1
|
Wang S, Wu X, Qiao Z, He X, Li Y, Zhang T, Liu W, Wang M, Zhou X, Yu Y. Systematic Evaluation and Application of IDR Domain-Mediated Transcriptional Activation of NUP98 in Saccharomyces cerevisiae. ACS Synth Biol 2024. [PMID: 39469753 DOI: 10.1021/acssynbio.4c00376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Implementing dynamic control over gene transcription to decouple cell growth is essential for regulating protein expression in microbial cells. However, the availability of efficient regulatory elements in Saccharomyces cerevisiae remains limited. In this study, we present a novel β-estradiol-inducible gene expression system, termed DEN. This system combines a DNA-binding domain with an estradiol-binding domain and an intrinsically disordered region (IDR) from NUP98. Comparative analysis shows that the DEN system outperforms IDRs from other proteins, achieving an approximately 60-fold increase in EGFP expression upon β-estradiol induction. Moreover, our system is tightly controlled; nontoxic gene expression makes it a powerful tool for rapid and precise modulation of target gene expression. This system holds great potential for unlocking new functionalities from existing proteins in future research.
Collapse
Affiliation(s)
- Sheng Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Xueming Wu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhenghao Qiao
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xuan He
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Yu Li
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Tianyu Zhang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Weiwei Liu
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Ming Wang
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Xiangtian Zhou
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision, and Brain Health), Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang 325035, China
| | - Yang Yu
- Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| |
Collapse
|
2
|
Petrík T, Brzáčová Z, Sepšiová R, Veljačiková K, Tomáška Ľ. Pros and cons of auxin-inducible degron as a tool for regulated depletion of telomeric proteins from Saccharomyces cerevisiae. Yeast 2024; 41:499-512. [PMID: 38923089 DOI: 10.1002/yea.3971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/06/2024] [Accepted: 06/08/2024] [Indexed: 06/28/2024] Open
Abstract
To assess the immediate responses of the yeast cells to telomere defects, we employed the auxin-inducible degron (AID) enabling rapid depletion of essential (Rap1, Tbf1, Cdc13, Stn1) and non-essential (Est1, Est2, Est3) telomeric proteins. Using two variants of AID systems, we show that most of the studied proteins are depleted within 10-30 min after the addition of auxin. As expected, depletion of essential proteins yields nondividing cells, provided that the strains are cultivated in an appropriate carbon source and at temperatures lower than 28°C. Cells with depleted Cdc13 and Stn1 exhibit extension of the single-stranded overhang as early as 3 h after addition of auxin. Notably, prolonged incubation of strains carrying AID-tagged essential proteins in the presence of auxin resulted in the appearance of auxin-resistant clones, caused at least in part by mutations within the OsTIR1 gene. Upon assessing the length of telomeres in strains carrying AID-tagged non-essential telomeric proteins, we found that the depletion of Est1 and Est3 leads to auxin-dependent telomere shortening. However, the EST3-AID strain had slightly shorter telomeres even in the absence of auxin. Furthermore, a strain with the AID-tagged version of Est2 (catalytic subunit of telomerase) not only had shorter telomeres in the absence of auxin but also did not exhibit auxin-dependent telomere shortening. Our results demonstrate that while AID can be useful in assessing immediate cellular responses to telomere deprotection, each strain must be carefully evaluated for the effect of AID-tag on the properties of the protein of interest.
Collapse
Affiliation(s)
- Tomáš Petrík
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Zuzana Brzáčová
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Regina Sepšiová
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Katarína Veljačiková
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| | - Ľubomír Tomáška
- Department of Genetics, Faculty of Natural Sciences, Comenius University Bratislava, Bratislava, Slovakia
| |
Collapse
|
3
|
Tian X, Volkovinskiy A, Marchisio MA. RNAi-based Boolean gates in the yeast Saccharomyces cerevisiae. Front Bioeng Biotechnol 2024; 12:1392967. [PMID: 38895554 PMCID: PMC11184144 DOI: 10.3389/fbioe.2024.1392967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 05/06/2024] [Indexed: 06/21/2024] Open
Abstract
Boolean gates, the fundamental components of digital circuits, have been widely investigated in synthetic biology because they permit the fabrication of biosensors and facilitate biocomputing. This study was conducted to design and construct Boolean gates in the yeast Saccharomyces cerevisiae, the main component of which was the RNA interference pathway (RNAi) that is naturally absent from the budding yeast cells. We tested different expression cassettes for the siRNA precursor (a giant hairpin sequence, a DNA fragment-flanked by one or two introns-between convergent promoters or transcribed separately in the sense and antisense directions) and placed different components under the control of the circuit inputs (i.e., the siRNA precursor or proteins such as the Dicer and the Argonaute). We found that RNAi-based logic gates are highly sensitive to promoter leakage and, for this reason, challenging to implement in vivo. Convergent-promoter architecture turned out to be the most reliable solution, even though the overall best performance was achieved with the most difficult design based on the siRNA precursor as a giant hairpin.
Collapse
Affiliation(s)
- Ximing Tian
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Andrey Volkovinskiy
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | | |
Collapse
|
4
|
Pulido V, Rodríguez-Peña JM, Alonso G, Sanz AB, Arroyo J, García R. mRNA Decapping Activator Pat1 Is Required for Efficient Yeast Adaptive Transcriptional Responses via the Cell Wall Integrity MAPK Pathway. J Mol Biol 2024; 436:168570. [PMID: 38604529 DOI: 10.1016/j.jmb.2024.168570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/21/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024]
Abstract
Cellular mRNA levels, particularly under stress conditions, can be finely regulated by the coordinated action of transcription and degradation processes. Elements of the 5'-3' mRNA degradation pathway, functionally associated with the exonuclease Xrn1, can bind to nuclear chromatin and modulate gene transcription. Within this group are the so-called decapping activators, including Pat1, Dhh1, and Lsm1. In this work, we have investigated the role of Pat1 in the yeast adaptive transcriptional response to cell wall stress. Thus, we demonstrated that in the absence of Pat1, the transcriptional induction of genes regulated by the Cell Wall Integrity MAPK pathway was significantly affected, with no effect on the stability of these transcripts. Furthermore, under cell wall stress conditions, Pat1 is recruited to Cell Wall Integrity-responsive genes in parallel with the RNA Pol II complex, participating both in pre-initiation complex assembly and transcriptional elongation. Indeed, strains lacking Pat1 showed lower recruitment of the transcription factor Rlm1, less histone H3 displacement at Cell Wall Integrity gene promoters, and impaired recruitment and progression of RNA Pol II. Moreover, Pat1 and the MAPK Slt2 occupied the coding regions interdependently. Our results support the idea that Pat1 and presumably other decay factors behave as transcriptional regulators of Cell Wall Integrity-responsive genes under cell wall stress conditions.
Collapse
Affiliation(s)
- Verónica Pulido
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Jose M Rodríguez-Peña
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Graciela Alonso
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Ana Belén Sanz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain.
| | - Raúl García
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto Ramón y Cajal de Investigaciones Sanitarias (IRYCIS), 28040 Madrid, Spain.
| |
Collapse
|
5
|
Feng X, Marchisio MA. Hybrid Synthetic Promoters in Saccharomyces cerevisiae Built on Foreign Promoter Sequences. Methods Mol Biol 2024; 2844:109-119. [PMID: 39068335 DOI: 10.1007/978-1-0716-4063-0_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
Traditionally, hybrid promoters are constructed, in Saccharomyces cerevisiae, by joining the core region and the upstream activating sequences from different native promoters. Here, we describe a new design that makes use of the core promoters from foreign organisms: viruses, humans, and the yeast Schizosaccharomyces pombe. With this approach, we realized a library of 59 new constitutive promoters that span over nine folds in gene expression.
Collapse
Affiliation(s)
- Xiaofan Feng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | | |
Collapse
|
6
|
Milholland KL, Gregor JB, Hoda S, Píriz-Antúnez S, Dueñas-Santero E, Vu BG, Patel KP, Moye-Rowley WS, Vázquez de Aldana CR, Correa-Bordes J, Briggs SD, Hall MC. Rapid, efficient auxin-inducible protein degradation in Candida pathogens. mSphere 2023; 8:e0028323. [PMID: 37594261 PMCID: PMC10597344 DOI: 10.1128/msphere.00283-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 06/30/2023] [Indexed: 08/19/2023] Open
Abstract
A variety of inducible protein degradation (IPD) systems have been developed as powerful tools for protein functional characterization. IPD systems provide a convenient mechanism for rapid inactivation of almost any target protein of interest. Auxin-inducible degradation (AID) is one of the most common IPD systems and has been established in diverse eukaryotic research model organisms. Thus far, IPD tools have not been developed for use in pathogenic fungal species. Here, we demonstrate that the original AID and the second generation, AID2, systems work efficiently and rapidly in the human pathogenic yeasts, Candida albicans and Candida glabrata. We developed a collection of plasmids that support AID system use in laboratory strains of these pathogens. These systems can induce >95% degradation of target proteins within minutes. In the case of AID2, maximal degradation was achieved at low nanomolar concentrations of the synthetic auxin analog 5-adamantyl-indole-3-acetic acid. Auxin-induced target degradation successfully phenocopied gene deletions in both species. The system should be readily adaptable to other fungal species and to clinical pathogen strains. Our results define the AID system as a powerful and convenient functional genomics tool for protein characterization in fungal pathogens. IMPORTANCE Life-threatening fungal infections are an escalating human health problem, complicated by limited treatment options and the evolution of drug resistant pathogen strains. Identification of new targets for therapeutics to combat invasive fungal infections, including those caused by Candida species, is an urgent need. In this report, we establish and validate an inducible protein degradation methodology in Candida albicans and Candida glabrata that provides a new tool for protein functional characterization in these, and likely other, fungal pathogen species. We expect this tool will ultimately be useful for the identification and characterization of promising drug targets and factors involved in virulence and drug resistance.
Collapse
Affiliation(s)
| | - Justin B. Gregor
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - Smriti Hoda
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | | | - Encarnación Dueñas-Santero
- Institute of Functional Biology and Genomics, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Bao Gia Vu
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Krishna P. Patel
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
| | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, Iowa, USA
| | - Carlos R. Vázquez de Aldana
- Institute of Functional Biology and Genomics, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Jaime Correa-Bordes
- Department of Biomedical Sciences, Universidad de Extremadura, Badajoz, Spain
| | - Scott D. Briggs
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Mark C. Hall
- Department of Biochemistry, Purdue University, West Lafayette, Indiana, USA
- Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| |
Collapse
|
7
|
Yakoub G, Choi YS, Wong RP, Strauch T, Ann KJ, Cohen RE, Ulrich HD. Avidity-based biosensors for ubiquitylated PCNA reveal choreography of DNA damage bypass. SCIENCE ADVANCES 2023; 9:eadf3041. [PMID: 37672592 PMCID: PMC10482348 DOI: 10.1126/sciadv.adf3041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 08/03/2023] [Indexed: 09/08/2023]
Abstract
In eukaryotes, the posttranslational modifier ubiquitin is used to regulate the amounts, interactions, or activities of proteins in diverse pathways and signaling networks. Its effects are mediated by monoubiquitin or polyubiquitin chains of varying geometries. We describe the design, validation, and application of a series of avidity-based probes against the ubiquitylated forms of the DNA replication clamp, proliferating cell nuclear antigen (PCNA), in budding yeast. Directed against total ubiquitylated PCNA or specifically K63-polyubiquitylated PCNA, the probes are tunable in their activities and can be used either as biosensors or as inhibitors of the PCNA-dependent DNA damage bypass pathway. Used in live cells, the probes revealed the timing of PCNA ubiquitylation during damage bypass and a particular susceptibility of the ribosomal DNA locus to the activation of the pathway. Our approach is applicable to a wide range of ubiquitin-conjugated proteins, thus representing a generalizable strategy for the design of biosensors for specific (poly)ubiquitylated forms of individual substrates.
Collapse
Affiliation(s)
- George Yakoub
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| | - Yun-Seok Choi
- Department of Biochemistry and Molecular Biology, Colorado State University, 273 MRB, 1870 Campus Delivery, Fort Collins, CO 80523-1870, USA
| | - Ronald P. Wong
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| | - Tina Strauch
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| | - Kezia J. Ann
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| | - Robert E. Cohen
- Department of Biochemistry and Molecular Biology, Colorado State University, 273 MRB, 1870 Campus Delivery, Fort Collins, CO 80523-1870, USA
| | - Helle D. Ulrich
- Institute of Molecular Biology gGmbH, Ackermannweg 4, D-55128 Mainz, Germany
| |
Collapse
|
8
|
Gligorovski V, Sadeghi A, Rahi SJ. Multidimensional characterization of inducible promoters and a highly light-sensitive LOV-transcription factor. Nat Commun 2023; 14:3810. [PMID: 37369667 DOI: 10.1038/s41467-023-38959-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 05/24/2023] [Indexed: 06/29/2023] Open
Abstract
The ability to independently control the expression of different genes is important for quantitative biology. Using budding yeast, we characterize GAL1pr, GALL, MET3pr, CUP1pr, PHO5pr, tetOpr, terminator-tetOpr, Z3EV, blue-light inducible optogenetic systems El222-LIP, El222-GLIP, and red-light inducible PhyB-PIF3. We report kinetic parameters, noise scaling, impact on growth, and the fundamental leakiness of each system using an intuitive unit, maxGAL1. We uncover disadvantages of widely used tools, e.g., nonmonotonic activity of MET3pr and GALL, slow off kinetics of the doxycycline- and estradiol-inducible systems tetOpr and Z3EV, and high variability of PHO5pr and red-light activated PhyB-PIF3 system. We introduce two previously uncharacterized systems: strongLOV, a more light-sensitive El222 mutant, and ARG3pr, which is induced in the absence of arginine or presence of methionine. To demonstrate fine control over gene circuits, we experimentally tune the time between cell cycle Start and mitosis, artificially simulating near-wild-type timing. All strains, constructs, code, and data ( https://promoter-benchmark.epfl.ch/ ) are made available.
Collapse
Affiliation(s)
- Vojislav Gligorovski
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Ahmad Sadeghi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Sahand Jamal Rahi
- Laboratory of the Physics of Biological Systems, Institute of Physics, École polytechnique fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
9
|
Milholland KL, Gregor JB, Hoda S, Píriz-Antúnez S, Dueñas-Santero E, Vu BG, Patel KP, Moye-Rowley WS, de Aldana CRV, Correa-Bordes J, Briggs SD, Hall MC. Rapid, efficient auxin-inducible protein degradation in Candida pathogens. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541235. [PMID: 37293017 PMCID: PMC10245712 DOI: 10.1101/2023.05.17.541235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A variety of inducible protein degradation (IPD) systems have been developed as powerful tools for protein functional characterization. IPD systems provide a convenient mechanism for rapid inactivation of almost any target protein of interest. Auxin-inducible degradation (AID) is one of the most common IPD systems and has been established in diverse eukaryotic research model organisms. Thus far, IPD tools have not been developed for use in pathogenic fungal species. Here, we demonstrate that the original AID and the second generation AID2 systems work efficiently and rapidly in the human pathogenic yeasts Candida albicans and Candida glabrata . We developed a collection of plasmids that support AID system use in laboratory strains of these pathogens. These systems can induce >95% degradation of target proteins within minutes. In the case of AID2, maximal degradation was achieved at low nanomolar concentrations of the synthetic auxin analog 5-adamantyl-indole-3-acetic acid (5-Ad-IAA). Auxin-induced target degradation successfully phenocopied gene deletions in both species. The system should be readily adaptable to other fungal species and to clinical pathogen strains. Our results define the AID system as a powerful and convenient functional genomics tool for protein characterization in fungal pathogens.
Collapse
Affiliation(s)
- Kedric L. Milholland
- Department of Biochemistry and Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Justin B. Gregor
- Department of Biochemistry and Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Smriti Hoda
- Department of Biochemistry and Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | | | - Encarnación Dueñas-Santero
- Institute of Functional Biology and Genomics, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Bao Gia Vu
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Krishna P. Patel
- Department of Biochemistry and Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - W. Scott Moye-Rowley
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Carlos R. Vázquez de Aldana
- Institute of Functional Biology and Genomics, Consejo Superior de Investigaciones Científicas (CSIC), Universidad de Salamanca (USAL), Salamanca, Spain
| | - Jaime Correa-Bordes
- Department of Biomedical Sciences, Universidad de Extremadura, Badajoz, Spain
| | - Scott D. Briggs
- Department of Biochemistry and Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| | - Mark C. Hall
- Department of Biochemistry and Institute for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Department of Molecular Physiology and Biophysics, Carver College of Medicine, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
10
|
Kakko N, Rantasalo A, Koponen T, Vidgren V, Kannisto M, Maiorova N, Nygren H, Mojzita D, Penttilä M, Jouhten P. Inducible Synthetic Growth Regulation Using the ClpXP Proteasome Enhances cis,cis-Muconic Acid and Glycolic Acid Yields in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:1021-1033. [PMID: 36976676 PMCID: PMC10127448 DOI: 10.1021/acssynbio.2c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 03/29/2023]
Abstract
Engineered microbial cells can produce sustainable chemistry, but the production competes for resources with growth. Inducible synthetic control over the resource use would enable fast accumulation of sufficient biomass and then divert the resources to production. We developed inducible synthetic resource-use control overSaccharomyces cerevisiae by expressing a bacterial ClpXP proteasome from an inducible promoter. By individually targeting growth-essential metabolic enzymes Aro1, Hom3, and Acc1 to the ClpXP proteasome, cell growth could be efficiently repressed during cultivation. The ClpXP proteasome was specific to the target proteins, and there was no reduction in the targets when ClpXP was not induced. The inducible growth repression improved product yields from glucose (cis,cis-muconic acid) and per biomass (cis,cis-muconic acid and glycolic acid). The inducible ClpXP proteasome tackles uncertainties in strain optimization by enabling model-guided repression of competing, growth-essential, and metabolic enzymes. Most importantly, it allows improving production without compromising biomass accumulation when uninduced; therefore, it is expected to mitigate strain stability and low productivity challenges.
Collapse
Affiliation(s)
- Natalia Kakko
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo FI-00076 AALTO, Finland
| | - Anssi Rantasalo
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Tino Koponen
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Virve Vidgren
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Matti Kannisto
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Natalia Maiorova
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Heli Nygren
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Dominik Mojzita
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Merja Penttilä
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo FI-00076 AALTO, Finland
| | - Paula Jouhten
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo FI-00076 AALTO, Finland
| |
Collapse
|
11
|
Park JH, Bassalo MC, Lin GM, Chen Y, Doosthosseini H, Schmitz J, Roubos JA, Voigt CA. Design of Four Small-Molecule-Inducible Systems in the Yeast Chromosome, Applied to Optimize Terpene Biosynthesis. ACS Synth Biol 2023; 12:1119-1132. [PMID: 36943773 PMCID: PMC10127285 DOI: 10.1021/acssynbio.2c00607] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
The optimization of cellular functions often requires the balancing of gene expression, but the physical construction and screening of alternative designs are costly and time-consuming. Here, we construct a strain of Saccharomyces cerevisiae that contains a "sensor array" containing bacterial regulators that respond to four small-molecule inducers (vanillic acid, xylose, aTc, IPTG). Four promoters can be independently controlled with low background and a 40- to 5000-fold dynamic range. These systems can be used to study the impact of changing the level and timing of gene expression without requiring the construction of multiple strains. We apply this approach to the optimization of a four-gene heterologous pathway to the terpene linalool, which is a flavor and precursor to energetic materials. Using this approach, we identify bottlenecks in the metabolic pathway. This work can aid the rapid automated strain development of yeasts for the bio-manufacturing of diverse products, including chemicals, materials, fuels, and food ingredients.
Collapse
Affiliation(s)
- Jong Hyun Park
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Marcelo C Bassalo
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Geng-Min Lin
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Ye Chen
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Hamid Doosthosseini
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| | - Joep Schmitz
- DSM Science & Innovation, Biodata & Translational Sciences, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Johannes A Roubos
- DSM Science & Innovation, Biodata & Translational Sciences, P.O. Box 1, 2600 MA Delft, The Netherlands
| | - Christopher A Voigt
- Synthetic Biology Center, Department of Biological Engineering, Massachusetts Institute of Technology, 500 Technology Square, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
12
|
Benedetti F, Stadlmayr G, Stadlbauer K, Rüker F, Wozniak-Knopp G. Selection of High-Affinity Heterodimeric Antigen-Binding Fc Fragments from a Large Yeast Display Library. Methods Mol Biol 2023; 2681:131-159. [PMID: 37405647 DOI: 10.1007/978-1-0716-3279-6_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Antigen-binding Fc (Fcab™) fragments, where a novel antigen binding site is introduced by the mutagenesis of the C-terminal loops of the CH3 domain, function as parts of bispecific IgG-like symmetrical antibodies when they replace their wild-type Fc. Their homodimeric structure typically leads to bivalent antigen binding. In particular, biological situations monovalent engagement, however, would be preferred, either for avoiding agonistic effects leading to safety issues, or the attractive option of combining a single chain (i.e., one half) of an Fcab fragment reactive with different antigens in one antibody. We present the strategies for construction and selection of yeast libraries displaying heterodimeric Fcab fragments and discuss the effects of altered thermostability of the basic Fc scaffold and novel library designs that lead to isolation of highly affine antigen binding clones.
Collapse
Affiliation(s)
- Filippo Benedetti
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Gerhard Stadlmayr
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Katharina Stadlbauer
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Florian Rüker
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
| | - Gordana Wozniak-Knopp
- Christian Doppler Laboratory for Innovative Immunotherapeutics, Institute of Molecular Biology, Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria.
| |
Collapse
|
13
|
Azizoğlu A, Loureiro C, Venetz J, Brent R. Autorepression-Based Conditional Gene Expression System in Yeast for Variation-Suppressed Control of Protein Dosage. Curr Protoc 2023; 3:e647. [PMID: 36708363 DOI: 10.1002/cpz1.647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Conditional control of gene expression allows an experimenter to investigate many aspects of a gene's function. In the model organism Saccharomyces cerevisiae, a number of methods to control gene expression are widely practiced, including induction by metabolites, small molecules, and even light. However, all current methods suffer from at least one of a set of drawbacks, including need for specialized growth conditions, leaky expression, or requirement of specialized equipment. Here we describe protocols using two transformations to construct strains that carry a new controller in which all these drawbacks are overcome. In these strains, the expression of a controlled gene of interest is repressed by the bacterial repressor TetR and induced by anhydrotetracycline. TetR also regulates its own expression, creating an autorepression loop. This autorepression allows tight control of gene expression and protein dosage with low cell-to-cell variation in expression. A second repressor, TetR-Tup1, prevents any leaky expression. We also present a protocol showing a particular workhorse application of such strains to generate synchronized cell populations. We turn off expression of the cell cycle regulator CDC20 completely, arresting the cell population, and then we turn it back on so that the synchronized cells resume cell cycle progression. This control system can be applied to any endogenous or exogenous gene for precise expression. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Generating a parent WTC846 strain Basic Protocol 2: Generating a WTC846 strain with controlled expression of the targeted gene Alternate Protocol: CRISPR-mediated promoter replacement Basic Protocol 3: Cell cycle synchronization/arrest and release using the WTC846- K3 ::CDC20 strain.
Collapse
Affiliation(s)
- Aslı Azizoğlu
- Computational Systems Biology and Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Cristina Loureiro
- Computational Systems Biology and Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Jonathan Venetz
- Computational Systems Biology and Swiss Institute of Bioinformatics, ETH Zurich, Basel, Switzerland
| | - Roger Brent
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, Washington
| |
Collapse
|
14
|
Schrevens S, Sanglard D. A novel Candida glabrata doxycycline-inducible system for in vitro/in vivo use. FEMS Yeast Res 2022; 22:6680246. [PMID: 36047937 PMCID: PMC9508828 DOI: 10.1093/femsyr/foac046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/17/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Candida glabrata is an important pathogen causing superficial to invasive disease in human. Conditional expression systems are helpful in addressing the function of genes and especially when they can be applied to in vivo studies. Tetracycline-dependent regulation systems have been used in diverse fungi to turn-on (Tet-on) or turn-off (Tet-off) gene expression either in vitro but also in vivo in animal models. Up to now, only a Tet-off expression has been constructed for gene expression in C. glabrata. Here, we report a Tet-on gene expression system which can be used in vitro and in vivo in any C. glabrata genetic background. This system was used in a mice model of systemic infection to demonstrate that the general amino acid permease Gap1 is important for C. glabrata virulence.
Collapse
Affiliation(s)
- S Schrevens
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| | - D Sanglard
- Institute of Microbiology, University of Lausanne and University Hospital, CH-1011 Lausanne, Switzerland
| |
Collapse
|
15
|
Scherzer M, Giordano F, Ferran MS, Ström L. Recruitment of Scc2/4 to double-strand breaks depends on γH2A and DNA end resection. Life Sci Alliance 2022; 5:e202101244. [PMID: 35086935 PMCID: PMC8807874 DOI: 10.26508/lsa.202101244] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 01/13/2022] [Accepted: 01/14/2022] [Indexed: 12/15/2022] Open
Abstract
Homologous recombination enables cells to overcome the threat of DNA double-strand breaks (DSBs), allowing for repair without the loss of genetic information. Central to the homologous recombination repair process is the de novo loading of cohesin around a DSB by its loader complex Scc2/4. Although cohesin's DSB accumulation has been explored in numerous studies, the prerequisites for Scc2/4 recruitment during the repair process are still elusive. To address this question, we combine chromatin immunoprecipitation-qPCR with a site-specific DSB in vivo, in Saccharomyces cerevisiae We find that Scc2 DSB recruitment relies on γH2A and Tel1, but as opposed to cohesin, not on Mec1. We further show that the binding of Scc2, which emanates from the break site, depends on and coincides with DNA end resection. Absence of chromatin remodeling at the DSB affects Scc2 binding and DNA end resection to a comparable degree, further indicating the latter to be a major driver for Scc2 recruitment. Our results shed light on the intricate DSB repair cascade leading to the recruitment of Scc2/4 and subsequent loading of cohesin.
Collapse
Affiliation(s)
- Martin Scherzer
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Fosco Giordano
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Solé Ferran
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Lena Ström
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
16
|
Engineering of Synthetic Transcriptional Switches in Yeast. Life (Basel) 2022; 12:life12040557. [PMID: 35455048 PMCID: PMC9030632 DOI: 10.3390/life12040557] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 03/31/2022] [Accepted: 04/03/2022] [Indexed: 02/04/2023] Open
Abstract
Transcriptional switches can be utilized for many purposes in synthetic biology, including the assembly of complex genetic circuits to achieve sophisticated cellular systems and the construction of biosensors for real-time monitoring of intracellular metabolite concentrations. Although to date such switches have mainly been developed in prokaryotes, those for eukaryotes are increasingly being reported as both rational and random engineering technologies mature. In this review, we describe yeast transcriptional switches with different modes of action and how to alter their properties. We also discuss directed evolution technologies for the rapid and robust construction of yeast transcriptional switches.
Collapse
|
17
|
Kar S, Bordiya Y, Rodriguez N, Kim J, Gardner EC, Gollihar JD, Sung S, Ellington AD. Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors. PLANT METHODS 2022; 18:42. [PMID: 35351174 PMCID: PMC8966344 DOI: 10.1186/s13007-022-00867-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The construction and application of synthetic genetic circuits is frequently improved if gene expression can be orthogonally controlled, relative to the host. In plants, orthogonality can be achieved via the use of CRISPR-based transcription factors that are programmed to act on natural or synthetic promoters. The construction of complex gene circuits can require multiple, orthogonal regulatory interactions, and this in turn requires that the full programmability of CRISPR elements be adapted to non-natural and non-standard promoters that have few constraints on their design. Therefore, we have developed synthetic promoter elements in which regions upstream of the minimal 35S CaMV promoter are designed from scratch to interact via programmed gRNAs with dCas9 fusions that allow activation of gene expression. RESULTS A panel of three, mutually orthogonal promoters that can be acted on by artificial gRNAs bound by CRISPR regulators were designed. Guide RNA expression targeting these promoters was in turn controlled by either Pol III (U6) or ethylene-inducible Pol II promoters, implementing for the first time a fully artificial Orthogonal Control System (OCS). Following demonstration of the complete orthogonality of the designs, the OCS was tied to cellular metabolism by putting gRNA expression under the control of an endogenous plant signaling molecule, ethylene. The ability to form complex circuitry was demonstrated via the ethylene-driven, ratiometric expression of fluorescent proteins in single plants. CONCLUSIONS The design of synthetic promoters is highly generalizable to large tracts of sequence space, allowing Orthogonal Control Systems of increasing complexity to potentially be generated at will. The ability to tie in several different basal features of plant molecular biology (Pol II and Pol III promoters, ethylene regulation) to the OCS demonstrates multiple opportunities for engineering at the system level. Moreover, given the fungibility of the core 35S CaMV promoter elements, the derived synthetic promoters can potentially be utilized across a variety of plant species.
Collapse
Affiliation(s)
- Shaunak Kar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| | - Yogendra Bordiya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Life Sciences Solutions Group, Thermo Fisher Scientific, Austin, TX, USA
| | - Nestor Rodriguez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Junghyun Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elizabeth C Gardner
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Sibum Sung
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
18
|
Engineering eukaryote-like regulatory circuits to expand artificial control mechanisms for metabolic engineering in Saccharomyces cerevisiae. Commun Biol 2022; 5:135. [PMID: 35173283 PMCID: PMC8850539 DOI: 10.1038/s42003-022-03070-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/20/2022] [Indexed: 12/22/2022] Open
Abstract
Temporal control of heterologous pathway expression is critical to achieve optimal efficiency in microbial metabolic engineering. The broadly-used GAL promoter system for engineered yeast (Saccharomyces cerevisiae) suffers from several drawbacks; specifically, unintended induction during laboratory development, and unintended repression in industrial production applications, which decreases overall production capacity. Eukaryotic synthetic circuits have not been well examined to address these problems. Here, we explore a modularised engineering method to deploy new genetic circuits applicable for expanding the control of GAL promoter-driven heterologous pathways in S. cerevisiae. Trans- and cis- modules, including eukaryotic trans-activating-and-repressing mechanisms, were characterised to provide new and better tools for circuit design. A eukaryote-like tetracycline-mediated circuit that delivers stringent repression was engineered to minimise metabolic burden during strain development and maintenance. This was combined with a novel 37 °C induction circuit to relief glucose-mediated repression on the GAL promoter during the bioprocess. This delivered a 44% increase in production of the terpenoid nerolidol, to 2.54 g L-1 in flask cultivation. These negative/positive transcriptional regulatory circuits expand global strategies of metabolic control to facilitate laboratory maintenance and for industry applications.
Collapse
|
19
|
Saccharomyces cerevisiae as a Tool for Studying Mutations in Nuclear Genes Involved in Diseases Caused by Mitochondrial DNA Instability. Genes (Basel) 2021; 12:genes12121866. [PMID: 34946817 PMCID: PMC8701800 DOI: 10.3390/genes12121866] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/20/2021] [Accepted: 11/23/2021] [Indexed: 01/03/2023] Open
Abstract
Mitochondrial DNA (mtDNA) maintenance is critical for oxidative phosphorylation (OXPHOS) since some subunits of the respiratory chain complexes are mitochondrially encoded. Pathological mutations in nuclear genes involved in the mtDNA metabolism may result in a quantitative decrease in mtDNA levels, referred to as mtDNA depletion, or in qualitative defects in mtDNA, especially in multiple deletions. Since, in the last decade, most of the novel mutations have been identified through whole-exome sequencing, it is crucial to confirm the pathogenicity by functional analysis in the appropriate model systems. Among these, the yeast Saccharomyces cerevisiae has proved to be a good model for studying mutations associated with mtDNA instability. This review focuses on the use of yeast for evaluating the pathogenicity of mutations in six genes, MPV17/SYM1, MRM2/MRM2, OPA1/MGM1, POLG/MIP1, RRM2B/RNR2, and SLC25A4/AAC2, all associated with mtDNA depletion or multiple deletions. We highlight the techniques used to construct a specific model and to measure the mtDNA instability as well as the main results obtained. We then report the contribution that yeast has given in understanding the pathogenic mechanisms of the mutant variants, in finding the genetic suppressors of the mitochondrial defects and in the discovery of molecules able to improve the mtDNA stability.
Collapse
|
20
|
Kapitonova MA, Shadrina OA, Korolev SP, Gottikh MB. Main Approaches to Controlled Protein Degradation in the Cell. Mol Biol 2021. [DOI: 10.1134/s0026893321030067] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Azizoglu A, Brent R, Rudolf F. A precisely adjustable, variation-suppressed eukaryotic transcriptional controller to enable genetic discovery. eLife 2021; 10:69549. [PMID: 34342575 PMCID: PMC8421071 DOI: 10.7554/elife.69549] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 08/02/2021] [Indexed: 11/13/2022] Open
Abstract
Conditional expression of genes and observation of phenotype remain central to biological discovery. Current methods enable either on/off or imprecisely controlled graded gene expression. We developed a 'well-tempered' controller, WTC846, for precisely adjustable, graded, growth condition independent expression of genes in Saccharomyces cerevisiae. Controlled genes are expressed from a strong semisynthetic promoter repressed by the prokaryotic TetR, which also represses its own synthesis; with basal expression abolished by a second, 'zeroing' repressor. The autorepression loop lowers cell-to-cell variation while enabling precise adjustment of protein expression by a chemical inducer. WTC846 allelic strains in which the controller replaced the native promoters recapitulated known null phenotypes (CDC42, TPI1), exhibited novel overexpression phenotypes (IPL1), showed protein dosage-dependent growth rates and morphological phenotypes (CDC28, TOR2, PMA1 and the hitherto uncharacterized PBR1), and enabled cell cycle synchronization (CDC20). WTC846 defines an 'expression clamp' allowing protein dosage to be adjusted by the experimenter across the range of cellular protein abundances, with limited variation around the setpoint.
Collapse
Affiliation(s)
| | - Roger Brent
- Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, United States
| | | |
Collapse
|
22
|
A CRISPR Interference Screen of Essential Genes Reveals that Proteasome Regulation Dictates Acetic Acid Tolerance in Saccharomyces cerevisiae. mSystems 2021; 6:e0041821. [PMID: 34313457 PMCID: PMC8407339 DOI: 10.1128/msystems.00418-21] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
CRISPR interference (CRISPRi) is a powerful tool to study cellular physiology under different growth conditions, and this technology provides a means for screening changed expression of essential genes. In this study, a Saccharomyces cerevisiae CRISPRi library was screened for growth in medium supplemented with acetic acid. Acetic acid is a growth inhibitor challenging the use of yeast for the industrial conversion of lignocellulosic biomasses. Tolerance to acetic acid that is released during biomass hydrolysis is crucial for cell factories to be used in biorefineries. The CRISPRi library screened consists of >9,000 strains, where >98% of all essential and respiratory growth-essential genes were targeted with multiple guide RNAs (gRNAs). The screen was performed using the high-throughput, high-resolution Scan-o-matic platform, where each strain is analyzed separately. Our study identified that CRISPRi targeting of genes involved in vesicle formation or organelle transport processes led to severe growth inhibition during acetic acid stress, emphasizing the importance of these intracellular membrane structures in maintaining cell vitality. In contrast, strains in which genes encoding subunits of the 19S regulatory particle of the 26S proteasome were downregulated had increased tolerance to acetic acid, which we hypothesize is due to ATP salvage through an increased abundance of the 20S core particle that performs ATP-independent protein degradation. This is the first study where high-resolution CRISPRi library screening paves the way to understanding and bioengineering the robustness of yeast against acetic acid stress. IMPORTANCE Acetic acid is inhibitory to the growth of the yeast Saccharomyces cerevisiae, causing ATP starvation and oxidative stress, which leads to the suboptimal production of fuels and chemicals from lignocellulosic biomass. In this study, where each strain of a CRISPRi library was characterized individually, many essential and respiratory growth-essential genes that regulate tolerance to acetic acid were identified, providing a new understanding of the stress response of yeast and new targets for the bioengineering of industrial yeast. Our findings on the fine-tuning of the expression of proteasomal genes leading to increased tolerance to acetic acid suggest that this could be a novel strategy for increasing stress tolerance, leading to improved strains for the production of biobased chemicals.
Collapse
|
23
|
Saccharomyces cerevisiae Promoter Engineering before and during the Synthetic Biology Era. BIOLOGY 2021; 10:biology10060504. [PMID: 34204069 PMCID: PMC8229000 DOI: 10.3390/biology10060504] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/04/2021] [Accepted: 06/04/2021] [Indexed: 11/19/2022]
Abstract
Simple Summary Promoters are DNA sequences where the process of transcription starts. They can work constitutively or be controlled by environmental signals of different types. The quantity of proteins and RNA present in yeast genetic circuits highly depends on promoter strength. Hence, they have been deeply studied and modified over, at least, the last forty years, especially since the year 2000 when Synthetic Biology was born. Here, we present how promoter engineering changed over these four decades and discuss its possible future directions due to novel computational methods and technology. Abstract Synthetic gene circuits are made of DNA sequences, referred to as transcription units, that communicate by exchanging proteins or RNA molecules. Proteins are, mostly, transcription factors that bind promoter sequences to modulate the expression of other molecules. Promoters are, therefore, key components in genetic circuits. In this review, we focus our attention on the construction of artificial promoters for the yeast S. cerevisiae, a popular chassis for gene circuits. We describe the initial techniques and achievements in promoter engineering that predated the start of the Synthetic Biology epoch of about 20 years. We present the main applications of synthetic promoters built via different methods and discuss the latest innovations in the wet-lab engineering of novel promoter sequences.
Collapse
|
24
|
He CW, Cui XF, Ma SJ, Xu Q, Ran YP, Chen WZ, Mu JX, Li H, Zhu J, Gong Q, Xie Z. Membrane recruitment of Atg8 by Hfl1 facilitates turnover of vacuolar membrane proteins in yeast cells approaching stationary phase. BMC Biol 2021; 19:117. [PMID: 34088313 PMCID: PMC8176713 DOI: 10.1186/s12915-021-01048-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 05/07/2021] [Indexed: 12/03/2022] Open
Abstract
Background The vacuole/lysosome is the final destination of autophagic pathways, but can also itself be degraded in whole or in part by selective macroautophagic or microautophagic processes. Diverse molecular mechanisms are involved in these processes, the characterization of which has lagged behind those of ATG-dependent macroautophagy and ESCRT-dependent endosomal multivesicular body pathways. Results Here we show that as yeast cells gradually exhaust available nutrients and approach stationary phase, multiple vacuolar integral membrane proteins with unrelated functions are degraded in the vacuolar lumen. This degradation depends on the ESCRT machinery, but does not strictly require ubiquitination of cargos or trafficking of cargos out of the vacuole. It is also temporally and mechanistically distinct from NPC-dependent microlipophagy. The turnover is facilitated by Atg8, an exception among autophagy proteins, and an Atg8-interacting vacuolar membrane protein, Hfl1. Lack of Atg8 or Hfl1 led to the accumulation of enlarged lumenal membrane structures in the vacuole. We further show that a key function of Hfl1 is the membrane recruitment of Atg8. In the presence of Hfl1, lipidation of Atg8 is not required for efficient cargo turnover. The need for Hfl1 can be partially bypassed by blocking Atg8 delipidation. Conclusions Our data reveal a vacuolar membrane protein degradation process with a unique dependence on vacuole-associated Atg8 downstream of ESCRTs, and we identify a specific role of Hfl1, a protein conserved from yeast to plants and animals, in membrane targeting of Atg8. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01048-7.
Collapse
Affiliation(s)
- Cheng-Wen He
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xue-Fei Cui
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shao-Jie Ma
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.,Present address: Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yan-Peng Ran
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Wei-Zhi Chen
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jun-Xi Mu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Li
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jing Zhu
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism and Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
25
|
Feng X, Marchisio MA. Novel S. cerevisiae Hybrid Synthetic Promoters Based on Foreign Core Promoter Sequences. Int J Mol Sci 2021; 22:ijms22115704. [PMID: 34071849 PMCID: PMC8198421 DOI: 10.3390/ijms22115704] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/10/2021] [Accepted: 05/25/2021] [Indexed: 12/19/2022] Open
Abstract
Promoters are fundamental components of synthetic gene circuits. They are DNA segments where transcription initiation takes place. New constitutive and regulated promoters are constantly engineered in order to meet the requirements for protein and RNA expression into different genetic networks. In this work, we constructed and optimized new synthetic constitutive promoters for the yeast Saccharomyces cerevisiae. We started from foreign (e.g., viral) core promoters as templates. They are, usually, unfunctional in yeast but can be activated by extending them with a short sequence, from the CYC1 promoter, containing various transcription start sites (TSSs). Transcription was modulated by mutating the TATA box composition and varying its distance from the TSS. We found that gene expression is maximized when the TATA box has the form TATAAAA or TATATAA and lies between 30 and 70 nucleotides upstream of the TSS. Core promoters were turned into stronger promoters via the addition of a short UAS. In particular, the 40 nt bipartite UAS from the GPD promoter can enhance protein synthesis considerably when placed 150 nt upstream of the TATA box. Overall, we extended the pool of S. cerevisiae promoters with 59 new samples, the strongest overcoming the native TEF2 promoter.
Collapse
|
26
|
Yu L, Marchisio MA. Saccharomyces cerevisiae Synthetic Transcriptional Networks Harnessing dCas12a and Type V-A anti-CRISPR Proteins. ACS Synth Biol 2021; 10:870-883. [PMID: 33819020 DOI: 10.1021/acssynbio.1c00006] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Type V-A anti-CRISPR proteins (AcrVAs) represent the response from phages to the CRISPR-Cas12a prokaryotic immune system. CRISPR-Cas12a was repurposed, in high eukaryotes, to carry out gene editing and transcription regulation, the latter via a nuclease-dead Cas12a (dCas12a). Consequently, AcrVAs were adopted to regulate (d)Cas12a activity. However, the usage of both dCas12a-based transcription factors and AcrVAs in the yeast Saccharomyces cerevisiae has not been explored. In this work, we show that, in the baker's yeast, two dCas12a proteins (denAsCas12a and dLbCas12a) work both as activators (upon fusion to a strong activation domain) and repressors, whereas dMbCa12a is nonfunctional. The activation efficiency of dCas12a-ADs manifests a dependence on the number of crRNA binding sites, whereas it is not directly correlated to the amount of crRNA in the cells. Moreover, AcrVA1, AcrVA4, and AcrVA5 are able to inhibit dLbCa12a in yeast, and denAsCas12a is only inhibited by AcrVA1. However, AcrVA1 performs well at high concentration only. Coexpression of two or three AcrVAs does not enhance inhibition of dCas12a(-AD), suggesting a competition between different AcrVAs. Further, AcrVA4 significantly limits gene editing by LbCas12a. Overall, our results indicate that dCas12a:crRNA and AcrVA proteins are highly performant components in S. cerevisiae synthetic transcriptional networks.
Collapse
Affiliation(s)
- Lifang Yu
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, 300072 Tianjin, China
| |
Collapse
|
27
|
Aptamers, Riboswitches, and Ribozymes in S. cerevisiae Synthetic Biology. Life (Basel) 2021; 11:life11030248. [PMID: 33802772 PMCID: PMC8002509 DOI: 10.3390/life11030248] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/12/2021] [Accepted: 03/15/2021] [Indexed: 01/09/2023] Open
Abstract
Among noncoding RNA sequences, riboswitches and ribozymes have attracted the attention of the synthetic biology community as circuit components for translation regulation. When fused to aptamer sequences, ribozymes and riboswitches are enabled to interact with chemicals. Therefore, protein synthesis can be controlled at the mRNA level without the need for transcription factors. Potentially, the use of chemical-responsive ribozymes/riboswitches would drastically simplify the design of genetic circuits. In this review, we describe synthetic RNA structures that have been used so far in the yeast Saccharomyces cerevisiae. We present their interaction mode with different chemicals (e.g., theophylline and antibiotics) or proteins (such as the RNase III) and their recent employment into clustered regularly interspaced short palindromic repeats–CRISPR-associated protein 9 (CRISPR-Cas) systems. Particular attention is paid, throughout the whole paper, to their usage and performance into synthetic gene circuits.
Collapse
|
28
|
Lu Z, Peng B, Ebert BE, Dumsday G, Vickers CE. Auxin-mediated protein depletion for metabolic engineering in terpene-producing yeast. Nat Commun 2021; 12:1051. [PMID: 33594068 PMCID: PMC7886869 DOI: 10.1038/s41467-021-21313-1] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 01/15/2021] [Indexed: 12/12/2022] Open
Abstract
In metabolic engineering, loss-of-function experiments are used to understand and optimise metabolism. A conditional gene inactivation tool is required when gene deletion is lethal or detrimental to growth. Here, we exploit auxin-inducible protein degradation as a metabolic engineering approach in yeast. We demonstrate its effectiveness using terpenoid production. First, we target an essential prenyl-pyrophosphate metabolism protein, farnesyl pyrophosphate synthase (Erg20p). Degradation successfully redirects metabolic flux toward monoterpene (C10) production. Second, depleting hexokinase-2, a key protein in glucose signalling transduction, lifts glucose repression and boosts production of sesquiterpene (C15) nerolidol to 3.5 g L-1 in flask cultivation. Third, depleting acetyl-CoA carboxylase (Acc1p), another essential protein, delivers growth arrest without diminishing production capacity in nerolidol-producing yeast, providing a strategy to decouple growth and production. These studies demonstrate auxin-mediated protein degradation as an advanced tool for metabolic engineering. It also has potential for broader metabolic perturbation studies to better understand metabolism.
Collapse
Affiliation(s)
- Zeyu Lu
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane, QLD, Australia
- School of Chemistry and Molecular Biosciences (SCMB), the University of Queensland, Brisbane, QLD, Australia
| | - Bingyin Peng
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane, QLD, Australia.
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, Australia.
| | - Birgitta E Ebert
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane, QLD, Australia
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, Australia
| | | | - Claudia E Vickers
- Australian Institute for Bioengineering and Nanotechnology (AIBN), the University of Queensland, Brisbane, QLD, Australia.
- CSIRO Future Science Platform in Synthetic Biology, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Black Mountain, ACT, Australia.
- ARC Centre of Excellence in Synthetic Biology, Queensland University of Technology, Brisbane, QLD, Australia.
| |
Collapse
|
29
|
Asemoloye MD, Marchisio MA, Gupta VK, Pecoraro L. Genome-based engineering of ligninolytic enzymes in fungi. Microb Cell Fact 2021; 20:20. [PMID: 33478513 PMCID: PMC7819241 DOI: 10.1186/s12934-021-01510-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/07/2021] [Indexed: 12/23/2022] Open
Abstract
Background Many fungi grow as saprobic organisms and obtain nutrients from a wide range of dead organic materials. Among saprobes, fungal species that grow on wood or in polluted environments have evolved prolific mechanisms for the production of degrading compounds, such as ligninolytic enzymes. These enzymes include arrays of intense redox-potential oxidoreductase, such as laccase, catalase, and peroxidases. The ability to produce ligninolytic enzymes makes a variety of fungal species suitable for application in many industries, including the production of biofuels and antibiotics, bioremediation, and biomedical application as biosensors. However, fungal ligninolytic enzymes are produced naturally in small quantities that may not meet the industrial or market demands. Over the last decade, combined synthetic biology and computational designs have yielded significant results in enhancing the synthesis of natural compounds in fungi. Main body of the abstract In this review, we gave insights into different protein engineering methods, including rational, semi-rational, and directed evolution approaches that have been employed to enhance the production of some important ligninolytic enzymes in fungi. We described the role of metabolic pathway engineering to optimize the synthesis of chemical compounds of interest in various fields. We highlighted synthetic biology novel techniques for biosynthetic gene cluster (BGC) activation in fungo and heterologous reconstruction of BGC in microbial cells. We also discussed in detail some recombinant ligninolytic enzymes that have been successfully enhanced and expressed in different heterologous hosts. Finally, we described recent advance in CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats)-Cas (CRISPR associated) protein systems as the most promising biotechnology for large-scale production of ligninolytic enzymes. Short conclusion Aggregation, expression, and regulation of ligninolytic enzymes in fungi require very complex procedures with many interfering factors. Synthetic and computational biology strategies, as explained in this review, are powerful tools that can be combined to solve these puzzles. These integrated strategies can lead to the production of enzymes with special abilities, such as wide substrate specifications, thermo-stability, tolerance to long time storage, and stability in different substrate conditions, such as pH and nutrients.
Collapse
Affiliation(s)
- Michael Dare Asemoloye
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| | - Vijai Kumar Gupta
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, EH9 3JG, UK
| | - Lorenzo Pecoraro
- School of Pharmaceutical Science and Technology, Tianjin University, Nankai District, 92 Weijin Road, Tianjin, 300072, China.
| |
Collapse
|
30
|
Tanaka S. Construction of Tight Conditional Mutants Using the Improved Auxin-Inducible Degron (iAID) Method in the Budding Yeast Saccharomyces cerevisiae. Methods Mol Biol 2021; 2196:15-26. [PMID: 32889709 DOI: 10.1007/978-1-0716-0868-5_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Conditional mutants, such as temperature-sensitive (ts) mutants, are effective tools for the analysis of essential genes. However, such mutants are frequently leaky. To overcome this problem, it is helpful to isolate a "tight" conditional mutant of a gene of interest, e.g., by using ubiquitin-mediated protein degradation to eliminate the gene product. One such strategy is the auxin-inducible degron (AID) system, which is easy to use because the simple addition of auxin can induce the degradation of a target protein. Sometimes, however, elimination of the target protein is not sufficient, and an AID mutant exhibits a "leaky" phenotype. To address this issue, the improved AID (iAID) system was developed. In this approach, transcriptional repression by the "Tet-OFF" promoter is combined with proteolytic elimination of the target protein by the AID system, yielding a much tighter mutant. Because simple addition of tetracycline is sufficient to repress the Tet-OFF promoter, the combination of Tet-OFF and AID maintains the ease of use of the original AID system. In this manuscript, we describe how to construct and use iAID mutants in the budding yeast Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Seiji Tanaka
- Kochi University of Technology, School of Environmental Science and Engineering, Tosayamada, Kochi, Japan.
| |
Collapse
|
31
|
Qiu C, Chen X, Rexida R, Shen Y, Qi Q, Bao X, Hou J. Engineering transcription factor-based biosensors for repressive regulation through transcriptional deactivation design in Saccharomyces cerevisiae. Microb Cell Fact 2020; 19:146. [PMID: 32690010 PMCID: PMC7372789 DOI: 10.1186/s12934-020-01405-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 07/13/2020] [Indexed: 12/27/2022] Open
Abstract
Background With the development of engineering the microbial cell factories, biosensors have been used widely for regulation of cellular metabolism and high-throughput screening. However, most of the biosensors constructed in Saccharomyces cerevisiae are designed for transcriptional activation. Very few studies have dedicated to the development of genetic circuit for repressive regulation, which is also indispensable for the dynamic control of metabolism. Results In this study, through transcriptional deactivation design, we developed transcription-factor-based biosensors to allow repressive regulation in response to ligand. Using a malonyl-CoA sensing system as an example, the biosensor was constructed and systematically engineered to optimize the dynamic range by comparing transcriptional activity of the activators, evaluating the positions and numbers of the operators in the promoter and comparing the effects of different promoters. A biosensor with 82% repression ratio was obtained. Based on this design principle, another two biosensors, which sense acyl-CoA or xylose and downregulate gene expression, were also successfully constructed. Conclusions Our work systematically optimized the biosensors for repressive regulation in yeast for the first time. It provided useful framework to construct similar biosensors. Combining the widely reported biosensors for transcriptional activation with the biosensors developed here, it is now possible to construct biosensors with opposing transcriptional activities in yeast. ![]()
Collapse
Affiliation(s)
- Chenxi Qiu
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Xiaoxu Chen
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.,State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, People's Republic of China
| | - Reheman Rexida
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Yu Shen
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China
| | - Xiaoming Bao
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.,State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qi Lu University of Technology, Jinan, 250353, People's Republic of China
| | - Jin Hou
- State Key Laboratory of Microbial Technology, Shandong University, Binhai Road 72, Qingdao, 266237, People's Republic of China.
| |
Collapse
|
32
|
McFarland MR, Keller CD, Childers BM, Adeniyi SA, Corrigall H, Raguin A, Romano MC, Stansfield I. The molecular aetiology of tRNA synthetase depletion: induction of a GCN4 amino acid starvation response despite homeostatic maintenance of charged tRNA levels. Nucleic Acids Res 2020; 48:3071-3088. [PMID: 32016368 PMCID: PMC7102972 DOI: 10.1093/nar/gkaa055] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/13/2022] Open
Abstract
During protein synthesis, charged tRNAs deliver amino acids to translating ribosomes, and are then re-charged by tRNA synthetases (aaRS). In humans, mutant aaRS cause a diversity of neurological disorders, but their molecular aetiologies are incompletely characterised. To understand system responses to aaRS depletion, the yeast glutamine aaRS gene (GLN4) was transcriptionally regulated using doxycycline by tet-off control. Depletion of Gln4p inhibited growth, and induced a GCN4 amino acid starvation response, indicative of uncharged tRNA accumulation and Gcn2 kinase activation. Using a global model of translation that included aaRS recharging, Gln4p depletion was simulated, confirming slowed translation. Modelling also revealed that Gln4p depletion causes negative feedback that matches translational demand for Gln-tRNAGln to aaRS recharging capacity. This maintains normal charged tRNAGln levels despite Gln4p depletion, confirmed experimentally using tRNA Northern blotting. Model analysis resolves the paradox that Gln4p depletion triggers a GCN4 response, despite maintenance of tRNAGln charging levels, revealing that normally, the aaRS population can sequester free, uncharged tRNAs during aminoacylation. Gln4p depletion reduces this sequestration capacity, allowing uncharged tRNAGln to interact with Gcn2 kinase. The study sheds new light on mutant aaRS disease aetiologies, and explains how aaRS sequestration of uncharged tRNAs can prevent GCN4 activation under non-starvation conditions.
Collapse
Affiliation(s)
- Matthew R McFarland
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Corina D Keller
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Brandon M Childers
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Stephen A Adeniyi
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Holly Corrigall
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| | - Adélaïde Raguin
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - M Carmen Romano
- Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE, UK
| | - Ian Stansfield
- Institute of Medical Sciences, School of Medicine, Medical Sciences and Nutrition, University of Aberdeen, Aberdeen, AB25 2ZD, UK
| |
Collapse
|
33
|
Johnston EJ, Moses T, Rosser SJ. The wide-ranging phenotypes of ergosterol biosynthesis mutants, and implications for microbial cell factories. Yeast 2020; 37:27-44. [PMID: 31800968 DOI: 10.1002/yea.3452] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 11/06/2019] [Accepted: 12/02/2019] [Indexed: 01/09/2023] Open
Abstract
Yeast strains have been used extensively as robust microbial cell factories for the production of bulk and fine chemicals, including biofuels (bioethanol), complex pharmaceuticals (antimalarial drug artemisinin and opioid pain killers), flavours, and fragrances (vanillin, nootkatone, and resveratrol). In many cases, it is of benefit to suppress or modify ergosterol biosynthesis during strain engineering, for example, to increase thermotolerance or to increase metabolic flux through an alternate pathway. However, the impact of modifying ergosterol biosynthesis on engineered strains is discussed sparsely in literature, and little attention has been paid to the implications of these modifications on the general health and well-being of yeast. Importantly, yeast with modified sterol content exhibit a wide range of phenotypes, including altered organization and dynamics of plasma membrane, altered susceptibility to chemical treatment, increased tolerance to high temperatures, and reduced tolerance to other stresses such as high ethanol, salt, and solute concentrations. Here, we review the wide-ranging phenotypes of viable Saccharomyces cerevisiae strains with altered sterol content and discuss the implications of these for yeast as microbial cell factories.
Collapse
Affiliation(s)
- Emily J Johnston
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Tessa Moses
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Susan J Rosser
- School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
34
|
A Humanized Yeast Phenomic Model of Deoxycytidine Kinase to Predict Genetic Buffering of Nucleoside Analog Cytotoxicity. Genes (Basel) 2019; 10:genes10100770. [PMID: 31575041 PMCID: PMC6826991 DOI: 10.3390/genes10100770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/17/2019] [Accepted: 09/23/2019] [Indexed: 12/22/2022] Open
Abstract
Knowledge about synthetic lethality can be applied to enhance the efficacy of anticancer therapies in individual patients harboring genetic alterations in their cancer that specifically render it vulnerable. We investigated the potential for high-resolution phenomic analysis in yeast to predict such genetic vulnerabilities by systematic, comprehensive, and quantitative assessment of drug–gene interaction for gemcitabine and cytarabine, substrates of deoxycytidine kinase that have similar molecular structures yet distinct antitumor efficacy. Human deoxycytidine kinase (dCK) was conditionally expressed in the Saccharomyces cerevisiae genomic library of knockout and knockdown (YKO/KD) strains, to globally and quantitatively characterize differential drug–gene interaction for gemcitabine and cytarabine. Pathway enrichment analysis revealed that autophagy, histone modification, chromatin remodeling, and apoptosis-related processes influence gemcitabine specifically, while drug–gene interaction specific to cytarabine was less enriched in gene ontology. Processes having influence over both drugs were DNA repair and integrity checkpoints and vesicle transport and fusion. Non-gene ontology (GO)-enriched genes were also informative. Yeast phenomic and cancer cell line pharmacogenomics data were integrated to identify yeast–human homologs with correlated differential gene expression and drug efficacy, thus providing a unique resource to predict whether differential gene expression observed in cancer genetic profiles are causal in tumor-specific responses to cytotoxic agents.
Collapse
|
35
|
Firczuk H, Teahan J, Mendes P, McCarthy JEG. Multisite rate control analysis identifies ribosomal scanning as the sole high-capacity/low-flux-control step in mRNA translation. FEBS J 2019; 287:925-940. [PMID: 31520451 PMCID: PMC7054134 DOI: 10.1111/febs.15059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/26/2019] [Accepted: 09/09/2019] [Indexed: 11/30/2022]
Abstract
Control of complex intracellular pathways such as protein synthesis is critical to organism survival, but is poorly understood. Translation of a reading frame in eukaryotic mRNA is preceded by a scanning process in which a subset of translation factors helps guide ribosomes to the start codon. Here, we perform comparative analysis of the control status of this scanning step that sits between recruitment of the small ribosomal subunit to the m7GpppG‐capped 5′end of mRNA and of the control exerted by downstream phases of polypeptide initiation, elongation and termination. We have utilized a detailed predictive model as guidance for designing quantitative experimental interrogation of control in the yeast translation initiation pathway. We have built a synthetic orthogonal copper‐responsive regulatory promoter (PCuR3) that is used here together with the tet07 regulatory system in a novel dual‐site in vivo rate control analysis strategy. Combining this two‐site strategy with calibrated mass spectrometry to determine translation factor abundance values, we have tested model‐based predictions of rate control properties of the in vivo system. We conclude from the results that the components of the translation machinery that promote scanning collectively function as a low‐flux‐control system with a capacity to transfer ribosomes into the core process of polypeptide production that exceeds the respective capacities of the steps of polypeptide initiation, elongation and termination. In contrast, the step immediately prior to scanning, that is, ribosome recruitment via the mRNA 5′ cap‐binding complex, is a high‐flux‐control step.
Collapse
Affiliation(s)
- Helena Firczuk
- Warwick Integrative Synthetic Biology Centre [WISB] and School of Life Sciences, University of Warwick, Coventry, UK
| | - James Teahan
- Warwick Integrative Synthetic Biology Centre [WISB] and School of Life Sciences, University of Warwick, Coventry, UK
| | - Pedro Mendes
- Center for Quantitative Medicine, UConn Health, Farmington, CT, USA
| | - John E G McCarthy
- Warwick Integrative Synthetic Biology Centre [WISB] and School of Life Sciences, University of Warwick, Coventry, UK
| |
Collapse
|
36
|
Rantasalo A, Landowski CP, Kuivanen J, Korppoo A, Reuter L, Koivistoinen O, Valkonen M, Penttilä M, Jäntti J, Mojzita D. A universal gene expression system for fungi. Nucleic Acids Res 2019; 46:e111. [PMID: 29924368 PMCID: PMC6182139 DOI: 10.1093/nar/gky558] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 06/07/2018] [Indexed: 12/02/2022] Open
Abstract
Biotechnological production of fuels, chemicals and proteins is dependent on efficient production systems, typically genetically engineered microorganisms. New genome editing methods are making it increasingly easy to introduce new genes and functionalities in a broad range of organisms. However, engineering of all these organisms is hampered by the lack of suitable gene expression tools. Here, we describe a synthetic expression system (SES) that is functional in a broad spectrum of fungal species without the need for host-dependent optimization. The SES consists of two expression cassettes, the first providing a weak, but constitutive level of a synthetic transcription factor (sTF), and the second enabling strong, at will tunable expression of the target gene via an sTF-dependent promoter. We validated the SES functionality in six yeast and two filamentous fungi species in which high (levels beyond organism-specific promoters) as well as adjustable expression levels of heterologous and native genes was demonstrated. The SES is an unprecedentedly broadly functional gene expression regulation method that enables significantly improved engineering of fungi. Importantly, the SES system makes it possible to take in use novel eukaryotic microbes for basic research and various biotechnological applications.
Collapse
Affiliation(s)
- Anssi Rantasalo
- VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | | | - Joosu Kuivanen
- VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Annakarin Korppoo
- VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Lauri Reuter
- VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Outi Koivistoinen
- VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Mari Valkonen
- VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Merja Penttilä
- VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Jussi Jäntti
- VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| | - Dominik Mojzita
- VTT Technical Research Centre of Finland, Espoo, P.O. Box 1000, FI-02044 VTT, Finland
| |
Collapse
|
37
|
Strategies for gene disruption and expression in filamentous fungi. Appl Microbiol Biotechnol 2019; 103:6041-6059. [DOI: 10.1007/s00253-019-09953-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 05/24/2019] [Accepted: 05/28/2019] [Indexed: 02/02/2023]
|
38
|
Gene expression engineering in fungi. Curr Opin Biotechnol 2019; 59:141-149. [PMID: 31154079 DOI: 10.1016/j.copbio.2019.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 03/27/2019] [Accepted: 04/24/2019] [Indexed: 02/03/2023]
Abstract
Fungi are a highly diverse group of microbial species that possess a plethora of biotechnologically useful metabolic and physiological properties. Important enablers for fungal biology studies and their biotechnological use are well-performing gene expression tools. Different types of gene expression tools exist; however, typically they are at best only functional in one or a few closely related species. This has hampered research and development of industrially relevant production systems. Here, we review operational principles and concepts of fungal gene expression tools. We present an overview on tools that utilize endogenous fungal promoters and modified hybrid expression systems composed of engineered promoters and transcription factors. Finally, we review synthetic expression tools that are functional across a broad range of fungal species.
Collapse
|
39
|
Hasenjäger S, Trauth J, Hepp S, Goenrich J, Essen LO, Taxis C. Optogenetic Downregulation of Protein Levels with an Ultrasensitive Switch. ACS Synth Biol 2019; 8:1026-1036. [PMID: 30955324 DOI: 10.1021/acssynbio.8b00471] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Optogenetic control of protein activity is a versatile technique to gain control over cellular processes, for example, for biomedical and biotechnological applications. Among other techniques, the regulation of protein abundance by controlling either transcription or protein stability found common use as this controls the activity of any type of target protein. Here, we report modules of an improved variant of the photosensitive degron module and a light-sensitive transcription factor, which we compared to doxycycline-dependent transcriptional control. Given their modularity the combined control of synthesis and stability of a given target protein resulted in the synergistic down regulation of its abundance by light. This combined module exhibits very high switching ratios, profound downregulation of protein abundance at low light-fluxes, and fast protein depletion kinetics. Overall, this synergistic optogenetic multistep control (SOMCo) module is easy to implement and results in a regulation of protein abundance superior to each individual component.
Collapse
Affiliation(s)
- Sophia Hasenjäger
- Department of Biology/Genetics Philipps-University Marburg Karl-vom-Frisch-Straße 8, Marburg, 35032, Germany
| | - Jonathan Trauth
- Department of Biology/Genetics Philipps-University Marburg Karl-vom-Frisch-Straße 8, Marburg, 35032, Germany
- Department of Chemistry/Biochemistry Philipps-University Marburg Hans-Meerwein-Straße 4, Marburg, 35032, Germany
| | - Sebastian Hepp
- Department of Chemistry/Biochemistry Philipps-University Marburg Hans-Meerwein-Straße 4, Marburg, 35032, Germany
| | - Juri Goenrich
- Department of Biology/Genetics Philipps-University Marburg Karl-vom-Frisch-Straße 8, Marburg, 35032, Germany
| | - Lars-Oliver Essen
- Department of Chemistry/Biochemistry Philipps-University Marburg Hans-Meerwein-Straße 4, Marburg, 35032, Germany
| | - Christof Taxis
- Department of Biology/Genetics Philipps-University Marburg Karl-vom-Frisch-Straße 8, Marburg, 35032, Germany
| |
Collapse
|
40
|
Shah NA, Sarkar CA. Variable cellular decision-making behavior in a constant synthetic network topology. BMC Bioinformatics 2019; 20:237. [PMID: 31088350 PMCID: PMC6515661 DOI: 10.1186/s12859-019-2866-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Accepted: 04/30/2019] [Indexed: 11/10/2022] Open
Abstract
Background Modules of interacting components arranged in specific network topologies have evolved to perform a diverse array of cellular functions. For a network with a constant topological structure, its function within a cell may still be tuned by changing the number of instances of a particular component (e.g., gene copy number) or by modulating the intrinsic biochemical properties of a component (e.g., binding strength or catalytic efficiency). How such perturbations affect cellular response dynamics remains poorly understood. Here, we explored these effects in a common decision-making motif, cross-antagonism with autoregulation, by synthetically constructing this network in yeast. Results We employed the engineering design strategy of reuse to build this topology with a single protein building block, TetR, creating necessary components through TetR mutations and fusion partners. We then studied the impact of several topology-preserving perturbations – strength of cross-antagonism, number of operator sites in a promoter, and gene dosage – on decision-making behavior. We found that reducing TetR repression strength, which hinders cross-antagonism, resulted in a loss of mutually exclusive cell responses. Unexpectedly, increasing the number of operator sites also impeded decision-making exclusivity, which may be a consequence of the averaging effect that arises when multiple transcriptional activators and repressors are accommodated at a given locus. Stochastic simulations of this topology revealed that, even for networks with high TetR repression strength and a low number of operator sites, increasing gene dosage can reduce exclusivity in response dynamics. We further demonstrated this result experimentally by quantifying gene copy numbers in selected yeast clones with differing phenotypic responses. Conclusions Our study illustrates how parameters that do not change the topological structure of a decision-making network can nonetheless exert significant influence on its response dynamics. These findings should further inform the study of native motifs, including the effects of topology-preserving mutations, and the robust engineering of synthetic networks. Electronic supplementary material The online version of this article (10.1186/s12859-019-2866-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Najaf A Shah
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Casim A Sarkar
- Department of Biomedical Engineering, College of Science and Engineering, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
41
|
Fine RD, Maqani N, Li M, Franck E, Smith JS. Depletion of Limiting rDNA Structural Complexes Triggers Chromosomal Instability and Replicative Aging of Saccharomyces cerevisiae. Genetics 2019; 212:75-91. [PMID: 30842210 PMCID: PMC6499517 DOI: 10.1534/genetics.119.302047] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Accepted: 03/01/2019] [Indexed: 12/12/2022] Open
Abstract
Sir2 is a highly conserved NAD+-dependent histone deacetylase that functions in heterochromatin formation and promotes replicative life span (RLS) in the budding yeast, Saccharomyces cerevisiae Within the yeast rDNA locus, Sir2 is required for efficient cohesin recruitment and maintaining the stability of the tandem array. In addition to the previously reported depletion of Sir2 in replicatively aged cells, we discovered that subunits of the Sir2-containing complexes silent information regulator (SIR) and regulator of nucleolar silencing and telophase (RENT) were depleted. Several other rDNA structural protein complexes also exhibited age-related depletion, most notably the cohesin complex. We hypothesized that mitotic chromosome instability (CIN) due to cohesin depletion could be a driver of replicative aging. Chromatin immunoprecipitation assays of the residual cohesin (Mcd1-Myc) in moderately aged cells showed strong depletion from the rDNA and initial redistribution to the point centromeres, which was then lost in older cells. Despite the shift in cohesin distribution, sister chromatid cohesion was partially attenuated in aged cells and the frequency of chromosome loss was increased. This age-induced CIN was exacerbated in strains lacking Sir2 and its paralog, Hst1, but suppressed in strains that stabilize the rDNA array due to deletion of FOB1 or through caloric restriction. Furthermore, ectopic expression of MCD1 from a doxycycline-inducible promoter was sufficient to suppress rDNA instability in aged cells and to extend RLS. Taken together, we conclude that age-induced depletion of cohesin and multiple other nucleolar chromatin factors destabilize the rDNA locus, which then results in general CIN and aneuploidy that shortens RLS.
Collapse
Affiliation(s)
- Ryan D Fine
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Nazif Maqani
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Mingguang Li
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
- Department of Laboratory Medicine, Jilin Medical University, 132013, China
| | - Elizabeth Franck
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Jeffrey S Smith
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
42
|
Luu VT, Moon HY, Yoo SJ, Choo JH, Thak EJ, Kang HA. Development of conditional cell lysis mutants of Saccharomyces cerevisiae as production hosts by modulating OCH1 and CHS3 expression. Appl Microbiol Biotechnol 2019; 103:2277-2293. [DOI: 10.1007/s00253-019-09614-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 12/27/2018] [Accepted: 12/29/2018] [Indexed: 11/29/2022]
|
43
|
Determination of the Global Pattern of Gene Expression in Yeast Cells by Intracellular Levels of Guanine Nucleotides. mBio 2019; 10:mBio.02500-18. [PMID: 30670615 PMCID: PMC6343037 DOI: 10.1128/mbio.02500-18] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
This paper investigates whether, independently of the supply of any specific nutrient, gene transcription responds to the energy status of the cell by monitoring ATP and GTP levels. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into the yeast Saccharomyces cerevisiae, and the effect of an increased demand for these purine nucleotides on gene transcription was analyzed. The resulting changes in transcription were most consistently associated with changes in GTP and GEC levels, although the reprogramming in gene expression during glucose repression is sensitive to adenine nucleotide levels. The results show that GTP levels play a central role in determining how genes act to respond to changes in energy supply and that any comprehensive understanding of the control of eukaryotic gene expression requires the elucidation of how changes in guanine nucleotide abundance are sensed and transduced to alter the global pattern of transcription. Correlations between gene transcription and the abundance of high-energy purine nucleotides in Saccharomyces cerevisiae have often been noted. However, there has been no systematic investigation of this phenomenon in the absence of confounding factors such as nutrient status and growth rate, and there is little hard evidence for a causal relationship. Whether transcription is fundamentally responsive to prevailing cellular energetic conditions via sensing of intracellular purine nucleotides, independently of specific nutrition, remains an important question. The controlled nutritional environment of chemostat culture revealed a strong correlation between ATP and GTP abundance and the transcription of genes required for growth. Short pathways for the inducible and futile consumption of ATP or GTP were engineered into S. cerevisiae, permitting analysis of the transcriptional effect of an increased demand for these nucleotides. During steady-state growth using the fermentable carbon source glucose, the futile consumption of ATP led to a decrease in intracellular ATP concentration but an increase in GTP and the guanylate energy charge (GEC). Expression of transcripts encoding proteins involved in ribosome biogenesis, and those controlled by promoters subject to SWI/SNF-dependent chromatin remodelling, was correlated with these nucleotide pool changes. Similar nucleotide abundance changes were observed using a nonfermentable carbon source, but an effect on the growth-associated transcriptional programme was absent. Induction of the GTP-cycling pathway had only marginal effects on nucleotide abundance and gene transcription. The transcriptional response of respiring cells to glucose was dampened in chemostats induced for ATP cycling, but not GTP cycling, and this was primarily associated with altered adenine nucleotide levels.
Collapse
|
44
|
Sanchez MR, Payen C, Cheong F, Hovde BT, Bissonnette S, Arkin AP, Skerker JM, Brem RB, Caudy AA, Dunham MJ. Transposon insertional mutagenesis in Saccharomyces uvarum reveals trans-acting effects influencing species-dependent essential genes. Genome Res 2019; 29:396-406. [PMID: 30635343 PMCID: PMC6396416 DOI: 10.1101/gr.232330.117] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Accepted: 01/03/2019] [Indexed: 12/22/2022]
Abstract
To understand how complex genetic networks perform and regulate diverse cellular processes, the function of each individual component must be defined. Comprehensive phenotypic studies of mutant alleles have been successful in model organisms in determining what processes depend on the normal function of a gene. These results are often ported to newly sequenced genomes by using sequence homology. However, sequence similarity does not always mean identical function or phenotype, suggesting that new methods are required to functionally annotate newly sequenced species. We have implemented comparative analysis by high-throughput experimental testing of gene dispensability in Saccharomyces uvarum, a sister species of Saccharomyces cerevisiae. We created haploid and heterozygous diploid Tn7 insertional mutagenesis libraries in S. uvarum to identify species-dependent essential genes, with the goal of detecting genes with divergent functions and/or different genetic interactions. Comprehensive gene dispensability comparisons with S. cerevisiae predicted diverged dispensability at 12% of conserved orthologs, and validation experiments confirmed 22 differentially essential genes. Despite their differences in essentiality, these genes were capable of cross-species complementation, demonstrating that trans-acting factors that are background-dependent contribute to differential gene essentiality. This study shows that direct experimental testing of gene disruption phenotypes across species can inform comparative genomic analyses and improve gene annotations. Our method can be widely applied in microorganisms to further our understanding of genome evolution.
Collapse
Affiliation(s)
- Monica R Sanchez
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA.,Molecular and Cellular Biology Program, University of Washington, Seattle, Washington 98195, USA
| | - Celia Payen
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Frances Cheong
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Blake T Hovde
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| | - Sarah Bissonnette
- Department of Biological Sciences, California State University, Turlock, California 95382, USA
| | - Adam P Arkin
- Energy Biosciences Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Jeffrey M Skerker
- Energy Biosciences Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Rachel B Brem
- Buck Institute for Research on Aging, Novato, California 94945, USA.,Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, California 94720, USA
| | - Amy A Caudy
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario M5S 3E1, Canada
| | - Maitreya J Dunham
- Department of Genome Sciences, University of Washington, Seattle, Washington 98195, USA
| |
Collapse
|
45
|
|
46
|
Scott LH, Mathews JC, Flematti GR, Filipovska A, Rackham O. An Artificial Yeast Genetic Circuit Enables Deep Mutational Scanning of an Antimicrobial Resistance Protein. ACS Synth Biol 2018; 7:1907-1917. [PMID: 29979580 DOI: 10.1021/acssynbio.8b00121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Understanding the molecular mechanisms underlying antibiotic resistance requires concerted efforts in enzymology and medicinal chemistry. Here we describe a new synthetic biology approach to antibiotic development, where the presence of tetracycline antibiotics is linked to a life-death selection in Saccharomyces cerevisiae. This artificial genetic circuit allowed the deep mutational scanning of the tetracycline inactivating enzyme TetX, revealing key functional residues. We used both positive and negative selections to confirm the importance of different residues for TetX activity, and profiled activity hotspots for different tetracyclines to reveal substrate-specific activity determinants. We found that precise positioning of FAD and hydrophobic shielding of the tetracycline are critical for enzymatic inactivation of doxycycline. However, positioning of FAD is suboptimal in the case of anhydrotetracycline, potentially explaining its comparatively poor degradation and potential as an inhibitor for this family of enzymes. By combining artificial genetic circuits whose function can be modulated by antimicrobial resistance determinants, we establish a framework to select for the next generation of antibiotics.
Collapse
Affiliation(s)
- Louis H. Scott
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - James C. Mathews
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
| | - Gavin R. Flematti
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Aleksandra Filipovska
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| | - Oliver Rackham
- Harry Perkins Institute of Medical Research and Centre for Medical Research, The University of Western Australia, Nedlands 6009, Australia
- School of Molecular Sciences, The University of Western Australia, Crawley 6009, Australia
| |
Collapse
|
47
|
Virčíková V, Pokorná L, Tahotná D, Džugasová V, Balážová M, Griač P. Schizosaccharomyces pombe cardiolipin synthase is part of a mitochondrial fusion protein regulated by intron retention. Biochim Biophys Acta Mol Cell Biol Lipids 2018; 1863:1331-1344. [PMID: 29958934 DOI: 10.1016/j.bbalip.2018.06.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2018] [Revised: 06/08/2018] [Accepted: 06/23/2018] [Indexed: 11/29/2022]
Abstract
Cardiolipin (CL) is a unique lipid component of mitochondria in all eukaryotes. It is important for the architecture of mitochondrial membranes and for mitochondrial dynamics. CL also creates a highly specific microenvironment of mitochondrial protein machineries. CL biosynthetic pathway is, however, only partially characterized in the fission yeast Schizosaccharomyces pombe. Here we show that CL synthase is an essential protein in S. pombe. It is encoded by the ORF SPAC22A12.08c as a C terminal part of a tandem fusion protein together with a mitochondrial hydrolase of unknown function. Expression of S. pombe CL synthase is able to complement deletion of the CRD1 gene of Saccharomyces cerevisiae and, vice versa, S. cerevisiae CRD1 gene complements deletion of S. pombe SPAC22A12.08c. The proper expression of CL synthase and its partner in the tandem protein, the mitochondrial hydrolase, is regulated at the level of alternate intron splicing. The first part of the SPAC22A12.08c fusion protein could be translated from both major SPAC22A12.08c derived mRNAs, with and without intron IV. Functional CL synthase, however, is produced only from the minor SPAC22A12.08c derived mRNA that has intron IV retained. Thus, intron retention is a novel mechanism for the differential expression of two proteins that evolved as a fusion protein and are under the control of the same promoter.
Collapse
Affiliation(s)
- Veronika Virčíková
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Lucia Pokorná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Dana Tahotná
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Vladimíra Džugasová
- Department of Genetics, Faculty of Natural Sciences, Comenius University, Ilkovičova 6, 842 15 Bratislava, Slovakia
| | - Mária Balážová
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia
| | - Peter Griač
- Centre of Biosciences, Institute of Animal Biochemistry and Genetics, Slovak Academy of Sciences, Dúbravská cesta 9, 840 05 Bratislava, Slovakia.
| |
Collapse
|
48
|
D'Ambrosio V, Jensen MK. Lighting up yeast cell factories by transcription factor-based biosensors. FEMS Yeast Res 2018; 17:4157790. [PMID: 28961766 PMCID: PMC5812511 DOI: 10.1093/femsyr/fox076] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 09/12/2017] [Indexed: 12/17/2022] Open
Abstract
Our ability to rewire cellular metabolism for the sustainable production of chemicals, fuels and therapeutics based on microbial cell factories has advanced rapidly during the last two decades. Especially the speed and precision by which microbial genomes can be engineered now allow for more advanced designs to be implemented and tested. However, compared to the methods developed for engineering cell factories, the methods developed for testing the performance of newly engineered cell factories in high throughput are lagging far behind, which consequently impacts the overall biomanufacturing process. For this purpose, there is a need to develop new techniques for screening and selection of best-performing cell factory designs in multiplex. Here we review the current status of the sourcing, design and engineering of biosensors derived from allosterically regulated transcription factors applied to the biotechnology work-horse budding yeast Saccharomyces cerevisiae. We conclude by providing a perspective on the most important challenges and opportunities lying ahead in order to harness the full potential of biosensor development for increasing both the throughput of cell factory development and robustness of overall bioprocesses.
Collapse
Affiliation(s)
- Vasil D'Ambrosio
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
49
|
Harvey CJB, Tang M, Schlecht U, Horecka J, Fischer CR, Lin HC, Li J, Naughton B, Cherry J, Miranda M, Li YF, Chu AM, Hennessy JR, Vandova GA, Inglis D, Aiyar RS, Steinmetz LM, Davis RW, Medema MH, Sattely E, Khosla C, St. Onge RP, Tang Y, Hillenmeyer ME. HEx: A heterologous expression platform for the discovery of fungal natural products. SCIENCE ADVANCES 2018; 4:eaar5459. [PMID: 29651464 PMCID: PMC5895447 DOI: 10.1126/sciadv.aar5459] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Accepted: 02/26/2018] [Indexed: 05/18/2023]
Abstract
For decades, fungi have been a source of U.S. Food and Drug Administration-approved natural products such as penicillin, cyclosporine, and the statins. Recent breakthroughs in DNA sequencing suggest that millions of fungal species exist on Earth, with each genome encoding pathways capable of generating as many as dozens of natural products. However, the majority of encoded molecules are difficult or impossible to access because the organisms are uncultivable or the genes are transcriptionally silent. To overcome this bottleneck in natural product discovery, we developed the HEx (Heterologous EXpression) synthetic biology platform for rapid, scalable expression of fungal biosynthetic genes and their encoded metabolites in Saccharomyces cerevisiae. We applied this platform to 41 fungal biosynthetic gene clusters from diverse fungal species from around the world, 22 of which produced detectable compounds. These included novel compounds with unexpected biosynthetic origins, particularly from poorly studied species. This result establishes the HEx platform for rapid discovery of natural products from any fungal species, even those that are uncultivable, and opens the door to discovery of the next generation of natural products.
Collapse
Affiliation(s)
- Colin J. B. Harvey
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Mancheng Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Ulrich Schlecht
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Joe Horecka
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Curt R. Fischer
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Stanford ChEM-H (Chemistry, Engineering and Medicine for Human Health), Stanford University, Palo Alto, CA 94304, USA
| | - Hsiao-Ching Lin
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
| | - Jian Li
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Brian Naughton
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - James Cherry
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Molly Miranda
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yong Fuga Li
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Angela M. Chu
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - James R. Hennessy
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Gergana A. Vandova
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Diane Inglis
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Raeka S. Aiyar
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Lars M. Steinmetz
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- European Molecular Biology Laboratory Heidelberg, 69117 Heidelberg, Germany
| | - Ronald W. Davis
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
- Department of Genetics, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Marnix H. Medema
- Bioinformatics Group, Wageningen University, Wageningen, Netherlands
| | - Elizabeth Sattely
- Department of Chemical Engineering, Stanford University, Palo Alto, CA 94304, USA
| | - Chaitan Khosla
- Stanford ChEM-H (Chemistry, Engineering and Medicine for Human Health), Stanford University, Palo Alto, CA 94304, USA
- Department of Chemical Engineering, Stanford University, Palo Alto, CA 94304, USA
- Department of Chemistry, Stanford University, Palo Alto, CA 94304, USA
| | - Robert P. St. Onge
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| | - Yi Tang
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, CA 90095, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095, USA
| | - Maureen E. Hillenmeyer
- Stanford Genome Technology Center, Stanford University School of Medicine, Palo Alto, CA 94304, USA
| |
Collapse
|
50
|
Polčic P, Pakosová L, Chovančíková P, Machala Z. Reactive cold plasma particles generate oxidative stress in yeast but do not trigger apoptosis. Can J Microbiol 2018; 64:367-375. [PMID: 29438626 DOI: 10.1139/cjm-2017-0753] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Interactions of living cells with cold plasma of electrical discharges affect cell physiology, often resulting in the loss of viability. However, the mechanisms involved in cell killing are poorly understood, and dissection of cellular pathways or structures affected by plasma using simple eukaryotic models is needed. Using selected genetic mutants of yeast (Saccharomyces cerevisiae), we investigated the role of oxidative stress and yeast apoptosis in plasma-induced cell killing. Increased sensitivity of yeast strains deficient in superoxide dismutases indicated that reactive oxygen species generated in the plasma are among the most prominent factors involved in killing of yeast cells. In mutant strains with a deletion of the key components of yeast apoptotic pathway, the sensitivity of cells towards the plasma treatment remained unaffected. Yeast apoptosis, thus, does not appear to play a significant role in plasma-induced cell killing of yeast.
Collapse
Affiliation(s)
- Peter Polčic
- a Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH-1, Ilkovičova 6, Bratislava 84215, Slovak Republic
| | - Lucia Pakosová
- b Division of Environmental Physics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Mlynská dolina F2, Ilkovičova 6, Bratislava 84215, Slovak Republic
| | - Petra Chovančíková
- a Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Mlynská dolina CH-1, Ilkovičova 6, Bratislava 84215, Slovak Republic
| | - Zdenko Machala
- b Division of Environmental Physics, Faculty of Mathematics, Physics, and Informatics, Comenius University in Bratislava, Mlynská dolina F2, Ilkovičova 6, Bratislava 84215, Slovak Republic
| |
Collapse
|