1
|
Sztacho M, Červenka J, Šalovská B, Antiga L, Hoboth P, Hozák P. The RNA-dependent association of phosphatidylinositol 4,5-bisphosphate with intrinsically disordered proteins contribute to nuclear compartmentalization. PLoS Genet 2024; 20:e1011462. [PMID: 39621780 DOI: 10.1371/journal.pgen.1011462] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/24/2024] [Accepted: 10/14/2024] [Indexed: 12/25/2024] Open
Abstract
The RNA content is crucial for the formation of nuclear compartments, such as nuclear speckles and nucleoli. Phosphatidylinositol 4,5-bisphosphate (PIP2) is found in nuclear speckles, nucleoli, and nuclear lipid islets and is involved in RNA polymerase I/II transcription. Intriguingly, the nuclear localization of PIP2 was also shown to be RNA-dependent. We therefore investigated whether PIP2 and RNA cooperate in the establishment of nuclear architecture. In this study, we unveiled the RNA-dependent PIP2-associated (RDPA) nuclear proteome in human cells by mass spectrometry. We found that intrinsically disordered regions (IDRs) with polybasic PIP2-binding K/R motifs are prevalent features of RDPA proteins. Moreover, these IDRs of RDPA proteins exhibit enrichment for phosphorylation, acetylation, and ubiquitination sites. Our results show for the first time that the RDPA protein Bromodomain-containing protein 4 (BRD4) associates with PIP2 in the RNA-dependent manner via electrostatic interactions, and that altered PIP2 levels affect the number of nuclear foci of BRD4 protein. Thus, we propose that PIP2 spatiotemporally orchestrates nuclear processes through association with RNA and RDPA proteins and affects their ability to form foci presumably via phase separation. This suggests the pivotal role of PIP2 in the establishment of a functional nuclear architecture competent for gene expression.
Collapse
Affiliation(s)
- Martin Sztacho
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Laboratory of Cancer Cell Architecture, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Jakub Červenka
- Laboratory of Applied Proteome Analyses, Research Center PIGMOD, Institute of Animal Physiology and Genetics of the Czech Academy of Sciences, Liběchov, Czech Republic
- Laboratory of Proteomics, Institute of Biochemistry and Experimental Oncology, First Faculty of Medicine, Charles University, Prague, Czech Republic
| | - Barbora Šalovská
- Department of Genome Integrity, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
- Yale Cancer Biology Institute, Yale University School of Medicine, West Haven, Connecticut, United States of America
| | - Ludovica Antiga
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Peter Hoboth
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Hozák
- Department of Biology of the Cell Nucleus, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
2
|
Dion W, Zhu B. Basic research and opportunities for translational advancement in the field of mammalian ∼12-hour ultradian chronobiology. Front Physiol 2024; 15:1497836. [PMID: 39633646 PMCID: PMC11614809 DOI: 10.3389/fphys.2024.1497836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 10/28/2024] [Indexed: 12/07/2024] Open
Abstract
Repetitive variations, such as oscillation, are ubiquitous in biology. In this mini review, we present a general summary of the ∼24 h circadian clock and provide a fundamental overview of another biological timekeeper that maintains ∼12 h oscillations. This ∼12 h oscillator is proposed to function independently of the circadian clock to regulate ultradian biological rhythms relevant to both protein homeostasis and liver health. Recent studies exploring these ∼12 h rhythms in humans are discussed, followed by our proposal that mammary gland physiology represents a promising area for further research. We conclude by highlighting potential translational applications in ∼12 h ultradian chronobiology.
Collapse
Affiliation(s)
- William Dion
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, United States
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| |
Collapse
|
3
|
Kania EE, Fenix A, Marciniak DM, Lin Q, Bianchi S, Hristov B, Li S, Camplisson CK, Fields R, Beliveau BJ, Schweppe DK, Noble WS, Ong SE, Bertero A, Murry CE, Shechner DM. Nascent transcript O-MAP reveals the molecular architecture of a single-locus subnuclear compartment built by RBM20 and the TTN RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.05.622011. [PMID: 39574693 PMCID: PMC11580901 DOI: 10.1101/2024.11.05.622011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/24/2024]
Abstract
Eukaryotic nuclei adopt a highly compartmentalized architecture that influences nearly all genomic processes. Understanding how this architecture impacts gene expression has been hindered by a lack of tools for elucidating the molecular interactions at individual genomic loci. Here, we adapt oligonucleotide-mediated proximity-interactome mapping (O-MAP) to biochemically characterize discrete, micron-scale nuclear neighborhoods. By targeting O-MAP to introns within the TTN pre-mRNA, we systematically map the chromatin loci, RNAs, and proteins within a muscle-specific RNA factory organized around the TTN locus. This reveals an unanticipated compartmental architecture that organizes cis - and trans -interacting chromosomal domains, including a hub of transcriptionally silenced chromatin. The factory also recruits dozens of unique RNA-binding and chromatin-scaffolding factors, including QKI and SAFB, along with their target transcripts. Loss of the cardiac-specific splicing factor RBM20-a master regulator of TTN splicing that is mutated in dilated cardiomyopathy-remodels nearly every facet of this architecture. This establishes O-MAP as a pioneering method for probing single-locus, microcompartment-level interactions that are opaque to conventional tools. Our findings suggest new mechanisms by which coding genes can "moonlight" in nuclear-architectural roles.
Collapse
|
4
|
Song YJ, Shinn MK, Bangru S, Wang Y, Sun Q, Hao Q, Chaturvedi P, Freier SM, Perez-Pinera P, Nelson ER, Belmont AS, Guttman M, Prasanth SG, Kalsotra A, Pappu RV, Prasanth KV. Chromatin-associated lncRNA-splicing factor condensates regulate hypoxia responsive RNA processing of genes pre-positioned near nuclear speckles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.31.621310. [PMID: 39554052 PMCID: PMC11565956 DOI: 10.1101/2024.10.31.621310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Hypoxia-induced alternative splicing (AS) regulates tumor progression and metastasis. Little is known about how such AS is controlled and whether higher-order genome and nuclear domain (ND) organizations dictate these processes. We observe that hypoxia-responsive alternatively spliced genes position near nuclear speckle (NS), the ND that enhances splicing efficiency. NS-resident MALAT1 long noncoding RNA, induced in response to hypoxia, regulates hypoxia-responsive AS. MALAT1 achieves this by organizing the SR-family of splicing factor, SRSF1, near NS and regulating the binding of SRSF1 to pre-mRNAs. Mechanistically, MALAT1 enhances the recruitment of SRSF1 to elongating RNA polymerase II (pol II) by promoting the formation of phase-separated condensates of SRSF1, which are preferentially recognized by pol II. During hypoxia, MALAT1 regulates spatially organized AS by establishing a threshold SRSF1 concentration near NSs, potentially by forming condensates, critical for pol II-mediated recruitment of SRSF1 to pre-mRNAs.
Collapse
|
5
|
Dion W, Tao Y, Chambers M, Zhao S, Arbuckle RK, Sun M, Kubra S, Jamal I, Nie Y, Ye M, Larsen MB, Camarco D, Ickes E, DuPont C, Wang H, Wang B, Liu S, Pi S, Chen BB, Chen Y, Chen X, Zhu B. SON-dependent nuclear speckle rejuvenation alleviates proteinopathies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590103. [PMID: 38659924 PMCID: PMC11042303 DOI: 10.1101/2024.04.18.590103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Current treatments targeting individual protein quality control have limited efficacy in alleviating proteinopathies, highlighting the prerequisite for a common upstream druggable target capable of global proteostasis modulation. Building on our prior research establishing nuclear speckles as a pivotal membrane-less organelle responsible for global proteostasis transcriptional control, we aim to alleviate proteinopathies through nuclear speckle rejuvenation. We identified pyrvinium pamoate as a small-molecule nuclear speckle rejuvenator that enhances protein quality control while suppressing YAP1 signaling via decreasing the surface/interfacial tension of nuclear speckle condensates through interaction with the intrinsically disordered region of nuclear speckle scaffold protein SON. In pre-clinical models, nanomolar pyrvinium pamoate alleviated retina degeneration and reduced tauopathy by promoting autophagy and ubiquitin-proteasome system in a SON-dependent manner without causing cellular stress. Aberrant nuclear speckle morphology, reduced protein quality control and increased YAP1 activity were also observed in human tauopathies. Our study uncovers novel therapeutic targets for tackling protein misfolding disorders within an expanded proteostasis framework encompassing nuclear speckles and YAP1.
Collapse
Affiliation(s)
- William Dion
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Yuren Tao
- Department of Neuroscience, School of Medicine, University of California, San Diego, CA, U.S.A
| | - Maci Chambers
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Shanshan Zhao
- Department of Neuroscience, School of Medicine, University of California, San Diego, CA, U.S.A
| | - Riley K. Arbuckle
- Department of Ophthalmology, University of Pittsburgh School of Medicine, PA, U.S.A
- Department of Human Genetics, University of Pittsburgh Graduate School of Public Health, Pittsburgh, PA, USA
| | - Michelle Sun
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Syeda Kubra
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Imran Jamal
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Yuhang Nie
- Department of Neuroscience, School of Medicine, University of California, San Diego, CA, U.S.A
| | - Megan Ye
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Mads B. Larsen
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Daniel Camarco
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Eleanor Ickes
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Claire DuPont
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Haokun Wang
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Bingjie Wang
- Department of Ophthalmology, University of Pittsburgh School of Medicine, PA, U.S.A
| | - Silvia Liu
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Shaohua Pi
- Department of Ophthalmology, University of Pittsburgh School of Medicine, PA, U.S.A
| | - Bill B Chen
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Division of Pulmonary, Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| | - Yuanyuan Chen
- Department of Ophthalmology, University of Pittsburgh School of Medicine, PA, U.S.A
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, PA, U.S.A
| | - Xu Chen
- Department of Neuroscience, School of Medicine, University of California, San Diego, CA, U.S.A
| | - Bokai Zhu
- Aging Institute of UPMC, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA, U.S.A
- Division of Endocrinology and Metabolism, Department of Medicine, University of Pittsburgh School of Medicine, Pittsburgh, PA, U.S.A
| |
Collapse
|
6
|
Carrocci TJ, Neugebauer KM. Emerging and re-emerging themes in co-transcriptional pre-mRNA splicing. Mol Cell 2024; 84:3656-3666. [PMID: 39366353 PMCID: PMC11463726 DOI: 10.1016/j.molcel.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/08/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024]
Abstract
Proper gene expression requires the collaborative effort of multiple macromolecular machines to produce functional messenger RNA. As RNA polymerase II (RNA Pol II) transcribes DNA, the nascent pre-messenger RNA is heavily modified by other complexes such as 5' capping enzymes, the spliceosome, the cleavage, and polyadenylation machinery as well as RNA-modifying/editing enzymes. Recent evidence has demonstrated that pre-mRNA splicing and 3' end cleavage can occur on similar timescales as transcription and significantly cross-regulate. In this review, we discuss recent advances in co-transcriptional processing and how it contributes to gene regulation. We highlight how emerging areas-including coordinated splicing events, physical interactions between the RNA synthesis and modifying machinery, rapid and delayed splicing, and nuclear organization-impact mRNA isoforms. Coordination among RNA-processing choices yields radically different mRNA and protein products, foreshadowing the likely regulatory importance of co-transcriptional RNA folding and co-transcriptional modifications that have yet to be characterized in detail.
Collapse
Affiliation(s)
- Tucker J Carrocci
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
7
|
Martínez-Lumbreras S, Morguet C, Sattler M. Dynamic interactions drive early spliceosome assembly. Curr Opin Struct Biol 2024; 88:102907. [PMID: 39168044 DOI: 10.1016/j.sbi.2024.102907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 08/23/2024]
Abstract
Splicing is a critical processing step during pre-mRNA maturation in eukaryotes. The correct selection of splice sites during the early steps of spliceosome assembly is highly important and crucial for the regulation of alternative splicing. Splice site recognition and alternative splicing depend on cis-regulatory sequence elements in the RNA and trans-acting splicing factors that recognize these elements and crosstalk with the canonical splicing machinery. Structural mechanisms involving early spliceosome complexes are governed by dynamic RNA structures, protein-RNA interactions and conformational flexibility of multidomain RNA binding proteins. Here, we highlight structural studies and integrative structural biology approaches, which provide complementary information from cryo-EM, NMR, small angle scattering, and X-ray crystallography to elucidate mechanisms in the regulation of early spliceosome assembly and quality control, highlighting the role of conformational dynamics.
Collapse
Affiliation(s)
- Santiago Martínez-Lumbreras
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Clara Morguet
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Michael Sattler
- Helmholtz Munich, Molecular Targets and Therapeutics Center, Institute of Structural Biology, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany; Technical University of Munich, TUM School of Natural Sciences, Bavarian NMR Center and Department of Bioscience, Lichtenbergstrasse 4, 85747 Garching, Germany.
| |
Collapse
|
8
|
Vedekhina T, Svetlova J, Pavlova I, Barinov N, Alieva S, Malakhova E, Rubtsov P, Shtork A, Klinov D, Varizhuk A. Cross-Effects in Folding and Phase Transitions of hnRNP A1 and C9Orf72 RNA G4 In Vitro. Molecules 2024; 29:4369. [PMID: 39339364 PMCID: PMC11434081 DOI: 10.3390/molecules29184369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
Abnormal intracellular phase transitions in mutant hnRNP A1 may underlie the development of several neurodegenerative diseases. The risk of these diseases increases upon C9Orf72 repeat expansion and the accumulation of the corresponding G-quadruplex (G4)-forming RNA, but the link between this RNA and the disruption of hnRNP A1 homeostasis has not been fully explored so far. Our aim was to clarify the mutual effects of hnRNP A1 and C9Orf72 G4 in vitro. Using various optical methods and atomic force microscopy, we investigated the influence of the G4 on the formation of cross-beta fibrils by the mutant prion-like domain (PLD) of hnRNP A1 and on the co-separation of the non-mutant protein with a typical SR-rich fragment of a splicing factor (SRSF), which normally drives the assembly of nuclear speckles. The G4 was shown to act in a holdase-like manner, i.e., to restrict the fibrillation of the hnRNP A1 PLD, presumably through interactions with the PLD-flanking RGG motif. These interactions resulted in partial unwinding of the G4, suggesting a helicase-like activity of hnRNP A1 RGG. At the same time, the G4 was shown to disrupt hnRNP A1 co-separation with SRSF, suggesting its possible contribution to pathology through interference with splicing regulation.
Collapse
Affiliation(s)
- Tatiana Vedekhina
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Lomonosov Institute of Fine Chemical Technologies, MIREA-Russian Technological University, Vernadsky Avenue, 86, 119454 Moscow, Russia
| | - Julia Svetlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Iuliia Pavlova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Nikolay Barinov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Sabina Alieva
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Elizaveta Malakhova
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Pavel Rubtsov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- A.P. Nelyubin Institute of Pharmacy, I.M. Sechenov First Moscow State Medical University of the Ministry of Healthcare of the Russian Federation (Sechenov University), Trubetskaya Str., 8-2, 119991 Moscow, Russia
| | - Alina Shtork
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Dmitry Klinov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| | - Anna Varizhuk
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya, 1a, 119435 Moscow, Russia
| |
Collapse
|
9
|
Doi A, Delaney C, Tanner D, Burkhart K, Bell RD. RNA exon editing: Splicing the way to treat human diseases. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102311. [PMID: 39281698 PMCID: PMC11401238 DOI: 10.1016/j.omtn.2024.102311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
RNA exon editing is a therapeutic strategy for correcting disease-causing mutations by inducing trans-splicing between a synthetic RNA molecule and an endogenous pre-mRNA target, resulting in functionally restored mRNA and protein. This approach enables the replacement of exons at the kilobase scale, addresses multiple mutations with a single therapy, and maintains native gene expression without changes to DNA. For genes larger than 5 kb, RNA exon editors can be delivered in a single vector despite AAV capacity limitations because only mutated exons need to be replaced. While correcting mutations by trans-splicing has been previously demonstrated, prior attempts were hampered by low efficiency or lack of translation in preclinical models. Advances in synthetic biology, next-generation sequencing, and bioinformatics, with a deeper understanding of mechanisms controlling RNA splicing, have triggered a re-emergence of trans-splicing and the development of new RNA exon editing molecules for treating human disease, including the first application in a clinical trial (this study was registered at ClinicalTrials.gov [NCT06467344]). Here, we provide an overview of RNA splicing, the history of trans-splicing, previously reported therapeutic applications, and how modern advances are enabling the discovery of RNA exon editing molecules for genetic targets unable to be addressed by conventional gene therapy and gene editing approaches.
Collapse
Affiliation(s)
- Akiko Doi
- Ascidian Therapeutics, Boston, MA, USA
| | | | | | | | | |
Collapse
|
10
|
Sun B, Huang J, Kong L, Gao C, Zhao F, Shen J, Wang T, Li K, Wang L, Wang Y, Halterman DA, Dong S. Alternative splicing of a potato disease resistance gene maintains homeostasis between growth and immunity. THE PLANT CELL 2024; 36:3729-3750. [PMID: 38941447 PMCID: PMC11371151 DOI: 10.1093/plcell/koae189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/31/2024] [Accepted: 06/18/2024] [Indexed: 06/30/2024]
Abstract
Plants possess a robust and sophisticated innate immune system against pathogens and must balance growth with rapid pathogen detection and defense. The intracellular receptors with nucleotide-binding leucine-rich repeat (NLR) motifs recognize pathogen-derived effector proteins and thereby trigger the immune response. The expression of genes encoding NLR receptors is precisely controlled in multifaceted ways. The alternative splicing (AS) of introns in response to infection is recurrently observed but poorly understood. Here we report that the potato (Solanum tuberosum) NLR gene RB undergoes AS of its intron, resulting in 2 transcriptional isoforms, which coordinately regulate plant immunity and growth homeostasis. During normal growth, RB predominantly exists as an intron-retained isoform RB_IR, encoding a truncated protein containing only the N-terminus of the NLR. Upon late blight infection, the pathogen induces intron splicing of RB, increasing the abundance of RB_CDS, which encodes a full-length and active R protein. By deploying the RB splicing isoforms fused with a luciferase reporter system, we identified IPI-O1 (also known as Avrblb1), the RB cognate effector, as a facilitator of RB AS. IPI-O1 directly interacts with potato splicing factor StCWC15, resulting in altered localization of StCWC15 from the nucleoplasm to the nucleolus and nuclear speckles. Mutations in IPI-O1 that eliminate StCWC15 binding also disrupt StCWC15 re-localization and RB intron splicing. Thus, our study reveals that StCWC15 serves as a surveillance facilitator that senses the pathogen-secreted effector and regulates the trade-off between RB-mediated plant immunity and growth, expanding our understanding of molecular plant-microbe interactions.
Collapse
Affiliation(s)
- Biying Sun
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Jie Huang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Plant Chemetics Laboratory, Department of Biology, University of Oxford, Oxford OX1 3RB, UK
| | - Liang Kong
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Chuyun Gao
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Zhao
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Jiayong Shen
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Tian Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Kangping Li
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Luyao Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
- Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen Branch, Shenzhen, Guangdong 518120, China
| | - Yuanchao Wang
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| | - Dennis A Halterman
- Department of Plant Pathology, University of Wisconsin-Madison, Madison, WI 53706, USA
- US Department of Agriculture-Agricultural Research Service, Vegetable Crops Research Unit, Madison, WI 53706-1514, USA
| | - Suomeng Dong
- Department of Plant Pathology, The Key Laboratory of Integrated Management of Crop Diseases and Pests, Ministry of Education, the Key Laboratory of Plant Immunity, Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
11
|
Giudice J, Jiang H. Splicing regulation through biomolecular condensates and membraneless organelles. Nat Rev Mol Cell Biol 2024; 25:683-700. [PMID: 38773325 DOI: 10.1038/s41580-024-00739-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/22/2024] [Indexed: 05/23/2024]
Abstract
Biomolecular condensates, sometimes also known as membraneless organelles (MLOs), can form through weak multivalent intermolecular interactions of proteins and nucleic acids, a process often associated with liquid-liquid phase separation. Biomolecular condensates are emerging as sites and regulatory platforms of vital cellular functions, including transcription and RNA processing. In the first part of this Review, we comprehensively discuss how alternative splicing regulates the formation and properties of condensates, and conversely the roles of biomolecular condensates in splicing regulation. In the second part, we focus on the spatial connection between splicing regulation and nuclear MLOs such as transcriptional condensates, splicing condensates and nuclear speckles. We then discuss key studies showing how splicing regulation through biomolecular condensates is implicated in human pathologies such as neurodegenerative diseases, different types of cancer, developmental disorders and cardiomyopathies, and conclude with a discussion of outstanding questions pertaining to the roles of condensates and MLOs in splicing regulation and how to experimentally study them.
Collapse
Affiliation(s)
- Jimena Giudice
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- McAllister Heart Institute, School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| | - Hao Jiang
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA, USA.
| |
Collapse
|
12
|
Cui H, Shi Q, Macarios CM, Schimmel P. Metabolic regulation of mRNA splicing. Trends Cell Biol 2024; 34:756-770. [PMID: 38431493 DOI: 10.1016/j.tcb.2024.02.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/30/2024] [Accepted: 02/01/2024] [Indexed: 03/05/2024]
Abstract
Alternative mRNA splicing enables the diversification of the proteome from a static genome and confers plasticity and adaptiveness on cells. Although this is often explored in development, where hard-wired programs drive the differentiation and specialization, alternative mRNA splicing also offers a way for cells to react to sudden changes in outside stimuli such as small-molecule metabolites. Fluctuations in metabolite levels and availability in particular convey crucial information to which cells react and adapt. We summarize and highlight findings surrounding the metabolic regulation of mRNA splicing. We discuss the principles underlying the biochemistry and biophysical properties of mRNA splicing, and propose how these could intersect with metabolite levels. Further, we present examples in which metabolites directly influence RNA-binding proteins and splicing factors. We also discuss the interplay between alternative mRNA splicing and metabolite-responsive signaling pathways. We hope to inspire future research to obtain a holistic picture of alternative mRNA splicing in response to metabolic cues.
Collapse
Affiliation(s)
- Haissi Cui
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada.
| | - Qingyu Shi
- Department of Chemistry, University of Toronto, Toronto, ON M5S 3H6, Canada
| | | | - Paul Schimmel
- Department of Molecular Medicine, Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
13
|
Chakraborty S, Mishra J, Roy A, Niharika, Manna S, Baral T, Nandi P, Patra S, Patra SK. Liquid-liquid phase separation in subcellular assemblages and signaling pathways: Chromatin modifications induced gene regulation for cellular physiology and functions including carcinogenesis. Biochimie 2024; 223:74-97. [PMID: 38723938 DOI: 10.1016/j.biochi.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/08/2024] [Accepted: 05/04/2024] [Indexed: 05/24/2024]
Abstract
Liquid-liquid phase separation (LLPS) describes many biochemical processes, including hydrogel formation, in the integrity of macromolecular assemblages and existence of membraneless organelles, including ribosome, nucleolus, nuclear speckles, paraspeckles, promyelocytic leukemia (PML) bodies, Cajal bodies (all exert crucial roles in cellular physiology), and evidence are emerging day by day. Also, phase separation is well documented in generation of plasma membrane subdomains and interplay between membranous and membraneless organelles. Intrinsically disordered regions (IDRs) of biopolymers/proteins are the most critical sticking regions that aggravate the formation of such condensates. Remarkably, phase separated condensates are also involved in epigenetic regulation of gene expression, chromatin remodeling, and heterochromatinization. Epigenetic marks on DNA and histones cooperate with RNA-binding proteins through their IDRs to trigger LLPS for facilitating transcription. How phase separation coalesces mutant oncoproteins, orchestrate tumor suppressor genes expression, and facilitated cancer-associated signaling pathways are unravelling. That autophagosome formation and DYRK3-mediated cancer stem cell modification also depend on phase separation is deciphered in part. In view of this, and to linchpin insight into the subcellular membraneless organelle assembly, gene activation and biological reactions catalyzed by enzymes, and the downstream physiological functions, and how all these events are precisely facilitated by LLPS inducing organelle function, epigenetic modulation of gene expression in this scenario, and how it goes awry in cancer progression are summarized and presented in this article.
Collapse
Affiliation(s)
- Subhajit Chakraborty
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Jagdish Mishra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Ankan Roy
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Niharika
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Soumen Manna
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Tirthankar Baral
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Piyasa Nandi
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India
| | - Subhajit Patra
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, India
| | - Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela, India.
| |
Collapse
|
14
|
Harel I, Chen YR, Ziv I, Singh PP, Heinzer D, Navarro Negredo P, Goshtchevsky U, Wang W, Astre G, Moses E, McKay A, Machado BE, Hebestreit K, Yin S, Sánchez Alvarado A, Jarosz DF, Brunet A. Identification of protein aggregates in the aging vertebrate brain with prion-like and phase-separation properties. Cell Rep 2024; 43:112787. [PMID: 38810650 PMCID: PMC11285089 DOI: 10.1016/j.celrep.2023.112787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2023] [Accepted: 06/26/2023] [Indexed: 05/31/2024] Open
Abstract
Protein aggregation, which can sometimes spread in a prion-like manner, is a hallmark of neurodegenerative diseases. However, whether prion-like aggregates form during normal brain aging remains unknown. Here, we use quantitative proteomics in the African turquoise killifish to identify protein aggregates that accumulate in old vertebrate brains. These aggregates are enriched for prion-like RNA-binding proteins, notably the ATP-dependent RNA helicase DDX5. We validate that DDX5 forms aggregate-like puncta in the brains of old killifish and mice. Interestingly, DDX5's prion-like domain allows these aggregates to propagate across many generations in yeast. In vitro, DDX5 phase separates into condensates. Mutations that abolish DDX5 prion propagation also impair the protein's ability to phase separate. DDX5 condensates exhibit enhanced enzymatic activity, but they can mature into inactive, solid aggregates. Our findings suggest that protein aggregates with prion-like properties form during normal brain aging, which could have implications for the age-dependency of cognitive decline.
Collapse
Affiliation(s)
- Itamar Harel
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel.
| | - Yiwen R Chen
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Inbal Ziv
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | - Param Priya Singh
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Daniel Heinzer
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | | | - Uri Goshtchevsky
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Wei Wang
- Stowers Institute for Medical Research, Kansas City, MO 64110, USA
| | - Gwendoline Astre
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Eitan Moses
- The Silberman Institute, the Hebrew University of Jerusalem, Givat Ram, Jerusalem 91904, Israel
| | - Andrew McKay
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Ben E Machado
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Katja Hebestreit
- Department of Genetics, Stanford University, Stanford, CA 94305, USA
| | - Sifei Yin
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA
| | | | - Daniel F Jarosz
- Department of Chemical and Systems Biology, Stanford University, Stanford, CA 94305, USA; Department of Developmental Biology, Stanford University, Stanford, CA 94305, USA.
| | - Anne Brunet
- Department of Genetics, Stanford University, Stanford, CA 94305, USA; Glenn Laboratories for the Biology of Aging, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
15
|
Paul S, Arias MA, Wen L, Liao SE, Zhang J, Wang X, Regev O, Fei J. RNA molecules display distinctive organization at nuclear speckles. iScience 2024; 27:109603. [PMID: 38638569 PMCID: PMC11024929 DOI: 10.1016/j.isci.2024.109603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 01/05/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
RNA molecules often play critical roles in assisting the formation of membraneless organelles in eukaryotic cells. Yet, little is known about the organization of RNAs within membraneless organelles. Here, using super-resolution imaging and nuclear speckles as a model system, we demonstrate that different sequence domains of RNA transcripts exhibit differential spatial distributions within speckles. Specifically, we image transcripts containing a region enriched in binding motifs of serine/arginine-rich (SR) proteins and another region enriched in binding motifs of heterogeneous nuclear ribonucleoproteins (hnRNPs). We show that these transcripts localize to the outer shell of speckles, with the SR motif-rich region localizing closer to the speckle center relative to the hnRNP motif-rich region. Further, we identify that this intra-speckle RNA organization is driven by the strength of RNA-protein interactions inside and outside speckles. Our results hint at novel functional roles of nuclear speckles and likely other membraneless organelles in organizing RNA substrates for biochemical reactions.
Collapse
Affiliation(s)
- Sneha Paul
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
| | - Mauricio A. Arias
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Institute for System Genetics, NYU Langone Health, New York, NY 10016, USA
| | - Li Wen
- Department of Physics, The University of Chicago, Chicago, IL 60637, USA
| | - Susan E. Liao
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jiacheng Zhang
- Graduate Program in Biophysical Sciences, The University of Chicago, Chicago, IL 60637, USA
| | - Xiaoshu Wang
- The College, The University of Chicago, Chicago, IL 60637, USA
| | - Oded Regev
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Jingyi Fei
- Department of Biochemistry and Molecular Biology, The University of Chicago, Chicago, IL 60637, USA
- Institute for Biophysical Dynamics, The University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
16
|
Park J, Kim JJ, Ryu JK. Mechanism of phase condensation for chromosome architecture and function. Exp Mol Med 2024; 56:809-819. [PMID: 38658703 PMCID: PMC11059216 DOI: 10.1038/s12276-024-01226-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024] Open
Abstract
Chromosomal phase separation is involved in a broad spectrum of chromosome organization and functional processes. Nonetheless, the intricacy of this process has left its molecular mechanism unclear. Here, we introduce the principles governing phase separation and its connections to physiological roles in this context. Our primary focus is contrasting two phase separation mechanisms: self-association-induced phase separation (SIPS) and bridging-induced phase separation (BIPS). We provide a comprehensive discussion of the distinct features characterizing these mechanisms and offer illustrative examples that suggest their broad applicability. With a detailed understanding of these mechanisms, we explore their associations with nucleosomes and chromosomal biological functions. This comprehensive review contributes to the exploration of uncharted territory in the intricate interplay between chromosome architecture and function.
Collapse
Affiliation(s)
- Jeongveen Park
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Jun Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Je-Kyung Ryu
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea.
- Institute of Applied Physics of Seoul National University, Seoul, 08826, South Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, South Korea.
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
17
|
Abrhámová K, Groušlová M, Valentová A, Hao X, Liu B, Převorovský M, Gahura O, Půta F, Sunnerhagen P, Folk P. Truncating the spliceosomal 'rope protein' Prp45 results in Htz1 dependent phenotypes. RNA Biol 2024; 21:1-17. [PMID: 38711165 PMCID: PMC11085953 DOI: 10.1080/15476286.2024.2348896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/13/2023] [Accepted: 04/24/2024] [Indexed: 05/08/2024] Open
Abstract
Spliceosome assembly contributes an important but incompletely understood aspect of splicing regulation. Prp45 is a yeast splicing factor which runs as an extended fold through the spliceosome, and which may be important for bringing its components together. We performed a whole genome analysis of the genetic interaction network of the truncated allele of PRP45 (prp45(1-169)) using synthetic genetic array technology and found chromatin remodellers and modifiers as an enriched category. In agreement with related studies, H2A.Z-encoding HTZ1, and the components of SWR1, INO80, and SAGA complexes represented prominent interactors, with htz1 conferring the strongest growth defect. Because the truncation of Prp45 disproportionately affected low copy number transcripts of intron-containing genes, we prepared strains carrying intronless versions of SRB2, VPS75, or HRB1, the most affected cases with transcription-related function. Intron removal from SRB2, but not from the other genes, partly repaired some but not all the growth phenotypes identified in the genetic screen. The interaction of prp45(1-169) and htz1Δ was detectable even in cells with SRB2 intron deleted (srb2Δi). The less truncated variant, prp45(1-330), had a synthetic growth defect with htz1Δ at 16°C, which also persisted in the srb2Δi background. Moreover, htz1Δ enhanced prp45(1-330) dependent pre-mRNA hyper-accumulation of both high and low efficiency splicers, genes ECM33 and COF1, respectively. We conclude that while the expression defects of low expression intron-containing genes contribute to the genetic interactome of prp45(1-169), the genetic interactions between prp45 and htz1 alleles demonstrate the sensitivity of spliceosome assembly, delayed in prp45(1-169), to the chromatin environment.
Collapse
Affiliation(s)
- Kateřina Abrhámová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Martina Groušlová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Anna Valentová
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Xinxin Hao
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Beidong Liu
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Martin Převorovský
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Ondřej Gahura
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czech Republic
| | - František Půta
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| | - Per Sunnerhagen
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Petr Folk
- Department of Cell Biology, Faculty of Science, Charles University, Praha, Czech Republic
| |
Collapse
|
18
|
Yoshimoto R, Nakayama Y, Nomura I, Yamamoto I, Nakagawa Y, Tanaka S, Kurihara M, Suzuki Y, Kobayashi T, Kozuka-Hata H, Oyama M, Mito M, Iwasaki S, Yamazaki T, Hirose T, Araki K, Nakagawa S. 4.5SH RNA counteracts deleterious exonization of SINE B1 in mice. Mol Cell 2023; 83:4479-4493.e6. [PMID: 38096826 DOI: 10.1016/j.molcel.2023.11.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 10/09/2023] [Accepted: 11/15/2023] [Indexed: 12/24/2023]
Abstract
4.5SH RNA is a highly abundant, small rodent-specific noncoding RNA that localizes to nuclear speckles enriched in pre-mRNA-splicing regulators. To investigate the physiological functions of 4.5SH RNA, we have created mutant mice that lack the expression of 4.5SH RNA. The mutant mice exhibited embryonic lethality, suggesting that 4.5SH RNA is an essential species-specific noncoding RNA in mice. RNA-sequencing analyses revealed that 4.5SH RNA protects the transcriptome from abnormal exonizations of the antisense insertions of the retrotransposon SINE B1 (asB1), which would otherwise introduce deleterious premature stop codons or frameshift mutations. Mechanistically, 4.5SH RNA base pairs with complementary asB1-containing exons via the target recognition region and recruits effector proteins including Hnrnpm via its 5' stem loop region. The modular organization of 4.5SH RNA allows us to engineer a programmable splicing regulator to induce the skipping of target exons of interest. Our results also suggest the general existence of splicing regulatory noncoding RNAs.
Collapse
Affiliation(s)
- Rei Yoshimoto
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan.
| | - Yuta Nakayama
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ikuko Nomura
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Ikuko Yamamoto
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yumeka Nakagawa
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Shigeyuki Tanaka
- Department of Applied Biological Sciences, Faculty of Agriculture, Setsunan University, 45-1 Nagaotoge-cho, Hirakata City, Osaka 573-0101, Japan
| | - Misuzu Kurihara
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan
| | - Yu Suzuki
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takehiko Kobayashi
- Laboratory of Genome Regeneration, Institute for Quantitative Biosciences, University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Hiroko Kozuka-Hata
- Medical Proteomics Laboratory, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Masaaki Oyama
- Medical Proteomics Laboratory, The Institute of Medical Science, University of Tokyo, 4-6-1, Shirokanedai, Minato-ku, Tokyo 108-8639, Japan
| | - Mari Mito
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Shintaro Iwasaki
- RNA Systems Biochemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| | - Tomohiro Yamazaki
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tetsuro Hirose
- RNA Biofunction Laboratory, Graduate School of Frontier Biosciences, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan; Institute for Open and Transdisciplinary Research Initiatives (OTRI), Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Kimi Araki
- Institute of Resource Development and Analysis, Kumamoto University, Kumamoto 860-0811, Japan; Center for Metabolic Regulation of Healthy Aging, Kumamoto University, 1-1-1, Honjo, Kumamoto 860-8556, Japan
| | - Shinichi Nakagawa
- RNA Biology Laboratory, Faculty of Pharmaceutical Sciences, Hokkaido University, Kita 12-jo Nishi 6-chome, Kita-ku, Sapporo 060-0812, Japan.
| |
Collapse
|
19
|
Zheng LW, Liu CC, Yu KD. Phase separations in oncogenesis, tumor progressions and metastasis: a glance from hallmarks of cancer. J Hematol Oncol 2023; 16:123. [PMID: 38110976 PMCID: PMC10726551 DOI: 10.1186/s13045-023-01522-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 12/12/2023] [Indexed: 12/20/2023] Open
Abstract
Liquid-liquid phase separation (LLPS) is a novel principle for interpreting precise spatiotemporal coordination in living cells through biomolecular condensate (BMC) formation via dynamic aggregation. LLPS changes individual molecules into membrane-free, droplet-like BMCs with specific functions, which coordinate various cellular activities. The formation and regulation of LLPS are closely associated with oncogenesis, tumor progressions and metastasis, the specific roles and mechanisms of LLPS in tumors still need to be further investigated at present. In this review, we comprehensively summarize the conditions of LLPS and identify mechanisms involved in abnormal LLPS in cancer processes, including tumor growth, metastasis, and angiogenesis from the perspective of cancer hallmarks. We have also reviewed the clinical applications of LLPS in oncologic areas. This systematic summary of dysregulated LLPS from the different dimensions of cancer hallmarks will build a bridge for determining its specific functions to further guide basic research, finding strategies to intervene in LLPS, and developing relevant therapeutic approaches.
Collapse
Affiliation(s)
- Le-Wei Zheng
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Department of Oncology, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
20
|
Mann R, Notani D. Transcription factor condensates and signaling driven transcription. Nucleus 2023; 14:2205758. [PMID: 37129580 PMCID: PMC10155639 DOI: 10.1080/19491034.2023.2205758] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 04/10/2023] [Accepted: 04/19/2023] [Indexed: 05/03/2023] Open
Abstract
Transcription Factor (TF) condensates are a heterogenous mix of RNA, DNA, and multiple co-factor proteins capable of modulating the transcriptional response of the cell. The dynamic nature and the spatial location of TF-condensates in the 3D nuclear space is believed to provide a fast response, which is on the same pace as the signaling cascade and yet ever-so-specific in the crowded environment of the nucleus. However, the current understanding of how TF-condensates can achieve these feet so quickly and efficiently is still unclear. In this review, we draw parallels with other protein condensates and share our speculations on how the nucleus uses these TF-condensates to achieve high transcriptional specificity and fidelity. We discuss the various constituents of TF-condensates, their properties, and the known and unknown functions of TF-condensates with a particular focus on steroid signaling-induced transcriptional programs.
Collapse
Affiliation(s)
- Rajat Mann
- National Centre for Biological Sciences, TIFR, Bangalore, India
| | - Dimple Notani
- National Centre for Biological Sciences, TIFR, Bangalore, India
| |
Collapse
|
21
|
Cai L, Wang GG. Through the lens of phase separation: intrinsically unstructured protein and chromatin looping. Nucleus 2023; 14:2179766. [PMID: 36821650 PMCID: PMC9980480 DOI: 10.1080/19491034.2023.2179766] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
The establishment, maintenance and dynamic regulation of three-dimensional (3D) chromatin structures provide an important means for partitioning of genome into functionally distinctive domains, which helps to define specialized gene expression programs associated with developmental stages and cell types. Increasing evidence supports critical roles for intrinsically disordered regions (IDRs) harbored within transcription factors (TFs) and chromatin-modulatory proteins in inducing phase separation, a phenomenon of forming membrane-less condensates through partitioning of biomolecules. Such a process is also critically involved in the establishment of high-order chromatin structures and looping. IDR- and phase separation-driven 3D genome (re)organization often goes wrong in disease such as cancer. This review discusses about recent advances in understanding how phase separation of intrinsically disordered proteins (IDPs) modulates chromatin looping and gene expression.
Collapse
Affiliation(s)
- Ling Cai
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,Department of Genetics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,Ling Cai Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC27599, USA
| | - Gang Greg Wang
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,Department of Pharmacology, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC, USA,CONTACT Gang Greg Wang Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill School of Medicine, Chapel Hill, NC27599, USA
| |
Collapse
|
22
|
Liao SE, Sudarshan M, Regev O. Deciphering RNA splicing logic with interpretable machine learning. Proc Natl Acad Sci U S A 2023; 120:e2221165120. [PMID: 37796983 PMCID: PMC10576025 DOI: 10.1073/pnas.2221165120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
Machine learning methods, particularly neural networks trained on large datasets, are transforming how scientists approach scientific discovery and experimental design. However, current state-of-the-art neural networks are limited by their uninterpretability: Despite their excellent accuracy, they cannot describe how they arrived at their predictions. Here, using an "interpretable-by-design" approach, we present a neural network model that provides insights into RNA splicing, a fundamental process in the transfer of genomic information into functional biochemical products. Although we designed our model to emphasize interpretability, its predictive accuracy is on par with state-of-the-art models. To demonstrate the model's interpretability, we introduce a visualization that, for any given exon, allows us to trace and quantify the entire decision process from input sequence to output splicing prediction. Importantly, the model revealed uncharacterized components of the splicing logic, which we experimentally validated. This study highlights how interpretable machine learning can advance scientific discovery.
Collapse
Affiliation(s)
- Susan E. Liao
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| | - Mukund Sudarshan
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| | - Oded Regev
- Department of Computer Science, Courant Institute of Mathematical Sciences, New York University, New York, NY10012
| |
Collapse
|
23
|
Girardini KN, Olthof AM, Kanadia RN. Introns: the "dark matter" of the eukaryotic genome. Front Genet 2023; 14:1150212. [PMID: 37260773 PMCID: PMC10228655 DOI: 10.3389/fgene.2023.1150212] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 04/28/2023] [Indexed: 06/02/2023] Open
Abstract
The emergence of introns was a significant evolutionary leap that is a major distinguishing feature between prokaryotic and eukaryotic genomes. While historically introns were regarded merely as the sequences that are removed to produce spliced transcripts encoding functional products, increasingly data suggests that introns play important roles in the regulation of gene expression. Here, we use an intron-centric lens to review the role of introns in eukaryotic gene expression. First, we focus on intron architecture and how it may influence mechanisms of splicing. Second, we focus on the implications of spliceosomal snRNAs and their variants on intron splicing. Finally, we discuss how the presence of introns and the need to splice them influences transcription regulation. Despite the abundance of introns in the eukaryotic genome and their emerging role regulating gene expression, a lot remains unexplored. Therefore, here we refer to introns as the "dark matter" of the eukaryotic genome and discuss some of the outstanding questions in the field.
Collapse
Affiliation(s)
- Kaitlin N. Girardini
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
| | - Anouk M. Olthof
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Rahul N. Kanadia
- Physiology and Neurobiology Department, University of Connecticut, Storrs, CT, United States
- Institute for Systems Genomics, University of Connecticut, Storrs, CT, United States
| |
Collapse
|
24
|
Lyu M, Lai H, Wang Y, Zhou Y, Chen Y, Wu D, Chen J, Ying B. Roles of alternative splicing in infectious diseases: from hosts, pathogens to their interactions. Chin Med J (Engl) 2023; 136:767-779. [PMID: 36893312 PMCID: PMC10150853 DOI: 10.1097/cm9.0000000000002621] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Indexed: 03/11/2023] Open
Abstract
ABSTRACT Alternative splicing (AS) is an evolutionarily conserved mechanism that removes introns and ligates exons to generate mature messenger RNAs (mRNAs), extremely improving the richness of transcriptome and proteome. Both mammal hosts and pathogens require AS to maintain their life activities, and inherent physiological heterogeneity between mammals and pathogens makes them adopt different ways to perform AS. Mammals and fungi conduct a two-step transesterification reaction by spliceosomes to splice each individual mRNA (named cis -splicing). Parasites also use spliceosomes to splice, but this splicing can occur among different mRNAs (named trans -splicing). Bacteria and viruses directly hijack the host's splicing machinery to accomplish this process. Infection-related changes are reflected in the spliceosome behaviors and the characteristics of various splicing regulators (abundance, modification, distribution, movement speed, and conformation), which further radiate to alterations in the global splicing profiles. Genes with splicing changes are enriched in immune-, growth-, or metabolism-related pathways, highlighting approaches through which hosts crosstalk with pathogens. Based on these infection-specific regulators or AS events, several targeted agents have been developed to fight against pathogens. Here, we summarized recent findings in the field of infection-related splicing, including splicing mechanisms of pathogens and hosts, splicing regulation and aberrant AS events, as well as emerging targeted drugs. We aimed to systemically decode host-pathogen interactions from a perspective of splicing. We further discussed the current strategies of drug development, detection methods, analysis algorithms, and database construction, facilitating the annotation of infection-related splicing and the integration of AS with disease phenotype.
Collapse
Affiliation(s)
- Mengyuan Lyu
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hongli Lai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yili Wang
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yanbing Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Yi Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Dongsheng Wu
- Department of Thoracic Surgery and Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Jie Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Binwu Ying
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| |
Collapse
|
25
|
Boumpas P, Merabet S, Carnesecchi J. Integrating transcription and splicing into cell fate: Transcription factors on the block. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 14:e1752. [PMID: 35899407 DOI: 10.1002/wrna.1752] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 06/22/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
Transcription factors (TFs) are present in all life forms and conserved across great evolutionary distances in eukaryotes. From yeast to complex multicellular organisms, they are pivotal players of cell fate decision by orchestrating gene expression at diverse molecular layers. Notably, TFs fine-tune gene expression by coordinating RNA fate at both the expression and splicing levels. They regulate alternative splicing, an essential mechanism for cell plasticity, allowing the production of many mRNA and protein isoforms in precise cell and tissue contexts. Despite this apparent role in splicing, how TFs integrate transcription and splicing to ultimately orchestrate diverse cell functions and cell fate decisions remains puzzling. We depict substantial studies in various model organisms underlining the key role of TFs in alternative splicing for promoting tissue-specific functions and cell fate. Furthermore, we emphasize recent advances describing the molecular link between the transcriptional and splicing activities of TFs. As TFs can bind both DNA and/or RNA to regulate transcription and splicing, we further discuss their flexibility and compatibility for DNA and RNA substrates. Finally, we propose several models integrating transcription and splicing activities of TFs in the coordination and diversification of cell and tissue identities. This article is categorized under: RNA Processing > Splicing Regulation/Alternative Splicing RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Processing > Splicing Mechanisms.
Collapse
Affiliation(s)
- Panagiotis Boumpas
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| | - Samir Merabet
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| | - Julie Carnesecchi
- Institut de Génomique Fonctionnelle de Lyon, UMR5242, Ecole Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard-Lyon 1, Lyon, France
| |
Collapse
|
26
|
de Oliveira Freitas Machado C, Schafranek M, Brüggemann M, Hernández Cañás M, Keller M, Di Liddo A, Brezski A, Blümel N, Arnold B, Bremm A, Wittig I, Jaé N, McNicoll F, Dimmeler S, Zarnack K, Müller-McNicoll M. Poison cassette exon splicing of SRSF6 regulates nuclear speckle dispersal and the response to hypoxia. Nucleic Acids Res 2023; 51:870-890. [PMID: 36620874 PMCID: PMC9881134 DOI: 10.1093/nar/gkac1225] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 01/10/2023] Open
Abstract
Hypoxia induces massive changes in alternative splicing (AS) to adapt cells to the lack of oxygen. Here, we identify the splicing factor SRSF6 as a key factor in the AS response to hypoxia. The SRSF6 level is strongly reduced in acute hypoxia, which serves a dual purpose: it allows for exon skipping and triggers the dispersal of nuclear speckles. Our data suggest that cells use dispersal of nuclear speckles to reprogram their gene expression during hypoxic adaptation and that SRSF6 plays an important role in cohesion of nuclear speckles. Down-regulation of SRSF6 is achieved through inclusion of a poison cassette exon (PCE) promoted by SRSF4. Removing the PCE 3' splice site using CRISPR/Cas9 abolishes SRSF6 reduction in hypoxia. Aberrantly high SRSF6 levels in hypoxia attenuate hypoxia-mediated AS and impair dispersal of nuclear speckles. As a consequence, proliferation and genomic instability are increased, while the stress response is suppressed. The SRSF4-PCE-SRSF6 hypoxia axis is active in different cancer types, and high SRSF6 expression in hypoxic tumors correlates with a poor prognosis. We propose that the ultra-conserved PCE of SRSF6 acts as a tumor suppressor and that its inclusion in hypoxia is crucial to reduce SRSF6 levels. This may prevent tumor cells from entering the metastatic route of hypoxia adaptation.
Collapse
Affiliation(s)
- Camila de Oliveira Freitas Machado
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Michal Schafranek
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Mirko Brüggemann
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | | | - Mario Keller
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Antonella Di Liddo
- Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Andre Brezski
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany,Buchmann Institute for Molecular Life Sciences (BMLS), Frankfurt am Main, Germany
| | - Nicole Blümel
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Benjamin Arnold
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Anja Bremm
- Institute of Biochemistry II, Goethe University, Frankfurt am Main, Germany
| | - Ilka Wittig
- Functional Proteomics, Institute of Cardiovascular Physiology, Goethe University, Frankfurt am Main, Germany
| | - Nicolas Jaé
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - François McNicoll
- Institute of Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Stefanie Dimmeler
- Institute of Cardiovascular Regeneration, Goethe University, Frankfurt am Main, Germany
| | - Kathi Zarnack
- Correspondence may also be addressed to Kathi Zarnack.
| | | |
Collapse
|
27
|
Latham AP, Zhang B. Molecular Determinants for the Layering and Coarsening of Biological Condensates. AGGREGATE (HOBOKEN, N.J.) 2022; 3:e306. [PMID: 37065433 PMCID: PMC10101022 DOI: 10.1002/agt2.306] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
Many membraneless organelles, or biological condensates, form through phase separation, and play key roles in signal sensing and transcriptional regulation. While the functional importance of these condensates has inspired many studies to characterize their stability and spatial organization, the underlying principles that dictate these emergent properties are still being uncovered. In this review, we examine recent work on biological condensates, especially multicomponent systems. We focus on connecting molecular factors such as binding energy, valency, and stoichiometry with the interfacial tension, explaining the nontrivial interior organization in many condensates. We further discuss mechanisms that arrest condensate coalescence by lowering the surface tension or introducing kinetic barriers to stabilize the multidroplet state.
Collapse
Affiliation(s)
- Andrew P Latham
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
- Department of Bioengineering and Therapeutic Sciences, University of California at San Francisco, San Francisco, CA 94143
| | - Bin Zhang
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139
| |
Collapse
|
28
|
Ilık İA, Aktaş T. Nuclear speckles: dynamic hubs of gene expression regulation. FEBS J 2022; 289:7234-7245. [PMID: 34245118 DOI: 10.1111/febs.16117] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/13/2021] [Accepted: 07/08/2021] [Indexed: 01/13/2023]
Abstract
Complex, multistep biochemical reactions that routinely take place in our cells require high concentrations of enzymes, substrates, and other structural components to proceed efficiently and typically require chemical environments that can inhibit other reactions in their immediate vicinity. Eukaryotic cells solve these problems by restricting such reactions into diffusion-restricted compartments within the cell called organelles that can be separated from their environment by a lipid membrane, or into membrane-less compartments that form through liquid-liquid phase separation (LLPS). One of the most easily noticeable and the earliest discovered organelle is the nucleus, which harbors the genetic material in cells where transcription by RNA polymerases produces most of the messenger RNAs and a plethora of noncoding RNAs, which in turn are required for translation of mRNAs in the cytoplasm. The interior of the nucleus is not a uniform soup of biomolecules and rather consists of a variety of membrane-less bodies, such as the nucleolus, nuclear speckles (NS), paraspeckles, Cajal bodies, histone locus bodies, and more. In this review, we will focus on NS with an emphasis on recent developments including our own findings about the formation of NS by two large IDR-rich proteins SON and SRRM2.
Collapse
Affiliation(s)
| | - Tuğçe Aktaş
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
29
|
Cascarina SM, Ross ED. Expansion and functional analysis of the SR-related protein family across the domains of life. RNA (NEW YORK, N.Y.) 2022; 28:1298-1314. [PMID: 35863866 PMCID: PMC9479744 DOI: 10.1261/rna.079170.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 06/29/2022] [Indexed: 06/15/2023]
Abstract
Serine/arginine-rich (SR) proteins comprise a family of proteins that is predominantly found in eukaryotes and plays a prominent role in RNA splicing. A characteristic feature of SR proteins is the presence of an S/R-rich low-complexity domain (RS domain), often in conjunction with spatially distinct RNA recognition motifs (RRMs). To date, 52 human proteins have been classified as SR or SR-related proteins. Here, using an unbiased series of composition criteria together with enrichment for known RNA binding activity, we identified >100 putative SR-related proteins in the human proteome. This method recovers known SR and SR-related proteins with high sensitivity (∼94%), yet identifies a number of additional proteins with many of the hallmark features of true SR-related proteins. Newly identified SR-related proteins display slightly different amino acid compositions yet similar levels of post-translational modification, suggesting that these new SR-related candidates are regulated in vivo and functionally important. Furthermore, candidate SR-related proteins with known RNA-binding activity (but not currently recognized as SR-related proteins) are nevertheless strongly associated with a variety of functions related to mRNA splicing and nuclear speckles. Finally, we applied our SR search method to all available reference proteomes, and provide maps of RS domains and Pfam annotations for all putative SR-related proteins as a resource. Together, these results expand the set of SR-related proteins in humans, and identify the most common functions associated with SR-related proteins across all domains of life.
Collapse
Affiliation(s)
- Sean M Cascarina
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| | - Eric D Ross
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, Colorado 80523, USA
| |
Collapse
|
30
|
Nuadthaisong J, Phetruen T, Techawisutthinan C, Chanarat S. Insights into the Mechanism of Pre-mRNA Splicing of Tiny Introns from the Genome of a Giant Ciliate Stentor coeruleus. Int J Mol Sci 2022; 23:ijms231810973. [PMID: 36142882 PMCID: PMC9505925 DOI: 10.3390/ijms231810973] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/10/2022] [Accepted: 09/14/2022] [Indexed: 12/03/2022] Open
Abstract
Stentor coeruleus is a ciliate known for its regenerative ability. Recent genome sequencing reveals that its spliceosomal introns are exceptionally small. We wondered whether the multimegadalton spliceosome has any unique characteristics for removal of the tiny introns. First, we analyzed intron features and identified spliceosomal RNA/protein components. We found that all snRNAs are present, whereas many proteins are conserved but slightly reduced in size. Some regulators, such as Serine/Arginine-rich proteins, are noticeably undetected. Interestingly, while most parts of spliceosomal proteins, including Prp8′s positively charged catalytic cavity, are conserved, regions of branching factors projecting to the active site are not. We conjecture that steric-clash avoidance between spliceosomal proteins and a sharply looped lariat might occur, and splicing regulation may differ from other species.
Collapse
|
31
|
Peng Q, Tan S, Xia L, Wu N, Oyang L, Tang Y, Su M, Luo X, Wang Y, Sheng X, Zhou Y, Liao Q. Phase separation in Cancer: From the Impacts and Mechanisms to Treatment potentials. Int J Biol Sci 2022; 18:5103-5122. [PMID: 35982902 PMCID: PMC9379413 DOI: 10.7150/ijbs.75410] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 07/16/2022] [Indexed: 12/14/2022] Open
Abstract
Cancer is a public health problem of great concern, and it is also one of the main causes of death in the world. Cancer is a disease characterized by dysregulation of diverse cellular processes, including avoiding growth inhibitory factors, avoiding immune damage and promoting metastasis, etc. However, the precise mechanism of tumorigenesis and tumor progression still needs to be further elucidated. Formations of liquid-liquid phase separation (LLPS) condensates are a common strategy for cells to achieve diverse functions, such as chromatin organization, signal transduction, DNA repair and transcriptional regulation, etc. The biomolecular aggregates formed by LLPS are mainly driven by multivalent weak interactions mediated by intrinsic disordered regions (IDRs) in proteins. In recent years, aberrant phase separations and transition have been reported to be related to the process of various diseases, such as neurodegenerative diseases and cancer. Herein, we discussed recent findings that phase separation regulates tumor-related signaling pathways and thus contributes to tumor progression. We also reviewed some tumor virus-associated proteins to regulate the development of virus-associated tumors via phase separation. Finally, we discussed some possible strategies for treating tumors by targeting phase separation.
Collapse
Affiliation(s)
- Qiu Peng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Shiming Tan
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Longzheng Xia
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Nayiyuan Wu
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Linda Oyang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yanyan Tang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Min Su
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xia Luo
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Ying Wang
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Xiaowu Sheng
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China
| | - Yujuan Zhou
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| | - Qianjin Liao
- Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, China.,Hunan Key Laboratory of Translational Radiation Oncology, 283 Tongzipo Road, Changsha 410013, Hunan, China
| |
Collapse
|
32
|
Xu S, Lai SK, Sim DY, Ang W, Li HY, Roca X. SRRM2 organizes splicing condensates to regulate alternative splicing. Nucleic Acids Res 2022; 50:8599-8614. [PMID: 35929045 PMCID: PMC9410892 DOI: 10.1093/nar/gkac669] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/29/2022] [Accepted: 08/04/2022] [Indexed: 12/27/2022] Open
Abstract
SRRM2 is a nuclear-speckle marker containing multiple disordered domains, whose dysfunction is associated with several human diseases. Using mainly EGFP-SRRM2 knock-in HEK293T cells, we show that SRRM2 forms biomolecular condensates satisfying most hallmarks of liquid-liquid phase separation, including spherical shape, dynamic rearrangement, coalescence and concentration dependence supported by in vitro experiments. Live-cell imaging shows that SRRM2 organizes nuclear speckles along the cell cycle. As bona-fide splicing factor present in spliceosome structures, SRRM2 deficiency induces skipping of cassette exons with short introns and weak splice sites, tending to change large protein domains. In THP-1 myeloid-like cells, SRRM2 depletion compromises cell viability, upregulates differentiation markers, and sensitizes cells to anti-leukemia drugs. SRRM2 induces a FES splice isoform that attenuates innate inflammatory responses, and MUC1 isoforms that undergo shedding with oncogenic properties. We conclude that SRRM2 acts as a scaffold to organize nuclear speckles, regulating alternative splicing in innate immunity and cell homeostasis.
Collapse
Affiliation(s)
- Shaohai Xu
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Soak-Kuan Lai
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Donald Yuhui Sim
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | | | - Hoi Yeung Li
- School of Biological Sciences, Nanyang Technological University, 637551 Singapore
| | - Xavier Roca
- To whom correspondence should be addressed. Tel: +65 65927561;
| |
Collapse
|
33
|
Faber GP, Nadav-Eliyahu S, Shav-Tal Y. Nuclear speckles - a driving force in gene expression. J Cell Sci 2022; 135:275909. [PMID: 35788677 DOI: 10.1242/jcs.259594] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Nuclear speckles are dynamic membraneless bodies located in the cell nucleus. They harbor RNAs and proteins, many of which are splicing factors, that together display complex biophysical properties dictating nuclear speckle formation and maintenance. Although these nuclear bodies were discovered decades ago, only recently has in-depth genomic analysis begun to unravel their essential functions in modulation of gene activity. Major advancements in genomic mapping techniques combined with microscopy approaches have enabled insights into the roles nuclear speckles may play in enhancing gene expression, and how gene positioning to specific nuclear landmarks can regulate gene expression and RNA processing. Some studies have drawn a link between nuclear speckles and disease. Certain maladies either involve nuclear speckles directly or dictate the localization and reorganization of many nuclear speckle factors. This is most striking during viral infection, as viruses alter the entire nuclear architecture and highjack host machinery. As discussed in this Review, nuclear speckles represent a fascinating target of study not only to reveal the links between gene positioning, genome subcompartments and gene activity, but also as a potential target for therapeutics.
Collapse
Affiliation(s)
- Gabriel P Faber
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Shani Nadav-Eliyahu
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| | - Yaron Shav-Tal
- The Mina and Everard Goodman Faculty of Life Sciences , Bar-Ilan University, Ramat Gan 5290002, Israel.,Institute of Nanotechnology , Bar-Ilan University, Ramat Gan 5290002, Israel
| |
Collapse
|
34
|
Mora A, Huang X, Jauhari S, Jiang Q, Li X. Chromatin Hubs: A biological and computational outlook. Comput Struct Biotechnol J 2022; 20:3796-3813. [PMID: 35891791 PMCID: PMC9304431 DOI: 10.1016/j.csbj.2022.07.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/02/2022] [Accepted: 07/02/2022] [Indexed: 11/20/2022] Open
Abstract
This review discusses our current understanding of chromatin biology and bioinformatics under the unifying concept of “chromatin hubs.” The first part reviews the biology of chromatin hubs, including chromatin–chromatin interaction hubs, chromatin hubs at the nuclear periphery, hubs around macromolecules such as RNA polymerase or lncRNAs, and hubs around nuclear bodies such as the nucleolus or nuclear speckles. The second part reviews existing computational methods, including enhancer–promoter interaction prediction, network analysis, chromatin domain callers, transcription factory predictors, and multi-way interaction analysis. We introduce an integrated model that makes sense of the existing evidence. Understanding chromatin hubs may allow us (i) to explain long-unsolved biological questions such as interaction specificity and redundancy of mechanisms, (ii) to develop more realistic kinetic and functional predictions, and (iii) to explain the etiology of genomic disease.
Collapse
Affiliation(s)
- Antonio Mora
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Guangzhou 511436, PR China
- Corresponding authors.
| | - Xiaowei Huang
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Guangzhou 511436, PR China
| | - Shaurya Jauhari
- Joint School of Life Sciences, Guangzhou Medical University and Guangzhou Institutes of Biomedicine and Health (Chinese Academy of Sciences), Guangzhou 511436, PR China
| | - Qin Jiang
- Affiliated Eye Hospital of Nanjing Medical University, Nanjing 210000, PR China
| | - Xuri Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, and Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Guangzhou 510060, PR China
- Corresponding authors.
| |
Collapse
|
35
|
Parker DM, Winkenbach LP, Osborne Nishimura E. It’s Just a Phase: Exploring the Relationship Between mRNA, Biomolecular Condensates, and Translational Control. Front Genet 2022; 13:931220. [PMID: 35832192 PMCID: PMC9271857 DOI: 10.3389/fgene.2022.931220] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Cells spatially organize their molecular components to carry out fundamental biological processes and guide proper development. The spatial organization of RNA within the cell can both promote and result from gene expression regulatory control. Recent studies have demonstrated diverse associations between RNA spatial patterning and translation regulatory control. One form of patterning, compartmentalization in biomolecular condensates, has been of particular interest. Generally, transcripts associated with cytoplasmic biomolecular condensates—such as germ granules, stress granules, and P-bodies—are linked with low translational status. However, recent studies have identified new biomolecular condensates with diverse roles associated with active translation. This review outlines RNA compartmentalization in various condensates that occur in association with repressed or active translational states, highlights recent findings in well-studied condensates, and explores novel condensate behaviors.
Collapse
Affiliation(s)
- Dylan M. Parker
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- Department of Biochemistry, University of Colorado, Boulder, CO, United States
| | - Lindsay P. Winkenbach
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
| | - Erin Osborne Nishimura
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, United States
- *Correspondence: Erin Osborne Nishimura,
| |
Collapse
|
36
|
Zhang Y, Fan S, Hua C, Teo ZWN, Kiang JX, Shen L, Yu H. Phase separation of HRLP regulates flowering time in Arabidopsis. SCIENCE ADVANCES 2022; 8:eabn5488. [PMID: 35731874 PMCID: PMC9217094 DOI: 10.1126/sciadv.abn5488] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
RNA binding proteins mediate posttranscriptional RNA metabolism and play regulatory roles in many developmental processes in eukaryotes. Despite their known effects on the floral transition from vegetative to reproductive growth in plants, the underlying mechanisms remain largely obscure. Here, we show that a hitherto unknown RNA binding protein, hnRNP R-LIKE PROTEIN (HRLP), inhibits cotranscriptional splicing of a key floral repressor gene FLOWERING LOCUS C (FLC). This, in turn, facilitates R-loop formation near FLC intron I to repress its transcription, thereby promoting the floral transition in Arabidopsis thaliana. HRLP, together with the splicing factor ARGININE/SERINE-RICH 45, forms phase-separated nuclear condensates with liquid-like properties, which is essential for HRLP function in regulating FLC splicing, R-loop formation, and RNA Polymerase II recruitment. Our findings reveal that inhibition of cotranscriptional splicing of FLC by nuclear HRLP condensates constitutes the molecular basis for down-regulation of FLC transcript levels to ensure the reproductive success of Arabidopsis.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Sheng Fan
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Changmei Hua
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
| | - Zhi Wei Norman Teo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Jian Xuan Kiang
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
| | - Lisha Shen
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Corresponding author. (L.S.); (H.Y.)
| | - Hao Yu
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 117543, Singapore
- Temasek Life Sciences Laboratory, National University of Singapore, Singapore 117604, Singapore
- Corresponding author. (L.S.); (H.Y.)
| |
Collapse
|
37
|
Feric M, Misteli T. Function moves biomolecular condensates in phase space. Bioessays 2022; 44:e2200001. [PMID: 35243657 PMCID: PMC9277701 DOI: 10.1002/bies.202200001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Revised: 02/19/2022] [Accepted: 02/22/2022] [Indexed: 11/08/2022]
Abstract
Phase separation underlies the formation of biomolecular condensates. We hypothesize the cellular processes that occur within condensates shape their structural features. We use the example of transcription to discuss structure-function relationships in condensates. Various types of transcriptional condensates have been reported across the evolutionary spectrum in the cell nucleus as well as in mitochondrial and bacterial nucleoids. In vitro and in vivo observations suggest that transcriptional activity of condensates influences their supramolecular structure, which in turn affects their function. Condensate organization thus becomes driven by differences in miscibility among the DNA and proteins of the transcription machinery and the RNA transcripts they generate. These considerations are in line with the notion that cellular processes shape the structural properties of condensates, leading to a dynamic, mutual interplay between structure and function in the cell.
Collapse
Affiliation(s)
- Marina Feric
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Tom Misteli
- National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
38
|
Raina K, Rao BJ. Mammalian nuclear speckles exhibit stable association with chromatin: a biochemical study. Nucleus 2022; 13:58-73. [PMID: 35220893 PMCID: PMC8890396 DOI: 10.1080/19491034.2021.2024948] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Nuclear Speckles (NS) are phase-separated condensates of protein and RNA whose components dynamically coordinate RNA transcription, splicing, transport and DNA repair. NS, probed largely by imaging studies, remained historically well known as Interchromatin Granule Clusters, and biochemical properties, especially their association with Chromatin have been largely unexplored. In this study, we tested whether NS exhibit any stable association with chromatin and show that limited DNAse-1 nicking of chromatin leads to the collapse of NS into isotropic distribution or aggregates of constituent proteins without affecting other nuclear structures. Further biochemical probing revealed that NS proteins were tightly associated with chromatin, extractable only by high-salt treatment just like histone proteins. NS were also co-released with solubilised mono-dinucleosomal chromatin fraction following the MNase digestion of chromatin. We propose a model that NS-chromatin constitutes a “putative stable association” whose coupling might be subject to the combined regulation from both chromatin and NS changes. Abbreviations: NS: Nuclear speckles; DSB: double strand breaks; PTM: posttranslational modifications; DDR: DNA damage repair; RBP-RNA binding proteins; TAD: topologically associated domains; LCR: low complexity regions; IDR: intrinsically disordered regions.
Collapse
Affiliation(s)
- Komal Raina
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Department of Biology, Indian Institute of Science Education and Research (Iiser) Tirupati, Transit Campus: Sree Rama Engineering College, Tirupati, India
| | - Basuthkar J Rao
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, India
- Department of Biology, Indian Institute of Science Education and Research (Iiser) Tirupati, Transit Campus: Sree Rama Engineering College, Tirupati, India
- Department of Animal Biology, University of Hyderabad, Hyderabad, India
| |
Collapse
|
39
|
El Fatimy R, Zhang Y, Deforzh E, Ramadas M, Saravanan H, Wei Z, Rabinovsky R, Teplyuk NM, Uhlmann EJ, Krichevsky AM. A nuclear function for an oncogenic microRNA as a modulator of snRNA and splicing. Mol Cancer 2022; 21:17. [PMID: 35033060 PMCID: PMC8760648 DOI: 10.1186/s12943-022-01494-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/23/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND miRNAs are regulatory transcripts established as repressors of mRNA stability and translation that have been functionally implicated in carcinogenesis. miR-10b is one of the key onco-miRs associated with multiple forms of cancer. Malignant gliomas exhibit particularly striking dependence on miR-10b. However, despite the therapeutic potential of miR-10b targeting, this miRNA's poorly investigated and largely unconventional properties hamper the clinical translation. METHODS We utilized Covalent Ligation of Endogenous Argonaute-bound RNAs and their high-throughput RNA sequencing to identify miR-10b interactome and a combination of biochemical and imaging approaches for target validation. They included Crosslinking and RNA immunoprecipitation with spliceosomal proteins, a combination of miRNA FISH with protein immunofluorescence in glioma cells and patient-derived tumors, native Northern blotting, and the transcriptome-wide analysis of alternative splicing. RESULTS We demonstrate that miR-10b binds to U6 snRNA, a core component of the spliceosomal machinery. We provide evidence of the direct binding between miR-10b and U6, in situ imaging of miR-10b and U6 co-localization in glioma cells and tumors, and biochemical co-isolation of miR-10b with the components of the spliceosome. We further demonstrate that miR-10b modulates U6 N-6-adenosine methylation and pseudouridylation, U6 binding to splicing factors SART3 and PRPF8, and regulates U6 stability, conformation, and levels. These effects on U6 result in global splicing alterations, exemplified by the altered ratio of the isoforms of a small GTPase CDC42, reduced overall CDC42 levels, and downstream CDC42 -mediated effects on cell viability. CONCLUSIONS We identified U6 snRNA, the key RNA component of the spliceosome, as the top miR-10b target in glioblastoma. We, therefore, present an unexpected intersection of the miRNA and splicing machineries and a new nuclear function for a major cancer-associated miRNA.
Collapse
Affiliation(s)
- Rachid El Fatimy
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
- Current Address: Institute of Biological Sciences (ISSB-P), Mohammed VI Polytechnic University (UM6P), 43150, Benguerir, Morocco
| | - Yanhong Zhang
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Evgeny Deforzh
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Mahalakshmi Ramadas
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Harini Saravanan
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Zhiyun Wei
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
- Current Address: Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, 200092, China
| | - Rosalia Rabinovsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Nadiya M Teplyuk
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Erik J Uhlmann
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA
| | - Anna M Krichevsky
- Department of Neurology, Brigham and Women's Hospital and Harvard Medical School, 60 Fenwood Rd, Room 9002T, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Maron MI, Casill AD, Gupta V, Roth JS, Sidoli S, Query CC, Gamble MJ, Shechter D. Type I and II PRMTs inversely regulate post-transcriptional intron detention through Sm and CHTOP methylation. eLife 2022; 11:e72867. [PMID: 34984976 PMCID: PMC8765754 DOI: 10.7554/elife.72867] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 01/03/2022] [Indexed: 12/26/2022] Open
Abstract
Protein arginine methyltransferases (PRMTs) are required for the regulation of RNA processing factors. Type I PRMT enzymes catalyze mono- and asymmetric dimethylation; Type II enzymes catalyze mono- and symmetric dimethylation. To understand the specific mechanisms of PRMT activity in splicing regulation, we inhibited Type I and II PRMTs and probed their transcriptomic consequences. Using the newly developed Splicing Kinetics and Transcript Elongation Rates by Sequencing (SKaTER-seq) method, analysis of co-transcriptional splicing demonstrated that PRMT inhibition resulted in altered splicing rates. Surprisingly, co-transcriptional splicing kinetics did not correlate with final changes in splicing of polyadenylated RNA. This was particularly true for retained introns (RI). By using actinomycin D to inhibit ongoing transcription, we determined that PRMTs post-transcriptionally regulate RI. Subsequent proteomic analysis of both PRMT-inhibited chromatin and chromatin-associated polyadenylated RNA identified altered binding of many proteins, including the Type I substrate, CHTOP, and the Type II substrate, SmB. Targeted mutagenesis of all methylarginine sites in SmD3, SmB, and SmD1 recapitulated splicing changes seen with Type II PRMT inhibition, without disrupting snRNP assembly. Similarly, mutagenesis of all methylarginine sites in CHTOP recapitulated the splicing changes seen with Type I PRMT inhibition. Examination of subcellular fractions further revealed that RI were enriched in the nucleoplasm and chromatin. Taken together, these data demonstrate that, through Sm and CHTOP arginine methylation, PRMTs regulate the post-transcriptional processing of nuclear, detained introns.
Collapse
Affiliation(s)
- Maxim I Maron
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Alyssa D Casill
- Department of Molecular Pharmacology, Albert Einstein College of MedicineBronxUnited States
| | - Varun Gupta
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Jacob S Roth
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| | - Charles C Query
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - Matthew J Gamble
- Department of Molecular Pharmacology, Albert Einstein College of MedicineBronxUnited States
- Department of Cell Biology, Albert Einstein College of MedicineBronxUnited States
| | - David Shechter
- Department of Biochemistry, Albert Einstein College of MedicineBronxUnited States
| |
Collapse
|
41
|
Nedelsky NB, Taylor JP. Pathological phase transitions in ALS-FTD impair dynamic RNA-protein granules. RNA (NEW YORK, N.Y.) 2022; 28:97-113. [PMID: 34706979 PMCID: PMC8675280 DOI: 10.1261/rna.079001.121] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The genetics of human disease serves as a robust and unbiased source of insight into human biology, both revealing fundamental cellular processes and exposing the vulnerabilities associated with their dysfunction. Over the last decade, the genetics of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) have epitomized this concept, as studies of ALS-FTD-causing mutations have yielded fundamental discoveries regarding the role of biomolecular condensation in organizing cellular contents while implicating disturbances in condensate dynamics as central drivers of neurodegeneration. Here we review this genetic evidence, highlight its intersection with patient pathology, and discuss how studies in model systems have revealed a role for aberrant condensation in neuronal dysfunction and death. We detail how multiple, distinct types of disease-causing mutations promote pathological phase transitions that disturb the dynamics and function of ribonucleoprotein (RNP) granules. Dysfunction of RNP granules causes pleiotropic defects in RNA metabolism and can drive the evolution of these structures to end-stage pathological inclusions characteristic of ALS-FTD. We propose that aberrant phase transitions of these complex condensates in cells provide a parsimonious explanation for the widespread cellular abnormalities observed in ALS as well as certain histopathological features that characterize late-stage disease.
Collapse
Affiliation(s)
- Natalia B Nedelsky
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
| | - J Paul Taylor
- Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, USA
- Howard Hughes Medical Institute, Chevy Chase, Maryland 20815, USA
| |
Collapse
|
42
|
Forman-Kay JD, Ditlev JA, Nosella ML, Lee HO. What are the distinguishing features and size requirements of biomolecular condensates and their implications for RNA-containing condensates? RNA (NEW YORK, N.Y.) 2022; 28:36-47. [PMID: 34772786 PMCID: PMC8675286 DOI: 10.1261/rna.079026.121] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Exciting recent work has highlighted that numerous cellular compartments lack encapsulating lipid bilayers (often called "membraneless organelles"), and that their structure and function are central to the regulation of key biological processes, including transcription, RNA splicing, translation, and more. These structures have been described as "biomolecular condensates" to underscore that biomolecules can be significantly concentrated in them. Many condensates, including RNA granules and processing bodies, are enriched in proteins and nucleic acids. Biomolecular condensates exhibit a range of material states from liquid- to gel-like, with the physical process of liquid-liquid phase separation implicated in driving or contributing to their formation. To date, in vitro studies of phase separation have provided mechanistic insights into the formation and function of condensates. However, the link between the often micron-sized in vitro condensates with nanometer-sized cellular correlates has not been well established. Consequently, questions have arisen as to whether cellular structures below the optical resolution limit can be considered biomolecular condensates. Similarly, the distinction between condensates and discrete dynamic hub complexes is debated. Here we discuss the key features that define biomolecular condensates to help understand behaviors of structures containing and generating RNA.
Collapse
Affiliation(s)
- Julie D Forman-Kay
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Jonathon A Ditlev
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
- Cell Biology Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
| | - Michael L Nosella
- Molecular Medicine Program, The Hospital for Sick Children, Toronto, Ontario M5G 0A4, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Hyun O Lee
- Department of Biochemistry, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| |
Collapse
|
43
|
The multifaceted effects of YTHDC1-mediated nuclear m 6A recognition. Trends Genet 2021; 38:325-332. [PMID: 34920906 DOI: 10.1016/j.tig.2021.11.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 11/17/2021] [Accepted: 11/23/2021] [Indexed: 12/15/2022]
Abstract
N6-methyladenosine or m6A modification to mRNAs is now recognised as a key regulator of gene expression and protein translation. The fate of m6A-modified mRNAs is decoded by m6A readers, mostly found in the cytoplasm, except for the nuclear-localised YTHDC1. While earlier studies have implicated YTHDC1-m6A functions in alternative splicing and mRNA export, recent literature has expanded its close association to the chromatin-associated, noncoding and regulatory RNAs to fine-tune transcription and gene expression in cells. Here, we summarise current progress in the study of YTHDC1 function in cells, highlighting its multiple modes of action in regulating gene expression, and propose the formation of YTHDC1 nuclear condensates as a general mechanism that underlies its diverse functions in the nucleus.
Collapse
|
44
|
Lin Y, Fang X. Phase separation in RNA biology. J Genet Genomics 2021; 48:872-880. [PMID: 34371110 DOI: 10.1016/j.jgg.2021.07.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/19/2021] [Accepted: 07/20/2021] [Indexed: 11/23/2022]
Abstract
The formation of biomolecular condensates via liquid-liquid phase separation (LLPS) is an advantageous strategy for cells to organize subcellular compartments for diverse functions. The involvement of LLPS is more widespread and overrepresented in RNA-related biological processes. This is in part because that RNAs are intrinsically multivalent macromolecules, and the presence of RNAs affects the formation, dissolution, and biophysical properties of biomolecular condensates formed by LLPS. Emerging studies have illustrated how LLPS participates in RNA transcription, splicing, processing, quality control, translation, and function. The interconnected regulation between LLPS and RNAs ensures tight control of RNA-related cellular functions.
Collapse
Affiliation(s)
- Yi Lin
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| | - Xiaofeng Fang
- School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
45
|
Liu X, Jiang S, Ma L, Qu J, Zhao L, Zhu X, Ding J. Time-dependent effect of 1,6-hexanediol on biomolecular condensates and 3D chromatin organization. Genome Biol 2021; 22:230. [PMID: 34404453 PMCID: PMC8369800 DOI: 10.1186/s13059-021-02455-3] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 07/30/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Biomolecular condensates have been implicated in multiple cellular processes. However, the global role played by condensates in 3D chromatin organization remains unclear. At present, 1,6-hexanediol (1,6-HD) is the only available tool to globally disrupt condensates, yet the conditions of 1,6-HD vary considerably between studies and may even trigger apoptosis. RESULTS In this study, we first analyzed the effects of different concentrations and treatment durations of 1,6-HD and found that short-term exposure to 1.5% 1,6-HD dissolved biomolecular condensates whereas long-term exposure caused aberrant aggregation without affecting cell viability. Based on this condition, we drew a time-resolved map of 3D chromatin organization and found that short-term treatment with 1.5% 1,6-HD resulted in reduced long-range interactions, strengthened compartmentalization, homogenized A-A interactions, B-to-A compartment switch and TAD reorganization, whereas longer exposure had the opposite effects. Furthermore, the long-range interactions between condensate-component-enriched regions were markedly weakened following 1,6-HD treatment. CONCLUSIONS In conclusion, our study finds a proper 1,6-HD condition and provides a resource for exploring the role of biomolecular condensates in 3D chromatin organization.
Collapse
Affiliation(s)
- Xinyi Liu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Shaoshuai Jiang
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Lin Ma
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Jiale Qu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Longying Zhao
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Xing Zhu
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Junjun Ding
- RNA Biomedical Institute, Sun Yat-Sen Memorial Hospital, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Center for Stem Cell Biology and Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-Sen University, Guangzhou, 510080, China.
- Department of Cell Biology, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
- Department of Histology and Embryology, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, 511436, China.
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
46
|
Saha K, Fernandez MM, Biswas T, Joseph S, Ghosh G. Discovery of a pre-mRNA structural scaffold as a contributor to the mammalian splicing code. Nucleic Acids Res 2021; 49:7103-7121. [PMID: 34161584 PMCID: PMC8266590 DOI: 10.1093/nar/gkab533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 06/03/2021] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
The specific recognition of splice signals at or near exon-intron junctions is not explained by their weak conservation and instead is postulated to require a multitude of features embedded in the pre-mRNA strand. We explored the possibility of 3D structural scaffold of AdML-a model pre-mRNA substrate-guiding early spliceosomal components to the splice signal sequences. We find that mutations in the non-cognate splice signal sequences impede recruitment of early spliceosomal components due to disruption of the global structure of the pre-mRNA. We further find that the pre-mRNA segments potentially interacting with the early spliceosomal component U1 snRNP are distributed across the intron, that there is a spatial proximity of 5' and 3' splice sites within the pre-mRNA scaffold, and that an interplay exists between the structural scaffold and splicing regulatory elements in recruiting early spliceosomal components. These results suggest that early spliceosomal components can recognize a 3D structural scaffold beyond the short splice signal sequences, and that in our model pre-mRNA, this scaffold is formed across the intron involving the major splice signals. This provides a conceptual basis to analyze the contribution of recognizable 3D structural scaffolds to the splicing code across the mammalian transcriptome.
Collapse
Affiliation(s)
- Kaushik Saha
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | - Mike Minh Fernandez
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | - Tapan Biswas
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| | - Gourisankar Ghosh
- Department of Chemistry and Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0375, USA
| |
Collapse
|
47
|
Courchaine EM, Barentine AES, Straube K, Lee DR, Bewersdorf J, Neugebauer KM. DMA-tudor interaction modules control the specificity of in vivo condensates. Cell 2021; 184:3612-3625.e17. [PMID: 34115980 DOI: 10.1016/j.cell.2021.05.008] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 12/21/2020] [Accepted: 05/07/2021] [Indexed: 12/31/2022]
Abstract
Biomolecular condensation is a widespread mechanism of cellular compartmentalization. Because the "survival of motor neuron protein" (SMN) is implicated in the formation of three different membraneless organelles (MLOs), we hypothesized that SMN promotes condensation. Unexpectedly, we found that SMN's globular tudor domain was sufficient for dimerization-induced condensation in vivo, whereas its two intrinsically disordered regions (IDRs) were not. Binding to dimethylarginine (DMA) modified protein ligands was required for condensate formation by the tudor domains in SMN and at least seven other fly and human proteins. Remarkably, asymmetric versus symmetric DMA determined whether two distinct nuclear MLOs-gems and Cajal bodies-were separate or "docked" to one another. This substructure depended on the presence of either asymmetric or symmetric DMA as visualized with sub-diffraction microscopy. Thus, DMA-tudor interaction modules-combinations of tudor domains bound to their DMA ligand(s)-represent versatile yet specific regulators of MLO assembly, composition, and morphology.
Collapse
Affiliation(s)
- Edward M Courchaine
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Andrew E S Barentine
- Cell Biology, Yale University, New Haven, CT 06520, USA; Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Korinna Straube
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Joerg Bewersdorf
- Cell Biology, Yale University, New Haven, CT 06520, USA; Biomedical Engineering, Yale University, New Haven, CT 06520, USA
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Cell Biology, Yale University, New Haven, CT 06520, USA.
| |
Collapse
|
48
|
Dikaya V, El Arbi N, Rojas-Murcia N, Nardeli SM, Goretti D, Schmid M. Insights into the role of alternative splicing in plant temperature response. JOURNAL OF EXPERIMENTAL BOTANY 2021:erab234. [PMID: 34105719 DOI: 10.1093/jxb/erab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Indexed: 05/21/2023]
Abstract
Alternative splicing occurs in all eukaryotic organisms. Since the first description of multiexon genes and the splicing machinery, the field has expanded rapidly, especially in animals and yeast. However, our knowledge about splicing in plants is still quite fragmented. Though eukaryotes show some similarity in the composition and dynamics of the splicing machinery, observations of unique plant traits are only starting to emerge. For instance, plant alternative splicing is closely linked to their ability to perceive various environmental stimuli. Due to their sessile lifestyle, temperature is a central source of information allowing plants to adjust their development to match current growth conditions. Hence, seasonal temperature fluctuations and day-night cycles can strongly influence plant morphology across developmental stages. Here we discuss the available data about temperature-dependent alternative splicing in plants. Given its fragmented state it is not always possible to fit specific observations into a coherent picture, yet it is sufficient to estimate the complexity of this field and the need of further research. Better understanding of alternative splicing as a part of plant temperature response and adaptation may also prove to be a powerful tool for both, fundamental and applied sciences.
Collapse
Affiliation(s)
- Varvara Dikaya
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nabila El Arbi
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Nelson Rojas-Murcia
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Sarah Muniz Nardeli
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Daniela Goretti
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
| | - Markus Schmid
- Umeå Plant Science Centre, Department of Plant Physiology, Umeå University, Umeå, Sweden
- Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design, Beijing Forestry University, Beijing, People's Republic of China
| |
Collapse
|
49
|
Keiten-Schmitz J, Röder L, Hornstein E, Müller-McNicoll M, Müller S. SUMO: Glue or Solvent for Phase-Separated Ribonucleoprotein Complexes and Molecular Condensates? Front Mol Biosci 2021; 8:673038. [PMID: 34026847 PMCID: PMC8138125 DOI: 10.3389/fmolb.2021.673038] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 04/08/2021] [Indexed: 01/01/2023] Open
Abstract
Spatial organization of cellular processes in membranous or membrane-less organelles (MLOs, alias molecular condensates) is a key concept for compartmentalizing biochemical pathways. Prime examples of MLOs are the nucleolus, PML nuclear bodies, nuclear splicing speckles or cytosolic stress granules. They all represent distinct sub-cellular structures typically enriched in intrinsically disordered proteins and/or RNA and are formed in a process driven by liquid-liquid phase separation. Several MLOs are critically involved in proteostasis and their formation, disassembly and composition are highly sensitive to proteotoxic insults. Changes in the dynamics of MLOs are a major driver of cell dysfunction and disease. There is growing evidence that post-translational modifications are critically involved in controlling the dynamics and composition of MLOs and recent evidence supports an important role of the ubiquitin-like SUMO system in regulating both the assembly and disassembly of these structures. Here we will review our current understanding of SUMO function in MLO dynamics under both normal and pathological conditions.
Collapse
Affiliation(s)
- Jan Keiten-Schmitz
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Linda Röder
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| | - Eran Hornstein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
- Department of Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Michaela Müller-McNicoll
- Faculty of Biosciences, Institute for Molecular Biosciences, Goethe University, Frankfurt am Main, Germany
| | - Stefan Müller
- Faculty of Medicine, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| |
Collapse
|
50
|
Kim W, Kim DY, Lee KH. RNA-Binding Proteins and the Complex Pathophysiology of ALS. Int J Mol Sci 2021; 22:ijms22052598. [PMID: 33807542 PMCID: PMC7961459 DOI: 10.3390/ijms22052598] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 12/21/2022] Open
Abstract
Genetic analyses of patients with amyotrophic lateral sclerosis (ALS) have identified disease-causing mutations and accelerated the unveiling of complex molecular pathogenic mechanisms, which may be important for understanding the disease and developing therapeutic strategies. Many disease-related genes encode RNA-binding proteins, and most of the disease-causing RNA or proteins encoded by these genes form aggregates and disrupt cellular function related to RNA metabolism. Disease-related RNA or proteins interact or sequester other RNA-binding proteins. Eventually, many disease-causing mutations lead to the dysregulation of nucleocytoplasmic shuttling, the dysfunction of stress granules, and the altered dynamic function of the nucleolus as well as other membrane-less organelles. As RNA-binding proteins are usually components of several RNA-binding protein complexes that have other roles, the dysregulation of RNA-binding proteins tends to cause diverse forms of cellular dysfunction. Therefore, understanding the role of RNA-binding proteins will help elucidate the complex pathophysiology of ALS. Here, we summarize the current knowledge regarding the function of disease-associated RNA-binding proteins and their role in the dysfunction of membrane-less organelles.
Collapse
Affiliation(s)
- Wanil Kim
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan, Gyeongbuk 38610, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Correspondence: (D.-Y.K.); (K.-H.L.); Tel.: +82-53-660-6880 (D.-Y.K.); +82-53-819-7743 (K.-H.L.)
| | - Kyung-Ha Lee
- Division of Cosmetic Science and Technology, Daegu Haany University, Hanuidae-ro 1, Gyeongsan, Gyeongbuk 38610, Korea;
- Correspondence: (D.-Y.K.); (K.-H.L.); Tel.: +82-53-660-6880 (D.-Y.K.); +82-53-819-7743 (K.-H.L.)
| |
Collapse
|