1
|
Luo BL, He SP, Zhang YF, Yang QW, Zhuang JC, Zhu RJ, Zheng YQ, Su HM. Correlation between matrix metalloproteinase-2, matrix metalloproteinase-9, and tissue inhibitor of metalloproteinases-1 and white matter hyperintensities in patients with cerebral small vessel disease based on cranial magnetic resonance 3D imaging. Magn Reson Imaging 2024; 113:110213. [PMID: 39053592 DOI: 10.1016/j.mri.2024.110213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/17/2024] [Accepted: 07/20/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The objective of this study was to investigate the correlation between serum levels of matrix metalloproteinase-2 (MMP-2), matrix metalloproteinase-9 (MMP-9), and tissue inhibitor of metalloproteinases-1 (TIMP-1) levels and their ratios with the severity of white matter hyperintensities (WMHs) in patients with cerebral small vessel disease (CSVD). METHODS This cross-sectional study was done on a prospective cohort of patients with CSVD. Qualitative and quantitative analyses of WMHs were performed using Fazekas grading and lesion prediction algorithm (LPA) methods. Biomarkers MMP-2, MMP-9, and TIMP-1 were measured to explore their correlation with the severity of WMHs. RESULTS The sample consisted of 144 patients with CSVD. There were 63 male and 81 female patients, with an average age of 67.604 ± 8.727 years. Among these, 58.33% presented with white matter hyperintensities at Fazekas grading level 1, with an average total template volume of WMHs of 4.305 mL. MMP-2 (P = 0.025), MMP-9 (P = 0.008), TIMP-1 (P = 0.026), and age (P = 0.007) were identified as independent correlates of WMHs based on Fazekas grading. Independent correlates of the total template volume of WMHs included MMP-2 (P = 0.023), TIMP-1 (P = 0.046), age (P = 0.047), systolic blood pressure (P = 0.047), and homocysteine (Hcy) (P = 0.014). In addition, age (P = 0.003; P < 0.001), interleukin-6 (IL-6) (P < 0.001; P = 0.044), Hcy (P < 0.001; P < 0.001), glycated hemoglobin (HbA1c) (P = 0.016; P = 0.043), and chronic kidney disease (P < 0.001; P < 0.001) were associated with both WMHs Fazekas grading and the total template volume of WMHs. CONCLUSION Serum levels of MMP-9, MMP-2, and TIMP-1 were independently associated with the Fazekas grading, while serum TIMP-1 and MMP-2 levels were independently related to the total template volume of WMHs. The association of TIMP-1 and MMP-2 with the severity of CSVD-related WMHs suggests their potential role as disease-related biomarkers. However, further research is required to uncover the specific mechanisms underlying these interactions.
Collapse
Affiliation(s)
- Bei-Lin Luo
- The Graduate School of Fujian Medical University, Fuzhou 350000, China; Department of Neurology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361000, Fujian, China
| | - Shun-Po He
- Department of Neurology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361000, Fujian, China
| | - Yi-Fen Zhang
- The Graduate School of Fujian Medical University, Fuzhou 350000, China; Department of Neurology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361000, Fujian, China
| | - Qing-Wei Yang
- The Graduate School of Fujian Medical University, Fuzhou 350000, China; Department of Neurology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361000, Fujian, China.
| | - Jing-Cong Zhuang
- Department of Neurology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361000, Fujian, China.
| | - Ren-Jing Zhu
- Department of Neurology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361000, Fujian, China
| | - Ya-Qin Zheng
- Department of Neurology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361000, Fujian, China
| | - Hua-Mei Su
- Department of Neurology, Zhongshan Hospital Affiliated to Xiamen University, Xiamen 361000, Fujian, China
| |
Collapse
|
2
|
A CAF-Fueled TIMP-1/CD63/ITGB1/STAT3 Feedback Loop Promotes Migration and Growth of Breast Cancer Cells. Cancers (Basel) 2022; 14:cancers14204983. [PMID: 36291767 PMCID: PMC9599197 DOI: 10.3390/cancers14204983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 11/17/2022] Open
Abstract
Simple Summary Carcinoma-associated fibroblasts (CAFs) are a major cellular component of the tumor microenvironment and influence cancer cell behavior in numerous ways. A large part of their actions is based on their high secretory activity, leading to the exposure of cancer cells to all kinds of bioactive factors, such as interleukin-6 (IL-6). Here, we present data showing that CAF-derived TIMP-1 activates STAT3 in breast cancer cells in cooperation with CD63 and integrin β1. In turn, STAT3 increases TIMP-1 secretion by breast cancer cells, leading to a TIMP-1/CD63/integrin β1/STAT3 positive feedback loop, which can be further fueled by IL-6. Functionally, this feedback loop is important for the CAF-induced increase in migratory activity and for CAF-induced resistance to the anti-estrogen fulvestrant. Abstract TIMP-1 is one of the many factors that CAFs have been shown to secret. TIMP-1 can act in a tumor-supportive or tumor-suppressive manner. The purpose of this study was to elucidate the role of CAF-secreted TIMP-1 for the effects of CAFs on breast cancer cell behavior. Breast cancer cells were exposed to conditioned medium collected from TIMP-1-secreting CAFs (CAF-CM), and the specific effects of TIMP-1 on protein expression, migration and growth were examined using TIMP-1-specifc siRNA (siTIMP1), recombinant TIMP-1 protein (rhTIMP-1) and TIMP-1 level-rising phorbol ester. We observed that TIMP-1 increased the expression of its binding partner CD63 and induced STAT3 and ERK1/2 activation by cooperating with CD63 and integrin β1. Since TIMP-1 expression was found to be dependent on STAT3, TIMP-1 activated its own expression, resulting in a TIMP-1/CD63/integrin β1/STAT3 feedback loop. IL-6, a classical STAT3 activator, further fueled this loop. Knock-down of each component of the feedback loop prevented the CAF-induced increase in migratory activity and inhibited cellular growth in adherent cultures in the presence and absence of the anti-estrogen fulvestrant. These data show that TIMP-1/CD63/integrin β1/STAT3 plays a role in the effects of CAFs on breast cancer cell behavior.
Collapse
|
3
|
Cut loose TIMP-1: an emerging cytokine in inflammation. Trends Cell Biol 2022; 33:413-426. [PMID: 36163148 DOI: 10.1016/j.tcb.2022.08.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 08/24/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022]
Abstract
Appreciation of the entire biological impact of an individual protein can be hampered by its original naming based on one function only. Tissue inhibitor of metalloproteinases-1 (TIMP-1), mostly known for its eponymous function to inhibit metalloproteinases, exhibits only a fraction of its cellular effects via this feature. Recently, TIMP-1 emerged as a potent cytokine acting via various cell-surface receptors, explaining a so-far under-appreciated role of TIMP-1-mediated signaling on immune cells. This, at least partly, resolved why elevated blood levels of TIMP-1 correlate with progression of numerous inflammatory diseases. Here, we emphasize the necessity of unbiased name-independent recognition of structure-function relationships to properly appreciate the biological potential of TIMP-1 and other cytokines in complex physiological processes such as inflammation.
Collapse
|
4
|
Transcriptomics identifies STAT3 as a key regulator of hippocampal gene expression and anhedonia during withdrawal from chronic alcohol exposure. Transl Psychiatry 2021; 11:298. [PMID: 34016951 PMCID: PMC8170676 DOI: 10.1038/s41398-021-01421-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/29/2021] [Accepted: 05/05/2021] [Indexed: 12/11/2022] Open
Abstract
Alcohol use disorder (AUD) is highly comorbid with depression. Withdrawal from chronic alcohol drinking results in depression and understanding brain molecular mechanisms that drive withdrawal-related depression is important for finding new drug targets to treat these comorbid conditions. Here, we performed RNA sequencing of the rat hippocampus during withdrawal from chronic alcohol drinking to discover key signaling pathways involved in alcohol withdrawal-related depressive-like behavior. Data were analyzed by weighted gene co-expression network analysis to identify several modules of co-expressed genes that could have a common underlying regulatory mechanism. One of the hub, or highly interconnected, genes in module 1 that increased during alcohol withdrawal was the transcription factor, signal transducer and activator of transcription 3 (Stat3), a known regulator of immune gene expression. Total and phosphorylated (p)STAT3 protein levels were also increased in the hippocampus during withdrawal after chronic alcohol exposure. Further, pSTAT3 binding was enriched at the module 1 genes Gfap, Tnfrsf1a, and Socs3 during alcohol withdrawal. Notably, pSTAT3 and its target genes were elevated in the postmortem hippocampus of human subjects with AUD when compared with control subjects. To determine the behavioral relevance of STAT3 activation during alcohol withdrawal, we treated rats with the STAT3 inhibitor stattic and tested for sucrose preference as a measure of anhedonia. STAT3 inhibition alleviated alcohol withdrawal-induced anhedonia. These results demonstrate activation of STAT3 signaling in the hippocampus during alcohol withdrawal in rats and in human AUD subjects, and suggest that STAT3 could be a therapeutic target for reducing comorbid AUD and depression.
Collapse
|
5
|
Magaye RR, Savira F, Hua Y, Xiong X, Huang L, Reid C, Flynn B, Kaye D, Liew D, Wang BH. Exogenous dihydrosphingosine 1 phosphate mediates collagen synthesis in cardiac fibroblasts through JAK/STAT signalling and regulation of TIMP1. Cell Signal 2020; 72:109629. [PMID: 32278008 DOI: 10.1016/j.cellsig.2020.109629] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 03/30/2020] [Accepted: 04/01/2020] [Indexed: 02/03/2023]
Abstract
Cardiac fibrosis and myocyte hypertrophy are hallmarks of the cardiac remodelling process in cardiomyopathies such as heart failure (HF). Dyslipidemia or dysregulation of lipids contribute to HF. The dysregulation of high density lipoproteins (HDL) could lead to altered levels of other lipid metabolites that are bound to it such as sphingosine-1- phosphate (S1P). Recently, it has been shown that S1P and its analogue dihydrosphingosine-1-phosphate (dhS1P) are bound to HDL in plasma. The effects of dhS1P on cardiac cells have been obscure. In this study, we show that extracellular dhS1P is able to increase collagen synthesis in neonatal rat cardiac fibroblasts (NCFs) and cause hypertrophy of neonatal cardiac myocytes (NCMs). The janus kinase/signal transducer and activator (JAK/STAT) signalling pathway was involved in the increased collagen synthesis by dhS1P, through sustained increase of tissue inhibitor of matrix metalloproteinase 1 (TIMP1). Extracellular dhS1P increased phosphorylation levels of STAT1 and STAT3 proteins, also caused an early increase in gene expression of transforming growth factor-β (TGFβ), and sustained increase in TIMP1. Inhibition of JAKs led to inhibition of TIMP1 and TGFβ gene and protein expression. We also show that dhS1P is able to cause NCM hypertrophy through S1P-receptor-1 (S1PR1) signalling which is opposite to that of its analogue, S1P. Taken together, our results show that dhS1P increases collagen synthesis in cardiac fibroblasts causing fibrosis through dhS1P-JAK/STAT-TIMP1 signalling.
Collapse
Affiliation(s)
- Ruth R Magaye
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Feby Savira
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Yue Hua
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia; School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Xin Xiong
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia; Shanghai Institute of Heart Failure, Research Centre for Translational Medicine, Shanghai East Hospital, Tongji University, School of Medicine, Shanghai 200120, China
| | - Li Huang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Christopher Reid
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia; School of Public Health School, Curtin University, Perth, Australia
| | - Bernard Flynn
- Australian Translational Medicinal Chemistry Facility, Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, Australia
| | - David Kaye
- Heart Failure Research Group, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - Danny Liew
- Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia
| | - Bing H Wang
- Biomarker Discovery Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia; Monash Centre of Cardiovascular Research and Education in therapeutics, Melbourne, Australia.
| |
Collapse
|
6
|
(-)-Catechin-7- O-β-d-Apiofuranoside Inhibits Hepatic Stellate Cell Activation by Suppressing the STAT3 Signaling Pathway. Cells 2019; 9:cells9010030. [PMID: 31861943 PMCID: PMC7017110 DOI: 10.3390/cells9010030] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 12/10/2019] [Accepted: 12/11/2019] [Indexed: 12/21/2022] Open
Abstract
Hepatic fibrosis is characterized by the abnormal deposition of extracellular matrix (ECM) proteins. During hepatic fibrogenesis, hepatic stellate cell (HSC) activation followed by chronic injuries is considered a key event in fibrogenesis, and activated HSCs are known to comprise approximately 90% of ECM-producing myofibroblasts. Here, we demonstrated that (–)-catechin-7-O-β-d-apiofuranoside (C7A) significantly inhibited HSC activation via blocking the signal transducer and activator of transcription 3 (STAT3) signaling pathway. This is the first study to show the hepatic protective effects of C7A with possible mechanisms in vitro and in vivo. In our bioactivity screening, we figured out that the EtOH extract of Ulmus davidiana var. japonica root barks, which have been used as a Korean traditional medicine, inhibited collagen synthesis in HSCs. Four catechins isolated from the EtOAc fraction of the EtOH extract were compared with each other in terms of reduction in collagen, which is considered as a marker of hepatic protective effects, and C7A showed the strongest inhibitory effects on HSC activation in protein and qPCR analyses. As a possible mechanism, we investigated the effects of C7A on the STAT3 signaling pathway, which is known to activate HSCs. We found that C7A inhibited phosphorylation of STAT3 and translocation of STAT3 to nucleus. C7A also inhibited expressions of MMP-2 and MMP-9, which are downstream genes of STAT3 signaling. Anti-fibrotic effects of C7A were evaluated in a thioacetamide (TAA)-induced liver fibrosis model, which indicated that C7A significantly inhibited ECM deposition through inhibiting STAT3 signaling. C7A decreased serum levels of aspartate amino transferase and alanine transaminase, which were markedly increased by TAA injection. Moreover, ECM-associated proteins and mRNA expression were strongly suppressed by C7A. Our study provides the experimental evidence that C7A has inhibitory effects on HSC activation after live injury and has preventive and therapeutic potentials for the management of hepatic fibrosis.
Collapse
|
7
|
Chaudhary M, Chaudhary S. Unravelling the Lesser Known Facets of Angiotensin II Type 1 Receptor. Curr Hypertens Rep 2018; 19:1. [PMID: 28083801 DOI: 10.1007/s11906-017-0699-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
PURPOSE OF REVIEW Hypertension is an important risk factor in various pathologies. Despite enormous advancements in health sciences, the number of hypertensive individuals is increasing worldwide. The complex interplay between genetic and epigenetic factors seems to be a promising pathway to exploring the pathophysiology of hypertension. RECENT FINDINGS Various single gene and genome wide association studies have generated huge but non-reproducible data that highlights the role of some additional but as yet unidentified factor(s) in disease outcome. Dietary pattern and epigenetic mechanism (mainly DNA methylation) have shown a profound effect on blood pressure regulation. Angiotensin II and its receptors are known to play an important role in maintaining blood pressure; hence, a larger section of antihypertensive drugs targets the renin-angiotensin system (RAS). Angiotensin II type 1 receptor (AT1R), besides maintaining blood pressure, also has a role in cancer progression. Besides other pathways, RAS still remains the main player in blood pressure regulation. Additionally, AT1R has recently emerged as a molecule with diverse roles ranging from physiologic to cancer progression.
Collapse
Affiliation(s)
- Mayank Chaudhary
- Department cum National Centre for Human Genome Studies and Research (NCHGSR), Panjab University, Chandigarh, 160 014, India
| | - Shashi Chaudhary
- Department cum National Centre for Human Genome Studies and Research (NCHGSR), Panjab University, Chandigarh, 160 014, India.
| |
Collapse
|
8
|
Adrian-Segarra JM, Schindler N, Gajawada P, Lörchner H, Braun T, Pöling J. The AB loop and D-helix in binding site III of human Oncostatin M (OSM) are required for OSM receptor activation. J Biol Chem 2018; 293:7017-7029. [PMID: 29511087 DOI: 10.1074/jbc.ra118.001920] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Revised: 02/16/2018] [Indexed: 01/11/2023] Open
Abstract
Oncostatin M (OSM) and leukemia inhibitory factor (LIF) are closely related members of the interleukin-6 (IL-6) cytokine family. Both cytokines share a common origin and structure, and both interact through a specific region, termed binding site III, to activate a dimeric receptor complex formed by glycoprotein 130 (gp130) and LIF receptor (LIFR) in humans. However, only OSM activates the OSM receptor (OSMR)-gp130 complex. The molecular features that enable OSM to specifically activate the OSMR are currently unknown. To define specific sequence motifs within OSM that are critical for initiating signaling via OSMR, here we generated chimeric OSM-LIF cytokines and performed alanine-scanning experiments. Replacement of the OSM AB loop within OSM's binding site III with that of LIF abrogated OSMR activation, measured as STAT3 phosphorylation at Tyr-705, but did not compromise LIFR activation. Correspondingly, substitution of the AB loop and D-helix in LIF with their OSM counterparts was sufficient for OSMR activation. The alanine-scanning experiments revealed that residues Tyr-34, Gln-38, Gly-39, and Leu-45 (in the AB loop) and Pro-153 (in the D-helix) had specific roles in activating OSMR but not LIFR signaling, whereas Leu-40 and Cys-49 (in the AB loop), and Phe-160 and Lys-163 (in the D-helix) were required for activation of both receptors. Because most of the key amino acid residues identified here are conserved between LIF and OSM, we concluded that comparatively minor differences in a few amino acid residues within binding site III account for the differential biological effects of OSM and LIF.
Collapse
Affiliation(s)
- Juan M Adrian-Segarra
- From the Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Natalie Schindler
- From the Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Praveen Gajawada
- From the Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Holger Lörchner
- From the Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Thomas Braun
- From the Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| | - Jochen Pöling
- From the Department of Cardiac Development and Remodelling, Max Planck Institute for Heart and Lung Research, 61231 Bad Nauheim, Germany
| |
Collapse
|
9
|
Grünwald B, Harant V, Schaten S, Frühschütz M, Spallek R, Höchst B, Stutzer K, Berchtold S, Erkan M, Prokopchuk O, Martignoni M, Esposito I, Heikenwalder M, Gupta A, Siveke J, Saftig P, Knolle P, Wohlleber D, Krüger A. Pancreatic Premalignant Lesions Secrete Tissue Inhibitor of Metalloproteinases-1, Which Activates Hepatic Stellate Cells Via CD63 Signaling to Create a Premetastatic Niche in the Liver. Gastroenterology 2016; 151:1011-1024.e7. [PMID: 27506299 DOI: 10.1053/j.gastro.2016.07.043] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/04/2016] [Accepted: 07/25/2016] [Indexed: 12/16/2022]
Abstract
BACKGROUND & AIMS Pancreatic ductal adenocarcinoma (PDAC) metastasizes to liver at early stages, making this disease highly lethal. Tissue inhibitor of metalloproteinases-1 (TIMP1) creates a metastasis-susceptible environment in the liver. We investigated the role of TIMP1 and its receptor CD63 in metastasis of early-stage pancreatic tumors using mice and human cell lines and tissue samples. METHODS We obtained liver and plasma samples from patients in Germany with chronic pancreatitis, pancreatic intra-epithelial neoplasia, or PDAC, as well as hepatic stellate cells (HSCs). We performed studies with Ptf1a+/Cre;Kras+/LSL-G12D;Trp53loxP/loxP (CPK) mice, Pdx-1+/Cre;Kras+/LSL-G12D;Trp53+/LSL-R172H (KPC) mice, and their respective healthy littermates as control, and Cd63-/- mice with their wild-type littermates. KPC mice were bred with Timp1-/- mice to produce KPCxTimp1-/- mice. TIMP1 was overexpressed and CD63 was knocked down in mice using adenoviral vectors AdTIMP1 or AdshCD63, respectively. Hepatic susceptibility to metastases was determined after intravenous inoculation of syngeneic 9801L pancreas carcinoma cells. Pancreata and liver tissues were collected and analyzed by histology, immunohistochemical, immunoblot, enzyme-linked immunosorbent assay, and quantitative polymerase chain reaction analyses. We analyzed the effects of TIMP1 overexpression or knockdown and CD63 knockdown in transduced human primary HSCs and HSC cell lines. RESULTS Chronic pancreatitis, pancreatic intra-epithelial neoplasia, and PDAC tissues from patients expressed higher levels of TIMP1 protein than normal pancreas. The premalignant pancreatic lesions that developed in KPC and CPK mice expressed TIMP1 and secreted it into the circulation. In vitro and in vivo, TIMP1 activated human or mouse HSCs, which required interaction between TIMP1 and CD63 and signaling via phosphatidylinositol 3-kinase, but not TIMP1 protease inhibitor activity. This signaling pathway induced expression of endogenous TIMP1. TIMP1 knockdown in HSCs reduced their activation. Cultured TIMP1-activated human and mouse HSCs began to express stromal-derived factor-1, which induced neutrophil migration, a marker of the premetastatic niche. Mice with pancreatic intra-epithelial neoplasia-derived systemic increases in TIMP1 developed more liver metastases after injections of pancreatic cancer cells than mice without increased levels of TIMP1. This increase in formation of liver metastases from injected pancreatic cancer cells was not observed in TIMP1 or CD63 knockout mice. CONCLUSIONS Expression of TIMP1 is increased in chronic pancreatitis, pancreatic intra-epithelial neoplasia, and PDAC tissues from patients. TIMP1 signaling via CD63 leads to activation of HSCs, which create an environment in the liver that increases its susceptibility to pancreatic tumor cells. Strategies to block TIMP1 signaling via CD63 might be developed to prevent PDAC metastasis to the liver.
Collapse
Affiliation(s)
- Barbara Grünwald
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Veronika Harant
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Susanne Schaten
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Monika Frühschütz
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Ria Spallek
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Bastian Höchst
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Katharina Stutzer
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Sonja Berchtold
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Mert Erkan
- Chirurgische Klinik Technische Universität München, München, Germany
| | - Olga Prokopchuk
- Chirurgische Klinik Technische Universität München, München, Germany
| | - Marc Martignoni
- Chirurgische Klinik Technische Universität München, München, Germany
| | - Irene Esposito
- Institut für Pathologie, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | | | - Aayush Gupta
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Jens Siveke
- II. Medizinische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München, München, Germany
| | - Paul Saftig
- Institut für Biochemie, Christian-Albrechts-Universität zu Kiel, Kiel, Germany
| | - Percy Knolle
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Dirk Wohlleber
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany
| | - Achim Krüger
- Institut für Molekulare Immunologie und Experimentelle Onkologie, Technische Universität München, München, Germany.
| |
Collapse
|
10
|
Inflammatory transcription factors as activation markers and functional readouts in immune-to-brain communication. Brain Behav Immun 2016; 54:1-14. [PMID: 26348582 DOI: 10.1016/j.bbi.2015.09.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 08/31/2015] [Accepted: 09/04/2015] [Indexed: 02/06/2023] Open
Abstract
Immune-to-brain communication pathways involve humoral mediators, including cytokines, central modulation by neuronal afferents and immune cell trafficking to the brain. During systemic inflammation these pathways contribute to mediating brain-controlled sickness symptoms including fever. Experimentally, activation of these signaling pathways can be mimicked and studied when injecting animals with pathogen associated molecular patterns (PAMPS). One central component of the brain inflammatory response, which leads, for example, to fever induction, is transcriptional activation of brain cells via cytokines and PAMPS. We and others have studied the spatiotemporal activation and the physiological significance of transcription factors for the induction of inflammation within the brain and the manifestation of fever. Evidence has revealed a role of nuclear factor (NF)κB in the initiation, signal transducer and activator of transcription (STAT)3 in the maintenance and NF-interleukin (IL)6 in the maintenance or even termination of brain-inflammation and fever. Moreover, psychological stressors, such as exposure to a novel environment, leads to increased body core temperature and genomic NF-IL6-activation, suggesting a potential use of NF-IL6-immunohistochemistry as a multimodal brain cell activation marker and a role for NF-IL6 for differential brain activity. In addition, the nutritional status, as reflected by circulating levels of the cytokine-like hormone leptin, influence immune-to-brain communication and age-dependent changes in LPS-induced fever. Overall, transcription factors remain therapeutically important targets for the treatment of brain-inflammation and fever induction during infectious/non-infectious inflammatory and psychological stress. However, the exact physiological role and significance of these transcription factors requires to be further investigated.
Collapse
|
11
|
Ao N, Liu Y, Bian X, Feng H, Liu Y. Ubiquitin-specific peptidase 22 inhibits colon cancer cell invasion by suppressing the signal transducer and activator of transcription 3/matrix metalloproteinase 9 pathway. Mol Med Rep 2015; 12:2107-13. [PMID: 25902005 DOI: 10.3892/mmr.2015.3661] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 03/10/2015] [Indexed: 11/06/2022] Open
Abstract
Colon cancer is associated with increased cell migration and invasion. In the present study, the role of ubiquitin-specific peptidase 22 (USP22) in signal transducer and activator of transcription 3 (STAT3)-mediated colon cancer cell invasion was investigated. The messenger RNA levels of STAT3 target genes were measured by reverse transcription-quantitative polymerase chain reaction, following USP22 knockdown by RNA interference in SW480 colon cancer cells. The matrix metalloproteinase 9 (MMP9) proteolytic activity and invasion potential of SW480 cells were measured by zymography and Transwell assay, respectively, following combined USP22 and STAT3 short interfering (si)RNA treatment or STAT3 siRNA treatment alone. Similarly, a cell counting kit-8 assay was used to detect the proliferation potential of SW480 cells. The protein expression levels of USP22, STAT3 and MMP9 were detected by immunohistochemistry in colon cancer tissue microarrays (TMAs) and the correlation between USP22, STAT3 and MMP9 was analyzed. USP22/STAT3 co-depletion partly rescued the MMP9 proteolytic activity and invasion of SW480 cells, compared with that of STAT3 depletion alone. However, the proliferation of USP22/STAT3si-SW480 cells was decreased compared with that of STAT3si-SW480 cells. USP22 expression was positively correlated with STAT3 and MMP9 expression in colon cancer TMAs. In conclusion, USP22 attenuated the invasion capacity of colon cancer cells by inhibiting the STAT3/MMP9 signaling pathway.
Collapse
Affiliation(s)
- Ning Ao
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, P.R. China
| | - Yanyan Liu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, P.R. China
| | - Xiaocui Bian
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, P.R. China
| | - Hailiang Feng
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, P.R. China
| | - Yuqin Liu
- Department of Pathology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Tsinghua University, Beijing 100005, P.R. China
| |
Collapse
|
12
|
STAT3 Target Genes Relevant to Human Cancers. Cancers (Basel) 2014; 6:897-925. [PMID: 24743777 PMCID: PMC4074809 DOI: 10.3390/cancers6020897] [Citation(s) in RCA: 365] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Revised: 03/22/2014] [Accepted: 03/28/2014] [Indexed: 12/29/2022] Open
Abstract
Since its discovery, the STAT3 transcription factor has been extensively studied for its function as a transcriptional regulator and its role as a mediator of development, normal physiology, and pathology of many diseases, including cancers. These efforts have uncovered an array of genes that can be positively and negatively regulated by STAT3, alone and in cooperation with other transcription factors. Through regulating gene expression, STAT3 has been demonstrated to play a pivotal role in many cellular processes including oncogenesis, tumor growth and progression, and stemness. Interestingly, recent studies suggest that STAT3 may behave as a tumor suppressor by activating expression of genes known to inhibit tumorigenesis. Additional evidence suggested that STAT3 may elicit opposing effects depending on cellular context and tumor types. These mixed results signify the need for a deeper understanding of STAT3, including its upstream regulators, parallel transcription co-regulators, and downstream target genes. To help facilitate fulfilling this unmet need, this review will be primarily focused on STAT3 downstream target genes that have been validated to associate with tumorigenesis and/or malignant biology of human cancers.
Collapse
|
13
|
Yan D, Kc R, Chen D, Xiao G, Im HJ. Bovine lactoferricin-induced anti-inflammation is, in part, via up-regulation of interleukin-11 by secondary activation of STAT3 in human articular cartilage. J Biol Chem 2013; 288:31655-69. [PMID: 24036113 DOI: 10.1074/jbc.m112.440420] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Bovine lactoferricin (LfcinB), a multifunctional peptide, was recently demonstrated to be anti-catabolic and anti-inflammatory in human articular cartilage. LfcinB blocks IL-1-mediated proteoglycan depletion, matrix-degrading enzyme expression, and pro-inflammatory mediator induction. LfcinB selectively activates ERK1/2, p38 (but not JNK), and Akt signaling. However, the relationship between these pathways and LfcinB target genes has never been explored. In this study, we uncovered the remarkable ability of LfcinB in the induction of an anti-inflammatory cytokine, IL-11. LfcinB binds to cell surface heparan sulfate to initiate ERK1/2 signaling and activate AP-1 complexes composed of c-Fos and JunD, which transactivate the IL-11 gene. The induced IL-11 functions as an anti-inflammatory and chondroprotective cytokine in articular chondrocytes. Our data show that IL-11 directly attenuates IL-1-mediated catabolic and inflammatory processes ex vivo and in vitro. Moreover, IL-11 activates STAT3 signaling pathway to critically up-regulate TIMP-1 expression, as a consecutive secondary cellular response after IL-11 induction by LfcinB-ERK-AP-1 axis in human adult articular chondrocytes. The pathological relevance of IL-11 signaling to osteoarthritis is evidenced by significant down-regulation of its cognate receptor expression in osteoarthritic chondrocytes. Together, our results suggest a two-step mechanism, whereby LfcinB induces TIMP-1 through an IL-11-dependent pathway involving transcription factor AP-1 and STAT3.
Collapse
|
14
|
|
15
|
Wang Y, Fan DX, Duan J, Li MQ, Zhu XY, Jin LP. Thymic stromal lymphopoietin downregulates NME1 expression and promotes invasion in human trophoblasts via the activation of STAT3 signaling pathway. Clin Immunol 2012; 143:88-95. [DOI: 10.1016/j.clim.2012.01.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Revised: 01/17/2012] [Accepted: 01/24/2012] [Indexed: 11/24/2022]
|
16
|
Ramer R, Bublitz K, Freimuth N, Merkord J, Rohde H, Haustein M, Borchert P, Schmuhl E, Linnebacher M, Hinz B. Cannabidiol inhibits lung cancer cell invasion and metastasis via intercellular adhesion molecule-1. FASEB J 2011; 26:1535-48. [PMID: 22198381 DOI: 10.1096/fj.11-198184] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cannabinoids inhibit cancer cell invasion via increasing tissue inhibitor of matrix metalloproteinases-1 (TIMP-1). This study investigates the role of intercellular adhesion molecule-1 (ICAM-1) within this action. In the lung cancer cell lines A549, H358, and H460, cannabidiol (CBD; 0.001-3 μM) elicited concentration-dependent ICAM-1 up-regulation compared to vehicle via cannabinoid receptors, transient receptor potential vanilloid 1, and p42/44 mitogen-activated protein kinase. Up-regulation of ICAM-1 mRNA by CBD in A549 was 4-fold at 3 μM, with significant effects already evident at 0.01 μM. ICAM-1 induction became significant after 2 h, whereas significant TIMP-1 mRNA increases were observed only after 48 h. Inhibition of ICAM-1 by antibody or siRNA approaches reversed the anti-invasive and TIMP-1-upregulating action of CBD and the likewise ICAM-1-inducing cannabinoids Δ(9)-tetrahydrocannabinol and R(+)-methanandamide when compared to isotype or nonsilencing siRNA controls. ICAM-1-dependent anti-invasive cannabinoid effects were confirmed in primary tumor cells from a lung cancer patient. In athymic nude mice, CBD elicited a 2.6- and 3.0-fold increase of ICAM-1 and TIMP-1 protein in A549 xenografts, as compared to vehicle-treated animals, and an antimetastatic effect that was fully reversed by a neutralizing antibody against ICAM-1 [% metastatic lung nodules vs. isotype control (100%): 47.7% for CBD + isotype antibody and 106.6% for CBD + ICAM-1 antibody]. Overall, our data indicate that cannabinoids induce ICAM-1, thereby conferring TIMP-1 induction and subsequent decreased cancer cell invasiveness.
Collapse
Affiliation(s)
- Robert Ramer
- Institute of Toxicology and Pharmacology, Department of General Surgery, University of Rostock, Schillingallee 70, D-18057 Rostock, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Souvenir R, Fathali N, Ostrowski RP, Lekic T, Zhang JH, Tang J. Tissue inhibitor of matrix metalloproteinase-1 mediates erythropoietin-induced neuroprotection in hypoxia ischemia. Neurobiol Dis 2011; 44:28-37. [PMID: 21689752 DOI: 10.1016/j.nbd.2011.05.020] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2011] [Revised: 05/17/2011] [Accepted: 05/28/2011] [Indexed: 02/06/2023] Open
Abstract
Previous studies have shown that erythropoietin (EPO) is neuroprotective in both in vivo and in vitro models of hypoxia ischemia. However these studies hold limited clinical translations because the underlying mechanism remains unclear and the key molecules involved in EPO-induced neuroprotection are still to be determined. This study investigated if tissue inhibitor of matrix metalloproteinase-1 (TIMP-1) and its upstream regulator signaling molecule Janus kinase-2 (JAK-2) are critical in EPO-induced neuroprotection. Hypoxia ischemia (HI) was modeled in-vitro by oxygen and glucose deprivation (OGD) and in-vivo by a modified version of Rice-Vannucci model of HI in 10-day-old rat pups. EPO treated cells were exposed to AG490, an inhibitor of JAK-2 or TIMP-1 neutralizing antibody for 2h with OGD. Cell death, phosphorylation of JAK-2 and signal transducers and activators of transcription protein-3 (STAT-3), TIMP-1 expression, and matrix metalloproteinase-9 (MMP-9) activity were measured and compared with normoxic group. Hypoxic ischemic animals were treated one hour following HI and evaluated 48 h after. Our data showed that EPO significantly increased cell survival, associated with increased TIMP-1 activity, phosphorylation of JAK-2 and STAT-3, and decreased MMP-9 activity in vivo and in vitro. EPO's protective effects were reversed by inhibition of JAK-2 or TIMP-1 in both models. We concluded that JAK-2, STAT-3 and TIMP-1 are key mediators of EPO-induced neuroprotection during hypoxia ischemia injury.
Collapse
Affiliation(s)
- Rhonda Souvenir
- Division of Microbiology and Molecular Genetics, Loma Linda University School of Medicine, Loma Linda, CA 92350, USA
| | | | | | | | | | | |
Collapse
|
18
|
Wang H, Lafdil F, Wang L, Yin S, Feng D, Gao B. Tissue inhibitor of metalloproteinase 1 (TIMP-1) deficiency exacerbates carbon tetrachloride-induced liver injury and fibrosis in mice: involvement of hepatocyte STAT3 in TIMP-1 production. Cell Biosci 2011; 1:14. [PMID: 21711826 PMCID: PMC3125204 DOI: 10.1186/2045-3701-1-14] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Accepted: 04/04/2011] [Indexed: 12/19/2022] Open
Abstract
Background Tissue inhibitor of metalloproteinase 1 (TIMP-1), which is thought to be produced mainly by activated hepatic stellate cells and Kupffer cells in the liver, plays a pivotal role in matrix remodeling during liver injury and repair; while the effect of TIMP-1 on hepatocellular damage remains obscure. Results Hepatic expression of TIMP-1 mRNA and protein was up-regulated both in acute and chronic liver injury induced by carbon tetrachloride (CCl4). Compared with wild-type mice, TIMP-1 knockout mice were more susceptible to CCl4-induced acute and chronic liver injury, as shown by higher levels of serum alanine aminotransferase (ALT), greater number of apoptotic hepatocytes, and more extended necroinflammatory foci. TIMP-1 knockout mice also displayed greater degree of liver fibrosis after chronic CCl4 injection when compared with wild-type mice. In vitro treatment with TIMP-1 inhibited cycloheximide-induced cell death of primary mouse hepatocytes. Finally, up-regulation of TIMP-1 in the liver and serum after chronic CCl4 treatment was markedly diminished in hepatocyte-specific signal transducer and activator of transcription 3 (STAT3) knockout mice. In vitro treatment with interleukin-6 stimulated TIMP-1 production in primary mouse hepatocytes, but to a lesser extent in STAT3-deficient hepatocytes. Conclusions TIMP-1 plays an important role in protecting against acute and chronic liver injury and subsequently inhibiting liver fibrosis induced by CCl4. In addition to activated stellate cells and Kupffer cells, hepatocytes are also responsible for TIMP-1 production during liver injury via a STAT3-dependent manner.
Collapse
Affiliation(s)
- Hua Wang
- Laboratory of Liver Diseases, National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | |
Collapse
|
19
|
Matrix metalloproteinases and tissue inhibitor of metalloproteinases are essential for the inflammatory response in cancer cells. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2010:985132. [PMID: 21152266 PMCID: PMC2997758 DOI: 10.1155/2010/985132] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2010] [Accepted: 06/16/2010] [Indexed: 12/28/2022]
Abstract
Inflammation plays a critical role in the development of cancer. Matrix Metalloproteinase (MMP) functions in the remodeling of the extracellular matrix that is integral for many normal and pathological processes such as morphogenesis, angiogenesis, tissue repair, and tumor invasion. The tissue inhibitor of metalloproteinases (TIMPs) family regulates the activity of multifunctional metalloproteinases. In this paper, we discuss the role and mechanism of MMP and TIMP in regulating inflammation responses in solid tumors. We discuss the mechanism of MMP and inflammation in melanoma, colon cancer, breast cancer, and prostate cancer. We highlight the roles of the TIMP-2 in modulating the proinflammatory NF-κB pathway in melanoma and lung caner cells. Based on the molecular mechanisms of TIMPs and MMPs in inflammation and cancer, we can design new strategies for cancer therapy.
Collapse
|
20
|
Rummel C, Inoue W, Sachot C, Poole S, Hübschle T, Luheshi GN. Selective contribution of interleukin-6 and leptin to brain inflammatory signals induced by systemic LPS injection in mice. J Comp Neurol 2008; 511:373-95. [DOI: 10.1002/cne.21850] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
Miao T, Wu D, Zhang Y, Bo X, Xiao F, Zhang X, Magoulas C, Subang MC, Wang P, Richardson PM. SOCS3 suppresses AP-1 transcriptional activity in neuroblastoma cells through inhibition of c-Jun N-terminal kinase. Mol Cell Neurosci 2008; 37:367-75. [DOI: 10.1016/j.mcn.2007.10.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2007] [Revised: 10/17/2007] [Accepted: 10/23/2007] [Indexed: 12/27/2022] Open
|
22
|
Tanimizu N, Miyajima A, Mostov KE. Liver progenitor cells develop cholangiocyte-type epithelial polarity in three-dimensional culture. Mol Biol Cell 2007; 18:1472-9. [PMID: 17314404 PMCID: PMC1838984 DOI: 10.1091/mbc.e06-09-0848] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cholangiocytes are cellular components of the bile duct system of the liver, which originate from hepatoblasts during embryonic liver development. Although several transcription factors and signaling molecules have been implicated in bile duct development, its molecular mechanism has not been studied in detail. Here, we applied a three-dimensional (3D) culture technique to a liver progenitor cell line, HPPL, to establish an in vitro culture system in which HPPL acquire differentiated cholangiocyte characteristics. When HPPL were grown in a gel containing Matrigel, which contains extracellular matrix components of basement membrane, HPPL developed apicobasal polarity and formed cysts, which had luminal space inside. In the cysts, F-actin bundles and atypical protein kinase C were at the apical membrane, E-cadherin was localized at the lateral membrane, and beta-catenin and integrin alpha6 were located at the basolateral membrane. HPPL in cysts expressed cholangiocyte markers, including cytokeratin 19, integrin beta4, and aquaporin-1, but not a hepatocyte marker, albumin. Furthermore, HPPL transported rhodamine 123, a substrate for multidrug resistance gene products, from the basal side to the central lumen. These data indicate that HPPL develop cholangiocyte-type epithelial polarity in 3D culture. Phosphatidylinositol 3-kinase signaling was essential for proliferation and survival of HPPL in culture, whereas laminin-1 was a crucial component of Matrigel for inducing epithelial polarization of HPPL. Because HPPL cysts display structural and functional similarities with bile ducts, the 3D culture of HPPL recapitulates in vivo cholangiocyte differentiation and is useful to study the molecular mechanism of bile duct development in vitro.
Collapse
Affiliation(s)
- Naoki Tanimizu
- *Departments of Anatomy and Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143-2140; and
| | - Atsushi Miyajima
- Institute of Molecular and Cellular Biosciences, University of Tokyo, Tokyo 113-0032, Japan
| | - Keith E. Mostov
- *Departments of Anatomy and Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94143-2140; and
| |
Collapse
|
23
|
Montagnani C, Avarre JC, de Lorgeril J, Quiquand M, Boulo V, Escoubas JM. First evidence of the activation of Cg-timp, an immune response component of Pacific oysters, through a damage-associated molecular pattern pathway. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2007; 31:1-11. [PMID: 16793134 DOI: 10.1016/j.dci.2006.04.002] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2006] [Revised: 03/29/2006] [Accepted: 04/09/2006] [Indexed: 05/10/2023]
Abstract
In a previous work, we characterized a Crassostrea gigas cDNA (Cg-timp) encoding a protein which presents all the features of vertebrate tissue inhibitor of metalloproteinase (TIMP). The expression pattern of this gene led us to propose that Cg-timp is an important factor in oyster wound healing and defense mechanisms. Here we describe the analysis of Cg-timp expression in oysters challenged by live or dead bacteria as well as by bacterial secretory/excretory products and metalloproteinase. Surprisingly, bacterial secretory/excretory products activate Cg-timp gene expression whereas heat-inactivated ones do not. To address the question of the signal transduction pathway involved in Cg-timp gene activation, we isolated and sequenced Cg-timp promoter and upstream region. A 1-kb genomic DNA fragment flanking the 5'-end of the gene contains several regulatory elements and notably three NF-kappaB binding sites. The potential involvement of these motifs in Cg-timp gene regulation is discussed.
Collapse
Affiliation(s)
- C Montagnani
- Génome, Populations, Interactions, Adaptation (GPIA), UMR5171 (IFREMER, CNRS, UMII) Université de Montpellier II, place Eugène Bataillon, CC80, 34095 Montpellier, France
| | | | | | | | | | | |
Collapse
|
24
|
Wilczynska KM, Gopalan SM, Bugno M, Kasza A, Konik BS, Bryan L, Wright S, Griswold-Prenner I, Kordula T. A novel mechanism of tissue inhibitor of metalloproteinases-1 activation by interleukin-1 in primary human astrocytes. J Biol Chem 2006; 281:34955-64. [PMID: 17012236 DOI: 10.1074/jbc.m604616200] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Reactive astrogliosis is the gliotic response to brain injury with activated astrocytes and microglia being the major effector cells. These cells secrete inflammatory cytokines, proteinases, and proteinase inhibitors that influence extracellular matrix (ECM) remodeling. In astrocytes, the expression of tissue inhibitor of metalloproteinases-1 (TIMP-1) is up-regulated by interleukin-1 (IL-1), which is a major neuroinflammatory cytokine. We report that IL-1 activates TIMP-1 expression via both the IKK/NF-kappaB and MEK3/6/p38/ATF-2 pathways in astrocytes. The activation of the TIMP-1 gene can be blocked by using pharmacological inhibitors, including BAY11-7082 and SB202190, overexpression of the dominant-negative inhibitor of NF-kappaB (IkappaBalphaSR), or by the knock-down of p65 subunit of NF-kappaB. Binding of activated NF-kappaB (p50/p65 heterodimer) and ATF-2 (homodimer) to two novel regulatory elements located -2.7 and -2.2 kb upstream of the TIMP-1 transcription start site, respectively, is required for full IL-1-responsiveness. Mutational analysis of these regulatory elements and their weak activity when linked to the minimal tk promoter suggest that cooperative binding is required to activate transcription. In contrast to astrocytes, we observed that TIMP-1 is expressed at lower levels in gliomas and is not regulated by IL-1. We provide evidence that the lack of TIMP-1 activation in gliomas results from either dysfunctional IKK/NF-kappaB or MEK3/6/p38/ATF-2 activation by IL-1. In summary, we propose a novel mechanism of TIMP-1 regulation, which ensures an increased supply of the inhibitor after brain injury, and limits ECM degradation. This mechanism does not function in gliomas, and may in part explain the increased invasiveness of glioma cells.
Collapse
Affiliation(s)
- Katarzyna M Wilczynska
- Department of Biochemistry, Virginia Commonwealth University School of Medicine, Richmond, Virginia 23298, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Engers R, Springer E, Kehren V, Simic T, Young DA, Beier J, Klotz LO, Clark IM, Sies H, Gabbert HE. Rac upregulates tissue inhibitor of metalloproteinase-1 expression by redox-dependent activation of extracellular signal-regulated kinase signaling. FEBS J 2006; 273:4754-69. [PMID: 16984397 DOI: 10.1111/j.1742-4658.2006.05476.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Rho-like GTPase Rac regulates distinct actin cytoskeleton changes required for adhesion, migration and invasion of cells. Tiam1 specifically activates Rac, and Rac has been shown to affect several signaling pathways in a partly cell-type-specific manner. Recently, we demonstrated that Rac activation inhibits Matrigel invasion of human carcinoma cells by transcriptional upregulation of tissue inhibitor of metalloproteinase-1. The purpose of the present study was to identify key mediators of Tiam1/Rac-induced tissue inhibitor of metalloproteinase-1 expression. Mutational analysis of the human tissue inhibitor of metalloproteinase-1 promoter revealed a major role for a distinct activating protein-1 site at -92/-86 and a minor role for an adjacent polyoma enhancer A3 site. Moreover, Rac activation induced the generation of reactive oxygen species and subsequent reactive oxygen species-dependent activation of extracellular signal-regulated kinase 1,2. In contrast, c-Jun N-terminal kinase and p38 mitogen-activated protein kinase activities were not affected. In line with this, Tiam1/Rac-induced tissue inhibitor of metalloproteinase-1 expression as well as Tiam1/Rac-induced binding of nuclear extracts to the activating protein-1 site at -92/-86 were inhibited by catalase and by specific inhibitors of the extracellular signal-related kinase-1,2 activators, mitogen-activated protein kinase kinase-1 and mitogen-activated protein kinase kinase-2 (PD098059, U0126). In conclusion, Rac-induced transcriptional upregulation of tissue inhibitor of metalloproteinase-1 is mediated by reactive oxygen species-dependent activation of extracellular signal-related kinase-1,2 and by transcription factors of the activating protein-1 family.
Collapse
Affiliation(s)
- Rainer Engers
- Institute of Pathology, Heinrich-Heine-University, Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Dien J, Amin HM, Chiu N, Wong W, Frantz C, Chiu B, Mackey JR, Lai R. Signal transducers and activators of transcription-3 up-regulates tissue inhibitor of metalloproteinase-1 expression and decreases invasiveness of breast cancer. THE AMERICAN JOURNAL OF PATHOLOGY 2006; 169:633-42. [PMID: 16877361 PMCID: PMC1698804 DOI: 10.2353/ajpath.2006.051109] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Signal transducers and activators of transcription (STAT)-3 is an oncogenic protein that is constitutively activated in many human cancers, including 30 to 60% of primary breast cancer. The biological significance of STAT3 activation in breast cancer is not fully understood. We have previously shown that STAT3 up-regulates tissue inhibitors of metalloproteinase (TIMP)-1, a cytokine known to block metalloproteinases and decrease invasiveness in certain cancer cell types. We hypothesize that STAT3 activation may modulate tumor invasiveness of breast cancer by regulating TIMP1 expression. Using MCF-7 cells transfected with tetracycline-off STAT3C (constitutively active STAT3), we generated an in vitro system in which STAT3C levels can be tightly controlled in breast cancer cells. Increasing tetracycline levels gradually decreased STAT3C and TIMP1 in a dose-dependent manner, and down-regulation of these proteins led to a reciprocal decrease in invasiveness of these cells in Matrigel. Addition of a neutralizing anti-TIMP1 antibody increased invasiveness in the same experimental system. Using immunohistochemistry and 142 primary breast tumors, we found a significant association between the expression of the phosphorylated/active form of STAT3 (pSTAT3) and that of TIMP1. Importantly, STAT3 activation correlated significantly with a lower frequency of vascular and lymphatic invasion (P = 0.015 and P = 0.0002, respectively). Our data support the concept that STAT3 activation significantly modulates the biological and clinical behavior of breast cancer.
Collapse
Affiliation(s)
- Jennifer Dien
- Department of Laboratory Medicine and Pathology, University of Alberta, 4B1, 8440 112 St., Edmonton, Alberta, Canada
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Lin S, Saxena NK, Ding X, Stein LL, Anania FA. Leptin increases tissue inhibitor of metalloproteinase I (TIMP-1) gene expression by a specificity protein 1/signal transducer and activator of transcription 3 mechanism. Mol Endocrinol 2006; 20:3376-88. [PMID: 16931573 PMCID: PMC2925459 DOI: 10.1210/me.2006-0177] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Leptin has properties of a profibrogenic cytokine. In liver, the activated hepatic stellate cell (HSC) is responsible for a net production of extracellular matrix. A key molecule synthesized is the tissue inhibitor of metalloproteinase I (TIMP-1), which acts to inhibit the activity of matrix metalloproteinases. The purpose of the present study was to determine how leptin, a gp130 cytokine, orchestrates the regulation of TIMP-1 gene activation and expression. Transient transfection of primary HSCs revealed that leptin significantly increased luciferase activity of a 229-bp TIMP-1 promoter construct (TIMP-1-229). An EMSA revealed that leptin enhanced specificity protein 1 (Sp1) binding. Site-directed mutagenesis for Sp1 reduced the enhancing effect of leptin on TIMP-1 transcriptional activation, and this effect was dose dependent on the number of Sp1 sites mutated. Chromatin immunoprecipitation revealed that leptin enhanced binding of Sp1; however, inhibition of signal transducer and activator of transcription (STAT) 3 phosphorylation by AG490 also blocked Sp1 phosphorylation and significantly reduced leptin-associated TIMP-1-229 promoter activity, indicating that one mechanism for leptin-increased transcriptional activity is via phosphorylation of Sp1 and subsequent promoter binding. Finally, we demonstrate that leptin also results in intranuclear pSTAT3 binding to Sp1. We propose a novel mechanism whereby leptin-mediated TIMP-1 transcription employs a Sp1/pSTAT3-dependent mechanism, one of which is a noncanonical association between Sp1 and pSTAT3. These data provide a new molecular mechanism whereby the adipocytokine leptin plays a role in complications of the metabolic syndrome.
Collapse
Affiliation(s)
- Songbai Lin
- Department of Medicine, Division of Digestive Diseases, Emory University School of Medicine, Room 248, Whitehead Biomedical Research Building, 615 Michael Street, Atlanta, Georgia 30322, USA
| | | | | | | | | |
Collapse
|
28
|
Eum SY, Lee YW, Hennig B, Toborek M. Interplay between epidermal growth factor receptor and Janus kinase 3 regulates polychlorinated biphenyl-induced matrix metalloproteinase-3 expression and transendothelial migration of tumor cells. Mol Cancer Res 2006; 4:361-70. [PMID: 16778083 DOI: 10.1158/1541-7786.mcr-05-0119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
We hypothesize that environmental toxicants, such as polychlorinated biphenyl congeners, can activate vascular endothelial cells and thus increase formation of blood-borne metastases. This study indicates that exposure of human microvascular endothelial cells to 2,2',4,6,6'-pentachlorobiphenyl can stimulate transendothelial migration of tumor cells through up-regulation of matrix metalloproteinase (MMP)-3. In a series of experiments with specific small interfering RNA and pharmacologic inhibitors, we provide evidence that 2,2',4,6,6'-pentachlorobiphenyl can activate epidermal growth factor receptor (EGFR) and Janus kinase 3 (JAK3) in a closely coordinated and cross-dependent fashion. Activated EGFR and JAK3 stimulate in concert c-Jun NH(2)-terminal kinase and extracellular signal-regulated kinase 1/2 as well as increase DNA-binding activity of transcription factors activator protein-1 and polyomavirus enhancer activator protein 3, leading to transcriptional up-regulation of MMP-3 expression. These results indicate that the interplay among EGFR, JAK3, and mitogen-activated protein kinases, such as c-Jun NH(2)-terminal kinase and extracellular signal-regulated kinase 1/2, is critical for polychlorinated biphenyl-induced MMP-3 expression and accelerated transendothelial migration of tumor cells.
Collapse
Affiliation(s)
- Sung Yong Eum
- Molecular Neuroscience and Vascular Biology Laboratory, Department of Surgery, University of Kentucky, Lexington, USA
| | | | | | | |
Collapse
|
29
|
Signal transducers and activators of transcription 3 mediates up-regulation of angiotensin II-induced tissue inhibitor of metalloproteinase-1 expression in cultured human senescent fibroblasts. Chin Med J (Engl) 2006. [DOI: 10.1097/00029330-200607010-00006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
30
|
Nagashima H, Maeda-Nakamura K, Iwashita K, Goto T. Induced secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) in vivo and in vitro by hepatotoxin rubratoxin B. Food Chem Toxicol 2006; 44:1138-43. [PMID: 16530906 DOI: 10.1016/j.fct.2006.01.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2005] [Revised: 01/12/2006] [Accepted: 01/24/2006] [Indexed: 10/24/2022]
Abstract
To elucidate the mechanism of rubratoxin B toxicity, we investigated rubratoxin B-induced secretion of tissue inhibitor of metalloproteinases-1 (TIMP-1) in mice and cultured cells; we also documented the involvement of stress-activated MAP kinases (c-Jun-N-terminal kinases [JNKs] and p38s) in this process. Rubratoxin B significantly (P<0.05) induced serum TIMP-1 levels in mice. Because TIMP-1 is thought to play a crucial role in the process of liver fibrosis, rubratoxin B may cause liver fibrosis. Rubratoxin B enhanced TIMP-1 secretion in HepG2 cells to a peak level of approximately 40 microg/ml. The amount of TIMP-1 mRNA increased with the duration of rubratoxin B treatment; and this hepatotoxin appears to induce TIMP-1 secretion through a transcriptional control mechanism. Unlike similar treatment with rubratoxin B and JNK inhibitor, concomitant treatment with rubratoxin B and p38 inhibitor increased rubratoxin B-induced TIMP-1 secretion, suggesting that p38s (but not JNKs) antagonize this process. In addition, treatment with p38 inhibitor slightly increased the amount of rubratoxin B-induced TIMP-1 mRNA, suggesting that p38s control rubratoxin B-induced TIMP-1 secretion chiefly post-transcriptionally. In this study, we showed that rubratoxin B induces TIMP-1 production in vivo and in vitro and that p38s antagonize rubratoxin B-induced TIMP-1 secretion.
Collapse
Affiliation(s)
- H Nagashima
- National Food Research Institute, 2-1-12 Kannondai, Tsukuba, Ibaraki 305-8642, Japan.
| | | | | | | |
Collapse
|
31
|
Holven KB, Halvorsen B, Bjerkeli V, Damås JK, Retterstøl K, Mørkrid L, Ose L, Aukrust P, Nenseter MS. Impaired Inhibitory Effect of Interleukin-10 on the Balance Between Matrix Metalloproteinase-9 and Its Inhibitor in Mononuclear Cells From Hyperhomocysteinemic Subjects. Stroke 2006; 37:1731-6. [PMID: 16728689 DOI: 10.1161/01.str.0000226465.84561.cb] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND PURPOSE Homocysteine has been linked to increased risk of ischemic stroke and other cardiovascular events, but the mechanism by which elevated plasma levels of homocysteine promotes atherogenesis remains unclear. Matrix degradation, partly regulated by the balance between matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs (TIMPs), plays an important role in atherogenesis and plaque destabilization, and we hypothesized an imbalance between MMPs and TIMPs in hyperhomocysteinemia. METHODS Serum MMP-9 and TIMP-1 was measured in 12 hyperhomocysteinemic and 12 control subjects. The release of MMP-9 and TIMP-1, with and without interleukin-10 (IL-10), and the effect of IL-10 on signal transducer and activator of transcription 3 (STAT3) phosphorylation were measured in peripheral blood mononuclear cells (PBMCs) from hyperhomocysteinemic and control subjects. RESULTS Our main findings were: (1) hyperhomocysteinemic subjects had raised serum levels of MMP-9 and MMP-9/TIMP-1 ratio comparing healthy controls; (2) although IL-10 markedly suppressed MMP-9 release from PBMCs in controls, no or only minor effect was seen in hyperhomocysteinemic subjects; (3) although IL-10 enhanced TIMP-1 levels in PBMCs from both hyperhomocysteinemic and control subjects, the increase was more prominent in controls, resulting in a marked difference in IL-10-induced changes in MMP-9/TIMP-1 ratio between these 2 groups; and (4) comparing PBMCs from controls, cells from hyperhomocysteinemic individuals had impaired IL-10-induced STAT3 phosphorylation. CONCLUSIONS Our findings suggest an attenuated inhibitory response to IL-10 on MMP-9 activity in hyperhomocysteinemic subjects, potentially promoting atherogenesis and plaque instability, representing a novel explanation for increased risk for atherosclerotic disease in these individuals.
Collapse
|
32
|
Leeman RJ, Lui VWY, Grandis JR. STAT3 as a therapeutic target in head and neck cancer. Expert Opin Biol Ther 2006; 6:231-41. [PMID: 16503733 DOI: 10.1517/14712598.6.3.231] [Citation(s) in RCA: 184] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The signal transducer and activator of transcription (STAT) proteins relay signals from cytokine receptors and receptor tyrosine kinases on the cell surface to the nucleus, where they affect the transcription of genes involved in normal cell functions, including growth, apoptosis and differentiation. STAT3 has been found to be constitutively active in head and neck squamous cell carcinoma (HNSCC) as well as in other epithelial malignancies. In HNSCC, STAT3 alters the cell cycle, prevents apoptosis, and mediates the proliferation and survival of tumour cells. Several therapeutic approaches are being developed to target STAT3, including molecules that block either dimerisation or DNA binding by STAT3, strategies to decrease STAT3 expression and drugs that inhibit STAT3 function. Strategies that block STAT3 may prove efficacious for cancer treatment.
Collapse
Affiliation(s)
- Rebecca J Leeman
- Department of Otolaryngology, The Eye and Ear Institute, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|
33
|
Akool ES, Doller A, Müller R, Gutwein P, Xin C, Huwiler A, Pfeilschifter J, Eberhardt W. Nitric Oxide Induces TIMP-1 Expression by Activating the Transforming Growth Factor β-Smad Signaling Pathway. J Biol Chem 2005; 280:39403-16. [PMID: 16183640 DOI: 10.1074/jbc.m504140200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Excessive accumulation of the extracellular matrix is a hallmark of many inflammatory and fibrotic diseases, including those of the kidney. This study addresses the question whether NO, in addition to inhibiting the expression of MMP-9, a prominent metalloprotease expressed by mesangial cells, additionally modulates expression of its endogenous inhibitor TIMP-1. We demonstrate that exogenous NO has no modulatory effect on the extracellular TIMP-1 content but strongly amplifies the early increase in cytokine-induced TIMP-1 mRNA and protein levels. We examined whether transforming growth factor beta (TGFbeta), a potent profibrotic cytokine, is involved in the regulation of NO-dependent TIMP-1 expression. Experiments utilizing a pan-specific neutralizing TGFbeta antibody demonstrate that the NO-induced amplification of TIMP-1 is mediated by extracellular TGFbeta. Mechanistically, NO causes a rapid increase in Smad-2 phosphorylation, which is abrogated by the addition of neutralizing TGFbeta antisera. Similarly, the NO-dependent increase in Smad-2 phosphorylation is prevented in the presence of an inhibitor of TGFbeta-RI kinase, indicating that the NO-dependent activation of Smad-2 occurs via the TGFbeta-type I receptor. Furthermore, activation of the Smad signaling cascade by NO is corroborated by the NO-dependent increase in nuclear Smad-4 level and is paralleled by increased DNA binding of Smad-2/3 containing complexes to a TIMP-1-specific Smad-binding element (SBE). Reporter gene assays revealed that NO activates a 0.6-kb TIMP-1 gene promoter fragment as well as a TGFbeta-inducible and SBE-driven control promoter. Chromatin immunoprecipitation analysis also demonstrated DNA binding activity of Smad-3 and Smad-4 proteins to the TIMP-1-specific SBE. Finally, by enzyme-linked immunosorbent assay, we demonstrated that NO causes a rapid increase in TGFbeta(1) levels in cell supernatants. Together, these experiments demonstrate that NO by induction of the Smad signaling pathway modulates TIMP-1 expression.
Collapse
Affiliation(s)
- El-Sayed Akool
- Pharmazentrum Frankfurt/ZAFES, Klinikum der Johann Wolfgang Goethe-Universität, D-60590 Frankfurt am Main, Germany
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Theiss AL, Simmons JG, Jobin C, Lund PK. Tumor necrosis factor (TNF) alpha increases collagen accumulation and proliferation in intestinal myofibroblasts via TNF receptor 2. J Biol Chem 2005; 280:36099-109. [PMID: 16141211 DOI: 10.1074/jbc.m505291200] [Citation(s) in RCA: 168] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Intestinal fibrosis is an incurable complication of Crohn's disease involving increased numbers of collagen-producing myofibroblasts. Tumor necrosis factor (TNF) alpha has defined proinflammatory roles in Crohn's disease but its role in fibrosis is unclear. We tested the hypothesis that TNFalpha increases collagen accumulation and proliferation in intestinal myofibroblasts and has additive effects in combination with insulin-like growth factor (IGF) I. The mechanisms, TNF receptor isoform, and downstream signaling pathways were examined. Intestinal myofibroblasts from wild-type (WT) mice or mice homozygous for disruption of genes encoding TNFR1 (TNFR1-/-), TNFR2 (TNFR2-/-), or both (TNFR1/2-/-), were treated with TNFalpha, IGF-I, or both. In WT cells, TNFalpha and IGF-I stimulated type I collagen accumulation and DNA synthesis in an additive manner. IGF-I, but not TNFalpha, stimulated type I collagen gene activation. TNFalpha, but not IGF-I, induced tissue inhibitor of metalloproteinase-1 (TIMP-1) expression and reduced matrix metalloproteinases-2 activity and collagen degradation. TNFalpha also activated ERK1/2. These responses to TNFalpha were absent in TNFR2-/- and TNFR1/2-/- myofibroblasts, whereas TNFR1-/- cells showed similar responses to WT. Inhibition of ERK1/2 diminished TNFalpha induced DNA synthesis in WT and TNFR1-/- cells. Differences in TNFalpha-induced STAT3/DNA binding activity and not NFkappaB and AP-1 transcriptional activation correlated with impaired collagen accumulation/TIMP-1 induction in TNFR2(-/-) cells. Constitutively active STAT3 rescued TIMP-1 expression in TNFR2-/- cells. We conclude that TNFalpha and IGF-I may additively contribute to fibrosis during intestinal inflammation. TNFR2 is a primary mediator of fibrogenic actions of TNFalpha acting through ERK1/2 to stimulate proliferation and through STAT3 to stimulate TIMP-1 and inhibit collagen degradation.
Collapse
Affiliation(s)
- Arianne L Theiss
- Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | | | | | |
Collapse
|
35
|
Fitzgerald JS, Tsareva SA, Poehlmann TG, Berod L, Meissner A, Corvinus FM, Wiederanders B, Pfitzner E, Markert UR, Friedrich K. Leukemia inhibitory factor triggers activation of signal transducer and activator of transcription 3, proliferation, invasiveness, and altered protease expression in choriocarcinoma cells. Int J Biochem Cell Biol 2005; 37:2284-96. [PMID: 16125646 DOI: 10.1016/j.biocel.2005.02.025] [Citation(s) in RCA: 77] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2004] [Revised: 01/28/2005] [Accepted: 02/25/2005] [Indexed: 11/23/2022]
Abstract
Extravillous trophoblast cells resemble cancer cells with regard to their intrinsic invasiveness. They invade decidual tissue, but, unlike tumor cells, shut down their invasive properties, when they become inappropriate. Stimuli involved in the modulation of invasion, as well as their underlying signaling mechanisms require further clarification. We were especially interested in discovering signals capable of stimulating invasion in otherwise low-invasive cells involved in reproduction. Using the choriocarcinoma cell line Jeg-3 as a model, we have addressed the potential role of cytokine/growth factor-driven activation of signal transducer and activator of transcription 3 (STAT3) in this process. Jeg-3 cells were treated with various factors known to induce trophoblast proliferation, differentiation, migration, or invasiveness (insulin-like-growth-factor-II (IGF-II), hepatocyte growth factor (HGF), interleukin-6 (IL-6), and leukemia inhibitory factor (LIF)). Only LIF elicited strong tyrosine phosphorylation and specific DNA-binding activity of STAT3. It induced a significant acceleration of cell proliferation and promoted the capability of Jeg-3 cells to invade into an artificial extracellular matrix. Moreover, LIF influenced the expression pattern of proteases and protease inhibitors with potential relevance for invasiveness (downregulation of mRNA for tissue inhibitor of metalloproteinase 1 (TIMP-1) and upregulation of mRNA for caspase-4). In conjunction with earlier work, in which we found that STAT3 DNA-binding activity was increased in invasive cells (choriocarcinoma, first trimester trophoblasts) and absent in non-invasive cells (term trophoblasts), these findings suggest a connection between LIF-driven STAT3 activity and invasiveness of choriocarcinoma and trophoblast cells.
Collapse
Affiliation(s)
- Justine S Fitzgerald
- Department of Obstetrics, Friedrich-Schiller-University Jena, Bachstrasse 18, 07740 Jena, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Mitchell JA, Shynlova O, Langille BL, Lye SJ. Mechanical stretch and progesterone differentially regulate activator protein-1 transcription factors in primary rat myometrial smooth muscle cells. Am J Physiol Endocrinol Metab 2004; 287:E439-45. [PMID: 15126239 DOI: 10.1152/ajpendo.00275.2003] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During pregnancy, stretch of the uterus, imposed by the growing fetus, is an important signal for the induction of genes involved in the onset of labor. In this study, the expression of activator protein-1 (AP-1) family mRNAs in response to in vitro stretch was investigated in myometrial cells. Rat primary myometrial smooth muscle cells were plated onto collagen I-coated Flex I culture plates and subjected to 25% static stretch on day 4 of culture. Static stretch induced an increase in the expression of c-fos, fosB, fra-1, c-jun, and junB. The expression of both c-fos and junB was maximally induced at 30 min by static stretch. The peak induction for fosB and c-jun occurred at 1 h, whereas the peak of fra-1 induction occurred between 1 and 2 h after application of stretch. Treatment of myometrial cells with progesterone (100 nM, 400 nM, 1 microM) for 1 or 6 h before the application of static stretch did not affect the magnitude of the c-fos response. However, 24 h of progesterone exposure reduced the magnitude of c-fos and fosB stretch induction at both the 400 nM and 1 microM doses. These data indicate that several members of the AP-1 family are stretch-responsive genes in myometrial smooth muscle cells. This response can be attenuated by pretreatment with progesterone; however, the requirement for longer pretreatment times suggests that the inhibitory actions of progesterone do not occur through a direct action of the progesterone receptor within the promoter regions of AP-1 genes.
Collapse
Affiliation(s)
- Jennifer A Mitchell
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada M5G 1X5
| | | | | | | |
Collapse
|
37
|
Wright JW, Harding JW. The brain angiotensin system and extracellular matrix molecules in neural plasticity, learning, and memory. Prog Neurobiol 2004; 72:263-93. [PMID: 15142685 DOI: 10.1016/j.pneurobio.2004.03.003] [Citation(s) in RCA: 120] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2003] [Accepted: 03/18/2004] [Indexed: 01/25/2023]
Abstract
The brain renin-angiotensin system (RAS) has long been known to regulate several classic physiologies including blood pressure, sodium and water balance, cyclicity of reproductive hormones and sexual behaviors, and pituitary gland hormones. These physiologies are thought to be under the control of the angiotensin II (AngII)/AT1 receptor subtype system. The AT2 receptor subtype is expressed during fetal development and is less abundant in the adult. This receptor appears to oppose growth responses facilitated by the AT1 receptor, as well as growth factor receptors. Recent evidence points to an important contribution by the brain RAS to non-classic physiologies mediated by the newly discovered angiotensin IV (AngIV)/AT4 receptor subtype system. These physiologies include the regulation of blood flow, modulation of exploratory behavior, and a facilitory role in learning and memory acquisition. This system appears to interact with brain matrix metalloproteinases in order to modify extracellular matrix molecules thus permitting the synaptic remodeling critical to the neural plasticity presumed to underlie memory consolidation, reconsolidation, and retrieval. There is support for an inhibitory influence by AngII activation of the AT1 subtype, and a facilitory role by AngIV activation of the AT4 subtype, on neuronal firing rate, long-term potentiation, associative and spatial learning. The discovery of the AT4 receptor subtype, and its facilitory influence upon learning and memory, suggest an important role for the brain RAS in normal cognitive processing and perhaps in the treatment of dysfunctional memory disease states.
Collapse
Affiliation(s)
- John W Wright
- Department of Psychology, Washington State University, P.O. Box 644820, Pullman, WA 99164-4820, USA.
| | | |
Collapse
|
38
|
Lai R, Rassidakis GZ, Medeiros LJ, Ramdas L, Goy AH, Cutler C, Fujio Y, Kunisada K, Amin HM, Gilles F. Signal transducer and activator of transcription-3 activation contributes to high tissue inhibitor of metalloproteinase-1 expression in anaplastic lymphoma kinase-positive anaplastic large cell lymphoma. THE AMERICAN JOURNAL OF PATHOLOGY 2004; 164:2251-8. [PMID: 15161657 PMCID: PMC1615762 DOI: 10.1016/s0002-9440(10)63781-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The tissue inhibitor of metalloproteinase-1 (TIMP1) is expressed in a subset of malignant lymphomas and can inhibit tumor spread and promote cell survival. Recent data suggest that TIMP1 expression may be regulated by signal transducer and activator of transcription (STAT)-3. Thus, we tested the hypothesis that TIMP1 expression is related to STAT3 activation in lymphomas, with a focus on anaplastic large cell lymphomas (ALCLs), which are known to express high levels of phosphorylated/active STAT3 (pSTAT3). Specific inhibition of STAT3 with a dominant-negative construct led to concentration-dependent down-regulation of TIMP1 expression in two anaplastic lymphoma kinase (ALK)(+) ALCL cell lines, Karpas 299 and SU-DHL-1. Using cDNA microarrays, ALK(+) ALCL cell lines consistently expressed the highest TIMP1 level among 29 lymphoma cell lines of various subtypes. The association between TIMP1 expression and high level of STAT3 activation was validated by Western blots and immunostaining using antibodies specific for pSTAT3 and TIMP1. We further evaluated the relationship between TIMP1 expression and STAT3 activation in 43 ALCL tumors (19 ALK(+) and 24 ALK(-)) using immunohistochemistry and a tissue microarray. The TIMP1(+) group had a mean of 64% pSTAT3(+) cells as compared to 23% pSTAT3(+) cells in the TIMP1(-) group (P = 0.002). As expected, TIMP1 positivity was higher in the ALK(+) group (15 of 19, 79%) compared with the ALK(-) group (5 of 24, 21%; P = 0.0002) because NPM-ALK restricted to ALK(+) tumors was previously shown to activate STAT3. In conclusion, STAT3 directly contributes to the high level of TIMP1 expression in ALK(+) ALCL, and TIMP1 expression correlates with high level of STAT3 activation in ALCL. TIMP1, as a downstream target of STAT3, may mediate the anti-apoptotic effects of STAT3.
Collapse
Affiliation(s)
- Raymond Lai
- Department of Hematopathology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Janoschek N, van de Leur E, Gressner AM, Weiskirchen R. Induction of cell death in activated hepatic stellate cells by targeted gene expression of the thymidine kinase/ganciclovir system. Biochem Biophys Res Commun 2004; 316:1107-15. [PMID: 15044099 DOI: 10.1016/j.bbrc.2004.02.147] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2004] [Indexed: 12/16/2022]
Abstract
Liver fibrosis is the result from a relative imbalance between synthesis and degradation of matrix proteins. Following liver injury of any etiology, hepatic stellate cells undergo a response known as activation, which is the transition of quiescent cells into proliferative, fibrogenic, and contractile myofibroblasts. Upon this cellular transdifferentiation the effector cell becomes the major source of fibrillar and non-fibrillar matrix proteins resulting in excessive scar formation and cirrhosis, the end stage of fibrosis. Concomitant with progressive liver fibrosis, the tissue inhibitor of metalloproteinases-1 (TIMP-1) is strongly activated in hepatic stellate cells. We have developed a recombinant replication-defective adenovirus in which the TIMP-1 promoter is coupled to the herpes simplex virus thymidine kinase gene rendering activated hepatic stellate cells susceptible to ganciclovir. This novel targeted suicide gene approach was validated in a culture model considered to reflect an accelerated time course of the cellular and molecular events that occur during liver fibrosis. We demonstrate that transfer of the suicide gene to culture-activated hepatic stellate cells results in a strong expression of the respective transgene as assessed by Northern blot and Western blot analyses. The enzyme catalyzed the proper conversion of its prodrug subsequently initiating programmed cell death as estimated by caspase-3 assay and Annexin V-Fluos staining. Altogether, these results indicate that induction of programmed cell death is a promising approach to eliminate fibrogenic HSC.
Collapse
Affiliation(s)
- Nora Janoschek
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, D-52074 Aachen, Germany
| | | | | | | |
Collapse
|
40
|
Cao Q, Mak KM, Ren C, Lieber CS. Leptin Stimulates Tissue Inhibitor of Metalloproteinase-1 in Human Hepatic Stellate Cells. J Biol Chem 2004; 279:4292-304. [PMID: 14625304 DOI: 10.1074/jbc.m308351200] [Citation(s) in RCA: 139] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Leptin is recognized as a profibrogenic hormone in the liver, but the mechanisms involved have not been clarified. The tissue inhibitor of metalloproteinase (TIMP)-1, which acts through inhibition of collagen degradation, is synthesized by activated hepatic stellate cells (HSC) in response to fibrogenic substances. The capacity of leptin to induce TIMP-1 and its signaling molecules were investigated in a human HSC cell line, LX-2. Leptin stimulated TIMP-1 protein, mRNA, and promoter activity. JAK1 and -2, as well as STAT3 and -5, were activated. After leptin, there was increased expression of tyrosine 1141-phosphorylated leptin receptor, which may contribute to STAT3 activation. AG 490, a JAK inhibitor, blocked JAK phosphorylation with concomitant inhibition of STAT activation, TIMP-1 mRNA expression, and promoter activity. Leptin also induced an oxidative stress, which was inhibited by AG 490, indicating a JAK mediation process. ERK1/2 MAPK and p38 were activated, which was prevented by catalase, indicating an H2O2-dependent mechanism. Catalase treatment resulted in total suppression of TIMP-1 mRNA expression and promoter activity. SB203580, a p38 inhibitor, prevented p38 activation and reduced TIMP-1 message half-life with down-regulation of TIMP-1 mRNA. These changes were reproduced by overexpression of the dominant negative p38alpha and p38beta mutants. PD098059, an ERK1/2 inhibitor, opposed ERK1/2 activation and TIMP-1 promoter activity, leading to TIMP-1 mRNA down-regulation. Thus, leptin has a direct action on liver fibrogenesis by stimulating TIMP-1 production in activated HSC. This process appears to be mediated by the JAK/STAT pathway via the leptin receptor long form and the H2O2-dependent p38 and ERK1/2 pathways via activated JAK.
Collapse
Affiliation(s)
- Qi Cao
- Alcohol Research and Treatment Center, Bronx Veterans Affairs Medical Center and Mount Sinai School of Medicine, Bronx, New York 10468, USA
| | | | | | | |
Collapse
|
41
|
Herrmann J, Arias M, Van De Leur E, Gressner AM, Weiskirchen R. CSRP2, TIMP-1, and SM22alpha promoter fragments direct hepatic stellate cell-specific transgene expression in vitro, but not in vivo. Liver Int 2004; 24:69-79. [PMID: 15102003 DOI: 10.1111/j.1478-3231.2004.00891.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
BACKGROUND/AIMS The activation of hepatic stellate cells (HSC) and their transdifferentiation into myofibroblasts (MFB) is the key step for development of liver fibrosis. Over the past several years, significant progress has been made in the understanding of the critical pathways involved incells undergoing activation. Cellular activation in the course of transdifferentiation involves, among other biochemical modifications, functionally relevant changes in the control of gene expression. These include the up-regulation of transcription factors, different extracellular matrix proteins, cell adhesion molecules, smooth muscle specific genes, and proteins involved in matrix remodelling, or cytoskeletal organization. The corresponding regulatory elements of these genes have afforded us the opportunity to express transgenes with antifibrotic potential in a cell type- and/or transdifferentiation-dependent manner. METHODS In the present study, we have tested several promoters for their ability to mediate cell-specific expression, including those for CSRP2, SM22alpha, and TIMP-1 (CSRP2, gene encoding the LIM domain protein CRP2; SM22alpha, smooth muscle-specific gene encoding a 22-kDa protein; TIMP-1, gene encoding the tissue inhibitor of metalloproteinases-1), which in liver are specifically expressed in HSC or become strongly activated during the acute remodelling into MFB. We constructed adenoviral reporter vectors in which relevant portions of the promoters were fused to the green fluorescent protein. RESULTS AND CONCLUSION Our experiments demonstrate that each of these promoters is sufficient to achieve strong or partially selective expression in vitro but none is able to direct a specific or inducible expression of transgenes in HSC/MFB in vivo.
Collapse
Affiliation(s)
- Jens Herrmann
- Institute of Clinical Chemistry and Pathobiochemistry, RWTH-University Hospital, Aachen, Germany
| | | | | | | | | |
Collapse
|
42
|
Asai T, Nakatani T, Tamada S, Kuwabara N, Yamanaka S, Tashiro K, Nakao T, Komiya T, Okamura M, Kim S, Iwao H, Miura K. Activation of transcription factors AP-1 and NF-kappaB in chronic cyclosporine A nephrotoxicity: role in beneficial effects of magnesium supplementation. Transplantation 2003; 75:1040-4. [PMID: 12698095 DOI: 10.1097/01.tp.0000057242.96219.af] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND It has been shown that the transcription factors activator protein (AP)-1 and nuclear factor (NF)-kappaB play a pivotal role in various renal diseases. We aimed to study their activations in chronic cyclosporine A (CsA) nephrotoxicity and evaluate the effect of magnesium (Mg) supplementation and blockade of the renin-angiotensin system (RAS), which are known to ameliorate CsA nephrotoxicity, on these transcription factors. METHODS CsA (15 mg/kg/day) was administered subcutaneously daily to rats maintained on a low-sodium diet for 7, 14, and 28 days. DNA-binding activities of AP-1 and NF-kappaB in renal cortex were determined by electrophoretic mobility shift assay. RESULTS DNA-binding activity of AP-1 and NF-kappaB started to increase at day 14 and further elevated at day 28 by CsA treatment. These activations were markedly attenuated when rats were maintained on a high-Mg diet. In contrast, angiotensin-converting enzyme inhibitor (ACEI) had no effect on CsA-induced AP-1 activation. CsA-induced activation of NF-kappaB was suppressed by ACEI at day 14, whereas such effect could not be observed at day 28. CONCLUSIONS Renal cortical AP-1 and NF-kappaB DNA binding were activated in chronic CsA nephrotoxicity. These activations were induced largely by means of RAS-independent mechanisms. It is suggested that prevention of CsA-induced DNA-binding activation of these transcription factors is at least in part responsible for the beneficial effects of Mg supplementation on CsA nephrotoxicity.
Collapse
Affiliation(s)
- Toshihiro Asai
- Department of Urology, Osaka City University Medical School, 1-4-3 Asahimachi, Abeno, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Kaczmarek L, Lapinska-Dzwonek J, Szymczak S. Matrix metalloproteinases in the adult brain physiology: a link between c-Fos, AP-1 and remodeling of neuronal connections? EMBO J 2002; 21:6643-8. [PMID: 12485985 PMCID: PMC139096 DOI: 10.1093/emboj/cdf676] [Citation(s) in RCA: 134] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2002] [Revised: 08/23/2002] [Accepted: 10/24/2002] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs), together with their endogenous inhibitors (TIMPs) form an enzymatic system that plays an important role in a variety of physiological and pathological conditions. These proteins are also expressed in the brain, especially under pathological conditions, in which glia as well as invading inflammatory cells provide the major source of the MMP activity. Surprisingly little is known about the MMP function(s) in adult neuronal physiology. This review describes available data on this topic, which is presented in a context of knowledge about the MMP/TIMP system in other organs as well as in brain disorders. An analysis of the MMP and TIMP expression patterns in the brain, along with a consideration of their regulatory mechanisms and substrates, leads to the proposal of possible roles of the MMP system in the brain. This analysis suggests that MMPs may play an important role in the neuronal physiology, especially in neuronal plasticity, including their direct participation in the remodeling of synaptic connections-a mechanism pivotal for learning and memory.
Collapse
Affiliation(s)
- Leszek Kaczmarek
- Department of Molecular and Cellular Neurobiology, Nencki Institute, 02-093 Warsaw, Pasteura 3, Poland.
| | | | | |
Collapse
|
44
|
Humphreys RC, Bierie B, Zhao L, Raz R, Levy D, Hennighausen L. Deletion of Stat3 blocks mammary gland involution and extends functional competence of the secretory epithelium in the absence of lactogenic stimuli. Endocrinology 2002; 143:3641-50. [PMID: 12193580 DOI: 10.1210/en.2002-220224] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The transcription factor Stat3 is activated through tyrosine phosphorylation by many cytokines and is a fundamental mediator of their signals. In the mammary gland, Stat3 activity increases sharply shortly after weaning, and involution is delayed in mice, that contain a mutant Stat3 lacking 33 amino acids including the key tyrosine residue. We have now generated a more extensive mutation of Stat3 through the deletion of exons 15-21 in mammary epithelium. This resulted in the loss of 245 amino acids including the DNA binding and SH2 domains, and Stat3 protein was undetectable. Pregnancy-mediated mammary development and lactation were normal in these mice. Involution was delayed and, remarkably, Stat3-null mammary epithelium maintained its functional integrity and competence even 6 d after weaning, whereas control mammary tissue was rendered nonfunctional within 2 d. The lack of remodeling and functional stasis of the epithelium correlated with the disruption of proteinase activity. Our data demonstrate that mammary tissue can retain its functional competence in the absence of external lactogenic stimuli and demonstrate a delay in the initiation of the irreversible stage of involution.
Collapse
Affiliation(s)
- Robin C Humphreys
- Laboratory of Genetics and Physiology, National Institute of Diabetes, Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | | | | | | | | | | |
Collapse
|
45
|
Bürgel N, Bojarski C, Mankertz J, Zeitz M, Fromm M, Schulzke JD. Mechanisms of diarrhea in collagenous colitis. Gastroenterology 2002; 123:433-43. [PMID: 12145796 DOI: 10.1053/gast.2002.34784] [Citation(s) in RCA: 164] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS Collagenous colitis is an inflammatory disease of unknown etiology with diarrhea as the leading symptom. The aim of this study was to examine the pathogenic mechanisms of this disease. METHODS Biopsy specimens of the sigmoid colon were obtained endoscopically. Short-circuit current and (22)Na and (36)Cl fluxes were measured in miniaturized Ussing chambers. Alternating current impedance analysis discriminated epithelial from subepithelial resistance. Tight junction proteins occludin and claudin 1-5 were characterized in membrane fractions by Western blotting. Apoptotic ratio was determined by DAPI and TUNEL staining. RESULTS In collagenous colitis, net Na(+) flux decreased from 8.8 +/- 1.8 to 0.2 +/- 1.5 and net Cl(-) flux from 11.2 +/- 3.0 to -3.0 +/- 2.7 micromol x h(-1) x cm(-2), indicating a pronounced decrease in NaCl absorption. The fact that short-circuit current increased from 1.5 +/- 0.4 to 3.9 +/- 0.8 micromol x h(-1) x cm(-2), together with the negative net Cl(-) flux, points to activation of active electrogenic chloride secretion. Subepithelial resistance increased from 7 +/- 1 to 18 +/- 2 Omega x cm(2) due to subepithelial collagenous bands of 48 +/- 8-microm thickness. Epithelial resistance was diminished from 44 +/- 3 to 29 +/- 2 Omega x cm(2), and this was accompanied by a decrease in occludin and claudin-4 expression. Neither mucosal surface area nor apoptotic ratio was altered in collagenous colitis. CONCLUSIONS Reduced net Na(+) and Cl(-) absorption is the predominant diarrheal mechanism in collagenous colitis, accompanied by a secretory component of active electrogenic chloride secretion. The subepithelial collagenous band as a significant diffusion barrier is a cofactor. Down-regulation of tight junction molecules but not epithelial apoptoses is a structural correlate of barrier dysfunction contributing to diarrhea by a leak flux mechanism.
Collapse
Affiliation(s)
- Natalie Bürgel
- Department of Gastroenterology, Universitätsklinikum Benjamin Franklin, Freie Universität Berlin, Berlin, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Mitchell JA, Lye SJ. Differential expression of activator protein-1 transcription factors in pregnant rat myometrium. Biol Reprod 2002; 67:240-6. [PMID: 12080023 DOI: 10.1095/biolreprod67.1.240] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
While the AP-1 (activator protein-1) genes c-fos and c-jun have been implicated in the expression of myometrial genes associated with the onset of labor, there are no data concerning the role of other members of this family of transcription factors. To address this issue, we defined the expression and hormonal regulation of AP-1 genes in the rat myometrium during pregnancy and labor. Tissue was collected on Days 12, 15, 17, 19, 21, 22, and 23 (labor) and 1 day postpartum. Expression of c-fos, fosB, fra-1, fra-2, and junB was low during early gestation, with a 5- to 10-fold increase on Day 23 during labor, and returned to low levels 1 day postpartum. In contrast, the levels of c-jun and junD remained relatively constant throughout gestation. Administration of progesterone (P4; 16 mg/kg s.c./day) beginning on Day 20 (to maintain elevated plasma P4 levels) prevented the onset of labor and blocked the expected rise in c-fos, fosB, fra-1, fra-2, and junB expression on Day 23. In contrast, administration of the progesterone receptor antagonist RU486 (10 mg/kg s.c.) on Day 19 induced preterm labor and a premature increase in mRNA levels of c-fos, fra-1, fra-2, and junB. In unilaterally pregnant rats, stretch imposed by the growing fetus was found to increase the expression of c-fos, fosB, fra-1, fra-2, and junB only in the gravid horn on the day of labor. These data raise the possibility that AP-1 transcription factors integrate endocrine and mechanical signals, leading to myometrial gene expression required for uterine remodeling and the initiation of labor.
Collapse
MESH Headings
- Animals
- Blotting, Northern
- DNA, Complementary/biosynthesis
- DNA, Complementary/genetics
- Female
- Gravidity/physiology
- Hormone Antagonists/pharmacology
- Labor, Obstetric/drug effects
- Labor, Obstetric/physiology
- Mifepristone/pharmacology
- Myometrium/metabolism
- Pregnancy
- Pregnancy, Animal/metabolism
- Progesterone/pharmacology
- Proto-Oncogene Proteins c-fos/biosynthesis
- Proto-Oncogene Proteins c-jun/biosynthesis
- RNA, Messenger/analysis
- RNA, Messenger/biosynthesis
- Rats
- Rats, Wistar
- Sterilization, Tubal
- Transcription Factor AP-1/biosynthesis
Collapse
Affiliation(s)
- Jennifer A Mitchell
- Program in Development and Fetal Health, Samuel Lunenfeld Research Institute, Mount Sinai Hospital, 600 University Avenue, Toronto, Ontario, Canada M5G 1X5
| | | |
Collapse
|
47
|
Chen X, Liu W, Wang J, Wang X, Yu Z. STAT1 and STAT3 mediate thrombin-induced expression of TIMP-1 in human glomerular mesangial cells. Kidney Int 2002; 61:1377-82. [PMID: 11918744 DOI: 10.1046/j.1523-1755.2002.00283.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
BACKGROUND Thrombin exhibits numerous biological effects on glomerular resident cells, such as cell proliferation, release and synthesis of cytokines and collagen, expressions of metalloproteinases and their inhibitors, especially tissue inhibitor of metalloproteinase-1 (TIMP-1). However, the signaling mechanisms underlying these cellular events have not been fully elucidated. The present study was designed to examine the role of signal transducers and activators of transcription (STAT) in thrombin-induced TIMP-1 expression in human mesangial cells. METHODS Cultured human glomerular mesangial cells were incubated with thrombin up to 12 hours. The effects of the antisense of STAT1 and antisense of STAT3 on stimulated TIMP-1 mRNA levels and DNA-binding activities of both STAT1 and STAT3 were determined using Northern blot, electrophoretic mobility shift assay (EMSA), and supershift assay. RESULTS Cultured human mesangial cells constitutively expressed TIMP-1, and thrombin induced TIMP-1 gene transcription in a time- and dose-dependent manner. Hirudin, a specific inhibitor of thrombin, could block thrombin-induced TIMP-1 expression. Thrombin also induced STAT-DNA binding activity in a similar time- and dose-dependent manner. In order to examine the role of STAT in thrombin-induced TIMP-1 expression, STAT1 and STAT3 antisense oligonucleotides were used. EMSA showed that STAT1 and STAT3 antisense oligonucleotides could inhibit both thrombin-induced STAT-DNA binding activities and TIMP-1 mRNA expression; the supershift assay showed that the SIF band consisted of STAT1 and STAT3 proteins. CONCLUSIONS Both STAT1 and STAT3 may be involved, at least in part, in thrombin-induced expression of the TIMP-1 gene in cultured human mesangial cells.
Collapse
Affiliation(s)
- Xiangmei Chen
- Department of Nephrology, General Hospital of Chinese PLA, Beijing, People's Republic of China.
| | | | | | | | | |
Collapse
|
48
|
Sohara N, Trojanowska M, Reuben A. Oncostatin M stimulates tissue inhibitor of metalloproteinase-1 via a MEK-sensitive mechanism in human myofibroblasts. J Hepatol 2002; 36:191-9. [PMID: 11830330 DOI: 10.1016/s0168-8278(01)00265-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIMS We previously showed that in cultured human myofibroblasts (hMFBs), Oncostatin M (OSM)-stimulated collagen accumulation is associated with increased tissue inhibitor of metalloproteinase (TIMP)1 message. However, the mechanism is unknown. METHODS hMFBs were isolated by outgrowth from cirrhotic liver explants and cultured. Using OSM (10 ng/ml) stimulation, with and without PD98059 (PD, a specific mitogen-activated protein kinase/extracellular signal-related kinase (MEK) inhibitor), we measured: TIMP-1 protein in culture medium by Western blot, TIMP-1 mRNA levels and stability by Northern analysis, TIMP-1 promoter activity (including transcription site mutation analysis), DNA binding activity to nuclear proteins by electrophoretic mobility shift assay (EMSA), and total and phosphorylated MAP kinase in hMFB extracts by Western blot. RESULTS OSM stimulation of hMFBs increased TIMP-1 protein production 1.69-fold, TIMP-1 mRNA levels 2.36-fold, promoter activity 2.22-fold, TIMP-1 message stability, and phosphorylation of mitogen-activated protein kinase (MAPK). PD inhibited OSM-mediated stimulation of TIMP-1 protein, mRNA, promoter activity, phosphorylation of MAPK, and TIMP-1 message stability. An SP-1 transcription site of the TIMP-1 promoter is essential for OSM induction of TIMP-1 promoter activity. EMSA demonstrates that this site binds to transcriptional factors SP-1 and SP-3. CONCLUSIONS OSM stimulates the TIMP-1 axis in hMFBs in vitro via a MEK-MAP kinase cascade.
Collapse
Affiliation(s)
- Naondo Sohara
- Division of Gastroenterology and Hepatology, Department of Medicine, Medical University of South Carolina, 96 Jonathan Lucas Street, Suite 210, Charleston, SC 29425, USA
| | | | | |
Collapse
|
49
|
Gunaje JJ, Bhat GJ. Involvement of tyrosine phosphatase PTP1D in the inhibition of interleukin-6-induced Stat3 signaling by alpha-thrombin. Biochem Biophys Res Commun 2001; 288:252-7. [PMID: 11594781 DOI: 10.1006/bbrc.2001.5759] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We previously demonstrated that exposure of CCL39 lung fibroblasts to alpha-thrombin inhibits interleukin-6 (IL-6)-induced tyrosine phosphorylation of Stat3 (signal transducers and activators of transcription 3) via activation of mitogen-activated protein (MAP) kinase kinase 1 [Bhat et al. (1998) Arch. Biochem. Biophys. 350, 307-314]. In this study, using CCL39/MRC-5 cells, we investigated if additional signaling intermediates are involved in alpha-thrombin's inhibitory effects on IL-6-induced Stat3 signaling. We also determined if alpha-thrombin inhibits oncostatin M (OSM)-induced Stat3/Stat1, and interferon-gamma (IFN-gamma)-induced Stat1 tyrosine phosphorylation. We demonstrate that, although both IL-6 and OSM belong to the same cytokine family, alpha-thrombin inhibited only the IL-6-induced Stat3 tyrosine phosphorylation. The tyrosine phosphatase PTP1D coprecipitated with Stat3 from alpha-thrombin + IL-6, but not from alpha-thrombin + OSM-treated cells. Pretreatment of cells with a phosphatase inhibitor reversed the inhibitory actions of alpha-thrombin, suggesting a role for PTP1D in alpha-thrombin-mediated inhibition of IL-6-induced Stat3 signaling. Interestingly, alpha-thrombin failed to inhibit OSM- and IFN-gamma-induced Stat1 tyrosine phosphorylation. Cytokine-specific inhibition of the Stat3 signaling involving MAP kinase kinase 1 and PTP1D by alpha-thrombin may play an important role in regulation of gene expression.
Collapse
Affiliation(s)
- J J Gunaje
- Icogen Corporation, 454 North 34th Street, Seattle, WA 98103, USA.
| | | |
Collapse
|
50
|
Catterall JB, Carrère S, Koshy PJ, Degnan BA, Shingleton WD, Brinckerhoff CE, Rutter J, Cawston TE, Rowan AD. Synergistic induction of matrix metalloproteinase 1 by interleukin-1alpha and oncostatin M in human chondrocytes involves signal transducer and activator of transcription and activator protein 1 transcription factors via a novel mechanism. ARTHRITIS AND RHEUMATISM 2001; 44:2296-310. [PMID: 11665970 DOI: 10.1002/1529-0131(200110)44:10<2296::aid-art392>3.0.co;2-9] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To investigate the mechanism of interleukin-1alpha (IL-1alpha) and oncostatin M (OSM) synergistic regulation of matrix metalloproteinase 1 (MMP-1) in human chondrocytes. METHODS Using an immortalized human chondrocyte cell line (T/C28a4), we investigated regulation of the MMP-1 gene. Northern blotting and flow cytometric analysis were used to assess changes in receptor, MMP-1, and c-fos expression. Transient transfections using MMP-1 promoter/luciferase constructs, electrophoretic mobility shift assay, and site-directed mutagenesis were used to investigate MMP-1 promoter activation. RESULTS We found no alteration in the expression of receptors used by these cytokines after stimulation with IL-1alpha/OSM. Using MMP-1 promoter/luciferase reporter constructs, we found that the proximal (-517/+63) region of the MMP-1 promoter was sufficient to support a synergistic activation. A role for activated signal transducers and activators of transcription (STAT-3) was demonstrated, although no binding of STAT-3 to the MMP-1 promoter was found. However, constitutive binding of activator protein 1 (AP-1) was detected, and changes in c-fos expression could modulate promoter activity. CONCLUSION Since no changes in receptor expression were observed, receptor modulation cannot account for the IL-1alpha/OSM synergy observed. Instead, the interplay of various intracellular signaling pathways is a more likely explanation. STAT activation is required, but STAT proteins do not interact directly with the MMP-1 promoter. We propose that activated STATs stimulate c-fos expression, and changes in expression of the AP-1 components regulate MMP-1 expression. We highlight a new mechanism for MMP-1 regulation in human chondrocytes that could provide potential new therapeutic targets.
Collapse
Affiliation(s)
- J B Catterall
- Department of Rheumatology, School of Clinical Medical Sciences, The Medical School, University of Newcastle upon Tyne, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|