1
|
Beielstein AC, Izquierdo E, Blakemore S, Nickel N, Michalik M, Chawan S, Brinker R, Bartel HH, Vorholt D, Albert L, Nolte JL, Linke R, Costa Picossi CR, Sáiz J, Picard F, Florin A, Meinel J, Büttner R, Diefenhardt P, Brähler S, Villaseñor A, Winkels H, Hallek M, Krüger M, Barbas C, Pallasch CP. Macrophages are activated toward phagocytic lymphoma cell clearance by pentose phosphate pathway inhibition. Cell Rep Med 2024; 5:101830. [PMID: 39603243 PMCID: PMC11722127 DOI: 10.1016/j.xcrm.2024.101830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 08/27/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024]
Abstract
Macrophages in the B cell lymphoma microenvironment represent a functional node in progression and therapeutic response. We assessed metabolic regulation of macrophages in the context of therapeutic antibody-mediated phagocytosis. Pentose phosphate pathway (PPP) inhibition induces increased phagocytic lymphoma cell clearance by macrophages in vitro, in primary human chronic lymphocytic leukemia (CLL) patient co-cultures, and in mouse models. Addition of the PPP inhibitor S3 to antibody therapy achieves significantly prolonged overall survival in an aggressive B cell lymphoma mouse model. PPP inhibition induces metabolic activation and pro-inflammatory polarization of macrophages while it decreases macrophages' support for survival of lymphoma cells empowering anti-lymphoma function. As a mechanism of macrophage repolarization, the link between PPP and immune regulation was identified. PPP inhibition causes decreased glycogen level and subsequent modulation of the immune modulatory uridine diphosphate glucose (UDPG)-Stat1-Irg1-itaconate axis. Thus, we hypothesize the PPP as a key regulator and targetable modulator of macrophage activity in lymphoma to improve efficacy of immunotherapies and prolong survival.
Collapse
MESH Headings
- Pentose Phosphate Pathway/drug effects
- Animals
- Humans
- Macrophages/metabolism
- Macrophages/immunology
- Mice
- Phagocytosis
- Macrophage Activation/drug effects
- Leukemia, Lymphocytic, Chronic, B-Cell/metabolism
- Leukemia, Lymphocytic, Chronic, B-Cell/pathology
- Leukemia, Lymphocytic, Chronic, B-Cell/immunology
- Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy
- Cell Line, Tumor
- Tumor Microenvironment/immunology
Collapse
Affiliation(s)
- Anna C Beielstein
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Elena Izquierdo
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Departamento de Ciencias Médicas Básicas, Facultad de Medicina, Instituto de Medicina Molecular Aplicada - Nemesio Díez (IMMA-ND), Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Stuart Blakemore
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Nadine Nickel
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Michael Michalik
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Samruddhi Chawan
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Reinhild Brinker
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Hans-Henrik Bartel
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Daniela Vorholt
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Lukas Albert
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Janica L Nolte
- Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Rebecca Linke
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| | - Carolina Raíssa Costa Picossi
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Jorge Sáiz
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Felix Picard
- Department III of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Alexandra Florin
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Jörn Meinel
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Reinhard Büttner
- Institute of Pathology, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Paul Diefenhardt
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Sebastian Brähler
- Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany; Department II of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany
| | - Alma Villaseñor
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Holger Winkels
- Department III of Internal Medicine, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Michael Hallek
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Marcus Krüger
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany
| | - Coral Barbas
- Centro de Metabolómica y Bioanálisis (CEMBIO), Facultad de Farmacia, Universidad San Pablo-CEU, CEU Universities, Urbanización Montepríncipe, 28668 Boadilla del Monte, Spain
| | - Christian P Pallasch
- Department I of Internal Medicine, Centre for Integrated Oncology (CIO) Aachen-Bonn-Cologne-Duesseldorf, University Hospital Cologne, 50937 Cologne, Germany; Cologne Excellence Cluster for Cellular Stress Responses in Ageing-Associated Diseases (CECAD), University of Cologne, 50931 Cologne, Germany; Centre for Molecular Medicine Cologne (CMMC), University of Cologne, 50937 Cologne, Germany.
| |
Collapse
|
2
|
Huang H, Liang L, Sun D, Li J, Wang W, Zha L, Yang J, Pan K, Fan X, He C, Tang X, Zhang P. Rab37 Promotes Endothelial Differentiation and Accelerates ADSC-Mediated Diabetic Wound Healing through Regulating Secretion of Hsp90α and TIMP1. Stem Cell Rev Rep 2023; 19:1019-1033. [PMID: 36627432 DOI: 10.1007/s12015-022-10491-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/07/2022] [Indexed: 01/12/2023]
Abstract
Accumulating evidence indicates that adipose tissue-derived mesenchymal stem cells (ADSCs) are an effective treatment for diabetic refractory wounds. However, the application of ADSCs to diabetic wounds is still limited, indicating that we still lack sufficient knowledge regarding regulators/mediators of ADSCs during wound healing. Rab37, a member of RabGTPase, may function as regulator of vesicle trafficking, which is a crucial event for the secretion of cytokines by ADSCs. Our previous study indicated that Rab37 promotes the adiopogenic differentiation of ADSCs. In this study, we explored the role of Rab37 in ADSC-mediated diabetic wound healing. An in vivo study in db/db diabetic mice showed that Rab37-expressing ADSCs shortened the wound closure time, improved re-epithelialization and collagen deposition, and promoted angiogenesis during wound healing. An in vitro study showed that Rab37 promoted the proliferation, migration and endothelial differentiation of ADSCs. LC-MS/MS analysis identified Hsp90α and TIMP1 as up-regulated cytokines in conditioned media of Rab37-ADSCs. The up-regulation of Rab37 enhanced the secretion of Hsp90α and TIMP1 during endothelial differentiation and under high-glucose exposure. Interestingly, Rab37 promoted the expression of TIMP1, but not Hsp90α, during endothelial differentiation. PLA showed that Rab37 can directly bind to Hsp90α orTIMP1 in ADSCs. Moreover, Hsp90α and TIMP1 knockdown compromised the promoting effects of Rab37 on the proliferation, migration and endothelial differentiation of ADSCs. In conclusion, Rab37 promotes the proliferation, migration and endothelial differentiation of ADSCs and accelerates ADSC-mediated diabetic wound healing through regulating the secretion of Hsp90α and TIMP1.
Collapse
Affiliation(s)
- Haili Huang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Ling Liang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Dan Sun
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Jin Li
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Wentao Wang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Lixia Zha
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Jiaqi Yang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Kunyan Pan
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Xianmou Fan
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Chengzhang He
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China
| | - Xudong Tang
- Institute of Biochemistry and Molecular Biology, Collaborative Innovation Center for Antitumor Active Substance Research and development, Guangdong Medical University, Zhanjiang, China
| | - Peihua Zhang
- Department of Plastic Surgery, Affiliated Hospital of Guangdong Medical University, No. 57 Renmin Avenue South, Xiashan District, Zhanjiang City, 524001, Guangdong Province, China.
| |
Collapse
|
3
|
Garcia G, Fernandes A, Stein F, Brites D. Protective Signature of IFNγ-Stimulated Microglia Relies on miR-124-3p Regulation From the Secretome Released by Mutant APP Swedish Neuronal Cells. Front Pharmacol 2022; 13:833066. [PMID: 35620289 PMCID: PMC9127204 DOI: 10.3389/fphar.2022.833066] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 03/25/2022] [Indexed: 12/19/2022] Open
Abstract
Microglia-associated inflammation and miRNA dysregulation are key players in Alzheimer’s disease (AD) pathophysiology. Previously, we showed miR-124 upregulation in APP Swedish SH-SY5Y (SWE) and PSEN1 iPSC-derived neurons and its propagation by the secretome (soluble and exosomal fractions). After modulation with miR-124 mimic/inhibitor, we identified common responsive mechanisms between such models. We also reported miR-124 colocalization with microglia in AD patient hippocampi. Herein, we determined how miR-124 modulation in SWE cells influences microglia polarized subtypes in the context of inflammation. We used a coculture system without cell-to-cell contact formed by miR-124 modulated SWE cells and human CHME3 microglia stimulated with interferon-gamma (IFNγ-MG), in which we assessed their adopted gene/miRNA profile and proteomic signature. The increase of miR-124 in SWE cells/secretome (soluble and exosomal) was mimicked in IFNγ-MG. Treatment of SWE cells with the miR-124 inhibitor led to RAGE overexpression and loss of neuronal viability, while the mimic caused RAGE/HMGB1 downregulation and prevented mitochondria membrane potential loss. When accessing the paracrine effects on microglia, SWE miR-124 inhibitor favored their IFNγ-induced inflammatory signature (upregulated RAGE/HMGB1/iNOS/IL-1β; downregulated IL-10/ARG-1), while the mimic reduced microglia activation (downregulated TNF-α/iNOS) and deactivated extracellular MMP-2/MMP-9 levels. Microglia proteomics identified 113 responsive proteins to SWE miR-124 levels, including a subgroup of 17 proteins involved in immune function/inflammation and/or miR-124 targets. A total of 72 proteins were downregulated (e.g., MAP2K6) and 21 upregulated (e.g., PAWR) by the mimic, while the inhibitor also upregulated 21 proteins and downregulated 17 (e.g., TGFB1, PAWR, and EFEMP1). Other targets were associated with neurodevelopmental mechanisms, synaptic function, and vesicular trafficking. To examine the source of miR-124 variations in microglia, we silenced the RNase III endonuclease Dicer1 to block miRNA canonical biogenesis. Despite this suppression, the coculture with SWE cells/exosomes still raised microglial miR-124 levels, evidencing miR-124 transfer from neurons to microglia. This study is pioneer in elucidating that neuronal miR-124 reshapes microglia plasticity and in revealing the relevance of neuronal survival in mechanisms underlying inflammation in AD-associated neurodegeneration. These novel insights pave the way for the application of miRNA-based neuropharmacological strategies in AD whenever miRNA dysregulated levels are identified during patient stratification.
Collapse
Affiliation(s)
- Gonçalo Garcia
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Adelaide Fernandes
- Department of Pharmaceutical Sciences and Medicines, Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal.,Central Nervous System, Blood and Peripheral Inflammation, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Frank Stein
- Proteomics Core Facility, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Dora Brites
- Neuroinflammation, Signaling and Neuroregeneration Laboratory, Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| |
Collapse
|
4
|
Wen D, Liu WL, Lu ZW, Cao YM, Ji QH, Wei WJ. SNHG9, a Papillary Thyroid Cancer Cell Exosome-Enriched lncRNA, Inhibits Cell Autophagy and Promotes Cell Apoptosis of Normal Thyroid Epithelial Cell Nthy-ori-3 Through YBOX3/P21 Pathway. Front Oncol 2021; 11:647034. [PMID: 34017682 PMCID: PMC8129558 DOI: 10.3389/fonc.2021.647034] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 04/13/2021] [Indexed: 12/13/2022] Open
Abstract
Thyroid cancer is the most common type of endocrine malignancy. Although the general prognosis is good, the treatment of advanced disease is still challenging. Exosomes are vesicle units containing specific components that transmit information between cells. In order to explore its role in papillary thyroid cancer (PTC), our study screened exosome enriched lncRNA SNHG9 by lncRNA chip and explored its biological function. We used lncRNA chips combined with bioinformatics analysis to screen lncRNA SNHG9 enriched in exosomes. GO analysis suggested its relationship with autophagy and apoptosis. Quantitative PCR showed SNHG9 was highly expressed in PTC cells and exosomes and its correlation with PTC tumor size was analyzed by clinical characteristics. SNHG9 could inhibit the protective cell autophagy induced by starvation of human normal thyroid epithelial cell line Nthy-ori-3 and promote its apoptosis through PTC cell exosomes. RNA-pull down combined with protein spectrum showed that SNHG9 could interact with YBOX3. Western blot and RNA immunoprecipitation further confirmed their interaction. Western blot showed that SNHG9 could induce degradation of YBOX3, thus interfering with the stability of P21 mRNA and inducing cell apoptosis. In conclusion, our study identified SNHG9 as a PTC cell exosome-enriched lncRNA. SNHG9 could inhibit cell autophagy and promote apoptosis of Nthy-ori-3 cell through YBOX3/P21 pathway.
Collapse
Affiliation(s)
- Duo Wen
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wan-Lin Liu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhong-Wu Lu
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi-Ming Cao
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Qing-Hai Ji
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wen-Jun Wei
- Department of Head and Neck Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| |
Collapse
|
5
|
Theodoris CV, Zhou P, Liu L, Zhang Y, Nishino T, Huang Y, Kostina A, Ranade SS, Gifford CA, Uspenskiy V, Malashicheva A, Ding S, Srivastava D. Network-based screen in iPSC-derived cells reveals therapeutic candidate for heart valve disease. Science 2021; 371:eabd0724. [PMID: 33303684 PMCID: PMC7880903 DOI: 10.1126/science.abd0724] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 12/02/2020] [Indexed: 12/12/2022]
Abstract
Mapping the gene-regulatory networks dysregulated in human disease would allow the design of network-correcting therapies that treat the core disease mechanism. However, small molecules are traditionally screened for their effects on one to several outputs at most, biasing discovery and limiting the likelihood of true disease-modifying drug candidates. Here, we developed a machine-learning approach to identify small molecules that broadly correct gene networks dysregulated in a human induced pluripotent stem cell (iPSC) disease model of a common form of heart disease involving the aortic valve (AV). Gene network correction by the most efficacious therapeutic candidate, XCT790, generalized to patient-derived primary AV cells and was sufficient to prevent and treat AV disease in vivo in a mouse model. This strategy, made feasible by human iPSC technology, network analysis, and machine learning, may represent an effective path for drug discovery.
Collapse
Affiliation(s)
- Christina V Theodoris
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
- Program in Developmental and Stem Cell Biology (DSCB), University of California, San Francisco (UCSF), San Francisco, CA, USA
| | - Ping Zhou
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | - Lei Liu
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | - Yu Zhang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | - Tomohiro Nishino
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | - Yu Huang
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | - Aleksandra Kostina
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
| | - Sanjeev S Ranade
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | - Casey A Gifford
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
| | | | - Anna Malashicheva
- Institute of Cytology, Russian Academy of Sciences, Saint Petersburg, Russia
- Almazov Federal Medical Research Centre, Saint Petersburg, Russia
- Saint Petersburg State University, Saint Petersburg, Russia
| | - Sheng Ding
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, UCSF, San Francisco, CA, USA
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA.
- Roddenberry Stem Cell Center, Gladstone Institutes, San Francisco, CA, USA
- Department of Pediatrics, Department of Biochemistry and Biophysics, UCSF, San Francisco, CA, USA
| |
Collapse
|
6
|
Expression of Tight Junction Proteins Is Altered in Bladder Cancer. ACTA ACUST UNITED AC 2020; 2020:6341256. [PMID: 33282635 PMCID: PMC7685791 DOI: 10.1155/2020/6341256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Accepted: 11/03/2020] [Indexed: 11/17/2022]
Abstract
Bladder cancer (BC) is one of the tumors which occur most frequently in urological system, but less is known about the expression of tight junction proteins and its clinical significance in BC. In this study, expression of claudin-4, zonula occludens-1 (ZO-1) and zonula occludens-1 nucleic acid-binding protein (ZONAB), in BC tissues, adjacent nontumor tissue (ANTT), and BC cell lines was examined by Western blotting, semiquantitative RT-PCR, and immunohistochemistry, and then, the clinical significance of these proteins was investigated. The mRNA and protein expression of ZONAB were significantly upregulated, while those of ZO-1 was significantly downregulated in some BC cell lines and tissues in comparison with nontumor urothelial cell lines and ANTT. High expression rate of ZO-1 and ZONAB had negative correlation in BC tissues and was also correlated with muscle-invasive lesions in BC tissues. In conclusion, the expression of tight junction proteins is significantly altered in BC and ZO-1, and ZONAB interaction might be involved in BC development.
Collapse
|
7
|
Hessman CL, Hildebrandt J, Shah A, Brandt S, Bock A, Frye BC, Raffetseder U, Geffers R, Brunner-Weinzierl MC, Isermann B, Mertens PR, Lindquist JA. YB-1 Interferes with TNFα-TNFR Binding and Modulates Progranulin-Mediated Inhibition of TNFα Signaling. Int J Mol Sci 2020; 21:ijms21197076. [PMID: 32992926 PMCID: PMC7583764 DOI: 10.3390/ijms21197076] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/23/2022] Open
Abstract
Inflammation and an influx of macrophages are common elements in many diseases. Among pro-inflammatory cytokines, tumor necrosis factor α (TNFα) plays a central role by amplifying the cytokine network. Progranulin (PGRN) is a growth factor that binds to TNF receptors and interferes with TNFα-mediated signaling. Extracellular PGRN is processed into granulins by proteases released from immune cells. PGRN exerts anti-inflammatory effects, whereas granulins are pro-inflammatory. The factors coordinating these ambivalent functions remain unclear. In our study, we identify Y-box binding protein-1 (YB-1) as a candidate for this immune-modulating activity. Using a yeast-2-hybrid assay with YB-1 protein as bait, clones encoding for progranulin were selected using stringent criteria for strong interaction. We demonstrate that at physiological concentrations, YB-1 interferes with the binding of TNFα to its receptors in a dose-dependent manner using a flow cytometry-based binding assay. We show that YB-1 in combination with progranulin interferes with TNFα-mediated signaling, supporting the functionality with an NF-κB luciferase reporter assay. Together, we show that YB-1 displays immunomodulating functions by affecting the binding of TNFα to its receptors and influencing TNFα-mediated signaling via its interaction with progranulin.
Collapse
Affiliation(s)
- Christopher L. Hessman
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Josephine Hildebrandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Aneri Shah
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Sabine Brandt
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Antonia Bock
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
| | - Björn C. Frye
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany; (B.C.F.); (U.R.)
| | - Ute Raffetseder
- Department of Nephrology and Clinical Immunology, RWTH Aachen University, 52074 Aachen, Germany; (B.C.F.); (U.R.)
| | - Robert Geffers
- Genome Analytics Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany;
| | | | - Berend Isermann
- Institute of Laboratory Medicine, Clinical Chemistry and Molecular Diagnostics, University Hospital Leipzig, 04103 Leipzig, Germany;
| | - Peter R. Mertens
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
- Correspondence: (P.R.M.); (J.A.L.); Tel.: +49-391-6713236 (P.R.M.); +49-391-6724703 (J.A.L.)
| | - Jonathan A. Lindquist
- Clinic of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University, 39120 Magdeburg, Germany; (C.L.H.); (J.H.); (A.S.); (S.B.); (A.B.)
- Correspondence: (P.R.M.); (J.A.L.); Tel.: +49-391-6713236 (P.R.M.); +49-391-6724703 (J.A.L.)
| |
Collapse
|
8
|
Qin Z, Qu X, Lei L, Xu L, Pan Z. Y-Box-Binding Protein 3 (YBX3) Restricts Influenza A Virus by Interacting with Viral Ribonucleoprotein Complex and Imparing its Function. J Gen Virol 2020; 101:385-398. [DOI: 10.1099/jgv.0.001390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Zhenqiao Qin
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Xiao Qu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lei Lei
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Lulai Xu
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| | - Zishu Pan
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan 430072, PR China
| |
Collapse
|
9
|
The RNA-Binding Protein YBX3 Controls Amino Acid Levels by Regulating SLC mRNA Abundance. Cell Rep 2019; 27:3097-3106.e5. [DOI: 10.1016/j.celrep.2019.05.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 04/29/2019] [Accepted: 05/10/2019] [Indexed: 01/23/2023] Open
|
10
|
Lindquist JA, Mertens PR. Cold shock proteins: from cellular mechanisms to pathophysiology and disease. Cell Commun Signal 2018; 16:63. [PMID: 30257675 PMCID: PMC6158828 DOI: 10.1186/s12964-018-0274-6] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 09/13/2018] [Indexed: 12/21/2022] Open
Abstract
Cold shock proteins are multifunctional RNA/DNA binding proteins, characterized by the presence of one or more cold shock domains. In humans, the best characterized members of this family are denoted Y-box binding proteins, such as Y-box binding protein-1 (YB-1). Biological activities range from the regulation of transcription, splicing and translation, to the orchestration of exosomal RNA content. Indeed, the secretion of YB-1 from cells via exosomes has opened the door to further potent activities. Evidence links a skewed cold shock protein expression pattern with cancer and inflammatory diseases. In this review the evidence for a causative involvement of cold shock proteins in disease development and progression is summarized. Furthermore, the potential application of cold shock proteins for diagnostics and as targets for therapy is elucidated.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | - Peter R Mertens
- Clinic for Nephrology and Hypertension, Diabetology and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany.
| |
Collapse
|
11
|
Murugesan SN, Yadav BS, Maurya PK, Chaudhary A, Singh S, Mani A. Expression and network analysis of YBX1 interactors for identification of new drug targets in lung adenocarcinoma. J Genomics 2018; 6:103-112. [PMID: 29973960 PMCID: PMC6030768 DOI: 10.7150/jgen.20581] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/31/2017] [Indexed: 12/27/2022] Open
Abstract
Y-Box Binding protein 1 (YBX-1) is known to be involved in various types of cancers. It's interactors also play major role in various cellular functions. Present work aimed to study the expression profile of the YBX-1 interactors during lung adenocarcinoma (LUAD). The differential expression analysis involved 57 genes from 95 lung adenocarcinoma samples, construction of gene network and topology analysis. A Total of 43 genes were found to be differentially expressed from which 17 genes were found to be down regulated and 26 genes were up-regulated. We observed that Polyadenylate-binding protein 1 (PABPC1), a protein involved in YBX1 translation, is highly correlated with YBX1. The interaction network analysis for a differentially expressed non-coding RNA Growth Arrest Specific 5 (GAS5) suggests that two proteins namely, Growth Arrest Specific 2 (GAS2) and Peripheral myelin protein 22 (PMP22) are potentially involved in LUAD progression. The network analysis and differential expression suggests that Collagen type 1 alpha 2 (COL1A2) can be potential biomarker and target for LUAD.
Collapse
Affiliation(s)
| | - Birendra Singh Yadav
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India-211004
| | - Pramod Kumar Maurya
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India-211004
| | - Amit Chaudhary
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India-211004
| | - Swati Singh
- Center of Bioinformatics, University of Allahabad, India-211002
| | - Ashutosh Mani
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India-211004
| |
Collapse
|
12
|
The kidney regulates regeneration, but don’t upset the balance. Int Urol Nephrol 2016; 48:1371-1376. [DOI: 10.1007/s11255-016-1302-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Accepted: 04/18/2016] [Indexed: 01/13/2023]
|
13
|
Yadav BS, Singh S, Shaw AK, Mani A. Structure prediction and docking-based molecular insights of human YB-1 and nucleic acid interaction. J Biomol Struct Dyn 2016; 34:2561-2580. [PMID: 26609765 DOI: 10.1080/07391102.2015.1124050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Y-box-binding protein 1 (YB-1), a cold shock domain protein, is one of the most conserved nucleic acid-binding proteins. The multifunctional human YB-1 is a member of a large family of proteins with an evolutionary ancient cold shock domain. The presence of a cold shock domain is a specific feature of Y-box-binding proteins and allows attributing them to a wider group of proteins containing a cold shock domain. This protein is involved in a number of cellular processes including proliferation, differentiation and stress response. The YB-1 performs its function both in the cytoplasm and in the cell nucleus. In this study, we present the structure of full-length human YB-1 protein along with investigation of their nucleic acid-binding preferential. The study also focuses on biases for particular purine and pyrimidine bases. The overall goal of this study was to model and validate full-length YB-1 protein and to compare its nucleic acid-binding studies with previous reports.
Collapse
Affiliation(s)
- Birendra Singh Yadav
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad 211004 , India
| | - Swati Singh
- b Center of Bioinformatics , Nehru Science Center, Institute of Interdisciplinary Studies, University of Allahabad , Allahabad 211002 , India
| | - Amit Kumar Shaw
- c Department of Biotechnology , National Institute of Technology , Durgapur 713209 , India
| | - Ashutosh Mani
- a Department of Biotechnology , Motilal Nehru National Institute of Technology , Allahabad 211004 , India
| |
Collapse
|
14
|
Lindquist JA, Brandt S, Bernhardt A, Zhu C, Mertens PR. The role of cold shock domain proteins in inflammatory diseases. J Mol Med (Berl) 2014; 92:207-16. [PMID: 24562821 DOI: 10.1007/s00109-014-1136-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 01/17/2014] [Accepted: 02/10/2014] [Indexed: 12/15/2022]
Abstract
Cold shock domain proteins are characterized by the presence of one or more evolutionarily conserved cold shock domains, which each possess two nucleic acid-binding motifs. These proteins exert pleiotropic functions in cells via their ability to bind single-stranded RNA and/or DNA, thus allowing them to serve as transcriptional as well as translational regulators. Not only can they regulate their own expression, but they also regulate the expression of a number of pro- and anti-inflammatory cytokines, as well as cytokine receptors, making them key players in the orchestration of inflammatory processes and immune cell phenotypes. To add to their complexity, the expression of cold shock domain proteins is induced by cellular stress. At least one cold shock domain protein is actively secreted and binds to specific cell surface receptors, thereby influencing the proliferative and migratory capacity of the cell. The presence of cold shock domain proteins in the blood and/or urine of patients with cancer or inflammatory disease, as well as the identification of autoantibodies directed against these proteins make them potential targets of therapeutic interest.
Collapse
Affiliation(s)
- Jonathan A Lindquist
- Department of Nephrology and Hypertension, Diabetes and Endocrinology, Otto-von-Guericke University Magdeburg, Leipziger Strasse 44, 39120, Magdeburg, Germany
| | | | | | | | | |
Collapse
|
15
|
Eliseeva IA, Kim ER, Guryanov SG, Ovchinnikov LP, Lyabin DN. Y-box-binding protein 1 (YB-1) and its functions. BIOCHEMISTRY (MOSCOW) 2012; 76:1402-33. [PMID: 22339596 DOI: 10.1134/s0006297911130049] [Citation(s) in RCA: 252] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
This review describes the structure and functions of Y-box binding protein 1 (YB-1) and its homologs. Interactions of YB-1 with DNA, mRNAs, and proteins are considered. Data on the participation of YB-1 in DNA reparation and transcription, mRNA splicing and translation are systematized. Results on interactions of YB-1 with cytoskeleton components and its possible role in mRNA localization are discussed. Data on intracellular distribution of YB-1, its redistribution between the nucleus and the cytoplasm, and its secretion and extracellular functions are summarized. The effect of YB-1 on cell differentiation, its involvement in extra- and intracellular signaling pathways, and its role in early embryogenesis are described. The mechanisms of regulation of YB-1 expression in the cell are presented. Special attention is paid to the involvement of YB-1 in oncogenic cell transformation, multiple drug resistance, and dissemination of tumors. Both the oncogenic and antioncogenic activities of YB-1 are reviewed. The potential use of YB-1 in diagnostics and therapy as an early cancer marker and a molecular target is discussed.
Collapse
Affiliation(s)
- I A Eliseeva
- Institute of Protein Research, Russian Academy of Sciences, Pushchino, Moscow Region, Russia
| | | | | | | | | |
Collapse
|
16
|
Ji Y, Shen M, Wang X, Zhang S, Yu S, Chen G, Gu X, Ding F. Comparative proteomic analysis of primary schwann cells and a spontaneously immortalized schwann cell line RSC 96: a comprehensive overview with a focus on cell adhesion and migration related proteins. J Proteome Res 2012; 11:3186-98. [PMID: 22519560 DOI: 10.1021/pr201221u] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Schwann cells (SCs) are the principal glial cells of the peripheral nervous system (PNS). As a result of tissue heterogeneity and difficulties in the isolation and culture of primary SCs, a considerable understanding of SC biology is obtained from SC lines. However, the differences between the primary SCs and SC lines remain uncertain. In the present study, quantitative proteomic analysis based on isobaric tags for relative and absolute quantitation (iTRAQ) labeling was conducted to obtain an unbiased view of the proteomic profiles of primary rat SCs and RSC96, a spontaneously immortalized rat SC line. Out of 1757 identified proteins (FDR < 1%), 1702 were quantified, while 61 and 78 were found to be, respectively, up- or down-regulated (90% confidence interval) in RSC96. Bioinformatics analysis indicated the unique features of spontaneous immortalization, illustrated the dedifferentiated state of RSC96, and highlighted a panel of novel proteins associated with cell adhesion and migration including CADM4, FERMT2, and MCAM. Selected proteomic data and the requirement of these novel proteins in SC adhesion and migration were properly validated. Taken together, our data collectively revealed proteome differences between primary SCs and RSC96, validated several differentially expressed proteins with potential biological significance, and generated a database that may serve as a useful resource for studies of SC biology and pathology.
Collapse
Affiliation(s)
- Yuhua Ji
- Jiangsu Key Laboratory of Neuroregeneration, Nantong University , 19 Qixiu Road, Nantong, JS 226001, P. R. China
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Saito Y, Nakagami H, Azuma N, Hirata S, Sanada F, Taniyama Y, Morishita R, Kaneda Y, Sasajima T. Critical roles of cold shock domain protein A as an endogenous angiogenesis inhibitor in skeletal muscle. Antioxid Redox Signal 2011; 15:2109-20. [PMID: 21473684 DOI: 10.1089/ars.2010.3714] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
UNLABELLED Angiogenesis is regulated by the local balance between angiogenic stimulators and inhibitors and is maintained by muscle-derived angiogenic factors in ischemic tissues. AIMS Our objectives were to investigate the effect of cold shock domain protein A (CSDA) as an endogenous angiogenesis inhibitor and to develop a novel strategy of therapeutic angiogenesis by blocking CSDA expression. RESULTS In human skeletal muscle cells, CSDA was upregulated during hypoxia when cells were damaged and apoptosis was induced. CSDA expression could repress the activity of hypoxia inducible factor-1α and nuclear factor κB, because CSDA can competitively bind the hypoxia response element and the nuclear factor κB-binding element. As a result, vascular endothelial growth factor-A, interleukin-6, and interleukin-8 secretions from skeletal muscle cells were decreased. Further, CSDA depletion increased the secretion level of these angiogenic factors. In a hindlimb ischemia model, transfer of short-hairpin RNA targeting CSDA ameliorated ischemia without direct transfer of angiogenic factors. In this ischemic tissue, vascular endothelial growth factor-A, interleukin-6, and CXCL2 protein levels were increased. INNOVATION AND CONCLUSION CSDA appears to play a critical role as an endogenous angiogenesis inhibitor in skeletal muscle, and RNA interference targeting of CSDA is a promising gene therapy strategy for treating peripheral arterial disease.
Collapse
Affiliation(s)
- Yukihiro Saito
- Department of Surgery, Asahikawa Medical University, 2-1 Midorigaoka-Higashi, Asahikawa, Hokkaido, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Raffetseder U, Liehn EA, Weber C, Mertens PR. Role of cold shock Y-box protein-1 in inflammation, atherosclerosis and organ transplant rejection. Eur J Cell Biol 2011; 91:567-75. [PMID: 21943779 DOI: 10.1016/j.ejcb.2011.07.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2011] [Revised: 07/05/2011] [Accepted: 07/08/2011] [Indexed: 12/14/2022] Open
Abstract
Chemokines (chemoattractant cytokines) are crucial regulators of immune cell extravasation from the bloodstream into inflamed tissue. Dysfunctional regulation and perpetuated chemokine gene expression are linked to progressive chronic inflammatory diseases and, in respect to transplanted organs, may trigger graft rejection. RANTES (regulated upon activation, normal T cell expressed and secreted (also known as CCL5)) is a model chemokine with relevance in numerous inflammatory diseases where the innate immune response predominates. Transcription factor Y-box binding protein-1 (YB-1) serves as a trans-regulator of CCL5 gene transcription in vascular smooth muscle cells and leucocytes. This review provides an update on YB-1 as a mediator of inflammatory processes and focuses on the role of YB-1 in CCL5 expression in diseases with monocytic cell infiltrates, albeit acute or chronic. Paradigms of such diseases encompass atherosclerosis and transplant rejection where cold shock protein YB-1 takes a dominant role in transcriptional regulation.
Collapse
Affiliation(s)
- Ute Raffetseder
- Department of Nephrology and Clinical Immunology, University Hospital RWTH-Aachen, Pauwelsstrasse 30, 52057 Aachen, Germany.
| | | | | | | |
Collapse
|
19
|
YBX1 expression and function in early hematopoiesis and leukemic cells. Immunogenetics 2011; 63:337-50. [DOI: 10.1007/s00251-011-0517-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Accepted: 02/07/2011] [Indexed: 12/27/2022]
|
20
|
Petruzzelli R, Gaudino S, Amendola G, Sessa R, Puzone S, Di Concilio R, d'Urzo G, Amendolara M, Izzo P, Grosso M. Role of the cold shock domain protein A in the transcriptional regulation of HBG expression. Br J Haematol 2010; 150:689-99. [PMID: 20636440 DOI: 10.1111/j.1365-2141.2010.08303.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Impaired switching from fetal haemoglobin (HbF) to adult globin gene expression leads to hereditary persistence of fetal haemoglobin (HPFH) in adult life. This is of prime interest because elevated HbF levels ameliorate β-thalassaemia and sickle cell anaemia. Fetal haemoglobin levels are regulated by complex mechanisms involving factors linked or not to the β-globin gene (HBB) locus. To search for factors putatively involved in the expression of the γ-globin genes (HBG1, HBG2), we examined the reticulocyte transcriptome of three siblings who had different HbF levels and different degrees of β-thalassaemia severity although they had the same ΗBA- and ΗΒB cluster genotypes. By mRNA differential display we isolated the cDNA coding for the cold shock domain protein A (CSDA), also known as dbpA, previously reported to interact in vitro with the HBG2 promoter. Expression studies performed in K562 and in primary erythroid cells showed an inverse relationship between HBG and CSDA expression levels. Functional studies performed by Chromatin Immunoprecipitation and reporter gene assays in K562 cells demonstrated that CSDA is able to bind the HBG2 promoter and suppress its expression. Therefore, our study demonstrated that CSDA is a trans-acting repressor factor of HBG expression and modulates the HPFH phenotype.
Collapse
Affiliation(s)
- Raffaella Petruzzelli
- Dipartimento di Biochimica e Biotecnologie Mediche, Università degli Studi di Napoli Federico II, Naples, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Mihailovich M, Militti C, Gabaldón T, Gebauer F. Eukaryotic cold shock domain proteins: highly versatile regulators of gene expression. Bioessays 2010; 32:109-18. [PMID: 20091748 DOI: 10.1002/bies.200900122] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Cold shock domain (CSD)-containing proteins have been found in all three domains of life and function in a variety of processes that are related, for the most part, to post-transcriptional gene regulation. The CSD is an ancient beta-barrel fold that serves to bind nucleic acids. The CSD is structurally and functionally similar to the S1 domain, a fold with otherwise unrelated primary sequence. The flexibility of the CSD/S1 domain for RNA recognition confers an enormous functional versatility to the proteins that contain them. This review summarizes the current knowledge on eukaryotic CSD/S1 domain-containing proteins with a special emphasis on UNR (upstream of N-ras), a member of this family with multiple copies of the CSD.
Collapse
Affiliation(s)
- Marija Mihailovich
- Gene Regulation Programme, Centre de Regulació Genòmica (CRG-UPF), Barcelona, Spain
| | | | | | | |
Collapse
|
22
|
Saito Y, Nakagami H, Kurooka M, Takami Y, Kikuchi Y, Hayashi H, Nishikawa T, Tamai K, Morishita R, Azuma N, Sasajima T, Kaneda Y. Cold shock domain protein A represses angiogenesis and lymphangiogenesis via inhibition of serum response element. Oncogene 2007; 27:1821-33. [DOI: 10.1038/sj.onc.1210824] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Hunsberger JG, Bennett AH, Selvanayagam E, Duman RS, Newton SS. Gene profiling the response to kainic acid induced seizures. ACTA ACUST UNITED AC 2005; 141:95-112. [PMID: 16165245 DOI: 10.1016/j.molbrainres.2005.08.005] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2005] [Revised: 07/07/2005] [Accepted: 08/07/2005] [Indexed: 01/19/2023]
Abstract
Kainic acid activates non-N-methyl-d-aspartate (NMDA) glutamate receptors where it increases synaptic activity resulting in seizures, neurodegeneration, and remodeling. We performed microarray analysis on rat hippocampal tissue following kainic acid treatment in order to study the signaling mechanisms underlying these diverse processes in an attempt to increase our current understanding of mechanisms contributing to such fundamental processes as neuronal protection and neuronal plasticity. The kainic acid-treated rats used in our array experiments demonstrated severe seizure behavior that was also accompanied by neuronal degeneration which is suggested by fluoro-jade B staining and anti-caspase-3 immunohistochemistry. The gene profile revealed 36 novel kainic acid regulated genes along with additional genes previously reported. The functional roles of these novel genes are discussed. These genes mainly have roles in transcription and to a lesser extent have roles in cell death, extracellular matrix remodeling, cell cycle progression, neuroprotection, angiogenesis, and synaptic signaling. Gene regulation was confirmed via quantitative real time polymerase chain reaction and in situ hybridization.
Collapse
Affiliation(s)
- Joshua G Hunsberger
- Yale University School of Medicine, 34 Park Street, CMHC, New Haven, CT 06520, USA
| | | | | | | | | |
Collapse
|
24
|
van Roeyen CRC, Eitner F, Martinkus S, Thieltges SR, Ostendorf T, Bokemeyer D, Lüscher B, Lüscher-Firzlaff JM, Floege J, Mertens PR. Y-box protein 1 mediates PDGF-B effects in mesangioproliferative glomerular disease. J Am Soc Nephrol 2005; 16:2985-96. [PMID: 16093451 DOI: 10.1681/asn.2004111009] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
The pivotal role of PDGF-B for mesangioproliferative glomerular disease is well established. Here, Y-box protein-1 (YB-1) was identified as a downstream signaling target of PDGF-B. In healthy kidney cells, YB-1 was located predominantly within the nuclear compartment. Subsequent to PDGF-B infusion and in the course of anti-Thy1.1-induced mesangioproliferative glomerulonephritis, relocalization of YB-1 into the cytoplasm was observed. In experimental models that lack profound mesangial cell proliferation (e.g., Puromycin-nephrosis, passive Heyman nephritis, spontaneous normotensive nephrosclerosis, hyperlipidemic diabetic nephropathy), YB-1 remained nuclear. This translocation coincided with upregulation of YB-1 protein levels within the mesangial compartment. Increased YB-1 expression and subcellular shuttling was dependent on PDGF-B signaling via the mitogen-activated protein kinase pathway because these alterations were prevented by specific PDGF aptamers and the mitogen-activated protein kinase pathway inhibitor U0126. Furthermore, PDGF-B strongly induced YB-1 expression in vitro. This induction was important because RNAi-dependent knockdown of YB-1 abolished the mitogenic PDGF-B effect. Taken together, YB-1 seems to represent a specific and necessary PDGF-B target in mesangioproliferative glomerular disease.
Collapse
|
25
|
Mattioli M, Agnelli L, Fabris S, Baldini L, Morabito F, Bicciato S, Verdelli D, Intini D, Nobili L, Cro L, Pruneri G, Callea V, Stelitano C, Maiolo AT, Lombardi L, Neri A. Gene expression profiling of plasma cell dyscrasias reveals molecular patterns associated with distinct IGH translocations in multiple myeloma. Oncogene 2005; 24:2461-73. [PMID: 15735737 DOI: 10.1038/sj.onc.1208447] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Multiple myeloma (MM) is the most common form of plasma cell dyscrasia, characterized by a marked heterogeneity of genetic lesions and clinical course. It may develop from a premalignant condition (monoclonal gammopathy of undetermined significance, MGUS) or progress from intramedullary to extramedullary forms (plasma cell leukemia, PCL). To provide insights into the molecular characterization of plasma cell dyscrasias and to investigate the contribution of specific genetic lesions to the biological and clinical heterogeneity of MM, we analysed the gene expression profiles of plasma cells isolated from seven MGUS, 39 MM and six PCL patients by means of DNA microarrays. MMs resulted highly heterogeneous at transcriptional level, whereas the differential expression of genes mainly involved in DNA metabolism and proliferation distinguished MGUS from PCLs and the majority of MM cases. The clustering of MM patients was mainly driven by the presence of the most recurrent translocations involving the immunoglobulin heavy-chain locus. Distinct gene expression patterns have been found to be associated with different lesions: the overexpression of CCND2 and genes involved in cell adhesion pathways was observed in cases with deregulated MAF and MAFB, whereas genes upregulated in cases with the t(4;14) showed apoptosis-related functions. The peculiar finding in patients with the t(11;14) was the downregulation of the alpha-subunit of the IL-6 receptor. In addition, we identified a set of cancer germline antigens specifically expressed in a subgroup of MM patients characterized by an aggressive clinical evolution, a finding that could have implications for patient classification and immunotherapy.
Collapse
Affiliation(s)
- Michela Mattioli
- Laboratorio di Ematologia Sperimentale e Genetica Molecolare and U.O. Ematologia 1, Dipartimento di Scienze Mediche, Università degli Studi di Milano, Ospedale Maggiore IRCCS, Milano, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Reverter A, Barris W, Moreno-Sánchez N, McWilliam S, Wang YH, Harper GS, Lehnert SA, Dalrymple BP. Construction of gene interaction and regulatory networks in bovine skeletal muscle from expression data. ACTA ACUST UNITED AC 2005. [DOI: 10.1071/ea05039] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
We propose a data-driven reverse engineering approach to isolate the components of a gene interaction and regulatory network. We apply this method to the construction of a network for bovine skeletal muscle. Key nodes in the network include muscle-specific genes and transcription factors. muscle-specific genes are identified from data mining the USA National Cancer Institute, Cancer Genome Anatomy Project database, while transcription factors are predicted by accurate function annotation. A total of 5 microarray studies spanning 78 hybridisations and 23 different experimental conditions provided raw expression data. A recently-reported analytical method based on multivariate mixed-model equations is used to compute gene co-expression measures across 624 genes. The resulting network included 102 genes (of which 40 were muscle-specific genes and 7 were transcription factors) that clustered in 7 distinct modules with clear biological interpretation.
Collapse
|
27
|
Coles LS, Bartley MA, Bert A, Hunter J, Polyak S, Diamond P, Vadas MA, Goodall GJ. A multi-protein complex containing cold shock domain (Y-box) and polypyrimidine tract binding proteins forms on the vascular endothelial growth factor mRNA. Potential role in mRNA stabilization. ACTA ACUST UNITED AC 2004; 271:648-60. [PMID: 14728692 DOI: 10.1111/j.1432-1033.2003.03968.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Vascular endothelial growth factor (VEGF) is a key regulator of angiogenesis and post-transcriptional regulation plays a major role in VEGF expression. Both the 5'- and 3'-UTR are required for VEGF post-transcriptional regulation but factors binding to functional sequences within the 5'-UTR have not been fully characterized. We report here the identification of complexes, binding to the VEGFmRNA 5'- and 3'-UTR, that contain cold shock domain (CSD) and polypyrimidine tract binding (PTB) RNA binding proteins. Analysis of the CSD/PTB binding sites revealed a potential role in VEGF mRNA stability, in both noninduced and induced conditions, demonstrating a general stabilizing function. Such a stabilizing mechanism had not been reported previously for the VEGF gene. We further found that the CSD/PTB-containing complexes are large multiprotein complexes that are most likely preformed in solution and we demonstrate that PTB is associated with the VEGF mRNA in vivo. Complex formation between CSD proteins and PTB has not been reported previously. Analysis of the CSD/PTB RNA binding sites revealed a novel CSD protein RNA recognition site and also demonstrated that CSD proteins may direct the binding of CSD/PTB complexes. We found the same complexes binding to an RNA-stabilizing element of another growth factor gene, suggesting a broader functional role for the CSD/PTB complexes. Finally, as the VEGF gene is also regulated at the transcriptional level by CSD proteins, we propose a combined transcriptional/post-transcriptional role for these proteins in VEGF and other growth factor gene regulation.
Collapse
Affiliation(s)
- Leeanne S Coles
- Division of Human Immunology, The Hanson Institute, Institute of Medical and Veterinary Science, Adelaide, South Australia, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Kobayashi SD, Voyich JM, Braughton KR, Whitney AR, Nauseef WM, Malech HL, DeLeo FR. Gene Expression Profiling Provides Insight into the Pathophysiology of Chronic Granulomatous Disease. THE JOURNAL OF IMMUNOLOGY 2003; 172:636-43. [PMID: 14688376 DOI: 10.4049/jimmunol.172.1.636] [Citation(s) in RCA: 123] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Human polymorphonuclear leukocytes (PMNs or neutrophils) kill invading microorganisms with reactive oxygen species (ROS) and cytotoxic granule components. PMNs from individuals with X-linked chronic granulomatous disease (XCGD) do not produce ROS, thereby rendering these individuals more susceptible to infection. In addition, XCGD patients develop tissue granulomas that obstruct vital organs, the mechanism(s) for which are unknown. To gain insight into the molecular processes that contribute to the pathophysiology of XCGD, including formation of granulomas, we compared global gene expression in PMNs from XCGD patients and healthy control individuals. Genes encoding mediators of inflammation and host defense, including CD11c, CD14, CD54, FcgammaR1, FcalphaR, CD120b, TLR5, IL-4R, CCR1, p47(phox), p40(phox), IL-8, CXCL1, Nramp1, and calgranulins A and B, were up-regulated constitutively in unstimulated XCGD patient PMNs. By comparing transcript levels in normal and XCGD PMNs after phagocytosis, we discovered 206 genes whose expression changed in the presence and the absence of ROS, respectively. Notably, altered Bcl2-associated X protein synthesis accompanied defective neutrophil apoptosis in XCGD patients. We hypothesize that granuloma formation in XCGD patients reflects both increased proinflammatory activity and defective PMN apoptosis, and we conclude that ROS contribute directly or indirectly to the resolution of the inflammatory response by influencing PMN gene transcription.
Collapse
Affiliation(s)
- Scott D Kobayashi
- Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 903 South 4th Street, Hamilton, MT 59840, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Abstract
Hypothermia to mitigate ischemic brain tissue damage has a history of about six decades. Both in clinical and experimental studies of hypothermia, two principal arbitrary patterns of core temperature lowering have been defined: mild (32-35 degrees C) and moderate hypothermia (30-33 degrees C). The neuroprotective effectiveness of postischemic hypothermia is typically viewed with skepticism because of conflicting experimental data. The questions to be resolved include the: (i) postischemic delay; (ii) depth; and (iii) duration of hypothermia. However, more recent experimental data have revealed that a protected reduction in brain temperature can provide sustained behavioral and histological neuroprotection, especially when thermoregulatory responses are suppressed by sedation or anesthesia. Conversely, brief or very mild hypothermia may only delay neuronal damage. Accordingly, protracted hypothermia of 32-34 degrees C may be beneficial following acute cerebral ischemia. But the pathophysiological mechanism of this protection remains yet unclear. Although reduction of metabolism could explain protection by deep hypothermia, it does not explain the robust protection connected with mild hypothermia. A thorough understanding of the experimental data of postischemic hypothermia would lead to a more selective and effective clinical therapy. For this reason, we here summarize recent experimental data on the application of hypothermia in cerebral ischemia, discuss problems to be solved in the experimental field, and try to draw parallels to therapeutic potentials and limitations.
Collapse
Affiliation(s)
- B Schaller
- Max-Planck-Institute for Neurological Research, Cologne, Germany
| | | |
Collapse
|
30
|
Lee SH, Zafer A, de Repentigny Y, Kothary R, Tremblay ML, Gros P, Duplay P, Webb JR, Vidal SM. Transgenic expression of the activating natural killer receptor Ly49H confers resistance to cytomegalovirus in genetically susceptible mice. J Exp Med 2003; 197:515-26. [PMID: 12591908 PMCID: PMC2193863 DOI: 10.1084/jem.20021713] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Natural resistance to infection with mouse cytomegalovirus (MCMV) is controlled by a dominant locus, Cmv1. Cmv1 is linked to the Ly49 family of natural killer receptors on distal chromosome 6. While some studies localized Cmv1 as distal to the Ly49 gene cluster, genetic and functional analysis identified Ly49h as a pivotal factor in resistance to MCMV. The role of these two independent genomic domains in MCMV resistance was evaluated by functional complementation using transgenesis of bacterial artificial chromosomes (BAC) in genetically susceptible mice. Phenotypic and genetic characterization of the transgenic animals traced the resistance gene to a single region spanning the Ly49h gene. The appearance of the Ly49H protein in NK cells of transgenic mice coincided with the emergence of MCMV resistance, and there was a threshold Ly49H protein level associated with full recovery. Finally, transgenic expression of Ly49H in the context of either of the two independent susceptibility alleles, Cmv1(sBALB) or Cmv1(sFVB), conferred resistance to MCMV infection. These results demonstrate that Ly49h is necessary and sufficient to confer MCMV resistance, and formally demonstrate allelism between Cmv1 and Ly49h. This panel of transgenic animals provides a unique resource to study possible pleiotropic effect of Cmv1.
Collapse
MESH Headings
- Animals
- Antigens, Ly/genetics
- Antigens, Ly/physiology
- Chromosomes, Artificial, Bacterial
- Genetic Complementation Test
- Genetic Predisposition to Disease
- Herpesviridae Infections/genetics
- Herpesviridae Infections/immunology
- Immunity, Innate/genetics
- Killer Cells, Natural/immunology
- Lectins, C-Type
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Muromegalovirus
- NK Cell Lectin-Like Receptor Subfamily A
- Receptors, NK Cell Lectin-Like
- Transgenes
Collapse
Affiliation(s)
- Seung-Hwan Lee
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario K1H 8M5, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Moraes KCM, Quaresma AJC, Maehnss K, Kobarg J. Identification and characterization of proteins that selectively interact with isoforms of the mRNA binding protein AUF1 (hnRNP D). Biol Chem 2003; 384:25-37. [PMID: 12674497 DOI: 10.1515/bc.2003.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The mRNAs that encode certain cytokines and proto-oncogenes frequently contain a typical AU-rich motif that is located in their 3'-untranslated region. The protein AUF1 is the first factor identified that binds to AU-rich regions and mediates the fast degradation of the target mRNAs. AUF1 exists as four different isoforms (p37, p40, p42 and p45) that are generated by alternative splicing. The fact that AUF1 does not degrade mRNA itself had led to the suggestion that other AUF1 interacting proteins might be involved in the process of selective mRNA degradation. Here we used the yeast two-hybrid system in order to identify proteins that bind to AUF1. We detected AUF1 itself, as well as the ubiquitin-conjugating enzyme E2I and three RNA binding proteins: NSEP-1, NSAP-1 and IMP-2, as AUF1 interacting proteins. We confirmed all interactions in vitro and mapped the protein domains that are involved in the interaction with AUF1. Gel-shift assays with the recombinant purified proteins suggest that the interacting proteins and AUF1 can bind simultaneously to an AU-rich RNA oligonucleotide. Most interestingly, the AUF1 interacting protein NSEP-1 showed an endoribonuclease activity in vitro. These data suggest the possibility that the identified AUF1 interacting proteins might be involved in the regulation of mRNA stability mediated by AUF1.
Collapse
Affiliation(s)
- Karen C M Moraes
- Centro de Biologia Molecular Estrutural, Laboratório Nacional de Luz Síncrotron, Rua Giuseppe Máximo Scolfaro 10.000, CP 6192, Campinas, SP, CEP 13084-971, Brazil
| | | | | | | |
Collapse
|
32
|
Coles LS, Diamond P, Lambrusco L, Hunter J, Burrows J, Vadas MA, Goodall GJ. A novel mechanism of repression of the vascular endothelial growth factor promoter, by single strand DNA binding cold shock domain (Y-box) proteins in normoxic fibroblasts. Nucleic Acids Res 2002; 30:4845-54. [PMID: 12433987 PMCID: PMC137163 DOI: 10.1093/nar/gkf615] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Overexpression of vascular endothelial growth factor (VEGF) is implicated in a number of diseases. It is therefore critical that mechanisms exist to strictly regulate VEGF expression. A hypoxia-responsive (HR) region of the VEGF promoter which binds the HIF-1 transcription factor is a target for many signals that up-regulate VEGF transcription. Repressors targeting the HIF-1 transcription factor have been identified but no repressors directly binding the HR promoter region had been reported. We now report a novel mechanism of repression of the VEGF HR region involving DNA binding. We find that single strand DNA-specific cold shock domain (CSD or Y-box) proteins repress the HR region via a binding site downstream of the HIF-1 site. The repressor site is functional in unstimulated, normoxic fibroblasts and represents a novel means to prevent expression of VEGF in the absence of appropriate stimuli. We characterized complexes forming on the VEGF repressor site and identified a previously unreported nuclear CSD protein complex containing dbpA. Nuclear dbpA appears to bind as a dimer and we determined a means by which nuclear CSD proteins may enter double strand DNA to bind to their single strand sites to bring about repression of the VEGF HR region.
Collapse
Affiliation(s)
- Leeanne S Coles
- Division of Human Immunology, The Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Frome Road, Adelaide, SA 5000, Australia.
| | | | | | | | | | | | | |
Collapse
|
33
|
Zasedateleva OA, Krylov AS, Prokopenko DV, Skabkin MA, Ovchinnikov LP, Kolchinsky A, Mirzabekov AD. Specificity of mammalian Y-box binding protein p50 in interaction with ss and ds DNA analyzed with generic oligonucleotide microchip. J Mol Biol 2002; 324:73-87. [PMID: 12421560 DOI: 10.1016/s0022-2836(02)00937-3] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
p50 protein is a member of the Y-box binding transcription factor family and is a counterpart of YB-1 protein. The generic microchip was used to analyze the sequence specificity of p50 binding to single (ss) and double-stranded (ds) oligodeoxyribonucleotides. The generic microchip contained 4,096 single-stranded octadeoxyribonucleotides in which all possible core 6-mers (4(6)=4,096) were flanked at their 3' and 5'-ends with degenerated nucleotides. The oligonucleotides were chemically immobilized within polyacrylamide gel pads fixed on a glass slide. The binding of p50 to the generic microchip was shown to be the most specific to ss GGGG motif and then to ss CACC and CATC motifs. GC-rich ds oligonucleotides of the generic microchip, and particularly those containing GGTG/CACC, GATG/CATC, and GTGG/CCAC heterogeneous motifs, were most efficiently destabilized due to interaction with p50. Gel-shift electrophoresis has shown that the protein exhibits much higher binding specificity to 24-mer oligoA-TGGGGG-oligoA containing G-rich 6-mer, in comparison with 24-mer oligoA-AAATAT-oligoA carrying A,T-rich 6-mer in full correspondence with the data obtained with the microchip. Studies of DNA-binding proteins using gel-immobilized ss and ds DNA fragments provide a unique possibility to detect low-affinity complexes of these proteins with short sequence motifs and assess the role of these motifs in sequence-specific interactions with long recognition sites.
Collapse
Affiliation(s)
- O A Zasedateleva
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 32 Vavilov Street, 119991 Moscow, Russian Federation
| | | | | | | | | | | | | |
Collapse
|
34
|
Webb JR, Lee SH, Vidal SM. Genetic control of innate immune responses against cytomegalovirus: MCMV meets its match. Genes Immun 2002; 3:250-62. [PMID: 12140743 DOI: 10.1038/sj.gene.6363876] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2002] [Revised: 02/22/2002] [Accepted: 02/22/2002] [Indexed: 11/08/2022]
Abstract
Cytomegalovirus (CMV) is a widespread pathogen that is responsible for severe disease in immunocompromised individuals and probably, associated with vascular disease in the general population. There is increasing evidence that cells of the innate immune system play a key role in controlling this important pathogen. This is particularly evident in the experimental murine CMV (MCMV) model of infection which has revealed an important role for natural killer (NK) cells in controlling early viral replication after infection with MCMV. In this model, different strains of inbred mice exhibit striking differences in their level of susceptibility to MCMV infection. Genetic studies, performed almost 10 years ago, revealed that this pattern of susceptibility/resistance can be attributed to a single genetic locus termed Cmv1 and recently several groups that have been working on the mapping and identification of Cmv1 have met with success. Interestingly, Cmv1 is allelic to a member of the Ly49 gene family, which encode activating or inhibitory transmembrane receptors present on the surface of NK cells. All Ly49 receptors characterized to date interact with MHC class I molecules on potential target cells, resulting in the accumulation of signals to the NK to either 'kill' or 'ignore' the cell based upon the repertoire of MHC class I molecules expressed. The identification of Cmv1 as Ly49H, a stimulatory member of the Ly49 family, adds an interesting twist to the Ly49 story. Although the ligand of Ly49H is not yet known, there is already compelling evidence that the ligand is upregulated on virally infected cells, resulting in specific activation of Ly49H-expressing NK cells. This review provides an historical perspective of the MCMV infection model from its inception to the discovery of the gene responsible for the phenotype and provides a basis for further experiments aimed at understanding the role of NK cells, in general, and Ly49H, in particular, in mediating resistance to cytomegalovirus.
Collapse
Affiliation(s)
- J R Webb
- Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ontario, K1H 8M5, Canada
| | | | | |
Collapse
|
35
|
Borrego F, Kabat J, Kim DK, Lieto L, Maasho K, Peña J, Solana R, Coligan JE. Structure and function of major histocompatibility complex (MHC) class I specific receptors expressed on human natural killer (NK) cells. Mol Immunol 2002; 38:637-60. [PMID: 11858820 DOI: 10.1016/s0161-5890(01)00107-9] [Citation(s) in RCA: 193] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Natural killer (NK) cells express receptors that are specific for MHC class I molecules. These receptors play a crucial role in regulating the lytic and cytokine expression capabilities of NK cells. In humans, three distinct families of genes have been defined that encode for receptors of HLA class I molecules. The first family identified consists of type I transmembrane molecules belonging to the immunoglobulin (Ig) superfamily and are called killer cell Ig-like receptors (KIR). A second group of receptors belonging to the Ig superfamily, named ILT (for immunoglobulin like transcripts), has more recently been described. ILTs are expressed mainly on B, T and myeloid cells, but some members of this group are also expressed on NK cells. They are also referred to as LIRs (for leukocyte Ig-like receptor) and MIRs (for macrophage Ig-like receptor). The ligands for the KIR and some of the ILT receptors include classical (class Ia) HLA class I molecules, as well as the nonclassical (class Ib) HLA-G molecule. The third family of HLA class I receptors are C-type lectin family members and are composed of heterodimers of CD94 covalently associated with a member of the NKG2 family of molecules. The ligand for most members is the nonclassical class I molecule HLA-E. NKG2D, a member of the NKG2 family, is expressed as a homodimer, along with the adaptor molecule DAP10. The ligands of NKG2D include the human class I like molecules MICA and MICB, and the recently described ULBPs. Each of these three families of receptors has individual members that can recognize identical or similar ligands yet signal for activation or inhibition of cellular functions. This dichotomy correlates with particular structural features present in the transmembrane and intracytoplasmic portions of these molecules. In this review we will discuss the molecular structure, specificity, cellular expression patterns, and function of these HLA class I receptors, as well as the chromosomal location and genetic organization.
Collapse
Affiliation(s)
- Francisco Borrego
- Receptor Cell Biology Section, Laboratory of Allergic Diseases, NIAID, NIH, Twinbrook II, Room 205, 12441 Parklawn Dr., Rockville, MD 20852, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Russwurm S, Stonāns I, Schwerter K, Stonāne E, Meissner W, Reinhart K. Direct influence of mild hypothermia on cytokine expression and release in cultures of human peripheral blood mononuclear cells. J Interferon Cytokine Res 2002; 22:215-21. [PMID: 11911804 DOI: 10.1089/107999002753536185] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Hypothermia is associated with elevated frequency of infectious complications. Dysfunction of the immune response caused by hypothermia has been demonstrated in both clinical and animal studies, but it still remains unclear to what extent immunocompetent cells are directly influenced by hypothermia. To estimate the direct influence of mild hypothermia on cytokine expression and release by human peripheral blood mononuclear cells (PBMC), primary cultures of PBMC were incubated at 34 degrees C or 32 degrees C activated by lipopolysaccharide (LPS), phytohemagglutinin (PHA), or tumor necrosis factor-alpha (TNF-alpha). The cytokine gene expression was evaluated by RT-PCR. Release of interleukin-2 (IL-2), IL-6, IL-10, and TNF-alpha was measured by ELISA. Mild hyperthermia significantly impaired IL-2 gene expression in PHA-stimulated cultures of PBMC and decreased IL-2 release in all variants of cultures. Secretion of IL-6, IL-10, and TNF-alpha was decreased in hypothermic cultures of PBMC stimulated with the T lymphocyte activator PHA. Slight suppression of IL-10 secretion was observed also in TNF-alpha-stimulated hypothermic cultures of PBMC. TNF-alpha release increased slightly in mild hypothermia control cultures. Our data demonstrate that the direct influence of hypothermia on cytokine expression and release from PBMC is not uniform. Reduction of IL-2 production might play a crucial role in the impairment of immune response in hypothermia.
Collapse
Affiliation(s)
- Stefan Russwurm
- Clinic of Anesthesiology and Intensive Care Medicine, Friedrich-Schiller-University of Jena, D-07740 Jena, Germany
| | | | | | | | | | | |
Collapse
|
37
|
Capowski EE, Esnault S, Bhattacharya S, Malter JS. Y box-binding factor promotes eosinophil survival by stabilizing granulocyte-macrophage colony-stimulating factor mRNA. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2001; 167:5970-6. [PMID: 11698476 DOI: 10.4049/jimmunol.167.10.5970] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Short-lived peripheral blood eosinophils are recruited to the lungs of asthmatics after allergen challenge, where they become long-lived effector cells central to disease pathophysiology. GM-CSF is an important cytokine which promotes eosinophil differentiation, function, and survival after transit into the lung. In human eosinophils, GM-CSF production is controlled by regulated mRNA stability mediated by the 3' untranslated region, AU-rich elements (ARE). We identified human Y box-binding factor 1 (YB-1) as a GM-CSF mRNA ARE-specific binding protein that is capable of enhancing GM-CSF-dependent survival of eosinophils. Using a transfection system that mimics GM-CSF metabolism in eosinophils, we have shown that transduced YB-1 stabilized GM-CSF mRNA in an ARE-dependent mechanism, causing increased GM-CSF production and enhanced in vitro survival. RNA EMSAs indicate that YB-1 interacts with the GM-CSF mRNA through its 3' untranslated region ARE. In addition, endogenous GM-CSF mRNA coimmunoprecipitates with endogenous YB-1 protein in activated eosinophils but not resting cells. Thus, we propose a model whereby activation of eosinophils leads to YB-1 binding to and stabilization of GM-CSF mRNA, ultimately resulting in GM-CSF release and prolonged eosinophil survival.
Collapse
Affiliation(s)
- E E Capowski
- Department of Pathology and Laboratory Medicine, University of Wisconsin Medical School, Madison, WI 53792, USA
| | | | | | | |
Collapse
|
38
|
Diamond P, Shannon MF, Vadas MA, Coles LS. Cold shock domain factors activate the granulocyte-macrophage colony-stimulating factor promoter in stimulated Jurkat T cells. J Biol Chem 2001; 276:7943-51. [PMID: 11116154 DOI: 10.1074/jbc.m009836200] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cold shock domain (CSD) family members have been shown to play roles in either transcriptional activation or repression of many genes in various cell types. We have previously shown that CSD proteins dbpAv and dbpB (also known as YB-1) act to repress granulocyte-macrophage colony-stimulating factor transcription in human embryonic lung (HEL) fibroblasts via binding to single-stranded DNA regions across the promoter. Here we show that the same CSD factors are involved in granulocyte-macrophage colony-stimulating factor transcriptional activation in Jurkat T cells. Unlike the mechanisms of CSD repression in HEL fibroblasts, CSD-mediated activation in Jurkat T cells is not mediated through DNA binding but presumably through protein-protein interactions via the C terminus of the CSD protein with transcription factors such as RelA/NF-kappaB p65. We demonstrate that Jurkat T cells lack truncated CSD factor subtypes present in HEL fibroblasts, which raises the possibility that the cellular content of CSD proteins may determine their final role as activators or repressors of transcription.
Collapse
Affiliation(s)
- P Diamond
- Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia, 5000, Australia.
| | | | | | | |
Collapse
|
39
|
Shannon MF, Coles LS, Attema J, Diamond P. The role of architectural transcription factors in cytokine gene transcription. J Leukoc Biol 2001. [DOI: 10.1189/jlb.69.1.21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- M. F. Shannon
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra
| | - L. S. Coles
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, South Australia
| | - J. Attema
- Division of Biochemistry and Molecular Biology, John Curtin School of Medical Research, Australian National University, Canberra
| | - P. Diamond
- Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Adelaide, South Australia
| |
Collapse
|
40
|
Stenina OI, Poptic EJ, DiCorleto PE. Thrombin activates a Y box-binding protein (DNA-binding protein B) in endothelial cells. J Clin Invest 2000; 106:579-87. [PMID: 10953033 PMCID: PMC380248 DOI: 10.1172/jci9075] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Thrombin stimulates the expression of multiple genes in endothelial cells (ECs), but the trans-acting factors responsible for this induction remain undefined. We have previously described a thrombin-inducible nuclear factor (TINF), which binds to an element in the PDGF B promoter and is responsible for the thrombin inducibility of this gene. Inactive cytoplasmic TINF is rapidly activated and translocated to nuclei of ECs upon stimulation with thrombin. We have now purified TINF from thrombin-treated ECs. Amino acid sequencing revealed it to be a member of the Y-box protein family, and the sole Y-box protein-encoding cDNA we detected in human or bovine ECs corresponded to DNA-binding protein B (dbpB). DbpB translocated to the nucleus after thrombin stimulation of ECs as shown by FACS analysis of nuclei from ECs expressing GFP-dbpB fusion proteins. During thrombin activation, dbpB was found to be cleaved, yielding a 30-kDa NH(2)-terminal fragment that recognized the thrombin-response element sequence, but not the Y-box consensus sequence. Preincubation of ECs with protein tyrosine phosphatase inhibitors completely blocked dbpB activation by thrombin and blocked induction of endogenous PDGF B-chain mRNA and promoter activation by thrombin. Y-box proteins are known to act constitutively to regulate the expression of several genes. Activation of this class of transcription factors in response to thrombin or any other agonist represents a novel signaling pathway.
Collapse
Affiliation(s)
- O I Stenina
- Department of Cell Biology, Lerner Research Institute, The Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | | | | |
Collapse
|
41
|
Braun RE. Temporal control of protein synthesis during spermatogenesis. INTERNATIONAL JOURNAL OF ANDROLOGY 2000; 23 Suppl 2:92-4. [PMID: 10849508 DOI: 10.1046/j.1365-2605.2000.00027.x] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
During oogenesis and spermatogenesis transcription ceases prior to the differentiation of the mature cells. To complete germ cell differentiation and initiate early embryogenesis, proteins are synthesized from pre-existing mRNAs that are stored for several days. It is well established that important regulatory elements functioning in spatial localization, temporal translation or messenger RNA stability are located in the 3' untranslated region (3' UTR) of mRNAs. During mammalian spermatogenesis temporal translational regulation of the protamine 1 (Prm1) mRNA is dependent on a highly conserved sequence located in the distal region of its 3' UTR. The 17-nucleotide translational control element (TCE) mediates translational repression of the Prm1 mRNA. Mutation of the TCE causes premature synthesis of protamine protein and sterility. The Prm1 mRNA is stored as a cytoplasmic ribonucleoprotein (mRNP) particle in spermatids. Contained within the particle are several members of the Y box family of nucleic acid binding proteins. In the yeast three-hybrid system the murine Y box proteins MSY1, MSY2 and MSY4 bind in a sequence-dependent manner to a conserved region in the proximal portion of the Prm1 3' UTR. Sequence-specific binding by MSY4 to the Y box recognition sequence (YRS) is dependent on the highly conserved cold shock domain, possibly through the RNP1 and RNP2 motifs present within it. The Y box proteins may function as translational repressors in vivo. Alternatively, their primary function may be to protect mRNAs from degradation during their extended period of storage. Translational activation of stored mRNAs is essential for the completion of gametogenesis. Proper translational activation of the Prm1 mRNA in elongated spermatids requires the cytoplasmic double-stranded RNA binding protein TARBP2. Tarbp2 is expressed at low levels in many cells but is expressed at robust levels in late stage meiotic cells and in postmeiotic spermatids. Mice mutant for Tarbp2 are defective in proper translational activation of the Prm1 and Prm2 mRNAs and are sterile. Current studies are designed to determine the mechanism by which proteins bound to the 3' UTR communicate with the 5' end of the message to control translational silencing and activation.
Collapse
Affiliation(s)
- R E Braun
- Department of Genetics, Box 357360, University of Washington, Seattle, WA, USA.
| |
Collapse
|
42
|
Coles LS, Diamond P, Occhiodoro F, Vadas MA, Shannon MF. An ordered array of cold shock domain repressor elements across tumor necrosis factor-responsive elements of the granulocyte-macrophage colony-stimulating factor promoter. J Biol Chem 2000; 275:14482-93. [PMID: 10799531 DOI: 10.1074/jbc.275.19.14482] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The tumor necrosis factor-alpha-responsive region of the human granulocyte-macrophage colony-stimulating factor (GM-CSF) promoter (-114 to -31) encompasses binding sites for NF-kappaB, CBF, AP-1, ETS, and NFAT families of transcription factors. We show both here and previously that mutation of any one of these binding sites greatly reduces tumor necrosis factor-alpha induction of the GM-CSF promoter. Interspersed between these elements are sequences that when mutated lead to an increase in GM-CSF promoter activity. We have previously shown that two of these repressor elements bind proteins known as cold shock domain (CSD) factors and that overexpression of CSD proteins leads to repression of GM-CSF promoter activity in fibroblasts. CSD proteins are single strand DNA- and RNA-binding proteins that contact 5'-CCTG-3' sequences in the GM-CSF repressor elements. We show here that two newly identified repressor sequences in the proximal promoter can also bind CSD proteins. We have characterized the CSD-containing protein complexes that bind to the GM-CSF promoter and identified a novel protein related to mitochondrial single strand binding protein that forms part of one of these complexes. The four CSD-binding sites on the promoter occur in pairs on opposite strands of the DNA and appear to form an ordered array of binding elements. A similar ordered array of CSD sites are present in the promoters of the granulocyte colony-stimulating factor and interleukin-3 genes, implying a common mechanism for negative regulation of these myeloid growth factors.
Collapse
Affiliation(s)
- L S Coles
- Division of Human Immunology, Hanson Centre for Cancer Research, Institute of Medical and Veterinary Science, Frome Road, Adelaide, South Australia, 5000, Australia.
| | | | | | | | | |
Collapse
|
43
|
Davies HG, Giorgini F, Fajardo MA, Braun RE. A sequence-specific RNA binding complex expressed in murine germ cells contains MSY2 and MSY4. Dev Biol 2000; 221:87-100. [PMID: 10772793 DOI: 10.1006/dbio.2000.9658] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The protamine mRNAs are stored for up to 8 days as translationally repressed ribonucleoprotein particles during murine spermatogenesis. Translational repression of the protamine 1, Prm1, mRNA is controlled by sequences in its 3'-untranslated region (UTR). In this study we used the yeast three-hybrid system to clone Msy4, which encodes a novel member of the Y box family of nucleic acid binding proteins. MSY4 specifically binds to a site within the 5' most 37 nucleotides in the Prm1 3' UTR. Msy4 is highly expressed in the testis, and the protein is detected in the cytoplasm of germ cells in both the testis and the ovary, where repressed messages are stored. Analysis of a previously described 48/50-kDa binding activity in testis extracts by electrophoretic mobility shift assays and immunoprecipitation indicates the activity is composed of MSY4 and MSY2, another mouse Y box protein. Polysome analysis demonstrates MSY4 is associated with mRNPs, consistent with MSY4 having a role in storing repressed messages.
Collapse
Affiliation(s)
- H G Davies
- Department of Genetics, University of Washington, Seattle, Washington 98195, USA
| | | | | | | |
Collapse
|
44
|
Chang BE, Lin CY, Kuo CM. Molecular cloning of a cold-shock domain protein, zfY1, in zebrafish embryo(1). BIOCHIMICA ET BIOPHYSICA ACTA 1999; 1433:343-9. [PMID: 10446383 DOI: 10.1016/s0167-4838(99)00142-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Cold-shock domain proteins in vertebrates contain a highly conserved domain which is related to the Escherichia coli cold-shock proteins. Here we report the cloning of a cold-shock domain protein from zebrafish embryo. Using the combination of PCR techniques with degenerate primers, 5'RACE and 3'RACE, the full length cDNA of a cold-shock domain protein in the zebrafish embryo was successfully cloned without constructing and screening a library. Determined from the deduced amino acid sequence, this protein is most similar to Xenopus, FRGY1, and this newly cloned zebrafish gene was therefore designated as zfY1.
Collapse
Affiliation(s)
- B E Chang
- Institute of Fisheries Science, National Taiwan University, Taipei, Taiwan, ROC
| | | | | |
Collapse
|
45
|
Chen X, Reitman M, Bieker JJ. Chromatin structure and transcriptional control elements of the erythroid Krüppel-like factor (EKLF) gene. J Biol Chem 1998; 273:25031-40. [PMID: 9737959 DOI: 10.1074/jbc.273.39.25031] [Citation(s) in RCA: 25] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid Krüppel-like factor (EKLF) is a red cell-specific transcription factor whose activity is critical for the switch in expression from fetal to adult beta-globin during erythroid ontogeny. We have examined its own regulation using a number of approaches. First, the EKLF transcription unit is in an open chromatin configuration in erythroid cells. Second, in vivo transfection assays demonstrate that the more distal of the two erythroid-specific DNase-hypersensitive sites behaves as an enhancer. Although this conserved element imparts high level transcription to a heterologous promoter in all lines examined, erythroid specificity is retained only when it is fused to the proximal EKLF promoter, which contains an important GATA site. Third, extensive mutagenesis of this enhancer element has delimited its in vivo activity to a core region of 49 base pairs. Finally, in vitro footprint and gel shift assays demonstrate that three distinct DNA binding activities in erythroid cell extracts individually interact with three short sequences within this core enhancer element. These analyses reveal that high level erythroid expression of EKLF relies on the interplay between conserved proximal and distal promoter elements that alter chromatin structure and likely provide a target for genetic control via extracellular induction pathways.
Collapse
Affiliation(s)
- X Chen
- Brookdale Center for Molecular Biology, Mount Sinai School of Medicine, New York, New York 10029, USA
| | | | | |
Collapse
|
46
|
Bayarsaihan D, Soto RJ, Lukens LN. Cloning and characterization of a novel sequence-specific single-stranded-DNA-binding protein. Biochem J 1998; 331 ( Pt 2):447-52. [PMID: 9531483 PMCID: PMC1219374 DOI: 10.1042/bj3310447] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The promoter region of the chicken alpha2(I) collagen gene contains a pyrimidine-rich element that is well conserved in different mammalian species. This sequence can also form an unusual DNA structure as shown by its sensitivity to SI nuclease in vitro and it lies in a region that is DNase I-hypersensitive only when this promoter is active. We have recently reported that fibroblast nuclear proteins, including chicken Y-box-binding protein 1, bind to this single-stranded pyrimidine-rich sequence. Here we report the isolation, from a chick embryo fibroblast cDNA expression library, of a partial cDNA clone encoding a previously unknown protein, designated SSDP (sequence-specific single-stranded DNA-binding protein), that binds this single-stranded sequence. This clone contains 1199 bp of chicken sequence and has a single long open reading frame that encodes 284 amino acid residues. The affinity-purified recombinant protein encoded by this cDNA binds sequence-specifically to the single-stranded pyrimidine sequence. This cDNA sequence lacks significant similarity to any known gene in the data banks, but it is highly conserved in expressed sequence tags derived from both mouse and human. The corresponding amino acid sequence is remarkably conserved, having 97% identity with mouse and human expressed sequences. The corresponding mRNA is approx. 1800 nt in length and is expressed in both fibroblasts and chondrocytes. The high affinity of this protein for this conserved pyrimidine-rich region suggests that it might be involved in the transcriptional regulation of the alpha2(I) collagen gene.
Collapse
Affiliation(s)
- D Bayarsaihan
- Department of Molecular Biology and Biochemistry, Wesleyan University, Middletown, CT 06459, USA
| | | | | |
Collapse
|
47
|
Ren H, Stiles GL. A single-stranded DNA binding site in the human A1 adenosine receptor gene promoter. Mol Pharmacol 1998; 53:43-51. [PMID: 9443931 DOI: 10.1124/mol.53.1.43] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
Human A1 adenosine receptor gene expression is controlled by two independent promoters. The upstream promoter, promoter A, is subject to tissue specific regulation because not all cells express the mRNA associated with this promoter. One potential regulatory sequence located downstream of the TATA box is an AGG element appearing in a tandem repeat. In a previous study, transient transfection assays showed that mutations made in those AGG elements substantially reduced promoter activity. In the current study, DNase I footprinting indicated nuclear protein binding to this sequence between the TATA box and transcriptional start site. Electrophoretic mobility shift assay confirmed further the presence of an AGG element binding protein (AGBP) in human brain nuclear protein extracts. This binding protein has much higher affinity for single-stranded than for double-stranded DNA, and the binding is sequence specific. A series of assays also showed that AGBP is not related to the nuclear factor SP1 and the binding does not require metal cofactors. Therefore, AGBP is likely to be a specific single-stranded DNA binding protein that is required for the full expression of A1 adenosine receptor gene and particularly abundant in brain tissue.
Collapse
Affiliation(s)
- H Ren
- Department of Medicine, Duke University Medical Center, Durham, North Carolina 27710, USA
| | | |
Collapse
|
48
|
Ammerpohl O, Short ML, Asbrand C, Schmitz A, Renkawitz R. Complex protein binding to the mouse M-lysozyme gene downstream enhancer involves single-stranded DNA binding. Gene 1997; 200:75-84. [PMID: 9373140 DOI: 10.1016/s0378-1119(97)00377-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The mouse M-lysozyme downstream enhancer has been previously characterized on several levels of gene regulation. The enhancer was co-localized with a DNase I hypersensitive site in the chromatin of mature macrophages, the in vivo interaction of transcription factor GABP with the enhancer core (MLDE) demonstrated binding being restricted to mature macrophage cells, and analysis of the MLDE methylation state revealed a correlation between demethylation of CpG dinucleotides and the in vivo GABP binding. Here, we analyzed in detail the full-length enhancer in addition to the core element. We identified a total of nine binding sites for nuclear factors. Most of these factors are found ubiquitously in all cell types tested. These factors include several unknown proteins as well as the transcription factor NF-Y. In addition, three binding sites for a new single-stranded DNA binding protein were found. The presence of this factor in mature macrophages correlates with the in vivo DNA melting of one of the binding sites and with the enhancer strength.
Collapse
Affiliation(s)
- O Ammerpohl
- Genetisches Institut, Justus-Liebig-Universität, Giessen, Germany
| | | | | | | | | |
Collapse
|