1
|
Lukoszek R, Inesta-Vaquera F, Brett NJM, Liang S, Hepburn LA, Hughes DJ, Pirillo C, Roberts EW, Cowling VH. CK2 phosphorylation of CMTR1 promotes RNA cap formation and influenza virus infection. Cell Rep 2024; 43:114405. [PMID: 38923463 PMCID: PMC11290353 DOI: 10.1016/j.celrep.2024.114405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/12/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024] Open
Abstract
The RNA cap methyltransferase CMTR1 methylates the first transcribed nucleotide of RNA polymerase II transcripts, impacting gene expression mechanisms, including during innate immune responses. Using mass spectrometry, we identify a multiply phosphorylated region of CMTR1 (phospho-patch [P-Patch]), which is a substrate for the kinase CK2 (casein kinase II). CMTR1 phosphorylation alters intramolecular interactions, increases recruitment to RNA polymerase II, and promotes RNA cap methylation. P-Patch phosphorylation occurs during the G1 phase of the cell cycle, recruiting CMTR1 to RNA polymerase II during a period of rapid transcription and RNA cap formation. CMTR1 phosphorylation is required for the expression of specific RNAs, including ribosomal protein gene transcripts, and promotes cell proliferation. CMTR1 phosphorylation is also required for interferon-stimulated gene expression. The cap-snatching virus, influenza A, utilizes host CMTR1 phosphorylation to produce the caps required for virus production and infection. We present an RNA cap methylation control mechanism whereby CK2 controls CMTR1, enhancing co-transcriptional capping.
Collapse
Affiliation(s)
| | - Francisco Inesta-Vaquera
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Department of Biochemistry and Molecular Biology and Genetics, School of Sciences, Universidad de Extremadura, Avenida de Elvas, s/n, 06006 Badajoz, Spain
| | - Natasha J M Brett
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Shang Liang
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Lydia A Hepburn
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - David J Hughes
- School of Biology, University of St Andrews, Biomedical Sciences Research Complex, St Andrews KY16 9ST, UK
| | - Chiara Pirillo
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK
| | - Edward W Roberts
- Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK
| | - Victoria H Cowling
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK; Cancer Research UK Scotland Institute, Garscube Estate, Switchback Road, Glasgow G61 1BD, UK; School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Glasgow G61 1QH, UK.
| |
Collapse
|
2
|
Metanat Y, Viktor P, Amajd A, Kaur I, Hamed AM, Abed Al-Abadi NK, Alwan NH, Chaitanya MVNL, Lakshmaiya N, Ghildiyal P, Khalaf OM, Ciongradi CI, Sârbu I. The paths toward non-viral CAR-T cell manufacturing: A comprehensive review of state-of-the-art methods. Life Sci 2024; 348:122683. [PMID: 38702027 DOI: 10.1016/j.lfs.2024.122683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 04/11/2024] [Accepted: 04/28/2024] [Indexed: 05/06/2024]
Abstract
Although CAR-T cell therapy has emerged as a game-changer in cancer immunotherapy several bottlenecks limit its widespread use as a front-line therapy. Current protocols for the production of CAR-T cells rely mainly on the use of lentiviral/retroviral vectors. Nevertheless, according to the safety concerns around the use of viral vectors, there are several regulatory hurdles to their clinical use. Large-scale production of viral vectors under "Current Good Manufacturing Practice" (cGMP) involves rigorous quality control assessments and regulatory requirements that impose exorbitant costs on suppliers and as a result, lead to a significant increase in the cost of treatment. Pursuing an efficient non-viral method for genetic modification of immune cells is a hot topic in cell-based gene therapy. This study aims to investigate the current state-of-the-art in non-viral methods of CAR-T cell manufacturing. In the first part of this study, after reviewing the advantages and disadvantages of the clinical use of viral vectors, different non-viral vectors and the path of their clinical translation are discussed. These vectors include transposons (sleeping beauty, piggyBac, Tol2, and Tc Buster), programmable nucleases (ZFNs, TALENs, and CRISPR/Cas9), mRNA, plasmids, minicircles, and nanoplasmids. Afterward, various methods for efficient delivery of non-viral vectors into the cells are reviewed.
Collapse
Affiliation(s)
- Yekta Metanat
- Faculty of Medicine, Zahedan University of Medical Sciences, Sistan and Baluchestan Province, Iran
| | - Patrik Viktor
- Óbuda University, Karoly Keleti faculty, Tavaszmező u. 15-17, H-1084 Budapest, Hungary
| | - Ayesha Amajd
- Faculty of Transport and Aviation Engineering, Silesian University of Technology, Krasińskiego 8 Street, 40-019 Katowice, Poland
| | - Irwanjot Kaur
- Department of Biotechnology and Genetics, Jain (Deemed-to-be) University, Bangalore, Karnataka, India; Department of Allied Healthcare and Sciences, Vivekananda Global University, Jaipur, Rajasthan-303012, India
| | | | | | | | - M V N L Chaitanya
- School of pharmaceutical sciences, Lovely Professional University, Jalandhar-Delhi G.T. Road, Phagwara, Punjab - 144411, India
| | | | - Pallavi Ghildiyal
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | | | - Carmen Iulia Ciongradi
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| | - Ioan Sârbu
- 2nd Department of Surgery-Pediatric Surgery and Orthopedics, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iași, Romania.
| |
Collapse
|
3
|
Zhou KI, Pecot CV, Holley CL. 2'- O-methylation (Nm) in RNA: progress, challenges, and future directions. RNA (NEW YORK, N.Y.) 2024; 30:570-582. [PMID: 38531653 PMCID: PMC11019748 DOI: 10.1261/rna.079970.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/09/2024] [Indexed: 03/28/2024]
Abstract
RNA 2'-O-methylation (Nm) is highly abundant in noncoding RNAs including ribosomal RNA (rRNA), transfer RNA (tRNA), and small nuclear RNA (snRNA), and occurs in the 5' cap of virtually all messenger RNAs (mRNAs) in higher eukaryotes. More recently, Nm has also been reported to occur at internal sites in mRNA. High-throughput methods have been developed for the transcriptome-wide detection of Nm. However, these methods have mostly been applied to abundant RNAs such as rRNA, and the validity of the internal mRNA Nm sites detected with these approaches remains controversial. Nonetheless, Nm in both coding and noncoding RNAs has been demonstrated to impact cellular processes, including translation and splicing. In addition, Nm modifications at the 5' cap and possibly at internal sites in mRNA serve to prevent the binding of nucleic acid sensors, thus preventing the activation of the innate immune response by self-mRNAs. Finally, Nm has been implicated in a variety of diseases including cancer, cardiovascular diseases, and neurologic syndromes. In this review, we discuss current challenges in determining the distribution, regulation, function, and disease relevance of Nm, as well as potential future directions for the field.
Collapse
Affiliation(s)
- Katherine I Zhou
- Division of Medical Oncology, Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| | - Chad V Pecot
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
- Division of Hematology and Oncology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27514, USA
- University of North Carolina RNA Discovery Center, UNC Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, USA
| | - Christopher L Holley
- Division of Cardiology, Department of Medicine, Duke University, Durham, North Carolina 27710, USA
| |
Collapse
|
4
|
Huang YS, Mendez R, Fernandez M, Richter JD. CPEB and translational control by cytoplasmic polyadenylation: impact on synaptic plasticity, learning, and memory. Mol Psychiatry 2023; 28:2728-2736. [PMID: 37131078 PMCID: PMC10620108 DOI: 10.1038/s41380-023-02088-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/18/2023] [Accepted: 04/19/2023] [Indexed: 05/04/2023]
Abstract
The late 1990s were banner years in molecular neuroscience; seminal studies demonstrated that local protein synthesis, at or near synapses, was necessary for synaptic plasticity, the underlying cellular basis of learning and memory [1, 2]. The newly made proteins were proposed to "tag" the stimulated synapse, distinguishing it from naive synapses, thereby forming a cellular memory [3]. Subsequent studies demonstrated that the transport of mRNAs from soma to dendrite was linked with translational unmasking at synapses upon synaptic stimulation. It soon became apparent that one prevalent mechanism governing these events is cytoplasmic polyadenylation, and that among the proteins that control this process, CPEB, plays a central role in synaptic plasticity, and learning and memory. In vertebrates, CPEB is a family of four proteins, all of which regulate translation in the brain, that have partially overlapping functions, but also have unique characteristics and RNA binding properties that make them control different aspects of higher cognitive function. Biochemical analysis of the vertebrate CPEBs demonstrate them to respond to different signaling pathways whose output leads to specific cellular responses. In addition, the different CPEBs, when their functions go awry, result in pathophysiological phenotypes resembling specific human neurological disorders. In this essay, we review key aspects of the vertebrate CPEB proteins and cytoplasmic polyadenylation within the context of brain function.
Collapse
Affiliation(s)
- Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
| | - Raul Mendez
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats (ICREA), 08010, Barcelona, Spain.
| | | | - Joel D Richter
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
5
|
Anreiter I, Tian YW, Soller M. The cap epitranscriptome: Early directions to a complex life as mRNA. Bioessays 2023; 45:e2200198. [PMID: 36529693 DOI: 10.1002/bies.202200198] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/07/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022]
Abstract
Animal, protist and viral messenger RNAs (mRNAs) are most prominently modified at the beginning by methylation of cap-adjacent nucleotides at the 2'-O-position of the ribose (cOMe) by dedicated cap methyltransferases (CMTrs). If the first nucleotide of an mRNA is an adenosine, PCIF1 can methylate at the N6 -position (m6 A), while internally the Mettl3/14 writer complex can methylate. These modifications are introduced co-transcriptionally to affect many aspects of gene expression including localisation to synapses and local translation. Of particular interest, transcription start sites of many genes are heterogeneous leading to sequence diversity at the beginning of mRNAs, which together with cOMe and m6 Am could constitute an extensive novel layer of gene expression control. Given the role of cOMe and m6 A in local gene expression at synapses and higher brain functions including learning and memory, such code could be implemented at the transcriptional level for lasting memories through local gene expression at synapses.
Collapse
Affiliation(s)
- Ina Anreiter
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - Yuan W Tian
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Matthias Soller
- Birmingham Centre for Genome Biology, University of Birmingham, Birmingham, UK.,School of Biosciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
6
|
Moretti A, Ponzo M, Nicolette CA, Tcherepanova IY, Biondi A, Magnani CF. The Past, Present, and Future of Non-Viral CAR T Cells. Front Immunol 2022; 13:867013. [PMID: 35757746 PMCID: PMC9218214 DOI: 10.3389/fimmu.2022.867013] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 04/28/2022] [Indexed: 12/14/2022] Open
Abstract
Adoptive transfer of chimeric antigen receptor (CAR) T lymphocytes is a powerful technology that has revolutionized the way we conceive immunotherapy. The impressive clinical results of complete and prolonged response in refractory and relapsed diseases have shifted the landscape of treatment for hematological malignancies, particularly those of lymphoid origin, and opens up new possibilities for the treatment of solid neoplasms. However, the widening use of cell therapy is hampered by the accessibility to viral vectors that are commonly used for T cell transfection. In the era of messenger RNA (mRNA) vaccines and CRISPR/Cas (clustered regularly interspaced short palindromic repeat-CRISPR-associated) precise genome editing, novel and virus-free methods for T cell engineering are emerging as a more versatile, flexible, and sustainable alternative for next-generation CAR T cell manufacturing. Here, we discuss how the use of non-viral vectors can address some of the limitations of the viral methods of gene transfer and allow us to deliver genetic information in a stable, effective and straightforward manner. In particular, we address the main transposon systems such as Sleeping Beauty (SB) and piggyBac (PB), the utilization of mRNA, and innovative approaches of nanotechnology like Lipid-based and Polymer-based DNA nanocarriers and nanovectors. We also describe the most relevant preclinical data that have recently led to the use of non-viral gene therapy in emerging clinical trials, and the related safety and efficacy aspects. We will also provide practical considerations for future trials to enable successful and safe cell therapy with non-viral methods for CAR T cell generation.
Collapse
Affiliation(s)
- Alex Moretti
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | - Marianna Ponzo
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
| | | | | | - Andrea Biondi
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Pediatrics, University of Milano - Bicocca, Milan, Italy
- Clinica Pediatrica, University of Milano - Bicocca/Fondazione MBBM, Monza, Italy
| | - Chiara F. Magnani
- Tettamanti Research Center, Department of Pediatrics, University of Milano-Bicocca/Fondazione Monza e Brianza per il Bambino e la sua Mamma (MBBM), Monza, Italy
- Department of Medical Oncology and Hematology, University Hospital Zurich and University of Zurich, Zurich, Switzerland
| |
Collapse
|
7
|
Liang S, Silva JC, Suska O, Lukoszek R, Almohammed R, Cowling V. OUP accepted manuscript. Nucleic Acids Res 2022; 50:2905-2922. [PMID: 35212377 PMCID: PMC8934662 DOI: 10.1093/nar/gkac122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 01/09/2022] [Accepted: 02/09/2022] [Indexed: 11/29/2022] Open
Abstract
CMTR1 (cap methyltransferase 1) catalyses methylation of the first transcribed nucleotide of RNAPII transcripts (N1 2′-O-Me), creating part of the mammalian RNA cap structure. In addition to marking RNA as self, N1 2′-O-Me has ill-defined roles in RNA expression and translation. Here, we investigated the gene specificity of CMTR1 and its impact on RNA expression in embryonic stem cells. Using chromatin immunoprecipitation, CMTR1 was found to bind to transcription start sites (TSS) correlating with RNAPII levels, predominantly binding at histone genes and ribosomal protein (RP) genes. Repression of CMTR1 expression resulted in repression of RNAPII binding at the TSS and repression of RNA expression, particularly of histone and RP genes. In correlation with regulation of histones and RP genes, CMTR1 repression resulted in repression of translation and induction of DNA replication stress and damage. Indicating a direct role for CMTR1 in transcription, addition of recombinant CMTR1 to purified nuclei increased transcription of the histone and RP genes. CMTR1 was found to be upregulated during neural differentiation and there was an enhanced requirement for CMTR1 for gene expression and proliferation during this process. We highlight the distinct roles of the cap methyltransferases RNMT and CMTR1 in target gene expression and differentiation.
Collapse
Affiliation(s)
- Shang Liang
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Joana C Silva
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Olga Suska
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Radoslaw Lukoszek
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
- MRC Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Rajaei Almohammed
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- To whom correspondence should be addressed. Tel: +44 1382 386997; Fax: +44 1382 386997;
| |
Collapse
|
8
|
CMTR1-Catalyzed 2'-O-Ribose Methylation Controls Neuronal Development by Regulating Camk2α Expression Independent of RIG-I Signaling. Cell Rep 2020; 33:108269. [PMID: 33086056 PMCID: PMC7574844 DOI: 10.1016/j.celrep.2020.108269] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/10/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Eukaryotic mRNAs are 5′ end capped with a 7-methylguanosine, which is important for processing and translation of mRNAs. Cap methyltransferase 1 (CMTR1) catalyzes 2′-O-ribose methylation of the first transcribed nucleotide (N1 2′-O-Me) to mask mRNAs from innate immune surveillance by retinoic-acid-inducible gene-I (RIG-I). Nevertheless, whether this modification regulates gene expression for neuronal functions remains unexplored. Here, we find that knockdown of CMTR1 impairs dendrite development independent of secretory cytokines and RIG-I signaling. Using transcriptomic analyses, we identify altered gene expression related to dendrite morphogenesis instead of RIG-I-activated interferon signaling, such as decreased calcium/calmodulin-dependent protein kinase 2α (Camk2α). In line with these molecular changes, dendritic complexity in CMTR1-insufficient neurons is rescued by ectopic expression of CaMK2α but not by inactivation of RIG-I signaling. We further generate brain-specific CMTR1-knockout mice to validate these findings in vivo. Our study reveals the indispensable role of CMTR1-catalyzed N1 2′-O-Me in gene regulation for brain development. Every mRNA molecule in neurons is N1 2′-O methylated by CMTR1 CMTR1 is essential for neuromorphogenesis and brain development CMTR1 deficiency does not activate RIG-I and interferon signaling CMTR1 promotes Camk2α expression to support dendrite development
Collapse
|
9
|
Slobodin B, Dikstein R. So close, no matter how far: multiple paths connecting transcription to mRNA translation in eukaryotes. EMBO Rep 2020; 21:e50799. [PMID: 32803873 PMCID: PMC7507372 DOI: 10.15252/embr.202050799] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/22/2020] [Accepted: 07/23/2020] [Indexed: 12/15/2022] Open
Abstract
Transcription of DNA into mRNA and translation of mRNA into proteins are two major processes underlying gene expression. Due to the distinct molecular mechanisms, timings, and locales of action, these processes are mainly considered to be independent. During the last two decades, however, multiple factors and elements were shown to coordinate transcription and translation, suggesting an intricate level of synchronization. This review discusses the molecular mechanisms that impact both processes in eukaryotic cells of different origins. The emerging global picture suggests evolutionarily conserved regulation and coordination between transcription and mRNA translation, indicating the importance of this phenomenon for the fine-tuning of gene expression and the adjustment to constantly changing conditions.
Collapse
Affiliation(s)
- Boris Slobodin
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| | - Rivka Dikstein
- Department of Biomolecular SciencesThe Weizmann Institute of ScienceRehovotIsrael
| |
Collapse
|
10
|
Tan L, Zheng T, Li M, Zhong X, Tang Y, Qin M, Sun X. Optimization of an mRNA vaccine assisted with cyclodextrin-polyethyleneimine conjugates. Drug Deliv Transl Res 2020; 10:678-689. [PMID: 32048201 DOI: 10.1007/s13346-020-00725-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Messenger RNA (mRNA) vaccines have attracted great interest in recent years due to their high potency, safety profile, and potential of rapid development. Although a number of mRNA vaccines have entered clinical trials, there remain several challenges. Inefficient in vivo delivery of mRNA is the foremost one. Here we synthesized a conjugate composed of β-cyclodextrin (β-CD) and branched polyethyleneimine (molecular weight 2 kDa, bPEI2k) to deliver an mRNA vaccine. The CD-PEI (CP) conjugate helped the encapsulated mRNA molecules pass through the plasma membranes and escape from the endosomes, which consequently ensured high transfection efficiency. On this basis, we optimized several structural elements of mRNA molecules via synthesizing an advanced cap structure and incorporating untranslated regions (UTRs) and an extended poly(A) tail into the sequence. These modifications led to a higher expression level of encoded proteins, which was expected to induce potent immune responses with a relatively low dosage. We also investigated the relevance of the administration route to the immune responses induced by CP-assisted mRNA vaccines with in vivo evidence, providing a basis for the selection of optimum administration route in specific cases. This CP-based mRNA vaccine platform, with an optimized mRNA structure and administrated in a most appropriate route, holds a promise to be applied to specific antigens in the future. Graphical abstract.
Collapse
Affiliation(s)
- Lu Tan
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Tao Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Man Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xiaofang Zhong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yao Tang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Ming Qin
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Xun Sun
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Williams GD, Gokhale NS, Snider DL, Horner SM. The mRNA Cap 2'- O-Methyltransferase CMTR1 Regulates the Expression of Certain Interferon-Stimulated Genes. mSphere 2020; 5:e00202-20. [PMID: 32404510 PMCID: PMC7227766 DOI: 10.1128/msphere.00202-20] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023] Open
Abstract
Type I interferons (IFN) initiate an antiviral state through a signal transduction cascade that leads to the induction of hundreds of IFN-stimulated genes (ISGs) to restrict viral infection. Recently, RNA modifications on both host and viral RNAs have been described as regulators of infection. However, the impact of host mRNA cap modifications on the IFN response and how this regulates viral infection are unknown. Here, we reveal that CMTR1, an ISG that catalyzes 2'-O-methylation of the first transcribed nucleotide in cellular mRNA (Cap 1), promotes the protein expression of specific ISGs that contribute to the antiviral response. Depletion of CMTR1 reduces the IFN-induced protein levels of ISG15, MX1, and IFITM1, without affecting their transcript abundance. However, CMTR1 depletion does not significantly affect the IFN-induced protein or transcript abundance of IFIT1 and IFIT3. Importantly, knockdown of IFIT1, which acts with IFIT3 to inhibit the translation of RNAs lacking Cap 1 2'-O-methylation, restores protein expression of ISG15, MX1, and IFITM1 in cells depleted of CMTR1. Finally, we found that CMTR1 plays a role in restricting RNA virus replication, likely by ensuring the expression of specific antiviral ISGs. Taken together, these data reveal that CMTR1 is required to establish an antiviral state by ensuring the protein expression of a subset of ISGs during the type I IFN response.IMPORTANCE Induction of an efficient type I IFN response is important to control viral infection. We show that the host 2'-O-methyltransferase CMTR1 facilitates the protein expression of ISGs in human cells by preventing IFIT1 from inhibiting the translation of those mRNAs lacking cap 2'-O-methylation. Thus, CMTR1 promotes the IFN-mediated antiviral response.
Collapse
Affiliation(s)
- Graham D Williams
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Nandan S Gokhale
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Daltry L Snider
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Stacy M Horner
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, USA
- Department of Medicine, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
12
|
Rybakova Y, Kowalski PS, Huang Y, Gonzalez JT, Heartlein MW, DeRosa F, Delcassian D, Anderson DG. mRNA Delivery for Therapeutic Anti-HER2 Antibody Expression In Vivo. Mol Ther 2019; 27:1415-1423. [PMID: 31160223 DOI: 10.1016/j.ymthe.2019.05.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/06/2019] [Accepted: 05/07/2019] [Indexed: 12/31/2022] Open
Abstract
Antibody-based drugs are a leading class of biologics used to treat a variety of diseases, including cancer. However, wide antibody implementation is hindered by manufacturing challenges and high production cost. Use of in-vitro-transcribed mRNA (IVT-mRNA) for endogenous protein expression has the potential to circumvent many of the shortcomings of antibody production and therapeutic application. Here, we describe the development of an IVT-mRNA system for in vivo delivery of a humanized anti-HER2 (also known as ERBB2) antibody, trastuzumab, and demonstrate its anticancer activity. We engineered the IVT-mRNA sequence to maximize expression, then formulated the IVT-mRNA into lipid-based nanoparticles (LNPs) to protect the mRNA from degradation and enable efficient in vivo delivery. Systemic delivery of the optimized IVT-mRNA loaded into LNPs resulted in antibody serum concentrations of 45 ± 8.6 μg/mL for 14 days after LNP injection. Further studies demonstrated an improved pharmacokinetic profile of the produced protein compared to injection of trastuzumab protein. Finally, treatment of tumor-bearing mice with trastuzumab IVT-mRNA LNPs selectively reduced the volume of HER2-positive tumors and improved animal survival. Taken together, the results of our study demonstrate that using IVT-mRNA LNPs to express full-size therapeutic antibodies in the liver can provide an effective strategy for cancer treatment and offers an alternative to protein administration.
Collapse
Affiliation(s)
- Yulia Rybakova
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Piotr S Kowalski
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yuxuan Huang
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - John T Gonzalez
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | | | | | - Derfogail Delcassian
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Daniel G Anderson
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA; Institute for Medical Engineering and Science, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Harvard and MIT Division of Health Science and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
13
|
Galloway A, Cowling VH. mRNA cap regulation in mammalian cell function and fate. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2019; 1862:270-279. [PMID: 30312682 PMCID: PMC6414751 DOI: 10.1016/j.bbagrm.2018.09.011] [Citation(s) in RCA: 123] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 09/13/2018] [Accepted: 09/30/2018] [Indexed: 12/17/2022]
Abstract
In this review we explore the regulation of mRNA cap formation and its impact on mammalian cells. The mRNA cap is a highly methylated modification of the 5' end of RNA pol II-transcribed RNA. It protects RNA from degradation, recruits complexes involved in RNA processing, export and translation initiation, and marks cellular mRNA as "self" to avoid recognition by the innate immune system. The mRNA cap can be viewed as a unique mark which selects RNA pol II transcripts for specific processing and translation. Over recent years, examples of regulation of mRNA cap formation have emerged, induced by oncogenes, developmental pathways and during the cell cycle. These signalling pathways regulate the rate and extent of mRNA cap formation, resulting in changes in gene expression, cell physiology and cell function.
Collapse
Affiliation(s)
- Alison Galloway
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK.
| |
Collapse
|
14
|
Dimitrova DG, Teysset L, Carré C. RNA 2'-O-Methylation (Nm) Modification in Human Diseases. Genes (Basel) 2019; 10:E117. [PMID: 30764532 PMCID: PMC6409641 DOI: 10.3390/genes10020117] [Citation(s) in RCA: 116] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/28/2019] [Accepted: 01/30/2019] [Indexed: 12/24/2022] Open
Abstract
Nm (2'-O-methylation) is one of the most common modifications in the RNA world. It has the potential to influence the RNA molecules in multiple ways, such as structure, stability, and interactions, and to play a role in various cellular processes from epigenetic gene regulation, through translation to self versus non-self recognition. Yet, building scientific knowledge on the Nm matter has been hampered for a long time by the challenges in detecting and mapping this modification. Today, with the latest advancements in the area, more and more Nm sites are discovered on RNAs (tRNA, rRNA, mRNA, and small non-coding RNA) and linked to normal or pathological conditions. This review aims to synthesize the Nm-associated human diseases known to date and to tackle potential indirect links to some other biological defects.
Collapse
Affiliation(s)
- Dilyana G Dimitrova
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Laure Teysset
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| | - Clément Carré
- Sorbonne Université, Institut de Biologie Paris Seine, Centre National de la Recherche Scientifique, Transgenerational Epigenetics & Small RNA Biology, Laboratoire de Biologie du Développement, 75005 Paris, France.
| |
Collapse
|
15
|
Trotman JB, Schoenberg *DR. A recap of RNA recapping. WILEY INTERDISCIPLINARY REVIEWS. RNA 2019; 10:e1504. [PMID: 30252202 PMCID: PMC6294674 DOI: 10.1002/wrna.1504] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Revised: 07/13/2018] [Accepted: 08/01/2018] [Indexed: 12/12/2022]
Abstract
The N7-methylguanosine cap is a hallmark of the 5' end of eukaryotic mRNAs and is required for gene expression. Loss of the cap was believed to lead irreversibly to decay. However, nearly a decade ago, it was discovered that mammalian cells contain enzymes in the cytoplasm that are capable of restoring caps onto uncapped RNAs. In this review, we summarize recent advances in our understanding of cytoplasmic RNA recapping and discuss the biochemistry of this process and its impact on regulating and diversifying the transcriptome. Although most studies focus on mammalian RNA recapping, we also highlight new observations for recapping in disparate eukaryotic organisms, with the trypanosome recapping system appearing to be a fascinating example of convergent evolution. We conclude with emerging insights into the biological significance of RNA recapping and prospects for the future of this evolving area of study. This article is categorized under: RNA Processing > RNA Editing and Modification Translation > Translation Regulation RNA Processing > Capping and 5' End Modifications RNA Turnover and Surveillance > Regulation of RNA Stability.
Collapse
Affiliation(s)
- Jackson B. Trotman
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210,
| | - *Daniel R. Schoenberg
- Department of Biological Chemistry and Pharmacology, Center for RNA Biology, The Ohio State University, Columbus, OH 43210, schoenberg,
| |
Collapse
|
16
|
Toczydlowska-Socha D, Zielinska MM, Kurkowska M, Astha, Almeida CF, Stefaniak F, Purta E, Bujnicki JM. Human RNA cap1 methyltransferase CMTr1 cooperates with RNA helicase DHX15 to modify RNAs with highly structured 5' termini. Philos Trans R Soc Lond B Biol Sci 2018; 373:rstb.2018.0161. [PMID: 30397098 PMCID: PMC6232587 DOI: 10.1098/rstb.2018.0161] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2018] [Indexed: 11/23/2022] Open
Abstract
The 5′-cap structure, characteristic for RNA polymerase II-transcribed RNAs, plays important roles in RNA metabolism. In humans, RNA cap formation includes post-transcriptional modification of the first transcribed nucleotide by RNA cap1 methyltransferase (CMTr1). Here, we report that CMTr1 activity is hindered towards RNA substrates with highly structured 5′ termini. We found that CMTr1 binds ATP-dependent RNA DHX15 helicase and that this interaction, mediated by the G-patch domain of CMTr1, has an advantageous effect on CMTr1 activity towards highly structured RNA substrates. The effect of DHX15 helicase activity is consistent with the strength of the secondary structure that has to be removed for CMTr1 to access the 5′-terminal residues in a single-stranded conformation. This is, to our knowledge, the first demonstration of the involvement of DHX15 in post-transcriptional RNA modification, and the first example of a molecular process in which DHX15 directly affects the activity of another enzyme. Our findings suggest a new mechanism underlying the regulatory role of DHX15 in the RNA capping process. RNAs with highly structured 5′ termini constitute a significant fraction of the human transcriptome. Hence, CMTr1–DHX15 cooperation is likely to be important for the metabolism of RNA polymerase II-transcribed RNAs. This article is part of the theme issue ‘5′ and 3′ modifications controlling RNA degradation’.
Collapse
Affiliation(s)
- Diana Toczydlowska-Socha
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Magdalena M Zielinska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Malgorzata Kurkowska
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Astha
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Catarina F Almeida
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Filip Stefaniak
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Elzbieta Purta
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland
| | - Janusz M Bujnicki
- Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology, ul. ks. Trojdena 4, 02-109 Warsaw, Poland .,Institute of Molecular Biology and Biotechnology, Faculty of Biology, Adam Mickiewicz University, ul. Umultowska 89, 61-614 Poznan, Poland
| |
Collapse
|
17
|
Inesta-Vaquera F, Chaugule VK, Galloway A, Chandler L, Rojas-Fernandez A, Weidlich S, Peggie M, Cowling VH. DHX15 regulates CMTR1-dependent gene expression and cell proliferation. Life Sci Alliance 2018; 1:e201800092. [PMID: 30079402 PMCID: PMC6071836 DOI: 10.26508/lsa.201800092] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
DHX15 helicase regulates CMTR1-dependent first transcribed nucleotide ribose O-2 methylation. CMTR1 contributes to mRNA cap formation by methylating the first transcribed nucleotide ribose at the O-2 position. mRNA cap O-2 methylation has roles in mRNA stabilisation and translation, and self-RNA tolerance in innate immunity. We report that CMTR1 is recruited to serine-5–phosphorylated RNA Pol II C-terminal domain, early in transcription. We isolated CMTR1 in a complex with DHX15, an RNA helicase functioning in splicing and ribosome biogenesis, and characterised it as a regulator of CMTR1. When DHX15 is bound, CMTR1 activity is repressed and the methyltransferase does not bind to RNA pol II. Conversely, CMTR1 activates DHX15 helicase activity, which is likely to impact several nuclear functions. In HCC1806 breast carcinoma cell line, the DHX15–CMTR1 interaction controls ribosome loading of a subset of mRNAs and regulates cell proliferation. The impact of the CMTR1–DHX15 interaction is complex and will depend on the relative expression of these enzymes and their interactors, and the cellular dependency on different RNA processing pathways.
Collapse
Affiliation(s)
- Francisco Inesta-Vaquera
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Viduth K Chaugule
- Institute of Molecular, Cell and Systems Biology, School of Life Sciences, University of Glasgow, Glasgow, UK
| | - Alison Galloway
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| | - Laurel Chandler
- Nuffield Department of Clinical Neurosciences, Medical Sciences Division, University of Oxford, Oxford, UK
| | - Alejandro Rojas-Fernandez
- Center for Interdisciplinary Studies on the Nervous System and Institute of Medicine, Universidad Austral de Chile, Valdivia, Chile
| | - Simone Weidlich
- Division of Signal Transduction Therapies, School of Life Sciences, University of Dundee, Dundee, UK
| | - Mark Peggie
- Division of Signal Transduction Therapies, School of Life Sciences, University of Dundee, Dundee, UK
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
18
|
Muttach F, Muthmann N, Rentmeister A. Synthetic mRNA capping. Beilstein J Org Chem 2017; 13:2819-2832. [PMID: 30018667 PMCID: PMC5753152 DOI: 10.3762/bjoc.13.274] [Citation(s) in RCA: 65] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 12/04/2017] [Indexed: 12/25/2022] Open
Abstract
Eukaryotic mRNA with its 5'-cap is of central importance for the cell. Many studies involving mRNA require reliable preparation and modification of 5'-capped RNAs. Depending on the length of the desired capped RNA, chemical or enzymatic preparation - or a combination of both - can be advantageous. We review state-of-the art methods and give directions for choosing the appropriate approach. We also discuss the preparation and properties of mRNAs with non-natural caps providing novel features such as improved stability or enhanced translational efficiency.
Collapse
Affiliation(s)
- Fabian Muttach
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Nils Muthmann
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
| | - Andrea Rentmeister
- University of Münster, Department of Chemistry, Institute of Biochemistry, Wilhelm-Klemm-Str. 2, 48149 Münster, Germany
- Cells-in-Motion Cluster of Excellence (EXC1003-CiM), University of Münster, Germany
| |
Collapse
|
19
|
Ishikawa H, Nobe Y, Izumikawa K, Taoka M, Yamauchi Y, Nakayama H, Simpson RJ, Isobe T, Takahash N. Truncated forms of U2 snRNA (U2-tfs) are shunted toward a novel uridylylation pathway that differs from the degradation pathway for U1-tfs. RNA Biol 2017; 15:261-268. [PMID: 29168419 DOI: 10.1080/15476286.2017.1408766] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Abstract
During the biogenesis of U1 small nuclear ribonucleoprotein, a small population of U1 snRNA molecules acquires an extra methylation at the first transcribed nucleotide and a nucleolytic cleavage to remove the 3' structured region including the Sm protein-binding site and stem-loop 4. These modifications occur before hypermethylation of the monomethylated 5' cap, whereby producing truncated forms of U1 snRNA (U1-tfs) that are diverted from the normal pathway to a processing body-associated degradation pathway. Here, we demonstrate that a small population of U2 snRNA molecules receives post-transcriptional modifications similar to those of U1 to yield U2-tfs. Like U1-tfs, U2-tfs molecules were produced from transcripts of the U2 snRNA gene having all cis-elements or lacking the 3' box. Unlike U1-tfs, however, a portion of U2-tfs received additional uridylylation of up to 5 nucleotides in length at position 87 (designated as U2-tfs-polyU) and formed an Sm protein-binding site-like structure that was stabilized by the small nuclear ribonucleoprotein SmB/B' probably as a part of heptameric Sm core complex that associates to the RNA. Both U2-tfs and U2-tfs-polyU were degraded by a nuclease distinct from the canonical Dis3L2 by a process catalyzed by terminal uridylyltransferase 7. Collectively, our data suggest that U2 snRNA biogenesis is regulated, at least in part, by a novel degradation pathway to ensure that defective U2 molecules are not incorporated into the spliceosome.
Collapse
Affiliation(s)
- Hideaki Ishikawa
- a Department of Applied Biological Science , Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu-shi, Tokyo , Japan.,b Global Innovation Research Organization , Tokyo University of Agriculture and Technology , Fuchu-Shi, Tokyo , Japan
| | - Yuko Nobe
- c Department of Chemistry , Graduate School of Sciences and Engineering, Tokyo Metropolitan University , Hachiouji-shi, Tokyo , Japan
| | - Keiichi Izumikawa
- a Department of Applied Biological Science , Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu-shi, Tokyo , Japan.,b Global Innovation Research Organization , Tokyo University of Agriculture and Technology , Fuchu-Shi, Tokyo , Japan
| | - Masato Taoka
- c Department of Chemistry , Graduate School of Sciences and Engineering, Tokyo Metropolitan University , Hachiouji-shi, Tokyo , Japan
| | - Yoshio Yamauchi
- c Department of Chemistry , Graduate School of Sciences and Engineering, Tokyo Metropolitan University , Hachiouji-shi, Tokyo , Japan
| | - Hiroshi Nakayama
- d Biomolecular Characterization Unit , RIKEN Center for Sustainable Resource Science , Wako , Saitama , Japan
| | - Richard J Simpson
- b Global Innovation Research Organization , Tokyo University of Agriculture and Technology , Fuchu-Shi, Tokyo , Japan.,e Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science (LIMS) , La Trobe University , Melbourne Victoria , Australia
| | - Toshiaki Isobe
- c Department of Chemistry , Graduate School of Sciences and Engineering, Tokyo Metropolitan University , Hachiouji-shi, Tokyo , Japan
| | - Nobuhiro Takahash
- a Department of Applied Biological Science , Graduate School of Agriculture, Tokyo University of Agriculture and Technology , Fuchu-shi, Tokyo , Japan.,b Global Innovation Research Organization , Tokyo University of Agriculture and Technology , Fuchu-Shi, Tokyo , Japan
| |
Collapse
|
20
|
Huang YS, Lu WH. Decoding hidden messages in neurons: insights from epitranscriptome-controlled and specialized ribosome-controlled translation. Curr Opin Neurobiol 2017; 48:64-70. [PMID: 29125978 DOI: 10.1016/j.conb.2017.10.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Revised: 10/11/2017] [Accepted: 10/17/2017] [Indexed: 11/26/2022]
Abstract
Activity-regulated protein synthesis, especially in the restricted synaptic domains, is critical to maintaining connections and communication between neurons. Accumulating evidence has linked dysregulated translation to various neurodevelopmental or neurodegenerative diseases. In the past 3 decades, after finding ribosomes and specific mRNAs localized around synapses, a significant amount of work has furthered our understanding of how the genetic sequences in mRNAs and their cognate RNA-binding proteins are coordinated to build up synaptic proteomes. Recent exciting findings of various RNA modifications, specialized ribosomes, and their regulatory roles in translation have led to emerging needs to unravel how synaptic ribosomes interpret these hidden codes to regulate molecular connectomes.
Collapse
Affiliation(s)
- Yi-Shuian Huang
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan.
| | - Wen-Hsin Lu
- Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan; Taiwan International Graduate Program in Molecular Medicine, National Yang-Ming University and Academia Sinica, Taipei 11529, Taiwan
| |
Collapse
|
21
|
Inesta‐Vaquera F, Cowling VH. Regulation and function of CMTR1-dependent mRNA cap methylation. WILEY INTERDISCIPLINARY REVIEWS. RNA 2017; 8:e1450. [PMID: 28971629 PMCID: PMC7169794 DOI: 10.1002/wrna.1450] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Revised: 08/10/2017] [Accepted: 08/17/2017] [Indexed: 12/24/2022]
Abstract
mRNA is modified co-transcriptionally at the 5' end by the addition of an inverted guanosine cap structure which can be methylated at several positions. The mRNA cap recruits proteins involved in gene expression and identifies the transcript as being cellular or 'self' in the innate immune response. Methylation of the first transcribed nucleotide on the ribose 2'-O position is a prevalent cap modification which has roles in splicing, translation and provides protection against the innate immune response. In this review, we discuss the regulation and function of CMTR1, the first transcribed nucleotide ribose 2'-O methyltransferase, and the molecular interactions which mediate methylated 2'-O ribose function. WIREs RNA 2017, 8:e1450. doi: 10.1002/wrna.1450 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
| | - Victoria H Cowling
- Centre for Gene Regulation and Expression, School of Life SciencesUniversity of DundeeDundeeUK
| |
Collapse
|
22
|
Bahl K, Senn JJ, Yuzhakov O, Bulychev A, Brito LA, Hassett KJ, Laska ME, Smith M, Almarsson Ö, Thompson J, Ribeiro AM, Watson M, Zaks T, Ciaramella G. Preclinical and Clinical Demonstration of Immunogenicity by mRNA Vaccines against H10N8 and H7N9 Influenza Viruses. Mol Ther 2017; 25:1316-1327. [PMID: 28457665 PMCID: PMC5475249 DOI: 10.1016/j.ymthe.2017.03.035] [Citation(s) in RCA: 446] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/23/2017] [Accepted: 03/24/2017] [Indexed: 12/14/2022] Open
Abstract
Recently, the World Health Organization confirmed 120 new human cases of avian H7N9 influenza in China resulting in 37 deaths, highlighting the concern for a potential pandemic and the need for an effective, safe, and high-speed vaccine production platform. Production speed and scale of mRNA-based vaccines make them ideally suited to impede potential pandemic threats. Here we show that lipid nanoparticle (LNP)-formulated, modified mRNA vaccines, encoding hemagglutinin (HA) proteins of H10N8 (A/Jiangxi-Donghu/346/2013) or H7N9 (A/Anhui/1/2013), generated rapid and robust immune responses in mice, ferrets, and nonhuman primates, as measured by hemagglutination inhibition (HAI) and microneutralization (MN) assays. A single dose of H7N9 mRNA protected mice from a lethal challenge and reduced lung viral titers in ferrets. Interim results from a first-in-human, escalating-dose, phase 1 H10N8 study show very high seroconversion rates, demonstrating robust prophylactic immunity in humans. Adverse events (AEs) were mild or moderate with only a few severe and no serious events. These data show that LNP-formulated, modified mRNA vaccines can induce protective immunogenicity with acceptable tolerability profiles.
Collapse
MESH Headings
- Animals
- Antibodies, Viral/blood
- Antibodies, Viral/immunology
- Cell Line
- Disease Models, Animal
- Female
- Ferrets
- Gene Expression
- Humans
- Immunization
- Immunization Schedule
- Influenza A Virus, H10N8 Subtype/genetics
- Influenza A Virus, H10N8 Subtype/immunology
- Influenza A Virus, H7N9 Subtype/genetics
- Influenza A Virus, H7N9 Subtype/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Influenza Vaccines/immunology
- Macaca fascicularis
- Male
- Mice
- Orthomyxoviridae Infections/prevention & control
- Protamines
- RNA, Messenger/administration & dosage
- RNA, Messenger/genetics
- RNA, Messenger/pharmacokinetics
- RNA, Viral
- Tissue Distribution
Collapse
Affiliation(s)
- Kapil Bahl
- Valera, A Moderna Venture, 500 Technology Square, Cambridge, MA 02139, USA
| | - Joe J Senn
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Olga Yuzhakov
- Valera, A Moderna Venture, 500 Technology Square, Cambridge, MA 02139, USA
| | - Alex Bulychev
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Luis A Brito
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Kimberly J Hassett
- Valera, A Moderna Venture, 500 Technology Square, Cambridge, MA 02139, USA
| | - Michael E Laska
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Mike Smith
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - Örn Almarsson
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | - James Thompson
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | | | - Mike Watson
- Valera, A Moderna Venture, 500 Technology Square, Cambridge, MA 02139, USA
| | - Tal Zaks
- Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, USA
| | | |
Collapse
|
23
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
24
|
Ramanathan A, Robb GB, Chan SH. mRNA capping: biological functions and applications. Nucleic Acids Res 2016; 44:7511-26. [PMID: 27317694 PMCID: PMC5027499 DOI: 10.1093/nar/gkw551] [Citation(s) in RCA: 482] [Impact Index Per Article: 53.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 06/03/2016] [Indexed: 12/19/2022] Open
Abstract
The 5′ m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2′O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose.
Collapse
Affiliation(s)
- Anand Ramanathan
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - G Brett Robb
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| | - Siu-Hong Chan
- New England Biolabs, Inc. 240 County Road, Ipswich, MA 01938, USA
| |
Collapse
|
25
|
Marchand V, Blanloeil-Oillo F, Helm M, Motorin Y. Illumina-based RiboMethSeq approach for mapping of 2'-O-Me residues in RNA. Nucleic Acids Res 2016; 44:e135. [PMID: 27302133 PMCID: PMC5027498 DOI: 10.1093/nar/gkw547] [Citation(s) in RCA: 159] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Accepted: 06/06/2016] [Indexed: 12/22/2022] Open
Abstract
RNA 2′-O-methylation is one of the ubiquitous nucleotide modifications found in many RNA types from Bacteria, Archaea and Eukarya. RNAs bearing 2′-O-methylations show increased resistance to degradation and enhanced stability in helices. While the exact role of each 2′-O-Me residue remained elusive, the catalytic protein Fibrillarin (Nop1 in yeast) responsible for 2′-O-methylation in eukaryotes, is associated with human pathologies. Therefore, there is an urgent need to precisely map and quantify hundreds of 2′-O-Me residues in RNA using high-throughput technologies. Here, we develop a reliable protocol using alkaline fragmentation of total RNA coupled to a commonly used ligation approach, and Illumina sequencing. We describe a methodology to detect 2′-O-methylations with high sensitivity and reproducibility even with limited amount of starting material (1 ng of total RNA). The method provides a quantification of the 2′-O-methylation occupancy of a given site, allowing to detect relatively small changes (>10%) in 2′-O-methylation profiles. Altogether this technique unlocks a technological barrier since it will be applicable for routine parallel treatment of biological and clinical samples to decipher the functions of 2′-O-methylations in pathologies.
Collapse
Affiliation(s)
- Virginie Marchand
- IMoPA UMR7365 CNRS-UL, BioPole Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France Next-Generation Sequencing Core Facility, FR3209 BMCT, Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Florence Blanloeil-Oillo
- IMoPA UMR7365 CNRS-UL, BioPole Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France Next-Generation Sequencing Core Facility, FR3209 BMCT, Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France
| | - Mark Helm
- Institute of Pharmacy and Biochemistry, Johannes Gutenberg University Mainz, Staudingerweg 5, 55128 Mainz, Germany
| | - Yuri Motorin
- IMoPA UMR7365 CNRS-UL, BioPole Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France Next-Generation Sequencing Core Facility, FR3209 BMCT, Lorraine University, 9 avenue de la Foret de Haye, 54505 Vandoeuvre-les-Nancy, France
| |
Collapse
|
26
|
Rohani L, Fabian C, Holland H, Naaldijk Y, Dressel R, Löffler-Wirth H, Binder H, Arnold A, Stolzing A. Generation of human induced pluripotent stem cells using non-synthetic mRNA. Stem Cell Res 2016; 16:662-72. [DOI: 10.1016/j.scr.2016.03.008] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 02/28/2016] [Accepted: 03/17/2016] [Indexed: 11/24/2022] Open
|
27
|
Hyde JL, Diamond MS. Innate immune restriction and antagonism of viral RNA lacking 2׳-O methylation. Virology 2015; 479-480:66-74. [PMID: 25682435 PMCID: PMC4424151 DOI: 10.1016/j.virol.2015.01.019] [Citation(s) in RCA: 135] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 01/22/2015] [Indexed: 01/31/2023]
Abstract
N-7 and 2′-O methylation of host cell mRNA occurs in the nucleus and results in the generation of cap structures (cap 0, m7GpppN; cap 1, m7GpppNm) that control gene expression by modulating nuclear export, splicing, turnover, and protein synthesis. Remarkably, RNA cap modification also contributes to mammalian cell host defense as viral RNA lacking 2′-O methylation is sensed and inhibited by IFIT1, an interferon (IFN) stimulated gene (ISG). Accordingly, pathogenic viruses that replicate in the cytoplasm have evolved mechanisms to circumvent IFIT1 restriction and facilitate infection of mammalian cells. These include: (a) generating cap 1 structures on their RNA through cap-snatching or virally-encoded 2′-O methyltransferases, (b) using cap-independent means of translation, or (c) using RNA secondary structural motifs to antagonize IFIT1 binding. This review will discuss new insights as to how specific modifications at the 5′-end of viral RNA modulate host pathogen recognition responses to promote infection and disease.
Collapse
Affiliation(s)
- Jennifer L Hyde
- Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110, USA
| | - Michael S Diamond
- Departments of Medicine, Washington University School of Medicine, St Louis., MO 63110, USA; Molecular Microbiology, Washington University School of Medicine, St Louis., MO 63110 USA; Pathology & Immunology, Washington University School of Medicine, St Louis., MO 63110, USA; The Center for Human Immunology and Immunotherapy Programs, Washington University School of Medicine, St Louis., MO 63110, USA.
| |
Collapse
|
28
|
Multiplicity of 5' cap structures present on short RNAs. PLoS One 2014; 9:e102895. [PMID: 25079783 PMCID: PMC4117478 DOI: 10.1371/journal.pone.0102895] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2014] [Accepted: 06/24/2014] [Indexed: 12/18/2022] Open
Abstract
Most RNA molecules are co- or post-transcriptionally modified to alter their chemical and functional properties to assist in their ultimate biological function. Among these modifications, the addition of 5′ cap structure has been found to regulate turnover and localization. Here we report a study of the cap structure of human short (<200 nt) RNAs (sRNAs), using sequencing of cDNA libraries prepared by enzymatic pretreatment of the sRNAs with cap sensitive-specificity, thin layer chromatographic (TLC) analyses of isolated cap structures and mass spectrometric analyses for validation of TLC analyses. Processed versions of snoRNAs and tRNAs sequences of less than 50 nt were observed in capped sRNA libraries, indicating additional processing and recapping of these annotated sRNAs biotypes. We report for the first time 2,7 dimethylguanosine in human sRNAs cap structures and surprisingly we find multiple type 0 cap structures (mGpppC, 7mGpppG, GpppG, GpppA, and 7mGpppA) in RNA length fractions shorter than 50 nt. Finally, we find the presence of additional uncharacterized cap structures that wait determination by the creation of needed reference compounds to be used in TLC analyses. These studies suggest the existence of novel biochemical pathways leading to the processing of primary and sRNAs and the modifications of their RNA 5′ ends with a spectrum of chemical modifications.
Collapse
|
29
|
Kumar P, Sweeney TR, Skabkin MA, Skabkina OV, Hellen CUT, Pestova TV. Inhibition of translation by IFIT family members is determined by their ability to interact selectively with the 5'-terminal regions of cap0-, cap1- and 5'ppp- mRNAs. Nucleic Acids Res 2013; 42:3228-45. [PMID: 24371270 PMCID: PMC3950709 DOI: 10.1093/nar/gkt1321] [Citation(s) in RCA: 149] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Ribosomal recruitment of cellular mRNAs depends on binding of eIF4F to the mRNA's 5'-terminal 'cap'. The minimal 'cap0' consists of N7-methylguanosine linked to the first nucleotide via a 5'-5' triphosphate (ppp) bridge. Cap0 is further modified by 2'-O-methylation of the next two riboses, yielding 'cap1' (m7GpppNmN) and 'cap2' (m7GpppNmNm). However, some viral RNAs lack 2'-O-methylation, whereas others contain only ppp- at their 5'-end. Interferon-induced proteins with tetratricopeptide repeats (IFITs) are highly expressed effectors of innate immunity that inhibit viral replication by incompletely understood mechanisms. Here, we investigated the ability of IFIT family members to interact with cap1-, cap0- and 5'ppp- mRNAs and inhibit their translation. IFIT1 and IFIT1B showed very high affinity to cap-proximal regions of cap0-mRNAs (K1/2,app ∼9 to 23 nM). The 2'-O-methylation abrogated IFIT1/mRNA interaction, whereas IFIT1B retained the ability to bind cap1-mRNA, albeit with reduced affinity (K1/2,app ∼450 nM). The 5'-terminal regions of 5'ppp-mRNAs were recognized by IFIT5 (K1/2,app ∼400 nM). The activity of individual IFITs in inhibiting initiation on a specific mRNA was determined by their ability to interact with its 5'-terminal region: IFIT1 and IFIT1B efficiently outcompeted eIF4F and abrogated initiation on cap0-mRNAs, whereas inhibition on cap1- and 5'ppp- mRNAs by IFIT1B and IFIT5 was weaker and required higher protein concentrations.
Collapse
Affiliation(s)
- Parimal Kumar
- Department of Cell Biology, SUNY Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | | | | | | | |
Collapse
|
30
|
Slagter-Jäger JG, Raney A, Lewis WE, DeBenedette MA, Nicolette CA, Tcherepanova IY. Evaluation of RNA Amplification Methods to Improve DC Immunotherapy Antigen Presentation and Immune Response. MOLECULAR THERAPY. NUCLEIC ACIDS 2013; 2:e91. [PMID: 23653155 PMCID: PMC4817939 DOI: 10.1038/mtna.2013.18] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Accepted: 03/19/2013] [Indexed: 01/07/2023]
Abstract
Dendritic cells (DCs) transfected with total amplified tumor cell RNA have the potential to induce broad antitumor immune responses. However, analytical methods required for quantitatively assessing the integrity, fidelity, and functionality of the amplified RNA are lacking. We have developed a series of assays including gel electrophoresis, northern blot, capping efficiency, and microarray analysis to determine integrity and fidelity and a model system to assess functionality after transfection into human DCs. We employed these tools to demonstrate that modifications to our previously reported total cellular RNA amplification process including the use of the Fast Start High Fidelity (FSHF) PCR enzyme, T7 Powerswitch primer, post-transcriptional capping and incorporation of a type 1 cap result in amplification of longer transcripts, greater translational competence, and a higher fidelity representation of the starting total RNA population. To study the properties of amplified RNA after transfection into human DCs, we measured protein expression levels of defined antigens coamplified with the starting total RNA populations and measured antigen-specific T cell expansion in autologous DC-T cell co-cultured in vitro. We conclude from these analyses that the improved RNA amplification process results in superior protein expression levels and a greater capacity of the transfected DCs to induce multifunctional antigen-specific memory T cells.Molecular Therapy-Nucleic Acids (2013) 2, e91; doi:10.1038/mtna.2013.18; published online 7 May 2013.
Collapse
Affiliation(s)
| | - Alexa Raney
- Novartis, Holly Springs, North Carolina, USA
| | | | | | | | | |
Collapse
|
31
|
D'Ambrogio A, Nagaoka K, Richter JD. Translational control of cell growth and malignancy by the CPEBs. Nat Rev Cancer 2013; 13:283-90. [PMID: 23446545 DOI: 10.1038/nrc3485] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The cytoplasmic polyadenylation element binding proteins (CPEBs) associate with specific sequences in mRNA 3' untranslated regions to promote translation. They do so by inducing cytoplasmic polyadenylation, which requires specialized poly(A) polymerases. Aberrant expression of these proteins correlates with certain types of cancer, indicating that cytoplasmic RNA 3' end processing is important in the control of growth. Several CPEB-regulated mRNAs govern cell cycle progression, regulate senescence, establish cell polarity, and promote tumorigenesis and metastasis. In this Opinion article, we discuss the emerging evidence that indicates a key role for the CPEBs in cancer biology.
Collapse
Affiliation(s)
- Andrea D'Ambrogio
- The Program in Molecular Medicine, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | | | | |
Collapse
|
32
|
Bouvet M, Ferron F, Imbert I, Gluais L, Selisko B, Coutard B, Canard B, Decroly E. [Capping strategies in RNA viruses]. Med Sci (Paris) 2012; 28:423-9. [PMID: 22549871 DOI: 10.1051/medsci/2012284021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Most viruses use the mRNA-cap dependent cellular translation machinery to translate their mRNAs into proteins. The addition of a cap structure at the 5' end of mRNA is therefore an essential step for the replication of many virus families. Additionally, the cap protects the viral RNA from degradation by cellular nucleases and prevents viral RNA recognition by innate immunity mechanisms. Viral RNAs acquire their cap structure either by using cellular capping enzymes, by stealing the cap of cellular mRNA in a process named "cap snatching", or using virus-encoded capping enzymes. Many viral enzymes involved in this process have recently been structurally and functionally characterized. These studies have revealed original cap synthesis mechanisms and pave the way towards the development of specific inhibitors bearing antiviral drug potential.
Collapse
Affiliation(s)
- Mickaël Bouvet
- Laboratoire CNRS - Architecture et fonction des macromolécules biologiques (AFMB), UMR 7257, groupe réplication virale, structures, mécanismes et drug-design, école supérieure d'ingénieurs de Luminy (ESIL) - Case 925, 163, avenue de Luminy, 13288 Marseille Cedex 09, France
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Jani B, Fuchs R. In vitro transcription and capping of Gaussia luciferase mRNA followed by HeLa cell transfection. J Vis Exp 2012:3702. [PMID: 22473375 DOI: 10.3791/3702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
In vitro transcription is the synthesis of RNA transcripts by RNA polymerase from a linear DNA template containing the corresponding promoter sequence (T7, T3, SP6) and the gene to be transcribed (Figure 1A). A typical transcription reaction consists of the template DNA, RNA polymerase, ribonucleotide triphosphates, RNase inhibitor and buffer containing Mg(2+) ions. Large amounts of high quality RNA are often required for a variety of applications. Use of in vitro transcription has been reported for RNA structure and function studies such as splicing(1), RNAi experiments in mammalian cells(2), antisense RNA amplification by the "Eberwine method"(3), microarray analysis(4) and for RNA vaccine studies(5). The technique can also be used for producing radiolabeled and dye labeled probes(6). Warren, et al. recently reported reprogramming of human cells by transfection with in vitro transcribed capped RNA(7). The T7 High Yield RNA Synthesis Kit from New England Biolabs has been designed to synthesize up to 180 μg RNA per 20 μl reaction. RNA of length up to 10kb has been successfully transcribed using this kit. Linearized plasmid DNA, PCR products and synthetic DNA oligonucleotides can be used as templates for transcription as long as they have the T7 promoter sequence upstream of the gene to be transcribed. Addition of a 5' end cap structure to the RNA is an important process in eukaryotes. It is essential for RNA stability(8), efficient translation(9), nuclear transport(10) and splicing(11). The process involves addition of a 7-methylguanosine cap at the 5' triphosphate end of the RNA. RNA capping can be carried out post-transcriptionally using capping enzymes or co-transcriptionally using cap analogs. In the enzymatic method, the mRNA is capped using the Vaccinia virus capping enzyme(12,13). The enzyme adds on a 7-methylguanosine cap at the 5' end of the RNA using GTP and S-adenosyl methionine as donors (cap 0 structure). Both methods yield functionally active capped RNA suitable for transfection or other applications(14) such as generating viral genomic RNA for reverse-genetic systems(15) and crystallographic studies of cap binding proteins such as eIF4E(16). In the method described below, the T7 High Yield RNA Synthesis Kit from NEB is used to synthesize capped and uncapped RNA transcripts of Gaussia luciferase (GLuc) and Cypridina luciferase (CLuc). A portion of the uncapped GLuc RNA is capped using the Vaccinia Capping System (NEB). A linearized plasmid containing the GLuc or CLuc gene and T7 promoter is used as the template DNA. The transcribed RNA is transfected into HeLa cells and cell culture supernatants are assayed for luciferase activity. Capped CLuc RNA is used as the internal control to normalize GLuc expression.
Collapse
|
34
|
Kruse S, Zhong S, Bodi Z, Button J, Alcocer MJC, Hayes CJ, Fray R. A novel synthesis and detection method for cap-associated adenosine modifications in mouse mRNA. Sci Rep 2011; 1:126. [PMID: 22355643 PMCID: PMC3216607 DOI: 10.1038/srep00126] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 10/07/2011] [Indexed: 11/17/2022] Open
Abstract
A method is described for the detection of certain nucleotide modifications adjacent to the 5' 7-methyl guanosine cap of mRNAs from individual genes. The method quantitatively measures the relative abundance of 2'-O-methyl and N6,2'-O-dimethyladenosine, two of the most common modifications. In order to identify and quantitatify the amounts of N6,2'-O-dimethyladenosine, a novel method for the synthesis of modified adenosine phosphoramidites was developed. This method is a one step synthesis and the product can directly be used for the production of N6,2'-O-dimethyladenosine containing RNA oligonucleotides. The nature of the cap-adjacent nucleotides were shown to be characteristic for mRNAs from individual genes transcribed in liver and testis.
Collapse
Affiliation(s)
- Susanne Kruse
- School of Chemistry, The University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| | | | | | | | | | | | | |
Collapse
|
35
|
Kang MK, Han SJ. Post-transcriptional and post-translational regulation during mouse oocyte maturation. BMB Rep 2011; 44:147-57. [DOI: 10.5483/bmbrep.2011.44.3.147] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
36
|
Werner M, Purta E, Kaminska KH, Cymerman IA, Campbell DA, Mittra B, Zamudio JR, Sturm NR, Jaworski J, Bujnicki JM. 2'-O-ribose methylation of cap2 in human: function and evolution in a horizontally mobile family. Nucleic Acids Res 2011; 39:4756-68. [PMID: 21310715 PMCID: PMC3113572 DOI: 10.1093/nar/gkr038] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
The 5′ cap of human messenger RNA consists of an inverted 7-methylguanosine linked to the first transcribed nucleotide by a unique 5′–5′ triphosphate bond followed by 2′-O-ribose methylation of the first and often the second transcribed nucleotides, likely serving to modify efficiency of transcript processing, translation and stability. We report the validation of a human enzyme that methylates the ribose of the second transcribed nucleotide encoded by FTSJD1, henceforth renamed HMTR2 to reflect function. Purified recombinant hMTr2 protein transfers a methyl group from S-adenosylmethionine to the 2′-O-ribose of the second nucleotide of messenger RNA and small nuclear RNA. Neither N7 methylation of the guanosine cap nor 2′-O-ribose methylation of the first transcribed nucleotide are required for hMTr2, but the presence of cap1 methylation increases hMTr2 activity. The hMTr2 protein is distributed throughout the nucleus and cytosol, in contrast to the nuclear hMTr1. The details of how and why specific transcripts undergo modification with these ribose methylations remains to be elucidated. The 2′-O-ribose RNA cap methyltransferases are present in varying combinations in most eukaryotic and many viral genomes. With the capping enzymes in hand their biological purpose can be ascertained.
Collapse
Affiliation(s)
- Maria Werner
- International Institute of Molecular and Cell Biology in Warsaw, ul. Ks. Trojdena 4, 02-109 Warsaw, Poland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Mos in the oocyte: how to use MAPK independently of growth factors and transcription to control meiotic divisions. JOURNAL OF SIGNAL TRANSDUCTION 2010; 2011:350412. [PMID: 21637374 PMCID: PMC3101788 DOI: 10.1155/2011/350412] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Accepted: 11/01/2010] [Indexed: 01/12/2023]
Abstract
In many cell types, the mitogen-activated protein kinase (MAPK) also named extracellular signal-regulated kinase (ERK) is activated in response to a variety of extracellular growth factor-receptor interactions and leads to the transcriptional activation of immediate early genes, hereby influencing a number of tissue-specific biological activities, as cell proliferation, survival and differentiation. In one specific cell type however, the female germ cell, MAPK does not follow this canonical scheme. In oocytes, MAPK is activated independently of growth factors and tyrosine kinase receptors, acts independently of transcriptional regulation, plays a crucial role in controlling meiotic divisions, and is under the control of a peculiar upstream regulator, the kinase Mos. Mos was originally identified as the transforming gene of Moloney murine sarcoma virus and its cellular homologue was the first proto-oncogene to be molecularly cloned. What could be the specific roles of Mos that render it necessary for meiosis? Which unique functions could explain the evolutionary cost to have selected one gene to only serve for few hours in one very specific cell type? This review discusses the original features of MAPK activation by Mos and the roles of this module in oocytes.
Collapse
|
38
|
Bélanger F, Stepinski J, Darzynkiewicz E, Pelletier J. Characterization of hMTr1, a human Cap1 2'-O-ribose methyltransferase. J Biol Chem 2010; 285:33037-33044. [PMID: 20713356 DOI: 10.1074/jbc.m110.155283] [Citation(s) in RCA: 123] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Cellular eukaryotic mRNAs are capped at their 5' ends with a 7-methylguanosine nucleotide, a structural feature that has been shown to be important for conferring mRNA stability, stimulating mRNA biogenesis (splicing, poly(A) addition, nucleocytoplasmic transport), and increasing translational efficiency. Whereas yeast mRNAs have no additional modifications to the cap, called cap0, higher eukaryotes are methylated at the 2'-O-ribose of the first or the first and second transcribed nucleotides, called cap1 and cap2, respectively. In the present study, we identify the methyltransferase responsible for cap1 formation in human cells, which we call hMTr1 (also known as FTSJD2 and ISG95). We show in vitro that hMTr1 catalyzes specific methylation of the 2'-O-ribose of the first nucleotide of a capped RNA transcript. Using siRNA-mediated knockdown of hMTr1 in HeLa cells, we demonstrate that hMTr1 is responsible for cap1 formation in vivo.
Collapse
Affiliation(s)
- François Bélanger
- From the Departments of Biochemistry and Oncology and The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada
| | - Janusz Stepinski
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Edward Darzynkiewicz
- Division of Biophysics, Institute of Experimental Physics, Faculty of Physics, University of Warsaw, 02-089 Warsaw, Poland
| | - Jerry Pelletier
- From the Departments of Biochemistry and Oncology and The Rosalind and Morris Goodman Cancer Research Center, McGill University, Montreal, Quebec H3G 1Y6, Canada.
| |
Collapse
|
39
|
Nagata S, Hamasaki T, Uetake K, Masuda H, Takagaki K, Oka N, Wada T, Ohgi T, Yano J. Synthesis and biological activity of artificial mRNA prepared with novel phosphorylating reagents. Nucleic Acids Res 2010; 38:7845-57. [PMID: 20660478 PMCID: PMC2995060 DOI: 10.1093/nar/gkq638] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Though medicines that target mRNA are under active investigation, there has been little or no effort to develop mRNA itself as a medicine. Here, we report the synthesis of a 130-nt mRNA sequence encoding a 33-amino-acid peptide that includes the sequence of glucagon-like peptide-1, a peptide that stimulates glucose-dependent insulin secretion from the pancreas. The synthesis method used, which had previously been developed in our laboratory, was based on the use of 2-cyanoethoxymethyl as the 2′-hydroxy protecting group. We also developed novel, highly reactive phosphotriester pyrophosphorylating reagents to pyrophosphorylate the 5′-end of the 130-mer RNA in preparation for capping. We completed the synthesis of the artificial mRNA by the enzymatic addition of a 5′-cap and a 3′-poly(A) tail to the pyrophosphorylated 130-mer and showed that the resulting mRNA supported protein synthesis in a cell-free system and in whole cells. As far as we know, this is the first time that mRNA has been prepared from a chemically synthesized RNA sequence. As well as providing a research tool for the intracellular expression of peptides, the technology described here may be used for the production of mRNA for medical applications.
Collapse
Affiliation(s)
- Seigo Nagata
- Discovery Research Laboratories, Nippon Shinyaku Co, Ltd, 3-14-1 Sakura, Tsukuba, Ibaraki 305-0003, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Maresca V, Flori E, Bellei B, Aspite N, Kovacs D, Picardo M. MC1R stimulation by alpha-MSH induces catalase and promotes its re-distribution to the cell periphery and dendrites. Pigment Cell Melanoma Res 2010; 23:263-75. [PMID: 20067588 DOI: 10.1111/j.1755-148x.2010.00673.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrated a direct correlation between melanogenic and catalase activities on in vitro and ex vivo models. Here, we investigated whether the stimulation of Melanocortin-1 Receptor (MC1R) could influence catalase expression, activity and cellular localization. For this purpose, we treated B16-F0 melanoma cells with alpha-Melanocyte Stimulating Hormone (alpha-MSH) and we showed a rapid induction of catalase through a cAMP/PKA-dependent, microphthalmia-associated transcription factor (MITF) independent mechanism, acting at post-transcriptional level. Moreover, alpha-MSH promoted a partial re-distribution of catalase to the cell periphery and dendrites. This work strengthens the correlation between melanogenesis and anti-oxidants, demonstrating the induction of catalase in response to a melanogenic stimulation, such as alpha-MSH-dependent MC1R activation. Moreover, this study highlights catalase regulatory mechanisms poorly known, and attributes to alpha-MSH a protective role in defending melanocytes, and possibly keratinocytes, not only on the basis of its pigmentary action, but also for its capacity to stimulate a quick anti-oxidant defence.
Collapse
Affiliation(s)
- Vittoria Maresca
- Laboratorio di Fisiopatologia Cutanea e Biologia Molecolare-Centro di Metabolomica, San Gallicano Dermatologic Institute IRCCS, Rome, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Selisko B, Peyrane FF, Canard B, Alvarez K, Decroly E. Biochemical characterization of the (nucleoside-2'O)-methyltransferase activity of dengue virus protein NS5 using purified capped RNA oligonucleotides (7Me)GpppAC(n) and GpppAC(n). J Gen Virol 2009; 91:112-21. [PMID: 19776234 DOI: 10.1099/vir.0.015511-0] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The flavivirus RNA genome contains a conserved cap-1 structure, (7Me)GpppA(2'OMe)G, at the 5' end. Two mRNA cap methyltransferase (MTase) activities involved in the formation of the cap, the (guanine-N7)- and the (nucleoside-2'O)-MTases (2'O-MTase), reside in a single domain of non-structural protein NS5 (NS5MTase). This study reports on the biochemical characterization of the 2'O-MTase activity of NS5MTase of dengue virus (NS5MTase(DV)) using purified, short, capped RNA substrates ((7Me)GpppAC(n) or GpppAC(n)). NS5MTase(DV) methylated both types of substrate exclusively at the 2'O position. The efficiency of 2'O-methylation did not depend on the methylation of the N7 position. Using (7Me)GpppAC(n) and GpppAC(n) substrates of increasing chain lengths, it was found that both NS5MTase(DV) 2'O activity and substrate binding increased before reaching a plateau at n=5. Thus, the cap and 6 nt might define the interface providing efficient binding of enzyme and substrate. K(m) values for (7Me)GpppAC(5) and the co-substrate S-adenosyl-L-methionine (AdoMet) were determined (0.39 and 3.26 microM, respectively). As reported for other AdoMet-dependent RNA and DNA MTases, the 2'O-MTase activity of NS5MTase(DV) showed a low turnover of 3.25x10(-4) s(-1). Finally, an inhibition assay was set up and tested on GTP and AdoMet analogues as putative inhibitors of NS5MTase(DV), which confirmed efficient inhibition by the reaction product S-adenosyl-homocysteine (IC(50) 0.34 microM) and sinefungin (IC(50) 0.63 microM), demonstrating that the assay is sufficiently sensitive to conduct inhibitor screening and characterization assays.
Collapse
Affiliation(s)
- Barbara Selisko
- Laboratoire d'Architecture et Fonction des Macromolécules Biologiques, UMR 6098, Centre National de la Recherche Scientifique and Université de la Méditerranée Aix-Marseille I et II, Marseille, France.
| | | | | | | | | |
Collapse
|
42
|
Zamudio JR, Mittra B, Campbell DA, Sturm NR. Hypermethylated cap 4 maximizes Trypanosoma brucei translation. Mol Microbiol 2009; 72:1100-10. [PMID: 19504740 DOI: 10.1111/j.1365-2958.2009.06696.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Through trans-splicing of a 39-nt spliced leader (SL) onto each protein-coding transcript, mature kinetoplastid mRNA acquire a hypermethylated 5'-cap structure, but its function has been unclear. Gene deletions for three Trypanosoma brucei cap 2'-O-ribose methyltransferases, TbMTr1, TbMTr2 and TbMTr3, reveal distinct roles for four 2'-O-methylated nucleotides. Elimination of individual gene pairs yields viable cells; however, attempts at double knock-outs resulted in the generation of a TbMTr2-/-/TbMTr3-/- cell line only. Absence of both kinetoplastid-specific enzymes in TbMTr2-/-/TbMTr3-/- lines yielded substrate SL RNA and mRNA with cap 1. TbMTr1-/- translation is comparable with wildtype, while cap 3 and cap 4 loss reduced translation rates, exacerbated by the additional loss of cap 2. TbMTr1-/- and TbMTr2-/-/TbMTr3-/- lines grow to lower densities under normal culture conditions relative to wildtype cells, with growth rate differences apparent under low serum conditions. Cell viability may not tolerate delays at both the nucleolar Sm-independent and nucleoplasmic Sm-dependent stages of SL RNA maturation combined with reduced rates of translation. A minimal level of mRNA cap ribose methylation is essential for trypanosome viability, providing the first functional role for the cap 4.
Collapse
Affiliation(s)
- Jesse R Zamudio
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | |
Collapse
|
43
|
Trypanosoma brucei spliced leader RNA maturation by the cap 1 2'-O-ribose methyltransferase and SLA1 H/ACA snoRNA pseudouridine synthase complex. Mol Cell Biol 2008; 29:1202-11. [PMID: 19103757 DOI: 10.1128/mcb.01496-08] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Kinetoplastid flagellates attach a 39-nucleotide spliced leader (SL) upstream of protein-coding regions in polycistronic RNA precursors through trans splicing. SL modifications include cap 2'-O-ribose methylation of the first four nucleotides and pseudouridine (psi) formation at uracil 28. In Trypanosoma brucei, TbMTr1 performs 2'-O-ribose methylation of the first transcribed nucleotide, or cap 1. We report the characterization of an SL RNA processing complex with TbMTr1 and the SLA1 H/ACA small nucleolar ribonucleoprotein (snoRNP) particle that guides SL psi(28) formation. TbMTr1 is in a high-molecular-weight complex containing the four conserved core proteins of H/ACA snoRNPs, a kinetoplastid-specific protein designated methyltransferase-associated protein (TbMTAP), and the SLA1 snoRNA. TbMTAP-null lines are viable but have decreased SL RNA processing efficiency in cap methylation, 3'-end maturation, and psi(28) formation. TbMTAP is required for association between TbMTr1 and the SLA1 snoRNP but does not affect U1 small nuclear RNA methylation. A complex methylation profile in the mRNA population of TbMTAP-null lines indicates an additional effect on cap 4 methylations. The TbMTr1 complex specializes the SLA1 H/ACA snoRNP for efficient processing of multiple modifications on the SL RNA substrate.
Collapse
|
44
|
Geiss BJ, Thompson AA, Andrews AJ, Sons RL, Gari HH, Keenan SM, Peersen OB. Analysis of flavivirus NS5 methyltransferase cap binding. J Mol Biol 2008; 385:1643-54. [PMID: 19101564 DOI: 10.1016/j.jmb.2008.11.058] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2008] [Revised: 10/15/2008] [Accepted: 11/26/2008] [Indexed: 12/22/2022]
Abstract
The flavivirus 2'-O-nucleoside N-terminal RNA methyltransferase (MTase) enzyme is responsible for methylating the viral RNA cap structure. To increase our understanding of the mechanism of viral RNA cap binding we performed a detailed structural and biochemical characterization of the guanosine cap-binding pocket of the dengue (DEN) and yellow fever (YF) virus MTase enzymes. We solved an improved 2.1 A resolution crystal structure of DEN2 Mtase, new 1.5 A resolution crystal structures of the YF virus MTase domain in apo form, and a new 1.45 A structure in complex with guanosine triphosphate and RNA cap analog. Our structures clarify the previously reported DEN MTase structure, suggest novel protein-cap interactions, and provide a detailed view of guanine specificity. Furthermore, the structures of the DEN and YF proteins are essentially identical, indicating a large degree of structural conservation amongst the flavivirus MTases. Guanosine triphosphate analog competition assays and mutagenesis analysis, performed to analyze the biochemical characteristics of cap binding, determined that the major interaction points are (i) guanine ring via pi-pi stacking with Phe24, N1 hydrogen interaction with the Leu19 backbone carbonyl via a water bridge, and C2 amine interaction with Leu16 and Leu19 backbone carbonyls; (ii) ribose 2' hydroxyl interaction with Lys13 and Asn17; and (iii) alpha-phosphate interactions with Lys28 and Ser215. Based on our mutational and analog studies, the guanine ring and alpha-phosphate interactions provide most of the energy for cap binding, while the combination of the water bridge between the guanine N1 and Leu19 carbonyl and the hydrogen bonds between the C2 amine and Leu16/Leu19 carbonyl groups provide for specific guanine recognition. A detailed model of how the flavivirus MTase protein binds RNA cap structures is presented.
Collapse
Affiliation(s)
- Brian J Geiss
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO 80523, USA.
| | | | | | | | | | | | | |
Collapse
|
45
|
Zamudio JR, Mittra B, Zeiner GM, Feder M, Bujnicki JM, Sturm NR, Campbell DA. Complete cap 4 formation is not required for viability in Trypanosoma brucei. EUKARYOTIC CELL 2006; 5:905-15. [PMID: 16757738 PMCID: PMC1489268 DOI: 10.1128/ec.00080-06] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
In kinetoplastids spliced leader (SL) RNA is trans-spliced onto the 5' ends of all nuclear mRNAs, providing a universal exon with a unique cap. Mature SL contains an m(7)G cap, ribose 2'-O methylations on the first four nucleotides, and base methylations on nucleotides 1 and 4 (AACU). This structure is referred to as cap 4. Mutagenized SL RNAs that exhibit reduced cap 4 are trans-spliced, but these mRNAs do not associate with polysomes, suggesting a direct role in translation for cap 4, the primary SL sequence, or both. To separate SL RNA sequence alterations from cap 4 maturation, we have examined two ribose 2'-O-methyltransferases in Trypanosoma brucei. Both enzymes fall into the Rossmann fold class of methyltransferases and model into a conserved structure based on vaccinia virus homolog VP39. Knockdown of the methyltransferases individually or in combination did not affect growth rates and suggests a temporal placement in the cap 4 formation cascade: TbMT417 modifies A(2) and is not required for subsequent steps; TbMT511 methylates C(3), without which U(4) methylations are reduced. Incomplete cap 4 maturation was reflected in substrate SL and mRNA populations. Recombinant methyltransferases bind to a methyl donor and show preference for m(7)G-capped RNAs in vitro. Both enzymes reside in the nucleoplasm. Based on the cap phenotype of substrate SL stranded in the cytosol, A(2), C(3), and U(4) methylations are added after nuclear reimport of Sm protein-complexed substrate SL RNA. As mature cap 4 is dispensable for translation, cap 1 modifications and/or SL sequences are implicated in ribosomal interaction.
Collapse
Affiliation(s)
- Jesse R Zamudio
- Department of Microbiology, Immunology and Molecular Genetics, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA 90095-1489, USA
| | | | | | | | | | | | | |
Collapse
|
46
|
Stachelska A, Wieczorek ZJ, Stępiński J, Jankowska-Anyszka M, Lönnberg H, Darżynkiewicz E. Kinetics of the Imidazolium Ring-Opening of mRNA 5'-cap Analogs in Aqueous Alkali. ACTA ACUST UNITED AC 2006. [DOI: 10.1135/cccc20060567] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Second-order rate constants for the hydroxide-ion-catalyzed imidazolium ring-opening of several mono- and dinucleosidic analogs of mRNA 5'-caphave been determined. Intramolecular stacking of the two nucleobases in the dinucleosidic analogs, m7GpppN (m7G = 7-methylguanosine, N = 5'-linked nucleoside), and electrostatic interaction between theN-alkylated imidazolium ring and phosphate moiety have been shown to shield the m7G moiety against the nucleophilic attack of hydroxide ion. In addition, the effect of methylation of the nucleobase amino groups and replacement of the 7-methyl group with other alkyl groups have been studied. The influence of all the structural modifications studied turned out to be modest, the cleavage rates of the most and least reactive analogs (with the exception of non-phosphorylated nucleosides) differing only by a factor of 5.
Collapse
|
47
|
Tadros W, Lipshitz HD. Setting the stage for development: mRNA translation and stability during oocyte maturation and egg activation in Drosophila. Dev Dyn 2005; 232:593-608. [PMID: 15704150 DOI: 10.1002/dvdy.20297] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Early animal development is controlled by maternally encoded RNAs and proteins, which are loaded into the egg during oogenesis. Oocyte maturation and egg activation trigger changes in the translational status and the stability of specific maternal mRNAs. Whereas both maturation and activation have been studied in depth in amphibians and echinoderms, only recently have these processes begun to be dissected using the powerful genetic and molecular tools available in Drosophila. This review focuses on the mechanisms and functions of regulated maternal mRNA translation and stability in Drosophila--and compares these mechanisms with those elucidated in other animal models, particularly Xenopus--beginning late in oogenesis and continuing to the mid-blastula transition, when developmental control is transferred to zygotically synthesized transcripts.
Collapse
Affiliation(s)
- Wael Tadros
- Program in Developmental Biology, Research Institute, The Hospital for Sick Children & Department of Molecular and Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| | | |
Collapse
|
48
|
The biosynthesis and functional roles of methylated nucleosides in eukaryotic mRNA. FINE-TUNING OF RNA FUNCTIONS BY MODIFICATION AND EDITING 2005. [DOI: 10.1007/b106365] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
49
|
Dönmez G, Hartmuth K, Lührmann R. Modified nucleotides at the 5' end of human U2 snRNA are required for spliceosomal E-complex formation. RNA (NEW YORK, N.Y.) 2004; 10:1925-33. [PMID: 15525712 PMCID: PMC1370681 DOI: 10.1261/rna.7186504] [Citation(s) in RCA: 110] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
U2 snRNA, a key player in nuclear pre-mRNA splicing, contains a 5'-terminal m3G cap and many internal modifications. The latter were shown in vertebrates to be generally required for U2 function in splicing, but precisely which residues are essential and their role in snRNP and/or spliceosome assembly is presently not clear. Here, we investigated the roles of individual modified nucleotides of HeLa U2 snRNA in pre-mRNA splicing, using a two-step in vitro reconstitution/complementation assay. We show that the three pseudouridines and five 2'O-methyl groups within the first 20 nucleotides of U2 snRNA, but not the m3G cap, are required for efficient pre-mRNA splicing. Individual pseudouridines were not essential, but had cumulative effects on U2 function. In contrast, four of five 2'O-methylations (at positions 1, 2, 12, and 19) were individually required for splicing. The in vitro assembly of 17S U2 snRNPs was not dependent on the presence of modified U2 residues. However, individual internal modifications were required for the formation of the ATP-independent early spliceosomal E complex. Our data strongly suggest that modifications within the first 20 nucleotides of U2 play an important role in facilitating the interaction of U2 with U1 snRNP and/or other factors within the E complex.
Collapse
Affiliation(s)
- Gizem Dönmez
- Department of Cellular Biochemistry, Max Planck Institute of Biophysical Chemistry, Am Fassberg 11, D-37077 Göttingen, Germany
| | | | | |
Collapse
|
50
|
Yang M, Ye W, Schneller SW. Preparation of Carbocyclic S-Adenosylazamethionine Accompanied by a Practical Synthesis of (−)-Aristeromycin. J Org Chem 2004; 69:3993-6. [PMID: 15153042 DOI: 10.1021/jo040119g] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
For the preparation of a carbocyclic nitrogen analogue of S-adenosylmethionine (carba-AdoazaMet, 4), a practical synthesis of (-)-aristeromycin (7) has been developed using variations of literature procedures. This approach called for a stereospecific synthesis of (3aR,6aR)-2,2-dimethyl-3a,6a-dihydrocyclopenta[1,3]dioxol-4-one ((4R, 5R)-4,5-O-isopropylidene-2-cyclopentenone) (8), which was achieved by modifying reported procedures from D-(-)-ribose.
Collapse
Affiliation(s)
- Minmin Yang
- Department of Chemistry, Auburn University, Auburn, Alabama 36849-5312, USA
| | | | | |
Collapse
|