1
|
Zhou LZ, Wang L, Chen X, Ge Z, Mergner J, Li X, Küster B, Längst G, Qu LJ, Dresselhaus T. The RALF signaling pathway regulates cell wall integrity during pollen tube growth in maize. THE PLANT CELL 2024; 36:1673-1696. [PMID: 38142229 PMCID: PMC11062432 DOI: 10.1093/plcell/koad324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 11/20/2023] [Accepted: 12/19/2023] [Indexed: 12/25/2023]
Abstract
Autocrine signaling pathways regulated by RAPID ALKALINIZATION FACTORs (RALFs) control cell wall integrity during pollen tube germination and growth in Arabidopsis (Arabidopsis thaliana). To investigate the role of pollen-specific RALFs in another plant species, we combined gene expression data with phylogenetic and biochemical studies to identify candidate orthologs in maize (Zea mays). We show that Clade IB ZmRALF2/3 mutations, but not Clade III ZmRALF1/5 mutations, cause cell wall instability in the sub-apical region of the growing pollen tube. ZmRALF2/3 are mainly located in the cell wall and are partially able to complement the pollen germination defect of their Arabidopsis orthologs AtRALF4/19. Mutations in ZmRALF2/3 compromise pectin distribution patterns leading to altered cell wall organization and thickness culminating in pollen tube burst. Clade IB, but not Clade III ZmRALFs, strongly interact as ligands with the pollen-specific Catharanthus roseus RLK1-like (CrRLK1L) receptor kinases Z. mays FERONIA-like (ZmFERL) 4/7/9, LORELEI-like glycosylphosphatidylinositol-anchor (LLG) proteins Z. mays LLG 1 and 2 (ZmLLG1/2), and Z. mays pollen extension-like (PEX) cell wall proteins ZmPEX2/4. Notably, ZmFERL4 outcompetes ZmLLG2 and ZmPEX2 outcompetes ZmFERL4 for ZmRALF2 binding. Based on these data, we suggest that Clade IB RALFs act in a dual role as cell wall components and extracellular sensors to regulate cell wall integrity and thickness during pollen tube growth in maize and probably other plants.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, Shandong 271018, China
| | - Lele Wang
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Xia Chen
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Zengxiang Ge
- Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany
| | - Xingli Li
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| | - Bernhard Küster
- Chair of Proteomics and Bioanalytics, Technical University of Munich (TUM), 85354 Freising, Germany
- Bavarian Center for Biomolecular Mass Spectrometry (BayBioMS), Technical University of Munich (TUM), 85354 Freising, Germany
| | - Gernot Längst
- Biochemistry Center Regensburg, University of Regensburg, 93053 Regensburg, Germany
| | - Li-Jia Qu
- Peking-Tsinghua Center for Life Sciences at College of Life Sciences, Peking University, Beijing 100871, China
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
2
|
Su S, Lei Y, Zhou X, Suzuki T, Xiao W, Higashiyama T. A BLADE-ON-PETIOLE orthologue regulates corolla differentiation in the proximal region in Torenia fournieri. Nat Commun 2023; 14:4763. [PMID: 37553331 PMCID: PMC10409793 DOI: 10.1038/s41467-023-40399-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 07/26/2023] [Indexed: 08/10/2023] Open
Abstract
The three-dimensional shape of a flower is integrated by morphogenesis along different axes. Differentiation along the petal proximodistal axis is tightly linked to the specification of pollinators; however, it is still unclear how a petal patterns this axis. The corolla of Torenia fournieri exhibits strong differentiation along the proximodistal axis, and we previously found a proximal regulator, TfALOG3, controlling corolla neck differentiation. Here, we report another gene, TfBOP2, which is predominantly expressed in the proximal region of the corolla. TfBOP2 mutants have shorter proximal corolla tubes and longer distal lobe, demonstrating its function as a proximal regulator. Arabidopsis BOPs mutant shows similar defects, favouring a shared role of BOPs homologues. Genetic analysis demonstrates the interaction between TfBOP2 and TfALOG3, and we further found that TfALOG3 physically interacts with TfBOP2 and can recruit TfBOP2 to the nuclear region. Our study favours a hypothetical shared BOP-ALOG complex that is recruited to regulate corolla differentiation in the proximal region axis of T. fournieri.
Collapse
Affiliation(s)
- Shihao Su
- School of Agriculture, Sun Yat-sen University, 518107, Shenzhen, China.
| | - Yawen Lei
- Institute of Nanfan & Seed Industry, Guangdong Academy of Science, 510316, Guangzhou, Guangdong, China
| | - Xuan Zhou
- School of Agriculture, Sun Yat-sen University, 518107, Shenzhen, China
| | - Takamasa Suzuki
- College of Bioscience and Biotechnology, Chubu University, Kasugai, Aichi, 487-8501, Japan
| | - Wei Xiao
- MBP-Center for Plant Molecular Biology, University of Tübingen, Auf der Morgenstelle 32, 72076, Tübingen, Germany
| | - Tetsuya Higashiyama
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, 113-0033, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
3
|
Ramming A, Kappel C, Kanaoka MM, Higashiyama T, Lenhard M. Poly(A) polymerase 1 contributes to competence acquisition of pollen tubes growing through the style in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:651-667. [PMID: 36811355 DOI: 10.1111/tpj.16162] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 02/16/2023] [Indexed: 05/10/2023]
Abstract
Polyadenylation of mRNAs is critical for their export from the nucleus, stability, and efficient translation. The Arabidopsis thaliana genome encodes three isoforms of canonical nuclear poly(A) polymerase (PAPS) that redundantly polyadenylate the bulk of pre-mRNAs. However, previous studies have indicated that subsets of pre-mRNAs are preferentially polyadenylated by either PAPS1 or the other two isoforms. Such functional specialization raises the possibility of an additional level of gene-expression control in plants. Here we test this notion by studying the function of PAPS1 in pollen-tube growth and guidance. Pollen tubes growing through female tissue acquire the competence to find ovules efficiently and upregulate PAPS1 expression at the transcriptional, but not detectably at the protein level compared with in vitro grown pollen tubes. Using the temperature-sensitive paps1-1 allele we show that PAPS1 activity during pollen-tube growth is required for full acquisition of competence, resulting in inefficient fertilization by paps1-1 mutant pollen tubes. While these mutant pollen tubes grow almost at the wild-type rate, they are compromised in locating the micropyles of ovules. Previously identified competence-associated genes are less expressed in paps1-1 mutant than in wild-type pollen tubes. Estimating the poly(A) tail lengths of transcripts suggests that polyadenylation by PAPS1 is associated with reduced transcript abundance. Our results therefore suggest that PAPS1 plays a key role in the acquisition of competence and underline the importance of functional specialization between PAPS isoforms throughout different developmental stages.
Collapse
Affiliation(s)
- Anna Ramming
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Christian Kappel
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| | - Masahiro M Kanaoka
- Prefectural University of Hiroshima, Faculty of Life and Environmental Sciences, Faculty of Bioresource Sciences, Shobara, Hiroshima, Japan
| | - Tetsuya Higashiyama
- The University of Tokyo Graduate School of Science, Faculty of Science, Bunkyo-ku, Tokyo, Japan
| | - Michael Lenhard
- University of Potsdam, Institute of Biochemistry and Biology, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam-Golm, Germany
| |
Collapse
|
4
|
Optimization of an Efficient Protoplast Transformation System for Transient Expression Analysis Using Leaves of Torenia fournieri. PLANTS 2022; 11:plants11162106. [PMID: 36015409 PMCID: PMC9412307 DOI: 10.3390/plants11162106] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022]
Abstract
Torenia fournieri (T. fournieri) is one of the most widely used horticultural flowers and is considered a potential model plant for the genetic investigation of ornamental traits. In this study, we optimized an efficient protocol for high efficiency preparation and transformation of T. fournieri protoplast. The transformation rate reached ~75% when a 35S:GFP construct was used for the transformation. Using this system, we characterized the subcellular localization of several TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) transcription factors (TFs), and found a distinct localization pattern between the CIN and CYC classes of TCP TFs. Furthermore, we also demonstrated the feasibility of the expression of dual luciferase assay system in T. fournieri protoplasts for the measurement of the activity of cis-regulatory elements. Taken together, a well-optimized transient expression system in T. fournieri protoplasts would be crucial for rapid exploration of the gene function or cis-regulatory elements.
Collapse
|
5
|
Kumarswamyreddy N, Reddy DN, Robkis DM, Kamiya N, Tsukamoto R, Kanaoka MM, Higashiyama T, Oishi S, Bode JW. Chemical Synthesis of Torenia Plant Pollen Tube Attractant Proteins by KAHA Ligation. RSC Chem Biol 2022; 3:721-727. [PMID: 35755195 PMCID: PMC9175099 DOI: 10.1039/d2cb00039c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/18/2022] [Indexed: 11/21/2022] Open
Abstract
The synthesis of secreted cysteine-rich proteins (CRPs) is a long-standing challenge due to protein aggregation and premature formation of inter- and intramolecular disulfide bonds. Chemical synthesis provides reduced CRPs with a higher purity, which is advantageous for folding and isolation. Herein, we report the chemical synthesis of pollen tube attractant CRPs Torenia fournieri LURE (TfLURE) and Torenia concolor LURE (TcLURE) and their chimeric analogues via α-ketoacid-hydroxylamine (KAHA) ligation. The bioactivity of chemically synthesized TfLURE protein was shown to be comparable to E. coli expressed recombinant protein through in vitro assay. The convergent protein synthesis approach is beneficial for preparing these small protein variants efficiently. A convergent chemical synthesis was established for Torenia plant pollen tube attractant proteins, LUREs and their chimeric analogues by KAHA ligation. The synthetic TfLURE showed comparable bioactivity with E.coli expressed recombinant protein.![]()
Collapse
Affiliation(s)
- Nandarapu Kumarswamyreddy
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Department of Chemistry, Indian Institute of Technology Tirupati Tirupati Andhra Pradesh 517506 India
| | - Damodara N Reddy
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute Lucknow 226031 India
| | - D Miklos Robkis
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
| | - Nao Kamiya
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
| | - Ryoko Tsukamoto
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
| | - Masahiro M Kanaoka
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Division of Biological Science, Graduate School of Science, Nagoya University Nagoya 464-0602 Japan
- Department of Biological Sciences, Graduate School of Science, University of Tokyo Tokyo 113-0033 Japan
| | - Shunsuke Oishi
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
| | - Jeffrey W Bode
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University Chikusa Nagoya 464-8601 Japan
- Laboratorium für Organische Chemie, Department of Chemistry and Applied Biosciences, ETH Zürich Zürich 8093 Switzerland
| |
Collapse
|
6
|
Takeuchi H. The role of diverse LURE-type cysteine-rich peptides as signaling molecules in plant reproduction. Peptides 2021; 142:170572. [PMID: 34004266 DOI: 10.1016/j.peptides.2021.170572] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/12/2021] [Accepted: 05/06/2021] [Indexed: 02/08/2023]
Abstract
In angiosperm sexual reproduction, the male pollen tube undergoes a series of interactions with female tissues. For efficient growth and precise guidance, the pollen tube perceives extracellular ligands. In recent decades, various types of secreted cysteine-rich peptides (CRPs) have been identified as peptide ligands that regulate diverse angiosperm reproduction processes, including pollen tube germination, growth, guidance, and rupture. Notably, in two distant core eudicot plants, multiple LURE-type CRPs were found to be secreted from egg-accompanying synergid cells, and these CRPs act as a cocktail of pollen tube attractants for the final step of pollen tube guidance. LURE-type CRPs have species-preferential activity, even among close relatives, and exhibit remarkably divergent molecular evolution with conserved cysteine frameworks, demonstrating that they play a key role in species recognition in pollen tube guidance. In this review, I focus on "reproductive CRPs," particularly LURE-type CRPs, which underlie common but species-specific mechanisms in angiosperm sexual reproduction, and discuss their action, functional regulation, receptors, and evolution.
Collapse
Affiliation(s)
- Hidenori Takeuchi
- Institute for Advanced Research, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan; Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| |
Collapse
|
7
|
Three STIGMA AND STYLE STYLISTs Pattern the Fine Architectures of Apical Gynoecium and Are Critical for Male Gametophyte-Pistil Interaction. Curr Biol 2020; 30:4780-4788.e5. [PMID: 33007250 DOI: 10.1016/j.cub.2020.09.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 08/02/2020] [Accepted: 09/03/2020] [Indexed: 11/22/2022]
Abstract
The gynoecium is derived from the fusion of carpels and is considered to have evolved from a simple setup followed by adaptive adjustment in cell type and tissue distribution to facilitate efficient sexual reproduction [1, 2]. As a sequence of the adjustment, the apical gynoecium differentiates into a stigma and a style. Both the structural patterning and functional specification of the apical gynoecium are critical for plant fertility [3, 4]. However, how the fine structures of the apical gynoecium are established at the interface interacting with pollen and pollen tubes remain to be elucidated. Here, we report a novel angiosperm-specific gene family, STIGMA AND STYLE STYLIST 1-3 (SSS1, SSS2, and SSS3). The SSS1 expresses predominately in the transmitting tract tissue of style, SSS2 expresses intensively in stigma, and SSS3 expresses mainly in stylar peripheral region round the transmitting tract. SSSs coregulate the patterning of the apical gynoecium via controlling cell expansion or elongation. Both the architecture and function of apical gynoecium can be affected by the alteration of SSS expression, indicating their critical roles in the establishment of a proper female interface for communication with pollen tubes. The NGATHA3 (NGA3) transcription factor [5, 6] can directly bind to SSSs promoter and control SSSs expression. Overexpression of SSSs could rescue the stylar defect of nga1nga3 double mutant, indicating their context in the same regulatory pathway. Our findings reveal a novel molecular mechanism responsible for patterning the fine architecture of apical gynoecium and establishing a proper interface for pollen tube growth, which is therefore crucial for plant sexual reproduction.
Collapse
|
8
|
Zhou LZ, Dresselhaus T. Friend or foe: Signaling mechanisms during double fertilization in flowering seed plants. Curr Top Dev Biol 2018; 131:453-496. [PMID: 30612627 DOI: 10.1016/bs.ctdb.2018.11.013] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Since the first description of double fertilization 120 years ago, the processes of pollen tube growth and guidance, sperm cell release inside the receptive synergid cell, as well as fusion of two sperm cells to the female gametes (egg and central cell) have been well documented in many flowering plants. Especially microscopic techniques, including live cell imaging, were used to visualize these processes. Molecular as well as genetic methods were applied to identify key players involved. However, compared to the first 11 decades since its discovery, the past decade has seen a tremendous advancement in our understanding of the molecular mechanisms regulating angiosperm fertilization. Whole signaling networks were elucidated including secreted ligands, corresponding receptors, intracellular interaction partners, and further downstream signaling events involved in the cross-talk between pollen tubes and their cargo with female reproductive cells. Biochemical and structural biological approaches are now increasingly contributing to our understanding of the different signaling processes required to distinguish between compatible and incompatible interaction partners. Here, we review the current knowledge about signaling mechanisms during above processes with a focus on the model plants Arabidopsis thaliana and Zea mays (maize). The analogy that many of the identified "reproductive signaling mechanisms" also act partly or fully in defense responses and/or cell death is also discussed.
Collapse
Affiliation(s)
- Liang-Zi Zhou
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
9
|
Zheng YY, Lin XJ, Liang HM, Wang FF, Chen LY. The Long Journey of Pollen Tube in the Pistil. Int J Mol Sci 2018; 19:E3529. [PMID: 30423936 PMCID: PMC6275014 DOI: 10.3390/ijms19113529] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/04/2018] [Accepted: 11/07/2018] [Indexed: 12/17/2022] Open
Abstract
In non-cleistogamous plants, the male gametophyte, the pollen grain is immotile and exploits various agents, such as pollinators, wind, and even water, to arrive to a receptive stigma. The complex process of pollination involves a tubular structure, i.e., the pollen tube, which delivers the two sperm cells to the female gametophyte to enable double fertilization. The pollen tube has to penetrate the stigma, grow in the style tissues, pass through the septum, grow along the funiculus, and navigate to the micropyle of the ovule. It is a long journey for the pollen tube and its two sperm cells before they meet the female gametophyte, and it requires very accurate regulation to perform successful fertilization. In this review, we update the knowledge of molecular dialogues of pollen-pistil interaction, especially the progress of pollen tube activation and guidance, and give perspectives for future research.
Collapse
Affiliation(s)
- Yang-Yang Zheng
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Xian-Ju Lin
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hui-Min Liang
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Fang-Fei Wang
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Plant Protection, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Li-Yu Chen
- Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops, Center for Genomics and Biotechnology, School of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
10
|
Sankaranarayanan S, Higashiyama T. Capacitation in Plant and Animal Fertilization. TRENDS IN PLANT SCIENCE 2018; 23:129-139. [PMID: 29170007 DOI: 10.1016/j.tplants.2017.10.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/21/2017] [Accepted: 10/31/2017] [Indexed: 06/07/2023]
Abstract
Sexual reproduction relies on the successful fusion of the sperm and egg cell. Despite the vast differences between plants and animals, there are similarities at a molecular level between plant and animal reproduction. While the molecular basis of fertilization has been extensively studied in plants, the process of capacitation has received little attention until recently. Recent research has started to uncover the molecular basis of plant capacitation. Furthermore, recent studies suggest that the key molecules in plants and animal fertilization are functionally conserved. Here, we review new insights for our understanding of capacitation of pollen tube and fertilization in plants and also propose that there are commonalities in the process of sexual reproduction between plants and animals.
Collapse
Affiliation(s)
- Subramanian Sankaranarayanan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan.
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan; Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
11
|
Mizuta Y, Higashiyama T. Chemical signaling for pollen tube guidance at a glance. J Cell Sci 2018; 131:131/2/jcs208447. [DOI: 10.1242/jcs.208447] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
ABSTRACT
Pollen tube guidance is a unique navigating system that is required for the successful sexual reproduction of plants. As plant sperm cells are non-motile and egg cells are embedded deep inside the female tissues, a pollen tube delivers the two sperm cells that it contains by growing towards the ovule, in which the egg cell resides. Pollen tube growth towards the ovule is precisely controlled and divided into two stages, preovular and ovular guidance. In this Cell Science at a Glance article and accompanying poster, we provide a comprehensive overview of pollen tube guidance and highlight some of the attractant peptides used during ovular guidance. We further discuss the precise one-to-one guidance system that exists in multi-ovular plants. The pollen tube-blocking system, which is mediated by male–female crosstalk communication, to avoid attraction of multiple pollen tubes, is also reviewed.
Collapse
Affiliation(s)
- Yoko Mizuta
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Tetsuya Higashiyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| |
Collapse
|
12
|
Mecchia MA, Santos-Fernandez G, Duss NN, Somoza SC, Boisson-Dernier A, Gagliardini V, Martínez-Bernardini A, Fabrice TN, Ringli C, Muschietti JP, Grossniklaus U. RALF4/19 peptides interact with LRX proteins to control pollen tube growth in
Arabidopsis. Science 2017; 358:1600-1603. [DOI: 10.1126/science.aao5467] [Citation(s) in RCA: 192] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Timing a switch in tissue integrity
In plants, sperm cells travel through the pollen tube as it grows toward the ovule. Successful fertilization depends on the pollen tube rupturing to release the sperm cells (see the Perspective by Stegmann and Zipfel). Ge
et al.
and Mecchia
et al.
elucidated the intercellular cross-talk that maintains pollen tube integrity during growth but destroys it at just the right moment. The signaling peptides RALF4 and RALF19, derived from the pollen tube, maintain its integrity as it grows. Once in reach of the ovule, a related signaling peptide, RALF34, which derives from female tissues, takes over and causes rupture of the pollen tube.
Science
, this issue p.
1596
, p.
1600
; see also p.
1544
Collapse
Affiliation(s)
- Martin A. Mecchia
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
- Fundación Instituto Leloir, IIBBA-CONICET, Buenos Aires, Argentina
| | - Gorka Santos-Fernandez
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Nadine N. Duss
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Sofía C. Somoza
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
| | | | - Valeria Gagliardini
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Andrea Martínez-Bernardini
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Tohnyui Ndinyanka Fabrice
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Christoph Ringli
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Jorge P. Muschietti
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor Torres (INGEBI-CONICET), Vuelta de Obligado 2490, C1428ADN Buenos Aires, Argentina
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Int. Güiraldes 2160, Ciudad Universitaria, Pabellón II, C1428EGA Buenos Aires, Argentina
| | - Ueli Grossniklaus
- Department of Plant and Microbial Biology and Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| |
Collapse
|
13
|
Mizukami AG, Inatsugi R, Jiao J, Kotake T, Kuwata K, Ootani K, Okuda S, Sankaranarayanan S, Sato Y, Maruyama D, Iwai H, Garénaux E, Sato C, Kitajima K, Tsumuraya Y, Mori H, Yamaguchi J, Itami K, Sasaki N, Higashiyama T. The AMOR Arabinogalactan Sugar Chain Induces Pollen-Tube Competency to Respond to Ovular Guidance. Curr Biol 2016; 26:1091-7. [PMID: 27068416 DOI: 10.1016/j.cub.2016.02.040] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 01/24/2016] [Accepted: 02/12/2016] [Indexed: 01/26/2023]
Abstract
Precise directional control of pollen-tube growth by pistil tissue is critical for successful fertilization of flowering plants [1-3]. Ovular attractant peptides, which are secreted from two synergid cells on the side of the egg cell, have been identified [4-6]. Emerging evidence suggests that the ovular directional cue is not sufficient for successful guidance but that competency control by the pistil is critical for the response of pollen tubes to the attraction signal [1, 3, 7]. However, the female molecule for this competency induction has not been reported. Here we report that ovular methyl-glucuronosyl arabinogalactan (AMOR) induces competency of the pollen tube to respond to ovular attractant LURE peptides in Torenia fournieri. We developed a method for assaying the response capability of a pollen tube by micromanipulating an ovule. Using this method, we showed that pollen tubes growing through a cut style acquired a response capability in the medium by receiving a sufficient amount of a factor derived from mature ovules of Torenia. This factor, named AMOR, was identified as an arabinogalactan polysaccharide, the terminal 4-O-methyl-glucuronosyl residue of which was necessary for its activity. Moreover, a chemically synthesized disaccharide, the β isomer of methyl-glucuronosyl galactose (4-Me-GlcA-β-(1→6)-Gal), showed AMOR activity. No specific sugar-chain structure of plant extracellular matrix has been identified as a bioactive molecule involved in intercellular communication. We suggest that the AMOR sugar chain in the ovary renders the pollen tube competent to the chemotropic response prior to final guidance by LURE peptides.
Collapse
Affiliation(s)
- Akane G Mizukami
- JST ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Rie Inatsugi
- Department of Evolutionary Biology and Environmental Studies, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Jiao Jiao
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Toshihisa Kotake
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Keiko Kuwata
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kento Ootani
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satohiro Okuda
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Subramanian Sankaranarayanan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yoshikatsu Sato
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Daisuke Maruyama
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Hiroaki Iwai
- Faculty of Life and Environmental Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8572, Japan
| | - Estelle Garénaux
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Yoichi Tsumuraya
- Graduate School of Science and Engineering, Saitama University, 255 Shimo-Okubo, Sakura-ku, Saitama City, Saitama 338-8570, Japan
| | - Hitoshi Mori
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Junichiro Yamaguchi
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Kenichiro Itami
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Narie Sasaki
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- JST ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
14
|
Dresselhaus T, Coimbra S. Plant Reproduction: AMOR Enables Males to Respond to Female Signals. Curr Biol 2016; 26:R321-3. [DOI: 10.1016/j.cub.2016.03.019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
15
|
Kanaoka MM, Higashiyama T. Peptide signaling in pollen tube guidance. CURRENT OPINION IN PLANT BIOLOGY 2015; 28:127-36. [PMID: 26580200 DOI: 10.1016/j.pbi.2015.10.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Revised: 10/14/2015] [Accepted: 10/15/2015] [Indexed: 05/05/2023]
Abstract
Fertilization is an important life event for sexually reproductive plants. Part of this process involves precise regulation of a series of complicated cell-cell communications between male and female tissues. Through genetic and omics approaches, many genes and proteins involved in this process have been identified. Here we review our current understanding of signaling components during fertilization. We will especially focus on LURE peptides and related signaling events that are required for micropylar pollen tube guidance. We will also summarize signaling events required for termination of micropylar pollen tube guidance after fertilization.
Collapse
Affiliation(s)
- Masahiro M Kanaoka
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Tetsuya Higashiyama
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; JST, ERATO, Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan; Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
16
|
Interactions between pollen tube and pistil control pollen tube identity and sperm release in the Arabidopsis female gametophyte. Biochem Soc Trans 2015; 42:340-5. [PMID: 24646241 DOI: 10.1042/bst20130223] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Flowering plants have immotile sperm that develop within the pollen cytoplasm and are delivered to female gametes by a pollen tube, a highly polarized extension of the pollen cell. In many flowering plant species, including seed crop plants, hundreds of pollen tubes grow towards a limited number of ovules. This system should ensure maximal fertilization of ovules and seed production; however, we know very little about how signalling between the critical cells is integrated to orchestrate delivery of two functional sperm to each ovule. Recent studies suggest that the pollen tube changes its gene-expression programme in response to growth through pistil tissue and that this differentiation process is critical for pollen tube attraction by the female gametophyte and for release of sperm. Interestingly, these two signalling systems, called pollen tube guidance and pollen tube reception, are also species-preferential. The present review focuses on Arabidopsis pollen tube differentiation within the pistil and addresses the idea that pollen tube differentiation defines pollen tube identity and recognition by female cells. We review recent identification of genes that may control pollen tube-female gametophyte recognition and discuss how these may be involved in blocking interspecific hybridization.
Collapse
|
17
|
Nagahara S, Takeuchi H, Higashiyama T. Generation of a homozygous fertilization-defective gcs1 mutant by heat-inducible removal of a rescue gene. PLANT REPRODUCTION 2015; 28:33-46. [PMID: 25673573 PMCID: PMC4333230 DOI: 10.1007/s00497-015-0256-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Accepted: 01/23/2015] [Indexed: 05/10/2023]
Abstract
Key message: New gametic homozygous mutants. In angiosperms, a haploid male gamete (sperm cell) fuses with a haploid female gamete (egg cell) during fertilization to form a zygote carrying paternally and maternally derived chromosomes. Several fertilization-defective mutants in Arabidopsis thaliana, including a generative cell-specific 1 (gcs1)/hapless 2 mutant, the sperm cells of which are unable to fuse with female gametes, can only be maintained as heterozygous lines due to the infertile male or female gametes. Here, we report successful generation of a gcs1 homozygous mutant by heat-inducible removal of the GCS1 transgene. Using the gcs1 homozygous mutant as male, the defect in gamete fusion was observed with great frequency; in our direct observation by semi-in vivo fertilization assay using ovules, 100 % of discharged sperm cells in culture failed to show gamete fusion. More than 70 % of ovules in the pistil received a second pollen tube as attempted fertilization recovery. Moreover, gcs1 mutant sperm cells could fertilize female gametes at a low frequency in the pistil. This strategy to generate homozygous fertilization-defective mutants will facilitate novel approaches in plant reproduction research.
Collapse
Affiliation(s)
- Shiori Nagahara
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 Japan
| | - Hidenori Takeuchi
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 Japan
- JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 Japan
| | - Tetsuya Higashiyama
- Division of Biological Science, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 Japan
- JST ERATO Higashiyama Live-Holonics Project, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602 Japan
| |
Collapse
|
18
|
Biancucci M, Mattioli R, Forlani G, Funck D, Costantino P, Trovato M. Role of proline and GABA in sexual reproduction of angiosperms. FRONTIERS IN PLANT SCIENCE 2015; 6:680. [PMID: 26388884 PMCID: PMC4559642 DOI: 10.3389/fpls.2015.00680] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 08/17/2015] [Indexed: 05/05/2023]
Abstract
Two glutamate derivatives, proline and γ-aminobutyric acid (GABA), appear to play pivotal roles in different aspects of sexual reproduction in angiosperms, although their precise function in plant reproduction and the molecular basis of their action are not yet fully understood. Proline and GABA have long been regarded as pivotal amino acids in pollen vitality and fertility. Proline may constitute up to 70% of the free amino acid pool in pollen grains and it has been recently shown that Arabidopsis mutants affected in the first and rate-limiting step in proline synthesis produce aberrant and infertile pollen grains, indicating that proline synthesis is required for pollen development and fertility. Concerning GABA, a large body of evidence points to this glutamate derivative as a key determinant of post-pollination fertilization. Intriguingly, proline has also been associated with pollination, another aspect of sexual reproduction, since honeybees were reported to show a strong preference for proline-enriched nectars. In this review, we survey current knowledge on the roles of proline and GABA in plant fertility, and discuss future perspectives potentially capable to improve our understanding on the functions of these amino acids in pollen development, pollination, and pollen tube guidance.
Collapse
Affiliation(s)
- Marco Biancucci
- Department of Biology and Biotechnology, Sapienza University of RomeRoma, Italy
| | - Roberto Mattioli
- Department of Biology and Biotechnology, Sapienza University of RomeRoma, Italy
| | - Giuseppe Forlani
- Department of Life Science and Biotechnology, University of FerraraFerrara, Italy
| | - Dietmar Funck
- Department of Biology, University of KonstanzKonstanz, Germany
| | - Paolo Costantino
- Department of Biology and Biotechnology, Sapienza University of RomeRoma, Italy
| | - Maurizio Trovato
- Department of Biology and Biotechnology, Sapienza University of RomeRoma, Italy
- *Correspondence: Maurizio Trovato, Department of Biology and Biotechnology, Sapienza University of Rome, P.le A. Moro 5, 00185 Rome, Italy
| |
Collapse
|
19
|
Higashiyama T, Takeuchi H. The mechanism and key molecules involved in pollen tube guidance. ANNUAL REVIEW OF PLANT BIOLOGY 2015; 66:393-413. [PMID: 25621518 DOI: 10.1146/annurev-arplant-043014-115635] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
During sexual reproduction of flowering plants, pollen tube guidance by pistil tissue is critical for the delivery of nonmotile sperm cells to female gametes. Multistep controls of pollen tube guidance can be divided into two phases: preovular guidance and ovular guidance. During preovular guidance, various female molecules, including stimulants for pollen germination and pollen tube growth, are provided to support tube growth toward the ovary, where the ovules are located. After entering the ovary, pollen tubes receive directional cues from their respective target ovules, including attractant peptides for precise, species-preferential attraction. Successful pollen tube guidance in the pistil requires not only nutritional and directional controls but also competency controls to make pollen tubes responsive to guidance cues, regulation to terminate growth once a pollen tube arrives at the target, and strategies to stop ovular attraction depending on the fertilization of female gametes.
Collapse
|
20
|
Moyle LC, Jewell CP, Kostyun JL. Fertile approaches to dissecting mechanisms of premating and postmating prezygotic reproductive isolation. CURRENT OPINION IN PLANT BIOLOGY 2014; 18:16-23. [PMID: 24457825 DOI: 10.1016/j.pbi.2013.12.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2013] [Revised: 12/13/2013] [Accepted: 12/20/2013] [Indexed: 05/11/2023]
Abstract
In sexually reproducing organisms, speciation involves the evolution of mechanisms that confer reproductive isolation between diverging lineages. Here we discuss recent research on the molecular basis of traits that mediate these barriers during premating and postmating, prezygotic stages of reproduction. In some cases, the specific loci underlying the expression of reproductive barriers are known, most notably when premating isolation is due to flower color or scent differences, and when postmating isolation is due to divergent gamete signaling. In addition, emerging work in molecular biology and genomics is revealing the mechanistic basis of prezygotic reproductive traits within species, and therefore establishing clear candidates for future work examining their potential role in reproductive isolation between species.
Collapse
Affiliation(s)
- Leonie C Moyle
- Department of Biology, Indiana University, Bloomington, IN 47405, USA.
| | - Cathleen P Jewell
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | - Jamie L Kostyun
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| |
Collapse
|
21
|
Identifying plant cell-surface receptors: combining ‘classical’ techniques with novel methods. Biochem Soc Trans 2014; 42:395-400. [DOI: 10.1042/bst20130251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Cell–cell communication during development and reproduction in plants depends largely on a few phytohormones and many diverse classes of polymorphic secreted peptides. The peptide ligands are bound at the cell surface of target cells by their membranous interaction partners representing, in most cases, either receptor-like kinases or ion channels. Although knowledge of both the extracellular ligand and its corresponding receptor(s) is necessary to describe the downstream signalling pathway(s), to date only a few ligand–receptor pairs have been identified. Several methods, such as affinity purification and yeast two-hybrid screens, have been used very successfully to elucidate interactions between soluble proteins, but most of these methods cannot be applied to membranous proteins. Experimental obstacles such as low concentration and poor solubility of membrane receptors, as well as instable transient interactions, often hamper the use of these ‘classical’ approaches. However, over the last few years, a lot of progress has been made to overcome these problems by combining classical techniques with new methodologies. In the present article, we review the most promising recent methods in identifying cell-surface receptor interactions, with an emphasis on success stories outside the field of plant research.
Collapse
|
22
|
Bleckmann A, Alter S, Dresselhaus T. The beginning of a seed: regulatory mechanisms of double fertilization. FRONTIERS IN PLANT SCIENCE 2014; 5:452. [PMID: 25309552 PMCID: PMC4160995 DOI: 10.3389/fpls.2014.00452] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Accepted: 08/21/2014] [Indexed: 05/20/2023]
Abstract
THE LAUNCH OF SEED DEVELOPMENT IN FLOWERING PLANTS (ANGIOSPERMS) IS INITIATED BY THE PROCESS OF DOUBLE FERTILIZATION: two male gametes (sperm cells) fuse with two female gametes (egg and central cell) to form the precursor cells of the two major seed components, the embryo and endosperm, respectively. The immobile sperm cells are delivered by the pollen tube toward the ovule harboring the female gametophyte by species-specific pollen tube guidance and attraction mechanisms. After pollen tube burst inside the female gametophyte, the two sperm cells fuse with the egg and central cell initiating seed development. The fertilized central cell forms the endosperm while the fertilized egg cell, the zygote, will form the actual embryo and suspensor. The latter structure connects the embryo with the sporophytic maternal tissues of the developing seed. The underlying mechanisms of double fertilization are tightly regulated to ensure delivery of functional sperm cells and the formation of both, a functional zygote and endosperm. In this review we will discuss the current state of knowledge about the processes of directed pollen tube growth and its communication with the synergid cells resulting in pollen tube burst, the interaction of the four gametes leading to cell fusion and finally discuss mechanisms how flowering plants prevent multiple sperm cell entry (polyspermy) to maximize their reproductive success.
Collapse
Affiliation(s)
- Andrea Bleckmann
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of RegensburgRegensburg, Germany
| | - Svenja Alter
- Plant Breeding, Center of Life and Food Sciences Weihenstephan, Technische Universität MünchenFreising, Germany
| | - Thomas Dresselhaus
- Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of RegensburgRegensburg, Germany
- *Correspondence: Thomas Dresselhaus, Cell Biology and Plant Biochemistry, Biochemie-Zentrum Regensburg, University of Regensburg, Universitätsstrasse 18, 93053 Regensburg, Germany e-mail:
| |
Collapse
|
23
|
Czyzewicz N, Yue K, Beeckman T, De Smet I. Message in a bottle: small signalling peptide outputs during growth and development. JOURNAL OF EXPERIMENTAL BOTANY 2013; 64:5281-96. [PMID: 24014870 DOI: 10.1093/jxb/ert283] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Classical and recently found phytohormones play an important role in plant growth and development, but plants additionally control these processes through small signalling peptides. Over 1000 potential small signalling peptide sequences are present in the Arabidopsis genome. However, to date, a mere handful of small signalling peptides have been functionally characterized and few have been linked to a receptor. Here, we assess the potential small signalling peptide outputs, namely the molecular, biochemical, and morphological changes they trigger in Arabidopsis. However, we also include some notable studies in other plant species, in order to illustrate the varied effects that can be induced by small signalling peptides. In addition, we touch on some evolutionary aspects of small signalling peptides, as studying their signalling outputs in single-cell green algae and early land plants will assist in our understanding of more complex land plants. Our overview illustrates the growing interest in the small signalling peptide research area and its importance in deepening our understanding of plant growth and development.
Collapse
Affiliation(s)
- Nathan Czyzewicz
- Division of Plant and Crop Sciences, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, Leicestershire LE12 5RD, UK
| | | | | | | |
Collapse
|
24
|
Uebler S, Dresselhaus T, Márton M. Species-specific interaction of EA1 with the maize pollen tube apex. PLANT SIGNALING & BEHAVIOR 2013; 8:doi: 10.4161/psb.25682. [PMID: 23887497 PMCID: PMC4091058 DOI: 10.4161/psb.25682] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The egg apparatus-secreted polymorphic EA 1 peptide is required for micropylar pollen tube (PT) guidance in maize, the last step of the PT journey during the double fertilization process in flowering plants. In a recent study we have shown that maize PTs are attracted in vitro by EA 1 and that their growth is arrested at high peptide concentrations. Moreover, we have also shown that maize PTs are guided in vitro in a species-preferential manner to the micropylar opening of transgenic Arabidopsis ovules secreting the EA 1-GFP fusion protein. In support of these findings, we have improved the ligand-receptor labeling assay and report here that the EA 1 peptide interacts in vitro with the maize PT apex in a species-specific manner. Bound peptide gets internalized in large vesicles and is degraded. This finding indicates that the pollen tube remains sensitive to the attractant by its rapid internalization.
Collapse
|
25
|
Beale KM, Johnson MA. Speed dating, rejection, and finding the perfect mate: advice from flowering plants. CURRENT OPINION IN PLANT BIOLOGY 2013; 16:590-7. [PMID: 24021868 DOI: 10.1016/j.pbi.2013.08.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 08/17/2013] [Accepted: 08/20/2013] [Indexed: 05/08/2023]
Abstract
Angiosperm pollen tubes extend through pistil tissue to deliver a pair of immotile sperm cells to female gametes for double fertilization. The extended journey of the pollen tube requires extensive cell:cell interactions that guide the pollen tube to its destination and instruct it to stop growing and burst. Once sperm cells are released the molecular exchanges between male and female continue, resulting in sperm activation and gamete fusion. Finally, there is evidence that gamete fusion can feed back on the pollen tube attraction mechanism so that additional pollen tubes can be attracted only if the first sperm cells fail to fertilize. We review progress toward defining the molecules mediating each of these exchanges and describe how small cysteine-rich peptides are a major mode of cellular communication.
Collapse
Affiliation(s)
- Kristin M Beale
- Brown University Department of Molecular Biology, Cell Biology, and Biochemistry, United States
| | | |
Collapse
|
26
|
Cheung AY, Palanivelu R, Tang WH, Xue HW, Yang WC. Pollen and plant reproduction biology: blooming from East to West. MOLECULAR PLANT 2013; 6:995-7. [PMID: 23873927 DOI: 10.1093/mp/sst108] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- Alice Y Cheung
- Department of Biochemistry and Molecular Biology, University of Massachusetts, Amherst, MA, USA
| | | | | | | | | |
Collapse
|
27
|
Horade M, Kanaoka MM, Kuzuya M, Higashiyama T, Kaji N. A microfluidic device for quantitative analysis of chemoattraction in plants. RSC Adv 2013. [DOI: 10.1039/c3ra42804d] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|