh N, Misra P, Rai V, Singh NK. Association of SNP Haplotypes of HKT Family Genes with Salt Tolerance in Indian Wild Rice Germplasm. RICE (NEW YORK, N.Y.) 2016; 9:15. [PMID: 27025598 PMCID: PMC4811800 DOI: 10.1186/s12284-016-0083-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 03/08/2016] [Indexed: 05/02/2023]
Abstract
BACKGROUND Rice is one of the most important crops for global food security but its productivity is adversely affected by salt stress prevalent in about 30 % of the cultivated land. For developing salt-tolerant rice varieties through conventional breeding or biotechnological interventions, there is an urgent need to identify natural allelic variants that may confer salt tolerance. Here, 299 wild rice accessions collected from different agro-climatic regions of India were evaluated during growth under salt stress. Of these 95 representative accessions were sequenced for members of HKT ion transporter family genes by employing Ion Torrent PGM sequencing platform. RESULTS Haplotype analysis revealed haplotypes H5 and H1 of HKT1;5 and HKT2;3, respectively associated with high salinity tolerance. This is the first study of allele mining of eight members of HKT gene family from Indian wild rice reporting a salt tolerant allele of HKT2;3. HKT1;5 also showed a salt tolerant allele from wild rice. Phylogenetic analysis based on the nucleotide sequences showed different grouping of the HKT family genes as compared to the prevailing protein sequence based classification. CONCLUSIONS The salt tolerant alleles of the HKT genes from wild rice may be introgressed into modern high yielding cultivars to widen the existing gene pool and enhance rice production in the salt affected areas.
Collapse
Affiliation(s)
- Shefali Mishra
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
- Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Balwant Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Kabita Panda
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Bikram Pratap Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nisha Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Pragati Misra
- Jacob School of Biotechnology and Bioengineering, Sam Higginbottom Institute of Agriculture, Technology and Sciences, Allahabad, 211007, India
| | - Vandna Rai
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India
| | - Nagendra Kumar Singh
- National Research Centre on Plant Biotechnology, Pusa Campus, New Delhi, 110012, India.
| |
Collapse
|
45
|
Evaluation of stability and validation of reference genes for RT-qPCR expression studies in rice plants under water deficit. J Appl Genet 2016; 58:163-177. [PMID: 27878453 DOI: 10.1007/s13353-016-0374-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/13/2016] [Accepted: 10/18/2016] [Indexed: 12/30/2022]
Abstract
Many studies use strategies that allow for the identification of a large number of genes expressed in response to different stress conditions to which the plant is subjected throughout its cycle. In order to obtain accurate and reliable results in gene expression studies, it is necessary to use reference genes, which must have uniform expression in the majority of cells in the organism studied. RNA isolation of leaves and expression analysis in real-time quantitative polymerase chain reaction (RT-qPCR) were carried out. In this study, nine candidate reference genes were tested, actin 11 (ACT11), ubiquitin conjugated to E2 enzyme (UBC-E2), glyceraldehyde-3-phosphate dehydrogenase (GAPDH), beta tubulin (β-tubulin), eukaryotic initiation factor 4α (eIF-4α), ubiquitin 10 (UBQ10), ubiquitin 5 (UBQ5), aquaporin TIP41 (TIP41-Like) and cyclophilin, in two genotypes of rice, AN Cambará and BRS Querência, with different levels of soil moisture (20%, 10% and recovery) in the vegetative (V5) and reproductive stages (period preceding flowering). Currently, there are different softwares that perform stability analyses and define the most suitable reference genes for a particular study. In this study, we used five different methods: geNorm, BestKeeper, ΔCt method, NormFinder and RefFinder. The results indicate that UBC-E2 and UBQ5 can be used as reference genes in all samples and softwares evaluated. The genes β-tubulin and eIF-4α, traditionally used as reference genes, along with GAPDH, presented lower stability values. The gene expression of basic leucine zipper (bZIP23 and bZIP72) was used to validate the selected reference genes, demonstrating that the use of an inappropriate reference can induce erroneous results.
Collapse
|
46
|
Transcription dynamics of Saltol QTL localized genes encoding transcription factors, reveals their differential regulation in contrasting genotypes of rice. Funct Integr Genomics 2016; 17:69-83. [PMID: 27848097 DOI: 10.1007/s10142-016-0529-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 10/02/2016] [Accepted: 10/10/2016] [Indexed: 10/20/2022]
Abstract
Salinity is one of the major environmental factors affecting the growth and yield of rice crop. Salinity stress response is a multigenic trait and numerous approaches have been used to dissect out the key determinants of complex salt tolerance trait and their regulation in plant. In the current study, we have investigated expression dynamics of the genes encoding transcription factors (SalTFs) localized within a major salinity tolerance related QTL-'Saltol' in the contrasting cultivars of rice. SalTFs were found to be differentially regulated between the contrasting genotypes of rice, with higher constitutive expression in the salt tolerant landrace, Pokkali than the cultivar IR64. Moreover, SalTFs were found to exhibit inducibility in the salt sensitive cultivar at late duration (after 24 h) of salinity stress. Further, the transcript abundance analysis of these SalTFs at various developmental stages of rice revealed that low expressing genes may be involved in developmental responses, while high expressing genes can be linked with the salt stress response. Grouping of these genes was well supported by in silico protein-protein interaction studies and distribution of single-nucleotide polymorphisms (SNPs) and insertions/deletions (InDels) in the promoter and genic regions of these genes. Taken together, we propose that out of 14 SalTFs, eight members are strongly correlated with the salinity stress tolerance in rice and six are involved in plant growth and development.
Collapse
|
47
|
A proteomic analysis of salt stress response in seedlings of two African rice cultivars. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2016; 1864:1570-8. [DOI: 10.1016/j.bbapap.2016.08.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 11/20/2022]
|
48
|
Hill CB, Cassin A, Keeble-Gagnère G, Doblin MS, Bacic A, Roessner U. De novo transcriptome assembly and analysis of differentially expressed genes of two barley genotypes reveal root-zone-specific responses to salt exposure. Sci Rep 2016; 6:31558. [PMID: 27527578 PMCID: PMC4985707 DOI: 10.1038/srep31558] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 07/19/2016] [Indexed: 01/03/2023] Open
Abstract
Plant roots are the first organs sensing and responding to salinity stress, manifested differentially between different root types, and also at the individual tissue and cellular level. High genetic diversity and the current lack of an assembled map-based sequence of the barley genome severely limit barley research potential. We used over 580 and 600 million paired-end reads, respectively, to create two de novo assemblies of a barley landrace (Sahara) and a malting cultivar (Clipper) with known contrasting responses to salinity. Generalized linear models were used to statistically access spatial, treatment-related, and genotype-specific responses. This revealed a spatial gene expression gradient along the barley root, with more differentially expressed transcripts detected between different root zones than between treatments. The root transcriptome also showed a gradual transition from transcripts related to sugar-mediated signaling at the root meristematic zone to those involved in cell wall metabolism in the elongation zone, and defense response-related pathways toward the maturation zone, with significant differences between the two genotypes. The availability of these additional transcriptome reference sets will serve as a valuable resource to the cereal research community, and may identify valuable traits to assist in breeding programmes.
Collapse
Affiliation(s)
- Camilla Beate Hill
- School of BioSciences, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Andrew Cassin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Gabriel Keeble-Gagnère
- School of BioSciences, The University of Melbourne, Parkville, Vic 3010, Australia
- School of Veterinary and Life Sciences, Murdoch University, Murdoch, WA 6150, Australia
| | - Monika S. Doblin
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Antony Bacic
- ARC Centre of Excellence in Plant Cell Walls, School of BioSciences, The University of Melbourne, Parkville, Vic 3010, Australia
| | - Ute Roessner
- School of BioSciences, The University of Melbourne, Parkville, Vic 3010, Australia
| |
Collapse
|
49
|
Ferrández-Ayela A, Sánchez-García AB, Martínez-Andújar C, Kevei Z, Gifford ML, Thompson AJ, Pérez-Alfocea F, Pérez-Pérez JM. Identification of novel stress-responsive biomarkers from gene expression datasets in tomato roots. FUNCTIONAL PLANT BIOLOGY : FPB 2016; 43:783-796. [PMID: 32480503 DOI: 10.1071/fp15385] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 04/18/2016] [Indexed: 06/11/2023]
Abstract
Abiotic stresses such as heat, drought or salinity have been widely studied individually. Nevertheless, in the nature and in the field, plants and crops are commonly exposed to a different combination of stresses, which often result in a synergistic response mediated by the activation of several molecular pathways that cannot be inferred from the response to each individual stress. By screening microarray data obtained from different plant species and under different stresses, we identified several conserved stress-responsive genes whose expression was differentially regulated in tomato (Solanum lycopersicum L.) roots in response to one or several stresses. We validated 10 of these genes as reliable biomarkers whose expression levels are related to different signalling pathways involved in adaptive stress responses. In addition, the genes identified in this work could be used as general salt-stress biomarkers to rapidly evaluate the response of salt-tolerant cultivars and wild species for which sufficient genetic information is not yet available.
Collapse
Affiliation(s)
| | | | | | - Zoltan Kevei
- Cranfield Soil and AgriFood Institute, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | - Miriam L Gifford
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK
| | - Andrew J Thompson
- Cranfield Soil and AgriFood Institute, School of Energy, Environment and Agrifood, Cranfield University, Cranfield, Bedfordshire, MK43 0AL, UK
| | | | | |
Collapse
|
50
|
Rahman MA, Thomson MJ, Shah-E-Alam M, de Ocampo M, Egdane J, Ismail AM. Exploring novel genetic sources of salinity tolerance in rice through molecular and physiological characterization. ANNALS OF BOTANY 2016; 117:1083-97. [PMID: 27063367 PMCID: PMC4866315 DOI: 10.1093/aob/mcw030] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2015] [Revised: 10/27/2015] [Accepted: 01/12/2016] [Indexed: 05/20/2023]
Abstract
BACKGROUND AND AIMS Agricultural productivity is increasingly being affected by the build-up of salinity in soils and water worldwide. The genetic base of salt-tolerant rice donors being used in breeding is relatively narrow and needs broadening to breed varieties with wider adaptation to salt-affected areas. This study evaluated a large set of rice accessions of diverse origins to identify and characterize novel sources of salt tolerance. METHODS Diversity analysis was performed on 107 germplasm accessions using a genome-wide set of 376 single-nucleotide polymorphism (SNP) markers, along with characterization of allelic diversity at the major quantitative trait locus Saltol Sixty-nine accessions were further evaluated for physiological traits likely associated with responses to salt stress during the seedling stage. KEY RESULTS Three major clusters corresponding to the indica, aus and aromatic subgroups were identified. The largest group was indica, with the salt-tolerant Pokkali accessions in one sub-cluster, while a set of Bangladeshi landraces, including Akundi, Ashfal, Capsule, Chikirampatnai and Kutipatnai, were in a different sub-cluster. A distinct aus group close to indica contained the salt-tolerant landrace Kalarata, while a separate aromatic group closer to japonica rice contained a number of traditional, but salt-sensitive Bangladeshi landraces. These accessions have different alleles at the Saltol locus. Seven landraces - Akundi, Ashfal, Capsule, Chikirampatnai, Jatai Balam, Kalarata and Kutipatnai - accumulated less Na and relatively more K, maintaining a lower Na/K ratio in leaves. They effectively limit sodium transport to the shoot. CONCLUSIONS New salt-tolerant landraces were identified that are genetically and physiologically distinct from known donors. These landraces can be used to develop better salt-tolerant varieties and could provide new sources of quantitative trait loci/alleles for salt tolerance for use in molecular breeding. The diversity observed within this set and in other donors suggests multiple mechanisms that can be combined for higher salt tolerance.
Collapse
Affiliation(s)
- M Akhlasur Rahman
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Michael J Thomson
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines, International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - M Shah-E-Alam
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Marjorie de Ocampo
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - James Egdane
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines
| | - Abdelbagi M Ismail
- International Rice Research Institute, DAPO Box 7777, Metro Manila, Philippines,
| |
Collapse
|