1
|
Aya F, Lanuza-Gracia P, González-Pérez A, Bonnal S, Mancini E, López-Bigas N, Arance A, Valcárcel J. Genomic deletions explain the generation of alternative BRAF isoforms conferring resistance to MAPK inhibitors in melanoma. Cell Rep 2024; 43:114048. [PMID: 38614086 DOI: 10.1016/j.celrep.2024.114048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 02/06/2024] [Accepted: 03/19/2024] [Indexed: 04/15/2024] Open
Abstract
Resistance to MAPK inhibitors (MAPKi), the main cause of relapse in BRAF-mutant melanoma, is associated with the production of alternative BRAF mRNA isoforms (altBRAFs) in up to 30% of patients receiving BRAF inhibitor monotherapy. These altBRAFs have been described as being generated by alternative pre-mRNA splicing, and splicing modulation has been proposed as a therapeutic strategy to overcome resistance. In contrast, we report that altBRAFs are generated through genomic deletions. Using different in vitro models of altBRAF-mediated melanoma resistance, we demonstrate the production of altBRAFs exclusively from the BRAF V600E allele, correlating with corresponding genomic deletions. Genomic deletions are also detected in tumor samples from melanoma and breast cancer patients expressing altBRAFs. Along with the identification of altBRAFs in BRAF wild-type and in MAPKi-naive melanoma samples, our results represent a major shift in our understanding of mechanisms leading to the generation of BRAF transcripts variants associated with resistance in melanoma.
Collapse
Affiliation(s)
- Francisco Aya
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Institut de Investigacions Biomedicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Pablo Lanuza-Gracia
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Abel González-Pérez
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Estefania Mancini
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Nuria López-Bigas
- Institute for Research in Biomedicine (IRB), The Barcelona Institute of Science and Technology, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - Ana Arance
- Medical Oncology Department, Hospital Clinic, Barcelona, Spain; Institut de Investigacions Biomedicas August Pi i Sunyer (IDIBAPS), Barcelona, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain.
| |
Collapse
|
2
|
Tribute to Yoshiro Shimura (1932-2023). RNA (NEW YORK, N.Y.) 2024; 30:ix-xii. [PMID: 38071474 PMCID: PMC10798240 DOI: 10.1261/rna.079913.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
|
3
|
López-Oreja I, Gohr A, Playa-Albinyana H, Giró A, Arenas F, Higashi M, Tripathi R, López-Guerra M, Irimia M, Aymerich M, Valcárcel J, Bonnal S, Colomer D. SF3B1 mutation-mediated sensitization to H3B-8800 splicing inhibitor in chronic lymphocytic leukemia. Life Sci Alliance 2023; 6:e202301955. [PMID: 37562845 PMCID: PMC10415613 DOI: 10.26508/lsa.202301955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 07/30/2023] [Accepted: 07/31/2023] [Indexed: 08/12/2023] Open
Abstract
Splicing factor 3B subunit 1 (SF3B1) is involved in pre-mRNA branch site recognition and is the target of antitumor-splicing inhibitors. Mutations in SF3B1 are observed in 15% of patients with chronic lymphocytic leukemia (CLL) and are associated with poor prognosis, but their pathogenic mechanisms remain poorly understood. Using deep RNA-sequencing data from 298 CLL tumor samples and isogenic SF3B1 WT and K700E-mutated CLL cell lines, we characterize targets and pre-mRNA sequence features associated with the selection of cryptic 3' splice sites upon SF3B1 mutation, including an event in the MAP3K7 gene relevant for activation of NF-κB signaling. Using the H3B-8800 splicing modulator, we show, for the first time in CLL, cytotoxic effects in vitro in primary CLL samples and in SF3B1-mutated isogenic CLL cell lines, accompanied by major splicing changes and delayed leukemic infiltration in a CLL xenotransplant mouse model. H3B-8800 displayed preferential lethality towards SF3B1-mutated cells and synergism with the BCL2 inhibitor venetoclax, supporting the potential use of SF3B1 inhibitors as a novel therapeutic strategy in CLL.
Collapse
Affiliation(s)
- Irene López-Oreja
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Hematopathology Section, Department of Pathology, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - André Gohr
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Heribert Playa-Albinyana
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - Ariadna Giró
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Fabian Arenas
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - Morihiro Higashi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Rupal Tripathi
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
| | - Mònica López-Guerra
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Department of Pathology, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - Manuel Irimia
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Marta Aymerich
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Department of Pathology, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
| | - Juan Valcárcel
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| | - Sophie Bonnal
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Dolors Colomer
- Institut d'Investigacions Biomèdiques August Pi i Sunyer, Barcelona, Spain
- Hematopathology Section, Department of Pathology, Hospital Clínic, Barcelona, Spain
- Centro de Investigación Biomédica en Red en Oncologia, Madrid, Spain
- Universitat Barcelona, Barcelona, Spain
| |
Collapse
|
4
|
Jalloh B, Lancaster CL, Rounds JC, Brown BE, Leung SW, Banerjee A, Morton DJ, Bienkowski RS, Fasken MB, Kremsky IJ, Tegowski M, Meyer K, Corbett A, Moberg K. The Drosophila Nab2 RNA binding protein inhibits m 6A methylation and male-specific splicing of Sex lethal transcript in female neuronal tissue. eLife 2023; 12:e64904. [PMID: 37458420 PMCID: PMC10351920 DOI: 10.7554/elife.64904] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 06/23/2023] [Indexed: 07/20/2023] Open
Abstract
The Drosophila polyadenosine RNA binding protein Nab2, which is orthologous to a human protein lost in a form of inherited intellectual disability, controls adult locomotion, axon projection, dendritic arborization, and memory through a largely undefined set of target RNAs. Here, we show a specific role for Nab2 in regulating splicing of ~150 exons/introns in the head transcriptome and focus on retention of a male-specific exon in the sex determination factor Sex-lethal (Sxl) that is enriched in female neurons. Previous studies have revealed that this splicing event is regulated in females by N6-methyladenosine (m6A) modification by the Mettl3 complex. At a molecular level, Nab2 associates with Sxl pre-mRNA in neurons and limits Sxl m6A methylation at specific sites. In parallel, reducing expression of the Mettl3, Mettl3 complex components, or the m6A reader Ythdc1 rescues mutant phenotypes in Nab2 flies. Overall, these data identify Nab2 as an inhibitor of m6A methylation and imply significant overlap between Nab2 and Mettl3 regulated RNAs in neuronal tissue.
Collapse
Affiliation(s)
- Binta Jalloh
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
- Graduate Program in Genetics and Molecular Biology, Emory UniversityAtlantaUnited States
| | - Carly L Lancaster
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
- Graduate Program in Biochemistry, Cell and Developmental Biology, Emory UniversityAtlantaUnited States
| | - J Christopher Rounds
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
- Graduate Program in Genetics and Molecular Biology, Emory UniversityAtlantaUnited States
| | - Brianna E Brown
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
| | - Sara W Leung
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Ayan Banerjee
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Derrick J Morton
- Department of Biology, Emory UniversityAtlantaUnited States
- Emory Institutional Research and Academic Career Development Award (IRACDA), Fellowships in Research and Science Teaching (FIRST) Postdoctoral FellowshipAtlantaUnited States
| | - Rick S Bienkowski
- Department of Biology, Emory UniversityAtlantaUnited States
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
- Graduate Program in Genetics and Molecular Biology, Emory UniversityAtlantaUnited States
| | - Milo B Fasken
- Department of Biology, Emory UniversityAtlantaUnited States
| | | | - Matthew Tegowski
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
| | - Kate Meyer
- Department of Biochemistry, Duke University School of MedicineDurhamUnited States
- Department of Neurobiology, Duke University School of MedicineDurhamUnited States
| | - Anita Corbett
- Department of Biology, Emory UniversityAtlantaUnited States
| | - Ken Moberg
- Department of Cell Biology Emory University School of MedicineAtlantaUnited States
| |
Collapse
|
5
|
Saccone G. A history of the genetic and molecular identification of genes and their functions controlling insect sex determination. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 151:103873. [PMID: 36400424 DOI: 10.1016/j.ibmb.2022.103873] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 11/01/2022] [Accepted: 11/02/2022] [Indexed: 06/16/2023]
Abstract
The genetics of the sex determination regulatory cascade in Drosophila melanogaster has a fascinating history, interlinked with the foundation of the Genetics discipline itself. The discovery that alternative splicing rather than differential transcription is the molecular mechanism underlying the upstream control of sex differences in the Drosophila model system was surprising. This notion is now fully integrated into the scientific canon, appearing in many genetics textbooks and online education resources. In the last three decades, it was a key reference point for starting evolutionary studies in other insect species by using homology-based approaches. This review will introduce a very brief history of Drosophila genetics. It will describe the genetic and molecular approaches applied for the identifying and cloning key genes involved in sex determination in Drosophila and in many other insect species. These comparative analyses led to supporting the idea that sex-determining pathways have evolved mainly by recruiting different upstream signals/genes while maintaining widely conserved intermediate and downstream regulatory genes. The review also provides examples of the link between technological advances and research achievements, to stimulate reflections on how science is produced. It aims to hopefully strengthen the related historical and conceptual knowledge of general readers of other disciplines and of younger geneticists, often focused on the latest technical-molecular approaches.
Collapse
Affiliation(s)
- Giuseppe Saccone
- Department of Biology, University of Naples Federico II, Via Cinthia 26, 80126, Naples, Italy.
| |
Collapse
|
6
|
Sex-specific regulation of development, growth and metabolism. Semin Cell Dev Biol 2022; 138:117-127. [PMID: 35469676 DOI: 10.1016/j.semcdb.2022.04.017] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 03/07/2022] [Accepted: 04/14/2022] [Indexed: 12/13/2022]
Abstract
Adult females and males of most species differ in many aspects of their morphology, physiology and behavior, in response to sex-specific selective pressures that maximize fitness. While we have an increasingly good understanding of the genetic mechanisms that initiate these differences, the sex-specific developmental trajectories that generate them are much less well understood. Here we review recent advances in the sex-specific regulation of development focusing on two models where this development is increasingly well understood: Sexual dimorphism of body size in the fruit fly Drosophila melanogaster and sexual dimorphism of horns in the horned beetle Onthophagus taurus. Because growth and development are also supported by metabolism, the regulation of sex-specific metabolism during and after development is an important aspect of the generation of female and male phenotypes. Hitherto, the study of sex-specific development has largely been independent of the study of sex-specific metabolism. Nevertheless, as we discuss in this review, recent research has begun to reveal considerable overlap in the cellular and physiological mechanisms that regulate sex-specific development and metabolism.
Collapse
|
7
|
Torres-Méndez A, Pop S, Bonnal S, Almudi I, Avola A, Roberts RJV, Paolantoni C, Alcaina-Caro A, Martín-Anduaga A, Haussmann IU, Morin V, Casares F, Soller M, Kadener S, Roignant JY, Prieto-Godino L, Irimia M. Parallel evolution of a splicing program controlling neuronal excitability in flies and mammals. SCIENCE ADVANCES 2022; 8:eabk0445. [PMID: 35089784 PMCID: PMC8797185 DOI: 10.1126/sciadv.abk0445] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 12/08/2021] [Indexed: 05/08/2023]
Abstract
Alternative splicing increases neuronal transcriptomic complexity throughout animal phylogeny. To delve into the mechanisms controlling the assembly and evolution of this regulatory layer, we characterized the neuronal microexon program in Drosophila and compared it with that of mammals. In nonvertebrate bilaterians, this splicing program is restricted to neurons by the posttranscriptional processing of the enhancer of microexons (eMIC) domain in Srrm234. In Drosophila, this processing is dependent on regulation by Elav/Fne. eMIC deficiency or misexpression leads to widespread neurological alterations largely emerging from impaired neuronal activity, as revealed by a combination of neuronal imaging experiments and cell type-specific rescues. These defects are associated with the genome-wide skipping of short neural exons, which are strongly enriched in ion channels. We found no overlap of eMIC-regulated exons between flies and mice, illustrating how ancient posttranscriptional programs can evolve independently in different phyla to affect distinct cellular modules while maintaining cell-type specificity.
Collapse
Affiliation(s)
- Antonio Torres-Méndez
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
- Francis Crick Institute, London, UK
| | | | - Sophie Bonnal
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
| | - Isabel Almudi
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
- Department of Genetics, Microbiology and Statistics and Institut de Recerca de la Biodiversitat (IRBio), Universitat de Barcelona, Barcelona, Spain
| | | | | | - Chiara Paolantoni
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | | | - Irmgard U. Haussmann
- Department of Life Science, School of Health Sciences, Birmingham City University, Birmingham B5 3TN, UK
| | - Violeta Morin
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Fernando Casares
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, Spain
| | - Matthias Soller
- School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
- Birmingham Centre for Genome Biology, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | | | - Jean-Yves Roignant
- Center for Integrative Genomics, Génopode Building, Faculty of Biology and Medicine, University of Lausanne, CH-1015 Lausanne, Switzerland
- Institute of Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | | | - Manuel Irimia
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology (BIST), Barcelona 08003, Spain
- Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
8
|
Meyer BJ. Mechanisms of sex determination and X-chromosome dosage compensation. Genetics 2022; 220:6498458. [PMID: 35100381 PMCID: PMC8825453 DOI: 10.1093/genetics/iyab197] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 10/25/2021] [Indexed: 12/03/2022] Open
Abstract
Abnormalities in chromosome number have the potential to disrupt the balance of gene expression and thereby decrease organismal fitness and viability. Such abnormalities occur in most solid tumors and also cause severe developmental defects and spontaneous abortions. In contrast to the imbalances in chromosome dose that cause pathologies, the difference in X-chromosome dose used to determine sexual fate across diverse species is well tolerated. Dosage compensation mechanisms have evolved in such species to balance X-chromosome gene expression between the sexes, allowing them to tolerate the difference in X-chromosome dose. This review analyzes the chromosome counting mechanism that tallies X-chromosome number to determine sex (XO male and XX hermaphrodite) in the nematode Caenorhabditis elegans and the associated dosage compensation mechanism that balances X-chromosome gene expression between the sexes. Dissecting the molecular mechanisms underlying X-chromosome counting has revealed how small quantitative differences in intracellular signals can be translated into dramatically different fates. Dissecting the process of X-chromosome dosage compensation has revealed the interplay between chromatin modification and chromosome structure in regulating gene expression over vast chromosomal territories.
Collapse
Affiliation(s)
- Barbara J Meyer
- Department of Molecular and Cell Biology, Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720-3204, USA
| |
Collapse
|
9
|
Wang Y, Zhang L, Ren H, Ma L, Guo J, Mao D, Lu Z, Lu L, Yan D. Role of Hakai in m 6A modification pathway in Drosophila. Nat Commun 2021; 12:2159. [PMID: 33846330 PMCID: PMC8041851 DOI: 10.1038/s41467-021-22424-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 03/14/2021] [Indexed: 12/13/2022] Open
Abstract
N6-methyladenosine (m6A), the most abundant internal modification in eukaryotic mRNA, is installed by a multi-component writer complex; however, the exact roles of each component remain poorly understood. Here we show that a potential E3 ubiquitin ligase Hakai colocalizes and interacts with other m6A writer components, and Hakai mutants exhibit typical m6A pathway defects in Drosophila, such as lowered m6A levels in mRNA, aberrant Sxl alternative splicing, wing and behavior defects. Hakai, Vir, Fl(2)d and Flacc form a stable complex, and disruption of either Hakai, Vir or Fl(2)d led to the degradation of the other three components. Furthermore, MeRIP-seq indicates that the effective m6A modification is mostly distributed in 5’ UTRs in Drosophila, in contrast to the mammalian system. Interestingly, we demonstrate that m6A modification is deposited onto the Sxl mRNA in a sex-specific fashion, which depends on the m6A writer. Together, our work not only advances the understanding of mechanism and regulation of the m6A writer complex, but also provides insights into how Sxl cooperate with the m6A pathway to control its own splicing. Drosophila m6A writer complex regulates alternative splicing of the Sex-lethal gene. Here the authors show that a potential E3 ligase Hakai interacts with the fly m6A writer complex and that m6A level is reduced in Hakai mutant flies.
Collapse
Affiliation(s)
- Yanhua Wang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lifeng Zhang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Hang Ren
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Lijuan Ma
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.,CAS Center for Excellence in Biotic Interactions, University of Chinese Academy of Sciences, Beijing, China
| | - Jian Guo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Decai Mao
- Gene Regulatory Lab, School of Medicine, Tsinghua University, Beijing, China
| | - Zhongwen Lu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Lijun Lu
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Dong Yan
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| |
Collapse
|
10
|
Farboud B, Novak CS, Nicoll M, Quiogue A, Meyer BJ. Dose-dependent action of the RNA binding protein FOX-1 to relay X-chromosome number and determine C. elegans sex. eLife 2020; 9:62963. [PMID: 33372658 PMCID: PMC7787662 DOI: 10.7554/elife.62963] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
We demonstrate how RNA binding protein FOX-1 functions as a dose-dependent X-signal element to communicate X-chromosome number and thereby determine nematode sex. FOX-1, an RNA recognition motif protein, triggers hermaphrodite development in XX embryos by causing non-productive alternative pre-mRNA splicing of xol-1, the master sex-determination switch gene that triggers male development in XO embryos. RNA binding experiments together with genome editing demonstrate that FOX-1 binds to multiple GCAUG and GCACG motifs in a xol-1 intron, causing intron retention or partial exon deletion, thereby eliminating male-determining XOL-1 protein. Transforming all motifs to GCAUG or GCACG permits accurate alternative splicing, demonstrating efficacy of both motifs. Mutating subsets of both motifs partially alleviates non-productive splicing. Mutating all motifs blocks it, as does transforming them to low-affinity GCUUG motifs. Combining multiple high-affinity binding sites with the twofold change in FOX-1 concentration between XX and XO embryos achieves dose-sensitivity in splicing regulation to determine sex.
Collapse
Affiliation(s)
- Behnom Farboud
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Catherine S Novak
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Monique Nicoll
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Alyssa Quiogue
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| | - Barbara J Meyer
- Howard Hughes Medical Institute, University of California at Berkeley, Berkeley, United States.,Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley, United States
| |
Collapse
|
11
|
Vila Cuenca M, Marchi G, Barqué A, Esteban-Jurado C, Marchetto A, Giorgetti A, Chelban V, Houlden H, Wood NW, Piubelli C, Dorigatti Borges M, Martins de Albuquerque D, Yotsumoto Fertrin K, Jové-Buxeda E, Sanchez-Delgado J, Baena-Díez N, Burnyte B, Utkus A, Busti F, Kaubrys G, Suku E, Kowalczyk K, Karaszewski B, Porter JB, Pollard S, Eleftheriou P, Bignell P, Girelli D, Sanchez M. Genetic and Clinical Heterogeneity in Thirteen New Cases with Aceruloplasminemia. Atypical Anemia as a Clue for an Early Diagnosis. Int J Mol Sci 2020; 21:E2374. [PMID: 32235485 PMCID: PMC7178074 DOI: 10.3390/ijms21072374] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Aceruloplasminemia is a rare autosomal recessive genetic disease characterized by mild microcytic anemia, diabetes, retinopathy, liver disease, and progressive neurological symptoms due to iron accumulation in pancreas, retina, liver, and brain. The disease is caused by mutations in the Ceruloplasmin (CP) gene that produce a strong reduction or absence of ceruloplasmin ferroxidase activity, leading to an impairment of iron metabolism. Most patients described so far are from Japan. Prompt diagnosis and therapy are crucial to prevent neurological complications since, once established, they are usually irreversible. Here, we describe the largest series of non-Japanese patients with aceruloplasminemia published so far, including 13 individuals from 11 families carrying 13 mutations in the CP gene (7 missense, 3 frameshifts, and 3 splicing mutations), 10 of which are novel. All missense mutations were studied by computational modeling. Clinical manifestations were heterogeneous, but anemia, often but not necessarily microcytic, was frequently the earliest one. This study confirms the clinical and genetic heterogeneity of aceruloplasminemia, a disease expected to be increasingly diagnosed in the Next-Generation Sequencing (NGS) era. Unexplained anemia with low transferrin saturation and high ferritin levels without inflammation should prompt the suspicion of aceruloplasminemia, which can be easily confirmed by low serum ceruloplasmin levels. Collaborative joint efforts are needed to better understand the pathophysiology of this potentially disabling disease.
Collapse
Affiliation(s)
- Marc Vila Cuenca
- Iron Metabolism: Regulation and Diseases Group, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, 08916 Barcelona, Spain; (M.V.C.); (A.B.); (C.E.-J.)
| | - Giacomo Marchi
- EuroBloodNet Referral Center for Iron Disorders and Gruppo Interdisciplinare Malattie del Ferro, Internal Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.M.); (F.B.)
| | - Anna Barqué
- Iron Metabolism: Regulation and Diseases Group, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, 08916 Barcelona, Spain; (M.V.C.); (A.B.); (C.E.-J.)
| | - Clara Esteban-Jurado
- Iron Metabolism: Regulation and Diseases Group, Josep Carreras Leukaemia Research Institute (IJC), Campus Can Ruti, Badalona, 08916 Barcelona, Spain; (M.V.C.); (A.B.); (C.E.-J.)
| | - Alessandro Marchetto
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (A.G.); (E.S.)
| | - Alejandro Giorgetti
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (A.G.); (E.S.)
| | - Viorica Chelban
- National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (V.C.); (H.H.); (N.W.W.)
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
- Department of Neurology and Neurosurgery, Institute of Emergency Medicine, Toma Ciorbă 1, Chisinau, MD-2052 Chisinau, Republic of Moldova
| | - Henry Houlden
- National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (V.C.); (H.H.); (N.W.W.)
- Department of Neuromuscular Diseases, Institute of Neurology, University College London, London WC1N 3BG, UK
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Nicholas W Wood
- National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK; (V.C.); (H.H.); (N.W.W.)
- Neurogenetics Laboratory, The National Hospital for Neurology and Neurosurgery, London WC1N 3BG, UK
| | - Chiara Piubelli
- Centre for Tropical Diseases, Ospedale Sacro Cuore - Don Calabria, 37024 Negrar (VR), Italy;
| | - Marina Dorigatti Borges
- Hematology and Hemotherapy Center—Hemocentro Campinas, University of Campinas—UNICAMP, Campinas 13083-878, Brazil; (M.D.B.); (D.M.d.A.); (K.Y.F.)
| | - Dulcinéia Martins de Albuquerque
- Hematology and Hemotherapy Center—Hemocentro Campinas, University of Campinas—UNICAMP, Campinas 13083-878, Brazil; (M.D.B.); (D.M.d.A.); (K.Y.F.)
| | - Kleber Yotsumoto Fertrin
- Hematology and Hemotherapy Center—Hemocentro Campinas, University of Campinas—UNICAMP, Campinas 13083-878, Brazil; (M.D.B.); (D.M.d.A.); (K.Y.F.)
- Division of Hematology, Department of Medicine, University of Washington, Seattle, WA 98195, USA
| | - Ester Jové-Buxeda
- Internal Medicine Department, Parc Tauli Hospital Universitari, Institut d’ Investigació i Innovació Parc Tauli I3PT, Universidad Autonoma de Barcelona, 08208 Sabadell, Spain;
| | - Jordi Sanchez-Delgado
- Hepatology Unit, Digestive Diseases Department, Parc Tauli Hospital Universitari. Institut d’ Investigació i Innovació Parc Tauli I3PT, Universidad Autonoma de Barcelona, 08208 Sabadell, Spain;
- Centro de Investigación Biomedica y en red Enfermedades hepáticas y digestivas (CIBERehd), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Neus Baena-Díez
- Genetic Department, Parc Tauli Hospital Universitari, Institut d’ Investigació i Innovació Parc Tauli I3PT, Universidad Autonoma de Barcelona, 08208 Sabadell, Spain;
| | - Birute Burnyte
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-08661 Vilnius, Lithuania; (B.B.); (A.U.)
| | - Algirdas Utkus
- Department of Human and Medical Genetics, Institute of Biomedical Sciences, Faculty of Medicine, Vilnius University, LT-08661 Vilnius, Lithuania; (B.B.); (A.U.)
| | - Fabiana Busti
- EuroBloodNet Referral Center for Iron Disorders and Gruppo Interdisciplinare Malattie del Ferro, Internal Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.M.); (F.B.)
| | - Gintaras Kaubrys
- Clinic of Neurology and Neurosurgery, Institute of Clinical Medicine, Faculty of Medicine, Vilnius University, 08661 Vilnius, Lithuania;
| | - Eda Suku
- Department of Biotechnology, University of Verona, 37134 Verona, Italy; (A.M.); (A.G.); (E.S.)
| | - Kamil Kowalczyk
- Department of Adult Neurology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.K.); (B.K.)
| | - Bartosz Karaszewski
- Department of Adult Neurology, Medical University of Gdańsk, 80-210 Gdańsk, Poland; (K.K.); (B.K.)
| | - John B. Porter
- Joint Red Cell Unit, Haematology Department, University College London NHS Foundation Trust, Cancer Services, 250 Euston Road, London NW1 2PG, UK; (J.B.P.); (P.E.)
| | - Sally Pollard
- Consultant Paediatrician, Bradford Royal Infirmary, Duckworthlane, Bradford BD9 6RJ, UK;
| | - Perla Eleftheriou
- Joint Red Cell Unit, Haematology Department, University College London NHS Foundation Trust, Cancer Services, 250 Euston Road, London NW1 2PG, UK; (J.B.P.); (P.E.)
| | - Patricia Bignell
- Oxford Regional Genetics Laboratory, Oxford University Hospitals NHS Foundation Trust, The Churchill Hospital, Oxford OX3 7LE, UK;
| | - Domenico Girelli
- EuroBloodNet Referral Center for Iron Disorders and Gruppo Interdisciplinare Malattie del Ferro, Internal Medicine Unit, Azienda Ospedaliera Universitaria Integrata di Verona, 37134 Verona, Italy; (G.M.); (F.B.)
| | - Mayka Sanchez
- Iron Metabolism: Regulation and Diseases Group, Department of Basic Sciences, Faculty of Medicine and Health Sciences, Universitat Internacional de Catalunya (UIC); Sant Cugat del Valles, 08017 Barcelona, Spain
- Program of Program of Predictive and Personalized Medicine of Cancer (PMPPC), Institut d ‘Investigació Germans Trias i Pujol (IGTP), Campus Can Ruti, Badalona, 08916 Barcelona, Spain
- BloodGenetics S.L., Esplugues de Llobregat, 08950 Barcelona, Spain
| |
Collapse
|
12
|
A novel protein domain in an ancestral splicing factor drove the evolution of neural microexons. Nat Ecol Evol 2019; 3:691-701. [DOI: 10.1038/s41559-019-0813-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 01/16/2019] [Indexed: 02/02/2023]
|
13
|
Inoue K, Ohno M, Shimura Y. Aspects of splice site selection in constitutive and alternative pre-mRNA splicing. Gene Expr 2018; 4:177-82. [PMID: 7734950 PMCID: PMC6134378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
RNA splicing is an indispensable step for expression of many eukaryotic genes. Combinations of 5' and 3' splice sites should be correctly selected in both constitutive and alternative splicing. Recent studies have revealed mechanisms of alternative splicing in some systems, in which specific regulators play vital roles in splice site selection. On the other hand, essential splicing factors such as SR proteins modulate splice site usage of general machinery. Specific regulators and splicing factors such as SR proteins have some common structural features. With these related components, a similar machinery of splice site selection is involved in constitutive and alternative splicing.
Collapse
Affiliation(s)
- K Inoue
- Department of Biophysics, Faculty of Science, Kyoto University, Japan
| | | | | |
Collapse
|
14
|
Singh R. RNA-protein interactions that regulate pre-mRNA splicing. Gene Expr 2018; 10:79-92. [PMID: 11868989 PMCID: PMC5977533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Splicing of nuclear precursor messenger RNAs is an important and ubiquitous type of gene regulation in metazoans. Splicing joins the coding sequences called exons by removing the intervening noncoding sequences, introns, from primary transcripts. Alternative splicing generates an enormous repertoire of functional diversity by producing multiple RNAs and proteins from a single gene. In fact, recent genome sequences from several organisms suggest that splicing regulation is likely to provide an important source of functional diversity in more complex organisms. Because splice sites are short sequences at the ends of introns, the functional splice sites have to be distinguished from an excessively large number of sequences in the primary transcripts that resemble a splice site. Furthermore, alternative splice sites have to be correctly chosen at appropriate times. Thus, selection of proper splice sites remains a daunting biological problem. This review focuses on a few examples in which the molecular and biochemical basis for splice site selection is better understood.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, 80309, USA.
| |
Collapse
|
15
|
Moschall R, Gaik M, Medenbach J. Promiscuity in post-transcriptional control of gene expression: Drosophila sex-lethal and its regulatory partnerships. FEBS Lett 2017; 591:1471-1488. [PMID: 28391641 PMCID: PMC5488161 DOI: 10.1002/1873-3468.12652] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/08/2017] [Accepted: 04/04/2017] [Indexed: 12/28/2022]
Abstract
The Drosophila RNA‐binding protein Sex‐lethal (Sxl) is a potent post‐transcriptional regulator of gene expression that controls female development. It regulates the expression of key factors involved in sex‐specific differences in morphology, behavior, and dosage compensation. Functional Sxl protein is only expressed in female flies, where it binds to U‐rich RNA motifs present in its target mRNAs to regulate their fate. Sxl is a very versatile regulator that, by shuttling between the nucleus and the cytoplasm, can regulate almost all aspects of post‐transcriptional gene expression including RNA processing, nuclear export, and translation. For these functions, Sxl employs multiple interactions to either antagonize RNA‐processing factors or to recruit various coregulators, thus allowing it to establish a female‐specific gene expression pattern. Here, we summarize the current knowledge about Sxl function and review recent mechanistic and structural studies that further our understanding of how such a seemingly ‘simple’ RNA‐binding protein can exert this plethora of different functions.
Collapse
Affiliation(s)
| | - Monika Gaik
- Max Planck Research Group at the Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Medenbach
- Institute of Biochemistry I, University of Regensburg, Germany
| |
Collapse
|
16
|
Sohail M, Xie J. Diverse regulation of 3' splice site usage. Cell Mol Life Sci 2015; 72:4771-93. [PMID: 26370726 PMCID: PMC11113787 DOI: 10.1007/s00018-015-2037-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 08/12/2015] [Accepted: 09/03/2015] [Indexed: 01/13/2023]
Abstract
The regulation of splice site (SS) usage is important for alternative pre-mRNA splicing and thus proper expression of protein isoforms in cells; its disruption causes diseases. In recent years, an increasing number of novel regulatory elements have been found within or nearby the 3'SS in mammalian genes. The diverse elements recruit a repertoire of trans-acting factors or form secondary structures to regulate 3'SS usage, mostly at the early steps of spliceosome assembly. Their mechanisms of action mainly include: (1) competition between the factors for RNA elements, (2) steric hindrance between the factors, (3) direct interaction between the factors, (4) competition between two splice sites, or (5) local RNA secondary structures or longer range loops, according to the mode of protein/RNA interactions. Beyond the 3'SS, chromatin remodeling/transcription, posttranslational modifications of trans-acting factors and upstream signaling provide further layers of regulation. Evolutionarily, some of the 3'SS elements seem to have emerged in mammalian ancestors. Moreover, other possibilities of regulation such as that by non-coding RNA remain to be explored. It is thus likely that there are more diverse elements/factors and mechanisms that influence the choice of an intron end. The diverse regulation likely contributes to a more complex but refined transcriptome and proteome in mammals.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada
| | - Jiuyong Xie
- Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
- Department of Biochemistry and Medical Genetics, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, R3E 0J9, Canada.
| |
Collapse
|
17
|
Tejedor JR, Tilgner H, Iannone C, Guigó R, Valcárcel J. Role of six single nucleotide polymorphisms, risk factors in coronary disease, in OLR1 alternative splicing. RNA (NEW YORK, N.Y.) 2015; 21:1187-1202. [PMID: 25904137 PMCID: PMC4436670 DOI: 10.1261/rna.049890.115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/12/2015] [Indexed: 06/04/2023]
Abstract
The OLR1 gene encodes the oxidized low-density lipoprotein receptor (LOX-1), which is responsible for the cellular uptake of oxidized LDL (Ox-LDL), foam cell formation in atheroma plaques and atherosclerotic plaque rupture. Alternative splicing (AS) of OLR1 exon 5 generates two protein isoforms with antagonistic functions in Ox-LDL uptake. Previous work identified six single nucleotide polymorphisms (SNPs) in linkage disequilibrium that influence the inclusion levels of OLR1 exon 5 and correlate with the risk of cardiovascular disease. Here we use minigenes to recapitulate the effects of two allelic series (Low- and High-Risk) on OLR1 AS and identify one SNP in intron 4 (rs3736234) as the main contributor to the differences in exon 5 inclusion, while the other SNPs in the allelic series attenuate the drastic effects of this key SNP. Bioinformatic, proteomic, mutational and functional high-throughput analyses allowed us to define regulatory sequence motifs and identify SR protein family members (SRSF1, SRSF2) and HMGA1 as factors involved in the regulation of OLR1 AS. Our results suggest that antagonism between SRSF1 and SRSF2/HMGA1, and differential recognition of their regulatory motifs depending on the identity of the rs3736234 polymorphism, influence OLR1 exon 5 inclusion and the efficiency of Ox-LDL uptake, with potential implications for atherosclerosis and coronary disease.
Collapse
Affiliation(s)
- J Ramón Tejedor
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Hagen Tilgner
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Camilla Iannone
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Roderic Guigó
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Juan Valcárcel
- Centre de Regulació Genòmica, 08003 Barcelona, Spain Universitat Pompeu Fabra, 08003 Barcelona, Spain Institució Catalana de Recerca i Estudis Avançats, 08020 Barcelona, Spain
| |
Collapse
|
18
|
Joshi R, Shvartsman M, Morán E, Lois S, Aranda J, Barqué A, de la Cruz X, Bruguera M, Vagace JM, Gervasini G, Sanz C, Sánchez M. Functional consequences of transferrin receptor-2 mutations causing hereditary hemochromatosis type 3. Mol Genet Genomic Med 2015; 3:221-32. [PMID: 26029709 PMCID: PMC4444164 DOI: 10.1002/mgg3.136] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2014] [Revised: 01/28/2015] [Accepted: 01/29/2015] [Indexed: 01/03/2023] Open
Abstract
Hereditary hemochromatosis (HH) type 3 is an autosomal recessive disorder of iron metabolism characterized by excessive iron deposition in the liver and caused by mutations in the transferrin receptor 2 (TFR2) gene. Here, we describe three new HH type 3 Spanish families with four TFR2 mutations (p.Gly792Arg, c.1606-8A>G, Gln306*, and Gln672*). The missense variation p.Gly792Arg was found in homozygosity in two adult patients of the same family, and in compound heterozygosity in an adult proband that also carries a novel intronic change (c.1606-8A>G). Two new nonsense TFR2 mutations (Gln306* and Gln672*) were detected in a pediatric case. We examine the functional consequences of two TFR2 variants (p.Gly792Arg and c.1606-8A>G) using molecular and computational methods. Cellular protein localization studies using immunofluorescence demonstrated that the plasma membrane localization of p.Gly792Arg TFR2 is impaired. Splicing studies in vitro and in vivo reveal that the c.1606-8A>G mutation leads to the creation of a new acceptor splice site and an aberrant TFR2 mRNA. The reported mutations caused HH type 3 by protein truncation, altering TFR2 membrane localization or by mRNA splicing defect, producing a nonfunctional TFR2 protein and a defective signaling transduction for hepcidin regulation. TFR2 genotyping should be considered in adult but also in pediatric cases with early-onset of iron overload.
Collapse
Affiliation(s)
- Ricky Joshi
- Cancer and Iron Group and Advanced Genetic Diagnostic Unit of Rare Iron Disorders (UDGAEMH), Institut of Predictive and Personalized Medicine of Cancer (IMPPC) Barcelona, Spain
| | - Maya Shvartsman
- Cancer and Iron Group and Advanced Genetic Diagnostic Unit of Rare Iron Disorders (UDGAEMH), Institut of Predictive and Personalized Medicine of Cancer (IMPPC) Barcelona, Spain
| | - Erica Morán
- Cancer and Iron Group and Advanced Genetic Diagnostic Unit of Rare Iron Disorders (UDGAEMH), Institut of Predictive and Personalized Medicine of Cancer (IMPPC) Barcelona, Spain ; Diagnostics in Iron Metabolism Service (D·IRON) and Iron Metabolism: Regulation and Diseases group, Josep Carreras Leukemia Research Institute (IJC) Barcelona, Spain
| | - Sergi Lois
- Vall d'Hebron Research Institute (VHIR) Barcelona, Spain
| | - Jessica Aranda
- Cancer and Iron Group and Advanced Genetic Diagnostic Unit of Rare Iron Disorders (UDGAEMH), Institut of Predictive and Personalized Medicine of Cancer (IMPPC) Barcelona, Spain ; Diagnostics in Iron Metabolism Service (D·IRON) and Iron Metabolism: Regulation and Diseases group, Josep Carreras Leukemia Research Institute (IJC) Barcelona, Spain
| | - Anna Barqué
- Cancer and Iron Group and Advanced Genetic Diagnostic Unit of Rare Iron Disorders (UDGAEMH), Institut of Predictive and Personalized Medicine of Cancer (IMPPC) Barcelona, Spain ; Diagnostics in Iron Metabolism Service (D·IRON) and Iron Metabolism: Regulation and Diseases group, Josep Carreras Leukemia Research Institute (IJC) Barcelona, Spain
| | - Xavier de la Cruz
- Vall d'Hebron Research Institute (VHIR) Barcelona, Spain ; Institució Catalana de Recerca i Estudis Avançats (ICREA) Barcelona, Catalonia, Spain
| | - Miquel Bruguera
- Service of Hepatology, Clinic Hospital of Barcelona Barcelona, Spain
| | - José Manuel Vagace
- Service of Haematology, Hospital Materno-Infantil de Badajoz Badajoz, Spain
| | - Guillermo Gervasini
- Department of Surgical & Medical Therapeutics, University of Extremadura Badajoz, Spain
| | - Cristina Sanz
- Service of Haematology and Hemotherapy, Clinic Hospital of Barcelona Barcelona, Spain
| | - Mayka Sánchez
- Cancer and Iron Group and Advanced Genetic Diagnostic Unit of Rare Iron Disorders (UDGAEMH), Institut of Predictive and Personalized Medicine of Cancer (IMPPC) Barcelona, Spain ; Diagnostics in Iron Metabolism Service (D·IRON) and Iron Metabolism: Regulation and Diseases group, Josep Carreras Leukemia Research Institute (IJC) Barcelona, Spain
| |
Collapse
|
19
|
Horiuchi K, Kawamura T, Iwanari H, Ohashi R, Naito M, Kodama T, Hamakubo T. Identification of Wilms' tumor 1-associating protein complex and its role in alternative splicing and the cell cycle. J Biol Chem 2013; 288:33292-302. [PMID: 24100041 DOI: 10.1074/jbc.m113.500397] [Citation(s) in RCA: 261] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Wilms' tumor 1-associating protein (WTAP) is a putative splicing regulator that is thought to be required for cell cycle progression through the stabilization of cyclin A2 mRNA and mammalian early embryo development. To further understand how WTAP acts in the context of the cellular machinery, we identified its interacting proteins in human umbilical vein endothelial cells and HeLa cells using shotgun proteomics. Here we show that WTAP forms a novel protein complex including Hakai, Virilizer homolog, KIAA0853, RBM15, the arginine/serine-rich domain-containing proteins BCLAF1 and THRAP3, and certain general splicing regulators, most of which have reported roles in post-transcriptional regulation. The depletion of these respective components of the complex resulted in reduced cell proliferation along with G2/M accumulation. Double knockdown of the serine/arginine-rich (SR)-like proteins BCLAF1 and THRAP3 by siRNA resulted in a decrease in the nuclear speckle localization of WTAP, whereas the nuclear speckles were intact. Furthermore, we found that the WTAP complex regulates alternative splicing of the WTAP pre-mRNA by promoting the production of a truncated isoform, leading to a change in WTAP protein expression. Collectively, these findings show that the WTAP complex is a novel component of the RNA processing machinery, implying an important role in both posttranscriptional control and cell cycle regulation.
Collapse
Affiliation(s)
- Keiko Horiuchi
- From the Department of Quantitative Biology and Medicine and
| | | | | | | | | | | | | |
Collapse
|
20
|
Vargas DY, Shah K, Batish M, Levandoski M, Sinha S, Marras SAE, Schedl P, Tyagi S. Single-molecule imaging of transcriptionally coupled and uncoupled splicing. Cell 2012; 147:1054-65. [PMID: 22118462 DOI: 10.1016/j.cell.2011.10.024] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 06/28/2011] [Accepted: 10/24/2011] [Indexed: 12/18/2022]
Abstract
Introns are removed from pre-mRNAs during transcription while the pre-mRNA is still tethered to the gene locus via RNA polymerase. However, during alternative splicing, it is important that splicing be deferred until all of the exons and introns involved in the choice have been synthesized. We have developed an in situ RNA imaging method with single-molecule sensitivity to define the intracellular sites of splicing. Using this approach, we found that the normally tight coupling between transcription and splicing is broken in situations where the intron's polypyrimidine tract is sequestered within strong secondary structures. We also found that in two cases of alternative splicing, in which certain exons are skipped due to the activity of the RNA-binding proteins Sxl and PTB, splicing is uncoupled from transcription. This uncoupling occurs only on the perturbed introns, whereas the preceding and succeeding introns are removed cotranscriptionally. PAPERCLIP:
Collapse
Affiliation(s)
- Diana Y Vargas
- Public Health Research Institute, New Jersey Medical School, University of Medicine and Dentistry of New Jersey, Newark, NJ 07103, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Nagaoka S, Takata Y, Kato K. Identification of two arginases generated by alternative splicing in the silkworm, Bombyx mori. ARCHIVES OF INSECT BIOCHEMISTRY AND PHYSIOLOGY 2011; 76:97-113. [PMID: 21136528 DOI: 10.1002/arch.20407] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Arginase (EC 3.5.3.1) catalyzes the hydrolysis of arginine to ornithine and urea. Here, we have cloned two arginase cDNAs from the silkworm, Bombyx mori. The analysis of exon/intron structures showed that the two mRNAs named bmarg-r and bmarg-f were generated from a single gene by alternative usage of exons. The bmarg-r and bmarg-f were predicted to encode almost the same amino acid sequences, except that the latter had additional ten N-terminal residues. Recombinant bmARG-r and bmARG-f in Escherichia coli cell lysates were roughly similar to each other in enzymatic characteristics, which did not show large difference from those of arginases assayed by using tissue extracts. Differential RT-PCR experiments and tissue distribution analyses of arginase activity indicated that the bmarg-r gene is expressed in the male reproductive organs, especially in the glandula lacteola and vesicular seminalis, from which it is secreted to the seminal fluid and transferred to the female during copulation, whereas the bmarg-f gene is expressed in the larval and adult nonreproductive organs including the fat body and muscle, where the produced arginase proteins are considered to stay in the cells. Thus, the two silkworm arginase isoforms may have a difference in whether or not the product is excreted out of the cells in which it is synthesized.
Collapse
Affiliation(s)
- Sumiharu Nagaoka
- Department of Applied Biology, Graduate School of Science and Technology, Kyoto Institute of Technology, Kyoto, Japan.
| | | | | |
Collapse
|
22
|
Hu J, Cui G, Li C, Liu C, Shang E, Lai L, Jin C, Wang J, Xia B. Structure and novel functional mechanism of Drosophila SNF in sex-lethal splicing. PLoS One 2009; 4:e6890. [PMID: 19727396 PMCID: PMC2731243 DOI: 10.1371/journal.pone.0006890] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Accepted: 07/29/2009] [Indexed: 11/18/2022] Open
Abstract
Sans-fille (SNF) is the Drosophila homologue of mammalian general splicing factors U1A and U2B'', and it is essential in Drosophila sex determination. We found that, besides its ability to bind U1 snRNA, SNF can also bind polyuridine RNA tracts flanking the male-specific exon of the master switch gene Sex-lethal (Sxl) pre-mRNA specifically, similar to Sex-lethal protein (SXL). The polyuridine RNA binding enables SNF directly inhibit Sxl exon 3 splicing, as the dominant negative mutant SNF(1621) binds U1 snRNA but not polyuridine RNA. Unlike U1A, both RNA recognition motifs (RRMs) of SNF can recognize polyuridine RNA tracts independently, even though SNF and U1A share very high sequence identity and overall structure similarity. As SNF RRM1 tends to self-associate on the opposite side of the RNA binding surface, it is possible for SNF to bridge the formation of super-complexes between two introns flanking Sxl exon 3 or between a intron and U1 snRNP, which serves the molecular basis for SNF to directly regulate Sxl splicing. Taken together, a new functional model for SNF in Drosophila sex determination is proposed. The key of the new model is that SXL and SNF function similarly in promoting Sxl male-specific exon skipping with SNF being an auxiliary or backup to SXL, and it is the combined dose of SXL and SNF governs Drosophila sex determination.
Collapse
Affiliation(s)
- Jicheng Hu
- Beijing Nuclear Magnetic Resonance Center, Beijing, People's Republic of China
- College of Life Sciences, Peking University, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Gaofeng Cui
- Beijing Nuclear Magnetic Resonance Center, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Congmin Li
- Beijing Nuclear Magnetic Resonance Center, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Cong Liu
- College of Life Sciences, Peking University, Beijing, People's Republic of China
| | - Erchang Shang
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Luhua Lai
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Changwen Jin
- Beijing Nuclear Magnetic Resonance Center, Beijing, People's Republic of China
- College of Life Sciences, Peking University, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
| | - Jiwu Wang
- Allele Biotechnology & Pharmaceuticals, Inc., San Diego, California, United States of America
- * E-mail: (BX); (JW)
| | - Bin Xia
- Beijing Nuclear Magnetic Resonance Center, Beijing, People's Republic of China
- College of Life Sciences, Peking University, Beijing, People's Republic of China
- College of Chemistry and Molecular Engineering, Peking University, Beijing, People's Republic of China
- * E-mail: (BX); (JW)
| |
Collapse
|
23
|
Singh R, Valcárcel J. Building specificity with nonspecific RNA-binding proteins. Nat Struct Mol Biol 2005; 12:645-53. [PMID: 16077728 DOI: 10.1038/nsmb961] [Citation(s) in RCA: 170] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2005] [Accepted: 06/10/2005] [Indexed: 12/23/2022]
Abstract
Specificity is key to biological regulation. Two families of RNA binding proteins, heterogeneous nuclear ribonucleoproteins and serine-arginine-rich proteins, were initially thought to have redundant or nonspecific biochemical functions. Recently, members of these families have been found as components of distinct regulatory complexes with highly specific and essential roles in mRNA metabolism. Here we discuss the basis for their functional specificity and the mechanisms of action of some of their characteristic protein domains.
Collapse
Affiliation(s)
- Ravinder Singh
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA.
| | | |
Collapse
|
24
|
Serna E, Gorab E, Ruiz MF, Goday C, Eirín-López JM, Sánchez L. The gene Sex-lethal of the Sciaridae family (order Diptera, suborder Nematocera) and its phylogeny in dipteran insects. Genetics 2005; 168:907-21. [PMID: 15514063 PMCID: PMC1448812 DOI: 10.1534/genetics.104.031278] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
This article reports the cloning and characterization of the gene homologous to Sex-lethal (Sxl) of Drosophila melanogaster from Sciara coprophila, Rhynchosciara americana, and Trichosia pubescens. This gene plays the key role in controlling sex determination and dosage compensation in D. melanogaster. The Sxl gene of the three species studied produces a single transcript encoding a single protein in both males and females. Comparison of the Sxl proteins of these Nematocera insects with those of the Brachycera showed their two RNA-binding domains (RBD) to be highly conserved, whereas significant variation was observed in both the N- and C-terminal domains. The great majority of nucleotide changes in the RBDs were synonymous, indicating that purifying selection is acting on them. In both sexes of the three Nematocera insects, the Sxl protein colocalized with transcription-active regions dependent on RNA polymerase II but not on RNA polymerase I. Together, these results indicate that Sxl does not appear to play a discriminatory role in the control of sex determination and dosage compensation in nematocerans. Thus, in the phylogenetic lineage that gave rise to the drosophilids, evolution coopted for the Sxl gene, modified it, and converted it into the key gene controlling sex determination and dosage compensation. At the same time, however, certain properties of the recruited ancestral Sxl gene were beneficial, and these are maintained in the evolved Sxl gene, allowing it to exert its sex-determining and dose compensation functions in Drosophila.
Collapse
Affiliation(s)
- Esther Serna
- Centro de Investigaciones Biológicas, 28040 Madrid, Spain
| | | | | | | | | | | |
Collapse
|
25
|
Banerjee H, Rahn A, Gawande B, Guth S, Valcarcel J, Singh R. The conserved RNA recognition motif 3 of U2 snRNA auxiliary factor (U2AF 65) is essential in vivo but dispensable for activity in vitro. RNA (NEW YORK, N.Y.) 2004; 10:240-53. [PMID: 14730023 PMCID: PMC1370536 DOI: 10.1261/rna.5153204] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2003] [Accepted: 10/13/2003] [Indexed: 05/09/2023]
Abstract
The general splicing factor U2AF(65) recognizes the polypyrimidine tract (Py tract) that precedes 3' splice sites and has three RNA recognition motifs (RRMs). The C-terminal RRM (RRM3), which is highly conserved, has been proposed to contribute to Py-tract binding and establish protein-protein contacts with splicing factors mBBP/SF1 and SAP155. Unexpectedly, we find that the human RRM3 domain is dispensable for U2AF(65) activity in vitro. However, it has an essential function in Schizosaccharomyces pombe distinct from binding to the Py tract or to mBBP/SF1 and SAP155. First, deletion of RRM3 from the human protein has no effect on Py-tract binding. Second, RRM123 and RRM12 select similar sequences from a random pool of RNA. Third, deletion of RRM3 has no effect on the splicing activity of U2AF(65) in vitro. However, deletion of the RRM3 domain of S. pombe U2AF(59) abolishes U2AF function in vivo. In addition, certain amino acid substitutions on the four-stranded beta-sheet surface of RRM3 compromise U2AF function in vivo without affecting binding to mBBP/SF1 or SAP155 in vitro. We propose that RRM3 has an unrecognized function that is possibly relevant for the splicing of only a subset of cellular introns. We discuss the implications of these observations on previous models of U2AF function.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, Boulder, Colorado 80309, USA
| | | | | | | | | | | |
Collapse
|
26
|
Abstract
Alternative pre-mRNA splicing is a central mode of genetic regulation in higher eukaryotes. Variability in splicing patterns is a major source of protein diversity from the genome. In this review, I describe what is currently known of the molecular mechanisms that control changes in splice site choice. I start with the best-characterized systems from the Drosophila sex determination pathway, and then describe the regulators of other systems about whose mechanisms there is some data. How these regulators are combined into complex systems of tissue-specific splicing is discussed. In conclusion, very recent studies are presented that point to new directions for understanding alternative splicing and its mechanisms.
Collapse
Affiliation(s)
- Douglas L Black
- Department of Microbiology, Immunology, and Molecular Genetics, Howard Hughes Medical Institute, University of California-Los Angeles, Los Angeles, California 90095-1662, USA.
| |
Collapse
|
27
|
Sampath J, Long PR, Shepard RL, Xia X, Devanarayan V, Sandusky GE, Perry WL, Dantzig AH, Williamson M, Rolfe M, Moore RE. Human SPF45, a splicing factor, has limited expression in normal tissues, is overexpressed in many tumors, and can confer a multidrug-resistant phenotype to cells. THE AMERICAN JOURNAL OF PATHOLOGY 2003; 163:1781-90. [PMID: 14578179 PMCID: PMC1892446 DOI: 10.1016/s0002-9440(10)63538-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Our effort to identify novel drug-resistant genes in cyclophosphamide-resistant EMT6 mouse mammary tumors led us to the identification of SPF45. Simultaneously, other groups identified SPF45 as a component of the spliceosome that is involved in alternative splicing. We isolated the human homologue and examined the normal human tissue expression, tumor expression, and the phenotype caused by overexpression of human SPF45. Our analyses revealed that SPF45 is expressed in many, but not all, normal tissues tested with predominant expression in normal ductal epithelial cells of the breast, liver, pancreas, and prostate. Our analyses using tissue microarrays and sausages of tumors indicated that SPF45 is highly expressed in numerous carcinomas including bladder, breast, colon, lung, ovarian, pancreatic, and prostate. Interestingly, this study revealed that overexpression of SPF45 in HeLa, a cervical carcinoma cell line, resulted in drug resistance to doxorubicin and vincristine, two chemotherapeutic drugs commonly used in cancer. To our knowledge, this is the first study showing tumor overexpression of an alternate splicing factor resulting in drug resistance.
Collapse
Affiliation(s)
- Janardhan Sampath
- Cancer Research Division, Lilly Research Laboratories, Eli Lilly and Company, Indianapolis, IN 46285, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Louis M, Holm L, Sánchez L, Kaufman M. A Theoretical Model for the Regulation of Sex-lethal, a Gene That Controls Sex Determination and Dosage Compensation in Drosophila melanogaster. Genetics 2003; 165:1355-84. [PMID: 14668388 PMCID: PMC1462829 DOI: 10.1093/genetics/165.3.1355] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Abstract
Cell fate commitment relies upon making a choice between different developmental pathways and subsequently remembering that choice. Experimental studies have thoroughly investigated this central theme in biology for sex determination. In the somatic cells of Drosophila melanogaster, Sex-lethal (Sxl) is the master regulatory gene that specifies sexual identity. We have developed a theoretical model for the initial sex-specific regulation of Sxl expression. The model is based on the well-documented molecular details of the system and uses a stochastic formulation of transcription. Numerical simulations allow quantitative assessment of the role of different regulatory mechanisms in achieving a robust switch. We establish on a formal basis that the autoregulatory loop involved in the alternative splicing of Sxl primary transcripts generates an all-or-none bistable behavior and constitutes an efficient stabilization and memorization device. The model indicates that production of a small amount of early Sxl proteins leaves the autoregulatory loop in its off state. Numerical simulations of mutant genotypes enable us to reproduce and explain the phenotypic effects of perturbations induced in the dosage of genes whose products participate in the early Sxl promoter activation.
Collapse
Affiliation(s)
- Matthieu Louis
- The European Bioinformatics Institute, EMBL Outstation, Cambridge CB10 1SD, United Kingdom.
| | | | | | | |
Collapse
|
29
|
Soller M, White K. ELAV inhibits 3'-end processing to promote neural splicing of ewg pre-mRNA. Genes Dev 2003; 17:2526-38. [PMID: 14522950 PMCID: PMC218147 DOI: 10.1101/gad.1106703] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2003] [Revised: 08/12/2003] [Indexed: 01/31/2023]
Abstract
The embryonic lethal abnormal visual system (ELAV) is a gene-specific regulator of alternative pre-mRNA processing in neurons of Drosophila. Here we define a functional in vivo binding site for ELAV in neurons through the development of a reporter gene system in transgenic animals in combination with in vitro binding assays. ELAV binds to erect wing (ewg) RNA 3' of a polyadenylation site in the terminal intron 6. At this polyadenylation site, ELAV inhibits 3'-end processing in vitro in a dose-dependent and sequence-specific manner, and ELAV binding is necessary in vivo to promote splicing of ewg intron 6. Further, the AAUAAA poly(A) complex recognition sequence, together with ELAV, is required to regulate neural 3' splice site choice in vivo. In addition, the use of segmentally labeled RNA substrates in UV cross-linking assays suggest that ELAV does not inhibit or redirect binding of cleavage factor dCstF64 at the regulated polyadenylation site on ewg RNA. These data indicate that binding of 3'-end processing factors, together with ELAV, can regulate alternative splicing.
Collapse
Affiliation(s)
- Matthias Soller
- Department of Biology and Volen Center for Complex Systems, Brandeis University, Waltham, Massachusetts 02454, USA.
| | | |
Collapse
|
30
|
Penalva LOF, Sánchez L. RNA binding protein sex-lethal (Sxl) and control of Drosophila sex determination and dosage compensation. Microbiol Mol Biol Rev 2003; 67:343-59, table of contents. [PMID: 12966139 PMCID: PMC193869 DOI: 10.1128/mmbr.67.3.343-359.2003] [Citation(s) in RCA: 125] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In the past two decades, scientists have elucidated the molecular mechanisms behind Drosophila sex determination and dosage compensation. These two processes are controlled essentially by two different sets of genes, which have in common a master regulatory gene, Sex-lethal (Sxl). Sxl encodes one of the best-characterized members of the family of RNA binding proteins. The analysis of different mechanisms involved in the regulation of the three identified Sxl target genes (Sex-lethal itself, transformer, and male specific lethal-2) has contributed to a better understanding of translation repression, as well as constitutive and alternative splicing. Studies using the Drosophila system have identified the features of the protein that contribute to its target specificity and regulatory functions. In this article, we review the existing data concerning Sxl protein, its biological functions, and the regulation of its target genes.
Collapse
Affiliation(s)
- Luiz O F Penalva
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710, USA.
| | | |
Collapse
|
31
|
Förch P, Valcárcel J. Splicing regulation in Drosophila sex determination. PROGRESS IN MOLECULAR AND SUBCELLULAR BIOLOGY 2003; 31:127-51. [PMID: 12494765 DOI: 10.1007/978-3-662-09728-1_5] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- P Förch
- Gene Expression Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany
| | | |
Collapse
|
32
|
Nagengast AA, Stitzinger SM, Tseng CH, Mount SM, Salz HK. Sex-lethal splicing autoregulation in vivo: interactions between SEX-LETHAL, the U1 snRNP and U2AF underlie male exon skipping. Development 2003; 130:463-71. [PMID: 12490553 DOI: 10.1242/dev.00274] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alternative splicing of the Sex-lethal pre-mRNA has long served as a model example of a regulated splicing event, yet the mechanism by which the female-specific SEX-LETHAL RNA-binding protein prevents inclusion of the translation-terminating male exon is not understood. Thus far, the only general splicing factor for which there is in vivo evidence for a regulatory role in the pathway leading to male-exon skipping is sans-fille (snf), a protein component of the spliceosomal U1 and U2 snRNPs. Its role, however, has remained enigmatic because of questions about whether SNF acts as part of an intact snRNP or a free protein. We provide evidence that SEX-LETHAL interacts with SANS-FILLE in the context of the U1 snRNP, through the characterization of a point mutation that interferes with both assembly into the U1 snRNP and complex formation with SEX-LETHAL. Moreover, we find that SEX-LETHAL associates with other integral U1 snRNP components, and we provide genetic evidence to support the biological relevance of these physical interactions. Similar genetic and biochemical approaches also link SEX-LETHAL with the heterodimeric splicing factor, U2AF. These studies point specifically to a mechanism by which SEX-LETHAL represses splicing by interacting with these key splicing factors at both ends of the regulated male exon. Moreover, because U2AF and the U1 snRNP are only associated transiently with the pre-mRNA during the course of spliceosome assembly, our studies are difficult to reconcile with the current model that proposes that the SEX-LETHAL blocks splicing at the second catalytic step, and instead argue that the SEX-LETHAL protein acts after splice site recognition, but before catalysis begins.
Collapse
Affiliation(s)
- Alexis A Nagengast
- Department of Genetics, Case Western Reserve University, Cleveland, OH 44106-4955, USA
| | | | | | | | | |
Collapse
|
33
|
Banerjee H, Rahn A, Davis W, Singh R. Sex lethal and U2 small nuclear ribonucleoprotein auxiliary factor (U2AF65) recognize polypyrimidine tracts using multiple modes of binding. RNA (NEW YORK, N.Y.) 2003; 9:88-99. [PMID: 12554879 PMCID: PMC1370373 DOI: 10.1261/rna.2131603] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2002] [Accepted: 10/08/2002] [Indexed: 05/20/2023]
Abstract
The molecular basis for specific recognition of simple homopolymeric sequences like the polypyrimidine tract (Py tract) by multiple RNA recognition motifs (RRMs) is not well understood. The Drosophila splicing repressor Sex lethal (SXL), which has two RRMs, can directly compete with the essential splicing factor U2AF(65), which has three RRMs, for binding to specific Py tracts. We have combined site-specific photocross-linking and chemical cleavage of the proteins to biochemically map cross-linking of each of the uracils within the Py tract to specific RRMs. For both proteins, RRM1 and RRM2 together constitute the minimal Py-tract recognition domain. The RRM3 of U2AF(65) shows no cross-linking to the Py tract. Both RRM1 and RRM2 of U2AF(65) and SXL can be cross-linked to certain residues, with RRM2 showing a surprisingly high number of residues cross-linked. The cross-linking data eliminate the possibility that shorter Py tracts are bound by fewer RRMs. We present a model to explain how the binding affinity can nonetheless change as a function of the length of the Py tract. The results indicate that multiple modes of binding result in an ensemble of RNA-protein complexes, which could allow tuning of the binding affinity without changing sequence specificity.
Collapse
Affiliation(s)
- Hiren Banerjee
- Department of Molecular, Cellular and Developmental Biology, University of Colorado at Boulder, 80309, USA
| | | | | | | |
Collapse
|
34
|
Hinson S, Nagoshi RN. The involvement of ovarian tumour in the intracellular localization of Sex-lethal protein. INSECT MOLECULAR BIOLOGY 2002; 11:241-248. [PMID: 12000643 DOI: 10.1046/j.1365-2583.2002.00332.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The Drosophila ovarian tumour gene is required at multiple times in the germline for oogenesis. A second gene, Sex-lethal, controls sex determination in the soma and also has a separate germline function affecting similar oogenic stages as ovarian tumour. We demonstrate that ovarian tumour is not required for early Sex-lethal gene expression in the female germline, as had been previously reported. Instead, we provide evidence that ovarian tumour has a specific role in the developmentally regulated accumulation of SEX-LETHAL protein within the cytoplasm and nucleus. Furthermore, the examination of nurse cell polytene chromosomes produced by certain ovarian tumour mutations showed that SEX-LETHAL protein can associate with discrete chromosomal sites in the germline and that this pattern appears to change as the egg chamber matures. This is the first indication that SEX-LETHAL is capable of direct physical interactions with chromosomes (albeit in a mutant background) and is consistent with the developmentally regulated nuclear localization of SEX-LETHAL being important for oogenesis.
Collapse
Affiliation(s)
- S Hinson
- Department of Biological Sciences, University of Iowa, Iowa City, Iowa 52242, USA
| | | |
Collapse
|
35
|
Lallena MJ, Chalmers KJ, Llamazares S, Lamond AI, Valcárcel J. Splicing regulation at the second catalytic step by Sex-lethal involves 3' splice site recognition by SPF45. Cell 2002; 109:285-96. [PMID: 12015979 DOI: 10.1016/s0092-8674(02)00730-4] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Drosophila protein Sex-lethal (SXL) promotes skipping of exon 3 from its own pre-mRNA. An unusual sequence arrangement of two AG dinucleotides and an intervening polypyrimidine (Py)-tract at the 3' end of intron 2 is important for Sxl autoregulation. Here we show that U2AF interacts with the Py-tract and downstream AG, whereas the spliceosomal protein SPF45 interacts with the upstream AG and activates it for the second catalytic step of the splicing reaction. SPF45 represents a new class of second step factors, and its interaction with SXL blocks splicing at the second step. These results are in contrast with other known mechanisms of splicing regulation, which target early events of spliceosome assembly. A similar role for SPF45 is demonstrated in the activation of a cryptic 3' ss generated by a mutation that causes human beta-thalassemia.
Collapse
Affiliation(s)
- María José Lallena
- Gene Expression Programme, European Molecular Biology Laboratory, Meyerhofstrasse 1, D-69117, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
36
|
Lisbin MJ, Qiu J, White K. The neuron-specific RNA-binding protein ELAV regulates neuroglian alternative splicing in neurons and binds directly to its pre-mRNA. Genes Dev 2001; 15:2546-61. [PMID: 11581160 PMCID: PMC312793 DOI: 10.1101/gad.903101] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Drosophila melanogaster neural-specific protein, ELAV, has been shown to regulate the neural-specific splicing of three genes: neuroglian (nrg), erect wing, and armadillo. Alternative splicing of the nrg transcript involves alternative inclusion of a 3'-terminal exon. Here, using a minigene reporter, we show that the nrg alternatively spliced intron (nASI) has all the determinants required to recreate proper neural-specific RNA processing seen with the endogenous nrg transcript, including regulation by ELAV. An in vitro UV cross-linking assay revealed that ELAV from nuclear extracts cross-links to four distinct sites along the 3200 nucleotide long nASI; one EXS is positioned at the polypyrimidine tract of the default 3' splice site. ELAV cross-linking sites (EXSs) have in common long tracts of (U)-rich sequence rather than a precise consensus; moreover, each tract has at least two 8/10U elements; their importance is validated by mutant transgene reporter analysis. Further, we propose criteria for ELAV target sequence recognition based on the four EXSs, sites within the nASI that are (U) rich but do not cross-link with ELAV, and predicted EXSs from a phylogenetic comparison with Drosophila virilis nASI. These results suggest that ELAV regulates nrg alternative splicing by direct interaction with the nASI.
Collapse
Affiliation(s)
- M J Lisbin
- Department of Biology and Center for Complex Systems, MS 008, Brandeis University, Waltham, MA 02454, USA
| | | | | |
Collapse
|
37
|
Penalva LO, Lallena MJ, Valcárcel J. Switch in 3' splice site recognition between exon definition and splicing catalysis is important for sex-lethal autoregulation. Mol Cell Biol 2001; 21:1986-96. [PMID: 11238934 PMCID: PMC86793 DOI: 10.1128/mcb.21.6.1986-1996.2001] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Maintenance of female sexual identity in Drosophila melanogaster involves an autoregulatory loop in which the protein Sex-lethal (SXL) promotes skipping of exon 3 from its own pre-mRNA. We have used transient transfection of Drosophila Schneider cells to analyze the role of exon 3 splice sites in regulation. Our results indicate that exon 3 repression requires competition between the 5' splice sites of exons 2 and 3 but is independent of their relative strength. Two 3' splice site AG's precede exon 3. We report here that, while the distal site plays a critical role in defining the exon, the proximal site is preferentially used for the actual splicing reaction, arguing for a switch in 3' splice site recognition between exon definition and splicing catalysis. Remarkably, the presence of the two 3' splice sites is important for the efficient regulation by SXL, suggesting that SXL interferes with molecular events occurring between initial splice site communication across the exon and the splice site pairing that leads to intron removal.
Collapse
Affiliation(s)
- L O Penalva
- Gene Expression Programme, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | |
Collapse
|
38
|
Niessen M, Schneiter R, Nothiger R. Molecular identification of virilizer, a gene required for the expression of the sex-determining gene Sex-lethal in Drosophila melanogaster. Genetics 2001; 157:679-88. [PMID: 11156988 PMCID: PMC1461513 DOI: 10.1093/genetics/157.2.679] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Sex-lethal (Sxl) is a central switch gene in somatic sexual development of Drosophila melanogaster. Female-specific expression of Sxl relies on autoregulatory splicing of Sxl pre-mRNA by SXL protein. This process requires the function of virilizer (vir). Besides its role in Sxl splicing, vir is essential for male and female viability and is also required for the production of eggs capable of embryonic development. We have identified vir molecularly and found that it produces a single transcript of 6 kb that is ubiquitously expressed in male and female embryos throughout development. This transcript encodes a nuclear protein of 210 kD that cannot be assigned to a known protein family. VIR contains a putative transmembrane domain, a coiled-coil region and PEST sequences. We have characterized five different alleles of vir. Those alleles that affect both sexes are associated with large truncations of the protein, while alleles that affect only the female-specific functions are missense mutations that lie relatively close to each other, possibly defining a region important for the regulation of Sxl.
Collapse
Affiliation(s)
- M Niessen
- Zoological Institute, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
| | | | | |
Collapse
|
39
|
Förch P, Puig O, Kedersha N, Martínez C, Granneman S, Séraphin B, Anderson P, Valcárcel J. The apoptosis-promoting factor TIA-1 is a regulator of alternative pre-mRNA splicing. Mol Cell 2000; 6:1089-98. [PMID: 11106748 DOI: 10.1016/s1097-2765(00)00107-6] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We report here that the apoptosis-promoting protein TIA-1 regulates alternative pre-mRNA splicing of the Drosophila melanogaster gene male-specific-lethal 2 and of the human apoptotic gene Fas. TIA-1 associates selectively with pre-mRNAs that contain 5' splice sites followed by U-rich sequences. TIA-1 binding to the U-rich stretches facilitates 5' splice site recognition by U1 snRNP. This activity is critical for activation of the weak 5' splice site of msl-2 and for modulating the choice of splice site partner in Fas. Structural and functional similarities with the Saccharomyces cerevisiae splicing factor Nam8 suggest striking evolutionary conservation of a mechanism of pre-mRNA splicing regulation that controls biological processes as diverse as meiosis in yeast, dosage compensation in fruit flies, or programmed cell death in humans.
Collapse
Affiliation(s)
- P Förch
- Gene Expression Programme European Molecular Biology Laboratory Meyerhofstrasse 1 D-69117, Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Chou MY, Underwood JG, Nikolic J, Luu MH, Black DL. Multisite RNA binding and release of polypyrimidine tract binding protein during the regulation of c-src neural-specific splicing. Mol Cell 2000; 5:949-57. [PMID: 10911989 DOI: 10.1016/s1097-2765(00)80260-9] [Citation(s) in RCA: 157] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We studied the role of polypyrimidine tract binding protein in repressing splicing of the c-src neuron-specific N1 exon. Immunodepletion/add-back experiments demonstrate that PTB is essential for splicing repression in HeLa extract. When splicing is repressed, PTB cross-links to intronic CUCUCU elements flanking the N1 exon. Mutation of the downstream CU elements causes dissociation of PTB from the intact upstream CU elements and allows splicing. Thus, PTB molecules bound to multiple elements cooperate to repress splicing. Interestingly, in neuronal WERI-1 cell extract where N1 is spliced, PTB also binds to the upstream CU elements but is dissociated in the presence of ATP. We conclude that splicing repression by PTB is modulated in different cells by a combination of cooperative binding and ATP-dependent dissociation.
Collapse
Affiliation(s)
- M Y Chou
- Howard Hughes Medical Institute, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
41
|
Kim I, Muto Y, Watanabe S, Kitamura A, Futamura Y, Yokoyama S, Hosono K, Kawai G, Takaku H, Dohmae N, Takio K, Saskamoto H, Shimura Y. Interactions of a didomain fragment of the Drosophila sex-lethal protein with single-stranded uridine-rich oligoribonucleotides derived from the transformer and Sex-lethal messenger RNA precursors: NMR with residue-selective [5-2H]uridine substitutions. JOURNAL OF BIOMOLECULAR NMR 2000; 17:153-165. [PMID: 10921779 DOI: 10.1023/a:1008357028116] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Proteins that contain two or more copies of the RNA-binding domain [ribonucleoprotein (RNP) domain or RNA recognition motif (RRM)] are considered to be involved in the recognition of single-stranded RNA, but the mechanisms of this recognition are poorly understood at the molecular level. For an NMR analysis of a single-stranded RNA complexed with a multi-RBD protein, residue-selective stable-isotope labeling techniques are necessary, rather than common assignment methods based on the secondary structure of RNA. In the present study, we analyzed the interaction of a Drosophila Sex-lethal (Sx1) protein fragment, consisting of two RBDs (RBD1-RBD2), with two distinct target RNAs derived from the tra and Sxl mRNA precursors with guanosine and adenosine, respectively, in a position near the 5'-terminus of a uridine stretch. First, we prepared a [5-2H]uridine phosphoramidite, and synthesized a series of 2H-labeled RNAs, in which all of the uridine residues except one were replaced by [5-2H]uridine in the target sequence, GU8C. By observing the H5-H6 TOCSY cross peaks of the series of 2H-labeled RNAs complexed with the Sx1 RBDI-RBD2, all of the base H5-H6 proton resonances of the target RNA were unambiguously assigned. Then, the H5-H6 cross peaks of other target RNAs, GU2GU8, AU8, and UAU8, were assigned by comparison with those of GU8C. We found that the uridine residue prior to the G or A residue is essential for proper interaction with the protein, and that the interaction is tighter for A than for G. Moreover, the H1' resonance assignments were achieved from the H5-H6 assignments. The results revealed that all of the protein-bound nucleotide residues, except for only two, are in the unusual C2'-endo ribose conformation in the complex.
Collapse
Affiliation(s)
- I Kim
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Hongo, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Singh R, Banerjee H, Green MR. Differential recognition of the polypyrimidine-tract by the general splicing factor U2AF65 and the splicing repressor sex-lethal. RNA (NEW YORK, N.Y.) 2000; 6:901-11. [PMID: 10864047 PMCID: PMC1369966 DOI: 10.1017/s1355838200000376] [Citation(s) in RCA: 41] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The polypyrimidine-tract (Py-tract) adjacent to 3' splice sites is an essential splicing signal and is recognized by several proteins, including the general splicing factor U2AF65 and the highly specific splicing repressor Sex-lethal (SXL). They both contain ribonucleoprotein-consensus RNA-binding motifs. However, U2AF65 recognizes a wide variety of Py-tracts, whereas SXL recognizes specific Py-tracts such as the nonsex-specific Py-tract of the transformer pre-mRNA. It is not understood how these seemingly similar proteins differentially recognize the Py-tract. To define these interactions, we used chemical interference and protection assays, saturation mutagenesis, and RNAs containing modified nucleotides. We find that these proteins recognize distinct features of the RNA. First, although uracils within the Py-tract are protected from chemical modification by both of these proteins, modification of any one of seven uracils by hydrazine, or any of eight phosphates by ethylnitrosourea strongly interfered with the binding of SXL only. Second, the 2' hydroxyl groups or backbone conformation appeared important for the binding of SXL, but not U2AF65. Third, although any of the bases (cytosine >> adenine > guanine) could substitute for uracils for U2AF65 binding, only guanine partially substituted for certain uracils for SXL binding. The different dependence on individual contacts and nucleotide preference may provide a basis for the different RNA-binding specificities and thus functions of U2AF65 and SXL in 3' splice site choice.
Collapse
Affiliation(s)
- R Singh
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado at Boulder, 80309, USA.
| | | | | |
Collapse
|
43
|
Penalva LO, Ruiz MF, Ortega A, Granadino B, Vicente L, Segarra C, Valcárcel J, Sánchez L. The Drosophila fl(2)d gene, required for female-specific splicing of Sxl and tra pre-mRNAs, encodes a novel nuclear protein with a HQ-rich domain. Genetics 2000; 155:129-39. [PMID: 10790389 PMCID: PMC1461084 DOI: 10.1093/genetics/155.1.129] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The Drosophila gene female-lethal(2)d [fl(2)d] interacts genetically with the master regulatory gene for sex determination, Sex-lethal. Both genes are required for the activation of female-specific patterns of alternative splicing on transformer and Sex-lethal pre-mRNAs. We have used P-element-mediated mutagenesis to identify the fl(2)d gene. The fl(2)d transcription unit generates two alternatively spliced mRNAs that can encode two protein isoforms differing at their amino terminus. The larger isoform contains a domain rich in histidine and glutamine but has no significant homology to proteins in databases. Several lines of evidence indicate that this protein is responsible for fl(2)d function. First, the P-element insertion that inactivates fl(2)d interrupts this ORF. Second, amino acid changes within this ORF have been identified in fl(2)d mutants, and the nature of the changes correlates with the severity of the mutations. Third, all of the phenotypes associated with fl(2)d mutations can be rescued by expression of this cDNA in transgenic flies. Fl(2)d protein can be detected in extracts from Drosophila cell lines, embryos, larvae, and adult animals, without apparent differences between sexes, as well as in adult ovaries. Consistent with a possible function in posttranscriptional regulation, Fl(2)d protein has nuclear localization and is enriched in nuclear extracts.
Collapse
Affiliation(s)
- L O Penalva
- Gene Expression Programme, European Molecular Biology Laboratory, D-69117 Heidelberg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Inoue M, Muto Y, Sakamoto H, Yokoyama S. NMR studies on functional structures of the AU-rich element-binding domains of Hu antigen C. Nucleic Acids Res 2000; 28:1743-50. [PMID: 10734193 PMCID: PMC102815 DOI: 10.1093/nar/28.8.1743] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Hu antigen C (HuC) has three RNA-binding domains (RBDs). The N-terminal two, RBD1 and RBD2, are linked in tandem and bind to the AU-rich elements (AREs) in the 3'-untranslated region of particular mRNAs. The solution structures of HuC RBD1 and RBD2 were determined by NMR methods. The HuC RBD1 and RBD2 structures are quite similar to those of Sxl RBD1 and RBD2, respectively. The individual RBDs of HuC, RBD1 and RBD2 in isolation can interact rather weakly with the minimal ARE motif, AUUUA, while the didomain fragment, RBD1-RBD2, of HuC binds more tightly to a longer ARE RNA, UAUUUAUUUU. Chemical shift perturbations by the longer RNA on HuC RBD1-RBD2 were mapped on and around the two beta-sheets and on the C-terminal region of RBD1. The HuC RBD1-RBD2 residues that exhibited significant chemical shift perturbations coincide with those conserved in Sxl RBD1-RBD2. These data indicate that the RNA-binding characteristics of the HuC and Sxl didomain fragments are similar, even though the target RNAs and the biological functions of the proteins are different.
Collapse
Affiliation(s)
- M Inoue
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo,7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | | | |
Collapse
|
45
|
Milne CA, Hodgkin J. ETR-1, a homologue of a protein linked to myotonic dystrophy, is essential for muscle development in Caenorhabditis elegans. Curr Biol 1999; 9:1243-6. [PMID: 10556089 DOI: 10.1016/s0960-9822(99)80504-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
Post-transcriptional gene processing by RNA-binding proteins (RBPs) has crucial roles during development [1] [2]. Here, we report the identification of ETR-1 (ELAV-type RNA-binding protein), a muscle-specific RBP in the nematode Caenorhabditis elegans. ETR-1 is related to the family of RBPs defined by the protein ELAV, which is essential for neurogenesis in the fruit fly Drosophila; members of the family possess two consecutive RNA recognition motifs (RRMs) separated from a third, carboxy-terminal RRM by a tether region of variable length [3] [4] [5] [6]. Its closest homologue, CUG-binding protein (CUG-bp), is a human RBP that has been implicated in the disease myotonic dystrophy and binds CUG repeats in the 3' untranslated region (UTR) of the mRNA for myotonic dystrophy protein kinase (DMPK) [7] [8]. Inactivation of etr-1 by RNA-mediated interference resulted in embryonic lethality. Embryos failed to elongate and became paralysed, a phenotype characteristic of C. elegans Pat mutants, which are defective in muscle formation and function [9]. The data indicate that etr-1 is essential for muscle development in C. elegans, perhaps by playing a role in post-transcriptional processing of some muscle component, and thus suggesting a possible conservation of gene function with human CUG-bp.
Collapse
Affiliation(s)
- C A Milne
- Medical Research Council, Laboratory of Molecular Biology, Hills Road, Cambridge, CB2 2QH, UK
| | | |
Collapse
|
46
|
Abstract
Sex-lethal (SXL) is an RNA binding protein that acts as a regulator of both alternative pre-mRNA splicing and translation. Because SXL must sometimes function at some distance from its binding sites, it is believed that it must interact with other proteins. We used a yeast two-hybrid screen to isolate a novel Drosophila protein, SIN (SXL interactor), that interacts specifically with SXL. A direct physical association was demonstrated in vitro, and a single SXL RNA binding domain was sufficient for the interaction. SIN shows a high degree of similarity to a mammalian protein of unknown function. The cytogenetic location of Sin is 78A2-4. The transcript, which is abundant in early embryos, appears to be of maternal origin.
Collapse
Affiliation(s)
- Z Dong
- Department of Genetics and Cell Biology, University of Minnesota, Minneapolis, MN 55455, USA
| | | |
Collapse
|
47
|
Deshpande G, Calhoun G, Schedl PD. The N-terminal domain of Sxl protein disrupts Sxl autoregulation in females and promotes female-specific splicing of tra in males. Development 1999; 126:2841-53. [PMID: 10357929 DOI: 10.1242/dev.126.13.2841] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Sex determination in Drosophila depends upon the post-transcriptional regulatory activities of the Sex-lethal (Sxl) gene. Sxl maintains the female determined state and activates female differentiation pathways by directing the female-specific splicing of Sxl and tra pre-mRNAs. While there is compelling evidence that Sxl proteins regulate splicing by directly binding to target RNAs, previous studies indicate that the two Sxl RNA-binding domains are not in themselves sufficient for biological activity and that an intact N-terminal domain is also critical for splicing function. To further investigate the functions of the Sxl N terminus, we ectopically expressed a chimeric protein consisting of the N-terminal 99 amino acids fused to ss-galactosidase. The Nss-gal fusion protein behaves like a dominant negative, interfering with the Sxl autoregulatory feedback loop and killing females. This dominant negative activity can be attributed to the recruitment of the fusion protein into the large Sxl:Snf splicing complexes that are found in vivo and the consequent disruption of these complexes. In addition to the dominant negative activity, the Nss-gal fusion protein has a novel gain-of-function activity in males: it promotes the female-specific processing of tra pre-mRNAs. This novel activity is discussed in light of the blockage model for the tra splicing regulation.
Collapse
Affiliation(s)
- G Deshpande
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| | | | | |
Collapse
|
48
|
MacDougall CN, Clyde D, Wood T, Todman M, Harbison D, Bownes M. Sex-specific transcripts of the Dstpk61 serine/threonine kinase gene in Drosophila melanogaster. EUROPEAN JOURNAL OF BIOCHEMISTRY 1999; 262:456-66. [PMID: 10336630 DOI: 10.1046/j.1432-1327.1999.00404.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We describe the characterization of several transcripts of the Drosophila serine/threonine protein kinase 61 (Dstpk61) gene. Dstpk61 produces at least four transcripts, including a 3.0-kb testis-specific transcript, a 4.5-kb female-specific carcass transcript, a 3.5-kb ovary-specific transcript, and a 4.7-kb non-sex-specific transcript. Two cDNAs, a 4.5-kb cDNA (cDNAB) and a 3.0-kb cDNA (cDNAA), likely to correspond to either the non-specific or the female-specific carcass and the testis-specific transcript, respectively, were fully sequenced and found to encode a novel OPA-repeat-containing serine/threonine-specific protein kinase. cDNAA and cDNAB both contain the entire ORF that encodes this predicted protein, but differ in the untranslated regions. The cDNAs contain translational control elements which are found in transcripts under male germline-specific translational control, and doublesex-like 13-nucleotide repeat elements, which are required for transformer/transformer-2-mediated splicing of the female doublesex transcript. The complex tissue and sex-specific transcripts, differing in the untranslated regions which are likely to be crucial in translational control, suggest that this kinase may have both general and sex-specific functions. The protein is homologous to human 3-phosphoinositide dependent protein kinase, which is involved in transduction of insulin signalling.
Collapse
Affiliation(s)
- C N MacDougall
- Institute of Cell and Molecular Biology, University of Edinburgh, UK
| | | | | | | | | | | |
Collapse
|
49
|
Yanowitz JL, Deshpande G, Calhoun G, Schedl PD. An N-terminal truncation uncouples the sex-transforming and dosage compensation functions of sex-lethal. Mol Cell Biol 1999; 19:3018-28. [PMID: 10082569 PMCID: PMC84096 DOI: 10.1128/mcb.19.4.3018] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In Drosophila melanogaster, Sex-lethal (Sxl) controls autoregulation and sexual differentiation by alternative splicing but regulates dosage compensation by translational repression. To elucidate how Sxl functions in splicing and translational regulation, we have ectopically expressed a full-length Sxl protein (Sx.FL) and a protein lacking the N-terminal 40 amino acids (Sx-N). The Sx.FL protein recapitulates the activity of Sxl gain-of-function mutations, as it is both sex transforming and lethal in males. In contrast, the Sx-N protein unlinks the sex-transforming and male-lethal effects of Sxl. The Sx-N proteins are compromised in splicing functions required for sexual differentiation, displaying only partial autoregulatory activity and almost no sex-transforming activity. On the other hand, the Sx-N protein does retain substantial dosage compensation function and kills males almost as effectively as the Sx.FL protein. In the course of our analysis of the Sx.FL and Sx-N transgenes, we have also uncovered a novel, negative autoregulatory activity, in which Sxl proteins bind to the 3' untranslated region of Sxl mRNAs and decrease Sxl protein expression. This negative autoregulatory activity may be a homeostasis mechanism.
Collapse
Affiliation(s)
- J L Yanowitz
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08544, USA.
| | | | | | | |
Collapse
|
50
|
Abstract
Alternative splicing of pre-mRNAs is a powerful and versatile regulatory mechanism that can effect quantitative control of gene expression and functional diversification of proteins. It contributes to major developmental decisions and also to fine tuning of gene function. Genetic and biochemical approaches have identified cis-acting regulatory elements and trans-acting factors that control alternative splicing of specific pre-mRNAs. Both approaches are contributing to an understanding of their mode of action. Some alternative splicing decisions are controlled by specific factors whose expression is highly restricted during development, but others may be controlled by more modest variations in the levels of general factors acting cooperatively or antagonistically. Certain factors play active roles in both constitutive splicing and regulation of alternative splicing. Cooperative and antagonistic effects integrated at regulatory elements are likely to be important for specificity and for finely tuned differences in cell-type-specific alternative splicing patterns.
Collapse
Affiliation(s)
- A J Lopez
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.
| |
Collapse
|