1
|
Harsanyi S, Novakova ZV, Bevizova K, Danisovic L, Ziaran S. Biomarkers of Bladder Cancer: Cell-Free DNA, Epigenetic Modifications and Non-Coding RNAs. Int J Mol Sci 2022; 23:13206. [PMID: 36361996 PMCID: PMC9653602 DOI: 10.3390/ijms232113206] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/17/2022] [Accepted: 10/27/2022] [Indexed: 11/29/2022] Open
Abstract
Bladder cancer (BC) is the 10th most frequent cancer in the world. The initial diagnosis and surveillance of BC require a combination of invasive and non-invasive methods, which are costly and suffer from several limitations. Cystoscopy with urine cytology and histological examination presents the standard diagnostic approach. Various biomarkers (e.g., proteins, genes, and RNAs) have been extensively studied in relation to BC. However, the new trend of liquid biopsy slowly proves to be almost equally effective. Cell-free DNA, non-coding RNA, and other subcellular structures are now being tested for the best predictive and diagnostic value. In this review, we focused on published gene mutations, especially in DNA fragments, but also epigenetic modifications, and non-coding RNA (ncRNA) molecules acquired by liquid biopsy. We performed an online search in PubMed/Medline, Scopus, and Web of Science databases using the terms "bladder cancer", in combination with "markers" or "biomarkers" published until August 2022. If applicable, we set the sensitivity and specificity threshold to 80%. In the era of precision medicine, the development of complex laboratory techniques fuels the search and development of more sensitive and specific biomarkers for diagnosis, follow-up, and screening of BC. Future efforts will be focused on the validation of their sensitivity, specificity, predictive value, and their utility in everyday clinical practice.
Collapse
Affiliation(s)
- Stefan Harsanyi
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Zuzana Varchulova Novakova
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Katarina Bevizova
- Institute of Anatomy, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 2, 811 08 Bratislava, Slovakia
| | - Lubos Danisovic
- Institute of Medical Biology, Genetics and Clinical Genetics, Faculty of Medicine, Comenius University in Bratislava, Sasinkova 4, 811 08 Bratislava, Slovakia
| | - Stanislav Ziaran
- Department of Urology, Faculty of Medicine, Comenius University in Bratislava, Limbova 5, 833 05 Bratislava, Slovakia
| |
Collapse
|
2
|
Wu X, Wu MY, Jiang M, Zhi Q, Bian X, Xu MD, Gong FR, Hou J, Tao M, Shou LM, Duan W, Chen K, Shen M, Li W. TNF-α sensitizes chemotherapy and radiotherapy against breast cancer cells. Cancer Cell Int 2017; 17:13. [PMID: 28127258 PMCID: PMC5260016 DOI: 10.1186/s12935-017-0382-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 01/06/2017] [Indexed: 12/13/2022] Open
Abstract
Purpose Despite new developments in cancer therapy, chemotherapy and radiotherapy remain the cornerstone of breast cancer treatment. Therefore, finding ways to reduce the toxicity and increase sensitivity is particularly important. Tumor necrosis factor alpha (TNF-α) exerts multiple functions in cell proliferation, differentiation and apoptosis. In the present study, we investigated whether TNF-α could enhance the effect of chemotherapy and radiotherapy against breast cancer cells. Methods Cell growth was determined by MTT assay in vitro, and by using nude mouse tumor xenograft model in vivo. Cell cycle and apoptosis/necrosis were evaluated by flow cytometry. DNA damage was visualized by phospho-Histone H2A.X staining. mRNA expression was assessed by using real-time PCR. Protein expression was tested by Western blot assay. Results TNF-α strengthened the cytotoxicity of docetaxel, 5-FU and cisplatin against breast cancer cells both in vitro and in vivo. TNF-α activated NF-κB pathway and dependently up-regulated expressions of CyclinD1, CyclinD2, CyclinE, CDK2, CDK4 and CDK6, the key regulators participating in G1→S phase transition. As a result, TNF-α drove cells out of quiescent G0/G1 phase, entering vulnerable proliferating phases. Treatment of TNF-α brought more DNA damage after Cs137-irradiation and strengthened G2/M and S phase cell cycle arrest induced by docetaxel and cisplatin respectively. Moreover, the up-regulation of RIP3 (a necroptosis marker) by 5-FU, and the activation of RIP3 by TNF-α, synergistically triggered necroptosis (programmed necrosis). Knockdown of RIP3 attenuated the synergetic effect of TNF-α and 5-FU. Conclusion TNF-α presented radiotherapy- and chemotherapy-sensitizing effects against breast cancer cells.
Collapse
Affiliation(s)
- Xiao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Meng-Yao Wu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Min Jiang
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Qiaoming Zhi
- Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Xiaojie Bian
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Meng-Dan Xu
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Fei-Ran Gong
- Department of Hematology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Juan Hou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China.,Department of Oncology, the People's Hospital of Jingjiang, Jingjiang, 214500 China
| | - Min Tao
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, 215021 China.,Jiangsu Institute of Clinical Immunology, Suzhou, 215006 China.,Institute of Medical Biotechnology, Soochow University, Suzhou, 215021 China
| | - Liu-Mei Shou
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China.,Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medicine University, Hangzhou, 310006 China
| | - Weiming Duan
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Kai Chen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Meng Shen
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Wei Li
- Department of Oncology, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China.,PREMED Key Laboratory for Precision Medicine, Soochow University, Suzhou, 215021 China.,Jiangsu Institute of Clinical Immunology, Suzhou, 215006 China.,Center for Systems Biology, Soochow University, Suzhou, 215006 China
| |
Collapse
|
3
|
Fu YP, Kohaar I, Moore LE, Lenz P, Figueroa JD, Tang W, Porter-Gill P, Chatterjee N, Scott-Johnson A, Garcia-Closas M, Muchmore B, Baris D, Paquin A, Ylaya K, Schwenn M, Apolo AB, Karagas MR, Tarway M, Johnson A, Mumy A, Schned A, Guedez L, Jones MA, Kida M, Hosain GMM, Malats N, Kogevinas M, Tardon A, Serra C, Carrato A, Garcia-Closas R, Lloreta J, Wu X, Purdue M, Andriole GL, Grubb RL, Black A, Landi MT, Caporaso NE, Vineis P, Siddiq A, Bueno-de-Mesquita HB, Trichopoulos D, Ljungberg B, Severi G, Weiderpass E, Krogh V, Dorronsoro M, Travis RC, Tjønneland A, Brennan P, Chang-Claude J, Riboli E, Prescott J, Chen C, De Vivo I, Govannucci E, Hunter D, Kraft P, Lindstrom S, Gapstur SM, Jacobs EJ, Diver WR, Albanes D, Weinstein SJ, Virtamo J, Kooperberg C, Hohensee C, Rodabough RJ, Cortessis VK, Conti DV, Gago-Dominguez M, Stern MC, Pike MC, Van Den Berg D, Yuan JM, Haiman CA, Cussenot O, Cancel-Tassin G, Roupret M, Comperat E, Porru S, Carta A, Pavanello S, Arici C, Mastrangelo G, Grossman HB, Wang Z, Deng X, Chung CC, Hutchinson A, Burdette L, Wheeler W, Fraumeni J, Chanock SJ, Hewitt SM, Silverman DT, Rothman N, Prokunina-Olsson L. The 19q12 bladder cancer GWAS signal: association with cyclin E function and aggressive disease. Cancer Res 2014; 74:5808-18. [PMID: 25320178 PMCID: PMC4203382 DOI: 10.1158/0008-5472.can-14-1531] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
A genome-wide association study (GWAS) of bladder cancer identified a genetic marker rs8102137 within the 19q12 region as a novel susceptibility variant. This marker is located upstream of the CCNE1 gene, which encodes cyclin E, a cell-cycle protein. We performed genetic fine-mapping analysis of the CCNE1 region using data from two bladder cancer GWAS (5,942 cases and 10,857 controls). We found that the original GWAS marker rs8102137 represents a group of 47 linked SNPs (with r(2) ≥ 0.7) associated with increased bladder cancer risk. From this group, we selected a functional promoter variant rs7257330, which showed strong allele-specific binding of nuclear proteins in several cell lines. In both GWASs, rs7257330 was associated only with aggressive bladder cancer, with a combined per-allele OR = 1.18 [95% confidence interval (CI), 1.09-1.27, P = 4.67 × 10(-5)] versus OR = 1.01 (95% CI, 0.93-1.10, P = 0.79) for nonaggressive disease, with P = 0.0015 for case-only analysis. Cyclin E protein expression analyzed in 265 bladder tumors was increased in aggressive tumors (P = 0.013) and, independently, with each rs7257330-A risk allele (P(trend) = 0.024). Overexpression of recombinant cyclin E in cell lines caused significant acceleration of cell cycle. In conclusion, we defined the 19q12 signal as the first GWAS signal specific for aggressive bladder cancer. Molecular mechanisms of this genetic association may be related to cyclin E overexpression and alteration of cell cycle in carriers of CCNE1 risk variants. In combination with established bladder cancer risk factors and other somatic and germline genetic markers, the CCNE1 variants could be useful for inclusion into bladder cancer risk prediction models.
Collapse
Affiliation(s)
- Yi-Ping Fu
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Indu Kohaar
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Lee E Moore
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Petra Lenz
- Clinical Research Directorate/Clinical Monitoring Research Program, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Jonine D Figueroa
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Wei Tang
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Patricia Porter-Gill
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nilanjan Chatterjee
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alexandra Scott-Johnson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Brian Muchmore
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Dalsu Baris
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ashley Paquin
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Kris Ylaya
- Laboratory of Pathology, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Andrea B Apolo
- Genitourinary Malignancy Branch, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland
| | | | - McAnthony Tarway
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | | | - Adam Mumy
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Alan Schned
- Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire
| | - Liliana Guedez
- Radiation Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Michael A Jones
- Department of Pathology and Laboratory Medicine, Maine Medical Center, Portland, Maine
| | - Masatoshi Kida
- Department of Pathology, University of Vermont College of Medicine, Burlington, Vermont
| | | | - Nuria Malats
- Spanish National Cancer Research Centre, Madrid, Spain
| | - Manolis Kogevinas
- Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain. Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain. National School of Public Health, Athens, Greece. CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain
| | - Adonina Tardon
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain. Instituto Universitario de Oncología, Universidad de Oviedo, Oviedo, Spain
| | - Consol Serra
- CIBER Epidemiologia y Salud Pública (CIBERESP), Barcelona, Spain. Universitat Pompeu Fabra, Barcelona, Spain
| | | | - Reina Garcia-Closas
- Unidad de Investigación, Hospital Universitario de Canarias, La Laguna, Spain
| | - Josep Lloreta
- Hospital del Mar-IMIM, Univesitat Pompeu Fabra, Barcelona, Spain
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Mark Purdue
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Gerald L Andriole
- Division of Urologic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Robert L Grubb
- Division of Urologic Surgery, Washington University School of Medicine, St. Louis, Missouri
| | - Amanda Black
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Maria T Landi
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Neil E Caporaso
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Paolo Vineis
- School of Public Health, Imperial College London, London, United Kingdom. Human Genetics Foundation (HuGeF), Torino, Italy
| | - Afshan Siddiq
- School of Public Health, Imperial College London, London, United Kingdom
| | - H Bas Bueno-de-Mesquita
- National Institute for Public Health and the Environment (RIVM), Bilthoven, the Netherlands. Department of Gastroenterology and Hepatology, University Medical Centre, Utrecht, the Netherlands. Department of Epidemiology and Biostatistics, The School of Public Health, Imperial College London, London, United Kingdom. Department of Social and Preventive Medicine, Faculty of Medicine, University of Malaya, Kuala Lumpur, Malaysia
| | - Dimitrios Trichopoulos
- Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts. Bureau of Epidemiologic Research, Academy of Athens, Athens, Greece. Hellenic Health Foundation, Athens, Greece
| | - Börje Ljungberg
- Department of Surgical and Perioperative Sciences, Urology and Andrology, Umeå University, Umeå, Sweden
| | - Gianluca Severi
- Human Genetics Foundation (HuGeF), Torino, Italy. Cancer Epidemiology Centre, Cancer Council Victoria, Melbourne, Australia. Centre for Epidemiology and Biostatistics, University of Melbourne, Australia
| | - Elisabete Weiderpass
- Department of Community Medicine, Faculty of Health Sciences, University of Tromsø, The Arctic University of Norway, Tromsø, Norway. Department of Research, Cancer Registry of Norway, Oslo, Norway. Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden. Samfundet Folkhälsan, Helsinki, Finland
| | - Vittorio Krogh
- Fondazione IRCCS Istituto Nazionale dei Tumori, Milano, Italy
| | - Miren Dorronsoro
- Public Health Division of Gipuzkoa, Basque Regional Health Department and Ciberesp-Biodonostia, San Sebastian, Spain
| | - Ruth C Travis
- Cancer Epidemiology Unit, University of Oxford, Oxford, United Kingdom
| | | | - Paul Brennan
- International Agency for Research on Cancer, Lyon, France
| | - Jenny Chang-Claude
- Division of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Elio Riboli
- School of Public Health, Imperial College London, London, United Kingdom
| | - Jennifer Prescott
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Constance Chen
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Immaculata De Vivo
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts. Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Edward Govannucci
- Department of Nutrition and Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - David Hunter
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Peter Kraft
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Sara Lindstrom
- Program in Genetic Epidemiology and Statistical Genetics, Department of Epidemiology, Harvard School of Public Health, Boston, Massachusetts
| | - Susan M Gapstur
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Eric J Jacobs
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - W Ryan Diver
- Epidemiology Research Program, American Cancer Society, Atlanta, Georgia
| | - Demetrius Albanes
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephanie J Weinstein
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Jarmo Virtamo
- National Institute for Health and Welfare, Helsinki, Finland
| | - Charles Kooperberg
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington
| | - Chancellor Hohensee
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington
| | - Rebecca J Rodabough
- Fred Hutchinson Cancer Research Center, Division of Public Health Sciences, Seattle, Washington
| | - Victoria K Cortessis
- Department of Obstetrics and Gynecology, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California. Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - David V Conti
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Manuela Gago-Dominguez
- Genomic Medicine Group, Galician Foundation of Genomic Medicine, Complejo Hospitalario Universitario de Santiago, Servicio Galego de Saude (SERGAS), Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Mariana C Stern
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Malcolm C Pike
- Department of Epidemiology and Biostatistics, Memorial Sloan-Kettering Cancer Center, New York, New York
| | - David Van Den Berg
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Jian-Min Yuan
- University of Pittsburgh Cancer Institute, Pittsburgh, Pennsylvania
| | - Christopher A Haiman
- Department of Preventive Medicine, Keck School of Medicine of USC, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, California
| | - Olivier Cussenot
- AP-HP, Hopital Tenon, GHU-Est, Department of Urology, Paris, France. Centre de Recherche sur les Pathologies Prostatiques, Paris, France. UPMC Univ Paris 06, ONCOTYPE-URO, Paris, France
| | - Geraldine Cancel-Tassin
- Centre de Recherche sur les Pathologies Prostatiques, Paris, France. UPMC Univ Paris 06, ONCOTYPE-URO, Paris, France
| | - Morgan Roupret
- Centre de Recherche sur les Pathologies Prostatiques, Paris, France. UPMC Univ Paris 06, ONCOTYPE-URO, Paris, France. AP-HP, Hopital Pitie-Salpetriere, GHU-Est, Departments of Urology and Pathology, Paris, France
| | - Eva Comperat
- Centre de Recherche sur les Pathologies Prostatiques, Paris, France. UPMC Univ Paris 06, ONCOTYPE-URO, Paris, France. AP-HP, Hopital Pitie-Salpetriere, GHU-Est, Departments of Urology and Pathology, Paris, France
| | - Stefano Porru
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Angela Carta
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua, Italy
| | - Cecilia Arici
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Giuseppe Mastrangelo
- Department of Cardiac, Thoracic and Vascular Sciences, University of Padova, Padua, Italy
| | - H Barton Grossman
- Department of Urology, The University of Texas M.D. Anderson Cancer Center, Houston, Texas
| | - Zhaoming Wang
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Xiang Deng
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Charles C Chung
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Amy Hutchinson
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | - Laurie Burdette
- Cancer Genomics Research Laboratory, SAIC-Frederick, Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland
| | | | - Joseph Fraumeni
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen J Chanock
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Stephen M Hewitt
- Laboratory of Pathology, Center of Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Debra T Silverman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Nathaniel Rothman
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland
| | - Ludmila Prokunina-Olsson
- Laboratory of Translational Genomics, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, Bethesda, Maryland.
| |
Collapse
|
4
|
Aviner R, Geiger T, Elroy-Stein O. Novel proteomic approach (PUNCH-P) reveals cell cycle-specific fluctuations in mRNA translation. Genes Dev 2013; 27:1834-44. [PMID: 23934657 PMCID: PMC3759699 DOI: 10.1101/gad.219105.113] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Monitoring protein synthesis is required to understand gene expression regulation. Aviner et al. developed a system-wide proteomic approach for direct monitoring of translation, termed puromycin-associated nascent chain proteomics (PUNCH-P), which is based on incorporation of biotinylated puromycin into newly synthesized proteins followed by streptavidin affinity purification and LC-MS/MS analysis. Using PUNCH-P, cell cycle-specific fluctuations in synthesis for >5000 proteins were measured in mammalian cells. This approach also identified proteins not previously implicated in cell cycle processes and proteins that were not detected using other methods. Monitoring protein synthesis is essential to our understanding of gene expression regulation, as protein abundance is thought to be predominantly controlled at the level of translation. Mass-spectrometric and RNA sequencing methods have been recently developed for investigating mRNA translation at a global level, but these still involve technical limitations and are not widely applicable. In this study, we describe a novel system-wide proteomic approach for direct monitoring of translation, termed puromycin-associated nascent chain proteomics (PUNCH-P), which is based on incorporation of biotinylated puromycin into newly synthesized proteins under cell-free conditions followed by streptavidin affinity purification and liquid chromatography-tandem mass spectrometry analysis. Using PUNCH-P, we measured cell cycle-specific fluctuations in synthesis for >5000 proteins in mammalian cells, identified proteins not previously implicated in cell cycle processes, and generated the first translational profile of a whole mouse brain. This simple and economical technique is broadly applicable to any cell type and tissue, enabling the identification and quantification of rapid proteome responses under various biological conditions.
Collapse
Affiliation(s)
- Ranen Aviner
- Department of Cell Research and Immunology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | | | | |
Collapse
|
5
|
Honda A, Valogne Y, Bou Nader M, Bréchot C, Faivre J. An intron-retaining splice variant of human cyclin A2, expressed in adult differentiated tissues, induces a G1/S cell cycle arrest in vitro. PLoS One 2012; 7:e39249. [PMID: 22745723 PMCID: PMC3379989 DOI: 10.1371/journal.pone.0039249] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 05/21/2012] [Indexed: 11/18/2022] Open
Abstract
Background Human cyclin A2 is a key regulator of S phase progression and entry into mitosis. Alternative splice variants of the G1 and mitotic cyclins have been shown to interfere with full-length cyclin functions to modulate cell cycle progression and are therefore likely to play a role in differentiation or oncogenesis. The alternative splicing of human cyclin A2 has not yet been studied. Methodology/Principal Findings Sequence-specific primers were designed to amplify various exon–intron regions of cyclin A2 mRNA in cell lines and human tissues. Intron retaining PCR products were cloned and sequenced and then overexpressed in HeLa cells. The subcellular localization of the splice variants was studied using confocal and time-lapse microscopy, and their impact on the cell cycle by flow cytometry, immunoblotting and histone H1 kinase activity. We found a splice variant of cyclin A2 mRNA called A2V6 that partly retains Intron 6. The gene expression pattern of A2V6 mRNA in human tissues was noticeably different from that of wild-type cyclin A2 (A2WT) mRNA. It was lower in proliferating fetal tissues and stronger in some differentiated adult tissues, especially, heart. In transfected HeLa cells, A2V6 localized exclusively in the cytoplasm whereas A2WT accumulated in the nucleus. We show that A2V6 induced a clear G1/S cell cycle arrest associated with a p21 and p27 upregulation and an inhibition of retinoblastoma protein phosphorylation. Like A2WT, A2V6 bound CDK2, but the A2V6/CDK2 complex did not phosphorylate histone H1. Conclusion/Significance This study has revealed that some highly differentiated human tissues express an intron-retaining cyclin A2 mRNA that induced a G1/S block in vitro. Contrary to full-length cyclin A2, which regulates cell proliferation, the A2V6 splice variant might play a role in regulating nondividing cell states such as terminal differentiation or senescence.
Collapse
Affiliation(s)
- Arata Honda
- Tokyo Metropolitan Health and Medical Treatment Corporation, Ebara Hospital, Tokyo, Japan
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | - Yannick Valogne
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | - Myriam Bou Nader
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | - Christian Bréchot
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
| | - Jamila Faivre
- INSERM, U785, Centre Hépatobiliaire, Villejuif, France
- Université Paris-Sud, Faculté de Médecine, Villejuif, France
- * E-mail:
| |
Collapse
|
6
|
Decreased proliferation kinetics of mouse myoblasts overexpressing FRG1. PLoS One 2011; 6:e19780. [PMID: 21603621 PMCID: PMC3095625 DOI: 10.1371/journal.pone.0019780] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2011] [Accepted: 04/04/2011] [Indexed: 11/24/2022] Open
Abstract
Although recent publications have linked the molecular events driving facioscapulohumeral muscular dystrophy (FSHD) to expression of the double homeobox transcription factor DUX4, overexpression of FRG1 has been proposed as one alternative causal agent as mice overexpressing FRG1 present with muscular dystrophy. Here, we characterize proliferative defects in two independent myoblast lines overexpressing FRG1. Myoblasts isolated from thigh muscle of FRG1 transgenic mice, an affected dystrophic muscle, exhibit delayed proliferation as measured by decreased clone size, whereas myoblasts isolated from the unaffected diaphragm muscle proliferated normally. To confirm the observation that overexpression of FRG1 could impair myoblast proliferation, we examined C2C12 myoblasts with inducible overexpression of FRG1, finding increased doubling time and G1-phase cells in mass culture after induction of FRG1 and decreased levels of pRb phosphorylation. We propose that depressed myoblast proliferation may contribute to the pathology of mice overexpressing FRG1 and may play a part in FSHD.
Collapse
|
7
|
Stamatakos M, Palla V, Karaiskos I, Xiromeritis K, Alexiou I, Pateras I, Kontzoglou K. Cell cyclins: triggering elements of cancer or not? World J Surg Oncol 2010; 8:111. [PMID: 21176227 PMCID: PMC3016250 DOI: 10.1186/1477-7819-8-111] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2010] [Accepted: 12/22/2010] [Indexed: 01/16/2023] Open
Abstract
Cyclins are indispensable elements of the cell cycle and derangement of their function can lead to cancer formation. Recent studies have also revealed more mechanisms through which cyclins can express their oncogenic potential. This review focuses on the aberrant expression of G1/S cyclins and especially cyclin D and cyclin E; the pathways through which they lead to tumour formation and their involvement in different types of cancer. These elements indicate the mechanisms that could act as targets for cancer therapy.
Collapse
Affiliation(s)
- Michael Stamatakos
- 4th Department of Surgery, Medical School, University of Athens, Attikon General Hospital, Athens, Greece.
| | | | | | | | | | | | | |
Collapse
|
8
|
|
9
|
Sieuwerts AM, Look MP, Meijer-van Gelder ME, Timmermans M, Trapman AMAC, Garcia RR, Arnold M, Goedheer AJW, de Weerd V, Portengen H, Klijn JGM, Foekens JA. Which cyclin E prevails as prognostic marker for breast cancer? Results from a retrospective study involving 635 lymph node-negative breast cancer patients. Clin Cancer Res 2007; 12:3319-28. [PMID: 16740753 DOI: 10.1158/1078-0432.ccr-06-0225] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE To evaluate the prognostic value of cyclin E with a quantitative method for lymph node-negative primary breast cancer patients. PATIENTS AND METHODS mRNA transcripts of full-length and splice variants of cyclin E1 (CCNE1) and cyclin E2 (CCNE2) were measured by real-time PCR in frozen tumor samples from 635 lymph node-negative breast cancer patients who had not received neoadjuvant or adjuvant systemic therapy. RESULTS None of the PCR assays designed for the specific splice variants of the cyclins gave additional prognosis-related information compared with the common assays able to detect all variants. In Cox multivariate analysis, corrected for the traditional prognostic factors, high levels of cyclin E were independently associated with a short distant metastasis-free survival [hazard ratio (HR), 3.40; P < 0.001 for CCNE1 and HR, 1.76; P < 0.001 for CCNE2, respectively]. After dichotomizing the tumors at the median level of 70% tumor cells, the multivariate analysis showed particularly strong results for CCNE1 in the group of 433 patients with stroma-enriched primary tumors (HR, 5.12; P < 0.001). In these tumors, the worst prognosis was found for patients with estrogen receptor-negative tumors expressing high CCNE1 (HR, 9.89; P < 0.001) and for patients with small (T1) tumors expressing high CCNE1 (HR, 8.47; P < 0.001). CONCLUSION Our study shows that both CCNE1 and CCNE2 qualify as independent prognostic markers for lymph node-negative breast cancer patients, and that CCNE1 may provide additional information for specific subgroups of patients.
Collapse
|
10
|
Zschemisch NH, Liedtke C, Dierssen U, Nevzorova YA, Wüstefeld T, Borlak J, Manns MP, Trautwein C. Expression of a cyclin E1 isoform in mice is correlated with the quiescent cell cycle status of hepatocytes in vivo. Hepatology 2006; 44:164-73. [PMID: 16799991 DOI: 10.1002/hep.21224] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Cyclin E1 controls G1/S phase transition of the eukaryotic cell cycle. We report the impact of alternative spliced cyclin E1 isoforms on cell cycle regulation in hepatocytes. We show that expression of new cyclin E1 mRNA variants IN3, Delta4, and Delta5 is associated with retarded proliferation in murine hepatocellular carcinoma. Additionally, we demonstrate that a new cyclin E1 isoform Delta3/8 lacking the central part of wild-type mRNA is expressed predominantly in nonproliferating murine hepatocytes. Following partial hepatectomy, Delta3/8 is downregulated when hepatocytes enter the cell cycle from quiescence. The Delta3/8 protein does not exhibit any cyclin box motif but binds cyclin-dependent kinase 2 without stimulating kinase activity. We demonstrate that Delta3/8 lacks any nuclear localization signal and is exclusively located in the cytoplasm. Overexpression of Delta3/8 in cultured cells leads to a delayed G0-G1 transition, indicating that this splice variant helps to maintain a quiescent state of hepatocytes. In conclusion, we identified an isoform of cyclin E1 involved in G0 maintenance and suggest an additional mechanism for cell cycle control.
Collapse
|
11
|
Knudsen KE, Diehl JA, Haiman CA, Knudsen ES. Cyclin D1: polymorphism, aberrant splicing and cancer risk. Oncogene 2006; 25:1620-8. [PMID: 16550162 DOI: 10.1038/sj.onc.1209371] [Citation(s) in RCA: 286] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The cyclin D1 proto-oncogene exercises powerful control over the mechanisms that regulate the mitotic cell cycle, and excessive cyclin D1 expression and/or activity is common in human cancers. Although somatic mutations of the cyclin D1 locus are rarely observed, mounting evidence demonstrates that a specific polymorphism of cyclin D1 (G/A870) and a protein product of a potentially related alternate splicing event (cyclin D1b) may influence cancer risk and outcome. Herein, we review the epidemiological and functional literatures that link these alterations of cyclin D1 to human tumor development and progression.
Collapse
Affiliation(s)
- K E Knudsen
- Department of Cell Biology, University of Cincinnati, Cincinnati, OH 45267, USA.
| | | | | | | |
Collapse
|
12
|
Abstract
Cyclin E-Cdk2 has long been considered an essential and master regulator of progression through G1 phase of the cell cycle. Although recent mouse models have prompted a rethinking of cyclin E function in mammals, it remains clear that cyclin E impacts upon many processes central to cell division. Normal cells maintain strict control of cyclin E activity, and this is commonly disrupted in cancer cells. Moreover, cyclin E deregulation is thought to play a fundamental role in tumorigenesis. In this review, we discuss the regulation and functions of cyclin E in normal and neoplastic mammalian cells.
Collapse
Affiliation(s)
- Harry C Hwang
- Divisions of Clinical Research and Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | | |
Collapse
|
13
|
Lu G, Seta KA, Millhorn DE. Novel role for cyclin-dependent kinase 2 in neuregulin-induced acetylcholine receptor epsilon subunit expression in differentiated myotubes. J Biol Chem 2005; 280:21731-8. [PMID: 15824106 DOI: 10.1074/jbc.m412498200] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) are a family of evolutionarily conserved serine/threonine kinases. CDK2 acts as a checkpoint for the G(1)/S transition in the cell cycle. Despite a down-regulation of CDK2 activity in postmitotic cells, many cell types, including muscle cells, maintain abundant levels of CDK2 protein. This led us to hypothesize that CDK2 may have a function in postmitotic cells. We show here for the first time that CDK2 can be activated by neuregulin (NRG) in differentiated C2C12 myotubes. In addition, this activity is required for expression of the acetylcholine receptor (AChR) epsilon subunit. The switch from the fetal AChRgamma subunit to the adult-type AChRepsilon is required for synapse maturation and the neuromuscular junction. Inhibition of CDK2 activity with either the specific CDK2 inhibitory peptide Tat-LFG or by RNA interference abolished neuregulin-induced AChRepsilon expression. Neuregulin-induced activation of CDK2 also depended on the ErbB receptor, MAPK, and PI3K, all of which have previously been shown to be required for AChRepsilon expression. Neuregulin regulated CDK2 activity through coordinating phosphorylation of CDK2 on Thr-160, accumulation of CDK2 in the nucleus, and down-regulation of the CDK2 inhibitory protein p27 in the nucleus. In addition, we also observed a novel mechanism of regulation of CDK2 activity by a low molecular weight variant of cyclin E in response to NRG. These findings establish CDK2 as an intermediate molecule that integrates NRG-activated signals from both the MAPK and PI3K pathways to AChRepsilon expression and reveal an undiscovered physiological role for CDK2 in postmitotic cells.
Collapse
Affiliation(s)
- Gang Lu
- Department of Genome Science, Genome Research Institute, University of Cincinnati, 2180 E. Galbraith Road, Cincinnati, OH 45237, USA
| | | | | |
Collapse
|
14
|
Abstract
E-type cyclins (cyclin E1 and cyclin E2) are expressed during the late G1 phase of the cell cycle until the end of the S-phase. The activity of cyclin E is limiting for the passage of cells through the restriction point "R" which marks a "point of no return" for cells entering the division cycle from a resting state or passing from G1 into S-phase. Expression of cyclin E is regulated on the level of gene transcription mainly by members of the E2F trrnscription factor family and by its degradation via the proteasome pathway. Cyclin E binds and activates the kinase Cdk2 and by phosphorylating its substrates, the so-called "pocket proteins", the cyclic/Cdk2 complexes initiate a cascade of events that leads to the expression of S-phase specific genes. Aside from this specific function as a regulator of S-phase-entry, cyclin E plays a direct role in the initiation of DNA replication, the control of genomic stability, and the centrosome cycle. Surprisingly, recent studies have shown that the once thought essential cyclin E is dispensable for the development of higher eukaryotes and for the mitotic division of eukaryotic cells. Nevertheless, high level cyclin E expression has been associated with the initiation or progression of different human cancers, in particular breast cancer but also leukemia, lymphoma and others. Transgenic mouse models in which cyclin E is constitutively expressed develop malignant diseases, supporting the notion of cyclin E as a dominant onco-protein.
Collapse
Affiliation(s)
- Tarik Möröy
- Institut für Zellbiologie (Tumorforschung) (IFZ), Universitätsklinikum Essen, Virchowstrasse 173, D-45122 Essen, Germany.
| | | |
Collapse
|
15
|
Geisen C, Moroy T. The oncogenic activity of cyclin E is not confined to Cdk2 activation alone but relies on several other, distinct functions of the protein. J Biol Chem 2002; 277:39909-18. [PMID: 12149264 DOI: 10.1074/jbc.m205919200] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that cyclin E can malignantly transform primary rat embryo fibroblasts in cooperation with constitutively active Ha-Ras. In addition, we demonstrated that high level cyclin E expression potentiates the development of methyl-nitroso-urea-induced T-cell lymphomas in mice. To further investigate the mechanism underlying cyclin E-mediated malignant transformation, we have performed a mutational analysis of cyclin E function. Here we show that cyclin E mutants defective to form an active kinase complex with Cdk2 are unable to drive cells from G(1) into S phase but can still malignantly transform rat embryo fibroblasts in cooperation with Ha-Ras. In addition, Cdk2 activation is not a prerequisite for the ability of cyclin E to rescue yeast triple cln mutations. We also find that the oncogenic properties of cyclin E did not entirely correspond with its ability to interact with the negative cell cycle regulator p27(Kip1) or the pocket protein p130. These findings suggest that the oncogenic activity of cyclin E does not exclusively rely on its ability as a positive regulator of G(1) progression. Rather, we propose that cyclin E harbors other functions, independent of Cdk2 activation and p27(Kip1) binding, that contribute significantly to its oncogenic activity.
Collapse
Affiliation(s)
- Christoph Geisen
- Institut für Zellbiologie (Tumorforschung), IFZ, Universitätsklinikum Essen, Virchowstrasse 173, D-45122 Essen, Germany
| | | |
Collapse
|
16
|
Bukovsky A, Cekanova M, Caudle MR, Wimalasena J, Foster JS, Keenan JA, Elder RF. Variability of placental expression of cyclin E low molecular weight variants. Biol Reprod 2002; 67:568-74. [PMID: 12135897 DOI: 10.1095/biolreprod67.2.568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Cyclin E, a G(1) cyclin serving to activate cyclin-dependent kinase 2, is the only cyclin gene for which alternative splicing leading to structurally different proteins has been described. Different cyclin E proteins are present in tumor tissues but absent from normal (steady) tissues. Cyclin E contributes to the regulation of cell proliferation and ongoing differentiation and aging. Because trophoblast has invasive properties and differentiates into syncytium and placental aging may develop at term, we examined cyclin E protein variants in human placenta. Placental samples were collected from 27 deliveries between 33 and 41 wk and were compared with ovarian cancer (positive control). Both placental and tumor tissues showed seven cyclin E low molecular weight (LMW) bands migrating between 50 and 36 kDa. Placental expression of cyclin E showed certain variability among cases. Lowest cyclin E expression was detected in normal placentas (strong expression of Thy-1 differentiation protein in villous core and low dilatation of villous blood sinusoids). Abnormal placentas (significant depletion of Thy-1 and more or less pronounced dilatation of sinusoids) showed significant increase either of all (early stages of placental aging) or only certain cyclin E proteins (advanced aging). Our studies indicate that a similar spectrum of cyclin E protein variants is expressed in the placental and tumor tissues. Low cyclin E expression in normal placentas suggests a steady state. Overexpression of all cyclin E proteins may indicate an activation of cellular proliferation and differentiation to compensate for developing placental insufficiency. However, an enhanced expression of some cyclin E LMW proteins only might reflect an association of cyclin E isoforms with placental aging or an inefficient placental adaptation.
Collapse
Affiliation(s)
- Antonin Bukovsky
- Laboratory for Development, Differentiation, and Cancer, Department of Obstetrics and Gynecology, The University of Tennessee Graduate School of Medicine, Knoxville, TN 37920, USA.
| | | | | | | | | | | | | |
Collapse
|
17
|
Vandepoele K, Raes J, De Veylder L, Rouzé P, Rombauts S, Inzé D. Genome-wide analysis of core cell cycle genes in Arabidopsis. THE PLANT CELL 2002; 14:903-16. [PMID: 11971144 PMCID: PMC150691 DOI: 10.1105/tpc.010445] [Citation(s) in RCA: 394] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2001] [Accepted: 01/23/2002] [Indexed: 05/17/2023]
Abstract
Cyclin-dependent kinases and cyclins regulate with the help of different interacting proteins the progression through the eukaryotic cell cycle. A high-quality, homology-based annotation protocol was applied to determine the core cell cycle genes in the recently completed Arabidopsis genome sequence. In total, 61 genes were identified belonging to seven selected families of cell cycle regulators, for which 30 are new or corrections of the existing annotation. A new class of putative cell cycle regulators was found that probably are competitors of E2F/DP transcription factors, which mediate the G1-to-S progression. In addition, the existing nomenclature for cell cycle genes of Arabidopsis was updated, and the physical positions of all genes were compared with segmentally duplicated blocks in the genome, showing that 22 core cell cycle genes emerged through block duplications. This genome-wide analysis illustrates the complexity of the plant cell cycle machinery and provides a tool for elucidating the function of new family members in the future.
Collapse
Affiliation(s)
- Klaas Vandepoele
- Department of Plant Systems Biology, Flanders Interuniversity Institute for Biotechnology (VIB), Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | | | | | | | | | | |
Collapse
|
18
|
Crack D, Secombe J, Coombe M, Brumby A, Saint R, Richardson H. Analysis of Drosophila cyclin EI and II function during development: identification of an inhibitory zone within the morphogenetic furrow of the eye imaginal disc that blocks the function of cyclin EI but not cyclin EII. Dev Biol 2002; 241:157-71. [PMID: 11784102 DOI: 10.1006/dbio.2001.0496] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Drosophila cyclin E (DmcycE) gene gives rise to two transcripts encoding proteins that differ at their N termini, DmcycEII and DmcycEI. This study presents the first in vivo dissection of Cyclin E function. Ectopic expression studies using N- and C-terminal deletions of DmcycEI revealed that a region of 322 residues surrounding the cyclin box is sufficient to induce entry of G1-arrested larval eye imaginal disc cells into S phase. Ectopic expression of DmcycEI in the eye disc has been previously shown to drive anterior, but not posterior, G1-phase cells within the morphogenetic furrow (MF) into S phase. Significantly, ectopic expression of DmcycEII and N-terminal deletions of DmcycEI were able to drive all G1 cells within the morphogenetic furrow into S phase, while a C-terminal deletion of DmcycEI could not. The p21 homolog Dacapo was shown by yeast two-hybrid, coimmunolocalization, and in vivo functional studies not to be the mediator of the DmcycEI inhibition in posterior part of the MF. Taken together, these results reveal a novel zone within the posterior region of the MF where DmcycEI but not DmcycEII function is inhibited, and suggest that DmcycEII is a more potent inducer of S phase.
Collapse
Affiliation(s)
- Donna Crack
- Center for the Molecular Genetics of Development and Department of Molecular Biosciences, University of Adelaide, Adelaide, South Australia, 5005, Australia
| | | | | | | | | | | |
Collapse
|
19
|
Wang L, Liu F, Adamo ML. Cyclic AMP inhibits extracellular signal-regulated kinase and phosphatidylinositol 3-kinase/Akt pathways by inhibiting Rap1. J Biol Chem 2001; 276:37242-9. [PMID: 11479306 DOI: 10.1074/jbc.m105089200] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cyclic AMP inhibited both ERK and Akt activities in rat C6 glioma cells. A constitutively active form of phosphatidylinositol 3-kinase (PI3K) prevented cAMP from inhibiting Akt, suggesting that the inactivation of Akt by cAMP is a consequence of PI3K inhibition. Neither protein kinase A nor Epac (Exchange protein directly activated by cAMP), two known direct effectors of cAMP, mediated the cAMP-induced inhibition of ERK and Akt phosphorylation. Cyclic AMP inhibited Rap1 activation in C6 cells. Moreover, inhibition of Rap1 by a Rap1 GTPase-activating protein-1 also resulted in a decrease in ERK and Akt phosphorylation, which was not further decreased by cAMP, suggesting that cAMP inhibits ERK and Akt by inhibiting Rap1. The role of Rap1 in ERK and Akt activity was further demonstrated by our observation that an active form of Epac, which activated Rap1 in the absence of cAMP, increased ERK and Akt phosphorylation. Inhibition of ERK and/or PI3K pathways mediated the inhibitory effects of cAMP on insulin-like growth factor-I (IGF-I) and IGF-binding protein-3 gene expression. Moreover, cAMP, as well as ERK and PI3K inhibitors produced equivalent stimulation and inhibition, respectively, of p27(Kip1) and cyclin D2 protein levels, potentially explaining the observation that cAMP prevented C6 cells from entering S phase.
Collapse
Affiliation(s)
- L Wang
- Department of Biochemistry, The University of Texas Health Science Center, San Antonio, Texas 78229-3900, USA
| | | | | |
Collapse
|
20
|
Gao J, Richardson DR. The potential of iron chelators of the pyridoxal isonicotinoyl hydrazone class as effective antiproliferative agents, IV: The mechanisms involved in inhibiting cell-cycle progression. Blood 2001; 98:842-50. [PMID: 11468187 DOI: 10.1182/blood.v98.3.842] [Citation(s) in RCA: 181] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Some chelators of the pyridoxal isonicotinoyl hydrazone class have antiproliferative activity that is far greater than desferrioxamine (DFO). In this study, DFO was compared with one of the most active chelators (311) on the expression of molecules that play key roles in cell-cycle control. This was vital for understanding the role of iron (Fe) in cell-cycle progression and for designing chelators to treat cancer. Incubating cells with DFO, and especially 311, resulted in a decrease in the hyperphosphorylated form of the retinoblastoma susceptibility gene product (pRb). Chelators also decreased cyclins D1, D2, and D3, which bind with cyclin-dependent kinase 4 (cdk4) to phosphorylate pRb. The levels of cdk2 also decreased after incubation with DFO, and especially 311, which may be important for explaining the decrease in hyperphosphorylated pRb. Cyclins A and B1 were also decreased after incubation with 311 and, to a lesser extent, DFO. In contrast, cyclin E levels increased. These effects were prevented by presaturating the chelators with Fe. In contrast to DFO and 311, the ribonucleotide reductase inhibitor hydroxyurea increased the expression of all cyclins. Hence, the effect of chelators on cyclin expression was not due to their ability to inhibit ribonucleotide reductase. Although chelators induced a marked increase in WAF1 and GADD45 mRNA transcripts, there was no appreciable increase in their protein levels. Failure to translate these cell-cycle inhibitors may contribute to dysregulation of the cell cycle after exposure to chelators. (Blood. 2001;98:842-850)
Collapse
Affiliation(s)
- J Gao
- Iron Metabolism and Chelation Group, The Heart Research Institute, 145 Missenden Road, Camperdown, Sydney, New South Wales, 2050 Australia
| | | |
Collapse
|
21
|
Jung YJ, Lee KH, Choi DW, Han CJ, Jeong SH, Kim KC, Oh JW, Park TK, Kim CM. Reciprocal expressions of cyclin E and cyclin D1 in hepatocellular carcinoma. Cancer Lett 2001; 168:57-63. [PMID: 11368878 DOI: 10.1016/s0304-3835(01)00403-7] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Deregulation of the cell cycle by overexpression of G1 cyclins, cyclin E and cyclin D1 genes, has been demonstrated to be a prerequisite for the development of human cancer. Recently, cyclin E is proposed to be sufficient for the progression of the G1 cell cycle without cyclin D1. Here we show that the proposed model system was specifically present in human hepatocellular carcinoma (HCC) unlike other human cancers. Of 31 HCC tissues analyzed, 21 (67.7%) exhibited an overexpression of cyclin E protein. In contrast to cyclin E gene expression, cyclin D1 expression was strongly downregulated in 19 (61.2%) HCCs. Interestingly, 65% of HCC tissues with overexpression of the cyclin E gene exhibited downregulation of cyclin D1, suggesting reciprocal deregulation of these cyclins in the G1 progression of the cell cycle. Southern blot analysis proved the amplification of cyclin E gene in HCC with a high level of overexpression. The present findings suggest that the reciprocal deregulation of cyclin E lacking cyclin D1 expression might play a role in G1 progression and the development of HCC.
Collapse
Affiliation(s)
- Y J Jung
- Laboratory of Molecular Oncology, Korea Cancer Center Hospital, 215-4 Gongneung-Dong, Nowon-Ku, 139-706, Seoul, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Joyce D, Albanese C, Steer J, Fu M, Bouzahzah B, Pestell RG. NF-kappaB and cell-cycle regulation: the cyclin connection. Cytokine Growth Factor Rev 2001; 12:73-90. [PMID: 11312120 DOI: 10.1016/s1359-6101(00)00018-6] [Citation(s) in RCA: 295] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The cyclins are a family of proteins that are centrally involved in cell cycle regulation and which are structurally identified by conserved "cyclin box" regions. They are regulatory subunits of holoenzyme cyclin-dependent kinase (CDK) complexes controlling progression through cell cycle checkpoints by phosphorylating and inactivating target substrates. CDK activity is controlled by cyclin abundance and subcellular location and by the activity of two families of inhibitors, the cyclin-dependent kinase inhibitors (CKI). Many hormones and growth factors influence cell growth through signal transduction pathways that modify the activity of the cyclins. Dysregulated cyclin activity in transformed cells contributes to accelerated cell cycle progression and may arise because of dysregulated activity in pathways that control the abundance of a cyclin or because of loss-of-function mutations in inhibitory proteins.Analysis of transformed cells and cells undergoing mitogen-stimulated growth implicate proteins of the NF-kappaB family in cell cycle regulation, through actions on the CDK/CKI system. The mammalian members of this family are Rel-A (p65), NF-kappaB(1) (p50; p105), NF-kappaB(2) (p52; p100), c-Rel and Rel-B. These proteins are structurally identified by an amino-terminal region of about 300 amino acids, known as the Rel-homology domain. They exist in cytoplasmic complexes with inhibitory proteins of the IkappaB family, and translocate to the nucleus to act as transcription factors when activated. NF-kappaB pathway activation occurs during transformation induced by a number of classical oncogenes, including Bcr/Abl, Ras and Rac, and is necessary for full transforming potential. The avian viral oncogene, v-Rel is an NF-kappaB protein. The best explored link between NF-kappaB activation and cell cycle progression involves cyclin D(1), a cyclin which is expressed relatively early in the cell cycle and which is crucial to commitment to DNA synthesis. This review examines the interactions between NF-kappaB signaling and the CDK/CKI system in cell cycle progression in normal and transformed cells. The growth-promoting actions of NF-kappaB factors are accompanied, in some instances, by inhibition of cellular differentiation and by inhibition of programmed cell death, which involve related response pathways and which contribute to the overall increase in mass of undifferentiated tissue.
Collapse
Affiliation(s)
- D Joyce
- Department of Pharmacology, The University of Western Australia, Nedlands, WA 6907, Australia
| | | | | | | | | | | |
Collapse
|
23
|
Porter DC, Keyomarsi K. Novel splice variants of cyclin E with altered substrate specificity. Nucleic Acids Res 2000; 28:E101. [PMID: 11095697 PMCID: PMC115185 DOI: 10.1093/nar/28.23.e101] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2000] [Revised: 09/20/2000] [Accepted: 10/01/2000] [Indexed: 11/14/2022] Open
Abstract
Cyclin E, a G(1) cyclin, is overexpressed and present in low molecular weight (LMW) isoforms in breast cancer cells and tumor tissues. In this study we have examined the possibility that the shortened mRNA splice variants could give rise to tumor-specific cyclin E LMW proteins. We used the Splice Capture method to identify, enumerate and isolate known spliced mRNAs and to look for previously undetected mRNA forms of cyclin E that might be translated into the LMW proteins. We show that a new splice variant of cyclin E found in tumor cells isolated by the Splice Capture strategy, named Delta48, activates CDK2 more robustly than full-length cyclin E when assayed from transiently transfected cells with the natural substrate GST-Rb. We also found the Splice Capture method to be superior to the conventional RNase protection assay in analyzing the cyclin E mRNA present in normal and tumor cells. Splice Capture enumerated the relative abundance of known forms of cyclin E mRNA and easily discovered new splice variants in both normal and tumor cells. We conclude that the abundance of cyclin E splice variants in cells may represent a novel form of regulation of cyclin E, and if translated they show altered substrate specificity compared to the full length form of cyclin E.
Collapse
Affiliation(s)
- D C Porter
- Division of Molecular Medicine, Wadsworth Center, Albany, NY 12201-0509, USA
| | | |
Collapse
|
24
|
Pestell RG, Albanese C, Reutens AT, Segall JE, Lee RJ, Arnold A. The cyclins and cyclin-dependent kinase inhibitors in hormonal regulation of proliferation and differentiation. Endocr Rev 1999; 20:501-34. [PMID: 10453356 DOI: 10.1210/edrv.20.4.0373] [Citation(s) in RCA: 106] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- R G Pestell
- Albert Einstein Cancer Center, Department of Developmental and Molecular Biology, Morris Park, Bronx, New York 10461, USA.
| | | | | | | | | | | |
Collapse
|
25
|
Studzinski GP, Harrison LE. Differentiation-related changes in the cell cycle traverse. INTERNATIONAL REVIEW OF CYTOLOGY 1999; 189:1-58. [PMID: 10333577 DOI: 10.1016/s0074-7696(08)61384-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This review examines recent developments relating to the interface between cell proliferation and differentiation. It is suggested that the mechanism responsible for this transition is more akin to a "dimmer" than to a "switch," that it is more useful to refer to early and late stages of differentiation rather than to "terminal" differentiation, and examples of the reversibility of differentiation are provided. An outline of the established paradigm of cell cycle regulation is followed by summaries of recent studies that suggest that this paradigm is overly simplified and should be interpreted in the context of different cell types. The role of inhibitors of cyclin-dependent kinases in differentiation is discussed, but the data are still inconclusive. An increasing interest in the changes in G2/M transition during differentiation is illustrated by examples of polyploidization during differentiation, such as megakaryocyte maturation. Although the retinoblastoma protein is currently maintaining its prominent role in control of proliferation and differentiation, it is anticipated that equally important regulators will be discovered and provide an explanation at the molecular level for the gradual transition from proliferation to differentiation.
Collapse
Affiliation(s)
- G P Studzinski
- Department of Pathology and Laboratory Medicine, University of Medicine and Dentistry, New Jersey Medical School, Newark 07103, USA
| | | |
Collapse
|
26
|
Abstract
Regulators of the cell cycle such as cyclin E play an important part in neoplasia. The cyclin E protein forms a partnership with a specific protein kinase. This complex phosphorylates key substrates to initiate DNA synthesis. Cyclin-dependent kinase inhibitors (CKIs) are able to suppress the activity of cyclin E. Various substances (including proteins produced by oncogenic viruses) affect cyclin E directly or indirectly through an interaction with CKIs. These interactions are important in elucidating the mechanisms of neoplasia. They may also provide prognostic information in a wide range of common cancers. Cyclin E may even be a target for treatment of cancers in the future.
Collapse
Affiliation(s)
- R Donnellan
- Department of Pathology, University of Natal Medical School, Durban, South Africa.
| | | |
Collapse
|
27
|
Gudas JM, Payton M, Thukral S, Chen E, Bass M, Robinson MO, Coats S. Cyclin E2, a novel G1 cyclin that binds Cdk2 and is aberrantly expressed in human cancers. Mol Cell Biol 1999; 19:612-22. [PMID: 9858585 PMCID: PMC83919 DOI: 10.1128/mcb.19.1.612] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A novel cyclin gene was discovered by searching an expressed sequence tag database with a cyclin box profile. The human cyclin E2 gene encodes a 404-amino-acid protein that is most closely related to cyclin E. Cyclin E2 associates with Cdk2 in a functional kinase complex that is inhibited by both p27(Kip1) and p21(Cip1). The catalytic activity associated with cyclin E2 complexes is cell cycle regulated and peaks at the G1/S transition. Overexpression of cyclin E2 in mammalian cells accelerates G1, demonstrating that cyclin E2 may be rate limiting for G1 progression. Unlike cyclin E1, which is expressed in most proliferating normal and tumor cells, cyclin E2 levels were low to undetectable in nontransformed cells and increased significantly in tumor-derived cells. The discovery of a novel second cyclin E family member suggests that multiple unique cyclin E-CDK complexes regulate cell cycle progression.
Collapse
Affiliation(s)
- J M Gudas
- Amgen Inc., Thousand Oaks, California 91320, USA
| | | | | | | | | | | | | |
Collapse
|
28
|
Peng J, Zhu Y, Milton JT, Price DH. Identification of multiple cyclin subunits of human P-TEFb. Genes Dev 1998; 12:755-62. [PMID: 9499409 PMCID: PMC316581 DOI: 10.1101/gad.12.5.755] [Citation(s) in RCA: 417] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/1998] [Accepted: 02/03/1998] [Indexed: 02/06/2023]
Abstract
The transition from abortive into productive elongation is proposed to be controlled by a positive transcription elongation factor b (P-TEFb) through phosphorylation of the carboxy-terminal domain (CTD) of the largest subunit of RNA polymerase II. Drosophila P-TEFb was identified recently as a cyclin-dependent kinase (CDK9) paired with a cyclin subunit (cyclin T). We demonstrate here the cloning of multiple cyclin subunits of human P-TEFb (T1 and T2). Cyclin T2 has two forms (T2a and T2b) because of alternative splicing. Both cyclin T1 and T2 are ubiquitously expressed. Immunoprecipitation and immunodepletion experiments carried out on HeLa nuclear extract (HNE) indicated that cyclin T1 and T2 were associated with CDK9 in a mutually exclusive manner and that almost all CDK9 was associated with either cyclin T1 or T2. Recombinant CDK9/cyclin T1, CDK9/cyclin T2a, and CDK9/cyclin T2b produced in Sf9 cells possessed DRB-sensitive kinase activity and functioned in transcription elongation in vitro. Either cyclin T1 or T2 was required to activate CDK9, and the truncation of the carboxyl terminus of the cyclin reduced, but did not eliminate, P-TEFb activity. Cotransfection experiments indicated that all three CDK9/cyclin combinations dramatically activated the CMV promoter.
Collapse
Affiliation(s)
- J Peng
- Department of Biochemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | | | |
Collapse
|
29
|
Lozano JC, Schatt P, Marquès F, Peaucellier G, Fort P, Féral JP, Genevière AM, Picard A. A presumptive developmental role for a sea urchin cyclin B splice variant. J Cell Biol 1998; 140:283-93. [PMID: 9442104 PMCID: PMC2132573 DOI: 10.1083/jcb.140.2.283] [Citation(s) in RCA: 24] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
We show that a splice variant-derived cyclin B is produced in sea urchin oocytes and embryos. This splice variant protein lacks highly conserved sequences in the COOH terminus of the protein. It is found strikingly abundant in growing oocytes and cells committed to differentiation during embryogenesis. Cyclin B splice variant (CBsv) protein associates weakly in the cell with Xenopus cdc2 and with budding yeast CDC28p. In contrast to classical cyclin B, CBsv very poorly complements a triple CLN deletion in budding yeast, and its microinjection prevents an initial step in MPF activation, leading to an important delay in oocyte meiosis reinitiation. CBsv microinjection in fertilized eggs induces cell cycle delay and abnormal development. We assume that CBsv is produced in growing oocytes to keep them in prophase, and during embryogenesis to slow down cell cycle in cells that will be committed to differentiation.
Collapse
Affiliation(s)
- J C Lozano
- Centre National de la Recherche Scientifique, URA 2156, Laboratoire Arago, BP 44, F 66651 Banyuls sur mer Cedex France
| | | | | | | | | | | | | | | |
Collapse
|