1
|
Bernkop-Schnürch AD, Huber K, Clauser A, Cziferszky M, Leitner D, Talasz H, Hermann M, Hohloch S, Gust R, Kircher B. Design, synthesis, and biological evaluation of novel halogenated chlorido[N,N'-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes as anticancer agents. J Biol Inorg Chem 2024; 29:583-599. [PMID: 39133326 PMCID: PMC11390779 DOI: 10.1007/s00775-024-02067-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 07/17/2024] [Indexed: 08/13/2024]
Abstract
Iron(III) complexes based on N,N´-bis(salicylidene)ethylenediamine (salene) scaffolds have demonstrated promising anticancer features like induction of ferroptosis, an iron dependent cell death. Since poor cellular uptake limits their therapeutical potential, this study aimed to enhance the lipophilic character of chlorido[N,N'-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes by introducing lipophilicity improving ligands such as fluorine (X1), chlorine (X2) and bromine (X3) in 5-position in the salicylidene moieties. After detailed characterization the binding to nucleophiles, logP values and cellular uptake were determined. The complexes were further evaluated regarding their biological activity on MDA-MB 231 mammary carcinoma, the non-tumorous SV-80 fibroblast, HS-5 stroma and MCF-10A mammary gland cell lines. Stability of the complexes in aqueous and biological environments was proven by the lack of interactions with amino acids and glutathione. Cellular uptake was positively correlated with the logP values, indicating that higher lipophilicity enhanced cellular uptake. The complexes induced strong antiproliferative and antimetabolic effects on MDA-MB 231 cells, but were inactive on all non-malignant cells tested. Generation of mitochondrial reactive oxygen species, increase of lipid peroxidation and induction of both ferroptosis and necroptosis were identified as mechanisms of action. In conclusion, halogenation of chlorido[N,N'-bis(salicylidene)-1,2-bis(3-methoxyphenyl)ethylenediamine]iron(III) complexes raises their lipophilic character resulting in improved cellular uptake.
Collapse
Affiliation(s)
- Astrid Dagmar Bernkop-Schnürch
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck, CCB-Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Klaus Huber
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck, CCB-Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Armida Clauser
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck, CCB-Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
- Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology), Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Monika Cziferszky
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck, CCB-Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Daniel Leitner
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Heribert Talasz
- Biocenter, Institute of Medical Biochemistry, Protein Core Facility, Medical University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Martin Hermann
- Department of Anesthesiology and Critical Care Medicine, Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria
| | - Stephan Hohloch
- Department of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, CMBI-Center for Molecular Biosciences Innsbruck, CCB-Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Brigitte Kircher
- Immunobiology and Stem Cell Laboratory, Department of Internal Medicine V (Hematology and Oncology), Medical University of Innsbruck, Anichstraße 35, 6020, Innsbruck, Austria.
- Tyrolean Cancer Research Institute, Innrain 66, 6020, Innsbruck, Austria.
| |
Collapse
|
2
|
Duan M, Leng S, Mao P. Cisplatin in the era of PARP inhibitors and immunotherapy. Pharmacol Ther 2024; 258:108642. [PMID: 38614254 DOI: 10.1016/j.pharmthera.2024.108642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/21/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
Platinum compounds such as cisplatin, carboplatin and oxaliplatin are widely used in chemotherapy. Cisplatin induces cytotoxic DNA damage that blocks DNA replication and gene transcription, leading to arrest of cell proliferation. Although platinum therapy alone is effective against many tumors, cancer cells can adapt to the treatment and gain resistance. The mechanisms for cisplatin resistance are complex, including low DNA damage formation, high DNA repair capacity, changes in apoptosis signaling pathways, rewired cell metabolisms, and others. Drug resistance compromises the clinical efficacy and calls for new strategies by combining cisplatin with other therapies. Exciting progress in cancer treatment, particularly development of poly (ADP-ribose) polymerase (PARP) inhibitors and immune checkpoint inhibitors, opened a new chapter to combine cisplatin with these new cancer therapies. In this Review, we discuss how platinum synergizes with PARP inhibitors and immunotherapy to bring new hope to cancer patients.
Collapse
Affiliation(s)
- Mingrui Duan
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA
| | - Shuguang Leng
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| | - Peng Mao
- Department of Internal Medicine, University of New Mexico, Albuquerque, NM 87131, USA; University of New Mexico Comprehensive Cancer Center, Albuquerque, NM 87131, USA.
| |
Collapse
|
3
|
Osmanoğulları SC, Forough M, Persil Çetinkol Ö, Arslan Udum Y, Toppare L. Electrochemical detection of Oxaliplatin induced DNA damage in G-quadruplex structures. Anal Biochem 2023; 671:115149. [PMID: 37030427 DOI: 10.1016/j.ab.2023.115149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023]
Abstract
Oxaliplatin (OXP) is a platinum-based chemotherapeutic agent that induces DNA damage by forming intra- and interstrand crosslinks, mainly at the N7 sites of adenine (A) and guanine (G) bases. In addition to double-stranded DNA, G-rich G-quadruplex (G4)-forming sequences can also be targeted by OXP. However, high doses of OXP can lead to drug resistance and cause serious adverse effects during treatment. To better understand the targeting of G4 structures by OXP, their interactions as well as the molecular mechanisms underlying OXP resistance and adverse effects, there is a need for a rapid, quantitative, and cost-effective method to detect OXP and the damage it causes. In this study, we successfully fabricated a graphite electrode biosensor modified with gold nanoparticles (AuNPs) to investigate the interactions between OXP and the G4-forming promoter region (Pu22) of Vascular endothelial growth factor (VEGF). The overexpression of VEGF is known to be associated with tumor progression and the stabilization of VEGF G4 by small molecules is shown to suppresses VEGF transcription in different cancer cell lines. Differential pulse voltammetry (DPV) was used to investigate the interactions between OXP and Pu22-G4 DNA by monitoring the decrease in the oxidation signal of guanine with increasing OXP concentration. Under the optimized conditions (37 °C, 1:2 v/v AuNPs/water as electrode surface modifier, and 90 min incubation time) the developed probe showed a linear dynamic range of 1.0-10.0 μM with a detection limit of 0.88 μM and limit of quantification of 2.92 μM. Fluorescence spectroscopy was also used to support the electrochemical studies. We observed a decrease in the fluorescence emission of Thioflavin T in the presence of Pu22 upon addition of OXP. To our knowledge, this is the first electrochemical sensor developed to study OXP-induced damage to G4 DNA structures. Our findings provide new insights into the interactions between VEGF G4 and OXP, which could aid in targeting VEGF G4 structures and the development of new strategies to overcome OXP resistance.
Collapse
|
4
|
Cziferszky M, Truong D, Hartinger CG, Gust R. Determination of Relative Stabilities of Metal-Peptide Bonds in the Gas Phase. Chemistry 2021; 27:16401-16406. [PMID: 34554615 PMCID: PMC9298285 DOI: 10.1002/chem.202102385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Indexed: 11/09/2022]
Abstract
Understanding binding site preferences in biological systems as well as affinities to binding partners is a crucial aspect in metallodrug development. We here present a mass spectrometry‐based method to compare relative stabilities of metal‐peptide adducts in the gas phase. Angiotensin 1 and substance P were used as model peptides. Incubation with isostructural N‐heterocyclic carbene (NHC) complexes of RuII, OsII, RhIII, and IrIII led to the formation of various adducts, which were subsequently studied by energy‐resolved fragmentation experiments. The gas‐phase stability of the metal‐peptide bonds depended on the metal and the binding partner. Of the four complexes used, the OsII derivative bound strongest to Met, while RuII formed the most stable coordination bond with His. RhIII was identified as the weakest peptide binder and IrIII formed peptide adducts with intermediate stability. Probing these intrinsic gas‐phase properties can help in the interpretation of biological activities and the design of site‐specific protein binding metal complexes.
Collapse
Affiliation(s)
- Monika Cziferszky
- Department of Chemistry and Pharmacy, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| | - Dianna Truong
- School of Chemical Sciences, University of Auckland Private Bag, 92019, Auckland 1142, New Zealand
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland Private Bag, 92019, Auckland 1142, New Zealand
| | - Ronald Gust
- Department of Chemistry and Pharmacy, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, A-6020, Innsbruck, Austria
| |
Collapse
|
5
|
Cziferszky M, Gust R. Top-down mass spectrometry reveals multiple interactions of an acetylsalicylic acid bearing Zeise's salt derivative with peptides. J Biol Inorg Chem 2020; 25:285-293. [PMID: 32060649 PMCID: PMC7082381 DOI: 10.1007/s00775-020-01760-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 01/24/2020] [Indexed: 11/30/2022]
Abstract
Synergistic effects and promising anticancer activities encourage the combination of non-steroidal anti-inflammatory drugs with metallodrugs. Here, we discuss the interactions of an organometallic complex consisting of an acetylsalicylic acid (ASA) moiety attached to a PtII center via an alkenol linker in a Zeise's salt-type coordination (ASA-buten-PtCl3) with model peptides angiotensin 1 (AT), substance P (Sub P), and ubiquitin (UQ). Top-down mass spectrometry experiments show that the amino acid involved in the initial binding to the metal complex controls the coordination sphere of PtII in the adducts. The strong trans labilizing effect of the coordinating sulfur atom in Met causes fast release of the organic moiety and leads to the formation of dimers and oligomers in the case of Sub P. In contrast, interactions with nitrogen donors in AT result in stable adducts containing the intact ASA-buten-PtII complex. UQ forms two sets of PtII adducts, only one of them retains the ASA moiety, which is presumably the result of an unexpected binding geometry. Importantly, UQ is additionally acetylated at various Ser and Lys residues by the ASA-buten-PtCl3 complex. Control experiments with ASA are negative. This is the first example of concomitant platination and acetylation of a peptide with an ASA metal complex.
Collapse
Affiliation(s)
- Monika Cziferszky
- Department of Pharmaceutical Chemistry, CMBI-Center for Molecular Biosciences, CCB-Centrum for Chemistry and Biomedicine, Innsbruck, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria
| | - Ronald Gust
- Department of Pharmaceutical Chemistry, CMBI-Center for Molecular Biosciences, CCB-Centrum for Chemistry and Biomedicine, Innsbruck, Institute of Pharmacy, University of Innsbruck, Innrain 80-82, 6020, Innsbruck, Austria.
| |
Collapse
|
6
|
Synthesis, DNA binding studies, and antiproliferative activity of novel Pt(II)-complexes with an L-alanyl-based ligand. J Inorg Biochem 2019; 203:110868. [PMID: 31837618 DOI: 10.1016/j.jinorgbio.2019.110868] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/22/2019] [Accepted: 09/24/2019] [Indexed: 12/14/2022]
Abstract
An artificial alanine-based amino acid {(S)-2-amino-3-[4-propyl-3-(thiophen-2-yl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]propanoic acid, here named TioxAla}, bearing a substituted triazolyl-thione group on the side chain and able to bind RNA biomedical targets, was here chosen as a valuable scaffold for the synthesis of new platinum complexes with potential dual action owing to the concomitant presence of the metal centre and the amino acid moiety. Three new platinum complexes, obtained from the reaction of TioxAla with K2PtCl4, were characterized by mass spectrometry, nuclear magnetic resonance and UV-vis spectroscopy: one compound (Pt1, bis-{(S)-2-amino-3-[4-propyl-3-(thiophen-2-yl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]propanoate-O,S} platinum(II)) consisted of two amino acid units coordinating the Pt(II) ion; the other two, Pt2 [potassium dichloro-{(S)-2-amino-3-[4-propyl-3-(thiophen-2-yl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]propanoate (O,S)} platinum(II)] and Pt3 [potassium dichloro-{(S)-2-amino-3-[4-propyl-3-(thiophen-2-yl)-5-thioxo-4,5-dihydro-1H-1,2,4-triazol-1-yl]propanoate (O,N)} platinum(II)], were isomers bearing one TioxAla unit, and two chlorides as Pt-ligands. Pt coordination involved preferentially the amino, carboxylic and thione functions of TioxAla. By preliminary antiproliferative assays, a moderate cytotoxic activity on cancer cells was observed only for Pt2 and Pt3, while no anticancer activity was found for both the chloride-free complex (Pt1) and TioxAla. This cytotoxicity, however lower than that of cisplatin, well correlated with the marked ability, here found only for Pt2 and Pt3 complexes, to bind DNA sequences either in random coil or in structured forms (duplex and G-quadruplex), as verified by spectroscopic and spectrometric analysis.
Collapse
|
7
|
Almeida LCD, Bauermeister A, Rezende-Teixeira P, Santos EAD, Moraes LABD, Machado-Neto JA, Costa-Lotufo LV. Pradimicin-IRD exhibits antineoplastic effects by inducing DNA damage in colon cancer cells. Biochem Pharmacol 2019; 168:38-47. [PMID: 31228463 DOI: 10.1016/j.bcp.2019.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023]
Abstract
DNA-damaging agents are widely used in cancer therapy; however, their use is limited by dose-related toxicities, as well as the development of drug resistance. Drug discovery is essential to overcome these limitations and offer novel therapeutic options. In a previous study by our research group, pradimicin-IRD-a new polycyclic antibiotic produced by the actinobacteria Amycolatopsis sp.-displayed antimicrobial and potential anticancer activities. In the present study, cytotoxic activity was further confirmed in a panel of five colon cancer, including those with mutation in TP53 and KRAS, the most common ones observed in cancer colon patients. While all tested colon cancer cells were sensitive to pradimicin-IRD treatment with IC50 in micromolar range, non-tumor fibroblasts were significantly less sensitive (p < 0.05). The cellular and molecular mechanism of action of pradimicin-IRD was then investigated in the colorectal cancer cell line HCT 116. Pradimicin-IRD presented antitumor effects occurring after at least 6 h of exposure. Pradimicin-IRD induced statistically significant DNA damage (γH2AX and p21), apoptosis (PARP1 and caspase 3 cleavage) and cell cycle arrest (reduced Rb phosphorylation, cyclin A and cyclin B expression) markers. In accordance with these results, pradimicin-IRD increased cell populations in the subG1 and G0/G1 phases of the cell cycle. Additionally, mass spectrometry analysis indicated that pradimicin-IRD interacted with the DNA double strand. In summary, pradimicin-IRD exhibits multiple antineoplastic activities-including DNA damage, cell cycle arrest, reduction of clonal growth and apoptosis-in the HCT 116 cell line. Furthermore, pradimicin-IRD displays a TP53-independent regulation of p21 expression in HCT 116 TP53-/-, HT-29, SW480, and Caco-2 cells. This exploratory study identified novel targets for pradimicin-IRD and provided insights for its potential anticancer activity as a DNA-damaging agent.
Collapse
Affiliation(s)
- Larissa Costa de Almeida
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Anelize Bauermeister
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil; Faculty of Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, Brazil
| | - Paula Rezende-Teixeira
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Evelyne Alves Dos Santos
- Department of Cell Biology and Development, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | | | | | - Leticia Veras Costa-Lotufo
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
8
|
The interactions of novel mononuclear platinum-based complexes with DNA. BMC Cancer 2018; 18:1284. [PMID: 30577821 PMCID: PMC6303901 DOI: 10.1186/s12885-018-5194-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2018] [Accepted: 12/06/2018] [Indexed: 12/30/2022] Open
Abstract
Background Cisplatin has been widely used for the treatment of cancer and its antitumour activity is attributed to its capacity to form DNA adducts, predominantly at guanine residues, which impede cellular processes such as DNA replication and transcription. However, there are associated toxicity and drug resistance issues which plague its use. This has prompted the development and screening of a range of chemotherapeutic drug analogues towards improved efficacy. The biological properties of three novel platinum-based compounds consisting of varying cis-configured ligand groups, as well as a commercially supplied compound, were characterised in this study to determine their potential as anticancer agents. Methods The linear amplification reaction was employed, in conjunction with capillary electrophoresis, to quantify the sequence specificity of DNA adducts induced by these compounds using a DNA template containing telomeric repeat sequences. Additionally, the DNA interstrand cross-linking and unwinding efficiency of these compounds were assessed through the application of denaturing and native agarose gel electrophoresis techniques, respectively. Their cytotoxicity was determined in HeLa cells using a colorimetric cell viability assay. Results All three novel platinum-based compounds were found to induce DNA adduct formation at the tandem telomeric repeat sequences. The sequence specificity profile at these sites was characterised and these were distinct from that of cisplatin. Two of these compounds with the enantiomeric 1,2-diaminocyclopentane ligand (SS and RR-DACP) were found to induce a greater degree of DNA unwinding than cisplatin, but exhibited marginally lower DNA cross-linking efficiencies. Furthermore, the RR-isomer was more cytotoxic in HeLa cells than cisplatin. Conclusions The biological characteristics of these compounds were assessed relative to cisplatin, and a variation in the sequence specificity and a greater capacity to induce DNA unwinding was observed. These compounds warrant further investigations towards developing more efficient chemotherapeutic drugs.
Collapse
|
9
|
Saker L, Ali S, Masserot C, Kellermann G, Poupon J, Teulade-Fichou MP, Ségal-Bendirdjian E, Bombard S. Platinum Complexes Can Bind to Telomeres by Coordination. Int J Mol Sci 2018; 19:E1951. [PMID: 29970863 PMCID: PMC6073198 DOI: 10.3390/ijms19071951] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 06/27/2018] [Accepted: 06/29/2018] [Indexed: 01/07/2023] Open
Abstract
It is suggested that several compounds, including G-quadruplex ligands, can target telomeres, inducing their uncapping and, ultimately, cell death. However, it has never been demonstrated whether such ligands can bind directly and quantitatively to telomeres. Here, we employed the property of platinum and platinum-G-quadruplex complexes to target G-rich sequences to investigate and quantify their covalent binding to telomeres. Using inductively coupled plasma mass spectrometry, surprisingly, we found that, in cellulo, in the presence of cisplatin, a di-functional platinum complex, telomeric DNA was platinated 13-times less than genomic DNA in cellulo, as compared to in vitro data. On the contrary, the amount of mono-functional platinum complexes (Pt-ttpy and Pt-tpy) bound either to telomeric or to genomic DNA was similar and occurred in a G-quadruplex independent-manner. Importantly, the quantification revealed that the low level of cisplatin bound to telomeric DNA could not be the direct physical cause of TRF2 displacement from telomeres. Altogether, our data suggest that platinum complexes can affect telomeres both directly and indirectly.
Collapse
Affiliation(s)
- Lina Saker
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, 75006 Paris, France.
- Paris Descartes University, Paris Sorbonne Cité, 75006 Paris, France.
| | - Samar Ali
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, 75006 Paris, France.
- Paris Sud University, Paris-Saclay University, 91405 Orsay, France.
| | - Caroline Masserot
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, 75006 Paris, France.
- Paris Sud University, Paris-Saclay University, 91405 Orsay, France.
| | - Guillaume Kellermann
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, 75006 Paris, France.
- Paris Descartes University, Paris Sorbonne Cité, 75006 Paris, France.
| | - Joel Poupon
- Laboratoire de Toxicologie-Biologique, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris, France.
| | - Marie-Paule Teulade-Fichou
- Paris Sud University, Paris-Saclay University, 91405 Orsay, France.
- Institut Curie-Recherche, Bât. 112, Centre Universitaire, 91405 Orsay, France.
- CNRS UMR918, Centre Universitaire, 91405 Orsay, France.
- INSERM U1196, Centre Universitaire, 91405 Orsay, France.
| | - Evelyne Ségal-Bendirdjian
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, 75006 Paris, France.
- Paris Descartes University, Paris Sorbonne Cité, 75006 Paris, France.
- Paris Sud University, Paris-Saclay University, 91405 Orsay, France.
| | - Sophie Bombard
- INSERM UMR-S 1007, Cellular Homeostasis and Cancer, 75006 Paris, France.
- Paris Descartes University, Paris Sorbonne Cité, 75006 Paris, France.
- Paris Sud University, Paris-Saclay University, 91405 Orsay, France.
- Institut Curie-Recherche, Bât. 112, Centre Universitaire, 91405 Orsay, France.
- CNRS UMR918, Centre Universitaire, 91405 Orsay, France.
- INSERM U1196, Centre Universitaire, 91405 Orsay, France.
| |
Collapse
|
10
|
Charif R, Granotier-Beckers C, Bertrand HC, Poupon J, Ségal-Bendirdjian E, Teulade-Fichou MP, Boussin FD, Bombard S. Association of a Platinum Complex to a G-Quadruplex Ligand Enhances Telomere Disruption. Chem Res Toxicol 2017; 30:1629-1640. [DOI: 10.1021/acs.chemrestox.7b00131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Razan Charif
- Université
Paris Descartes, INSERM UMR-S-1007, 45 rue des Saints-Pères, 75006 Paris, France
| | - Christine Granotier-Beckers
- CEA/DRF/IRCM,
Laboratoire de RadioPathologie, INSERM U967, Université Paris
VII, Université Paris XI, 18
route du Panorama, 92265 Fontenay-aux-Roses Cedex, France
| | - Hélène Charlotte Bertrand
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
- Département
de Chimie, Ecole Normale Supérieure, PSL Research University,
UPMC Univ Paris 06, CNRS, Laboratoire des Biomolécules (LBM), 24 rue Lhomond, 75005 Paris, France
- Sorbonne Universités,
UPMC Univ Paris 06, Ecole Normale Supérieure, CNRS, Laboratoire
des Biomolécules (LBM), 24 rue
Lhomond, 75005 Paris, France
| | - Joël Poupon
- Laboratoire
de Toxicologie-Biologique, Hôpital Lariboisière, 2 rue Ambroise Paré, 75475 Paris, France
| | | | - Marie-Paule Teulade-Fichou
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
| | - François D. Boussin
- CEA/DRF/IRCM,
Laboratoire de RadioPathologie, INSERM U967, Université Paris
VII, Université Paris XI, 18
route du Panorama, 92265 Fontenay-aux-Roses Cedex, France
| | - Sophie Bombard
- Université
Paris Descartes, INSERM UMR-S-1007, 45 rue des Saints-Pères, 75006 Paris, France
- Institut
Curie,
Centre Universitaire Paris Saclay, CNRS UMR9187/INSERM U1196, Bâtiments 110-112, 91405 Orsay, France
| |
Collapse
|
11
|
Shu X, Xiong X, Song J, He C, Yi C. Base-Resolution Analysis of Cisplatin-DNA Adducts at the Genome Scale. Angew Chem Int Ed Engl 2016; 55:14246-14249. [PMID: 27736024 PMCID: PMC5131569 DOI: 10.1002/anie.201607380] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/17/2016] [Indexed: 11/05/2022]
Abstract
Cisplatin, one of the most widely used anticancer drugs, crosslinks DNA and ultimately induces cell death. However, the genomic pattern of cisplatin-DNA adducts has remained unknown owing to the lack of a reliable and sensitive genome-wide method. Herein we present "cisplatin-seq" to identify genome-wide cisplatin crosslinking sites at base resolution. Cisplatin-seq reveals that mitochondrial DNA is a preferred target of cisplatin. For nuclear genomes, cisplatin-DNA adducts are enriched within promoters and regions harboring transcription termination sites. While the density of GG dinucleotides determines the initial crosslinking of cisplatin, binding of proteins to the genome largely contributes to the accumulative pattern of cisplatin-DNA adducts.
Collapse
Affiliation(s)
- Xiaoting Shu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Xushen Xiong
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
- Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, 100871, China
| | - Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, Howard Hughes Medical Institute, The University of Chicago, 929 East 57th Street, Chicago, IL, 60637, USA.
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Beijing Advanced Innovation Center for Genomics, Peking University, Beijing, 100871, China.
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center, College of Chemistry and Molecular Engineering, Peking-Tsinghua Center for Life Sciences, Peking University, Beijing, 100871, China.
| |
Collapse
|
12
|
Shu X, Xiong X, Song J, He C, Yi C. Base-Resolution Analysis of Cisplatin-DNA Adducts at the Genome Scale. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607380] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xiaoting Shu
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 China
| | - Xushen Xiong
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
- Academy for Advanced Interdisciplinary Studies; Peking University; Beijing 100871 China
| | - Jinghui Song
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| | - Chuan He
- Department of Chemistry; Department of Biochemistry and Molecular Biology; Institute for Biophysical Dynamics; Howard Hughes Medical Institute; The University of Chicago; 929 East 57th Street Chicago IL 60637 USA
- Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Beijing Advanced Innovation Center for Genomics; Peking University; Beijing 100871 China
| | - Chengqi Yi
- State Key Laboratory of Protein and Plant Gene Research; School of Life Sciences, Department of Chemical Biology and Synthetic and Functional Biomolecules Center; College of Chemistry and Molecular Engineering; Peking-Tsinghua Center for Life Sciences; Peking University; Beijing 100871 China
| |
Collapse
|
13
|
Li L, Guo W, Wu K, Zhao Y, Luo Q, Zhang Q, Liu J, Xiong S, Wang F. Identification of binding sites of cisplatin to human copper chaperone protein Cox17 by high-resolution FT-ICR-MS. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2016; 30 Suppl 1:168-172. [PMID: 27539433 DOI: 10.1002/rcm.7645] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
RATIONALE Cox17 is a key copper chaperone protein responsible for delivery of cuprous ions to mitochondria and has been demonstrated to be involved in the anticancer action of cisplatin. However, the binding sites of the drug to the protein have not yet been directly identified. METHODS The recombinant protein apo-Cox172s-s , the functional state of Cox17 transferring Cu(I), was reacted with an excess of cisplatin to produce platinated Cox17 adducts, of which the platination sites were identified by high-resolution Fourier transform ion cyclotron tandem mass spectrometry (FT-ICR-MS/MS) through electron capture dissociation (ECD). RESULTS Primary FT-ICR-MS showed that mono-platinated Cox17 adducts were the main products, and top-down MS/MS results indicated that cisplatin bound to the Cys26 or Cys27 residue which is the binding site of cuprous ions in apo-Cox172s-s . CONCLUSIONS This is the first report for identification of the main binding sites of cisplatin to Cox17 by top-down high-resolution mass spectrometry, providing direct evidence for the competitive coordination with Cox17 of cisplatin and cuprous ions. These findings will also be helpful to understand further how Cox17 facilitates cisplatin accumulation in mitochondria, and how cisplatin disturbs the transportation of cuprous ions. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Lijie Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Wei Guo
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Kui Wu
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yao Zhao
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qun Luo
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Qingwu Zhang
- School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing, 100083, China
| | - Jianan Liu
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shaoxiang Xiong
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Fuyi Wang
- Beijing National Laboratory for Molecular Sciences; National Centre for Mass Spectrometry in Beijing; CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| |
Collapse
|
14
|
Johnson BW, Murray V, Temple MD. Characterisation of the DNA sequence specificity, cellular toxicity and cross-linking properties of novel bispyridine-based dinuclear platinum complexes. BMC Cancer 2016; 16:333. [PMID: 27225032 PMCID: PMC4880875 DOI: 10.1186/s12885-016-2368-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Accepted: 05/18/2016] [Indexed: 12/21/2022] Open
Abstract
Background The anti-tumour activity of cisplatin is thought to be a result of its capacity to form DNA adducts which prevent cellular processes such as DNA replication and transcription. These DNA adducts can effectively induce cancer cell death, however, there are a range of clinical side effects and drug resistance issues associated with its use. In this study, the biological properties of three novel dinuclear platinum-based compounds (that contain alkane bridging linkers of eight, ten and twelve carbon atoms in length) were characterised to assess their potential as anticancer agents. Methods The properties of these compounds were determined using a DNA template containing seven tandem telomeric repeat sequences. A linear amplification reaction was used in combination with capillary electrophoresis to quantify the sequence specificity of DNA adducts formed by these compounds at base pair resolution. The DNA cross-linking ability of these compounds was assessed using denaturing agarose gel electrophoresis and cytotoxicity was determined in HeLa cells using a colorimetric cell viability assay. Results The dinuclear compounds were found to preferentially form DNA adducts at guanine bases and they exhibited different damage intensity profiles at the telomeric repeat sequences compared to that of cisplatin. The dinuclear compounds were found to exhibit a low level of cytotoxicity relative to cisplatin and their cytotoxicity increased as the linker length increased. Conversely, the interstrand cross-linking efficiency of the dinuclear compounds increased as the linker length decreased and the compound with the shortest alkane linker was six-fold more effective than cisplatin. Conclusions Since the bifunctional compounds exhibit variation in sequence specificity of adduct formation and a greater ability to cross-link DNA relative to cisplatin they warrant further investigation towards the goal of developing new cancer chemotherapeutic agents.
Collapse
Affiliation(s)
- Ben W Johnson
- School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia
| | - Vincent Murray
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mark D Temple
- School of Science and Health, Western Sydney University, Campbelltown, NSW, 2560, Australia.
| |
Collapse
|
15
|
Liu Y, Ling Y, Qi Q, Zhu M, Wan M, Zhang Y, Zhang C. Trastuzumab increases the sensitivity of HER2-amplified human gastric cancer cells to oxaliplatin and cisplatin by affecting the expression of telomere-associated proteins. Oncol Lett 2014; 9:999-1005. [PMID: 25624920 PMCID: PMC4301541 DOI: 10.3892/ol.2014.2793] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 11/21/2014] [Indexed: 01/17/2023] Open
Abstract
HER2 amplification occurs in ~20% of gastric cancer (GC) cases; however, in gastric and gastroesophageal junction cancer with HER2 gene amplification, trastuzumab in combination with cisplatin (DDP)-based chemotherapy has been reported to improve the oncological outcome. The aim of the present study was to evaluate the combined antitumor efficacy of trastuzumab and various platinum agents in GC cells and to elucidate mechanisms that may be involved in the interaction between trastuzumab and the platinum agents. The in vitro chemosensitivity of the GC cells to platinum agents was evaluated using the CellTiter 96® AQueous One Solution Cell Proliferation Assay kit. Treatment with 1.0μg/ml trastuzumab for 48 h significantly increased the sensitivity of NCI-N87 cells with HER2 amplification to oxaliplatin (Oxa) and DDP. This chemosensitivity was most prominent in the NCI-N87 cells, in which the half maximal inhibitory concentration of Oxa and DDP was decreased to ~3.29 and 6.91 times, respectively. The apoptotic effect of the platinum agents was evaluated by double-staining the GC cells with Annexin V-fluorescein isothiocyanate and propodium iodide. Consistent with the chemosensitivity analysis, apoptotic analysis indicated that trastuzumab significantly increased Oxa- and DDP-induced apoptosis in the NCI-N87 cells. Furthermore, the mRNA expression levels of various telomere-associated genes was determined by performing quantitative reverse transcription-polymerase chain reactions in a number of GC cell lines, and revealed that trastuzumab (alone and in combination with DDP) may downregulate the mRNA expression levels of the TPP1, TRF1, TRF2, TRF2IP and POT1 genes. However, western blot analysis demonstrated that trastuzumab (alone and in combination with DDP) may significantly downregulate the protein expression levels of telomeric repeat binding factor 2, protection of telomere 1 and TPP1 (formerly known as TINT1, PTOP and PIP). The results of the present study indicate a potential role of low-dose trastuzumab administration for increasing Oxa and DDP sensitivity in HER2-amplified GC cells, possibly via the downregulation of telomere-associated gene expression.
Collapse
Affiliation(s)
- Yongping Liu
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Suzhou University, Changzhou, Jiangsu 213002, P.R. China ; Department of Oncology Medicine, Changzhou Tumor Hospital Affiliated to Suzhou University, Changzhou, Jiangsu 213002, P.R. China
| | - Yang Ling
- Department of Oncology Medicine, Changzhou Tumor Hospital Affiliated to Suzhou University, Changzhou, Jiangsu 213002, P.R. China
| | - Qiufeng Qi
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Suzhou University, Changzhou, Jiangsu 213002, P.R. China
| | - Ming Zhu
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Suzhou University, Changzhou, Jiangsu 213002, P.R. China
| | - Meizhen Wan
- Department of Pathology, Changzhou Tumor Hospital Affiliated to Suzhou University, Changzhou, Jiangsu 213002, P.R. China
| | - Yaping Zhang
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Suzhou University, Changzhou, Jiangsu 213002, P.R. China
| | - Changsong Zhang
- Clinical Oncology Laboratory, Changzhou Tumor Hospital Affiliated to Suzhou University, Changzhou, Jiangsu 213002, P.R. China
| |
Collapse
|
16
|
Macciò A, Madeddu C. Cisplatin : an old drug with a newfound efficacy -- from mechanisms of action to cytotoxicity. Expert Opin Pharmacother 2013; 14:1839-57. [PMID: 23876094 DOI: 10.1517/14656566.2013.813934] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
INTRODUCTION Cisplatin is a highly effective antineoplastic drug with an extremely current mechanism of action. Cisplatin-induced side effects are dose-dependent and limit the administration of increased dosages, thus compromising its therapeutic efficacy. AREAS COVERED This review aims to describe the emerging knowledge about the biochemical mechanisms that mediate cisplatin cytotoxicity and side effects. A specific section is devoted to discuss the pathogenesis of cisplatin-related toxicities and the potential measures to counteract them. EXPERT OPINION Although cisplatin has been used for a long time, only recently its exact mechanism of action has been better defined. The cytotoxic activity of cisplatin is largely dependent on the glycolytic metabolism of tumor cells: cisplatin redirects cancer cells to oxidative phosphorylation from the 'Warburg effect', which is considered one of the most important mechanisms of tumor cell survival. The interference of cisplatin with glucose metabolism is also a cause of its relevant toxicities. The emerging knowledge on the complex mechanisms, which mediate cisplatin cytotoxicity and side effect, may lead to a more appropriate and safe use of this drug. Further studies are warranted to define and implement its effectiveness in combination with targeted drugs able to interfere with cellular energy metabolism, such as mTOR inhibitors.
Collapse
Affiliation(s)
- Antonio Macciò
- Businco Hospital, Department of Gynecologic Oncology, Businco Hospital, Regional Referral Center for Cancer Disease Cagliari, Italy.
| | | |
Collapse
|
17
|
Nguyen HTQ, Galea AM, Murray V. The interaction of cisplatin with a human telomeric DNA sequence containing seventeen tandem repeats. Bioorg Med Chem Lett 2012; 23:1041-5. [PMID: 23302441 DOI: 10.1016/j.bmcl.2012.12.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 11/27/2012] [Accepted: 12/10/2012] [Indexed: 01/01/2023]
Abstract
The anti-tumour drug, cisplatin, preferentially forms adducts at G-rich DNA sequences. Telomeres are found at the ends of chromosomes and, in humans, contain the repeated DNA sequence (GGGTTA)(n) that is expected to be targeted by cisplatin. Using a plasmid clone with 17 tandem telomeric repeats, (GGGTTA)(17), the DNA sequence specificity of cisplatin was investigated utilising the linear amplification procedure that pin-pointed the precise sites of cisplatin adduct formation. This procedure used a fluorescently labelled primer and capillary electrophoresis with laser-induced fluorescence detection to determine the DNA sequence specificity of cisplatin. This technique provided a very accurate analysis of cisplatin-DNA adduct formation in a long telomeric repeat DNA sequence. The DNA sequence specificity of cisplatin in a long telomeric tandem repeat has not been previously reported. The results indicated that the 3'-end of the G-rich strand of the telomeric repeat was preferentially damaged by cisplatin and this suggests that the telomeric DNA repeat has an unusual conformation.
Collapse
Affiliation(s)
- Hanh T Q Nguyen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney NSW 2052, Australia
| | | | | |
Collapse
|
18
|
The DNA sequence specificity of bleomycin cleavage in telomeric sequences in human cells. J Biol Inorg Chem 2012; 17:1209-15. [DOI: 10.1007/s00775-012-0934-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2012] [Accepted: 08/18/2012] [Indexed: 01/02/2023]
|
19
|
Nguyen TV, Murray V. Human telomeric DNA sequences are a major target for the antitumour drug bleomycin. J Biol Inorg Chem 2011; 17:1-9. [PMID: 21761251 DOI: 10.1007/s00775-011-0818-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 06/27/2011] [Indexed: 10/18/2022]
Abstract
The DNA sequence specificity of the cancer chemotherapeutic agent bleomycin was examined in a human telomeric DNA sequence and compared with that of non-telomeric sequences. The target DNA sequence contained 17 repeats of the human telomeric sequence and other primary sites of bleomycin cleavage. The 377-base-pair target DNA was fluorescently labelled at the 3'-end, damaged with bleomycin and electrophoresed in an ABI 3730 automated capillary sequencer to determine the intensity and sequence specificity of bleomycin damage. The results revealed that bleomycin cleaved primarily at 5'-GT in the telomeric sequence 5'-GGGTTA. Maxam-Gilbert chemical sequencing reactions were utilised as DNA size markers to determine the precise sites of bleomycin cleavage. The telomeric region contained strong sites of bleomycin cleavage and constituted 57% of the 30 most intense bleomycin damage sites in the DNA sequence examined. These data indicated that telomeric DNA sequences are a major site for bleomycin damage.
Collapse
Affiliation(s)
- Trung V Nguyen
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | | |
Collapse
|
20
|
Li H, Zhao Y, Phillips HIA, Qi Y, Lin TY, Sadler PJ, O’Connor PB. Mass spectrometry evidence for cisplatin as a protein cross-linking reagent. Anal Chem 2011; 83:5369-76. [PMID: 21591778 PMCID: PMC3131505 DOI: 10.1021/ac200861k] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cisplatin is a potent anticancer drug, which functions by cross-linking adjacent DNA guanine residues. However within 1 day of injection, 65-98% of the platinum in the blood plasma is protein-bound. It is generally accepted that cisplatin binds to methionine and histidine residues, but what is often underappreciated is that platinum from cisplatin has a 2+ charge and can form up to four bonds. Thus, it has the potential to function as a cross-linker. In this report, the cross-linking ability of cisplatin is demonstrated by Fourier transform ion cyclotron resonance (FTICR) mass spectrometry (MS) with the use of standard peptides, the 16.8 kDa protein calmodulin (CaM), but was unsuccessful for the 64 kDa protein hemoglobin. The high resolution and mass accuracy of FTICR MS along with the high degree of fragmentation of large peptides afforded by collisionally activated dissociation (CAD) and electron capture dissociation (ECD) are shown to be a valuable means of characterizing cross-linking sites. Cisplatin is different from current cross-linking reagents by targeting new functional groups, thioethers, and imidazoles groups, which provides complementarity with existing cross-linkers. In addition, platinum(II) inherently has two positive charges which enhance the detection of cross-linked products. Higher charge states not only promote the detection of cross-linking products with less purification but result in more comprehensive MS/MS fragmentation and can assist in the assignment of modification sites. Moreover, the unique isotopic pattern of platinum flags cross-linking products and modification sites by mass spectrometry.
Collapse
Affiliation(s)
- Huilin Li
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Yao Zhao
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Hazel I. A. Phillips
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Yulin Qi
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Tzu-Yung Lin
- School of Engineering, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Peter J. Sadler
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Peter B. O’Connor
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, United Kingdom
| |
Collapse
|
21
|
Paul M, Murray V. Use of an automated capillary DNA sequencer to investigate the interaction of cisplatin with telomeric DNA sequences. Biomed Chromatogr 2011; 26:350-4. [PMID: 21678458 DOI: 10.1002/bmc.1664] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The determination of the sequence selectivity of DNA-damaging agents is very important in elucidating the mechanism of action of anti-tumour drugs. The development of automated capillary DNA sequencers with fluorescent labelling has enabled a more precise method for DNA sequence specificity analysis. In this work we utilized the ABI 3730 capillary sequencer with laser-induced fluorescence to examine the sequence selectivity of cisplatin with purified DNA sequences. The use of this automated machine enabled a higher degree of precision of both position and intensity of cisplatin-DNA adducts than previously possible with manual and automated slab gel procedures. A problem with artefact bands was overcome by ethanol precipitation. It was found that cisplatin strongly formed adducts with telomeric DNA sequences.
Collapse
Affiliation(s)
- Moumita Paul
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | | |
Collapse
|
22
|
The sequence selectivity of DNA-targeted 9-aminoacridine cisplatin analogues in a telomere-containing DNA sequence. J Biol Inorg Chem 2011; 16:735-43. [DOI: 10.1007/s00775-011-0774-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Accepted: 03/11/2011] [Indexed: 10/18/2022]
|
23
|
Choudhury JR, Rao L, Bierbach U. Rates of intercalator-driven platination of DNA determined by a restriction enzyme cleavage inhibition assay. J Biol Inorg Chem 2010; 16:373-80. [PMID: 21086002 DOI: 10.1007/s00775-010-0733-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2010] [Accepted: 10/30/2010] [Indexed: 10/18/2022]
Abstract
A restriction enzyme cleavage inhibition assay was designed to determine the rates of DNA platination by four non-cross-linking platinum-acridine agents represented by the formula [Pt(am(2))LCl](NO(3))(2), where am is a diamine nonleaving group and L is an acridine derived from the intercalator 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea (ACRAMTU). The formation of monofunctional adducts in the target sequence 5'-CGA was studied in a 40-base-pair probe containing the EcoRI restriction site GAATTC. The time dependence of endonuclease inhibition was quantitatively analyzed by polyacrylamide gel electrophoresis. The formation of monoadducts is approximately 3 times faster with double-stranded DNA than with simple nucleic acid fragments. Compound 1 (am(2) is ethane-1,2-diamine, L is ACRAMTU) reacts with a first-order rate constant of k (obs) = 1.4 ± 0.37 × 10(-4) s(-1) (t (1/2) = 83 ± 22 min). Replacement of the thiourea group in ACRAMTU with an amidine group (compound 2) accelerates the rate by fourfold (k (obs) = 5.7 ± 0.58 × 10(-4) s(-1), t (1/2) = 21 ± 2 min), and introduction of a propane-1,3-diamine nonleaving group results in a 1.5-fold enhancement in reactivity (compound 3, k (obs) = 2.1 ± 0.40 × 10(-4) s(-1), t (1/2) = 55 ± 10 min) compared with the prototype. Derivative 4, containing a 4,9-disubstituted acridine threading intercalator, was the least reactive compound in the series (k (obs) = 1.1 ± 0.40 × 10(-4) s(-1), t (1/2) = 104 ± 38 min). The data suggest a correlation may exist between the binding rates and the biological activity of the compounds. Potential pharmacological advantages of rapid formation of cytotoxic monofunctional adducts over the common purine-purine cross-links are discussed.
Collapse
|
24
|
Platination of telomeric DNA by cisplatin disrupts recognition by TRF2 and TRF1. J Biol Inorg Chem 2010; 15:641-54. [DOI: 10.1007/s00775-010-0631-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2009] [Accepted: 01/27/2010] [Indexed: 12/23/2022]
|
25
|
Bugarcic T, Habtemariam A, Stepankova J, Heringova P, Kasparkova J, Deeth RJ, Johnstone RDL, Prescimone A, Parkin A, Parsons S, Brabec V, Sadler PJ. The Contrasting Chemistry and Cancer Cell Cytotoxicity of Bipyridine and Bipyridinediol Ruthenium(II) Arene Complexes. Inorg Chem 2008; 47:11470-86. [DOI: 10.1021/ic801361m] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Tijana Bugarcic
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., Department of Chemistry, University of Warwick, Coventry C4V 7AL, U.K., Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic, and Laboratory of Biophysics, Department of Experimental Physics, Faculty of Sciences, Palacky University, tr. Svobody 26, CZ-77146 Olomouc, Czech Republic
| | - Abraha Habtemariam
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., Department of Chemistry, University of Warwick, Coventry C4V 7AL, U.K., Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic, and Laboratory of Biophysics, Department of Experimental Physics, Faculty of Sciences, Palacky University, tr. Svobody 26, CZ-77146 Olomouc, Czech Republic
| | - Jana Stepankova
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., Department of Chemistry, University of Warwick, Coventry C4V 7AL, U.K., Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic, and Laboratory of Biophysics, Department of Experimental Physics, Faculty of Sciences, Palacky University, tr. Svobody 26, CZ-77146 Olomouc, Czech Republic
| | - Pavla Heringova
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., Department of Chemistry, University of Warwick, Coventry C4V 7AL, U.K., Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic, and Laboratory of Biophysics, Department of Experimental Physics, Faculty of Sciences, Palacky University, tr. Svobody 26, CZ-77146 Olomouc, Czech Republic
| | - Jana Kasparkova
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., Department of Chemistry, University of Warwick, Coventry C4V 7AL, U.K., Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic, and Laboratory of Biophysics, Department of Experimental Physics, Faculty of Sciences, Palacky University, tr. Svobody 26, CZ-77146 Olomouc, Czech Republic
| | - Robert J. Deeth
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., Department of Chemistry, University of Warwick, Coventry C4V 7AL, U.K., Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic, and Laboratory of Biophysics, Department of Experimental Physics, Faculty of Sciences, Palacky University, tr. Svobody 26, CZ-77146 Olomouc, Czech Republic
| | - Russell D. L. Johnstone
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., Department of Chemistry, University of Warwick, Coventry C4V 7AL, U.K., Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic, and Laboratory of Biophysics, Department of Experimental Physics, Faculty of Sciences, Palacky University, tr. Svobody 26, CZ-77146 Olomouc, Czech Republic
| | - Alessandro Prescimone
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., Department of Chemistry, University of Warwick, Coventry C4V 7AL, U.K., Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic, and Laboratory of Biophysics, Department of Experimental Physics, Faculty of Sciences, Palacky University, tr. Svobody 26, CZ-77146 Olomouc, Czech Republic
| | - Andrew Parkin
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., Department of Chemistry, University of Warwick, Coventry C4V 7AL, U.K., Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic, and Laboratory of Biophysics, Department of Experimental Physics, Faculty of Sciences, Palacky University, tr. Svobody 26, CZ-77146 Olomouc, Czech Republic
| | - Simon Parsons
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., Department of Chemistry, University of Warwick, Coventry C4V 7AL, U.K., Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic, and Laboratory of Biophysics, Department of Experimental Physics, Faculty of Sciences, Palacky University, tr. Svobody 26, CZ-77146 Olomouc, Czech Republic
| | - Viktor Brabec
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., Department of Chemistry, University of Warwick, Coventry C4V 7AL, U.K., Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic, and Laboratory of Biophysics, Department of Experimental Physics, Faculty of Sciences, Palacky University, tr. Svobody 26, CZ-77146 Olomouc, Czech Republic
| | - Peter J. Sadler
- School of Chemistry, University of Edinburgh, West Mains Road, Edinburgh EH9 3JJ, U.K., Department of Chemistry, University of Warwick, Coventry C4V 7AL, U.K., Institute of Biophysics, Academy of Sciences of the Czech Republic, v.v.i., Kralovopolska 135, CZ-61265 Brno, Czech Republic, and Laboratory of Biophysics, Department of Experimental Physics, Faculty of Sciences, Palacky University, tr. Svobody 26, CZ-77146 Olomouc, Czech Republic
| |
Collapse
|
26
|
Kasparkova J, Marini V, Bursova V, Brabec V. Biophysical studies on the stability of DNA intrastrand cross-links of transplatin. Biophys J 2008; 95:4361-71. [PMID: 18676645 PMCID: PMC2567932 DOI: 10.1529/biophysj.108.138909] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2008] [Accepted: 07/18/2008] [Indexed: 11/18/2022] Open
Abstract
Clinically ineffective transplatin [trans-diamminedichloridoplatinum(II)] is used in the studies of the structure-pharmacological activity relationship of platinum compounds. In addition, a number of transplatin analogs exhibit promising toxic effects in several tumor cell lines including those resistant to conventional antitumor cisplatin. Moreover, transplatin-modified oligonucleotides have been shown to be effective modulators of gene expression. Owing to these facts and because DNA is also considered the major pharmacological target of platinum complexes, interactions between transplatin and DNA are of great interest. We examined, using biophysical and biochemical methods, the stability of 1,3-GNG intrastrand cross-links (CLs) formed by transplatin in short synthetic oligodeoxyribonucleotide duplexes and natural double-helical DNA. We have found that transplatin forms in double-helical DNA 1,3-GNG intrastrand CLs, but their stability depends on the sequence context. In some sequences the 1,3-GNG intrastrand CLs formed by transplatin in double-helical DNA readily rearrange into interstrand CLs. On the other hand, in a number of other sequences these intrastrand CLs are relatively stable. We show that the stability of 1,3-GNG intrastrand CLs of transplatin correlates with the extent of conformational distortion and thermodynamic destabilization induced in double-helical DNA by this adduct.
Collapse
Affiliation(s)
- Jana Kasparkova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, CZ-61265 Brno, Czech Republic.
| | | | | | | |
Collapse
|
27
|
CpG island methylator phenotype (CIMP) in cancer: causes and implications. Cancer Lett 2008; 268:177-86. [PMID: 18471961 DOI: 10.1016/j.canlet.2008.03.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2008] [Revised: 03/19/2008] [Accepted: 03/19/2008] [Indexed: 12/31/2022]
Abstract
Strong evidence exists for a subgroup of tumours, from a variety of tissue types, exhibiting concordant tumour specific DNA methylation: the "CpG island methylator phenotype" (CIMP). Occurrence of CIMP is associated with a range of genetic and environmental factors, although the molecular causes are not well-understood. Both increased expression and aberrant targeting of DNA methyltransferases (DNMTs) could contribute to the occurrence of CIMP. One under-explored area is the possibility that DNA damage may induce or select for CIMP during carcinogenesis or treatment of tumours with chemotherapy. DNA damaging agents can induce DNA damage at guanine rich regions throughout the genome, including CpG islands. This DNA damage can result in stalled DNA synthesis, which will lead to localised increased DNMT1 concentration and therefore potentially increased DNA methylation at these sites. Chemotherapy can select for cells which have increased tolerance to DNA damage due to increased lesion bypass, in some cases by mechanisms which involve inactivation of genes by CpG island methylation. CIMP has been associated with worse patient prognosis, probably due to increased epigenetic plasticity. Therefore, further clinical testing of the diagnostic and prognostic value of the current CIMP markers, as well as increasing our understanding of the molecular causes underlying CIMP are required.
Collapse
|
28
|
Papsai P, Snygg ÅS, Aldag J, Elmroth SKC. Platination of full length tRNAAla and truncated versions of the acceptor stem and anticodon loop. Dalton Trans 2008:5225-34. [DOI: 10.1039/b719542g] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
29
|
Srivastava S, Srivastava S, Gupta VD, Prakash Gupta V. Impact ofcis/trans‐Platin Binding on DNA Stability. J MACROMOL SCI B 2007. [DOI: 10.1081/mb-120030025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Shinoo Srivastava
- a Physics Department , Lucknow University , Lucknow , 226 007 , India
| | - Seema Srivastava
- a Physics Department , Lucknow University , Lucknow , 226 007 , India
| | | | | |
Collapse
|
30
|
Noyong M, Gloddek K, Mayer J, Weirich T, Simon U. cis-Pt Mediated Assembly of Gold Nanoparticles on DNA. J CLUST SCI 2006. [DOI: 10.1007/s10876-006-0095-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Unryn BM, Hao D, Glück S, Riabowol KT. Acceleration of Telomere Loss by Chemotherapy Is Greater in Older Patients with Locally Advanced Head and Neck Cancer. Clin Cancer Res 2006; 12:6345-50. [PMID: 17085644 DOI: 10.1158/1078-0432.ccr-06-0486] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Chronic viral infection and combinations of chemotherapeutic drugs have been reported to accelerate telomere erosion. Here, we asked if chemoradiotherapy, using the single agent cisplatin, would accelerate telomere loss in head and neck cancer patients, and whether loss was linked to smoking status, age, gender, or stage of disease at diagnosis. EXPERIMENTAL DESIGN Blood samples were collected from 20 patients with squamous cell cancer of the head and neck before, during, and after chemoradiotherapy. Following DNA isolation from peripheral blood mononuclear cells, telomere length was measured by terminal restriction fragment analysis. RESULTS Chemoradiotherapy increased the rate of telomere erosion>100-fold. Telomere length before treatment in chemoradiotherapy patients was similar to age-matched controls. Although smokers began with significantly shorter telomeres, smoking status did not affect chemoradiotherapy-induced attrition, nor did gender or stage of disease. We also make the novel observation that a significantly greater telomere loss occurred in response to treatment in older patients, with those younger than 55 years losing an average of 400 bp of telomeric DNA compared with the 880 bp lost by those over 55 years. CONCLUSIONS The lack of telomere length difference before treatment suggests that shortened telomeres may not be a risk factor for development of head and neck cancer in the age range we examined. Chemoradiotherapy caused a severe telomere length reduction in all patients. The significant difference seen in the elderly (P=0.018) suggests that chemoradiotherapy may have more severe effects on the replicative capacity of blood cells in older patients.
Collapse
Affiliation(s)
- Brad M Unryn
- Department of Biochemistry, The University of Calgary Health Sciences Centre, Canada
| | | | | | | |
Collapse
|
32
|
Olaussen KA, Dubrana K, Domont J, Spano JP, Sabatier L, Soria JC. Telomeres and telomerase as targets for anticancer drug development. Crit Rev Oncol Hematol 2006; 57:191-214. [PMID: 16469501 DOI: 10.1016/j.critrevonc.2005.08.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2005] [Revised: 08/10/2005] [Accepted: 08/11/2005] [Indexed: 12/15/2022] Open
Abstract
In most human cancers, the telomere erosion problem has been bypassed through the activation of a telomere maintenance system (usually activation of telomerase). Therefore, telomere and telomerase are attractive targets for anti-cancer therapeutic interventions. Here, we review a large panel of strategies that have been explored to date, from small inhibitors of the catalytic sub-unit of telomerase to anti-telomerase immunotherapy and gene therapy. The many positive results that are reported from anti-telomere/telomerase assays suggest a prudent optimism for a possible clinical application in a close future. However, we discuss some of the main limits for these approaches of antitumour drug development and why significant work remains before a clinically useful drug can be proposed to patients.
Collapse
Affiliation(s)
- Ken André Olaussen
- Laboratory of Radiobiology and Oncology, DSV/DRR/LRO, CEA, Fontenay aux Roses, France
| | | | | | | | | | | |
Collapse
|
33
|
Papsai P, Aldag J, Persson T, Elmroth SKC. Kinetic preference for interaction of cisplatin with the G–C-rich wobble basepair region in both tRNAAlaand MhAla. Dalton Trans 2006:3515-7. [PMID: 16855751 DOI: 10.1039/b603833f] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The anticancer active complex cisplatin interacts preferentially with the common, G-C rich, wobble base pair region of both tRNA(Ala) and Mh(Ala) in a reaction that at pH 6.3 is rate limited by the acid hydrolysis of the metal complex.
Collapse
Affiliation(s)
- Pal Papsai
- Biochemistry, Chemical Center, Lund University, SE-221 00 Lund, Sweden
| | | | | | | |
Collapse
|
34
|
Brabec V, Kasparkova J. Modifications of DNA by platinum complexes. Relation to resistance of tumors to platinum antitumor drugs. Drug Resist Updat 2005; 8:131-46. [PMID: 15894512 DOI: 10.1016/j.drup.2005.04.006] [Citation(s) in RCA: 301] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2005] [Revised: 04/11/2005] [Accepted: 04/11/2005] [Indexed: 11/26/2022]
Abstract
The importance of platinum drugs in cancer chemotherapy is underscored by the clinical success of cisplatin [cis-diamminedichloroplatinum(II)] and its analogues and by clinical trials of other, less toxic platinum complexes that are active against resistant tumors. The antitumor effect of platinum complexes is believed to result from their ability to form various types of adducts with DNA. Nevertheless, drug resistance can occur by several ways: increased drug efflux, drug inactivation, alterations in drug target, processing of drug-induced damage, and evasion of apoptosis. This review focuses on mechanisms of resistance and sensitivity of tumors to conventional cisplatin associated with DNA modifications. We also discuss molecular mechanisms underlying resistance and sensitivity of tumors to the new platinum compounds synthesized with the goal to overcome resistance of tumors to established platinum drugs. Importantly, a number of new platinum compounds were designed to test the hypothesis that there is a correlation between the extent of resistance of tumors to these agents and their ability to induce a certain kind of damage or conformational change in DNA. Hence, information on DNA-binding modes, as well as recognition and repair of DNA damage is discussed, since this information may be exploited for improved structure-activity relationships.
Collapse
Affiliation(s)
- Viktor Brabec
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Kralovopolska 135, CZ-61265 Brno, Czech Republic.
| | | |
Collapse
|
35
|
Chifotides HT, Koomen JM, Kang M, Tichy SE, Dunbar KR, Russell DH. Binding of DNA purine sites to dirhodium compounds probed by mass spectrometry. Inorg Chem 2005; 43:6177-87. [PMID: 15446862 DOI: 10.1021/ic040040u] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The adducts formed between the antitumor active compounds [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2), Rh(2)(O(2)CCH(3))(4), and Rh(2)(O(2)CCF(3))(4) with DNA oligonucleotides have been assessed by matrix-assisted laser desorption ionization (MALDI) and nanoelectrospray (nanoESI) coupled to time-of-flight mass spectrometry (TOF MS). A series of MALDI studies performed on dipurine (AA, AG, GA, and GG)-containing single-stranded oligonucleotides of different lengths (tetra- to dodecamers) led to the establishment of the relative reactivity cis-[Pt(NH(3))(2)(OH(2))(2)](2+) (activated cisplatin) approximately Rh(2)(O(2)CCF(3))(4) > cis-[Pt(NH(3))(2)Cl(2)] (cisplatin) >> [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2) > Rh(2)(O(2)CCH(3))(4) approximately Pt(C(6)H(6)O(4))(NH(3))(2) (carboplatin). The relative reactivity of the complexes is associated with the lability of the leaving groups. The general trend is that an increase in the length of the oligonucleotide leads to enhanced reactivity for Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2) and Rh(2)(O(2)CCH(3))(4) (except for the case of [Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](2+), which reacts faster with the GG octamers than with the dodecamers), whereas the reactivity of Rh(2)(O(2)CCF(3))(4) is independent of the oligonucleotide length. When monitored by ESI, the dodecamers containing GG react faster than the respectiveAA oligonucleotides in reactions with Rh(2)(O(2)CCF(3))(4) and Rh(2)(O(2)CCH(3))(2)(CH(3)CN)(6)](BF(4))(2), whereas AA oligonucleotides react faster with Rh(2)(O(2)CCH(3))(4). The mixed (AG, GA) purine sequences exhibit comparable rates of reactivity with the homopurine (AA, GG) dodecamers in reactions with Rh(2)(O(2)CCH(3))(4). The observation of initial dirhodium-DNA adducts with weak axial (ax) interactions, followed by rearrangement to more stable equatorial (eq) adducts, was achieved by electrospray ionization; the Rh-Rh bond as well as coordinated acetate or acetonitrile ligands remain intact in these dirhodium-DNA adducts. MALDI in-source decay (ISD), collision-induced dissociation (CID) MS-MS, and enzymatic digestion studies followed by MALDI and ESI MS reveal that, in the dirhodium compounds studied, the purine sites of the DNA oligonucleotides interact with the dirhodium core. Ultimately, both MALDI and ESI MS proved to be complementary, valuable tools for probing the identity and stability of dinuclear metal-DNA adducts.
Collapse
Affiliation(s)
- Helen T Chifotides
- Chemistry Department and Laboratory for Biological Mass Spectrometry, Texas A&M University, College Station, Texas 77843, USA
| | | | | | | | | | | |
Collapse
|
36
|
Barry CG, Day CS, Bierbach U. Duplex-promoted platination of adenine-N3 in the minor groove of DNA: challenging a longstanding bioinorganic paradigm. J Am Chem Soc 2005; 127:1160-9. [PMID: 15669855 DOI: 10.1021/ja0451620] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The interactions of [Pt(en)Cl(ACRAMTU-S)](NO3)2 (PT-ACRAMTU, en = ethane-1,2-diamine, ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea) with adenine in DNA have been studied using a combination of analytical and high-resolution structural methods. For the first time, a cytotoxic platinum(II) complex has been demonstrated to form adducts in the minor groove of DNA through platination of the adenine-N3 endocyclic nitrogen. An acidic depurination assay was developed that allowed the controlled and selective (pH 2, 60 degrees C, 12 h) release of platinum-modified adenine from drug-treated nucleic acid samples. From the digested mixtures, three adducts were isolated by semipreparative reverse phase high-performance liquid chromatography and studied by electrospray ionization mass spectrometry (in-line LC-MS), variable-pH 1H NMR spectroscopy, and, where applicable, X-ray crystallography. The three species were identified as the N7 (A-I), N3 (A-II), and N1 (A-III) linkage isomers of [Pt(en)(ACRAMTU-S)(adenine)]3+ (A). Incubations carried out with the single- and double-stranded model sequences, d(TA)5 and d(TA)15, as well as native DNA indicate that the adduct profiles (A-I:A-II:A-IIIratios) are sensitive to the nature of the nucleic acid template. A-II was found to be a double-strand specific adduct. The crystal structure of this adduct has been determined, providing ultimate evidence for the N3 connectivity of platinum. A-II crystallizes in the triclinic space group P in the form of centrosymmetric dimers, {[Pt(en)(ACRAMTU-S)(adenine-N3)]2}6+. The cations are stabilized by a combination of adenine-adenine base pairing (N6...N1 2.945(5) A) and mutual acridine-adenine base stacking. Tandem mass spectra and 1H chemical shift anomalies indicate that this type of self-association is not merely a crystal packing effect but persists in solution. The monofunctional platination of adenine at its N7, N3, and N1 positions in a significant fraction of adducts breaks a longstanding paradigm in platinum-DNA chemistry, the requirement for nucleophilic attack of guanine-N7 as the principal step in cross-link formation. The biological consequences and potential therapeutic applications of the unique base and groove recognition of PT-ACRAMTU are discussed.
Collapse
Affiliation(s)
- Colin G Barry
- Department of Chemistry, Wake Forest University, PO Box 7486, Reynolda Station, Winston-Salem, North Carolina 27109, USA
| | | | | |
Collapse
|
37
|
Abstract
The ligand-loss photochemistry of cis-[Ru(bpy)(2)(NH(3))(2)](2+) (bpy = 2,2'-bipyridine) was investigated in water and in the presence of added ligands such as bipyridine and chloride. Irradiation of the complex results in the covalent binding to 9-methyl- and 9-ethylguanine, as well as to single-stranded and double-stranded DNA. This photoinduced DNA binding is not observed for the control complex [Ru(bpy)(2)(en)](2+) (en = ethylenediamine) under similar irradiation conditions. The results presented here show that octahedral Ru(II) complexes with photolabile ligands may prove useful as photoactivated cisplatin analogs.
Collapse
Affiliation(s)
- Tanya N Singh
- Department of Chemistry, The Ohio State University, Columbus, OH 43210, USA
| | | |
Collapse
|
38
|
Monjardet-Bas V, Bombard S, Chottard JC, Kozelka J. GA and AG sequences of DNA react with cisplatin at comparable rates. Chemistry 2004; 9:4739-45. [PMID: 14566881 DOI: 10.1002/chem.200305085] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The sequence selectivity of the antitumor drug cisplatin (cis-[PtCl(2)(NH(3))(2)] (1)) between the 5'-AG-3' and 5'-GA-3' sites of DNA has been a matter of discussion for more than twenty years. In this work, we compared the reactivity of GA and AG sequences of DNA towards the aquated forms of cisplatin (cis-[PtCl(NH(3))(2)(H(2)O)](+) (2), cis-[Pt(NH(3))(2)(H(2)O)(2)](2+) (3), and cis-[Pt(OH)(NH(3))(2)(H(2)O)](+) (4)) using two sets of experiments. In the first, we investigated a DNA hairpin, whose duplex stem contained a TGAT sequence as the single reactive site, and determined the individual rate constants of platination with 2 and 3 for G and A in acidic solution. The rate constants at 20 degrees C in 0.1M NaClO(4) at pH 4.5+/-0.1 were 0.09(4) M(-1)s(-1) (G) and 0.11(3) M(-1)s(-1) (A) for 2, and 9.6(1) M(-1)s(-1) (G) and 1.7(1) M(-1)s(-1) (A) for 3. These values are similar to those obtained previously for an analogous hairpin that contained a TAGT sequence. The monoadducts formed with 2 by both GA purines are extremely long-lived, partly as a result of the slow hydrolysis of the chloro monoadduct at A, and partly because of the very low chelation rate (1.4 x 10(-5)s(-1) at 20 degrees C) of the aqua monoadduct on the guanine. In the second set of experiments, we incubated pure or enriched samples of 1, 2, 3, or 4 for 18-64 h at 25 degrees C with a 19 base pair (bp) DNA duplex, whose radiolabeled top strand contained one GA and one AG sequence as the only reactive sites. Quantification of the number of GA and AG cross-links afforded a ratio of about two in favor of AG, irrespective of the nature of the leaving ligands. These results disagree with a previous NMR spectroscopy study, and indicate that GA sequences of DNA are substantially more susceptible to attack by cisplatin than previously thought.
Collapse
Affiliation(s)
- Véronique Monjardet-Bas
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, Université René Descartes, CNRS, UMR 8601, 45 rue des Saints-Pères, 75270 Paris, France
| | | | | | | |
Collapse
|
39
|
Maheswari PU, Palaniandavar M. DNA binding and cleavage activity of [Ru(NH3)4(diimine)]Cl2 complexes. Inorganica Chim Acta 2004. [DOI: 10.1016/j.ica.2003.07.010] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
40
|
Carbone M, Ascione G, Chichiarelli S, Garcia MI, Eufemi M, Amati P. Chromosome-protein interactions in polyomavirus virions. J Virol 2004; 78:513-9. [PMID: 14671132 PMCID: PMC303386 DOI: 10.1128/jvi.78.1.513-519.2004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
In this work, we sought to determine whether the components of the murine polyomavirus capsid establish specific interactions with the minichromosome encapsidated into the mature viral particles by using the cis-diamminedichloroplatinum(II) cross-linking reagent. Our data indicated that VP1, but not minor capsid proteins, interacts with the viral genome in vivo. In addition, semiquantitative PCR assays performed on cross-linked DNA complexes revealed that VP1 binds to all regions of the viral genome but significantly more to the regulatory region. The implications of such an interaction for viral infectivity are discussed.
Collapse
Affiliation(s)
- Mariarosaria Carbone
- Dipartimento di Biotecnologie Cellulari ed Ematologia, Sezione di Genetica Molecolare, Università di Roma La Sapienza, 00161 Rome, Italy
| | | | | | | | | | | |
Collapse
|
41
|
Barry CG, Baruah H, Bierbach U. Unprecedented monofunctional metalation of adenine nucleobase in guanine- and thymine-containing dinucleotide sequences by a cytotoxic platinum-acridine hybrid agent. J Am Chem Soc 2003; 125:9629-37. [PMID: 12904029 DOI: 10.1021/ja0351443] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have investigated the reactions of [PtCl(en)(ACRAMTU-S)](NO(3))(2) (2) (en = ethane-1,2-diamine; ACRAMTU = 1-[2-(acridin-9-ylamino)ethyl]-1,3-dimethylthiourea, acridinium cation, 1), the prototype of a new class of cytotoxic DNA-targeted agents, with 2'-deoxyguanosine (dGuo) and random-sequence native DNA by in-line liquid chromatography/mass spectrometry (LC/MS) and NMR spectroscopy ((1)H, (195)Pt) to identify the covalent adducts formed by platinum. In the mononucleoside model system, two adducts are observed, [Pt(en)(ACRAMTU)(dGuo)](3+) (P1, major) and [Pt(en)(dGuo)(2)](2+) (P2, minor). The reaction, which proceeds significantly slower (half-life 11-12 h at 37 degrees C, pH 6.5) than analogous reactions with cisplatin and reactions of 2 with double-stranded DNA, results in the unexpected displacement of the sulfur-bound acridine ligand in approximately 15% of the adducts. This reactivity is not observed in double-stranded DNA, rendering 1 a typical nonleaving group in reactions with this potential biological target. In enzymatic digests of calf thymus DNA treated with 2, three adducts were identified: [Pt(en)(ACRAMTU)(dGuo)](3+) (A1, approximately 80%), [Pt(en)(ACRAMTU)[d(GpA)]](2+) (A2, approximately 12%), and [Pt(en)(ACRAMTU)[d(TpA)]](2+) (A3, approximately 8%). A1 and P1 proved to be identical species. In the dinucleotide adducts A2 and A3, complex 2 covalently modifies adenine at GA and TA base steps, which are high-affinity intercalation sites of the acridine derivative 1. A2 and A3, which may be formed in the minor groove of DNA, are the first examples of monofunctional adenine adducts of divalent platinum formed in double-stranded DNA. The analysis of the adduct profile indicates that the sequence specificity of 1 plays an important role in the molecular recognition between DNA and the corresponding conjugate, 2. Possible biological consequences of the unusual adduct profile are discussed.
Collapse
Affiliation(s)
- Colin G Barry
- Department of Chemistry, Wake Forest University, P.O. Box 7486 Reynolda Station, Winston-Salem, North Carolina 27109, USA
| | | | | |
Collapse
|
42
|
Redon S, Bombard S, Elizondo-Riojas MA, Chottard JC. Platinum cross-linking of adenines and guanines on the quadruplex structures of the AG3(T2AG3)3 and (T2AG3)4 human telomere sequences in Na+ and K+ solutions. Nucleic Acids Res 2003; 31:1605-13. [PMID: 12626701 PMCID: PMC152862 DOI: 10.1093/nar/gkg259] [Citation(s) in RCA: 115] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The quadruplex structures of the human telomere sequences AG3(T2AG3)3 I and (T2AG3)4 II were investigated in the presence of Na+ and K+ ions, through the cross-linking of adenines and guanines by the cis- and trans-[Pt(NH3)2(H2O)2](NO3)2 complexes 1 and 2. The bases involved in chelation of the cis- and trans-Pt(NH3)2 moieties were identified by chemical and 3'-exonuclease digestions of the products isolated after denaturing gel electrophoresis. These are the four adenines of each sequence and four out of the 12 guanines. Two largely different structures have been reported for I: A from NMR data in Na+ solution and B from X-ray data of a K+-containing crystal. Structure A alone agrees with our conclusions about the formation of the A1-G10, A13-G22, A1-A13 platinum chelates at the top of the quadruplex and A7-A19, G4-A19 and A7-G20 at the bottom, whether the Na+ or K+ ion is present. At variance with a recent proposal that structures A and B could be the major species in Na+ and K+ solutions, respectively, our results suggest that structure A exists predominantly in the presence of both ions. They also suggest that covalent platinum cross-linking of a human telomere sequence could be used to inhibit telomerase.
Collapse
Affiliation(s)
- Sophie Redon
- Laboratoire de Chimie et Biochimie Pharmacologiques et Toxicologiques, UMR8601, Université René Descartes, 45 rue des Saints-Pères, 75270 Paris Cedex 06, France
| | | | | | | |
Collapse
|
43
|
Kjellström J, Elmroth SKC. Similar rates for platination of hairpin loops and single-stranded DNA. Dalton Trans 2003. [DOI: 10.1039/b302477f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
44
|
Stehlikova K, Kostrhunova H, Kasparkova J, Brabec V. DNA bending and unwinding due to the major 1,2-GG intrastrand cross-link formed by antitumor cis-diamminedichloroplatinum(II) are flanking-base independent. Nucleic Acids Res 2002; 30:2894-8. [PMID: 12087174 PMCID: PMC117060 DOI: 10.1093/nar/gkf405] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2002] [Revised: 04/22/2002] [Accepted: 05/10/2002] [Indexed: 01/28/2023] Open
Abstract
Antitumor cisplatin [cis-diamminedichloroplatinum(II)] forms on DNA predominantly intrastrand cross-links between neighboring purine residues. Several discoveries suggested that the toxicity of cisplatin originated from these lesions. The formation of 1,2-GG intrastrand cross-link of cisplatin leads to marked conformational alterations in DNA including a directional, rigid bend toward the major groove and local unwinding. These altered structures attract various cellular proteins. This phenomenon has been postulated to mediate antitumor properties of cisplatin. Importantly, the binding affinity of several proteins that specifically recognize 1,2-GG intrastrand cross-link to platinated DNA is modulated by the nature of the base pairs that immediately flank the platinated d(GpG) site. However, the influence of sequence context on DNA bending and unwinding due to the formation of the 1,2-GG intrastrand cross-link has not been extensively investigated. In the present study we have employed electrophoretic retardation (phasing) assay to analyze bending and unwinding induced by the single, site-specific 1,2-GG intrastrand cross-link immediately flanked by various bases formed by cisplatin in nine oligodeoxyribonucleotide duplexes. The results indicate that bending and unwinding of DNA as a consequence of the formation of the major adduct of cisplatin is, in the first approximation, independent of the base pairs flanking the platinated d(GpG) site.
Collapse
Affiliation(s)
- Kristyna Stehlikova
- Institute of Biophysics, Academy of Sciences of the Czech Republic, Královopolská 135, CZ-61265 Brno, Czech Republic
| | | | | | | |
Collapse
|
45
|
Jung Y, Mikata Y, Lippard SJ. Kinetic studies of the TATA-binding protein interaction with cisplatin-modified DNA. J Biol Chem 2001; 276:43589-96. [PMID: 11568187 DOI: 10.1074/jbc.m108299200] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The TATA-binding protein (TBP) recognizes the TATA box element of transcriptional promoters and recruits other initiation factors. This essential protein binds selectively to cisplatin-damaged DNA. Electrophoretic mobility shift assays were performed to study the kinetics of TBP binding both to the TATA box and to cisplatin-damaged DNA in different sequence contexts. TBP binds with high affinity (K(d) = 0.3 nm) to DNA containing site-specific cisplatin 1,2-intrastrand d(GpG) cross-links. The k(on) and k(off) values for the formation of these TBP complexes are 1-3 x 10(5) m(-1) s(-1) and approximately 1-5 x 10(-4) s(-1), respectively, similar to the corresponding values for the formation of a TBP-TATA box complex. In electrophoretic mobility shift assay competition assays, cisplatin-damaged DNA extensively sequesters TBP from its natural binding site, the TATA box. Nine DNA probes were prepared to determine the flanking sequence dependence of TBP binding to cisplatin-modified DNA. TBP clearly displays sequence context selectivity for platinated DNA, very similar to but not as dramatic as that of the high mobility group protein HMGB1. When TBP was added to an in vitro nucleotide excision repair assay, it specifically shielded cisplatin-modified 1,2-(GpG) intrastrand cross-links from repair. These results indicate that TBP is likely to be a key protein in mediating the cytotoxicity of cisplatin.
Collapse
Affiliation(s)
- Y Jung
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | | | | |
Collapse
|
46
|
Cohen SM, Lippard SJ. Cisplatin: from DNA damage to cancer chemotherapy. PROGRESS IN NUCLEIC ACID RESEARCH AND MOLECULAR BIOLOGY 2001; 67:93-130. [PMID: 11525387 DOI: 10.1016/s0079-6603(01)67026-0] [Citation(s) in RCA: 434] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Cisplatin [cis-DDP, cis-diamminedichloroplatinum(II)] is a potent anticancer drug that has been used successfully to treat tumors of the head, neck, lungs, and genitourinary tract. The biological activity of cisplatin was discovered serendipitously more than 30 years ago, and since that time research efforts have focused on elucidating its mechanism of action. The present review provides a historical perspective of our attempts to understand this complex phenomenon and the results of recent work that guides our current activities in this field. Continued efforts to understand the mechanism of genotoxicity of cisplatin are expected to lead to the discovery of new drugs and combinations for the improvement of cancer chemotherapy.
Collapse
Affiliation(s)
- S M Cohen
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge 02139, USA
| | | |
Collapse
|