1
|
Tomita T. Non-vesicular extracellular RNA: A potential drug target to intervene cell-cell communication. Pharmacol Ther 2025; 266:108774. [PMID: 39644926 DOI: 10.1016/j.pharmthera.2024.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 12/03/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
The importance of non-vesicular extracellular RNA in the mammalian system is becoming increasingly apparent. Non-vesicular extracellular RNA is defined as RNA molecules not included in a lipid bilayer such as exosomes. Because non-vesicular extracellular RNA is not protected from RNases and is therefore rapidly degraded, they were not easily captured by conventional biofluid analyses. Recent publications showed that some non-vesicular extracellular RNAs are relatively stable in biofluids or tissue culture media, and they have unique biological functions. Major RNAs (rRNA, mRNA, and tRNA) and other non-cording RNAs play important roles in transcription or translation in the cell. In contrast, non-vesicular extracellular RNA has functions related to intercellular communication rather than protein synthesis. This review discusses the basics of non-vesicular extracellular RNA, including its definition, purification, receptors, and future prospects as a drug target.
Collapse
Affiliation(s)
- Takeshi Tomita
- Institute for Biomedical Sciences, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University, School of Medicine, Japan; Department of Biochemistry and Molecular Biology, Shinshu University, School of Medicine, 3-1-1 Asahi, Matsumoto, Nagano 390-8621, Japan.
| |
Collapse
|
2
|
Borniego ML, Singla-Rastogi M, Baldrich P, Sampangi-Ramaiah MH, Zand Karimi H, McGregor M, Meyers BC, Innes RW. Diverse plant RNAs coat Arabidopsis leaves and are distinct from apoplastic RNAs. Proc Natl Acad Sci U S A 2025; 122:e2409090121. [PMID: 39752527 PMCID: PMC11725841 DOI: 10.1073/pnas.2409090121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 11/18/2024] [Indexed: 01/15/2025] Open
Abstract
Transgenic expression of a double-stranded RNA in plants can induce silencing of homologous mRNAs in fungal pathogens. Although such host-induced gene silencing is well documented, the molecular mechanisms by which RNAs can move from the cytoplasm of plant cells across the plasma membrane of both the host cell and fungal cell are poorly understood. Indirect evidence suggests that this RNA transfer may occur at a very early stage of the infection process, prior to breach of the host cell wall, suggesting that silencing RNAs might be secreted onto leaf surfaces. To assess whether Arabidopsis plants possess a mechanism for secreting RNA onto leaf surfaces, we developed a protocol for isolating leaf surface RNA separately from intercellular (apoplastic) RNA. This protocol yielded abundant leaf surface RNA that displayed an RNA banding pattern distinct from apoplastic RNA, suggesting that it may be secreted directly onto the leaf surface rather than exuded through stomata or hydathodes. Notably, this RNA was not associated with either extracellular vesicles or protein complexes; however, RNA species longer than 100 nucleotides could be pelleted by ultracentrifugation. Furthermore, pelleting was inhibited by the divalent cation chelator EGTA, suggesting that these RNAs may form condensates on the leaf surface. These leaf surface RNAs are derived almost exclusively from Arabidopsis, but come from diverse genomic sources, including rRNA, tRNA, mRNA, intergenic RNA, microRNAs, and small interfering RNAs, with tRNAs especially enriched. We speculate that endogenous leaf surface RNA plays an important role in the assembly of distinct microbial communities on leaf surfaces.
Collapse
Affiliation(s)
| | | | - Patricia Baldrich
- Donald Danforth Plant Science Center, St. Louis, MO63132
- Genome Center, University of California–Davis, Davis, CA95616
| | | | | | | | - Blake C. Meyers
- Donald Danforth Plant Science Center, St. Louis, MO63132
- Genome Center, University of California–Davis, Davis, CA95616
- Division of Plant Science and Technology, University of Missouri, Columbia, MO65211
- Department of Plant Sciences, University of California–Davis, Davis, CA95616
| | - Roger W. Innes
- Department of Biology, Indiana University, Bloomington, IN47405
| |
Collapse
|
3
|
Sekar S, Srikanth S, Mukherjee AG, Gopalakrishnan AV, Wanjari UR, Vellingiri B, Renu K, Madhyastha H. Biogenesis and functional implications of extracellular vesicles in cancer metastasis. Clin Transl Oncol 2024:10.1007/s12094-024-03815-8. [PMID: 39704958 DOI: 10.1007/s12094-024-03815-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/23/2024] [Indexed: 12/21/2024]
Abstract
Extracellular vesicles (EVs) play a crucial role in the complex process of cancer metastasis by facilitating cellular communication and influencing the microenvironment to promote the spread and establishment of cancer cells in distant locations. This paper explores the process of EV biogenesis, explaining their various sources that range from endosomal compartments to plasma membrane shedding. It also discusses the complex mechanisms that control the sorting of cargo within EVs, determining their chemical makeup. We investigate the several functions of EVs in promoting the spread of cancer to other parts of the body. These functions include influencing the immune system, creating environments that support the formation of metastases before they occur, and aiding in the transformation of cells from an epithelial to a mesenchymal state. Moreover, we explore the practical consequences of EV cargo, such as nucleic acids, proteins, and lipids, in influencing the spread of cancer cells, from the beginning of invasion to the creation of secondary tumor sites. Examining recent progress in the field of EV-based diagnostics and treatments, we explore the potential of EVs as highly promising biomarkers for predicting the course of cancer and as targets for therapeutic intervention. This review aims to provide a complete understanding of the biology of EVs in the context of cancer metastasis. By unravelling the nuances of EV biology, it seeks to pave the way for new tactics in cancer detection, treatment, and management.
Collapse
Affiliation(s)
- Sneha Sekar
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Sandhya Srikanth
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Anirban Goutam Mukherjee
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| | - Uddesh Ramesh Wanjari
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine/Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab (CUPB), Bathinda, Punjab, 151401, India
| | - Kaviyarasi Renu
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu, 600077, India
| | - Harishkumar Madhyastha
- Department of Cardiovascular Physiology, Faculty of Medicine, University of Miyazaki, Miyazaki, 889-1692, Japan
| |
Collapse
|
4
|
Verwilt J, Vromman M. Current Understandings and Open Hypotheses on Extracellular Circular RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1872. [PMID: 39506237 DOI: 10.1002/wrna.1872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Circular RNAs (circRNAs) are closed RNA loops present in humans and other organisms. Various circRNAs have an essential role in diseases, including cancer. Cells can release circRNAs into the extracellular space of adjacent biofluids and can be present in extracellular vesicles. Due to their circular nature, extracellular circRNAs (excircRNAs) are more stable than their linear counterparts and are abundant in many biofluids, such as blood plasma and urine. circRNAs' link with disease suggests their extracellular counterparts have high biomarker potential. However, circRNAs and the extracellular space are challenging research domains, as they consist of complex biological systems plagued with nomenclature issues and a wide variety of protocols with different advantages and disadvantages. Here, we summarize what is known about excircRNAs, the current challenges in the field, and what is needed to improve extracellular circRNA research.
Collapse
Affiliation(s)
- Jasper Verwilt
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Marieke Vromman
- CNRS UMR3244 (Dynamics of Genetic Information), Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| |
Collapse
|
5
|
Sharma S, Artner T, Preissner KT, Lang IM. Nucleic acid liquid biopsies in cardiovascular disease: Cell-free RNA liquid biopsies in cardiovascular disease. Atherosclerosis 2024; 398:118584. [PMID: 39306538 DOI: 10.1016/j.atherosclerosis.2024.118584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/15/2024] [Accepted: 08/29/2024] [Indexed: 11/17/2024]
Abstract
Cardiovascular diseases (CVD) and their complications continue to be the leading cause of mortality globally. With recent advancements in molecular analytics, individualized treatments are gradually applied to the diagnosis and treatment of CVD. In the field of diagnostics, liquid biopsy combined with modern analytical technologies is the most popular natural source to identify disease biomarkers, as has been successfully demonstrated in the cancer field. While it is not easy to obtain any diseased tissue for different types of CVD such as atherosclerosis, deep vein thrombosis or stroke, liquid biopsies provide a simple and non-invasive alternative to surgical tissue specimens to obtain dynamic molecular information reflecting disease states. The release of cell-free ribonucleic acids (cfRNA) from stressed/damaged/dying and/or necrotic cells is a common physiological phenomenon. CfRNAs are a heterogeneous population of various types of extracellular RNA found in body fluids (blood, urine, saliva, cerebrospinal fluid) or in association with vascular/atherosclerotic tissue, offering insights into disease pathology on a diagnostic front. In particular, cf-ribosomal RNA has been shown to act as a damaging molecule in several cardio-vascular disease conditions. Moreover, such pathophysiological functions of cfRNA in CVD have been successfully antagonized by the administration of RNases. In this review, we discuss the origin, structure, types, and potential utilization of cfRNA in the diagnosis of CVD. Together with the analysis of established CVD biomarkers, the profiling of cfRNA in body fluids may thereby provide a promising approach for early disease detection and monitoring.
Collapse
Affiliation(s)
- Smriti Sharma
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Tyler Artner
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria
| | - Klaus T Preissner
- Kerckhoff-Heart Research Institute, Department Cardiology, Justus-Liebig-University, Giessen, Germany
| | - Irene M Lang
- Department of Internal Medicine II, Cardiology, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
6
|
Shaffer JF, Gupta A, Kharkwal G, Linares EE, Holmes AD, Swartz JR, Katzman S, Sharma U. Epididymis-specific RNase A family genes regulate fertility and small RNA processing. J Biol Chem 2024; 300:107933. [PMID: 39476961 DOI: 10.1016/j.jbc.2024.107933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 10/01/2024] [Accepted: 10/17/2024] [Indexed: 11/06/2024] Open
Abstract
Sperm small RNAs are implicated in intergenerational transmission of paternal environmental effects. Small RNAs generated by the cleavage of tRNAs, known as tRNA fragments (tRFs) or tRNA-derived RNAs (tDRs or tsRNAs), are an abundant class of RNAs in mature sperm and can be modulated by environmental conditions. The biogenesis of tRFs in the male reproductive tract remains poorly understood. Angiogenin, a member of the ribonuclease A superfamily (RNase A), cleaves tRNAs to generate tRFs in response to cellular stress. Four paralogs of Angiogenin, namely Rnase9, Rnase10, Rnase11, and Rnase12, are specifically expressed in the epididymis-a long, convoluted tubule where sperm mature and acquire fertility and motility. Here, by generating mice deleted for all four genes (Rnase9-12-/-, termed "KO" for Knock Out), we report that these genes regulate fertility and small RNA levels. KO male mice are sterile; KO sperm fertilized oocytes in vitro but failed to efficiently fertilize oocytes in vivo due to an inability of sperm to pass through the utero-tubular junction. Intriguingly, there were decreased levels of tRFs and rRNAs (rRNA-derived small RNAs or rsRNAs) in the KO epididymis and epididymal luminal fluid, although RNases 9-12 did not show ribonucleolytic activity in vitro. Importantly, KO sperm showed a dramatic decrease in the levels of tRFs, demonstrating a role of epididymis-specific Rnase9-12 genes in regulating sperm small RNA composition. Together, our results reveal an unexpected role of four epididymis-specific noncanonical ribonuclease A family genes in regulating fertility and small RNA processing.
Collapse
Affiliation(s)
- Joshua F Shaffer
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Alka Gupta
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | | | - Edgardo E Linares
- University of Colorado Anshutz Medical Campus, Aurora, Colorado, USA
| | - Andrew D Holmes
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Julian R Swartz
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, California, USA
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, USA.
| |
Collapse
|
7
|
Herrero‐Lorenzo M, Pérez‐Pérez J, Escaramís G, Martínez‐Horta S, Pérez‐González R, Rivas‐Asensio E, Kulisevsky J, Gámez‐Valero A, Martí E. Small RNAs in plasma extracellular vesicles define biomarkers of premanifest changes in Huntington's disease. J Extracell Vesicles 2024; 13:e12522. [PMID: 39377487 PMCID: PMC11633361 DOI: 10.1002/jev2.12522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 08/06/2024] [Accepted: 09/10/2024] [Indexed: 10/09/2024] Open
Abstract
Despite the advances in the understanding of Huntington's disease (HD), there is a need for molecular biomarkers to categorize mutation carriers during the preclinical stage of the disease preceding functional decline. Small RNAs (sRNAs) are a promising source of biomarkers since their expression levels are highly sensitive to pathobiological processes. Here, using an optimized method for plasma extracellular vesicles (EVs) purification and an exhaustive analysis pipeline of sRNA sequencing data, we show that EV-sRNAs are downregulated early in mutation carriers and that this deregulation is associated with premanifest cognitive performance. Seven candidate sRNAs (tRF-Glu-CTC, tRF-Gly-GCC, miR-451a, miR-21-5p, miR-26a-5p, miR-27a-3p and let7a-5p) were validated in additional subjects, showing a significant diagnostic accuracy at premanifest stages. Of these, miR-21-5p was significantly decreased over time in a longitudinal study; and miR-21-5p and miR-26a-5p levels correlated with cognitive changes in the premanifest cohort. In summary, the present results suggest that deregulated plasma EV-sRNAs define an early biosignature in mutation carriers with specific species highlighting the progression and cognitive changes occurring at the premanifest stage.
Collapse
Affiliation(s)
- Marina Herrero‐Lorenzo
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
| | - Jesús Pérez‐Pérez
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Georgia Escaramís
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Spanish Ministry of Science and InnovationMadridSpain
| | - Saül Martínez‐Horta
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Rocío Pérez‐González
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
- Alicante Institute for Health and Biomedical Research (ISABIAL) and Neuroscience InstituteAlicanteSpain
| | - Elisa Rivas‐Asensio
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Jaime Kulisevsky
- Movement Disorders UnitNeurology DepartmentSant Pau HospitalBarcelonaCatalunyaSpain
- Biomedical Research Institute (IIB‐Sant Pau)BarcelonaCatalunyaSpain
- Center for Networked Biomedical Research in Neurodegenerative Diseases (CIBERNED)MadridSpain
| | - Ana Gámez‐Valero
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Spanish Ministry of Science and InnovationMadridSpain
| | - Eulàlia Martí
- Department of BiomedicineFaculty of Medicine, Institute of NeurosciencesUniversity of BarcelonaBarcelonaCatalunyaSpain
- Biomedical Research Networking Center for Epidemiology and Public Health (CIBERESP)Spanish Ministry of Science and InnovationMadridSpain
- August Pi i Sunyer Biomedical research Institute (IDIBAPS), BarcelonaCatalunyaSpain
| |
Collapse
|
8
|
Troyer Z, Gololobova O, Koppula A, Liao Z, Horns F, Elowitz MB, Tosar JP, Batish M, Witwer KW. Simultaneous Protein and RNA Analysis in Single Extracellular Vesicles, Including Viruses. ACS NANO 2024; 18:26568-26584. [PMID: 39306763 PMCID: PMC11447916 DOI: 10.1021/acsnano.4c03679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
The individual detection of human immunodeficiency virus (HIV) virions and resolution from extracellular vesicles (EVs) during analysis is a difficult challenge. Infectious enveloped virions and nonviral EVs are released simultaneously by HIV-infected host cells, in addition to hybrid viral EVs containing combinations of HIV and host components but lacking replicative ability. Complicating the issue, EVs and enveloped virions are both delimited by a lipid bilayer and share similar size and density. The feature that distinguishes infectious virions from host and hybrid EVs is the HIV genomic RNA (gRNA), which allows the virus to replicate. Single-particle analysis techniques, which provide snapshots of single biological nanoparticles, could resolve infectious virions from EVs. However, current single-particle analysis techniques focus mainly on protein detection, which fail to resolve hybrid EVs from infectious virions. A method to simultaneously detect viral protein and internal gRNA in the same particle would allow resolution of infectious HIV from EVs and noninfectious virions. Here, we introduce SPIRFISH, a high-throughput method for single-particle protein and RNA analysis, combining single particle interferometric reflectance imaging sensor with single-molecule fluorescence in situ hybridization. Using SPIRFISH, we detect HIV-1 envelope protein gp120 and genomic RNA within single infectious virions, allowing resolution against EV background and noninfectious virions. We further show that SPIRFISH can be used to detect specific RNAs within EVs. This may have major utility for EV therapeutics, which are increasingly focused on EV-mediated RNA delivery. SPIRFISH should enable single particle analysis of a broad class of RNA-containing nanoparticles.
Collapse
Affiliation(s)
- Zach Troyer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Olesia Gololobova
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- EV Core Facility "EXCEL", Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Aakash Koppula
- Department of Medical and Molecular Sciences, and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Zhaohao Liao
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| | - Felix Horns
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Michael B Elowitz
- Howard Hughes Medical Institute and Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- School of Science, Universidad de la República, Montevideo 11400, Uruguay
| | - Mona Batish
- Department of Medical and Molecular Sciences, and Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- EV Core Facility "EXCEL", Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
- The Richman Family Precision Medicine Center of Excellence in Alzheimer's Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, United States
| |
Collapse
|
9
|
Wang Y, Cui T, Niu K, Ma H. Co-expression analyses reveal key Cd stress response-related metabolites and transcriptional regulators in Kentucky bluegrass. CHEMOSPHERE 2024; 363:142937. [PMID: 39059638 DOI: 10.1016/j.chemosphere.2024.142937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/22/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Kentucky bluegrass (Poa pratensis) is known for its high cadmium (Cd) tolerance and accumulation, and it is therefore considered to have the potential for phytoremediation of Cd-contaminated soil. However, the mechanisms underlying the accumulation and tolerance of Cd in Kentucky bluegrass are largely unknown. In this study, we examined variances in the transcriptome and metabolome of a Cd-tolerant variety (Midnight, M) and a Cd-sensitive variety (Rugby II, R) to pinpoint crucial regulatory genes and metabolites associated with Cd response. We also validated the role of the key metabolite, l-phenylalanine, in Cd transport and alleviation of Cd stress by applying it to the Cd-tolerant variety M. Metabolites of the M and R varieties under Cd stress were subjected to co-expression analysis. The results showed that shikimate-phenylpropanoid pathway metabolites (phenolic acids, phenylpropanoids, and polyketides) were highly induced by Cd treatment and were more abundant in the Cd-tolerant variety. Gene co-expression network analysis was employed to further identify genes closely associated with key metabolites. The calcium regulatory genes, zinc finger proteins (ZAT6 and PMA), MYB transcription factors (MYB78, MYB62, and MYB33), ONAC077, receptor-like protein kinase 4, CBL-interacting protein kinase 1, and protein phosphatase 2A were highly correlated with the metabolism of phenolic acids, phenylpropanoids, and polyketides. Exogenous l-phenylalanine can significantly increase the Cd concentration in the leaves (22.27%-55.00%) and roots (7.69%-35.16%) of Kentucky bluegrass. The use of 1 mg/L of l-phenylalanine has been demonstrated to lower malondialdehyde levels and higher total phenols, flavonoids, and anthocyanins levels, while also significantly enhancing the uptake of Cd and its translocation from roots to shoots. Our results provide insights into the response mechanisms to Cd stress and offer a novel l-phenylalanine-based phytoremediation strategy for Cd-containing soil.
Collapse
Affiliation(s)
- Yong Wang
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Ting Cui
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Kuiju Niu
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China
| | - Huiling Ma
- College of Pratacultural Science, Gansu Agricultural University, Key Laboratory of Grassland Ecosystem, Ministry of Education, Pratacultural Engineering Laboratory of Gansu Province, Sino-U.S. Center for Grazingland Ecosystem Sustainability, Lanzhou, Gansu, 730070, China.
| |
Collapse
|
10
|
Shaffer JF, Gupta A, Kharkwal G, Linares EE, Holmes AD, Katzman S, Sharma U. Epididymis-specific RNase A family genes regulate fertility and small RNA processing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.26.608813. [PMID: 39253511 PMCID: PMC11383283 DOI: 10.1101/2024.08.26.608813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
Sperm small RNAs are implicated in intergenerational transmission of paternal environmental effects. Small RNAs generated by cleavage of tRNAs, known as tRNA fragments (tRFs), are an abundant class of RNAs in mature sperm, and can be modulated by environmental conditions. The ribonuclease(s) responsible for the biogenesis of tRFs in the male reproductive tract remains unknown. Angiogenin, a member of the Ribonuclease A superfamily (RNase A), cleaves tRNAs to generate tRFs in response to cellular stress. Four paralogs of Angiogenin, namely Rnase9, Rnase10, Rnase11, and Rnase12, are specifically expressed in the epididymis-a long, convoluted tubule where sperm mature and acquire fertility and motility. The biological functions of these genes remain largely unknown. Here, by generating mice deleted for all four genes (Rnase9-12-/-, termed "KO" for Knock Out), we report that these genes regulate fertility and RNA processing. KO mice showed complete male sterility. KO sperm fertilized oocytes in vitro but failed to efficiently fertilize oocytes in vivo, likely due to an inability of sperm to pass through the utero-tubular junction. Intriguingly, there were decreased levels of fragments of tRNAs (tRFs) and rRNAs (rRNA-derived small RNAs or rsRNAs) in the KO epididymis and epididymal luminal fluid, implying that Rnase9-12 regulate the biogenesis and/or stability of tRFs and rsRNAs. Importantly, KO sperm showed a dramatic decrease in the levels of tRFs, demonstrating a role of Rnase9-12 in regulating sperm RNA composition. Together, our results reveal an unexpected role of four epididymis-specific non-canonical RNase A family genes in fertility and RNA processing.
Collapse
Affiliation(s)
- Joshua F. Shaffer
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Alka Gupta
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Geetika Kharkwal
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Edgardo E. Linares
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Andrew D. Holmes
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| | - Sol Katzman
- Genomics Institute, University of California, Santa Cruz, California, 95064
| | - Upasna Sharma
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Cruz, California, 95064
| |
Collapse
|
11
|
Wang K, Liu CY, Fang B, Li B, Li YH, Xia QQ, Zhao Y, Cheng XL, Yang SM, Zhang MH, Wang K. The function and therapeutic potential of transfer RNA-derived small RNAs in cardiovascular diseases: A review. Pharmacol Res 2024; 206:107279. [PMID: 38942340 DOI: 10.1016/j.phrs.2024.107279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 06/20/2024] [Accepted: 06/20/2024] [Indexed: 06/30/2024]
Abstract
Transfer RNA-derived small RNAs (tsRNAs) are a class of small non-coding RNA (sncRNA) molecules derived from tRNA, including tRNA derived fragments (tRFs) and tRNA halfs (tiRNAs). tsRNAs can affect cell functions by participating in gene expression regulation, translation regulation, intercellular signal transduction, and immune response. They have been shown to play an important role in various human diseases, including cardiovascular diseases (CVDs). Targeted regulation of tsRNAs expression can affect the progression of CVDs. The tsRNAs induced by pathological conditions can be detected when released into the extracellular, giving them enormous potential as disease biomarkers. Here, we review the biogenesis, degradation process and related functional mechanisms of tsRNAs, and discuss the research progress and application prospects of tsRNAs in different CVDs, to provide a new perspective on the treatment of CVDs.
Collapse
Affiliation(s)
- Kai Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Cui-Yun Liu
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Fang
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Bo Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Ying-Hui Li
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Qian-Qian Xia
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Yan Zhao
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Xue-Li Cheng
- Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China
| | - Su-Min Yang
- Department of Cardiovascular Surgery, The Affiliated Hospital of Qingdao University, Qingdao 266003, China.
| | - Mei-Hua Zhang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China.
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital affiliated to Qingdao University, Jinan 250014, China; Institute for Translational Medicine, The Affiliated Hospital of Qingdao University, College of Medicine, Qingdao University, Qingdao 266021, China.
| |
Collapse
|
12
|
Scheepbouwer C, Aparicio-Puerta E, Gómez-Martin C, van Eijndhoven MA, Drees EE, Bosch L, de Jong D, Wurdinger T, Zijlstra JM, Hackenberg M, Gerber A, Pegtel DM. Full-length tRNAs lacking a functional CCA tail are selectively sorted into the lumen of extracellular vesicles. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.12.593148. [PMID: 38765958 PMCID: PMC11100784 DOI: 10.1101/2024.05.12.593148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Small extracellular vesicles (sEVs) are heterogenous lipid membrane particles typically less than 200 nm in size and secreted by most cell types either constitutively or upon activation signals. sEVs isolated from biofluids contain RNAs, including small non-coding RNAs (ncRNAs), that can be either encapsulated within the EV lumen or bound to the EV surface. EV-associated microRNAs (miRNAs) are, despite a relatively low abundance, extensively investigated for their selective incorporation and their role in cell-cell communication. In contrast, the sorting of highly-structured ncRNA species is understudied, mainly due to technical limitations of traditional small RNA sequencing protocols. Here, we adapted ALL-tRNAseq to profile the relative abundance of highly structured and potentially methylated small ncRNA species, including transfer RNAs (tRNAs), small nucleolar RNAs (snoRNAs), and Y RNAs in bulk EV preparations. We determined that full-length tRNAs, typically 75 to 90 nucleotides in length, were the dominant small ncRNA species (>60% of all reads in the 18-120 nucleotides size-range) in all cell culture-derived EVs, as well as in human plasma-derived EV samples, vastly outnumbering 21 nucleotides-long miRNAs. Nearly all EV-associated tRNAs were protected from external RNAse treatment, indicating a location within the EV lumen. Strikingly, the vast majority of luminal-sorted, full-length, nucleobase modification-containing EV-tRNA sequences, harbored a dysfunctional 3' CCA tail, 1 to 3 nucleotides truncated, rendering them incompetent for amino acid loading. In contrast, in non-EV associated extracellular particle fractions (NVEPs), tRNAs appeared almost exclusively fragmented or 'nicked' into tRNA-derived small RNAs (tsRNAs) with lengths between 18 to 35 nucleotides. We propose that in mammalian cells, tRNAs that lack a functional 3' CCA tail are selectively sorted into EVs and shuttled out of the producing cell, offering a new perspective into the physiological role of secreted EVs and luminal cargo-selection.
Collapse
Affiliation(s)
- Chantal Scheepbouwer
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Ernesto Aparicio-Puerta
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, USA
| | - Cristina Gómez-Martin
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Monique A.J. van Eijndhoven
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Esther E.E. Drees
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Leontien Bosch
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Daphne de Jong
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| | - Josée M. Zijlstra
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
- Department of Hematology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
| | - Michael Hackenberg
- Bioinformatics Laboratory, Biomedical Research Centre (CIBM), Biotechnology Institute, PTS, Avda. del Conocimiento s/n, 18100 Granada, Spain
- Genetics Department, Faculty of Science, Universidad de Granada, Campus de Fuentenueva s/n, 18071 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, Spain
- Instituto de Investigación Biosanitaria ibs. Granada, University Hospitals of Granada-University of Granada, Spain; Conocimiento s/n 18100, Granada. Spain
| | - Alan Gerber
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Cancer Biology, Amsterdam, Netherlands
| | - D. Michiel Pegtel
- Department of Pathology, Cancer Center Amsterdam, Amsterdam University Medical Center, VU University, Amsterdam, Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, Netherlands
| |
Collapse
|
13
|
Castellano M, Blanco V, Calzi ML, Costa B, Witwer K, Hill M, Cayota A, Segovia M, Tosar JP. Ribonuclease activity undermines immune sensing of naked extracellular RNA. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.23.590771. [PMID: 38712104 PMCID: PMC11071435 DOI: 10.1101/2024.04.23.590771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The plasma membrane and the membrane of endosomal vesicles are considered physical barriers preventing extracellular RNA uptake. While naked RNA can be spontaneously internalized by certain cells types, functional delivery of naked RNA into the cytosol has been rarely observed. Here we show that extracellular ribonucleases, mainly derived from cell culture supplements, have so far hindered the study of extracellular RNA functionality. In the presence of active ribonuclease inhibitors (RI), naked bacterial RNA is pro-inflammatory when spiked in the media of dendritic cells and macrophages. In murine cells, this response mainly depends on the action of endosomal Toll-like receptors. However, we also show that naked RNA can perform endosomal escape and engage with cytosolic RNA sensors and ribosomes. For example, naked mRNAs encoding reporter proteins can be spontaneously internalized and translated by a variety of cell types, in an RI-dependent manner. In vivo, RI co-injection enhances the activation induced by naked extracellular RNA on splenic lymphocytes and myeloid-derived leukocytes. Furthermore, naked extracellular RNA is inherently pro-inflammatory in ribonuclease-poor compartments such as the peritoneal cavity. Overall, these results demonstrate that naked RNA is bioactive and does not need encapsulation inside synthetic or biological lipid vesicles for functional uptake, making a case for nonvesicular extracellular RNA-mediated intercellular communication.
Collapse
Affiliation(s)
- Mauricio Castellano
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
- Immunoregulation and Inflammation Laboratory, Institut Pasteur Montevideo, Uruguay
| | - Valentina Blanco
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
| | - Marco Li Calzi
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
| | - Bruno Costa
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
- Analytical Biochemistry Unit, School of Science, Universidad de la República, Uruguay
| | - Kenneth Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- EV Core Facility “EXCEL”, Institute for Basic Biomedical Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Richman Family Precision Medicine Center of Excellence in Alzheimer’s Disease, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Marcelo Hill
- Immunoregulation and Inflammation Laboratory, Institut Pasteur Montevideo, Uruguay
- Academic Unit of Immunobiology, School of Medicine, Universidad de la República, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
- Hospital de Clínicas, Universidad de la República, Uruguay
| | - Mercedes Segovia
- Immunoregulation and Inflammation Laboratory, Institut Pasteur Montevideo, Uruguay
- Academic Unit of Immunobiology, School of Medicine, Universidad de la República, Uruguay
| | - Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur Montevideo, Uruguay
- Analytical Biochemistry Unit, School of Science, Universidad de la República, Uruguay
| |
Collapse
|
14
|
Chen Q, Li D, Jiang L, Wu Y, Yuan H, Shi G, Liu F, Wu P, Jiang K. Biological functions and clinical significance of tRNA-derived small fragment (tsRNA) in tumors: Current state and future perspectives. Cancer Lett 2024; 587:216701. [PMID: 38369004 DOI: 10.1016/j.canlet.2024.216701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024]
Abstract
A new class of noncoding RNAs, tsRNAs are not only abundant in humans but also have high tissue specificity. Recently, an increasing number of studies have explored the correlations between tsRNAs and tumors, showing that tsRNAs can affect biological behaviors of tumor cells, such as proliferation, apoptosis and metastasis, by modulating protein translation, RNA transcription or posttranscriptional regulation. In addition, tsRNAs are widely distributed and stably expressed, which endows them with broad application prospects in diagnosing and predicting the prognosis of tumors, and they are expected to become new biomarkers. However, notably, the current research on tsRNAs still faces problems that need to be solved. In this review, we describe the characteristics of tsRNAs as well as their unique features and functions in tumors. Moreover, we also discuss the potential opportunities and challenges in clinical applications and research of tsRNAs.
Collapse
Affiliation(s)
- Qun Chen
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Danrui Li
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Luyang Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yang Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Hao Yuan
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Guodong Shi
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Fengyuan Liu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengfei Wu
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| | - Kuirong Jiang
- Pancreas Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|
15
|
Daban A, Beaussire-Trouvay L, Lévêque É, Alexandru C, Tennevet I, Langlois O, Veresezan O, Marguet F, Clatot F, Di Fiore F, Sarafan-Vasseur N, Fontanilles M. Prognostic value of circulating short-length DNA fragments in unresected glioblastoma patients. Transl Oncol 2024; 42:101897. [PMID: 38340682 PMCID: PMC10867437 DOI: 10.1016/j.tranon.2024.101897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/08/2024] [Accepted: 01/28/2024] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Liquid biopsy application is still challenging in glioblastoma patients and the usefulness of short-length DNA (slDNA) fragments is not established. The aim was to investigate slDNA concentration as a prognostic marker in unresected glioblastoma patients. METHODS Patients with unresected glioblastoma and treated by radiochemotherapy (RT/TMZ) were included. Plasmas were prospectively collected at three times: before (pre-) RT, after (post-) RT and at the time of progression. Primary objective was to investigate the impact on survival of slDNA concentration [slDNA] variation during RT/TMZ. Secondary objectives were to explore the association between tumor volume, corticosteroid exposition and [slDNA]; and the impact of slDNA detection at pre-RT on survival. RESULTS Thirty-six patients were analyzed: 11 patients (30.6 %) experienced [slDNA] decrease during RT/TMZ, 22 patients (61.1 %) experienced increase and 3 patients (8.3 %) had stability. Decrease of [slDNA] during RT/TMZ was associated with better outcome compared to increase or stability: median OS, since end of RT, of 13.2 months [11.4 - NA] vs 10.1 months [7.8 - 12.6] and 6.8 months [4.5 - NA], p = 0.015, respectively. slDNA detection at pre-RT time was associated with improved OS: 11.7 months in the slDNA(+) group versus 8.8 months in the slDNA(-) group, p = 0.004. [slDNA] was not associated with corticosteroids exposition or tumor volume. No influence on survival was observed for both whole cfDNA concentration or slDNA peak size. CONCLUSION [slDNA] decrease during radiochemotherapy phase is a favorable prognostic marker on OS for unresected glioblastoma patients. Larger and independent cohorts are now required. TRIAL REGISTRATION ClinicalTrial, NCT02617745. Registered 1 December 2015, https://clinicaltrials.gov/ct2/show/NCT02617745?term=glioplak&draw=2&rank=1.
Collapse
Affiliation(s)
- Arthur Daban
- Department of Medical Oncology, Cancer Centre Henri Becquerel, Rue d'Amiens, 76038, Rouen, France
| | | | - Émilie Lévêque
- Clinical Research Unit, Cancer Centre Henri Becquerel, Rue d'Amiens, 76038, Rouen, France
| | - Cristina Alexandru
- Department of Medical Oncology, Cancer Centre Henri Becquerel, Rue d'Amiens, 76038, Rouen, France
| | - Isabelle Tennevet
- Department of Medical Oncology, Cancer Centre Henri Becquerel, Rue d'Amiens, 76038, Rouen, France
| | - Olivier Langlois
- Department of Neurosurgery, Rouen University Hospital, F-76031, 1 Rue de Germont, Rouen, CEDEX 76031, France
| | - Ovidiu Veresezan
- Department of Radiation Oncology, Henri Becquerel Cancer Center, 76038, Rouen, France
| | - Florent Marguet
- Univ Rouen Normandy, INSERM unit U1245 Brain and Cancer Genomics, Rouen, 76000 France; Department of Pathology, Rouen University Hospital, 1 Rue de Germont, Rouen, CEDEX 76031, France
| | - Florian Clatot
- Department of Medical Oncology, Cancer Centre Henri Becquerel, Rue d'Amiens, 76038, Rouen, France; Univ Rouen Normandy, INSERM unit U1245 Brain and Cancer Genomics, Rouen, 76000 France
| | - Frédéric Di Fiore
- Department of Medical Oncology, Cancer Centre Henri Becquerel, Rue d'Amiens, 76038, Rouen, France; Univ Rouen Normandy, INSERM unit U1245 Brain and Cancer Genomics, Rouen, 76000 France
| | | | - Maxime Fontanilles
- Department of Medical Oncology, Cancer Centre Henri Becquerel, Rue d'Amiens, 76038, Rouen, France; Univ Rouen Normandy, INSERM unit U1245 Brain and Cancer Genomics, Rouen, 76000 France.
| |
Collapse
|
16
|
Akiyama Y, Ivanov P. Oxidative Stress, Transfer RNA Metabolism, and Protein Synthesis. Antioxid Redox Signal 2024; 40:715-735. [PMID: 37767630 PMCID: PMC11001508 DOI: 10.1089/ars.2022.0206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 09/26/2023] [Accepted: 09/26/2023] [Indexed: 09/29/2023]
Abstract
Significance: Oxidative stress refers to excessive intracellular levels of reactive oxygen species (ROS) due to an imbalance between ROS production and the antioxidant defense system. Under oxidative stress conditions, cells trigger various stress response pathways to protect themselves, among which repression of messenger RNA (mRNA) translation is one of the key hallmarks promoting cell survival. This regulation process minimizes cellular energy consumption, enabling cells to survive in adverse conditions and to promote recovery from stress-induced damage. Recent Advances: Recent studies suggest that transfer RNAs (tRNAs) play important roles in regulating translation as a part of stress response under adverse conditions. In particular, research relying on high-throughput techniques such as next-generation sequencing and mass spectrometry approaches has given us detailed information on mechanisms such as individual tRNA dynamics and crosstalk among post-transcriptional modifications. Critical Issues: Oxidative stress leads to dynamic tRNA changes, including their localization, cleavage, and alteration of expression profiles and modification patterns. Growing evidence suggests that these changes not only are tightly regulated by stress response mechanisms, but also can directly fine-tune the translation efficiency, which contributes to cell- or tissue-specific response to oxidative stress. Future Directions: In this review, we describe recent advances in the understanding of the dynamic changes of tRNAs caused by oxidative stress. We also highlight the emerging roles of tRNAs in translation regulation under the condition of oxidative stress. In addition, we discuss future perspectives in this research field. Antioxid. Redox Signal. 40, 715-735.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women's Hospital, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
17
|
Li J, Kang X, Guidi I, Lu L, Fernández-Millán P, Prats-Ejarque G, Boix E. Structural determinants for tRNA selective cleavage by RNase 2/EDN. Structure 2024; 32:328-341.e4. [PMID: 38228145 DOI: 10.1016/j.str.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
tRNA-derived fragments (tRFs) have emerged as key players of immunoregulation. Some RNase A superfamily members participate in the shaping of the tRFs population. By comparing wild-type and knockout macrophage cell lines, our previous work revealed that RNase 2 can selectively cleave tRNAs. Here, we confirm the in vitro protein cleavage pattern by screening of synthetic tRNAs, single-mutant variants, and anticodon-loop DNA/RNA hairpins. By sequencing of tRF products, we identified the cleavage selectivity of recombinant RNase 2 with base specificity at B1 (U/C) and B2 (A) sites, consistent with a previous cellular study. Lastly, protein-hairpin complexes were predicted by MD simulations. Results reveal the contribution of the α1, loop 3 and loop 4, and β6 RNase 2 regions, where residues Arg36/Asn39/Gln40/Asn65/Arg68/Arg132 provide interactions, spanning from P-1 to P2 sites that are essential for anticodon loop recognition. Knowledge of RNase 2-specific tRFs generation might guide new therapeutic approaches for infectious and immune-related diseases.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Xincheng Kang
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Irene Guidi
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pablo Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
18
|
Tosar JP, Castellano M, Costa B, Cayota A. Small RNA structural biochemistry in a post-sequencing era. Nat Protoc 2024; 19:595-602. [PMID: 38057624 DOI: 10.1038/s41596-023-00936-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 08/25/2023] [Indexed: 12/08/2023]
Abstract
High-throughput sequencing has had an enormous impact on small RNA research during the past decade. However, sequencing only offers a one-dimensional view of the transcriptome and is often highly biased. Additionally, the 'sequence, map and annotate' approach, used widely in small RNA research, can lead to flawed interpretations of the data, lacking biological plausibility, due in part to database issues. Even in the absence of technical biases, the loss of three-dimensional information is a major limitation to understanding RNA stability, turnover and function. For example, noncoding RNA-derived fragments seem to exist mainly as dimers, tetramers or as nicked forms of their parental RNAs, contrary to widespread assumptions. In this perspective, we will discuss main sources of bias during small RNA-sequencing, present several useful bias-reducing strategies and provide guidance on the interpretation of small RNA-sequencing results, with emphasis on RNA fragmentomics. As sequencing offers a one-dimensional projection of a four-dimensional reality, prior structure-level knowledge is often needed to make sense of the data. Consequently, while less-biased sequencing methods are welcomed, integration of orthologous experimental techniques is also strongly recommended.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay.
- Analytical Biochemistry Unit, Center for Nuclear Research, School of Science, Universidad de la República, Montevideo, Uruguay.
| | - Mauricio Castellano
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Biochemistry Department, School of Science, Universidad de la República, Montevideo, Uruguay
| | - Bruno Costa
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Analytical Biochemistry Unit, Center for Nuclear Research, School of Science, Universidad de la República, Montevideo, Uruguay
| | - Alfonso Cayota
- Functional Genomics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Hospital de Clínicas, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
19
|
Xiong Y, Shi L, Zhang M, Zhou C, Mao Y, Hong Z, Wang Z, Ma L. Differential expression of tsRNAs and miRNAs in embryo culture medium: potential impact on embryo implantation. J Assist Reprod Genet 2024; 41:781-793. [PMID: 38270749 PMCID: PMC10957807 DOI: 10.1007/s10815-024-03034-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 01/15/2024] [Indexed: 01/26/2024] Open
Abstract
PURPOSE Can small RNA derived from embryos in conditioned embryo culture medium (ECM) influence embryo implantation? METHODS We employed small RNA sequencing to investigate the expression profiles of transfer RNA-derived small RNA (tsRNA) and microRNA (miRNA) in ECM from high-quality and low-quality embryos. Quantitative real-time PCR was employed to validate the findings of small RNA sequencing. Additionally, we conducted bioinformatics analysis to predict the potential functions of these small RNAs in embryo implantation. To establish the role of tiRNA-1:35-Leu-TAG-2 in embryonic trophoblast cell adhesion, we utilized co-culture systems involving JAR and Ishikawa cells. RESULTS Our analysis revealed upregulation of nine tsRNAs and four miRNAs in ECM derived from high-quality embryos, whereas 37 tsRNAs and 12 miRNAs exhibited upregulation in ECM from low-quality embryos. The bioinformatics analysis of tsRNA, miRNA, and mRNA pathways indicated that their respective target genes may play pivotal roles in both embryo development and endometrial receptivity. Utilizing tiRNA mimics, we demonstrated that the prominently expressed tiRNA-1:35-Leu-TAG-2 in the low-quality ECM group can be internalized by Ishikawa cells. Notably, transfection of tiRNA-1:35-Leu-TAG-2 into Ishikawa cells reduced the attachment rate of JAR spheroids. CONCLUSION Our investigation uncovers significant variation in the expression profiles of tsRNAs and miRNAs between ECM derived from high- and low-quality embryos. Intriguingly, the release of tiRNA-1:35-Leu-TAG-2 by low-quality embryos detrimentally affects embryo implantation and endometrial receptivity. These findings provide fresh insights into understanding the molecular foundations of embryo-endometrial communication.
Collapse
Affiliation(s)
- Yao Xiong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei Province, 430071, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Lei Shi
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Ming Zhang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Chun Zhou
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Yanhong Mao
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Zhidan Hong
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Zihan Wang
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China
- Wuhan Clinical Research Center for Reproductive Science and Birth Health, Wuhan, Hubei Province, 430071, People's Republic of China
- Hubei Clinical Research Center for Prenatal Diagnosis and Birth Health, Wuhan, Hubei Province, 430071, People's Republic of China
| | - Ling Ma
- Center for Reproductive Medicine, Zhongnan Hospital of Wuhan University, Wuhan, Hubei Province, 430071, People's Republic of China.
| |
Collapse
|
20
|
Panstruga R, Spanu P. Transfer RNA and ribosomal RNA fragments - emerging players in plant-microbe interactions. THE NEW PHYTOLOGIST 2024; 241:567-577. [PMID: 37985402 DOI: 10.1111/nph.19409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/03/2023] [Indexed: 11/22/2023]
Abstract
According to current textbooks, the principal task of transfer and ribosomal RNAs (tRNAs and rRNAs, respectively) is synthesizing proteins. During the last decade, additional cellular roles for precisely processed tRNA and rRNAs fragments have become evident in all kingdoms of life. These RNA fragments were originally overlooked in transcriptome datasets or regarded as unspecific degradation products. Upon closer inspection, they were found to engage in a variety of cellular processes, in particular the modulation of translation and the regulation of gene expression by sequence complementarity- and Argonaute protein-dependent gene silencing. More recently, the presence of tRNA and rRNA fragments has also been recognized in the context of plant-microbe interactions, both on the plant and the microbial side. While most of these fragments are likely to affect endogenous processes, there is increasing evidence for their transfer across kingdoms in the course of such interactions; these processes may involve mutual exchange in association with extracellular vesicles. Here, we summarize the state-of-the-art understanding of tRNA and rRNA fragment's roles in the context of plant-microbe interactions, their potential biogenesis, presumed delivery routes, and presumptive modes of action.
Collapse
Affiliation(s)
- Ralph Panstruga
- RWTH Aachen University, Worringerweg 1, Aachen, 52056, Germany
| | - Pietro Spanu
- Department of Life Sciences, Imperial College London, Imperial College Road, London, SW7 2AZ, UK
| |
Collapse
|
21
|
Makarova J, Maltseva D, Tonevitsky A. Challenges in characterization of transcriptomes of extracellular vesicles and non-vesicular extracellular RNA carriers. Front Mol Biosci 2023; 10:1327985. [PMID: 38116380 PMCID: PMC10729812 DOI: 10.3389/fmolb.2023.1327985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Since its original discovery over a decade ago, extracellular RNA (exRNA) has been found in all biological fluids. Furthermore, extracellular microRNA has been shown to be involved in communication between various cell types. Importantly, the exRNA is protected from RNases degradation by certain carriers including membrane vesicles and non-vesicular protein nanoparticles. Each type of carrier has its unique exRNA profile, which may vary depending on cell type and physiological conditions. To clarify putative mechanisms of intercellular communication mediated by exRNA, the RNA profile of each carrier has to be characterized. While current methods of biofluids fractionation are continuously improving, they fail to completely separate exRNA carriers. Likewise, most popular library preparation approaches for RNA sequencing do not allow obtaining exhaustive and unbiased data on exRNA transcriptome. In this mini review we discuss ongoing progress in the field of exRNA, with the focus on exRNA carriers, analyze the key methodological challenges and provide recommendations on how the latter could be overcome.
Collapse
Affiliation(s)
- Julia Makarova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Diana Maltseva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Hertsen Moscow Oncology Research Center, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Art Photonics GmbH, Berlin, Germany
| |
Collapse
|
22
|
Chen Q, Zhou T. Emerging functional principles of tRNA-derived small RNAs and other regulatory small RNAs. J Biol Chem 2023; 299:105225. [PMID: 37673341 PMCID: PMC10562873 DOI: 10.1016/j.jbc.2023.105225] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 08/22/2023] [Accepted: 08/28/2023] [Indexed: 09/08/2023] Open
Abstract
Recent advancements in small RNA sequencing have unveiled a previously hidden world of regulatory small noncoding RNAs (sncRNAs) that extend beyond the well-studied small interfering RNAs, microRNAs, and piwi-interacting RNAs. This exploration, starting with tRNA-derived small RNAs, has led to the discovery of a diverse universe of sncRNAs derived from various longer structured RNAs such as rRNAs, small nucleolar RNAs, small nuclear RNAs, Y RNAs, and vault RNAs, with exciting uncharted functional possibilities. In this perspective, we discuss the emerging functional principles of sncRNAs beyond the well-known RNAi-like mechanisms, focusing on those that operate independent of linear sequence complementarity but rather function in an aptamer-like fashion. Aptamers use 3D structure for specific interactions with ligands and are modulated by RNA modifications and subcellular environments. Given that aptamer-like sncRNA functions are widespread and present in species lacking RNAi, they may represent an ancient functional principle that predates RNAi. We propose a rethinking of the origin of RNAi and its relationship with these aptamer-like functions in sncRNAs and how these complementary mechanisms shape biological processes. Lastly, the aptamer-like function of sncRNAs highlights the need for caution in using small RNA mimics in research and therapeutics, as their specificity is not restricted solely to linear sequence.
Collapse
Affiliation(s)
- Qi Chen
- Molecular Medicine Program, University of Utah School of Medicine, Salt Lake City, Utah, USA; Division of Urology, Department of Surgery, University of Utah School of Medicine, Salt Lake City, Utah, USA; Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA.
| | - Tong Zhou
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada, USA.
| |
Collapse
|
23
|
Prosdocimi F, Cortines JR, José MV, Farias ST. Decoding viruses: An alternative perspective on their history, origins and role in nature. Biosystems 2023; 231:104960. [PMID: 37437771 DOI: 10.1016/j.biosystems.2023.104960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/14/2023]
Abstract
This article provides an alternative perspective on viruses, exploring their origins, ecology, and evolution. Viruses are recognized as the most prevalent biological entities on Earth, permeating nearly all environments and forming the virosphere-a significant biological layer. They play a crucial role in regulating bacterial populations within ecosystems and holobionts, influencing microbial communities and nutrient recycling. Viruses are also key drivers of molecular evolution, actively participating in the maintenance and regulation of ecosystems and cellular organisms. Many eukaryotic genomes contain genomic elements with viral origins, which contribute to organismal equilibrium and fitness. Viruses are involved in the generation of species-specific orphan genes, facilitating adaptation and the development of unique traits in biological lineages. They have been implicated in the formation of vital structures like the eukaryotic nucleus and the mammalian placenta. The presence of virus-specific genes absent in cellular organisms suggests that viruses may pre-date cellular life. Like progenotes, viruses are ribonucleoprotein entities with simpler capsid architectures compared to proteolipidic membranes. This article presents a comprehensive scenario describing major transitions in prebiotic evolution and proposes that viruses emerged prior to the Last Universal Common Ancestor (LUCA) during the progenote era. However, it is important to note that viruses do not form a monophyletic clade, and many viral taxonomic groups originated more recently as reductions of cellular structures. Thus, viral architecture should be seen as an ancient and evolutionarily stable strategy adopted by biological systems. The goal of this article is to reshape perceptions of viruses, highlighting their multifaceted significance in the complex tapestry of life and fostering a deeper understanding of their origins, ecological impact, and evolutionary dynamics.
Collapse
Affiliation(s)
- Francisco Prosdocimi
- Laboratório de Biologia Teórica e de Sistemas, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Juliana Reis Cortines
- Departamento de Virologia, Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Brazil
| | - Marco V José
- Theoretical Biology Group, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, 04510, CDMX, Mexico
| | - Sávio Torres Farias
- Laboratório de Genética Evolutiva Paulo Leminsk, Departamento de Biologia Molecular, Universidade Federal da Paraíba, João Pessoa, Paraíba, Brazil; Network of Researchers on the Chemical Evolution of Life (NoRCEL), Leeds, LS7 3RB, UK
| |
Collapse
|
24
|
Chai P, Lebedenko CG, Flynn RA. RNA Crossing Membranes: Systems and Mechanisms Contextualizing Extracellular RNA and Cell Surface GlycoRNAs. Annu Rev Genomics Hum Genet 2023; 24:85-107. [PMID: 37068783 DOI: 10.1146/annurev-genom-101722-101224] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2023]
Abstract
The subcellular localization of a biopolymer often informs its function. RNA is traditionally confined to the cytosolic and nuclear spaces, where it plays critical and conserved roles across nearly all biochemical processes. Our recent observation of cell surface glycoRNAs may further explain the extracellular role of RNA. While cellular membranes are efficient gatekeepers of charged polymers such as RNAs, a large body of research has demonstrated the accumulation of specific RNA species outside of the cell, termed extracellular RNAs (exRNAs). Across various species and forms of life, protein pores have evolved to transport RNA across membranes, thus providing a mechanistic path for exRNAs to achieve their extracellular topology. Here, we review types of exRNAs and the pores capable of RNA transport to provide a logical and testable path toward understanding the biogenesis and regulation of cell surface glycoRNAs.
Collapse
Affiliation(s)
- Peiyuan Chai
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Charlotta G Lebedenko
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Ryan A Flynn
- Stem Cell Program and Division of Hematology/Oncology, Boston Children's Hospital, Boston, Massachusetts, USA;
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts, USA
- Harvard Stem Cell Institute, Harvard University, Cambridge, Massachusetts, USA
| |
Collapse
|
25
|
LaPlante EL, Stürchler A, Fullem R, Chen D, Starner AC, Esquivel E, Alsop E, Jackson AR, Ghiran I, Pereira G, Rozowsky J, Chang J, Gerstein MB, Alexander RP, Roth ME, Franklin JL, Coffey RJ, Raffai RL, Mansuy IM, Stavrakis S, deMello AJ, Laurent LC, Wang YT, Tsai CF, Liu T, Jones J, Van Keuren-Jensen K, Van Nostrand E, Mateescu B, Milosavljevic A. exRNA-eCLIP intersection analysis reveals a map of extracellular RNA binding proteins and associated RNAs across major human biofluids and carriers. CELL GENOMICS 2023; 3:100303. [PMID: 37228754 PMCID: PMC10203258 DOI: 10.1016/j.xgen.2023.100303] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 01/01/2023] [Accepted: 03/24/2023] [Indexed: 05/27/2023]
Abstract
Although the role of RNA binding proteins (RBPs) in extracellular RNA (exRNA) biology is well established, their exRNA cargo and distribution across biofluids are largely unknown. To address this gap, we extend the exRNA Atlas resource by mapping exRNAs carried by extracellular RBPs (exRBPs). This map was developed through an integrative analysis of ENCODE enhanced crosslinking and immunoprecipitation (eCLIP) data (150 RBPs) and human exRNA profiles (6,930 samples). Computational analysis and experimental validation identified exRBPs in plasma, serum, saliva, urine, cerebrospinal fluid, and cell-culture-conditioned medium. exRBPs carry exRNA transcripts from small non-coding RNA biotypes, including microRNA (miRNA), piRNA, tRNA, small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), Y RNA, and lncRNA, as well as protein-coding mRNA fragments. Computational deconvolution of exRBP RNA cargo reveals associations of exRBPs with extracellular vesicles, lipoproteins, and ribonucleoproteins across human biofluids. Overall, we mapped the distribution of exRBPs across human biofluids, presenting a resource for the community.
Collapse
Affiliation(s)
- Emily L. LaPlante
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alessandra Stürchler
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
- Brain Research Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Robert Fullem
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anne C. Starner
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 76706, USA
| | - Emmanuel Esquivel
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Eric Alsop
- Neurogenomics Division, TGen, Phoenix, AZ 85004, USA
| | - Andrew R. Jackson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ionita Ghiran
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Getulio Pereira
- Department of Anesthesia, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Joel Rozowsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Justin Chang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Mark B. Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Matthew E. Roth
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Jeffrey L. Franklin
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Robert J. Coffey
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37235, USA
| | - Robert L. Raffai
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
- Division of Endovascular and Vascular Surgery, Department of Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Isabelle M. Mansuy
- Brain Research Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Andrew J. deMello
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences and Sanford Consortium for Regenerative Medicine, University of California, San Diego, La Jolla, CA 92093, USA
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Jennifer Jones
- Laboratory of Pathology Center for Cancer Research, National Cancer Institute, Bethesda, MD 20892, USA
| | | | - Eric Van Nostrand
- Verna & Marrs McLean Department of Biochemistry & Molecular Biology, Baylor College of Medicine, Houston, TX 76706, USA
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bogdan Mateescu
- Institute for Chemical and Bioengineering, ETH Zürich, 8093 Zürich, Switzerland
- Brain Research Institute, University of Zürich, 8057 Zürich, Switzerland
| | - Aleksandar Milosavljevic
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Quantitative and Computational Biosciences, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
26
|
Di Fazio A, Gullerova M. An old friend with a new face: tRNA-derived small RNAs with big regulatory potential in cancer biology. Br J Cancer 2023; 128:1625-1635. [PMID: 36759729 PMCID: PMC10133234 DOI: 10.1038/s41416-023-02191-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Transfer RNAs (tRNAs) are small non-coding RNAs (sncRNAs) essential for protein translation. Emerging evidence suggests that tRNAs can also be processed into smaller fragments, tRNA-derived small RNAs (tsRNAs), a novel class of sncRNAs with powerful applications and high biological relevance to cancer. tsRNAs biogenesis is heterogeneous and involves different ribonucleases, such as Angiogenin and Dicer. For many years, tsRNAs were thought to be just degradation products. However, accumulating evidence shows their roles in gene expression: either directly via destabilising the mRNA or the ribosomal machinery, or indirectly via regulating the expression of ribosomal components. Furthermore, tsRNAs participate in various biological processes linked to cancer, including apoptosis, cell cycle, immune response, and retroviral insertion into the human genome. It is emerging that tsRNAs have significant therapeutic potential. Endogenous tsRNAs can be used as cancer biomarkers, while synthetic tsRNAs and antisense oligonucleotides can be employed to regulate gene expression. In this review, we are recapitulating the regulatory roles of tsRNAs, with a focus on cancer biology.
Collapse
Affiliation(s)
- Arianna Di Fazio
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK
| | - Monika Gullerova
- Sir William Dunn School of Pathology, University of Oxford, Oxford, OX1 3RE, UK.
| |
Collapse
|
27
|
Pálóczi K, Buzas EI, Falus A. Differential impact of exportin-1-mediated nuclear export of RNAs on the RNA content of extracellular vesicle subpopulations. Biol Futur 2023:10.1007/s42977-023-00157-4. [PMID: 37097386 DOI: 10.1007/s42977-023-00157-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/03/2023] [Indexed: 04/26/2023]
Abstract
Extracellular vesicles (EVs) are membrane-enclosed subcellular structures released by all cell types. EVs have important roles in both cellular homeostasis and intercellular communication. Recent progress in the field revealed substantial heterogeneity of EVs even within the size-based EV categories. Here we addressed the question whether the exportin-1 (XPO1)-mediated nuclear export of RNAs contributed to the EV heterogeneity. Size-based populations were separated from the conditioned media of three cell lines (U937, THP-1 and 5/4E8) in steady-state condition. The effects of activation and leptomycin B treatment (to inhibit the XPO1-mediated nuclear export of RNAs) were also tested in the case of the two monocytic cell lines. Agilent Pico and Small chips were used to characterize RNAs, fragment analysis was performed, and EV-associated miRNAs were tested by Taqman assays. As expected, we found the highest small RNA/total RNA ratio and the lowest rRNA/total RNA proportion in small EVs (~ 50-150 nm). Profiles of the small RNAs within different size-based EV categories significantly differed based on the activation status of the EV releasing cells. Leptomycin B had a differential inhibition on the tested small RNAs in EVs, even within the same EV size category. A similar heterogeneity of the EV miRNA content was observed upon cellular activation and nuclear export inhibition. Here we complement the already existing knowledge on EV heterogeneity by providing evidence that the RNA cargo varies depending on the EV size-based category, the releasing cell type, the functional status of the releasing cells and the exportin-1-mediated nuclear export of RNAs.
Collapse
Affiliation(s)
- Krisztina Pálóczi
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Edit I Buzas
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary.
- HCEMM-SU Extracellular Vesicle Research Group, Budapest, Hungary.
- ELKH-SE Translational Extracellualr Vesicle Research Group, Budapest, Hungary.
| | - András Falus
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| |
Collapse
|
28
|
Borniego ML, Innes RW. Extracellular RNA: mechanisms of secretion and potential functions. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:2389-2404. [PMID: 36609873 PMCID: PMC10082932 DOI: 10.1093/jxb/erac512] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/21/2022] [Indexed: 06/06/2023]
Abstract
Extracellular RNA (exRNA) has long been considered as cellular waste that plants can degrade and utilize to recycle nutrients. However, recent findings highlight the need to reconsider the biological significance of RNAs found outside of plant cells. A handful of studies suggest that the exRNA repertoire, which turns out to be an extremely heterogenous group of non-coding RNAs, comprises species as small as a dozen nucleotides to hundreds of nucleotides long. They are found mostly in free form or associated with RNA-binding proteins, while very few are found inside extracellular vesicles (EVs). Despite their low abundance, small RNAs associated with EVs have been a focus of exRNA research due to their putative role in mediating trans-kingdom RNAi. Therefore, non-vesicular exRNAs have remained completely under the radar until very recently. Here we summarize our current knowledge of the RNA species that constitute the extracellular RNAome and discuss mechanisms that could explain the diversity of exRNAs, focusing not only on the potential mechanisms involved in RNA secretion but also on post-release processing of exRNAs. We will also share our thoughts on the putative roles of vesicular and extravesicular exRNAs in plant-pathogen interactions, intercellular communication, and other physiological processes in plants.
Collapse
Affiliation(s)
- M Lucía Borniego
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
29
|
Gong M, Deng Y, Xiang Y, Ye D. The role and mechanism of action of tRNA-derived fragments in the diagnosis and treatment of malignant tumors. Cell Commun Signal 2023; 21:62. [PMID: 36964534 PMCID: PMC10036988 DOI: 10.1186/s12964-023-01079-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Accepted: 02/13/2023] [Indexed: 03/26/2023] Open
Abstract
Cancer is a leading cause of morbidity and death worldwide. While various factors are established as causing malignant tumors, the mechanisms underlying cancer development remain poorly understood. Early diagnosis and the development of effective treatments for cancer are important research topics. Transfer RNA (tRNA), the most abundant class of RNA molecules in the human transcriptome, participates in both protein synthesis and cellular metabolic processes. tRNA-derived fragments (tRFs) are produced by specific cleavage of pre-tRNA and mature tRNA molecules, which are highly conserved and occur widely in various organisms. tRFs were initially thought to be random products with no physiological function, but have been redefined as novel functional small non-coding RNA molecules that help to regulate RNA stability, modulate translation, and influence target gene expression, as well as other biological processes. There is increasing evidence supporting roles for tRFs in tumorigenesis and cancer development, including the regulation of tumor cell proliferation, invasion, migration, and drug resistance. Understanding the regulatory mechanisms by which tRFs impact these processes has potential to inform malignant tumor diagnosis and treatment. Further, tRFs are expected to become new biological markers for early diagnosis and prognosis prediction in patients with tumors, as well as a targets for precision cancer therapies. Video abstract.
Collapse
Affiliation(s)
- Mengdan Gong
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yongqin Deng
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Yizhen Xiang
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China
| | - Dong Ye
- Department of Otorhinolaryngology-Head and Neck Surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, 315040, Zhejiang, China.
| |
Collapse
|
30
|
Functions and cellular signaling by ribosomal extracellular RNA (rexRNA): Facts and hypotheses on a non-typical DAMP. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2023; 1870:119408. [PMID: 36503009 DOI: 10.1016/j.bbamcr.2022.119408] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 11/07/2022] [Accepted: 11/30/2022] [Indexed: 12/13/2022]
Abstract
Upon microbial infections with the subsequent host response of innate immunity, a variety of fragmented RNA- and DNA-based "Pathogen-associated molecular patterns" (PAMPs) are recognized mainly by endosomal or cytoplasmic host cell "Pattern recognition receptors" (PRRs), particularly "Toll-like receptors" (TLRs). Concomitantly, various self-extracellular RNA species (exRNAs) are present in extracellular body fluids where they contribute to diverse physiological and homeostatic processes. In principle, such exRNAs, including the most abundant one, ribosomal exRNA (rexRNA), are designated as "Danger-associated molecular patterns" (DAMPs) and are prevented by e.g. natural modifications from uncontrolled signaling via TLRs to avoid hyper-inflammatory responses or autoimmunity. Upon cellular stress or tissue damage/necrosis, the levels and composition of released self-exRNA species, either in free form, in complex with proteins or in association with extracellular vesicles (EVs), can change considerably. Among the self-exRNAs, rexRNA is considered as a non-typical DAMP, since it may induce inflammatory responses by cell membrane receptors, both in the absence or presence of PAMPs. Yet, its mode of receptor activation to mount inflammatory responses remains obscure. RexRNA also serves as a universal damaging factor in cardiovascular and other diseases independent of PRRs. In general, RNase1 provides a profound antagonist in these pathologies and in rexRNA-mediated inflammatory cell responses. Based on the extrapolation of the here described aspects of rexRNA-biology, further activities of this molecular entity are hypothesized that may stimulate additional research in this area.
Collapse
|
31
|
Nicked tRNAs are stable reservoirs of tRNA halves in cells and biofluids. Proc Natl Acad Sci U S A 2023; 120:e2216330120. [PMID: 36652478 PMCID: PMC9942843 DOI: 10.1073/pnas.2216330120] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Nonvesicular extracellular RNAs (nv-exRNAs) constitute the majority of the extracellular RNAome, but little is known about their stability, function, and potential use as disease biomarkers. Herein, we measured the stability of several naked RNAs when incubated in human serum, urine, and cerebrospinal fluid (CSF). We identified extracellularly produced tRNA-derived small RNAs (tDRs) with half-lives of several hours in CSF. Contrary to widespread assumptions, these intrinsically stable small RNAs are full-length tRNAs containing broken phosphodiester bonds (i.e., nicked tRNAs). Standard molecular biology protocols, including phenol-based RNA extraction and heat, induce the artifactual denaturation of nicked tRNAs and the consequent in vitro production of tDRs. Broken bonds are roadblocks for reverse transcriptases, preventing amplification and/or sequencing of nicked tRNAs in their native state. To solve this, we performed enzymatic repair of nicked tRNAs purified under native conditions, harnessing the intrinsic activity of phage and bacterial tRNA repair systems. Enzymatic repair regenerated an RNase R-resistant tRNA-sized band in northern blot and enabled RT-PCR amplification of full-length tRNAs. We also separated nicked tRNAs from tDRs by chromatographic methods under native conditions, identifying nicked tRNAs inside stressed cells and in vesicle-depleted human biofluids. Dissociation of nicked tRNAs produces single-stranded tDRs that can be spontaneously taken up by human epithelial cells, positioning stable nv-exRNAs as potentially relevant players in intercellular communication pathways.
Collapse
|
32
|
Jeandard D, Smirnova A, Fasemore AM, Coudray L, Entelis N, Förstner K, Tarassov I, Smirnov A. CoLoC-seq probes the global topology of organelle transcriptomes. Nucleic Acids Res 2022; 51:e16. [PMID: 36537202 PMCID: PMC9943681 DOI: 10.1093/nar/gkac1183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
Proper RNA localisation is essential for physiological gene expression. Various kinds of genome-wide approaches permit to comprehensively profile subcellular transcriptomes. Among them, cell fractionation methods, that couple RNase treatment of isolated organelles to the sequencing of protected transcripts, remain most widely used, mainly because they do not require genetic modification of the studied system and can be easily implemented in any cells or tissues, including in non-model species. However, they suffer from numerous false-positives since incompletely digested contaminant RNAs can still be captured and erroneously identified as resident transcripts. Here we introduce Controlled Level of Contamination coupled to deep sequencing (CoLoC-seq) as a new subcellular transcriptomics approach that efficiently bypasses this caveat. CoLoC-seq leverages classical enzymatic kinetics and tracks the depletion dynamics of transcripts in a gradient of an exogenously added RNase, with or without organellar membranes. By means of straightforward mathematical modelling, CoLoC-seq infers the localisation topology of RNAs and robustly distinguishes between genuinely resident, luminal transcripts and merely abundant surface-attached contaminants. Our generic approach performed well on human mitochondria and is in principle applicable to other membrane-bounded organelles, including plastids, compartments of the vacuolar system, extracellular vesicles, and viral particles.
Collapse
Affiliation(s)
| | | | | | - Léna Coudray
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | - Nina Entelis
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | - Konrad U Förstner
- ZB MED – Information Centre for Life Sciences, Cologne, D-50931, Germany,TH Köln – University of Applied Sciences, Faculty of Information Science and Communication Studies, Institute of Information Science, Cologne, D-50678, Germany
| | - Ivan Tarassov
- UMR7156 – Génétique Moléculaire, Génomique, Microbiologie (GMGM), University of Strasbourg, CNRS, Strasbourg, F-67000, France
| | | |
Collapse
|
33
|
Stewart VD, Cadieux J, Thulasiram MR, Douglas TC, Drewnik DA, Selamat S, Lao Y, Spicer V, Hannila SS. Myelin‐associated glycoprotein alters the neuronal secretome and stimulates the release of
TGFβ
and proteins that affect neural plasticity. FEBS Lett 2022; 596:2952-2973. [DOI: 10.1002/1873-3468.14496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 08/26/2022] [Accepted: 08/30/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Vanessa D. Stewart
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Justine Cadieux
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Matsya R. Thulasiram
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Tinsley Claire Douglas
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Dennis A. Drewnik
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Suhaila Selamat
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| | - Ying Lao
- Centre for Proteomics and Systems Biology University of Manitoba Room 799, John Buhler Research Centre, 715 McDermot Avenue R3E 3P4 Winnipeg Manitoba Canada
| | - Victor Spicer
- Centre for Proteomics and Systems Biology University of Manitoba Room 799, John Buhler Research Centre, 715 McDermot Avenue R3E 3P4 Winnipeg Manitoba Canada
| | - Sari S. Hannila
- Department of Human Anatomy and Cell Science University of Manitoba Room 130, Basic Medical Sciences Building, 745 Bannatyne Avenue R3E 0J9 Winnipeg Manitoba Canada
| |
Collapse
|
34
|
Mateescu B, Jones JC, Alexander RP, Alsop E, An JY, Asghari M, Boomgarden A, Bouchareychas L, Cayota A, Chang HC, Charest A, Chiu DT, Coffey RJ, Das S, De Hoff P, deMello A, D’Souza-Schorey C, Elashoff D, Eliato KR, Franklin JL, Galas DJ, Gerstein MB, Ghiran IH, Go DB, Gould S, Grogan TR, Higginbotham JN, Hladik F, Huang TJ, Huo X, Hutchins E, Jeppesen DK, Jovanovic-Talisman T, Kim BY, Kim S, Kim KM, Kim Y, Kitchen RR, Knouse V, LaPlante EL, Lebrilla CB, Lee LJ, Lennon KM, Li G, Li F, Li T, Liu T, Liu Z, Maddox AL, McCarthy K, Meechoovet B, Maniya N, Meng Y, Milosavljevic A, Min BH, Morey A, Ng M, Nolan J, De Oliveira Junior GP, Paulaitis ME, Phu TA, Raffai RL, Reátegui E, Roth ME, Routenberg DA, Rozowsky J, Rufo J, Senapati S, Shachar S, Sharma H, Sood AK, Stavrakis S, Stürchler A, Tewari M, Tosar JP, Tucker-Schwartz AK, Turchinovich A, Valkov N, Van Keuren-Jensen K, Vickers KC, Vojtech L, Vreeland WN, Wang C, Wang K, Wang Z, Welsh JA, Witwer KW, Wong DT, Xia J, Xie YH, Yang K, Zaborowski MP, Zhang C, Zhang Q, Zivkovic AM, Laurent LC. Phase 2 of extracellular RNA communication consortium charts next-generation approaches for extracellular RNA research. iScience 2022; 25:104653. [PMID: 35958027 PMCID: PMC9358052 DOI: 10.1016/j.isci.2022.104653] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The extracellular RNA communication consortium (ERCC) is an NIH-funded program aiming to promote the development of new technologies, resources, and knowledge about exRNAs and their carriers. After Phase 1 (2013-2018), Phase 2 of the program (ERCC2, 2019-2023) aims to fill critical gaps in knowledge and technology to enable rigorous and reproducible methods for separation and characterization of both bulk populations of exRNA carriers and single EVs. ERCC2 investigators are also developing new bioinformatic pipelines to promote data integration through the exRNA atlas database. ERCC2 has established several Working Groups (Resource Sharing, Reagent Development, Data Analysis and Coordination, Technology Development, nomenclature, and Scientific Outreach) to promote collaboration between ERCC2 members and the broader scientific community. We expect that ERCC2's current and future achievements will significantly improve our understanding of exRNA biology and the development of accurate and efficient exRNA-based diagnostic, prognostic, and theranostic biomarker assays.
Collapse
Affiliation(s)
- Bogdan Mateescu
- Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Jennifer C. Jones
- Laboratory of Pathology Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | | | - Eric Alsop
- Neurogenomics Division, TGen, Phoenix, AZ 85004, USA
| | - Ji Yeong An
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Mohammad Asghari
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Alex Boomgarden
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Laura Bouchareychas
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Alfonso Cayota
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- University Hospital, Universidad de la República, Montevideo 11600, Uruguay
| | - Hsueh-Chia Chang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Al Charest
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daniel T. Chiu
- Department of Chemistry and Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Robert J. Coffey
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - Saumya Das
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Peter De Hoff
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, La Jolla, San Diego, CA 92093, USA
| | - Andrew deMello
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | | | - David Elashoff
- Statistics Core, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | - Kiarash R. Eliato
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Jeffrey L. Franklin
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
- Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37235, USA
| | - David J. Galas
- Pacific Northwest Research Institute, Seattle, WA 98122, USA
| | - Mark B. Gerstein
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
- Program in Computational Biology & Bioinformatics, Yale University, New Haven, CT 06520, USA
- Department of Computer Science, Yale University, New Haven, CT 06520, USA
| | - Ionita H. Ghiran
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - David B. Go
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
- Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Stephen Gould
- Department of Biological Chemistry, The Johns Hopkins University School of Medicine, 725 North Wolfe Street, Baltimore, MD 21205, USA
| | - Tristan R. Grogan
- Department of Medicine Statistics Core, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, USA
| | - James N. Higginbotham
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Florian Hladik
- Departments of Obstetrics and Gynecology, and Medicine, University of Washington, Seattle, WA, USA
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Tony Jun Huang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Xiaoye Huo
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Dennis K. Jeppesen
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Tijana Jovanovic-Talisman
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Betty Y.S. Kim
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Sung Kim
- Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Kyoung-Mee Kim
- Department of Pathology & Translational Genomics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Yong Kim
- Department of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Robert R. Kitchen
- Corrigan Minehan Heart Center and Cardiology Division, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Vaughan Knouse
- Laboratory of Pathology Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Emily L. LaPlante
- Bioinformatics Research Laboratory, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - L. James Lee
- Department of Chemical and Biomolecular Engineering and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Kathleen M. Lennon
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Guoping Li
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Feng Li
- Department of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Tieyi Li
- Department of Materials Science & Engineering, University of California Los Angeles, Los Angeles, CA 90095-1595, USA
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, WA 99354, USA
| | - Zirui Liu
- Department of Materials Science & Engineering, University of California Los Angeles, Los Angeles, CA 90095-1595, USA
| | - Adam L. Maddox
- Department of Molecular Medicine, Beckman Research Institute of the City of Hope Comprehensive Cancer Center, Duarte, CA 91010, USA
| | - Kyle McCarthy
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | | | - Nalin Maniya
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Yingchao Meng
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Aleksandar Milosavljevic
- Bioinformatics Research Laboratory, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Program in Quantitative and Computational Biosciences Baylor College of Medicine, Houston, TX 77030, USA
| | - Byoung-Hoon Min
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University, School of Medicine, Seoul, South Korea
| | - Amber Morey
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, La Jolla, San Diego, CA 92093, USA
| | - Martin Ng
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - John Nolan
- Scintillon Institute, San Diego, CA, USA
| | | | - Michael E. Paulaitis
- Center for Nanomedicine at the Wilmer Eye Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Tuan Anh Phu
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
| | - Robert L. Raffai
- Department of Surgery, Division of Vascular and Endovascular Surgery, University of California, San Francisco, San Francisco, CA 94143, USA
- Northern California Institute for Research and Education, San Francisco, CA 94121, USA
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, CA 94121, USA
| | - Eduardo Reátegui
- Department of Chemical and Biomolecular Engineering and Comprehensive Cancer Center, The Ohio State University, Columbus, OH 43210, USA
| | - Matthew E. Roth
- Bioinformatics Research Laboratory, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Joel Rozowsky
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Joseph Rufo
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Satyajyoti Senapati
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sigal Shachar
- Meso Scale Diagnostics, LLC, Rockville, MD 20850, USA
| | - Himani Sharma
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Anil K. Sood
- Department of Gynecologic Oncology & Reproductive Medicine, University of Texas MD Aderson Cancer Center, Houston, TX 77030, USA
| | - Stavros Stavrakis
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Alessandra Stürchler
- Brain Research Institute, University of Zürich, Winterthurerstrasse 190, CH-8057 Zürich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zürich, Vladimir Prelog Weg 1, 8093 Zürich, Switzerland
| | - Muneesh Tewari
- Department of Internal Medicine, Hematology/Oncology Division, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
- Center for Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, USA
- Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Juan P. Tosar
- Functional Genomics Unit, Institut Pasteur de Montevideo, Montevideo 11400, Uruguay
- Analytical Biochemistry Unit, School of Science, Universidad de la República, Montevideo 11400, Uruguay
| | | | - Andrey Turchinovich
- Cancer Genome Research (B063), German Cancer Research Center DKFZ, Heidelberg 69120, Germany
- Heidelberg Biolabs GmbH, Heidelberg 69120, Germany
| | - Nedyalka Valkov
- Cardiovascular Research Center, Massachusetts General Hospital, Boston, MA, USA
| | | | - Kasey C. Vickers
- Department of Medicine, Division of Cardiovascular Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Lucia Vojtech
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA 98195, USA
| | - Wyatt N. Vreeland
- Bioprocess Measurement Group, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Ceming Wang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Kai Wang
- Institute for Systems Biology, Seattle, WA 98109, USA
| | - ZeYu Wang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Joshua A. Welsh
- Laboratory of Pathology Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Kenneth W. Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - David T.W. Wong
- Department of Oral Biology and Medicine, UCLA School of Dentistry, Los Angeles, CA 90095, USA
| | - Jianping Xia
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Ya-Hong Xie
- Department of Materials Science & Engineering, University of California Los Angeles, Los Angeles, CA 90095-1595, USA
| | - Kaichun Yang
- Department of Mechanical Engineering and Material Science, Duke University, Durham, NC 27708, USA
| | - Mikołaj P. Zaborowski
- Department of Gynecology, Obstetrics and Gynecologic Oncology, Division of Gynecologic Oncology, Poznan University of Medical Sciences, 60-535 Poznań, Poland
| | - Chenguang Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Qin Zhang
- Department of Medicine/Gastroenterology and Epithelial Biology Center, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | | | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
35
|
Receptor for advanced glycation end-products (RAGE) mediates phagocytosis in nonprofessional phagocytes. Commun Biol 2022; 5:824. [PMID: 35974093 PMCID: PMC9381800 DOI: 10.1038/s42003-022-03791-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 08/03/2022] [Indexed: 11/28/2022] Open
Abstract
In mammals, both professional phagocytes and nonprofessional phagocytes (NPPs) can perform phagocytosis. However, limited targets are phagocytosed by NPPs, and thus, the mechanism remains unclear. We find that spores of the yeast Saccharomyces cerevisiae are internalized efficiently by NPPs. Analyses of this phenomenon reveals that RNA fragments derived from cytosolic RNA species are attached to the spore wall, and these fragments serve as ligands to induce spore internalization. Furthermore, we show that a multiligand receptor, RAGE (receptor for advanced glycation end-products), mediates phagocytosis in NPPs. RAGE-mediated phagocytosis is not uniquely induced by spores but is an intrinsic mechanism by which NPPs internalize macromolecules containing RAGE ligands. In fact, artificial particles labeled with polynucleotides, HMGB1, or histone (but not bovine serum albumin) are internalized in NPPs. Our findings provide insight into the molecular basis of phagocytosis by NPPs, a process by which a variety of macromolecules are targeted for internalization. The multiligand receptor RAGE (receptor for advanced glycation end-products) mediates phagocytosis in non-professional phagocytes (NPPs), for example through the use of RNA fragments as ligands for internalization.
Collapse
|
36
|
Nofi CP, Wang P, Aziz M. Chromatin-Associated Molecular Patterns (CAMPs) in sepsis. Cell Death Dis 2022; 13:700. [PMID: 35961978 PMCID: PMC9372964 DOI: 10.1038/s41419-022-05155-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 01/21/2023]
Abstract
Several molecular patterns have been identified that recognize pattern recognition receptors. Pathogen-associated molecular patterns (PAMPs) and damage-associated molecular patterns (DAMPs) are commonly used terminologies to classify molecules originating from pathogen and endogenous molecules, respectively, to heighten the immune response in sepsis. Herein, we focus on a subgroup of endogenous molecules that may be detected as foreign and similarly trigger immune signaling pathways. These chromatin-associated molecules, i.e., chromatin containing nuclear DNA and histones, extracellular RNA, mitochondrial DNA, telomeric repeat-containing RNA, DNA- or RNA-binding proteins, and extracellular traps, may be newly classified as chromatin-associated molecular patterns (CAMPs). Herein, we review the release of CAMPs from cells, their mechanism of action and downstream immune signaling pathways, and targeted therapeutic approaches to mitigate inflammation and tissue injury in inflammation and sepsis.
Collapse
Affiliation(s)
- Colleen P. Nofi
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Ping Wang
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| | - Monowar Aziz
- grid.250903.d0000 0000 9566 0634Center for Immunology and Inflammation, The Feinstein Institutes for Medical Research, Manhasset, NY USA ,Elmezi Graduate School of Molecular Medicine, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Surgery, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA ,grid.512756.20000 0004 0370 4759Department of Molecular Medicine, Zucker School of Medicine at Hofstra/Northwell, Manhasset, NY USA
| |
Collapse
|
37
|
Sanadgol N, König L, Drino A, Jovic M, Schaefer M. Experimental paradigms revisited: oxidative stress-induced tRNA fragmentation does not correlate with stress granule formation but is associated with delayed cell death. Nucleic Acids Res 2022; 50:6919-6937. [PMID: 35699207 PMCID: PMC9262602 DOI: 10.1093/nar/gkac495] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 05/13/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022] Open
Abstract
tRNA fragmentation is an evolutionarily conserved molecular phenomenon. tRNA-derived small RNAs (tsRNAs) have been associated with many cellular processes, including improved survival during stress conditions. Here, we have revisited accepted experimental paradigms for modeling oxidative stress resulting in tRNA fragmentation. Various cell culture models were exposed to oxidative stressors followed by determining cell viability, the production of specific tsRNAs and stress granule formation. These experiments revealed that exposure to stress parameters commonly used to induce tRNA fragmentation negatively affected cell viability after stress removal. Quantification of specific tsRNA species in cells responding to experimental stress and in cells that were transfected with synthetic tsRNAs indicated that neither physiological nor non-physiological copy numbers of tsRNAs induced the formation of stress granules. Furthermore, the increased presence of tsRNA species in culture medium collected from stressed cells indicated that cells suffering from experimental stress exposure gave rise to stable extracellular tsRNAs. These findings suggest a need to modify current experimental stress paradigms in order to allow separating the function of tRNA fragmentation during the acute stress response from tRNA fragmentation as a consequence of ongoing cell death, which will have major implications for the current perception of the biological function of stress-induced tsRNAs.
Collapse
Affiliation(s)
- Nasim Sanadgol
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Lisa König
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Aleksej Drino
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Michaela Jovic
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| | - Matthias R Schaefer
- Medical University of Vienna, Center for Anatomy and Cell Biology, Division of Cell and Developmental Biology, Schwarzspanierstraße 17, A-1090 Vienna, Austria
| |
Collapse
|
38
|
Lee BR, Lee TJ, Oh S, Li C, Song JA, Marshall B, Zhi W, Kwon S. Ascorbate peroxidase-mediated in situ labelling of proteins in secreted exosomes. J Extracell Vesicles 2022; 11:e12239. [PMID: 35716063 PMCID: PMC9206227 DOI: 10.1002/jev2.12239] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 04/27/2022] [Accepted: 06/07/2022] [Indexed: 11/12/2022] Open
Abstract
The extracellular vesicle exosome mediates intercellular communication by transporting macromolecules such as proteins and ribonucleic acids (RNAs). Determining cargo contents with high accuracy will help decipher the biological processes that exosomes mediate in various contexts. Existing methods for probing exosome cargo molecules rely on a prior exosome isolation procedure. Here we report an in situ labelling approach for exosome cargo identification, which bypasses the exosome isolation steps. In this methodology, a variant of the engineered ascorbate peroxidase APEX, fused to an exosome cargo protein such as CD63, is expressed specifically in exosome-generating vesicles in live cells or in secreted exosomes in the conditioned medium, to induce biotinylation of the proteins in the vicinity of the APEX variant for a short period of time. Mass spectrometry analysis of the proteins biotinylated by this approach in exosomes secreted by kidney proximal tubule-derived cells reveals that oxidative stress can cause ribosomal proteins to accumulate in an exosome subpopulation that contains the CD63-fused APEX variant.
Collapse
Affiliation(s)
- Byung Rho Lee
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic MedicineMedical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Sekyung Oh
- Department of Medical ScienceCatholic Kwandong University College of MedicineIncheonSouth Korea
| | - Chenglong Li
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Jin‐Hyuk A Song
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Brendan Marshall
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Wenbo Zhi
- Center for Biotechnology and Genomic MedicineMedical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| | - Sang‐Ho Kwon
- Department of Cellular Biology and AnatomyMedical College of GeorgiaAugusta UniversityAugustaGeorgiaUSA
| |
Collapse
|
39
|
Tosar JP, Cayota A, Witwer K. Exomeres and Supermeres: monolithic or diverse? JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e45. [PMID: 36311878 PMCID: PMC9610496 DOI: 10.1002/jex2.45] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/31/2022] [Accepted: 05/09/2022] [Indexed: 01/11/2023]
Abstract
Extracellular vesicles (EVs), including exosomes and microvesicles, are far from being the only RNA-containing extracellular particles (EPs). Recently, new 35 nm-sized EPs were discovered by asymmetric-flow field-flow fractionation and termed "exomeres". Purification of exomeres was later performed by differential ultracentrifugation as well. More recently, the supernatant of the high-speed ultracentrifugation used to collect exomeres was further centrifuged to collect a new class of EP, termed "supermeres". Supermeres contain high quantities of extracellular RNA and are enriched in miR-1246. They are also replete in disease biomarkers and can induce metabolic and adaptive changes in recipient cells. Here, we reanalyzed proteomic and transcriptomic data obtained in this exciting study to obtain further insights into the molecular composition of exomeres and supermeres. We found that the top-ranking RNAs in supermeres correspond to the footprints of extracellular protein complexes. These complexes protect fragments of the small nuclear RNA U2 and the 28S rRNA from extracellular ribonucleases (exRNases). We suggest that intracellular nanoparticles such as the U2 ribonucleoprotein, ribosomes and LGALS3BP ring-like decamers are released into the extracellular space. These heterogeneous EPs might be further processed by exRNases and co-isolate by ultracentrifugation with other components of exomeres and supermeres. We look forward to continuing progress in defining exRNA carriers, bridging process definitions with molecular composition and function.
Collapse
Affiliation(s)
- Juan Pablo Tosar
- Analytical Biochemistry UnitNuclear Research CenterSchool of ScienceUniversidad de la RepúblicaMontevideoUruguay
- Functional Genomics UnitInstitut Pasteur de MontevideoMontevideoUruguay
| | - Alfonso Cayota
- Functional Genomics UnitInstitut Pasteur de MontevideoMontevideoUruguay
- Department of MedicineUniversity HospitalUniversidad de la RepúblicaMontevideoUruguay
| | - Kenneth Witwer
- Department of Molecular and Comparative PathobiologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
- Department of NeurologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| |
Collapse
|
40
|
Li G, Manning AC, Bagi A, Yang X, Gokulnath P, Spanos M, Howard J, Chan PP, Sweeney T, Kitchen R, Li H, Laurent BD, Aranki SF, Kontaridis MI, Laurent LC, Van Keuren‐Jensen K, Muehlschlegel J, Lowe TM, Das S. Distinct Stress-Dependent Signatures of Cellular and Extracellular tRNA-Derived Small RNAs. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2200829. [PMID: 35373532 PMCID: PMC9189662 DOI: 10.1002/advs.202200829] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 05/11/2023]
Abstract
The cellular response to stress is an important determinant of disease pathogenesis. Uncovering the molecular fingerprints of distinct stress responses may identify novel biomarkers and key signaling pathways for different diseases. Emerging evidence shows that transfer RNA-derived small RNAs (tDRs) play pivotal roles in stress responses. However, RNA modifications present on tDRs are barriers to accurately quantifying tDRs using traditional small RNA sequencing. Here, AlkB-facilitated methylation sequencing is used to generate a comprehensive landscape of cellular and extracellular tDR abundances in various cell types during different stress responses. Extracellular tDRs are found to have distinct fragmentation signatures from intracellular tDRs and these tDR signatures are better indicators of different stress responses than miRNAs. These distinct extracellular tDR fragmentation patterns and signatures are also observed in plasma from patients on cardiopulmonary bypass. It is additionally demonstrated that angiogenin and RNASE1 are themselves regulated by stressors and contribute to the stress-modulated abundance of sub-populations of cellular and extracellular tDRs. Finally, a sub-population of extracellular tDRs is identified for which AGO2 appears to be required for their expression. Together, these findings provide a detailed profile of stress-responsive tDRs and provide insight about tDR biogenesis and stability in response to cellular stressors.
Collapse
Affiliation(s)
- Guoping Li
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Aidan C. Manning
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Alex Bagi
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Xinyu Yang
- Fangshan Hospital of BeijingUniversity of Traditional Chinese MedicineBeijing102499China
| | - Priyanka Gokulnath
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Michail Spanos
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Jonathan Howard
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Patricia P. Chan
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Thadryan Sweeney
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Robert Kitchen
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Haobo Li
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Brice D. Laurent
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| | - Sary F. Aranki
- Division of Cardiac SurgeryDepartment of SurgeryBrigham and Women's HospitalHarvard Medical SchoolBostonMA02115USA
| | - Maria I. Kontaridis
- Department of Biomedical Research and Translational MedicineMasonic Medical Research InstituteUticaNY13501USA
- Department of Biological Chemistry and Molecular PharmacologyHarvard Medical SchoolBostonMA02115USA
- Department of MedicineDivision of CardiologyBeth Israel Deaconess Medical CenterHarvard Medical SchoolBostonMA02215USA
| | - Louise C. Laurent
- Department of Obstetrics, Gynecology, and Reproductive SciencesUniversity of CaliforniaSan DiegoLa JollaCA92093USA
| | | | - Jochen Muehlschlegel
- Department of Anesthesiology, Perioperative and Pain MedicineBrigham and Women's Hospital and Harvard Medical SchoolBostonMA02115USA
| | - Todd M. Lowe
- Department of Biomolecular EngineeringBaskin School of EngineeringUniversity of CaliforniaSanta CruzSanta CruzCA95064USA
| | - Saumya Das
- Cardiovascular Research CenterMassachusetts General Hospital and Harvard Medical SchoolBostonMA02114USA
| |
Collapse
|
41
|
Dellar ER, Hill C, Melling GE, Carter DR, Baena‐Lopez LA. Unpacking extracellular vesicles: RNA cargo loading and function. JOURNAL OF EXTRACELLULAR BIOLOGY 2022; 1:e40. [PMID: 38939528 PMCID: PMC11080855 DOI: 10.1002/jex2.40] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 04/05/2022] [Indexed: 06/29/2024]
Abstract
Extracellular vesicles (EVs) are a heterogeneous group of membrane-enclosed structures produced by prokaryotic and eukaryotic cells. EVs carry a range of biological cargoes, including RNA, protein, and lipids, which may have both metabolic significance and signalling potential. EV release has been suggested to play a critical role in maintaining intracellular homeostasis by eliminating unnecessary biological material from EV producing cells, and as a delivery system to enable cellular communication between both neighbouring and distant cells without physical contact. In this review, we give an overview of what is known about the relative enrichment of the different types of RNA that have been associated with EVs in the most recent research efforts. We then examine the selective and non-selective incorporation of these different RNA biotypes into EVs, the molecular systems of RNA sorting into EVs that have been elucidated so far, and the role of this process in EV-producing cells. Finally, we also discuss the model systems providing evidence for EV-mediated delivery of RNA to recipient cells, and the implications of this evidence for the relevance of this RNA delivery process in both physiological and pathological scenarios.
Collapse
Affiliation(s)
- Elizabeth R. Dellar
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordUK
- Nuffield Department of Clinical NeurosciencesJohn Radcliffe HospitalUniversity of OxfordOxfordUK
| | - Claire Hill
- Sir William Dunn School of PathologyUniversity of OxfordSouth Parks RoadOxfordUK
| | - Genevieve E. Melling
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
- Institute of Clinical SciencesSchool of Biomedical SciencesCollege of Medical and Dental SciencesUniversity of BirminghamEdgbastonBirminghamUK
| | - David R.F Carter
- Department of Biological and Medical SciencesOxford Brookes UniversityGipsy LaneOxfordUK
| | | |
Collapse
|
42
|
Almeida A, Gabriel M, Firlej V, Martin‐Jaular L, Lejars M, Cipolla R, Petit F, Vogt N, San‐Roman M, Dingli F, Loew D, Destouches D, Vacherot F, de la Taille A, Théry C, Morillon A. Urinary extracellular vesicles contain mature transcriptome enriched in circular and long noncoding RNAs with functional significance in prostate cancer. J Extracell Vesicles 2022; 11:e12210. [PMID: 35527349 PMCID: PMC9081490 DOI: 10.1002/jev2.12210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 02/22/2022] [Accepted: 03/15/2022] [Indexed: 12/14/2022] Open
Abstract
Long noncoding (lnc)RNAs modulate gene expression alongside presenting unexpected source of neoantigens. Despite their immense interest, their ability to be transferred and control adjacent cells is unknown. Extracellular Vesicles (EVs) offer a protective environment for nucleic acids, with pro and antitumourigenic functions by controlling the immune response. In contrast to extracellular nonvesicular RNA, few studies have addressed the full RNA content within human fluids' EVs and have compared them with their tissue of origin. Here, we performed Total RNA-Sequencing on six Formalin-Fixed-Paraffin-Embedded (FFPE) prostate cancer (PCa) tumour tissues and their paired urinary (u)EVs to provide the first whole transcriptome comparison from the same patients. UEVs contain simplified transcriptome with intron-free cytoplasmic transcripts and enriched lnc/circular (circ)RNAs, strikingly common to an independent 20 patients' urinary cohort. Our full cellular and EVs transcriptome comparison within three PCa cell lines identified a set of overlapping 14 uEV-circRNAs characterized as essential for prostate cell proliferation in vitro and 28 uEV-lncRNAs belonging to the cancer-related lncRNA census (CLC2). In addition, we found 15 uEV-lncRNAs, predicted to encode 768 high-affinity neoantigens, and for which three of the encoded-ORF produced detectable unmodified peptides by mass spectrometry. Our dual analysis of EVs-lnc/circRNAs both in urines' and in vitro's EVs provides a fundamental resource for future uEV-lnc/circRNAs phenotypic characterization involved in PCa.
Collapse
Affiliation(s)
- Anna Almeida
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
- Departement de Recherche TranslationnellePSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Marc Gabriel
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Virginie Firlej
- AP‐HPHôpital H. MondorPlateforme de Ressources BiologiquesCréteilFrance
- Univ Paris Est CreteilUR TRePCaCréteilFrance
| | - Lorena Martin‐Jaular
- INSERM U932PSL UniversityInstitut Curie, Centre de RechercheParisFrance
- Curie Core Tech Extracellular VesiclesInstitut Curie, Centre de RechercheParisFrance
| | - Matthieu Lejars
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Rocco Cipolla
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Floriane Petit
- Tumour BiologyINSERM U820, Sorbonne Université, PSL University, Institut CurieCentre de RechercheParisFrance
| | - Nicolas Vogt
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| | - Mabel San‐Roman
- CNRS UMR3215, Sorbonne Université, PSL University, Institut CurieCentre de RechercheParisFrance
| | - Florent Dingli
- Laboratoire de Spectrométrie de Masse ProtéomiquePSL Research University, Institut Curie Centre de RechercheParisFrance
| | - Damarys Loew
- Laboratoire de Spectrométrie de Masse ProtéomiquePSL Research University, Institut Curie Centre de RechercheParisFrance
| | | | | | | | - Clotilde Théry
- INSERM U932PSL UniversityInstitut Curie, Centre de RechercheParisFrance
- Curie Core Tech Extracellular VesiclesInstitut Curie, Centre de RechercheParisFrance
| | - Antonin Morillon
- CNRS UMR3244Sorbonne UniversityPSL UniversityInstitut Curie, Centre de RechercheParisFrance
| |
Collapse
|
43
|
Elucidation of physico-chemical principles of high-density lipoprotein-small RNA binding interactions. J Biol Chem 2022; 298:101952. [PMID: 35447119 PMCID: PMC9133651 DOI: 10.1016/j.jbc.2022.101952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 11/03/2022] Open
Abstract
Extracellular small RNAs (sRNAs) are abundant in many biofluids, but little is known about their mechanisms of transport and stability in RNase-rich environments. We previously reported that high-density lipoproteins (HDLs) in mice were enriched with multiple classes of sRNAs derived from the endogenous transcriptome, but also from exogenous organisms. Here, we show that human HDL transports tRNA-derived sRNAs (tDRs) from host and nonhost species, the profiles of which were found to be altered in human atherosclerosis. We hypothesized that HDL binds to tDRs through apolipoprotein A-I (apoA-I) and that these interactions are conferred by RNA-specific features. We tested this using microscale thermophoresis and electrophoretic mobility shift assays and found that HDL binds to tDRs and other single-stranded sRNAs with strong affinity but did not bind to double-stranded RNA or DNA. Furthermore, we show that natural and synthetic RNA modifications influenced tDR binding to HDL. We demonstrate that reconstituted HDL bound to tDRs only in the presence of apoA-I, and purified apoA-I alone were able to bind sRNA. Conversely, phosphatidylcholine vesicles did not bind tDRs. In summary, we conclude that HDL binds to single-stranded sRNAs likely through nonionic interactions with apoA-I. These results highlight binding properties that likely enable extracellular RNA communication and provide a foundation for future studies to manipulate HDL-sRNA interactions for therapeutic approaches to prevent or treat disease.
Collapse
|
44
|
Yan C, Yu J. Noncoding RNA in Extracellular Vesicles Regulate Differentiation of Mesenchymal Stem Cells. FRONTIERS IN DENTAL MEDICINE 2022. [DOI: 10.3389/fdmed.2021.806001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
To achieve the desired outcome in tissue engineering regeneration, mesenchymal stem cells need to undergo a series of biological processes, including differentiating into the ideal target cells. The extracellular vesicle (EV) in the microenvironment contributes toward determining the fate of the cells with epigenetic regulation, particularly from noncoding RNA (ncRNA), and exerts transportation and protective effects on ncRNAs. We focused on the components and functions of ncRNA (particularly microRNA) in the EVs. The EVs modified by the ncRNA favor tissue regeneration and pose a potential challenge.
Collapse
|
45
|
Akiyama Y, Lyons SM, Fay MM, Tomioka Y, Abe T, Anderson PJ, Ivanov P. Selective Cleavage at CCA Ends and Anticodon Loops of tRNAs by Stress-Induced RNases. Front Mol Biosci 2022; 9:791094. [PMID: 35300117 PMCID: PMC8920990 DOI: 10.3389/fmolb.2022.791094] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 01/31/2022] [Indexed: 12/15/2022] Open
Abstract
Stress-induced tRNA cleavage has been implicated in various cellular processes, where tRNA fragments play diverse regulatory roles. Angiogenin (ANG), a member of the RNase A superfamily, induces cleavage of tRNAs resulting in the formation of tRNA-derived stress-induced RNAs (tiRNAs) that contribute to translational reprogramming aiming at cell survival. In addition to cleaving tRNA anticodon loops, ANG has been shown to cleave 3′-CCA termini of tRNAs in vitro, although it is not known whether this process occurs in cells. It has also been suggested that tiRNAs can be generated independently of ANG, although the role of other stress-induced RNases in tRNA cleavage is poorly understood. Using gene editing and biochemical approaches, we examined the involvement of ANG in stress-induced tRNA cleavage by focusing on its cleavage of CCA-termini as well as anticodon loops. We show that ANG is not responsible for CCA-deactivation under sodium arsenite (SA) treatment in cellulo, and although ANG treatment significantly increases 3′-tiRNA levels in cells, the majority of 3′-tiRNAs retain their 3′-CCA termini. Instead, other RNases can cleave CCA-termini in cells, although with low efficiency. Moreover, in the absence of ANG, other RNases are able to promote the production of tiRNAs in cells. Depletion of RNH1 (an endogenous inhibitor of RNase A superfamily) promotes constitutively-produced tiRNAs and CCA-deactivated tRNAs in cells. Interestingly, SA treatment in RNH1-depleted cells did not increase the amount of tiRNAs or CCA-deactivated tRNAs, suggesting that RNase A superfamily enzymes are largely responsible for SA-induced tRNA cleavage. We show that interplay between stress-induced RNases cause targeting tRNAs in a stress-specific manner in cellulo.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Shawn M. Lyons
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- Department of Biochemistry, Boston University School of Medicine, Boston, MA, United States
- The Genome Science Institute, Boston University School of Medicine, Boston, MA, United States
| | - Marta M. Fay
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Takaaki Abe
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan
- Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Paul J. Anderson
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
| | - Pavel Ivanov
- Division of Rheumatology, Inflammation and Immunity, Brigham and Women’s Hospital, Boston, MA, United States
- Department of Medicine, Harvard Medical School, Boston, MA, United States
- *Correspondence: Pavel Ivanov,
| |
Collapse
|
46
|
Lee HK, Lee BR, Lee TJ, Lee CM, Li C, O'Connor PM, Dong Z, Kwon SH. Differential release of extracellular vesicle tRNA from oxidative stressed renal cells and ischemic kidneys. Sci Rep 2022; 12:1646. [PMID: 35102218 PMCID: PMC8803936 DOI: 10.1038/s41598-022-05648-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 01/14/2022] [Indexed: 11/09/2022] Open
Abstract
While urine-based liquid biopsy has expanded to the analyses of extracellular nucleic acids, the potential of transfer RNA (tRNA) encapsulated within extracellular vesicles has not been explored as a new class of urine biomarkers for kidney injury. Using rat kidney and mouse tubular cell injury models, we tested if extracellular vesicle-loaded tRNA and their m1A (N1-methyladenosine) modification reflect oxidative stress of kidney injury and determined the mechanism of tRNA packaging into extracellular vesicles. We determined a set of extracellular vesicle-loaded, isoaccepting tRNAs differentially released after ischemia-reperfusion injury and oxidative stress. Next, we found that m1A modification of extracellular vesicle tRNAs, despite an increase of the methylated tRNAs in intracellular vesicles, showed little or no change under oxidative stress. Mechanistically, oxidative stress decreases tRNA loading into intracellular vesicles while the tRNA-loaded vesicles are accumulated due to decreased release of the vesicles from the cell surface. Furthermore, Maf1-mediated transcriptional repression of the tRNAs decreases the cargo availability for extracellular vesicle release in response to oxidative stress. Taken together, our data support that release of extracellular vesicle tRNAs reflects oxidative stress of kidney tubules which might be useful to detect ischemic kidney injury and could lead to rebalance protein translation under oxidative stress.
Collapse
Affiliation(s)
- Hee Kyung Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Byung Rho Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Tae Jin Lee
- Center for Biotechnology and Genomic Medicine, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Chang Min Lee
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Chenglong Li
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Paul M O'Connor
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, GA, USA
| | - Zheng Dong
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA
- Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Sang-Ho Kwon
- Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, GA, USA.
| |
Collapse
|
47
|
Cardon T, Fournier I, Salzet M. Unveiling a Ghost Proteome in the Glioblastoma Non-Coding RNAs. Front Cell Dev Biol 2022; 9:703583. [PMID: 35004666 PMCID: PMC8733697 DOI: 10.3389/fcell.2021.703583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 12/03/2021] [Indexed: 12/13/2022] Open
Abstract
Glioblastoma is the most common brain cancer in adults. Nevertheless, the median survival time is 15 months, if treated with at least a near total resection and followed by radiotherapy in association with temozolomide. In glioblastoma (GBM), variations of non-coding ribonucleic acid (ncRNA) expression have been demonstrated in tumor processes, especially in the regulation of major signaling pathways. Moreover, many ncRNAs present in their sequences an Open Reading Frame (ORF) allowing their translations into proteins, so-called alternative proteins (AltProt) and constituting the “ghost proteome.” This neglected world in GBM has been shown to be implicated in protein–protein interaction (PPI) with reference proteins (RefProt) reflecting involvement in signaling pathways linked to cellular mobility and transfer RNA regulation. More recently, clinical studies have revealed that AltProt is also involved in the patient’s survival and bad prognosis. We thus propose to review the ncRNAs involved in GBM and highlight their function in the disease.
Collapse
Affiliation(s)
- Tristan Cardon
- University of Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, France
| | - Isabelle Fournier
- University of Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, France.,Institut Universitaire de France, Paris, France
| | - Michel Salzet
- University of Lille, Inserm, CHU Lille, U1192-Protéomique Réponse Inflammatoire Spectrométrie de Masse-PRISM, Lille, France.,Institut Universitaire de France, Paris, France
| |
Collapse
|
48
|
Tesovnik T, Jenko Bizjan B, Šket R, Debeljak M, Battelino T, Kovač J. Technological Approaches in the Analysis of Extracellular Vesicle Nucleotide Sequences. Front Bioeng Biotechnol 2021; 9:787551. [PMID: 35004647 PMCID: PMC8733665 DOI: 10.3389/fbioe.2021.787551] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 11/11/2021] [Indexed: 12/12/2022] Open
Abstract
Together with metabolites, proteins, and lipid components, the EV cargo consists of DNA and RNA nucleotide sequence species, which are part of the intracellular communication network regulating specific cellular processes and provoking distinct target cell responses. The extracellular vesicle (EV) nucleotide sequence cargo molecules are often investigated in association with a particular pathology and may provide an insight into the physiological and pathological processes in hard-to-access organs and tissues. The diversity and biological function of EV nucleotide sequences are distinct regarding EV subgroups and differ in tissue- and cell-released EVs. EV DNA is present mainly in apoptotic bodies, while there are different species of EV RNAs in all subgroups of EVs. A limited sample volume of unique human liquid biopsy provides a small amount of EVs with limited isolated DNA and RNA, which can be a challenging factor for EV nucleotide sequence analysis, while the additional difficulty is technical variability of molecular nucleotide detection. Every EV study is challenged with its first step of the EV isolation procedure, which determines the EV's purity, yield, and diameter range and has an impact on the EV's downstream analysis with a significant impact on the final result. The gold standard EV isolation procedure with ultracentrifugation provides a low output and not highly pure isolated EVs, while modern techniques increase EV's yield and purity. Different EV DNA and RNA detection techniques include the PCR procedure for nucleotide sequence replication of the molecules of interest, which can undergo a small-input EV DNA or RNA material. The nucleotide sequence detection approaches with their advantages and disadvantages should be considered to appropriately address the study problem and to extract specific EV nucleotide sequence information with the detection using qPCR or next-generation sequencing. Advanced next-generation sequencing techniques allow the detection of total EV genomic or transcriptomic data even at the single-molecule resolution and thus, offering a sensitive and accurate EV DNA or RNA biomarker detection. Additionally, with the processes where the EV genomic or transcriptomic data profiles are compared to identify characteristic EV differences in specific conditions, novel biomarkers could be discovered. Therefore, a suitable differential expression analysis is crucial to define the EV DNA or RNA differences between conditions under investigation. Further bioinformatics analysis can predict molecular cell targets and identify targeted and affected cellular pathways. The prediction target tools with functional studies are essential to help specify the role of the investigated EV-targeted nucleotide sequences in health and disease and support further development of EV-related therapeutics. This review will discuss the biological diversity of human liquid biopsy-obtained EV nucleotide sequences DNA and RNA species reported as potential biomarkers in health and disease and methodological principles of their detection, from human liquid biopsy EV isolation, EV nucleotide sequence extraction, techniques for their detection, and their cell target prediction.
Collapse
Affiliation(s)
- Tine Tesovnik
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Barbara Jenko Bizjan
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Robert Šket
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Maruša Debeljak
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| | - Tadej Battelino
- Department of Pediatric Endocrinology, Diabetes and Metabolic Diseases, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
- Faculty of Medicine, Chair of Paediatrics, University of Ljubljana, Ljubljana, Slovenia
| | - Jernej Kovač
- Institute for Special Laboratory Diagnostics, University Medical Centre Ljubljana, University Children’s Hospital, Ljubljana, Slovenia
| |
Collapse
|
49
|
Akiyama Y, Tomioka Y, Abe T, Anderson P, Ivanov P. In lysate RNA digestion provides insights into the angiogenin's specificity towards transfer RNAs. RNA Biol 2021; 18:2546-2555. [PMID: 34085908 PMCID: PMC8632075 DOI: 10.1080/15476286.2021.1930758] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Under adverse conditions, tRNAs are processed into fragments called tRNA-derived stress-induced RNAs (tiRNAs) by stress-responsive ribonucleases (RNases) such as angiogenin (ANG). Recent studies have reported several biological functions of synthetic tiRNAs lacking post-transcriptional modifications found on endogenous tiRNAs. Here we describe a simple and reproducible method to efficiently isolate ANG-cleaved tiRNAs from endogenous tRNAs. Using this in vitro method, more than 50% of mature tRNAs are cleaved into tiRNAs which can be enriched using complementary oligonucleotides. Using this method, the yield of isolated endogenous 5'-tiRNAGly-GCC was increased about fivefold compared to when tiRNAs were obtained by cellular treatment of ANG. Although the non-specific ribonuclease activity of ANG is much lower than that of RNase A, we show that ANG cleaves physiologically folded tRNAs as efficiently as bovine RNase A. These results suggest that ANG is highly specialized to cleave physiologically folded tRNAs. Our method will greatly facilitate the analysis of endogenous tiRNAs to elucidate the physiological functions of ANG.
Collapse
Affiliation(s)
- Yasutoshi Akiyama
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan,Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Yoshihisa Tomioka
- Laboratory of Oncology, Pharmacy Practice and Sciences, Tohoku University Graduate School of Pharmaceutical Sciences, Sendai, Japan
| | - Takaaki Abe
- Department of Medical Science, Tohoku University Graduate School of Biomedical Engineering, Sendai, Japan,Department of Clinical Biology and Hormonal Regulation, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Paul Anderson
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Pavel Ivanov
- Division of Rheumatology, Immunology and Allergy, Brigham and Women’s Hospital, Boston, MA, USA,Department of Medicine, Harvard Medical School, Boston, MA, USA,CONTACT Pavel Ivanov Brigham and Women’s Hospital, Department of Medicine, Division of Rheumatology, Inflammation, and Immunity, 75 Francis Street, Boston, MA 02115
| |
Collapse
|
50
|
Roles and mechanisms of exosomal non-coding RNAs in human health and diseases. Signal Transduct Target Ther 2021; 6:383. [PMID: 34753929 PMCID: PMC8578673 DOI: 10.1038/s41392-021-00779-x] [Citation(s) in RCA: 195] [Impact Index Per Article: 48.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 09/23/2021] [Accepted: 09/26/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes play a role as mediators of cell-to-cell communication, thus exhibiting pleiotropic activities to homeostasis regulation. Exosomal non-coding RNAs (ncRNAs), mainly microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), are closely related to a variety of biological and functional aspects of human health. When the exosomal ncRNAs undergo tissue-specific changes due to diverse internal or external disorders, they can cause tissue dysfunction, aging, and diseases. In this review, we comprehensively discuss the underlying regulatory mechanisms of exosomes in human diseases. In addition, we explore the current knowledge on the roles of exosomal miRNAs, lncRNAs, and circRNAs in human health and diseases, including cancers, metabolic diseases, neurodegenerative diseases, cardiovascular diseases, autoimmune diseases, and infectious diseases, to determine their potential implication in biomarker identification and therapeutic exploration.
Collapse
|