1
|
Li T, Jia W, Li L, Xu S, Xu R. GhCNGC31 is critical for conferring resistance to Verticillium wilt in cotton. PLANT MOLECULAR BIOLOGY 2024; 115:2. [PMID: 39666136 DOI: 10.1007/s11103-024-01533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 11/11/2024] [Indexed: 12/13/2024]
Abstract
In the past decades, cyclic nucleotide-gated ion channels (CNGCs) have been extensively studied in diploid species Arabidopsis thaliana. However, the functional diversification of CNGCs in crop plants, mostly polyploid, remains poorly understood. In allotetraploid Upland cotton (Gossypium hirsutum), GhCNGC31 is one of the multiple orthologs of AtCNGC2, being present in the plasma membrane, capable of interacting with itself and binding to calmodulins and cyclic nucleotides. GhCNGC31 knockdown plants exhibited slight growth inhibition, and became more susceptible to Verticillium dahliae infection, which was associated with the reduced lignin and flavonoid accumulation, impaired ROS (reactive oxygen species) burst, and down-regulation of defense-related genes PR1, JAZ2, LOX2, and RBOH10. RNA-Seq analysis identified 1817 differentially expressed genes from GhCNGC31 knockdown, of which 1184 (65%) were responsive to V. dahliae infection and accounted for 57% among a total of 2065 V. dahliae-responsive genes identified in this study. These GhCNGC31-regulated genes mainly function with cell wall organization and biogenesis, cellular carbohydrate metabolic or biosynthetic process, cellular component macromolecule biosynthetic process, and rhythmic process. They are significantly enriched in the pathways of plant MAPK signaling, plant-pathogen interaction, phenylpropanoid biosynthesis, and plant hormone signal transduction. A set of transcription factors (TFs) and resistance (R) genes are among the GhCNGC31-regulated genes, which are significantly over-represented with the TCP and WRKY TFs families, as well as with the R genes of T (TIR) and TNL (TIR-NB-LRR) classes. Together, our results unraveled a critical role of GhCNGC31 for conferring resistance to Verticillium wilt in cotton.
Collapse
Affiliation(s)
- Tianming Li
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Wenjing Jia
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Li
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Shi Xu
- Henan Seed Industry Development Center, Zhengzhou, 450000, China
| | - Ruqiang Xu
- State Key Laboratory of Cotton Biology, Zhengzhou Research Base, Zhengzhou University, Zhengzhou, 450001, China.
- School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
2
|
Koh E, Sunil RS, Lam HYI, Mutwil M. Confronting the data deluge: How artificial intelligence can be used in the study of plant stress. Comput Struct Biotechnol J 2024; 23:3454-3466. [PMID: 39415960 PMCID: PMC11480249 DOI: 10.1016/j.csbj.2024.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
The advent of the genomics era enabled the generation of high-throughput data and computational methods that serve as powerful hypothesis-generating tools to understand the genomic and gene functional basis of plant stress resilience. The proliferation of experimental and analytical methods used in biology has resulted in a situation where plentiful data exists, but the volume and heterogeneity of this data has made analysis a significant challenge. Current advanced deep-learning models have displayed an unprecedented level of comprehension and problem-solving ability, and have been used to predict gene structure, function and expression based on DNA or protein sequence, and prominently also their use in high-throughput phenomics in agriculture. However, the application of deep-learning models to understand gene regulatory and signalling behaviour is still in its infancy. We discuss in this review the availability of data resources and bioinformatic tools, and several applications of these advanced ML/AI models in the context of plant stress response, and demonstrate the use of a publicly available LLM (ChatGPT) to derive a knowledge graph of various experimental and computational methods used in the study of plant stress. We hope this will stimulate further interest in collaboration between computer scientists, computational biologists and plant scientists to distil the deluge of genomic, transcriptomic, proteomic, metabolomic and phenomic data into meaningful knowledge that can be used for the benefit of humanity.
Collapse
Affiliation(s)
- Eugene Koh
- School of Biological Scie nces, Nanyang Technological University, Singapore, Singapore
| | - Rohan Shawn Sunil
- School of Biological Scie nces, Nanyang Technological University, Singapore, Singapore
| | - Hilbert Yuen In Lam
- School of Biological Scie nces, Nanyang Technological University, Singapore, Singapore
| | - Marek Mutwil
- School of Biological Scie nces, Nanyang Technological University, Singapore, Singapore
| |
Collapse
|
3
|
Natarajan P, Rathnagiri A, Rivera-Burgos LA, Lopez-Ortiz C, Tomason Y, Nimmakayala P, Sari N, Wehner TC, Levi A, Reddy UK. Exploring the genomic landscape of gummy stem blight resistance in watermelon through QTL-Seq. BMC PLANT BIOLOGY 2024; 24:1129. [PMID: 39592947 PMCID: PMC11600796 DOI: 10.1186/s12870-024-05839-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 11/18/2024] [Indexed: 11/28/2024]
Abstract
BACKGROUND Watermelon is a nutritionally and economically significant crop in the US and globally. Gummy Stem Blight (GSB), caused by three cryptic Stagonosporopsis species, is one of the most devastating diseases affecting watermelon in the US, impacting most of the plant's above-ground parts. This study aimed to identify key Quantitative Trait Variants (QTVs) that include SNPs and In/Dels associated with GSB resistance in selfed derivatives of advanced multicross interspecific derivatives population derived from intercrosses between the most resistant lines of Citrullus amarus and highly susceptible cultivars of Citrullus lanatus. RESULTS Resistant and susceptible bulks were created by combining equimolar DNA concentrations from 30 extremely resistant derivatives and 30 extremely susceptible lines. These bulks underwent whole-genome sequencing, generating over 1 billion reads per bulk to achieve comprehensive genome coverage. The mapping percentage of the bulks to the parental genomes ranged from 92 to 99%. More than 6 million SNPs and 1 million indels were identified from the resistant parental genome, compared to fewer than 2 million SNPs and 0.4 million indels from the susceptible parental genome. QTNs associated with GSB resistance were identified using single-nucleotide polymorphism-index and Gprime methods. Statistically significant variants/loci linked to GSB resistance were found on chromosomes 1, 2, 3, 5, 7, 10, and 11. Notably, the genes Lipase class 3 family protein, Ribosome hibernation promotion factor (CaU02G00010), Ubiquitin-like-specific protease 1D (CaU03G04260), and Zinc finger CCCH domain-containing 15 (CaU03G10970) harbored the highest delta SNPs. Several previously published genes, including Avr9/Cf-9 Rapidly Elicited Protein (CaU07G12990) on chromosome 7, were also identified. CONCLUSIONS Identifying significant loci associated with GSB resistance has facilitated the development of PACE assays, which will aid in breeding GSB-resistant watermelon cultivars. These findings provide critical insights into the genetic basis of GSB resistance and represent a significant step towards improving the resilience of watermelon crops against this devastating disease.
Collapse
Affiliation(s)
- Purushothaman Natarajan
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV, USA.
- Department of Agriculture, Food and Resource Sciences, University of Maryland Eastern Shore, Princess Anne, MD, 21853, USA.
| | - Akilan Rathnagiri
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV, USA
| | - Luis A Rivera-Burgos
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Carlos Lopez-Ortiz
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV, USA
| | - Yan Tomason
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV, USA
| | - Padma Nimmakayala
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV, USA.
| | - Nebahat Sari
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Todd C Wehner
- Department of Horticultural Science, North Carolina State University, Raleigh, NC, USA
| | - Amnon Levi
- Vegetable Laboratory, USDA-ARS, Charleston, SC, USA
| | - Umesh K Reddy
- Gus R. Douglass Institute, Department of Biology, West Virginia State University, Institute, WV, USA.
| |
Collapse
|
4
|
Gahlot PS, Choudhury S, Bajiya N, Kumar N, Raghava GPS. Prediction of Plant Resistance Proteins Using Alignment-Based and Alignment-Free Approaches. Proteomics 2024:e202400261. [PMID: 39580673 DOI: 10.1002/pmic.202400261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/21/2024] [Accepted: 11/11/2024] [Indexed: 11/26/2024]
Abstract
Plant disease resistance (PDR) proteins are critical in identifying plant pathogens. Predicting PDR protein is essential for understanding plant-pathogen interactions and developing strategies for crop protection. This study proposes a hybrid model for predicting and designing PDR proteins against plant-invading pathogens. Initially, we tried alignment-based approaches, such as Basic Local Alignment Search Tool (BLAST) for similarity search and MERCI for motif search. These alignment-based approaches exhibit very poor coverage or sensitivity. To overcome these limitations, we developed alignment-free or machine learning (ML)-based methods using compositional features of proteins. Our ML-based model, developed using compositional features of proteins, achieved a maximum performance area under the receiver operating characteristic curve (AUROC) of 0.91. The performance of our model improved significantly from AUROC of 0.91-0.95 when we used evolutionary information instead of protein sequence. Finally, we developed a hybrid or ensemble model that combined our best ML model with BLAST and obtained the highest AUROC of 0.98 on the validation dataset. We trained and tested our models on a training dataset and evaluated them on a validation dataset. None of the proteins in our validation dataset are more than 40% similar to proteins in the training dataset. One of the objectives of this study is to facilitate the scientific community working in plant biology. Thus, we developed an online platform for predicting and designing plant resistance proteins, "PlantDRPpred" (https://webs.iiitd.edu.in/raghava/plantdrppred).
Collapse
Affiliation(s)
- Pushpendra Singh Gahlot
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Shubham Choudhury
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Nisha Bajiya
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Nishant Kumar
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P S Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
5
|
Rajesh MK, Budhwar R, Shukla R, Oraon PK, Goel S, Paul B, Thomas RJ, Dinesh A, Jayasekhar S, Chandran KP, Muralikrishna KS, Nirmal Kumar BJ, Das A. Chromosome scale genome assembly and annotation of coconut cultivar Chowghat Green Dwarf. Sci Rep 2024; 14:28778. [PMID: 39567709 PMCID: PMC11579352 DOI: 10.1038/s41598-024-79768-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 11/12/2024] [Indexed: 11/22/2024] Open
Abstract
The high-quality genome of coconut (Cocos nucifera L.) is a crucial resource for enhancing agronomic traits and studying genome evolution within the Arecaceae family. We sequenced the Chowghat Green Dwarf cultivar, which is resistant to the root (wilt) disease, utilizing Illumina, PacBio, ONT, and Hi-C technologies to produce a chromosome-level genome of ~ 2.68 Gb with a scaffold N50 of 174 Mb; approximately 97% of the genome could be anchored to 16 pseudo-molecules (2.62 Gb). In total, 34,483 protein-coding genes were annotated; the BUSCO completeness score was 96.80%, while the k-mer completeness was ~ 87%. The assembled genome includes 2.19 Gb (81.64%) of repetitive sequences, with long terminal repeats (LTRs) constituting the most abundant class at 53.76%. Additionally, our analysis confirms two whole-genome duplication (WGD) events in the C. nucifera lineage. A genome-wide analysis of LTR insertion time revealed ancient divergence and proliferation of copia and gypsy elements. In addition, 1368 RGAs were discovered in the CGD genome. We also developed a web server 'Kalpa Genome Resource' ( http://210.89.54.198:3000/ ), to manage and store a comprehensive array of genomic data, including genome sequences, genetic markers, structural and functional annotations like metabolic pathways, and transcriptomic profiles. The web server has an embedded genome browser to analyze and visualize the genome, its genomics elements, and transcriptome data. The in-built BLAST server allows sequence homology searches against genome, annotated transcriptome & proteome sequences. The genomic dataset and the database will support comparative genome analysis and can expedite genome-driven breeding and enhancement efforts for tapping genetic gains in coconut.
Collapse
Affiliation(s)
- M K Rajesh
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India.
- ICAR-Central Plantation Crops Research Institute, Regional Station, Vittal, Karnataka, 574243, India.
| | - Roli Budhwar
- Bionivid Technology [P] Limited, Bengaluru, Karnataka, 560064, India
| | - Rohit Shukla
- Bionivid Technology [P] Limited, Bengaluru, Karnataka, 560064, India
| | | | - Shailendra Goel
- Department of Botany, University of Delhi, Delhi, 110007, India
| | - Bobby Paul
- Department of Bioinformatics, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, 576104, India
| | - Regi Jacob Thomas
- ICAR-Central Plantation Crops Research Institute, Regional Station, Kayamkulam, Kerala, 690533, India
| | - Akshay Dinesh
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India
| | - S Jayasekhar
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India
| | - K P Chandran
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India
| | - K S Muralikrishna
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India
| | - B J Nirmal Kumar
- ICAR-Central Plantation Crops Research Institute, Kasaragod, Kerala, 671124, India
| | - Alpana Das
- ICAR-Central Plantation Crops Research Institute, Research Centre, Kahikuchi, Assam, 781017, India
| |
Collapse
|
6
|
Kandel SL, Eide JD, Firrincieli A, Finger FL, Lafta AM, Fugate KK. Sugar beet root susceptibility to storage rots and downregulation of plant defense genes increases with time in storage. Sci Rep 2024; 14:27235. [PMID: 39516509 PMCID: PMC11549380 DOI: 10.1038/s41598-024-78323-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024] Open
Abstract
Storage rots are a significant cause of postharvest losses for the sugar beet crop, however, intrinsic physiological and genetic factors that determine the susceptibility of roots to pathogen infection and disease development are unknown. Research, therefore, was carried out to evaluate the disease development in sugar beet roots caused by two common storage pathogens as a function of storage duration and storage temperature, and to identify changes in the expression of defense genes that may be influencing the root susceptibility to disease. To evaluate root susceptibility to disease, freshly harvested roots were inoculated with Botrytis cinerea or Penicillium vulpinum on the day of harvest or after 12, 40, or 120 d storage at 5 or 12 °C and the weight of rotted tissue present in the roots after incubation for 35 d after inoculation were determined. Disease susceptibility and progression to B. cinerea and P. vulpinum increased with storage duration with elevations in susceptibility occurring more rapidly to B. cinerea than P. vulpinum. Also, B. cinerea was more aggressive than P. vulpinum and caused greater rotting and tissue damage in postharvest sugar beet roots. Storage temperature had minimal effect on root susceptibility to these rot-causing pathogens. Changes in defense gene expression were determined by sequencing mRNA isolated from uninoculated roots that were similarly stored for 12, 40 or 120 d at 5 or 12 °C. As susceptibility to rot increased during storage, concurrent changes in defense-related gene expression were identified, including the differential expression of 425 pathogen receptor and 275 phytohormone signal transduction pathway-related genes. Furthermore, plant resistance and hormonal signaling genes that were significantly altered in expression coincident with the change in root susceptibility to storage rots were identified. Further investigation into the function of these genes may ultimately elucidate methods by which storage rot resistance in sugar beet roots may be improved in the future.
Collapse
Affiliation(s)
- Shyam L Kandel
- Edward T. Schafer Agricultural Research Center, Sugarbeet Research Unit, USDA-ARS, Fargo, ND, 58102, USA.
| | - John D Eide
- Edward T. Schafer Agricultural Research Center, Sugarbeet Research Unit, USDA-ARS, Fargo, ND, 58102, USA
| | - Andrea Firrincieli
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, Viterbo, Italy
| | - Fernando L Finger
- Departamento de Agronomia, Universidade Federal de Vicosa, 36570-900, Vicosa, MG, Brazil
| | - Abbas M Lafta
- Department of Plant Pathology, North Dakota State University, P.O. Box 6050, Fargo, ND, 58108, USA
| | - Karen K Fugate
- Edward T. Schafer Agricultural Research Center, Sugarbeet Research Unit, USDA-ARS, Fargo, ND, 58102, USA
| |
Collapse
|
7
|
Li R, Hu Y, Wang X, Liu C, Huang G. Full-length transcriptome characterization and analysis of Carrizo Citrange and molecular insights into pathogen defense. Mol Genet Genomics 2024; 299:104. [PMID: 39467857 DOI: 10.1007/s00438-024-02195-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Citrus huanglongbing (HLB) is a major challenge that impacts the flourishing of the citrus industry. Therefore, analyzing the genomic information of HLB-resistant or tolerant citrus resources is crucial for breeding HLB-resistant citrus varieties. The Carrizo citrange, a hybrid of Citrus sinensis and Poncirus trifoliata, plays a pivotal role in citrus cultivation. However, its genetic explorations are difficult due to the absence of a reference genome or full-length transcriptome. In order to enhance our understanding of the genetic information of citrange, we conducted a full-length transcriptomic sequencing of multiple tissues from the Carrizo citrange using the PacBio Sequel II platform. Moreover, we performed gene ontology (GO) annotation, gene functional annotation, simple sequence repeats (SSR) types analysis, as well as identification of lncRNAs, alternative splicing events, and analysis of pathogen defense-related genes. Results showed that a total of 43,452 isoforms were generated, with 43,307 of them being annotated. GO annotation indicated the involvement of these isoforms in various biological processes, cellular components, and molecular functions. The coding sequence length of the isoforms ranged from 1,000 to 4,000 base pairs (bp). Moreover, we have discovered 54 varieties of transcription factors and regulators, along with 16 classifications of genes associated with resistance. Among all types of SSRs, trimer type SSRs were the most abundant. 130 lncRNAs were predicted to be highly reliable in the isoforms of the Carrizo citrange, with alternative splicing events identified, and the most frequent being retained intron. The analysis of gene family expansion and contraction revealed a significant increase in pathogen defense-related genes within the Carrizo citrange. The results of this study will be of great value for future investigations into gene function in citrange and for expanding the genetic pool for breeding citrus varieties resistant or tolerant to HLB.
Collapse
Affiliation(s)
- Ruimin Li
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
- National Navel Orange Engineering Research Center, Ganzhou, 341000, China.
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou, 341000, China.
| | - Yanan Hu
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Xinyou Wang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Chang Liu
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China
| | - Guiyan Huang
- College of Life Sciences, Gannan Normal University, Ganzhou, 341000, China.
- National Navel Orange Engineering Research Center, Ganzhou, 341000, China.
- Jiangxi Provincial Key Laboratory of Pest and Disease Control of Featured Horticultural Plants, Ganzhou, 341000, China.
| |
Collapse
|
8
|
Sun T, Wu Q, Zang S, Zou W, Wang D, Wang W, Shen L, Zhang S, Su Y, Que Y. Molecular insights into OPR gene family in Saccharum identified a ScOPR2 gene could enhance plant disease resistance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:335-353. [PMID: 39167539 DOI: 10.1111/tpj.16990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/02/2024] [Accepted: 08/08/2024] [Indexed: 08/23/2024]
Abstract
12-Oxo-phytodienoic acid reductases (OPRs) perform vital functions in plants. However, few studies have been reported in sugarcane (Saccharum spp.), and it is of great significance to systematically investigates it in sugarcane. Here, 61 ShOPRs, 32 SsOPRs, and 36 SoOPRs were identified from R570 (Saccharum spp. hybrid cultivar R570), AP85-441 (Saccharum spontaneum), and LA-purple (Saccharum officinarum), respectively. These OPRs were phylogenetically classified into four groups, with close genes similar structures. During evolution, OPR gene family was mainly expanded via whole-genome duplications/segmental events and predominantly underwent purifying selection, while sugarcane OPR genes may function differently in response to various stresses. Further, ScOPR2, a tissue-specific OPR, which was localized in cytoplasm and cell membrane and actively response to salicylic acid (SA), methyl jasmonate, and smut pathogen (Sporisorium scitamineum) stresses, was cloned from sugarcane. In addition, both its transient overexpression and stable overexpression enhanced the resistance of transgenic plants to pathogen infection, most probably through activating pathogen-associated molecular pattern/pattern-recognition receptor-triggered immunity, producing reactive oxygen species, and initiating mitogen-activated protein kinase cascade. Subsequently, the transmission of SA and hypersensitive reaction were triggered, which stimulated the transcription of defense-related genes. These findings provide insights into the function of ScOPR2 gene for disease resistance.
Collapse
Affiliation(s)
- Tingting Sun
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, 572024, China
| | - Qibin Wu
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, 572024, China
| | - Shoujian Zang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, 572024, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wenhui Zou
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, 572024, China
| | - Dongjiao Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, 572024, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Wenzhi Wang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, 572024, China
| | - Linbo Shen
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, 572024, China
| | - Shuzhen Zhang
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, 572024, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Youxiong Que
- National Key Laboratory for Tropical Crop Breeding, Institute of Tropical Bioscience and Biotechnology, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, Hainan, 572024, China
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| |
Collapse
|
9
|
Qiao B, Wang S, Hou M, Chen H, Zhou Z, Xie X, Pang S, Yang C, Yang F, Zou Q, Sun S. Identifying nucleotide-binding leucine-rich repeat receptor and pathogen effector pairing using transfer-learning and bilinear attention network. BIOINFORMATICS (OXFORD, ENGLAND) 2024; 40:btae581. [PMID: 39331576 DOI: 10.1093/bioinformatics/btae581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 08/24/2024] [Accepted: 09/25/2024] [Indexed: 09/29/2024]
Abstract
MOTIVATION Nucleotide-binding leucine-rich repeat (NLR) family is a class of immune receptors capable of detecting and defending against pathogen invasion. They have been widely used in crop breeding. Notably, the correspondence between NLRs and effectors (CNE) determines the applicability and effectiveness of NLRs. Unfortunately, CNE data is very scarce. In fact, we've found a substantial 91 291 NLRs confirmed via wet experiments and bioinformatics methods but only 387 CNEs are recognized, which greatly restricts the potential application of NLRs. RESULTS We propose a deep learning algorithm called ProNEP to identify NLR-effector pairs in a high-throughput manner. Specifically, we conceptualized the CNE prediction task as a protein-protein interaction (PPI) prediction task. Then, ProNEP predicts the interaction between NLRs and effectors by combining the transfer learning with a bilinear attention network. ProNEP achieves superior performance against state-of-the-art models designed for PPI predictions. Based on ProNEP, we conduct extensive identification of potential CNEs for 91 291 NLRs. With the rapid accumulation of genomic data, we expect that this tool will be widely used to predict CNEs in new species, advancing biology, immunology, and breeding. AVAILABILITY AND IMPLEMENTATION The ProNEP is available at http://nerrd.cn/#/prediction. The project code is available at https://github.com/QiaoYJYJ/ProNEP.
Collapse
Affiliation(s)
- Baixue Qiao
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150001, China
| | - Shuda Wang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150001, China
| | - Mingjun Hou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
| | - Haodi Chen
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
| | - Zhengwenyang Zhou
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
| | - Xueying Xie
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
| | - Shaozi Pang
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
| | - Chunxue Yang
- College of Landscape Architecture, Northeast Forestry University, Harbin 150001, China
| | - Fenglong Yang
- Department of Bioinformatics, Fujian Key Laboratory of Medical Bioinformatics, School of Medical Technology and Engineering, Fujian Medical University, Fuzhou 350122, China
- Key Laboratory of Ministry of Education for Gastrointestinal Cancer, School of Basic Medical Sciences, Fujian Medical University, Fuzhou 350122, China
| | - Quan Zou
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Shanwen Sun
- Key Laboratory of Saline-Alkali Vegetation Ecology Restoration, Ministry of Education (Northeast Forestry University), Harbin 150001, China
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150001, China
| |
Collapse
|
10
|
Lee OJ, Han K, Lee HE, Jeong HB, Yu N, Chae W. Identification of Genomic Regions Associated with Powdery Mildew Resistance in Watermelon through Genome-Wide Association Study. PLANTS (BASEL, SWITZERLAND) 2024; 13:2708. [PMID: 39409578 PMCID: PMC11479075 DOI: 10.3390/plants13192708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 09/25/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024]
Abstract
Watermelon (Citrullus spp.) is an economically important crop globally, but it is susceptible to various diseases, including powdery mildew. Previous studies have identified genetic factors associated with powdery mildew resistance. However, further research using diverse genetic approaches is necessary to elucidate the underlying genetic mechanisms of this resistance. In this study, the germplasm collection comprising highly homozygous inbred lines was employed, which enabled the accumulation of consistent data and improved the reliability of the genome-wide association study (GWAS) findings. Our investigation identified two significant single-nucleotide polymorphisms (SNPs), pm2.1 and pm3.1, which were strongly associated with disease resistance. Moreover, several candidate genes were revealed within the linkage disequilibrium (LD) blocks surrounding the significant SNPs. In conclusion, the identification of significant SNPs and their additive effects, combined with the discovery of relevant candidate genes, expanded our understanding of the genetic basis of disease resistance and can pave the way for the development of more resilient watermelon cultivars through marker-assisted selection.
Collapse
Affiliation(s)
- Oak-Jin Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.H.); (H.-E.L.); (H.-B.J.); (N.Y.)
- Department of Environmental Horticulture, Dankook University, Cheonan 31116, Republic of Korea;
| | - Koeun Han
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.H.); (H.-E.L.); (H.-B.J.); (N.Y.)
| | - Hye-Eun Lee
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.H.); (H.-E.L.); (H.-B.J.); (N.Y.)
| | - Hyo-Bong Jeong
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.H.); (H.-E.L.); (H.-B.J.); (N.Y.)
| | - Nari Yu
- Vegetable Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration, Wanju 55365, Republic of Korea; (K.H.); (H.-E.L.); (H.-B.J.); (N.Y.)
| | - Wonbyoung Chae
- Department of Environmental Horticulture, Dankook University, Cheonan 31116, Republic of Korea;
| |
Collapse
|
11
|
van den Berg DF, Costa AR, Esser JQ, Stanciu I, Geissler JQ, Zoumaro-Djayoon AD, Haas PJ, Brouns SJJ. Bacterial homologs of innate eukaryotic antiviral defenses with anti-phage activity highlight shared evolutionary roots of viral defenses. Cell Host Microbe 2024; 32:1427-1443.e8. [PMID: 39094584 DOI: 10.1016/j.chom.2024.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 05/21/2024] [Accepted: 07/09/2024] [Indexed: 08/04/2024]
Abstract
Prokaryotes have evolved a multitude of defense systems to protect against phage predation. Some of these resemble eukaryotic genes involved in antiviral responses. Here, we set out to systematically project the current knowledge of eukaryotic-like antiviral defense systems onto prokaryotic genomes, using Pseudomonas aeruginosa as a model organism. Searching for phage defense systems related to innate antiviral genes from vertebrates and plants, we uncovered over 450 candidates. We validated six of these phage defense systems, including factors preventing viral attachment, R-loop-acting enzymes, the inflammasome, ubiquitin pathway, and pathogen recognition signaling. Collectively, these defense systems support the concept of deep evolutionary links and shared antiviral mechanisms between prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Daan F van den Berg
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ana Rita Costa
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jelger Q Esser
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Ilinka Stanciu
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | - Jasper Q Geissler
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands
| | | | - Pieter-Jan Haas
- Medical Microbiology, University Medical Center Utrecht, Utrecht University, 3584 CX Utrecht, the Netherlands
| | - Stan J J Brouns
- Department of Bionanoscience, Delft University of Technology, 2629 HZ Delft, the Netherlands; Kavli Institute of Nanoscience, Delft, the Netherlands.
| |
Collapse
|
12
|
Fernandes P, Pimentel D, Ramiro RS, Silva MDC, Fevereiro P, Costa RL. Dual transcriptomic analysis reveals early induced Castanea defense-related genes and Phytophthora cinnamomi effectors. FRONTIERS IN PLANT SCIENCE 2024; 15:1439380. [PMID: 39188543 PMCID: PMC11345161 DOI: 10.3389/fpls.2024.1439380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 07/05/2024] [Indexed: 08/28/2024]
Abstract
Phytophthora cinnamomi Rands devastates forest species worldwide, causing significant ecological and economic impacts. The European chestnut (Castanea sativa) is susceptible to this hemibiotrophic oomycete, whereas the Asian chestnuts (Castanea crenata and Castanea mollissima) are resistant and have been successfully used as resistance donors in breeding programs. The molecular mechanisms underlying the different disease outcomes among chestnut species are a key foundation for developing science-based control strategies. However, these are still poorly understood. Dual RNA sequencing was performed in C. sativa and C. crenata roots inoculated with P. cinnamomi. The studied time points represent the pathogen's hemibiotrophic lifestyle previously described at the cellular level. Phytophthora cinnamomi expressed several genes related to pathogenicity in both chestnut species, such as cell wall-degrading enzymes, host nutrient uptake transporters, and effectors. However, the expression of effectors related to the modulation of host programmed cell death (elicitins and NLPs) and sporulation-related genes was higher in the susceptible chestnut. After pathogen inoculation, 1,556 and 488 genes were differentially expressed by C. crenata and C. sativa, respectively. The most significant transcriptional changes occur at 2 h after inoculation (hai) in C. sativa and 48 hai in C. crenata. Nevertheless, C. crenata induced more defense-related genes, indicating that the resistant response to P. cinnamomi is controlled by multiple loci, including several pattern recognition receptors, genes involved in the phenylpropanoid, salicylic acid and ethylene/jasmonic acid pathways, and antifungal genes. Importantly, these results validate previously observed cellular responses for C. crenata. Collectively, this study provides a comprehensive time-resolved description of the chestnut-P. cinnamomi dynamic, revealing new insights into susceptible and resistant host responses and important pathogen strategies involved in disease development.
Collapse
Affiliation(s)
- Patrícia Fernandes
- Department of Environmental Biology, State University of New York College of Environmental Science and Forestry, Syracuse, NY, United States
| | - Diana Pimentel
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
| | | | - Maria do Céu Silva
- Centro de Investigação das Ferrugens do Cafeeiro, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
- Linking Landscape, Environment, Agriculture and Food, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| | - Pedro Fevereiro
- InnovPlantProtect Collaborative Laboratory, Elvas, Portugal
- Instituto de Tecnologia Química e Biológica António Xavier (ITQB, Green-It Unit), Universidade NOVA de Lisboa, Oeiras, Portugal
| | - Rita Lourenço Costa
- Instituto Nacional de Investigação Agrária e Veterinária I.P., Oeiras, Portugal
- Centro de Estudos Florestais, Associate Laboratory TERRA, Instituto Superior de Agronomia, Universidade de Lisboa, Lisboa, Portugal
| |
Collapse
|
13
|
Zhang Y, Zhao M, Tan J, Huang M, Chu X, Li Y, Han X, Fang T, Tian Y, Jarret R, Lu D, Chen Y, Xue L, Li X, Qin G, Li B, Sun Y, Deng XW, Deng Y, Zhang X, He H. Telomere-to-telomere Citrullus super-pangenome provides direction for watermelon breeding. Nat Genet 2024; 56:1750-1761. [PMID: 38977857 PMCID: PMC11319210 DOI: 10.1038/s41588-024-01823-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Accepted: 06/04/2024] [Indexed: 07/10/2024]
Abstract
To decipher the genetic diversity within the cucurbit genus Citrullus, we generated telomere-to-telomere (T2T) assemblies of 27 distinct genotypes, encompassing all seven Citrullus species. This T2T super-pangenome has expanded the previously published reference genome, T2T-G42, by adding 399.2 Mb and 11,225 genes. Comparative analysis has unveiled gene variants and structural variations (SVs), shedding light on watermelon evolution and domestication processes that enhanced attributes such as bitterness and sugar content while compromising disease resistance. Multidisease-resistant loci from Citrullus amarus and Citrullus mucosospermus were successfully introduced into cultivated Citrullus lanatus. The SVs identified in C. lanatus have not only been inherited from cordophanus but also from C. mucosospermus, suggesting additional ancestors beyond cordophanus in the lineage of cultivated watermelon. Our investigation substantially improves the comprehension of watermelon genome diversity, furnishing comprehensive reference genomes for all Citrullus species. This advancement aids in the exploration and genetic enhancement of watermelon using its wild relatives.
Collapse
Affiliation(s)
- Yilin Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Mingxia Zhao
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Jingsheng Tan
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Minghan Huang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Xiao Chu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yan Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Xue Han
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Taohong Fang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yao Tian
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | | | - Dongdong Lu
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yijun Chen
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Lifang Xue
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Xiaoni Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Guochen Qin
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Bosheng Li
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
| | - Yudong Sun
- Vegetable Research and Development Center, Huaiyin Institute of Agricultural Sciences of Xuhuai Region in Jiangsu, Huai'an, China
| | - Xing Wang Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China
| | - Yun Deng
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.
| | - Xingping Zhang
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.
| | - Hang He
- National Key Laboratory of Wheat Improvement, Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Weifang, China.
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing, China.
| |
Collapse
|
14
|
Sultan AB, Nawaz H, Saleem F, Nawaz S, Danial M, Iftikhar R, Maqsood U, Areej A, Shakoor S, Aljarba NH, Maqbool R, Rizwan M, Serfraz S. Divergent evolution of NLR genes in the genus Glycine: impacts of annuals and perennials' life history strategies. FRONTIERS IN PLANT SCIENCE 2024; 15:1383135. [PMID: 39045600 PMCID: PMC11263291 DOI: 10.3389/fpls.2024.1383135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 06/12/2024] [Indexed: 07/25/2024]
Abstract
Within the family Fabaceae, the genus Glycine is composed of two subgenera annuals (2n=40) and perennials. This life strategy transition may have differentially affected the evolution of various gene families. Its cultivated species G. max has high level of susceptibility to major pathogens including viruses, bacteria and fungi. Understanding nucleotide-binding domain leucine-rich repeat (NLR) genes evolution in soybean is of paramount importance due to their central role in plant immunity and their potential in improving disease resistance in soybean cultivars. In this study, we investigated the significance of this annual-perennial transition on the macroevolution of NLR genes in the genus Glycine. Our results reveal a remarkable distinction between annual species such as Glycine max and Glycine soja, which exhibit an expanded NLRome compared to perennial species (G. cyrtoloba, G. stenophita, G. dolichocarpa, G. falcata, G. syndetika, G. latifolia and G. tomentella). Our evolutionary timescale analysis pinpoints recent accelerated gene duplication events for this expansion, which occurred between 0.1 and 0.5 million years ago, driven predominantly by lineage-specific and terminal duplications. In contrast, perennials initially experienced significant contraction during the diploidisation phase following the Glycine-specific whole-genome duplication event (~10 million years ago). Despite the reduction in the NLRome, perennial lineages exhibit a unique and highly diversified repertoire of NLR genes with limited interspecies synteny. The investigation of gene gain and loss ratios revealed that this diversification resulted from the birth of novel genes following individual speciation events. Among perennials, G. latifolia, a well-known resistance resource, has the highest ratio of these novel genes in the tertiary gene pool. Our study suggests evolutionary mechanisms, including recombination and transposition, as potential drivers for the emergence of these novel genes. This study also provides evidence for the unbalanced expansion of the NLRome in the Dt subgenome compared with the At subgenome in the young allopolyploid G. dolichocarpa. To the best of our knowledge, this is the first study to investigate the effect of annuality and perenniality life transition on the evolution of NLR genes in the genus Glycine to identify its genomics resources for improving the resistance of soybean crop with global importance on the economy and food security.
Collapse
Affiliation(s)
- Abu Bakar Sultan
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Humera Nawaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore, Pakistan
| | - Fozia Saleem
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sehar Nawaz
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Muhammad Danial
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Romana Iftikhar
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Umer Maqsood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Faisalabad, Pakistan
| | - Amna Areej
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Sidra Shakoor
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Nada H. Aljarba
- Department of Biology, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Rizwan Maqbool
- Department of Agronomy, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Rizwan
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Saad Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
15
|
Khojasteh M, Darzi Ramandi H, Taghavi SM, Taheri A, Rahmanzadeh A, Chen G, Foolad MR, Osdaghi E. Unraveling the genetic basis of quantitative resistance to diseases in tomato: a meta-QTL analysis and mining of transcript profiles. PLANT CELL REPORTS 2024; 43:184. [PMID: 38951262 DOI: 10.1007/s00299-024-03268-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 06/11/2024] [Indexed: 07/03/2024]
Abstract
KEY MESSAGE Whole-genome QTL mining and meta-analysis in tomato for resistance to bacterial and fungal diseases identified 73 meta-QTL regions with significantly refined/reduced confidence intervals. Tomato production is affected by a range of biotic stressors, causing yield losses and quality reductions. While sources of genetic resistance to many tomato diseases have been identified and characterized, stability of the resistance genes or quantitative trait loci (QTLs) across the resources has not been determined. Here, we examined 491 QTLs previously reported for resistance to tomato diseases in 40 independent studies and 54 unique mapping populations. We identified 29 meta-QTLs (MQTLs) for resistance to bacterial pathogens and 44 MQTLs for resistance to fungal pathogens, and were able to reduce the average confidence interval (CI) of the QTLs by 4.1-fold and 6.7-fold, respectively, compared to the average CI of the original QTLs. The corresponding physical length of the CIs of MQTLs ranged from 56 kb to 6.37 Mb, with a median of 921 kb, of which 27% had a CI lower than 500 kb and 53% had a CI lower than 1 Mb. Comparison of defense responses between tomato and Arabidopsis highlighted 73 orthologous genes in the MQTL regions, which were putatively determined to be involved in defense against bacterial and fungal diseases. Intriguingly, multiple genes were identified in some MQTL regions that are implicated in plant defense responses, including PR-P2, NDR1, PDF1.2, Pip1, SNI1, PTI5, NSL1, DND1, CAD1, SlACO, DAD1, SlPAL, Ph-3, EDS5/SID1, CHI-B/PR-3, Ph-5, ETR1, WRKY29, and WRKY25. Further, we identified a number of candidate resistance genes in the MQTL regions that can be useful for both marker/gene-assisted breeding as well as cloning and genetic transformation.
Collapse
Affiliation(s)
- Moein Khojasteh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran
| | - Hadi Darzi Ramandi
- Department of Plant Production and Genetics, Faculty of Agriculture, Bu-Ali Sina University, P.O. Box 657833131, Hamedan, Iran
- Department of Molecular Physiology, Agricultural Biotechnology Research Institute of Iran, Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran
| | - S Mohsen Taghavi
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran.
| | - Ayat Taheri
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Plant Biotechnology Research Center, Fudan-SJTU-Nottingham Plant Biotechnology R&D Center, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Asma Rahmanzadeh
- Department of Plant Protection, School of Agriculture, Shiraz University, Shiraz, 71441-65186, Iran
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran
| | - Gongyou Chen
- School of Agriculture and Biology/State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Majid R Foolad
- Department of Plant Science and the Intercollege Graduate Degree Program in Plant Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
| | - Ebrahim Osdaghi
- Department of Plant Protection, University of Tehran, Karaj, 31587-77871, Iran.
| |
Collapse
|
16
|
Mo C, Wang H, Wei M, Zeng Q, Zhang X, Fei Z, Zhang Y, Kong Q. Complete genome assembly provides a high-quality skeleton for pan-NLRome construction in melon. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:2249-2268. [PMID: 38430487 DOI: 10.1111/tpj.16705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Melon (Cucumis melo L.), being under intensive domestication and selective breeding, displays an abundant phenotypic diversity. Wild germplasm with tolerance to stress represents an untapped genetic resource for discovery of disease-resistance genes. To comprehensively characterize resistance genes in melon, we generate a telomere-to-telomere (T2T) and gap-free genome of wild melon accession PI511890 (C. melo var. chito) with a total length of 375.0 Mb and a contig N50 of 31.24 Mb. The complete genome allows us to dissect genome architecture and identify resistance gene analogs. We construct a pan-NLRome using seven melon genomes, which include 208 variable and 18 core nucleotide-binding leucine-rich repeat receptors (NLRs). Multiple disease-related transcriptome analyses indicate that most up-regulated NLRs induced by pathogens are shell or cloud NLRs. The T2T gap-free assembly and the pan-NLRome not only serve as essential resources for genomic studies and molecular breeding of melon but also provide insights into the genome architecture and NLR diversity.
Collapse
Affiliation(s)
- Changjuan Mo
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Haiyan Wang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Minghua Wei
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Qingguo Zeng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuejun Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | | | - Yongbing Zhang
- Hami-melon Research Center, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China
| | - Qiusheng Kong
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
17
|
Li H, Liu Y, Fan P, Dai Z, Hao J, Duan W, Liang Z, Wang Y. The Genome of Vitis zhejiang-adstricta Strengthens the Protection and Utilization of the Endangered Ancient Grape Endemic to China. PLANT & CELL PHYSIOLOGY 2024; 65:216-227. [PMID: 37930871 PMCID: PMC10873524 DOI: 10.1093/pcp/pcad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023]
Abstract
Vitis zhejiang-adstricta (V. zhejiang-adstricta) is one of the most important and endangered wild grapes. It is a national key protected wild, rare and endangered ancient grape endemic to China and used as a candidate material for resistance breeding owing to its excellent significant disease resistance. Here, we present a high-quality chromosome-level assembly of V. zhejiang-adstricta (IB-VB-01), comprising 506.66 Mb assembled into 19 pseudo-chromosomes. The contig N50 length is 3.91 Mb with 31,196 annotated protein-coding genes. Comparative genome and evolutionary analyses illustrated that V. zhejiang-adstricta has a specific position in the evolution of East Asian Vitis and shared a common ancestor with Vitis vinifera during the divergence of the two species about 10.42 (between 9.34 and 11.12) Mya. The expanded gene families compared with those in plants were related to disease resistance, and constructed gene families were related to plant growth and primary metabolism. With the analysis of gene family expansion and contraction, the evolution of environmental adaptability and especially the NBS-LRR gene family of V. zhejiang-adstricta was elucidated based on the pathways of resistance genes (R genes), unique genes and structural variations. The near-complete and accurate diploid V. zhejiang-adstricta reference genome obtained herein serves as an important complement to wild grape genomes and will provide valuable genomic resources for investigating the genomic architecture of V. zhejiang-adstricta as well as for improving disease resistance breeding strategies in grape.
Collapse
Affiliation(s)
- Huayang Li
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- University of Chinese Academy of Sciences, 19 Yuquan Rd, Beijing 100049, PR China
| | - Yongbo Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, 8 Dayangfang, Beijing 100012, PR China
| | - Peige Fan
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Zhanwu Dai
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Jiachen Hao
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Wei Duan
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Zhenchang Liang
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| | - Yi Wang
- Beijing Key Laboratory of Grape Science and Enology, CAS Key Laboratory of Plant Resources, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, China
- State Key Laboratory of Plant Diversity and Specialty Crops, Institute of Botany, Chinese Academy of Sciences, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
- China National Botanical Garden, 20 Nanxincun, Xiangshan, Beijing 100093, PR China
| |
Collapse
|
18
|
Ye D, Zhang S, Gao X, Li X, Jin X, Shi M, Kai G, Zhou W. Mining of disease-resistance genes in Crocus sativus based on transcriptome sequencing. Front Genet 2024; 15:1349626. [PMID: 38370513 PMCID: PMC10869511 DOI: 10.3389/fgene.2024.1349626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 01/18/2024] [Indexed: 02/20/2024] Open
Abstract
Introduction: Crocus sativus L. has an important medicinal and economic value in traditional perennial Chinese medicine. However, due to its unique growth characteristics, during cultivation it is highly susceptible to disease. The absence of effective resistance genes restricts us to breed new resistant varieties of C. sativus. Methods: In present study, comprehensive transcriptome sequencing was introduced to explore the disease resistance of the candidate gene in healthy and corm rot-infected C. sativus. Results and discussion: Totally, 43.72 Gb of clean data was obtained from the assembly to generate 65,337 unigenes. By comparing the gene expression levels, 7,575 differentially expressed genes (DEGs) were primarily screened. A majority of the DEGs were completely in charge of defense and metabolism, and 152 of them were annotated as pathogen recognition genes (PRGs) based on the PGRdb dataset. The expression of some transcription factors including NAC, MYB, and WRKY members, changed significantly based on the dataset of transcriptome sequencing. Therefore, this study provides us some valuable information for exploring candidate genes involved in the disease resistance in C. sativus.
Collapse
Affiliation(s)
- Dongdong Ye
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Siwei Zhang
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiankui Gao
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiujuan Li
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xin Jin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang, China
| | - Min Shi
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Guoyin Kai
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Wei Zhou
- Zhejiang Provincial TCM Key Laboratory of Chinese Medicine Resource Innovation and Transformation, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
19
|
Dhiman V, Biswas S, Shekhawat RS, Sadhukhan A, Yadav P. In silico characterization of five novel disease-resistance proteins in Oryza sativa sp. japonica against bacterial leaf blight and rice blast diseases. 3 Biotech 2024; 14:48. [PMID: 38268986 PMCID: PMC10803709 DOI: 10.1007/s13205-023-03893-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 12/16/2023] [Indexed: 01/26/2024] Open
Abstract
In the current study, gene network analysis revealed five novel disease-resistance proteins against bacterial leaf blight (BB) and rice blast (RB) diseases caused by Xanthomonas oryzae pv. oryzae (Xoo) and Magnaporthe oryzae (M. oryzae), respectively. In silico modeling, refinement, and model quality assessment were performed to predict the best structures of these five proteins and submitted to ModelArchive for future use. An in-silico annotation indicated that the five proteins functioned in signal transduction pathways as kinases, phospholipases, transcription factors, and DNA-modifying enzymes. The proteins were localized in the nucleus and plasma membrane. Phylogenetic analysis showed the evolutionary relation of the five proteins with disease-resistance proteins (XA21, OsTRX1, PLD, and HKD-motif-containing proteins). This indicates similar disease-resistant properties between five unknown proteins and their evolutionary-related proteins. Furthermore, gene expression profiling of these proteins using public microarray data showed their differential expression under Xoo and M. oryzae infection. This study provides an insight into developing disease-resistant rice varieties by predicting novel candidate resistance proteins, which will assist rice breeders in improving crop yield to address future food security through molecular breeding and biotechnology. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-023-03893-5.
Collapse
Affiliation(s)
- Vedikaa Dhiman
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, 342030 Rajasthan India
| | - Soham Biswas
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, Telangana India
| | - Rajveer Singh Shekhawat
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, 342030 Rajasthan India
| | - Ayan Sadhukhan
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, 342030 Rajasthan India
| | - Pankaj Yadav
- Department of Bioscience and Bioengineering, Indian Institute of Technology, Jodhpur, 342030 Rajasthan India
- School of Artificial Intelligence and Data Science, Indian Institute of Technology, Jodhpur, Rajasthan India
| |
Collapse
|
20
|
Vinay ND, Singh K, Ellur RK, Chinnusamy V, Jaiswal S, Iquebal MA, Munshi AD, Matsumura H, Boopalakrishnan G, Jat GS, Kole C, Gaikwad AB, Kumar D, Dey SS, Behera TK. High-quality Momordica balsamina genome elucidates its potential use in improving stress resilience and therapeutic properties of bitter gourd. FRONTIERS IN PLANT SCIENCE 2024; 14:1258042. [PMID: 38333042 PMCID: PMC10851156 DOI: 10.3389/fpls.2023.1258042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 12/29/2023] [Indexed: 02/10/2024]
Abstract
Introduction Momordica balsamina is the closest wild species that can be crossed with an important fruit vegetable crop, Momordica charantia, has immense medicinal value, and placed under II subclass of primary gene pool of bitter gourd. M. balsamina is tolerant to major biotic and abiotic stresses. Genome characterization of Momordica balsamina as a wild relative of bitter gourd will contribute to the knowledge of the gene pool available for improvement in bitter gourd. There is potential to transfer gene/s related to biotic resistance and medicinal importance from M. balsamina to M. charantia to produce high-quality, better yielding and stress tolerant bitter gourd genotypes. Methods The present study provides the first and high-quality chromosome-level genome assembly of M. balsamina with size 384.90 Mb and N50 30.96 Mb using sequence data from 10x Genomics, Nanopore, and Hi-C platforms. Results A total of 6,32,098 transposons elements; 2,15,379 simple sequence repeats; 5,67,483 transcription factor binding sites; 3,376 noncoding RNA genes; and 41,652 protein-coding genes were identified, and 4,347 disease resistance, 67 heat stress-related, 05 carotenoid-related, 15 salt stress-related, 229 cucurbitacin-related, 19 terpenes-related, 37 antioxidant activity, and 06 sex determination-related genes were characterized. Conclusion Genome sequencing of M. balsamina will facilitate interspecific introgression of desirable traits. This information is cataloged in the form of webgenomic resource available at http://webtom.cabgrid.res.in/mbger/. Our finding of comparative genome analysis will be useful to get insights into the patterns and processes associated with genome evolution and to uncover functional regions of cucurbit genomes.
Collapse
Affiliation(s)
- N. D. Vinay
- Division of Vegetable Science, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Kalpana Singh
- Division of Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Ranjith Kumar Ellur
- Division of Genetics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Viswanathan Chinnusamy
- Division of Plant Physiology, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Anilabha Das Munshi
- Division of Vegetable Science, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | | | - G. Boopalakrishnan
- Division of Vegetable Science, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Gograj Singh Jat
- Division of Vegetable Science, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | | | - Ambika Baladev Gaikwad
- Division of Genomic Resources, Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Shyam Sundar Dey
- Division of Vegetable Science, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
| | - Tusar Kanti Behera
- Division of Vegetable Science, Indian Council of Agricultural Research (ICAR)-Indian Agricultural Research Institute, New Delhi, India
- Indian Council of Agricultural Research (ICAR)-Indian Institute of Vegetable Research, Varanasi, Uttar Pradesh, India
| |
Collapse
|
21
|
Zafar UB, Shahzaib M, Atif RM, Khan SH, Niaz MZ, Shahzad K, Chughtai N, Awan FS, Azhar MT, Rana IA. De novo transcriptome assembly of Dalbergia sissoo Roxb. (Fabaceae) under Botryodiplodia theobromae-induced dieback disease. Sci Rep 2023; 13:20503. [PMID: 37993468 PMCID: PMC10665356 DOI: 10.1038/s41598-023-45982-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 10/26/2023] [Indexed: 11/24/2023] Open
Abstract
Dalbergia sissoo Roxb. (Shisham) is a timber-producing species of economic, cultural, and medicinal importance in the Indian subcontinent. In the past few decades, Shisham's dieback disease caused by the fungus Botryodiplodia theobromae has become an evolving issue in the subcontinent endangering its survival. To gain insights into this issue, a standard transcriptome assembly was deployed to assess the response of D. sissoo at the transcriptomic level under the stress of B. theobromae infection. For RNA isolation, the control and infected leaf tissue samples were taken from 1-year-old greenhouse-grown D. sissoo plants after 20 days of stem-base spore inoculation. cDNA synthesis was performed from these freshly isolated RNA samples that were then sent for sequencing. About 18.14 Gb (Giga base) of data was generated using the BGISEQ-500 sequencing platform. In terms of Unigenes, 513,821 were identified after a combined assembly of all samples and then filtering the abundance. The total length of Unigenes, their average length, N50, and GC-content were 310,523,693 bp, 604 bp, 1,101 bp, and 39.95% respectively. The Unigenes were annotated using 7 functional databases i.e., 200,355 (NR: 38.99%), 164,973 (NT: 32.11%), 123,733 (Swissprot: 24.08%), 142,580 (KOG: 27.75%), 139,588 (KEGG: 27.17%), 99,752 (GO: 19.41%), and 137,281 (InterPro: 26.72%). Furthermore, the Transdecoder detected 115,762 CDS. In terms of SSR (Simple Sequence Repeat) markers, 62,863 of them were distributed on 51,508 Unigenes and on the predicted 4673 TF (Transcription Factor) coding Unigenes. A total of 16,018 up- and 19,530 down-regulated Differentially Expressed Genes (DEGs) were also identified. Moreover, the Plant Resistance Genes (PRGs) had a count of 9230. We are hopeful that in the future, these identified Unigenes, SSR markers, DEGs and PRGs will provide the prerequisites for managing Shisham dieback disease, its breeding, and in tree improvement programs.
Collapse
Affiliation(s)
- Ummul Buneen Zafar
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Shahzaib
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Rana Muhammad Atif
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Sultan Habibullah Khan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
- National Center for Genome Editing (Gene Editing of Biological Agents for Nutritional, Biochemicals and Therapeutic Purposes), University of Agriculture, Faisalabad, Punjab, Pakistan
| | - Muhammad Zeeshan Niaz
- Plant Pathology Research Institute, Ayub Agriculture Research Institute, Faisalabad, 38850, Punjab, Pakistan
| | - Khalid Shahzad
- Punjab Forestry Research Institute, Faisalabad, 37620, Punjab, Pakistan
| | - Nighat Chughtai
- Punjab Forestry Research Institute, Faisalabad, 37620, Punjab, Pakistan
| | - Faisal Saeed Awan
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Muhammad Tehseen Azhar
- Department of Plant Breeding and Genetics, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan
| | - Iqrar Ahmad Rana
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
- Centre for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Faisalabad, 38000, Punjab, Pakistan.
- National Center for Genome Editing (Gene Editing of Biological Agents for Nutritional, Biochemicals and Therapeutic Purposes), University of Agriculture, Faisalabad, Punjab, Pakistan.
| |
Collapse
|
22
|
Huang Y, Guo X, Zhang K, Mandáková T, Cheng F, Lysak MA. The meso-octoploid Heliophila variabilis genome sheds a new light on the impact of polyploidization and diploidization on the diversity of the Cape flora. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:446-466. [PMID: 37428465 DOI: 10.1111/tpj.16383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 06/05/2023] [Accepted: 07/03/2023] [Indexed: 07/11/2023]
Abstract
Although the South African Cape flora is one of the most remarkable biodiversity hotspots, its high diversity has not been associated with polyploidy. Here, we report the chromosome-scale genome assembly of an ephemeral cruciferous species Heliophila variabilis (~334 Mb, n = 11) adapted to South African semiarid biomes. Two pairs of differently fractionated subgenomes suggest an allo-octoploid origin of the genome at least 12 million years ago. The ancestral octoploid Heliophila genome (2n = 8x = ~60) has probably originated through hybridization between two allotetraploids (2n = 4x = ~30) formed by distant, intertribal, hybridization. Rediploidization of the ancestral genome was marked by extensive reorganization of parental subgenomes, genome downsizing, and speciation events in the genus Heliophila. We found evidence for loss-of-function changes in genes associated with leaf development and early flowering, and over-retention and sub/neofunctionalization of genes involved in pathogen response and chemical defense. The genomic resources of H. variabilis will help elucidate the role of polyploidization and genome diploidization in plant adaptation to hot arid environments and origin of the Cape flora. The sequenced H. variabilis represents the first chromosome-scale genome assembly of a meso-octoploid representative of the mustard family.
Collapse
Affiliation(s)
- Yile Huang
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Xinyi Guo
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Kang Zhang
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- Department of Experimental Biology, Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops of the Ministry of Agriculture and Rural Affairs, Sino-Dutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Martin A Lysak
- Central European Institute of Technology (CEITEC), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
- National Centre for Biomolecular Research (NCBR), Masaryk University, Kamenice 5, Brno, 625 00, Czech Republic
| |
Collapse
|
23
|
Li G, Tang L, He Y, Xu Y, Bendahmane A, Garcia-Mas J, Lin T, Zhao G. The haplotype-resolved T2T reference genome highlights structural variation underlying agronomic traits of melon. HORTICULTURE RESEARCH 2023; 10:uhad182. [PMID: 37885818 PMCID: PMC10599238 DOI: 10.1093/hr/uhad182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/04/2023] [Indexed: 10/28/2023]
Abstract
Melon (Cucumis melo L.) is an important vegetable crop that has an extensive history of cultivation. However, the genome of wild and semi-wild melon types that can be used for the analysis of agronomic traits is not yet available. Here we report a chromosome-level T2T genome assembly for 821 (C. melo ssp. agrestis var. acidulus), a semi-wild melon with two haplotypes of ~373 Mb and ~364 Mb, respectively. Comparative genome analysis discovered a significant number of structural variants (SVs) between melo (C. melo ssp. melo) and agrestis (C. melo ssp. agrestis) genomes, including a copy number variation located in the ToLCNDV resistance locus on chromosome 11. Genome-wide association studies detected a significant signal associated with climacteric ripening and identified one candidate gene CM_ac12g14720.1 (CmABA2), encoding a cytoplasmic short chain dehydrogenase/reductase, which controls the biosynthesis of abscisic acid. This study provides valuable genetic resources for future research on melon breeding.
Collapse
Affiliation(s)
- Guoli Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- China Agricultural University, College of Horticulture, Beijing 100193, China
| | - Lingli Tang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453400, China
| | - Yuhua He
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Yongyang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
| | - Abdelhafid Bendahmane
- Institute of Plant Sciences Paris-Saclay (IPS2), INRAE, CNRS, University of Paris-Saclay, University of Evry, University of Paris-Diderot, Gif sur Yvette 91192, France
| | - Jordi Garcia-Mas
- Centre for Research in Agricultural Genomics (CRAG) CSIC-IRTA-UAB-UB, Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
- Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Edifici CRAG, Campus UAB, Bellaterra, 08193 Barcelona, Spain
| | - Tao Lin
- China Agricultural University, College of Horticulture, Beijing 100193, China
| | - Guangwei Zhao
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, Henan 450009, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, Hainan 572024, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang 453400, China
| |
Collapse
|
24
|
Rizwan M, Haider SZ, Bakar A, Rani S, Danial M, Sharma V, Mubin M, Serfraz A, Shahnawaz-Ur-Rehman M, Shakoor S, Alkahtani S, Saleem F, Mamoon-Ur-Rehman H, Serfraz S. Evolution of NLR genes in genus Arachis reveals asymmetric expansion of NLRome in wild and domesticated tetraploid species. Sci Rep 2023; 13:9305. [PMID: 37291184 PMCID: PMC10250334 DOI: 10.1038/s41598-023-36302-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/31/2023] [Indexed: 06/10/2023] Open
Abstract
Arachis hypogaea is an allotetraploid crop widely grown in the world. Wild relatives of genus Arachis are the rich source of genetic diversity and high levels of resistance to combat pathogens and climate change. The accurate identification and characterization of plant resistance gene, nucleotide binding site leucine rich repeat receptor (NLRs) substantially contribute to the repertoire of resistances and improve production. In the current study, we have studied the evolution of NLR genes in genus Arachis and performed their comparative genomics among four diploids (A. duranensis, A. ipaensis, A. cardenasii, A. stenosperma) and two tetraploid (wild: A. monticola and domesticated: A. hypogaea) species. In total 521, 354, 284, 794, 654, 290 NLR genes were identified from A. cardenasii, A. stenosperma and A. duranensis, A. hypogaea, A. monticola and A. ipaensis respectively. Phylogenetic analysis and classification of NLRs revealed that they belong to 7 subgroups and specific subgroups have expanded in each genome leading towards divergent evolution. Gene gain and loss, duplication assay reveals that wild and domesticated tetraploids species have shown asymmetric expansion of NLRome in both sub-genome (AA and BB). A-subgenome of A. monticola exhibited significant contraction of NLRome while B-subgenome shows expansion and vice versa in case of A. hypogaea probably due to distinct natural and artificial selection pressure. In addition, diploid species A. cardenasii revealed the largest repertoire of NLR genes due to higher frequency of gene duplication and selection pressure. A. cardenasii and A. monticola can be regarded as putative resistance resources for peanut breeding program for introgression of novel resistance genes. Findings of this study also emphasize the application neo-diploids and polyploids due to higher quantitative expression of NLR genes. To the best of our knowledge, this is the first study that studied the effect of domestication and polyploidy on the evolution of NLR genes in genus Arachis to identify genomic resources for improving resistance of polyploid crop with global importance on economy and food security.
Collapse
Affiliation(s)
- Muhammad Rizwan
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Syed Zeeshan Haider
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, China
| | - Abu Bakar
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Shamiza Rani
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Muhammad Danial
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Vikas Sharma
- Forschungszentrum Jülich GmbH, Institute for Bio- and Geosciences 1, IBG1, 52425, Jülich, Germany
| | - Muhammad Mubin
- Virology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ali Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
- Department of Plant Pathology, University of Arid Agriculture, Rawalpindi , Pakistan
| | | | - Sidra Shakoor
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Fozia Saleem
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan
| | | | - Saad Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad, 38000, Pakistan.
| |
Collapse
|
25
|
Asif J, Qureshi F, Zain M, Nawaz H, Naz E, Fareed S, Bibi A, Nawaz S, Saleem F, Shafique M, Tabasum S, Maqsood U, Serfraz S, Alkahtani S. Investigation of Resistance Genes in Genus Vigna Reveals Highly Variable NLRome in Parallel Domesticated Member Species. Genes (Basel) 2023; 14:1129. [PMID: 37372309 DOI: 10.3390/genes14061129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 06/29/2023] Open
Abstract
Vigna is a unique genus that consist of multiple crop species that are domesticated in parallel fashion between 7-10 thousand years ago. Here we studied the evolution of nucleotide-binding site leucine-rich repeat receptor (NLR) genes across five crop species of genus Vigna. In total identified 286, 350, 234, 250, 108 and 161 NLR genes were from Phaseolous vulgaris, Vigna. unguiculata, Vigna mungo, Vigna radiata, Vigna angularis and Vigna umbellata respectively. Comprehensive phylogenetic and clusterization analysis reveals the presence of seven subgroups of Coiled coil like NLRs (CC-NLR) genes and four distinct lineages of Toll interleukin receptor like NLRs (TIR-NLR). Subgroup CCG10-NLR shows large scale diversification among Vigna species suggesting genus specific distinct duplication pattern in Vigna species. Mainly birth of new NLR gene families and higher rate of terminal duplication is the major determinants for expansion of NLRome in genus Vigna. Recent expansion of NLRome in V. anguiculata and V. radiata was also observed which might suggest that domestication have supported their duplication of lineage specific NLR genes. In short, large scale difference in the architecture of NLRome were observed in diploid plant species. Our findings allowed us to hypothesized that independent parallel domestication is the major drivers of highly divergent evolution of NLRome in genus Vigna.
Collapse
Affiliation(s)
- Jehanzaib Asif
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fatima Qureshi
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Zain
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Hamza Nawaz
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Effat Naz
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Shahid Fareed
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Aqsa Bibi
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Sehar Nawaz
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fozia Saleem
- Metabolomics Innovative Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | | | - Saba Tabasum
- Department of Plant Breeding and Genetics, College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Umer Maqsood
- Agricultural Biotechnology Division, National Institute for Biotechnology and Genetic Engineering, Constituent College of Pakistan, Institute of Engineering and Applied Sciences, Faisalabad 38000, Pakistan
| | - Saad Serfraz
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
26
|
Areej A, Nawaz H, Aslam I, Danial M, Qayyum Z, Rasool UA, Asif J, Khalid A, Serfraz S, Saleem F, Mubin M, Shoaib M, Shahnawaz-ul-Rehman M, Nahid N, Alkahtani S. Investigation of NLR Genes Reveals Divergent Evolution on NLRome in Diploid and Polyploid Species in Genus Trifolium. Genes (Basel) 2023; 14:genes14040867. [PMID: 37107625 PMCID: PMC10138078 DOI: 10.3390/genes14040867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Crop wild relatives contain a greater variety of phenotypic and genotypic diversity compared to their domesticated counterparts. Trifolium crop species have limited genetic diversity to cope with biotic and abiotic stresses due to artificial selection for consumer preferences. Here, we investigated the distribution and evolution of nucleotide-binding site leucine-rich repeat receptor (NLR) genes in the genus of Trifolium with the objective to identify reference NLR genes. We identified 412, 350, 306, 389 and 241 NLR genes were identified from Trifolium. subterraneum, T. pratense, T. occidentale, subgenome-A of T. repens and subgenome-B of T. repens, respectively. Phylogenetic and clustering analysis reveals seven sub-groups in genus Trifolium. Specific subgroups such as G4-CNL, CCG10-CNL and TIR-CNL show distinct duplication patterns in specific species, which suggests subgroup duplications that are the hallmarks of their divergent evolution. Furthermore, our results strongly suggest the overall expansion of NLR repertoire in T. subterraneum is due to gene duplication events and birth of gene families after speciation. Moreover, the NLRome of the allopolyploid species T. repens has evolved asymmetrically, with the subgenome -A showing expansion, while the subgenome-B underwent contraction. These findings provide crucial background data for comprehending NLR evolution in the Fabaceae family and offer a more comprehensive analysis of NLR genes as disease resistance genes.
Collapse
Affiliation(s)
- Amna Areej
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Hummera Nawaz
- Department of Botany, Division of Science and Technology, University of Education, Lahore 55210, Pakistan
| | - Iqra Aslam
- Department of Botany, Division of Science and Technology, University of Education, Lahore 55210, Pakistan
| | - Muhammad Danial
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Zohaib Qayyum
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Usama Akhtar Rasool
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Jehanzaib Asif
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Afia Khalid
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Saad Serfraz
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Fozia Saleem
- Metabolomics Innovative Institute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Muhammad Mubin
- Evolutionary Biology Lab, CABB, University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Shoaib
- Institute of Health Sciences Islamabad, Khyber Medical University, Peshawar 25000, Pakistan
| | | | - Nazia Nahid
- Department of Biotechnology and Bioinformatics, Government College University, Faisalabad 54000, Pakistan
| | - Saad Alkahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
27
|
Szabó Z, Balogh M, Domonkos Á, Csányi M, Kaló P, Kiss GB. The bs5 allele of the susceptibility gene Bs5 of pepper (Capsicum annuum L.) encoding a natural deletion variant of a CYSTM protein conditions resistance to bacterial spot disease caused by Xanthomonas species. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:64. [PMID: 36943531 PMCID: PMC10030403 DOI: 10.1007/s00122-023-04340-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 03/02/2023] [Indexed: 05/09/2023]
Abstract
KEY MESSAGE The bs5 resistance gene against bacterial spot was identified by map-based cloning. The recessive bs5 gene of pepper (Capsicum annuum L.) conditions a non-hypersensitive resistance trait, characterized by a slightly swollen, pale green, photosynthetically active leaf tissue, following Xanthomonas euvesicatoria infection. The isolation of the bs5 gene by map-based cloning revealed that the bs5 protein was shorter by 2 amino acids as compared to the wild type Bs5 protein. The natural 2 amino acid deletion occurred in the cysteine-rich transmembrane domain of the tail-anchored (TA) protein, Ca_CYSTM1. The protein products of the wild type Bs5 and mutant bs5 genes were shown to be located in the cell membrane, indicating an unknown function in this membrane compartment. Successful infection of the Bs5 pepper lines was abolished by the 6 bp deletion in the TM encoding domain of the Ca_CYSTM1 gene in bs5 homozygotes, suggesting, that the resulting resistance might be explained by the lack of entry of the Xanthomonas specific effector molecules into the plant cells.
Collapse
Affiliation(s)
- Zoltán Szabó
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary.
| | - Márta Balogh
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Ágota Domonkos
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Márta Csányi
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
| | - Péter Kaló
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
- Institute of Plant Biology, Biological Research Center, Eötvös Lóránd Research Network, Szeged, Hungary
| | - György B Kiss
- Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi A. U. 4., 2100, Gödöllő, Hungary
- AMBIS Biotechnology Research and Development Ltd., Budapest, Hungary
| |
Collapse
|
28
|
Comparison of Tomato Transcriptomic Profiles Reveals Overlapping Patterns in Abiotic and Biotic Stress Responses. Int J Mol Sci 2023; 24:ijms24044061. [PMID: 36835470 PMCID: PMC9961515 DOI: 10.3390/ijms24044061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 02/11/2023] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Until a few years ago, many studies focused on the transcriptomic response to single stresses. However, tomato cultivations are often constrained by a wide range of biotic and abiotic stress that can occur singularly or in combination, and several genes can be involved in the defensive mechanism response. Therefore, we analyzed and compared the transcriptomic responses of resistant and susceptible genotypes to seven biotic stresses (Cladosporium fulvum, Phytophthora infestans, Pseudomonas syringae, Ralstonia solanacearum, Sclerotinia sclerotiorum, Tomato spotted wilt virus (TSWV) and Tuta absoluta) and five abiotic stresses (drought, salinity, low temperatures, and oxidative stress) to identify genes involved in response to multiple stressors. With this approach, we found genes encoding for TFs, phytohormones, or participating in signaling and cell wall metabolic processes, participating in defense against various biotic and abiotic stress. Moreover, a total of 1474 DEGs were commonly found between biotic and abiotic stress. Among these, 67 DEGs were involved in response to at least four different stresses. In particular, we found RLKs, MAPKs, Fasciclin-like arabinogalactans (FLAs), glycosyltransferases, genes involved in the auxin, ET, and JA pathways, MYBs, bZIPs, WRKYs and ERFs genes. Detected genes responsive to multiple stress might be further investigated with biotechnological approaches to effectively improve plant tolerance in the field.
Collapse
|
29
|
Rani S, Zahra R, Bakar A, Rizwan M, Sultan AB, Zain M, Mehmood A, Danial M, Shakoor S, Saleem F, Serfraz A, Rehman HM, Khan RSA, Serfraz S, AlKahtani S. Dynamic Evolution of NLR Genes in Dalbergioids. Genes (Basel) 2023; 14:377. [PMID: 36833304 PMCID: PMC9956324 DOI: 10.3390/genes14020377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/23/2023] [Accepted: 01/26/2023] [Indexed: 02/04/2023] Open
Abstract
Dalbergioid is a large group within the family Fabaceae that consists of diverse plant species distributed in distinct biogeographic realms. Here, we have performed a comprehensive study to understand the evolution of the nucleotide-binding leucine-rich repeats (NLRs) gene family in Dalbergioids. The evolution of gene families in this group is affected by a common whole genome duplication that occurred approximately 58 million years ago, followed by diploidization that often leads to contraction. Our study suggests that since diploidization, the NLRome of all groups of Dalbergioids is expanding in a clade-specific manner with fewer exceptions. Phylogenetic analysis and classification of NLRs revealed that they belong to seven subgroups. Specific subgroups have expanded in a species-specific manner, leading to divergent evolution. Among the Dalbergia clade, the expansion of NLRome in six species of the genus Dalbergia was observed, with the exception of Dalbergia odorifera, where a recent contraction of NLRome occurred. Similarly, members of the Pterocarpus clade genus Arachis revealed a large-scale expansion in the diploid species. In addition, the asymmetric expansion of NLRome was observed in wild and domesticated tetraploids after recent duplications in the genus Arachis. Our analysis strongly suggests that whole genome duplication followed by tandem duplication after divergence from a common ancestor of Dalbergioids is the major cause of NLRome expansion. To the best of our knowledge, this is the first ever study to provide insight toward the evolution of NLR genes in this important tribe. In addition, accurate identification and characterization of NLR genes is a substantial contribution to the repertoire of resistances among members of the Dalbergioids species.
Collapse
Affiliation(s)
- Shamiza Rani
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Ramlah Zahra
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Abu Bakar
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Rizwan
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Abu-Bakar Sultan
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Zain
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Amna Mehmood
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Muhammad Danial
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Sidra Shakoor
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Fozia Saleem
- Metabolomics Innovative Insitute, University of Alberta, Edmonton, AB T6G 2R3, Canada
| | - Ali Serfraz
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
- Department of Plant Pathology, University of Arid Agriculture, Rawalpindi 46000, Pakistan
| | - Hafiz Mamoon Rehman
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Rao Sohail Ahmad Khan
- Cotton Genomics Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Saad Serfraz
- Evolutionary Biology Lab, Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38000, Pakistan
| | - Saad AlKahtani
- Department of Zoology, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| |
Collapse
|
30
|
Aknadibossian V, Huguet-Tapia JC, Golyaev V, Pooggin MM, Folimonova SY. Transcriptomic alterations in the sweet orange vasculature correlate with growth repression induced by a variant of citrus tristeza virus. Front Microbiol 2023; 14:1162613. [PMID: 37138615 PMCID: PMC10150063 DOI: 10.3389/fmicb.2023.1162613] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 03/29/2023] [Indexed: 05/05/2023] Open
Abstract
Citrus tristeza virus (CTV, family Closteroviridae) is an economically important pathogen of citrus. CTV resides in the phloem of the infected plants and induces a range of disease phenotypes, including stem pitting and quick decline as well as a number of other deleterious syndromes. To uncover the biological processes underlying the poorly understood damaging symptoms of CTV, we profiled the transcriptome of sweet orange (Citrus sinensis) phloem-rich bark tissues of non-infected, mock-inoculated trees and trees singly infected with two distinct variants of CTV, T36 or T68-1. The T36 and T68-1 variants accumulated in the infected plants at similar titers. With that, young trees infected with T68-1 were markedly repressed in growth, while the growth rate of the trees infected with T36 was comparable to the mock-inoculated trees. Only a small number of differentially expressed genes (DEGs) were identified in the nearly asymptomatic T36-infected trees, whereas almost fourfold the number of DEGs were identified with the growth-restricting T68-1 infection. DEGs were validated using quantitative reverse transcription-PCR. While T36 did not induce many noteworthy changes, T68-1 altered the expression of numerous host mRNAs encoding proteins within significant biological pathways, including immunity and stress response proteins, papain-like cysteine proteases (PLCPs), cell-wall modifying enzymes, vascular development proteins and others. The transcriptomic alterations in the T68-1-infected trees, in particular, the strong and persistent increase in the expression levels of PLCPs, appear to contribute to the observed stem growth repression. On the other hand, analysis of the viral small interfering RNAs revealed that the host RNA silencing-based response to the infection by T36 and that by T68-1 was comparable, and thus, the induction of this antiviral mechanism may not contribute to the difference in the observed symptoms. The DEGs identified in this study promote our understanding of the underlying mechanisms of the yet unexplained growth repression induced by severe CTV isolates in sweet orange trees.
Collapse
Affiliation(s)
- Vicken Aknadibossian
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Jose C. Huguet-Tapia
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
| | - Victor Golyaev
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Mikhail M. Pooggin
- PHIM Plant Health Institute, University Montpellier, CIRAD, INRAE, IRD, Institute Agro, Montpellier, France
| | - Svetlana Y. Folimonova
- Department of Plant Pathology, University of Florida, Gainesville, FL, United States
- *Correspondence: Svetlana Y. Folimonova,
| |
Collapse
|
31
|
Saxena H, Kulshreshtha A, Agarwal A, Kumar A, Singh N, Jain CK. LDRGDb - Legumes disease resistance genes database. FRONTIERS IN PLANT SCIENCE 2023; 14:1143111. [PMID: 37143876 PMCID: PMC10151526 DOI: 10.3389/fpls.2023.1143111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/22/2023] [Indexed: 05/06/2023]
Abstract
Legumes comprise one of the world's largest, most diverse, and economically important plant families, known for their nutritional and medicinal benefits. Legumes are susceptible to a wide range of diseases, similar to other agricultural crops. Diseases have a considerable impact on the production of legume crop species, resulting in large yield losses worldwide. Due to continuous interactions between plants and their pathogens in the environment and the evolution of new pathogens under high selection pressure; disease resistant genes emerge in plant cultivars in the field against those pathogens or disease. Thus, disease resistant genes play critical roles in plant resistance responses, and their discovery and subsequent use in breeding programmes aid in reducing yield loss. The genomic era, with its high-throughput and low-cost genomic tools, has revolutionised our understanding of the complex interactions between legumes and pathogens, resulting in the identification of several critical participants in both the resistant and susceptible relationships. However, a substantial amount of existing information about numerous legume species has been disseminated as text or is preserved across fractions in different databases, posing a challenge for researchers. As a result, the range, scope, and complexity of these resources pose challenges to those who manage and use them. Therefore, there is an urgent need to develop tools and a single conjugate database to manage genetic information for the world's plant genetic resources, allowing for the rapid incorporation of essential resistance genes into breeding strategies. Here, developed the first comprehensive database of disease resistance genes named as LDRGDb - LEGUMES DISEASE RESISTANCE GENES DATABASE comprises 10 legumes [Pigeon pea (Cajanus cajan), Chickpea (Cicer arietinum), Soybean (Glycine max), Lentil (Lens culinaris), Alfalfa (Medicago sativa), Barrelclover (Medicago truncatula), Common bean (Phaseolus vulgaris), Pea (Pisum sativum),Faba bean (Vicia faba), and Cowpea (Vigna unguiculata)]. The LDRGDb is a user-friendly database developed by integrating a variety of tools and software that combine knowledge about resistant genes, QTLs, and their loci, with proteomics, pathway interactions, and genomics (https://ldrgdb.in/).
Collapse
Affiliation(s)
- Harshita Saxena
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Aishani Kulshreshtha
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Avinav Agarwal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Anuj Kumar
- Department of Microbiology and Immunology, Dalhousie University, Halifax, NS, Canada
| | - Nisha Singh
- Department of Bioinformatics, Gujarat Biotechnology University, Gandhinagar, India
- *Correspondence: Chakresh Kumar Jain, ; Nisha Singh,
| | - Chakresh Kumar Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- *Correspondence: Chakresh Kumar Jain, ; Nisha Singh,
| |
Collapse
|
32
|
Martin EC, Ion CF, Ifrimescu F, Spiridon L, Bakker J, Goverse A, Petrescu AJ. NLRscape: an atlas of plant NLR proteins. Nucleic Acids Res 2022; 51:D1470-D1482. [PMID: 36350627 PMCID: PMC9825502 DOI: 10.1093/nar/gkac1014] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/18/2022] [Accepted: 10/27/2022] [Indexed: 11/11/2022] Open
Abstract
NLRscape is a webserver that curates a collection of over 80 000 plant protein sequences identified in UniProtKB to contain NOD-like receptor signatures, and hosts in addition a number of tools aimed at the exploration of the complex sequence landscape of this class of plant proteins. Each entry gathers sequence information, domain and motif annotations from multiple third-party sources but also in-house advanced annotations aimed at addressing caveats of the existing broad-based annotations. NLRscape provides a top-down perspective of the NLR sequence landscape but also services for assisting a bottom-up approach starting from a given input sequence. Sequences are clustered by their domain organization layout, global homology and taxonomic spread-in order to allow analysis of how particular traits of an NLR family are scattered within the plant kingdom. Tools are provided for users to locate their own protein of interest in the overall NLR landscape, generate custom clusters centered around it and perform a large number of sequence and structural analyses using included interactive online instruments. Amongst these, we mention: taxonomy distribution plots, homology cluster graphs, identity matrices and interactive MSA synchronizing secondary structure and motif predictions. NLRscape can be found at: https://nlrscape.biochim.ro/.
Collapse
Affiliation(s)
- Eliza C Martin
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania
| | - Catalin F Ion
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania
| | - Florin Ifrimescu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania
| | - Laurentiu Spiridon
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy, Bucharest 060031, Romania
| | - Jaap Bakker
- Laboratory of Nematology, Wageningen University and Research, Wageningen 6700ES, The Netherlands
| | - Aska Goverse
- Laboratory of Nematology, Wageningen University and Research, Wageningen 6700ES, The Netherlands
| | | |
Collapse
|
33
|
Transcriptome Analysis Reveals a Comprehensive Virus Resistance Response Mechanism in Pecan Infected by a Novel Badnavirus Pecan Virus. Int J Mol Sci 2022; 23:ijms232113576. [PMID: 36362365 PMCID: PMC9655656 DOI: 10.3390/ijms232113576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
Pecan leaf-variegated plant, which was infected with a novel badnavirus named pecan mosaic virus (PMV) detected by small RNA deep sequencing, is a vital model plant for studying the molecular mechanism of retaining green or chlorosis of virus-infected leaves. In this report, PMV infection in pecan leaves induced PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI). PMV infection suppressed the expressions of key genes of fatty acid, oleic acid (C18:1), and very-long-chain fatty acids (VLCFA) biosynthesis, indicating that fatty acids-derived signaling was one of the important defense pathways in response to PMV infection in pecan. PMV infection in pecans enhanced the expressions of pathogenesis-related protein 1 (PR1). However, the transcripts of phenylalanine ammonia-lyase (PAL) and isochorismate synthase (ICS) were downregulated, indicating that salicylic acid (SA) biosynthesis was blocked in pecan infected with PMV. Meanwhile, disruption of auxin signaling affected the activation of the jasmonic acid (JA) pathway. Thus, C18:1 and JA signals are involved in response to PMV infection in pecan. In PMV-infected yellow leaves, damaged chloroplast structure and activation of mitogen-activated protein kinase 3 (MPK3) inhibited photosynthesis. Cytokinin and SA biosynthesis was blocked, leading to plants losing immune responses and systemic acquired resistance (SAR). The repression of photosynthesis and the induction of sink metabolism in the infected tissue led to dramatic changes in carbohydrate partitioning. On the contrary, the green leaves of PMV infection in pecan plants had whole cell tissue structure and chloroplast clustering, establishing a strong antiviral immunity system. Cytokinin biosynthesis and signaling transductions were remarkably strengthened, activating plant immune responses. Meanwhile, cytokinin accumulation in green leaves induced partial SA biosynthesis and gained comparatively higher SAR compared to that of yellow leaves. Disturbance of the ribosome biogenesis might enhance the resistance to PMV infection in pecan and lead to leaves staying green.
Collapse
|
34
|
Ercolano MR, D’Esposito D, Andolfo G, Frusciante L. Multilevel evolution shapes the function of NB-LRR encoding genes in plant innate immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:1007288. [PMID: 36388554 PMCID: PMC9647133 DOI: 10.3389/fpls.2022.1007288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
A sophisticated innate immune system based on diverse pathogen receptor genes (PRGs) evolved in the history of plant life. To reconstruct the direction and magnitude of evolutionary trajectories of a given gene family, it is critical to detect the ancestral signatures. The rearrangement of functional domains made up the diversification found in PRG repertoires. Structural rearrangement of ancient domains mediated the NB-LRR evolutionary path from an initial set of modular proteins. Events such as domain acquisition, sequence modification and temporary or stable associations are prominent among rapidly evolving innate immune receptors. Over time PRGs are continuously shaped by different forces to find their optimal arrangement along the genome. The immune system is controlled by a robust regulatory system that works at different scales. It is important to understand how the PRG interaction network can be adjusted to meet specific needs. The high plasticity of the innate immune system is based on a sophisticated functional architecture and multi-level control. Due to the complexity of interacting with diverse pathogens, multiple defense lines have been organized into interconnected groups. Genomic architecture, gene expression regulation and functional arrangement of PRGs allow the deployment of an appropriate innate immunity response.
Collapse
|
35
|
Wu X, Wang X, Chen W, Liu X, Lin Y, Wang F, Liu L, Meng Y. A microRNA-microRNA crosstalk network inferred from genome-wide single nucleotide polymorphism variants in natural populations of Arabidopsis thaliana. FRONTIERS IN PLANT SCIENCE 2022; 13:958520. [PMID: 36131801 PMCID: PMC9484463 DOI: 10.3389/fpls.2022.958520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
To adapt to variable natural conditions, plants have evolved several strategies to respond to different environmental stresses. MicroRNA (miRNA)-mediated gene regulation is one of such strategies. Variants, e.g., single nucleotide polymorphisms (SNPs) within the mature miRNAs or their target sites may cause the alteration of regulatory networks and serious phenotype changes. In this study, we proposed a novel approach to construct a miRNA-miRNA crosstalk network in Arabidopsis thaliana based on the notion that two cooperative miRNAs toward common targets are under a strong pressure to be inherited together across ecotypes. By performing a genome-wide scan of the SNPs within the mature miRNAs and their target sites, we defined a "regulation fate profile" to describe a miRNA-target regulation being static (kept) or dynamic (gained or lost) across 1,135 ecotypes compared with the reference genome of Col-0. The cooperative miRNA pairs were identified by estimating the similarity of their regulation fate profiles toward the common targets. The reliability of the cooperative miRNA pairs was supported by solid expressional correlation, high PPImiRFS scores, and similar stress responses. Different combinations of static and dynamic miRNA-target regulations account for the cooperative miRNA pairs acting on various biological characteristics of miRNA conservation, expression, homology, and stress response. Interestingly, the targets that are co-regulated dynamically by both cooperative miRNAs are more likely to be responsive to stress. Hence, stress-related genes probably bear selective pressures in a certain group of ecotypes, in which miRNA regulations on the stress genes reprogram. Finally, three case studies showed that reprogramming miRNA-miRNA crosstalk toward the targets in specific ecotypes was associated with these ecotypes' climatic variables and geographical locations. Our study highlights the potential of miRNA-miRNA crosstalk as a genetic basis underlying environmental adaptation in natural populations.
Collapse
Affiliation(s)
- Xiaomei Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Wei Chen
- College of Life Sciences, Zhejiang University, Hangzhou, China
| | - Xunyan Liu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yibin Lin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Fengfeng Wang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lulu Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen, China
| | - Yijun Meng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
36
|
Peng Y, Yan H, Guo L, Deng C, Wang C, Wang Y, Kang L, Zhou P, Yu K, Dong X, Liu X, Sun Z, Peng Y, Zhao J, Deng D, Xu Y, Li Y, Jiang Q, Li Y, Wei L, Wang J, Ma J, Hao M, Li W, Kang H, Peng Z, Liu D, Jia J, Zheng Y, Ma T, Wei Y, Lu F, Ren C. Reference genome assemblies reveal the origin and evolution of allohexaploid oat. Nat Genet 2022; 54:1248-1258. [PMID: 35851189 PMCID: PMC9355876 DOI: 10.1038/s41588-022-01127-7] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 06/08/2022] [Indexed: 12/13/2022]
Abstract
Common oat (Avena sativa) is an important cereal crop serving as a valuable source of forage and human food. Although reference genomes of many important crops have been generated, such work in oat has lagged behind, primarily owing to its large, repeat-rich polyploid genome. Here, using Oxford Nanopore ultralong sequencing and Hi-C technologies, we have generated a reference-quality genome assembly of hulless common oat, comprising 21 pseudomolecules with a total length of 10.76 Gb and contig N50 of 75.27 Mb. We also produced genome assemblies for diploid and tetraploid Avena ancestors, which enabled the identification of oat subgenomes and provided insights into oat chromosomal evolution. The origin of hexaploid oat is inferred from whole-genome sequencing, chloroplast genomes and transcriptome assemblies of different Avena species. These findings and the high-quality reference genomes presented here will facilitate the full use of crop genetic resources to accelerate oat improvement.
Collapse
Affiliation(s)
- Yuanying Peng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Honghai Yan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Laichun Guo
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China
- China Oat and Buckwheat Research Center, Baicheng, China
| | - Cao Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu, China
| | - Chunlong Wang
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China
- China Oat and Buckwheat Research Center, Baicheng, China
| | - Yubo Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China
| | - Lipeng Kang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Pingping Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kaiquan Yu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaolong Dong
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaomeng Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | | | - Yun Peng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jun Zhao
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Di Deng
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yinghong Xu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Li
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Qiantao Jiang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
| | - Liming Wei
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China
- China Oat and Buckwheat Research Center, Baicheng, China
| | - Jirui Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jian Ma
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ming Hao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Wei Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Houyang Kang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhengsong Peng
- Panxi Crops Research and Utilization Key Laboratory of Sichuan Province, Xichang University, Xichang, China
| | - Dengcai Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Youliang Zheng
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Tao Ma
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, State Key Laboratory of Hydraulics and Mountain River Engineering, Sichuan University, Chengdu, China.
| | - Yuming Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, China.
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China.
| | - Fei Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- CAS-JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China.
| | - Changzhong Ren
- National Oat Improvement Center, Baicheng Academy of Agricultural Sciences, Baicheng, China.
- China Oat and Buckwheat Research Center, Baicheng, China.
| |
Collapse
|
37
|
Khandagale K, Roylawar P, Kulkarni O, Khambalkar P, Ade A, Kulkarni A, Singh M, Gawande S. Comparative Transcriptome Analysis of Onion in Response to Infection by Alternaria porri (Ellis) Cifferi. FRONTIERS IN PLANT SCIENCE 2022; 13:857306. [PMID: 35481153 PMCID: PMC9036366 DOI: 10.3389/fpls.2022.857306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 03/08/2022] [Indexed: 06/14/2023]
Abstract
Purple blotch (PB) is one of the most destructive foliar diseases of onion and other alliums, caused by a necrotrophic fungal pathogen Alternaria porri. There are no reports on the molecular response of onion to PB infection. To elucidate the response of onion to A. porri infection, we consequently carried out an RNAseq analysis of the resistant (Arka Kalyan; AK) and susceptible (Agrifound rose; AFR) genotype after an artificial infection. Through differential expression analyses between control and pathogen-treated plants, we identified 8,064 upregulated and 248 downregulated genes in AFR, while 832 upregulated and 564 downregulated genes were identified in AK. A further significant reprogramming in the gene expression profile was also demonstrated by a functional annotation analysis. Gene ontology (GO) terms, which are particularly involved in defense responses and signaling, are overrepresented in current analyses such as "oxidoreductase activity," "chitin catabolic processes," and "defense response." Several key plant defense genes were differentially expressed on A. porri infection, which includes pathogenesis-related (PR) proteins, receptor-like kinases, phytohormone signaling, cell-wall integrity, cytochrome P450 monooxygenases, and transcription factors. Some of the genes were exclusively overexpressed in resistant genotype, namely, GABA transporter1, ankyrin repeat domain-containing protein, xyloglucan endotransglucosylase/hydrolase, and PR-5 (thaumatin-like). Antioxidant enzyme activities were observed to be increased after infection in both genotypes but higher activity was found in the resistant genotype, AK. This is the first report of transcriptome profiling in onion in response to PB infection and will serve as a resource for future studies to elucidate the molecular mechanism of onion-A. porri interaction and to improve PB resistance in onions.
Collapse
Affiliation(s)
- Kiran Khandagale
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Praveen Roylawar
- Department of Botany, Sangamner Nagarpalika Arts, D. J. Malpani Commerce, B. N. Sarda Science College, Sangamner, India
| | - Onkar Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | | | - Avinash Ade
- Department of Botany, Savitribai Phule Pune University, Pune, India
| | - Abhijeet Kulkarni
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, India
| | - Major Singh
- ICAR-Directorate of Onion and Garlic Research (DOGR), Pune, India
| | - Suresh Gawande
- ICAR-Directorate of Onion and Garlic Research (DOGR), Pune, India
| |
Collapse
|