1
|
Munjal NS, Dey G, Parthasarathi KTS, Chauhan K, Pai K, Patole MS, Pawar H, Sharma J. A Proteogenomic Approach for the Identification of Virulence Factors in Leishmania Parasites. Methods Mol Biol 2025; 2859:279-296. [PMID: 39436608 DOI: 10.1007/978-1-0716-4152-1_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Identifying new genes involved in virulence and drug resistance may hold the key to a better understanding of parasitic diseases. The proteogenomic profiling of various Leishmania species, the causative agents of leishmaniasis, has identified several novel genes, N- and C-terminal extensions of proteins, and corrections of existing gene models. Various virulence factors (VFs) responsible for leishmaniasis have been previously annotated through a proteogenomic approach, including the C-terminal extension of heat shock protein 70 (HSP70). Furthermore, the diversity of VFs across Leishmania donovani, L. infantum, L. major, and L. mexicana was determined using phylogenetic analysis. Moreover, protein-protein interaction networks (PPINs) of VFs with HSPs aid in making significant biological interpretations. Overall, an integrated omics approach involving proteogenomics was used to identify and study the relationship among VFs with other interacting proteins, including HSPs. This chapter provides a step-by-step guide to the identification of new genes in Leishmania using a proteogenomic approach and their functional assignment using a bioinformatics-based approach.
Collapse
Affiliation(s)
| | - Gourav Dey
- Institute of Bioinformatics, Bangalore, India
| | - K T Shreya Parthasarathi
- Institute of Bioinformatics, Bangalore, India
- Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Kshipra Chauhan
- School of Applied Sciences and Technology, Gujarat Technological University, Ahmedabad, India
| | - Kalpana Pai
- Department of Zoology, Savitribai Phule Pune University, Pune, India
| | | | - Harsh Pawar
- Biomedical and Life Sciences Division, Lancaster University, Lancaster, UK
| | - Jyoti Sharma
- Institute of Bioinformatics, Bangalore, India.
- Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
2
|
She H, Liu Z, Xu Z, Zhang H, Wu J, Cheng F, Wang X, Qian W. Pan-genome analysis of 13 Spinacia accessions reveals structural variations associated with sex chromosome evolution and domestication traits in spinach. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3102-3117. [PMID: 39095952 DOI: 10.1111/pbi.14433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/12/2024] [Accepted: 06/27/2024] [Indexed: 08/04/2024]
Abstract
Structural variations (SVs) are major genetic variants that can be involved in the origin, adaptation and domestication of species. However, the identification and characterization of SVs in Spinacia species are rare due to the lack of a pan-genome. Here, we report eight chromosome-scale assemblies of cultivated spinach and its two wild species. After integration with five existing assemblies, we constructed a comprehensive Spinacia pan-genome and identified 193 661 pan-SVs, which were genotyped in 452 Spinacia accessions. Our pan-SVs enabled genome-wide association study identified signals associated with sex and clarified the evolutionary direction of spinach. Most sex-linked SVs (86%) were biased to occur on the Y chromosome during the evolution of the sex-linked region, resulting in reduced Y-linked gene expression. The frequency of pan-SVs among Spinacia accessions further illustrated the contribution of these SVs to domestication, such as bolting time and seed dormancy. Furthermore, compared with SNPs, pan-SVs act as efficient variants in genomic selection (GS) because of their ability to capture missing heritability information and higher prediction accuracy. Overall, this study provides a valuable resource for spinach genomics and highlights the potential utility of pan-SV in crop improvement and breeding programmes.
Collapse
Affiliation(s)
- Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Helong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, China
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences, Xinxiang, China
| |
Collapse
|
3
|
Gkanogiannis A, Rahman H, Singh RK, Lopez-Lavalle AB. Chromosome-level genome assembly and functional annotation of Citrullus colocynthis: unlocking genetic resources for drought-resilient crop development. PLANTA 2024; 260:124. [PMID: 39443340 PMCID: PMC11499410 DOI: 10.1007/s00425-024-04551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024]
Abstract
MAIN CONCLUSION The chromosome-level genome assembly of Citrullus colocynthis reveals its genetic potential for enhancing drought tolerance, paving the way for innovative crop improvement strategies. This study presents the first comprehensive genome assembly and annotation of Citrullus colocynthis, a drought-tolerant wild close relative of cultivated watermelon, highlighting its potential for enhancing agricultural resilience to climate change. The study achieved a chromosome-level assembly using advanced sequencing technologies, including PacBio HiFi and Hi-C, revealing a genome size of approximately 366 Mb with low heterozygosity and substantial repetitive content. Our analysis identified 23,327 gene models, that could encode stress response mechanisms for species' adaptation to arid environments. Comparative genomics with closely related species illuminated the evolutionary dynamics within the Cucurbitaceae family. In addition, resequencing of 27 accessions from the United Arab Emirates (UAE) identified genetic diversity, suggesting a foundation for future breeding programs. This genomic resource opens new avenues for the de novo domestication of C. colocynthis, offering a blueprint for developing crops with enhanced drought tolerance, disease resistance, and nutritional profiles, crucial for sustaining future food security in the face of escalating climate challenges.
Collapse
Affiliation(s)
- Anestis Gkanogiannis
- International Center for Biosaline Agriculture, ICBA, P.O. Box 14660, Dubai, United Arab Emirates.
| | - Hifzur Rahman
- International Center for Biosaline Agriculture, ICBA, P.O. Box 14660, Dubai, United Arab Emirates
| | - Rakesh Kumar Singh
- International Center for Biosaline Agriculture, ICBA, P.O. Box 14660, Dubai, United Arab Emirates
| | | |
Collapse
|
4
|
Soto L, DasSarma P, Anton BP, Vincze T, Verma I, Eralp B, Powers DW, Dozier BL, Roberts RJ, DasSarma S. Genome sequence of an extremely halophilic archaeon isolated from Permian Period halite, Salado Formation in New Mexico, USA: Halobacterium sp. strain NMX12-1. Microbiol Resour Announc 2024:e0077824. [PMID: 39431873 DOI: 10.1128/mra.00778-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/03/2024] [Indexed: 10/22/2024] Open
Abstract
Halobacterium sp. strain NMX12-1, an extremely halophilic Archaeon, was isolated from 250 million-year-old Salado Formation salt crystal in Carlsbad, New Mexico. Single-molecule real-time sequencing revealed a 3.2-Mbp genome with a 2.6-Mbp chromosome and five plasmids (234, 211, 119, 21, and 1.6-kbp). The GC-rich genome encodes an acidic proteome, characteristic of Haloarchaea.
Collapse
Affiliation(s)
- Leonardo Soto
- Marine Estuarine Environmental Sciences Program, University of Maryland, College Park, Maryland, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, Maryland, USA
| | - Priya DasSarma
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| | | | - Tamas Vincze
- New England Biolabs, Ipswich, Massachusetts, USA
| | - Ishita Verma
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Bora Eralp
- Blue Marble Space Institute of Science, Seattle, Washington, USA
| | | | - Brian Lee Dozier
- WIPP Test Coordination Office, Los Alamos National Laboratory (LANL), Carlsbad, New Mexico, USA
| | | | - Shiladitya DasSarma
- Marine Estuarine Environmental Sciences Program, University of Maryland, College Park, Maryland, USA
- Blue Marble Space Institute of Science, Seattle, Washington, USA
- Institute of Marine and Environmental Technology, University System of Maryland, Baltimore, Maryland, USA
- Department of Microbiology and Immunology, School of Medicine, University of Maryland, Baltimore, Maryland, USA
| |
Collapse
|
5
|
Song L, Shen Y, Zhang H, Zhang H, Zhang Y, Wang M, Zhang M, Wang F, Zhou L, Wen C, Zhao Y. Comprehensive genomic analysis of Brevibacillus brevis BF19 reveals its biocontrol potential against bitter gourd wilt. BMC Microbiol 2024; 24:415. [PMID: 39425006 PMCID: PMC11488265 DOI: 10.1186/s12866-024-03519-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 09/12/2024] [Indexed: 10/21/2024] Open
Abstract
Bitter gourd wilt, a severe vascular disease triggered by the soilborne pathogen Fusarium oxysporum f. sp. momordicae (FOM), markedly constrains bitter gourd yield. In this study, a novel strain BF19 of Brevibacillus brevis was isolated and identified, exhibiting strong antimicrobial activity against FOM through in vivo and in vitro experiments. To comprehensively assess the biocontrol potential of strain BF19, we conducted phenotypic, phylogenetic, and comparative genomics analyses. Phenotypic analysis revealed that BF19 exhibited 53.33% biocontrol efficacy and significantly increased the average plant height, root fresh weight, and dry weight. Whole-genome sequencing and comparative genomic analysis revealed numerous potential genes associated with biocontrol mechanisms in BF19. Importantly, the integration of metabolic cluster prediction with liquid chromatography‒tandem mass spectrometry (LC‒MS/MS) revealed the presence of a macrobrevin antibiotic, a product of polyketide synthases (PKSs), predominantly in BF19 fermentation products. The effectiveness of the Br. brevis strain BF19 and its crude extract against bitter gourd wilt has also been confirmed. This study provides a genetic framework for future investigations on PKSs and establishes a scientific basis for optimizing field applications of microbial biopesticides derived from Br. brevis BF19.
Collapse
Affiliation(s)
- Luyang Song
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yue Shen
- Food Science and Technology, Henan Agricultural University, Zhengzhou, 450046, China
| | - Huihao Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Han Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Yuanyuan Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mengjiao Wang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Mingyue Zhang
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Fei Wang
- Institute of Plant Protection, Henan Academy of Agricultural Sciences, Zhengzhou, 450002, China
| | - Lin Zhou
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Caiyi Wen
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China
| | - Ying Zhao
- College of Plant Protection, Henan Agricultural University, Zhengzhou, 450046, China.
| |
Collapse
|
6
|
Cheng M, Zhou H, Zhang H, Zhang X, Zhang S, Bai H, Zha Y, Luo D, Chen D, Chen S, Ning K, Liu W. Hidden Links Between Skin Microbiome and Skin Imaging Phenome. GENOMICS, PROTEOMICS & BIOINFORMATICS 2024; 22:qzae040. [PMID: 39436239 DOI: 10.1093/gpbjnl/qzae040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 03/01/2024] [Accepted: 05/27/2024] [Indexed: 10/23/2024]
Abstract
Despite the skin microbiome has been linked to skin health and diseases, its role in modulating human skin appearance remains understudied. Using a total of 1244 face imaging phenomes and 246 cheek metagenomes, we first established three skin age indices by machine learning, including skin phenotype age (SPA), skin microbiota age (SMA), and skin integration age (SIA) as surrogates of phenotypic aging, microbial aging, and their combination, respectively. Moreover, we found that besides aging and gender as intrinsic factors, skin microbiome might also play a role in shaping skin imaging phenotypes (SIPs). Skin taxonomic and functional α diversity was positively linked to melanin, pore, pigment, and ultraviolet spot levels, but negatively linked to sebum, lightening, and porphyrin levels. Furthermore, certain species were correlated with specific SIPs, such as sebum and lightening levels negatively correlated with Corynebacterium matruchotii, Staphylococcus capitis, and Streptococcus sanguinis. Notably, we demonstrated skin microbial potential in predicting SIPs, among which the lightening level presented the least error of 1.8%. Lastly, we provided a reservoir of potential mechanisms through which skin microbiome adjusted the SIPs, including the modulation of pore, wrinkle, and sebum levels by cobalamin and heme synthesis pathways, predominantly driven by Cutibacterium acnes. This pioneering study unveils the paradigm for the hidden links between skin microbiome and skin imaging phenome, providing novel insights into how skin microbiome shapes skin appearance and its healthy aging.
Collapse
Affiliation(s)
- Mingyue Cheng
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Zhou
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Haobo Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xinchao Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuting Zhang
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Bai
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yugo Zha
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Luo
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dan Chen
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Siyuan Chen
- Research Institute for Biomaterials, Tech Institute for Advanced Materials, College of Materials Science and Engineering, Suqian Advanced Materials Industry Technology Innovation Center, NJTech-BARTY Joint Research Center for Innovative Medical Technology, Nanjing Tech University, Nanjing 211816, China
| | - Kang Ning
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Center of Artificial Intelligence Biology, Department of Bioinformatics and Systems Biology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Liu
- College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
- National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Delesalle VA, King MA, Rozario TJ, Wolf ND, Stewart CJ, DeMato LF, Trafford KF, Adhikari S, Dinh VT, Caputo G, Hunter A, Licata M, Modell M, Bhalla S. Complete genomes of two cluster AK Arthrobacter phages isolated from soil samples in Newburgh, NY, United States. Microbiol Resour Announc 2024; 13:e0071624. [PMID: 39264183 PMCID: PMC11468179 DOI: 10.1128/mra.00716-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/19/2024] [Indexed: 09/13/2024] Open
Abstract
Two phages belonging to Arthrobacter phage cluster AK were isolated from soil samples collected in Newburgh, NY in 2021. Both are lytic with a genome organization typical of siphoviruses except for two genes encoding minor tail proteins with pyocin-knob domains found early in the genome, before the terminase gene.
Collapse
Affiliation(s)
| | - Mariah A.K. King
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Tabitha J. Rozario
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Noah D. Wolf
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Connor J. Stewart
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Luke F. DeMato
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Kevin F. Trafford
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Saiman Adhikari
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Van T. Dinh
- Department of Biology,
Gettysburg College,
Gettysburg, Pennsylvania,
USA
| | - Gina Caputo
- Department of Biology,
Mount Saint Mary College,
Newburgh, New York, USA
| | - Ashley Hunter
- Department of Biology,
Mount Saint Mary College,
Newburgh, New York, USA
| | - Michelle Licata
- Department of Biology,
Mount Saint Mary College,
Newburgh, New York, USA
| | - Misun Modell
- Department of Biology,
Mount Saint Mary College,
Newburgh, New York, USA
| | - Suparna Bhalla
- Department of Biology,
Mount Saint Mary College,
Newburgh, New York, USA
| |
Collapse
|
8
|
Badiola MLP, Befano KD, Berger ML, Blanco CR, Ghunney N, Lee JG, Myat LP, Nguyen JK, Ober EM, Press-Porter KM, She BT, Watkins JS, Caruso SM. Genome sequence of bacteriophage GiJojo, isolated using Streptomyces mirabilis in Catonsville, Maryland. Microbiol Resour Announc 2024; 13:e0058424. [PMID: 39177367 PMCID: PMC11465772 DOI: 10.1128/mra.00584-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/12/2024] [Indexed: 08/24/2024] Open
Abstract
Bacteriophage GiJojo is a myovirus isolated from soil that infects Streptomyces mirabilis NRRL B-2400, with a genome length of 115,161 bp containing 180 genes and 29 tRNAs. Of those genes, 59 have been assigned functions. GiJojo is a member of the BS cluster of actinobacteriophages.
Collapse
Affiliation(s)
- Marie Louise P. Badiola
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Kaela D. Befano
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - McKayla L. Berger
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Claudine R. Blanco
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Nhyira Ghunney
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Jaehyun G. Lee
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Lin P. Myat
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - James K. Nguyen
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Ellison M. Ober
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Karla M. Press-Porter
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Brendan T. She
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Justin S. Watkins
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - 2023 UMBC Phage Hunters
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Steven M. Caruso
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
9
|
Yang M, Lv J, Li K, Lu H, Wang Y. Complete genome sequence of Vibrio cholerae LK-18 isolated from tail-rotted Procambarus clarkii. Microbiol Resour Announc 2024; 13:e0047124. [PMID: 39206954 PMCID: PMC11465726 DOI: 10.1128/mra.00471-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024] Open
Abstract
Isolated from tail-rotted Procambarus clarkii, the pathogenic bacterium Vibrio cholerae LK-18 features two circular chromosomes: chromosome I (2,895,335 bp) and chromosome II (1,175,190 bp). The genome includes 3,522 open reading frames, 100 tRNA genes, and 31 rRNA genes, and it harbors the Vibrio cholera cytolysin and chitinase genes.
Collapse
Affiliation(s)
- Mingshu Yang
- College of Food Science and Engineering, Hainan Tropical Ocean University; Marine Food Engineering Technology Research Center of Hainan Province; Collaborative Innovation Center of Marine Food Deep Processing, Sanya, China
| | - Jinxian Lv
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Kai Li
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Haojie Lu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| | - Yongjie Wang
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
10
|
Jaryenneh J, Krishna R, Schoeniger JS, Mageeney CM. Complete genome sequence of Rhodococcus qingshengii phage Perlina. Microbiol Resour Announc 2024:e0086924. [PMID: 39377611 DOI: 10.1128/mra.00869-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/05/2024] [Indexed: 10/09/2024] Open
Abstract
Rhodococcus phage Perlina is a novel phage isolated on Rhodococcus qingshengii S10. Perlina encodes 112 open reading frames with typical phage structural genes identified and 3 tRNAs (tRNA-Ile, tRNA-Met, and tRNA-Asn). Few close relatives can be identified at the nucleotide level, suggesting a new phage species.
Collapse
Affiliation(s)
| | - Rohan Krishna
- Sandia National Laboratories, Livermore, California, USA
| | | | | |
Collapse
|
11
|
Miller WG, Chapman MH, Williams TG, Wood DF, Bono JL, Kelly DJ. Campylobacter californiensis sp. nov., isolated from cattle and feral swine. Int J Syst Evol Microbiol 2024; 74:006524. [PMID: 39374062 PMCID: PMC11457942 DOI: 10.1099/ijsem.0.006524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/03/2024] [Indexed: 10/08/2024] Open
Abstract
Nine Campylobacter strains were isolated from cattle and feral swine faeces: three were recovered during a 2007 Campylobacter-associated outbreak linked to a dairy, and the other six were isolated during a 2009-2010 survey of farms and ranches in Central California. The species identification of these strains could not be determined by 16S rRNA gene sequencing but were most similar to Campylobacter concisus and Campylobacter mucosalis. Additional atpA typing indicated that the nine strains composed a discrete novel clade related to C. concisus and C. mucosalis. A polyphasic study was undertaken here to clarify their taxonomic position. Phylogenetic analyses were performed based on 16S rRNA gene sequences and the concatenated sequences of 330 core genes. The core gene analysis placed the nine strains into a clade well separated from the other Campylobacter taxa, indicating that these strains represent a novel Campylobacter species. Pairwise digital DNA-DNA hybridization and average nucleotide identity values between these strains and other campylobacters are lower than 16 and 73%, respectively, further supporting their placement into a novel taxon. Standard phenotypic testing was performed. All strains are microaerobic or anaerobic, motile, Gram-negative, slightly-curved rods that are oxidase positive but catalase negative. Strains can be distinguished from the other catalase-negative Campylobacter species using phenotypic markers such as motility, oxidase activity, cephalothin resistance, hippuricase activity, growth at 30 °C, and α-haemolysis. The data presented here show that these strains represent a novel species within Campylobacter, for which the name Campylobacter californiensis sp. nov. (type strain RM6914T=LMG 32304T=CCUG 75329T) is proposed.
Collapse
Affiliation(s)
- William G. Miller
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Mary H. Chapman
- Produce Safety and Microbiology Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Tina G. Williams
- Bioproducts Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - Delilah F. Wood
- Bioproducts Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Albany, CA, USA
| | - James L. Bono
- Meat Safety and Quality Research Unit, Agricultural Research Service, U.S. Department of Agriculture, Clay Center, NE, USA
| | - David J. Kelly
- School of Biosciences, The University of Sheffield, Sheffield, UK
| |
Collapse
|
12
|
Markov SA, Atuahene PY, Barnes CW, Butler T, Cooper SD, Covel EM, Diaz KR, Gadson D, Holt AC, Litchfield MA, Nefe AJ, Ogbu CE, Rupp KM, Simpson F, Wood E. Comparative genome analysis of cluster EF bacteriophages Ajin and OverHedge isolated from soil in Tennessee. Microbiol Resour Announc 2024:e0092524. [PMID: 39345199 DOI: 10.1128/mra.00925-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024] Open
Abstract
Bacteriophages Ajin and OverHedge were isolated from soil in Tennessee using the bacterium Microbacterium foliorum. Ajin and OverHedge (cluster EF) have a genome of 56,993 bp and 56,559 bp, containing 86 and 81 predicted genes, respectively. The Ajin genome has unique genes, phosphatase and glycosyltransferase, compared to the OverHedge.
Collapse
Affiliation(s)
- Sergei A Markov
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Paul Y Atuahene
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Clayton W Barnes
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Taquerra Butler
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Stephan D Cooper
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Emma M Covel
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Kayla R Diaz
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Dalon Gadson
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Anna C Holt
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Maegan A Litchfield
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Alexis J Nefe
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Comfort E Ogbu
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Kiara M Rupp
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Falisaty Simpson
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| | - Elyse Wood
- Department of Biology, Austin Peay State University, Clarksville, Tennessee, USA
| |
Collapse
|
13
|
Sahi U, Kottury NG, Kottury NR, Kotturi H. Complete genome sequence of Mycobacteriophage Eaglepride. Microbiol Resour Announc 2024:e0059924. [PMID: 39345163 DOI: 10.1128/mra.00599-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/12/2024] [Indexed: 10/01/2024] Open
Abstract
Eaglepride is a mycobacteriophage isolated using Mycobacterium smegmatis mc2155. The genome length is 50,926 bp with 89 open reading frames and 1 tRNA gene. Based on gene content similarity to actinobacteriophages, Eaglepride is assigned to phage subcluster A10 and shares the highest nucleotide identity with mycobacteriophage OKCentral2016.
Collapse
Affiliation(s)
- Umar Sahi
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, USA
| | | | | | - Hari Kotturi
- Department of Biology, University of Central Oklahoma, Edmond, Oklahoma, USA
| |
Collapse
|
14
|
Wang Y, Liu Y, Miao K, Hou L, Guo X, Ji Y. A haplotype-resolved genome assembly of Coptis teeta, an endangered plant of significant medicinal value. Sci Data 2024; 11:1012. [PMID: 39294137 PMCID: PMC11411109 DOI: 10.1038/s41597-024-03861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/04/2024] [Indexed: 09/20/2024] Open
Abstract
Coptis teeta Wall. (Ranunculaceae), an endangered plant species of significant medicinal value, predominantly undergoes clonal propagation, potentially compromising the species' evolutionary potential and ultimately increase its risk of extinction. In this study, we successfully assembled two sets of haploid genomes (Hap1 and Hap2) for C. teeta, comprising nine homologous chromosome pairs, by employing Illumina and PacBio sequencing technologies. The genome annotation identified a total of 43,979 and 46,311 protein-coding genes in Hap1 and in Hap2, and most of them were functionally annotated. The high-quality reference genome will serve as an indispensable genomic resource for conservation and comprehensive exploitation of this endangered species. Between the two haploid genomes, numerous structural alterations were detected within the nine homologous chromosome pairs, potentially resulting in aberrant synapsis and irregular chromosomal segregation and thus contributing to the sustained preservation of clonal propagation in C. teeta. The findings offer new perspective for elucidating the genetic mechanism underlying the compromised sexual reproductive capacity of C. teeta, thereby facilitating its enhancement though molecular breeding and genetic improvement.
Collapse
Affiliation(s)
- Ya Wang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Yan Liu
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Ke Miao
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Luxiao Hou
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
- Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650201, China
| | - Xiaorong Guo
- School of Ecology and Environmental Science, Yunnan Key Laboratory of Plant Reproductive Adaptation and Evolutionary Ecology and Institute of Biodiversity, Yunnan University, Kunming, 650201, China.
| | - Yunheng Ji
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Population, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| |
Collapse
|
15
|
Xiao X, Feng C, Hao J, Cheng L, Jian C, Zeng Z, Liu J. Characterization of pKPN945B, a novel transferable IncR plasmid from hypervirulent carbapenem-resistant Klebsiella pneumoniae, harboring blaIMP-4 and qnrS1. Microbiol Spectr 2024:e0049124. [PMID: 39287460 DOI: 10.1128/spectrum.00491-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 08/21/2024] [Indexed: 09/19/2024] Open
Abstract
Carbapenem-resistant Klebsiella pneumoniae producing metallo-β-lactamase poses a major public health threat worldwide. Imipenemase often coexists with other resistance genes leading to the formation of multidrug-resistant bacteria. In this study, we describe the microbiological and genomic characteristics of the hypervirulent carbapenem-resistant K. pneumoniae ST20-K23 strain KPN945 harboring blaIMP-4 and qnrS1. The minimum inhibitory concentration of KPN945 against antimicrobials was determined by the broth microdilution method. The virulence of KPN945 was evaluated through string test, serum killing resistance, and Galleria mellonella larvae infection models. The transferability of pKPN945B was assessed using a conjugation test. The genome sequence characteristics of KPN945 were analyzed through whole genome sequencing, and a phylogenetic tree was constructed to evaluate the prevalence of imipenemase. Our findings showed that KPN945 was non-susceptible to β-lactam antibiotics, highly resistant to serum killing, and highly lethal to G. mellonella larvae. The fusion plasmid pKPN945B carried by the isolate KPN945 belonged to the IncR incompatibility group and harbored multiple drug resistance genes such as blaIMP-4, blaCTX-M-14, qnrS1, and sul2. The most important point is that the IncR plasmid is a novel plasmid that arose by the accretion of parts from different plasmids, making it transferable and with a fitness cost. Globally, blaIMP-4 is the most prevalent imipenemase subtype, with the highest isolation rates in Asia, particularly China. The spread of blaIMP-4, especially the emergence of transferable plasmids, deserves our vigilance and prevention. Additionally, we should pay attention to the formation of hypervirulent K. pneumoniae mediated by non-virulent plasmids. IMPORTANCE Up to now, IncR replicons carrying blaIMP-4 have not been reported, and the IncR plasmids described in previous studies have been found to be non-transferrable to other bacteria through conjugation. Moreover, there have been no extensive phylogenetic analyses of strains carrying blaIMP in the published papers. The lack of data in these studies is noteworthy because blaIMP appears in the novel transferable fusion plasmid IncR. Although the IncR plasmid has no tra operon, it can still be transferred to Escherichia coli EC600 or Klebsiella pneumoniae ATCC13883 (RIFR) without high fitness cost, but it only affects the MIC of imipenem. blaIMP integrates with other resistance mechanisms leading to the formation of multidrug-resistant strains. Notably, the high prevalence of blaIMP-4 in Asia and the presence of blaIMP-4 on novel transferable IncR plasmids suggest the urgent need to monitor the emergence of such plasmids and control their spread.
Collapse
Affiliation(s)
- Xue Xiao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Chunlin Feng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Jingchen Hao
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Ling Cheng
- Hospital-Acquired Infection Control Department, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Chunxia Jian
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Zhangrui Zeng
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| | - Jinbo Liu
- Department of Laboratory Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Province Engineering Technology Research Center of Molecular Diagnosis of Clinical Diseases, Luzhou, China
- Molecular Diagnosis of Clinical Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
16
|
Wang T, Zhang X, Fan L, Zhao Y, Zhang Z, Cao Z, Xu Y, Lee S, Lim C, Zhang S. Complete genome sequence and anti-obesity potential of Lactiplantibacillus plantarum HOM2217 in 3T3-L1 cells and high-fat diet-fed rats. Front Microbiol 2024; 15:1436378. [PMID: 39323881 PMCID: PMC11422070 DOI: 10.3389/fmicb.2024.1436378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
The global prevalence of obesity is rising year by year, which has become a public health problem worldwide. Many animal and clinical studies have shown that Lactiplantibacillus plantarum is considered an ideal probiotic and potential supplement for the treatment of obesity. In this study, we aimed to complete the genome sequence of L. plantarum HOM2217, which was isolated from human milk, and study its physiological characteristics and anti-obesity effects in 3T3-L1 cells and rats fed a high-fat diet (HFD) to determine its potential as a starter for functional food products. Whole-genome analysis demonstrated that HOM2217 contained a single circular chromosome of 3,267,529 bp with a GC content of 44.5% and one plasmid (62,350 bp) with a GC content of 38.5%. Compared to the reference strains, HOM2217 demonstrated superior tolerance to gastrointestinal conditions, higher adhesion to intestinal epithelial cell lines, potent antimicrobial activity against Enterobacter cloacae ATCC 13047, and effective cholesterol removal ability in vitro. Treatment with heat-killed HOM2217 significantly reduced lipid accumulation and intracellular triglyceride production in 3T3-L1 adipocytes. Daily treatment of HFD-fed rats with HOM2217 for 7 weeks decreased body weight, body weight gain, and body fat without changes in food intake. HOM2217 also significantly increased the serum high-density lipoprotein cholesterol (HDL-C) level, decreased the serum tumor necrosis factor (TNF-α) and increased short-chain fatty acid (SCFA) (formic acid, acetic acid, and butyric acid) levels in the cecum. Thus, HOM2217 could potentially prevent obesity in rats by inhibiting inflammatory responses and regulating lipid metabolism and SCFAs expression. Therefore, HOM2217 has potential as an alternative treatment for obesity.
Collapse
Affiliation(s)
- Tingting Wang
- Research Center, Beijing Hanmi Pharmaceutical Co., Ltd., Beijing, China
| | - Xiao Zhang
- Research Center, Beijing Hanmi Pharmaceutical Co., Ltd., Beijing, China
| | - Linlin Fan
- Research Center, Beijing Hanmi Pharmaceutical Co., Ltd., Beijing, China
| | - Ying Zhao
- Research Center, Beijing Hanmi Pharmaceutical Co., Ltd., Beijing, China
| | - Zhengwen Zhang
- Research Center, Beijing Hanmi Pharmaceutical Co., Ltd., Beijing, China
| | - Zhonghua Cao
- Research Center, Beijing Hanmi Pharmaceutical Co., Ltd., Beijing, China
| | - Ying Xu
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing, China
| | - Suwon Lee
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing, China
| | - Chongyoon Lim
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing, China
| | - Shiqi Zhang
- Food & Biotech R&D Center, Coree Beijing Co., Ltd., Beijing, China
| |
Collapse
|
17
|
Agaiby C, Ahmed M, Argueta A, Arrowood K, Barrier KP, Church MW, Connell CR, Dao KD, Dao KHT, Davenport MR, Edmondson MD, Estabrook MI, Gondhi S, Gonzalez P, Leduc F, Ma T, Mansoor A, Mansoor S, Mattley L, Meyer C, Nguyen L, Niaz E, Parker JM, Ross DC, Scott DM, Semryck B, Takla K, Tiramdas A, Upputuru SK, Pollenz RS. Genome sequence of Xenia2 a DV cluster phage that infects Gordonia rubripertincta. Microbiol Resour Announc 2024; 13:e0057824. [PMID: 39162485 PMCID: PMC11385102 DOI: 10.1128/mra.00578-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 07/15/2024] [Indexed: 08/21/2024] Open
Abstract
Xenia2 is a DV cluster actinobacteriophage that infects Gordonia rubripertincta NRRL B-16540. The genome is 68,135bp, has a GC content of 57.9% and 98 predicted protein-coding genes, 33 of which have a predicted function. Xenia2 has a lysis cassette with an endolysin (lysin A) and four different holin-like transmembrane proteins.
Collapse
Affiliation(s)
- Carol Agaiby
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Maha Ahmed
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Aidan Argueta
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Kyle Arrowood
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Keelynn P Barrier
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Meghan W Church
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Cheryl R Connell
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Ken D Dao
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Kathleen Huyen T Dao
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Makenzie R Davenport
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Megan D Edmondson
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Makenzie I Estabrook
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Santoshi Gondhi
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Patricia Gonzalez
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Francine Leduc
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Trang Ma
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Adam Mansoor
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Sara Mansoor
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Lillian Mattley
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Cyrus Meyer
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Loc Nguyen
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Emaan Niaz
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Jenna M Parker
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Delaney C Ross
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Devin M Scott
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Brianna Semryck
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Kyrillos Takla
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Aishwarya Tiramdas
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Sai Kaushik Upputuru
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| | - Richard S Pollenz
- Department of Molecular Biosciences, University of South Florida, Tampa, Florida, USA
| |
Collapse
|
18
|
Jin H, Chana NK, Tang AL, Kaur P, Lamichhane B, Leung SC, Scheiderer D, Sivaprakasam VV, Marcelino DT, Hull GJ, Kamara TM, Guimaro MC, Caruso SM. Genome characterization of BI2 subcluster Streptomyces scabiei bacteriophages GoblinVoyage and Doxi13. Microbiol Resour Announc 2024; 13:e0058124. [PMID: 39162451 PMCID: PMC11385150 DOI: 10.1128/mra.00581-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 07/03/2024] [Indexed: 08/21/2024] Open
Abstract
We present the bacteriophages GoblinVoyage and Doxi13, siphoviruses isolated on Streptomyces scabiei RL-34. They belong to the BI2 cluster and have genomes consisting of 60.9% GC content with identical 3' end sticky overhangs. The genome lengths of GoblinVoyage and Doxi13 are 43,540 bp and 43,696 bp, respectively.
Collapse
Affiliation(s)
- Hanna Jin
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Nihal K Chana
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Annie L Tang
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Paramjit Kaur
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Brishti Lamichhane
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Sze Ching Leung
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Diane Scheiderer
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Vighnesh V Sivaprakasam
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Dannah T Marcelino
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Gregory J Hull
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Toma M Kamara
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Maria C Guimaro
- College of Natural and Mathematical Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| | - Steven M Caruso
- Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, Maryland, USA
| |
Collapse
|
19
|
Liu Z, Yang F, Wan H, Deng C, Hu W, Fan X, Wang J, Yang M, Feng J, Wang Q, Yang N, Cai L, Liu Y, Tang H, Li S, Luo J, Zheng J, Wu L, Yang E, Pu Z, Jia J, Li J, Yang W. Genome architecture of the allotetraploid wild grass Aegilops ventricosa reveals its evolutionary history and contributions to wheat improvement. PLANT COMMUNICATIONS 2024:101131. [PMID: 39257004 DOI: 10.1016/j.xplc.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/12/2024]
Abstract
The allotetraploid wild grass Aegilops ventricosa (2n = 4x = 28, genome DvDvNvNv) has been recognized as an important germplasm resource for wheat improvement owing to its ability to tolerate biotic stresses. In particular, the 2NvS segment from Ae. ventricosa, as a stable and effective resistance source, has contributed greatly to wheat improvement. The 2NvS/2AS translocation is a prevalent chromosomal translocation between common wheat and wild relatives, ranking just behind the 1B/1R translocation in importance for modern wheat breeding. Here, we assembled a high-quality chromosome-level reference genome of Ae. ventricosa RM271 with a total length of 8.67 Gb. Phylogenomic analyses revealed that the progenitor of the Dv subgenome of Ae. ventricosa is Ae. tauschii ssp. tauschii (genome DD); by contrast, the progenitor of the D subgenome of bread wheat (Triticum aestivum L.) is Ae. tauschii ssp. strangulata (genome DD). The oldest polyploidization time of Ae. ventricosa occurred ∼0.7 mya. The Dv subgenome of Ae. ventricosa is less conserved than the D subgenome of bread wheat. Construction of a graph-based pangenome of 2AS/6NvL (originally known as 2NvS) segments from Ae. ventricosa and other genomes in the Triticeae enabled us to identify candidate resistance genes sourced from Ae. ventricosa. We identified 12 nonredundant introgressed segments from the Dv and Nv subgenomes using a large winter wheat collection representing the full diversity of the European wheat genetic pool, and 29.40% of European wheat varieties inherit at least one of these segments. The high-quality RM271 reference genome will provide a basis for cloning key genes, including the Yr17-Lr37-Sr38-Cre5 resistance gene cluster in Ae. ventricosa, and facilitate the full use of elite wild genetic resources to accelerate wheat improvement.
Collapse
Affiliation(s)
- Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Fan Yang
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Cao Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China; Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu, China
| | - Wenjing Hu
- Lixiahe Institute of Agricultural Sciences, Yangzhou, Jiangsu, China
| | - Xing Fan
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Manyu Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Junyan Feng
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Li Cai
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Ying Liu
- Triticeae Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Shizhao Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jiangtao Luo
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jianmin Zheng
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ling Wu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ennian Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Zongjun Pu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jizeng Jia
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China.
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| |
Collapse
|
20
|
Wang L, Dong Q, Tang K, Han K, Bai H, Yin Y, Li C, Ma C, Teng L, Li J, Gong Y, Liao Y, Peng H, Wang X. Effect of Phage Spray on Hatchability and Chick Quality of Eggs Contaminated with Salmonella Typhimurium. Viruses 2024; 16:1338. [PMID: 39205312 PMCID: PMC11359902 DOI: 10.3390/v16081338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 08/14/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024] Open
Abstract
Salmonella Typhimurium (S. Typhimurium) contamination poses a significant challenge to breeder egg hatchability and chick health, necessitating the exploration of alternative disinfection methods. This study investigates the potential of phage vB_SPuM_SP02 (SP02) as a novel disinfectant for breeder eggs contaminated with S. Typhimurium SM022. Phage SP02 was isolated from poultry farm effluent and characterized for morphology, biological properties, and genome properties. Experimental groups of specific pathogen-free (SPF) eggs were treated with Salmonella and phage SP02, and efficacy was assessed through hatching rates, chick survival, weight, Salmonella load, immune organ indices, and intestinal flora. Phage treatment effectively eradicated Salmonella contamination on eggshells within 12 h, resulting in increased hatching and survival rates compared to controls. Furthermore, phage treatment mitigated weight loss and tissue Salmonella load in chicks without causing immune organ damage while reducing Salmonella spp. abundance in the intestinal tract. This study demonstrates the potential of phage SP02 as an eco-friendly and efficient disinfectant for S. Typhimurium-contaminated breeder eggs, offering promising prospects for practical application in poultry production.
Collapse
Affiliation(s)
- Leping Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, College of Animal Science and Technology, Guangxi University, Nanning 530003, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Qinting Dong
- Guangxi Vocational University of Agriculture, Nanning 530009, China
| | - Kunping Tang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, College of Animal Science and Technology, Guangxi University, Nanning 530003, China
| | - Kaiou Han
- Animal Disease Prevention and Control Center, Guilin 541000, China
| | - Huili Bai
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, College of Animal Science and Technology, Guangxi University, Nanning 530003, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Yangyan Yin
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Changting Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Chunxia Ma
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, College of Animal Science and Technology, Guangxi University, Nanning 530003, China
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Ling Teng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Jun Li
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Yu Gong
- Animal Science and Technology Station of Guizhou, Guiyang 550018, China
| | - Yuying Liao
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Hao Peng
- Guangxi Key Laboratory of Veterinary Biotechnology, Guangxi Veterinary Research Institute, Nanning 530001, China
| | - Xiaoye Wang
- Guangxi Key Laboratory of Animal Reproduction, Breeding and Disease Control, Guangxi Zhuang Autonomous Region Engineering Research Center of Veterinary Biologics, College of Animal Science and Technology, Guangxi University, Nanning 530003, China
| |
Collapse
|
21
|
Liu YF, Li YL, Xing TF, Xue DX, Liu JX. Genetic architecture of long-distance migration and population genomics of the endangered Japanese eel. iScience 2024; 27:110563. [PMID: 39165844 PMCID: PMC11334786 DOI: 10.1016/j.isci.2024.110563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 06/21/2024] [Accepted: 07/18/2024] [Indexed: 08/22/2024] Open
Abstract
The Japanese eel (Anguilla japonica), a flagship anguillid species for conservation, is known for its long-distance-oriented migration. However, our understanding of the genetic architecture underlying long-distance migration and population genomic characteristics of A. japonica is still limited. Here, we generated a high-quality chromosome-level genome assembly and conducted whole-genome resequencing of 218 individuals to explore these aspects. Strong signals of selection were found on genes involved in long-distance aerobic exercise and navigation, which might be associated with evolutionary adaptation to long-distance migrations. Low genetic diversity was detected, which might result from genetic drift associated with demographic declines. Both mitochondrial and nuclear genomic datasets supported the existence of a single panmictic population for Japanese eel, despite signals of single-generation selection. Candidate genes for local selection involved in functions like development and circadian rhythm. The findings can provide insights to adaptative evolution to long-distance migration and inform conservation efforts for A. japonica.
Collapse
Affiliation(s)
- Yan-Fang Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Teng-Fei Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Dong-Xiu Xue
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao 266237, China
| |
Collapse
|
22
|
Horton EN, Beach EK, Cook KT, Cronin KG, Haag AT, Salter SM, Stojanovic NA, Fry ZE, Connolly BM, Hare RF, Ettinger ASH, Poxleitner MK, Anders KR. Complete genome sequence of Microbacterium foliorum phage Curie, a podovirus isolated from soil in Spokane, Washington. Microbiol Resour Announc 2024; 13:e0040824. [PMID: 39037314 PMCID: PMC11320940 DOI: 10.1128/mra.00408-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 06/22/2024] [Indexed: 07/23/2024] Open
Abstract
Bacteriophage Curie is a podovirus that infects Microbacterium foliorum. The Curie genome spans 16,810 bp, has 90 bp terminal inverted repeats, and includes 23 protein-coding genes. Its genome architecture resembles phage PineapplePizza and other phi29-like phages. Together, Curie and PineapplePizza form a new actinobacteriophage Cluster GI.
Collapse
Affiliation(s)
- Emma N. Horton
- Department of Biology, Gonzaga University, Spokane, Washington, USA
| | - Erika K. Beach
- Department of Biology, Gonzaga University, Spokane, Washington, USA
| | - Kathryn T. Cook
- Department of Biology, Gonzaga University, Spokane, Washington, USA
| | - Kyra G. Cronin
- Department of Biology, Gonzaga University, Spokane, Washington, USA
| | - Avery T. Haag
- Department of Biology, Gonzaga University, Spokane, Washington, USA
| | - Sierra M. Salter
- Department of Biology, Gonzaga University, Spokane, Washington, USA
| | | | - Zoe E. Fry
- Department of Biology, Gonzaga University, Spokane, Washington, USA
| | | | - Rebekah F. Hare
- Department of Biology, Gonzaga University, Spokane, Washington, USA
| | | | | | - Kirk R. Anders
- Department of Biology, Gonzaga University, Spokane, Washington, USA
| |
Collapse
|
23
|
Hu B, Gao S, Zhang H, Li Q, Li G, Zhang S, Xing Y, Huang Y, Han S, Tian Y, Zhang W, He H. Whole-genome sequencing and pathogenicity analysis of Rhodococcus equi isolated in horses. BMC Vet Res 2024; 20:362. [PMID: 39129003 PMCID: PMC11318318 DOI: 10.1186/s12917-024-04167-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 07/01/2024] [Indexed: 08/13/2024] Open
Abstract
BACKGROUND Rhodococcus equi (R. equi) is a Gram-positive zoonotic pathogen that frequently leads to illness and death in young horses (foals). This study presents the complete genome sequence of R. equi strain BJ13, which was isolated from a thoroughbred racehorse breeding farm in Beijing, China. RESULTS The BJ13 genome has a length of 5.30 Mb and consists of a complete chromosome and a plasmid measuring 5.22 Mb and 0.08 Mb, respectively. We predicted 4,929 coding gene open reading frames, along with 52 tRNAs and 12 rRNAs. Through analysis of mobile genetic elements, we identified 6 gene islands and 1 prophage gene. Pathogenic system analysis predicted the presence of 418 virulence factors and 225 drug resistance genes. Secretion system analysis revealed the prediction of 297 secreted proteins and 1,106 transmembrane proteins. BJ13 exhibits genomic features, virulence-associated genes, potential drug resistance, and a virulence plasmid structure that may contribute to the evolution of its pathogenicity. Lastly, the pathogenicity of the isolated strain was assessed through animal experiments, which resulted in inflammatory reactions or damage in the lungs, liver, and spleen of mice. Moreover, by the 7th day post-infection, the mortality rate of the mice reached 50.0%, indicating complex immune regulatory mechanisms, including overexpression of IL-10 and increased production of pro-inflammatory cytokines like TNF-α. These findings validate the strong pathogenicity of the isolated strain and provide insights for studying the pathogenic mechanisms of Rhodococcus equi infection. CONCLUSIONS The complete genome sequence of R. equi strain BJ13 provides valuable insights into its genomic characteristics, virulence potential, drug resistance, and secretion systems. The strong pathogenicity observed in animal experiments underscores the need for further investigation into the pathogenic mechanisms of R. equi infection.
Collapse
Affiliation(s)
- Bin Hu
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sichao Gao
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Anhui University of Science and Technology, Huainan, China
| | - Hao Zhang
- University of Chinese Academy of Sciences, Beijing, China
| | - Qiaoqiao Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Anhui University of Science and Technology, Huainan, China
| | - Gaojian Li
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuairan Zhang
- College of Shenyang Institute of Technology, Shenyang, Liaoning, China
| | - Yanan Xing
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Yanyi Huang
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Shuyi Han
- CAS Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ying Tian
- Beijing Wildlife Rescue and Rehabilitation Center, Beijing, China
| | - Wei Zhang
- Beijing Wildlife Rescue and Rehabilitation Center, Beijing, China
| | - Hongxuan He
- College of Animal Science and Veterinary Medicine, Henan Institute of Science and Technology, Xinxiang, China.
| |
Collapse
|
24
|
Bai S, Shang K, Zeng S, Huang Z, Han Z. Genome analysis of Salinimicrobium sp. 3283s, a deep-sea bacterium isolated from the sediments of South China Sea, China. Mar Genomics 2024; 76:101125. [PMID: 39009496 DOI: 10.1016/j.margen.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Salinimicrobium sp. 3283s is an aerobic, golden-yellow pigment-producing, Flavobacteriaceae bacterium isolated from the sediments at the depth of 1751 m in the South China Sea. In this study, we present the complete genome sequence of strain 3283s, which only have a single circular chromosome comprising 3,702,683 bp with 41.41% G + C content and no circular plasmid. In total, 3257 protein coding genes, 45 tRNA, 9 rRNA, and 13 sRNA genes were obtained. In terms of the function of gene annotation, strain 3283s was more different from Salinimicrobium oceani J15B91, which was isolated from the South China Sea at a similar depth, and more similar to a Mariana Trench-derived strain Salinimicrobium profundisediminis MT39, which was closer in phylogenetic taxonomic status, suggesting that strain 3283s possesses a stronger potential to adapt to the deep-sea environment. Furthermore, the high- pressure simulations also confirmed that strain 3283s can grow in both 30 MPa and 60 MPa hydrostatic pressure environments, and that it grows better in 30 MPa hydrostatic pressure environments than in 60 MPa hydrostatic pressure environments. In addition, we found a large number of genes in strain 3283s that can promote better adaptation of the bacteria to the low oxygen and high hydrostatic pressure (HHP) environment of the deep sea, such as biosynthetic enzymes of antioxidant pigments, genes encoding cytochromes with enhanced affinity for oxygen, proteins for adaptation to HHP, and genes encoding TonB-dependent transporters in the absence of flagella.
Collapse
Affiliation(s)
- Shijie Bai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Kun Shang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shuqian Zeng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; Hainan Tropical Ocean University, Sanya 572022, China
| | - Ziming Huang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; Hainan Tropical Ocean University, Sanya 572022, China
| | - Zhuang Han
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| |
Collapse
|
25
|
Huang B, Ge L, Xiang D, Tan G, Liu L, Yang L, Jing Y, Liu Q, Chen W, Li Y, He H, Sun H, Pan Q, Yi K. Isolation, characterization, and genomic analysis of a lytic bacteriophage, PQ43W, with the potential of controlling bacterial wilt. Front Microbiol 2024; 15:1396213. [PMID: 39149212 PMCID: PMC11324598 DOI: 10.3389/fmicb.2024.1396213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/17/2024] [Indexed: 08/17/2024] Open
Abstract
Bacterial wilt (BW) is a devastating plant disease caused by the soil-borne bacterium Ralstonia solanacearum species complex (Rssc). Numerous efforts have been exerted to control BW, but effective, economical, and environmentally friendly approaches are still not available. Bacteriophages are a promising resource for the control of bacterial diseases, including BW. So, in this study, a crop BW pathogen of lytic bacteriophage was isolated and named PQ43W. Biological characterization revealed PQ43W had a short latent period of 15 min, 74 PFU/cell of brust sizes, and good stability at a wide range temperatures and pH but a weak resistance against UV radiation. Sequencing revealed phage PQ43W contained a circular double-stranded DNA genome of 47,156 bp with 65 predicted open reading frames (ORFs) and genome annotation showed good environmental security for the PQ43W that no tRNA, antibiotic resistance, or virulence genes contained. Taxonomic classification showed PQ43W belongs to a novel genus of subfamily Kantovirinae under Caudoviricetes. Subsequently, a dose of PQ43W for phage therapy in controlling crop BW was determined: 108 PFU*20 mL per plant with non-invasive irrigation root application twice by pot experiment. Finally, a field experiment of PQ43W showed a significantly better control effect in crop BW than the conventional bactericide Zhongshengmycin. Therefore, bacteriophage PQ43W is an effective bio-control resource for controlling BW diseases, especially for crop cultivation.
Collapse
Affiliation(s)
- Binbin Huang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Long Ge
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
| | - Dong Xiang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Ge Tan
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Lijia Liu
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Lei Yang
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Yongfeng Jing
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| | - Qingshu Liu
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Wu Chen
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Ye Li
- Hunan Provincial Engineering and Technology Research Center for Agricultural Microbiology Application, Hunan Institute of Microbiology, Changsha, China
| | - Haoxin He
- College of Plant Protection, Hunan Agricultural University, Changsha, China
| | - Huzhi Sun
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
| | - Qiang Pan
- Qingdao NABT PhagePharm Co., Ltd., Qingdao, China
- Institute of Special Food, Qingdao Agricultural University, Qingdao, China
| | - Ke Yi
- China Tobacco Hunan Industrial Co., Ltd., Changsha, China
| |
Collapse
|
26
|
Wiafe-Kwakye CS, Fournier A, Maurais H, Southworth KJ, Molloy SD, Neely MN. Comparative Genomic Analysis of Prophages in Human Vaginal Isolates of Streptococcus agalactiae. Pathogens 2024; 13:610. [PMID: 39204211 PMCID: PMC11357604 DOI: 10.3390/pathogens13080610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024] Open
Abstract
Prophages, viral genomes integrated into bacterial genomes, are known to enhance bacterial colonization, adaptation, and ecological fitness, providing a better chance for pathogenic bacteria to disseminate and cause infection. Streptococcus agalactiae (Group B Streptococcus or GBS) is a common bacterium found colonizing the genitourinary tract of humans. However, GBS-colonized pregnant women are at risk of passing the organism to the neonate, where it can cause severe infections. GBS typically encode one or more prophages in their genomes, yet their role in pathogen fitness and virulence has not yet been described. Sequencing and bioinformatic analysis of the genomic content of GBS human isolates identified 42 complete prophages present in their genomes. Comparative genomic analyses of the prophage sequences revealed that the prophages could be classified into five distinct clusters based on their genomic content, indicating significant diversity in their genetic makeup. Prophage diversity was also identified across GBS capsule serotypes, sequence types (STs), and clonal clusters (CCs). Comprehensive genomic annotation revealed that all GBS strains encode paratox, a protein that prevents the uptake of DNA in Streptococcus, either on the chromosome, on the prophage, or both, and each prophage genome has at least one toxin-antitoxin system.
Collapse
Affiliation(s)
- Caitlin S. Wiafe-Kwakye
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Andrew Fournier
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Hannah Maurais
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Katie J. Southworth
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| | - Sally D. Molloy
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
- The Honors College, University of Maine, Orono, ME 04469, USA
| | - Melody N. Neely
- Department of Molecular and Biomedical Sciences, University of Maine, Orono, ME 04469, USA (S.D.M.)
| |
Collapse
|
27
|
Patel Y, Patel VP, Syeda A, Saji H, Gibb BP. Genome sequence of bacteriophage Janeemi isolated on Arthrobacter globiformis from soil collected in New York. Microbiol Resour Announc 2024; 13:e0017724. [PMID: 38860811 PMCID: PMC11256828 DOI: 10.1128/mra.00177-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 05/17/2024] [Indexed: 06/12/2024] Open
Abstract
Janeemi is a bacteriophage that infects Arthrobacter globiformis B-2880, which was isolated from soil collected in New York City. The genome has a length of 43,877 bp and contains 69 predicted genes. Based on gene content similarity to phages in the actinobacteriophage database, Janeemi is assigned to phage cluster AZ1.
Collapse
Affiliation(s)
- Yamini Patel
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Vrushali P. Patel
- Department of Psychology and Neuroscience, University of Colorado, Boulder, Colorado, USA
| | - Amna Syeda
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Hannah Saji
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| | - Bryan P. Gibb
- Department of Biological and Chemical Sciences, New York Institute of Technology, Old Westbury, New York, USA
| |
Collapse
|
28
|
She H, Liu Z, Xu Z, Zhang H, Wu J, Wang X, Cheng F, Charlesworth D, Qian W. Insights into spinach domestication from genome sequences of two wild spinach progenitors, Spinacia turkestanica and Spinacia tetrandra. THE NEW PHYTOLOGIST 2024; 243:477-494. [PMID: 38715078 DOI: 10.1111/nph.19799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Cultivated spinach (Spinacia oleracea) is a dioecious species. We report high-quality genome sequences for its two closest wild relatives, Spinacia turkestanica and Spinacia tetrandra, which are also dioecious, and are used to study the genetics of spinach domestication. Using a combination of genomic approaches, we assembled genomes of both these species and analyzed them in comparison with the previously assembled S. oleracea genome. These species diverged c. 6.3 million years ago (Ma), while cultivated spinach split from S. turkestanica 0.8 Ma. In all three species, all six chromosomes include very large gene-poor, repeat-rich regions, which, in S. oleracea, are pericentromeric regions with very low recombination rates in both male and female genetic maps. We describe population genomic evidence that the similar regions in the wild species also recombine rarely. We characterized 282 structural variants (SVs) that have been selected during domestication. These regions include genes associated with leaf margin type and flowering time. We also describe evidence that the downy mildew resistance loci of cultivated spinach are derived from introgression from both wild spinach species. Collectively, this study reveals the genome architecture of spinach assemblies and highlights the importance of SVs during the domestication of cultivated spinach.
Collapse
Affiliation(s)
- Hongbing She
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyuan Liu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhaosheng Xu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Helong Zhang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jian Wu
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiaowu Wang
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Feng Cheng
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Deborah Charlesworth
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Charlotte Auerbach Road, Edinburgh, EH9 3FL, UK
| | - Wei Qian
- State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| |
Collapse
|
29
|
Liu Z, Yang F, Deng C, Wan H, Tang H, Feng J, Wang Q, Yang N, Li J, Yang W. Chromosome-level assembly of the synthetic hexaploid wheat-derived cultivar Chuanmai 104. Sci Data 2024; 11:670. [PMID: 38909086 PMCID: PMC11193762 DOI: 10.1038/s41597-024-03527-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 06/14/2024] [Indexed: 06/24/2024] Open
Abstract
Synthetic hexaploid wheats (SHWs) are effective genetic resources for transferring agronomically important genes from wild relatives to common wheat (Triticum aestivum L.). Dozens of reference-quality pseudomolecule assemblies of hexaploid wheat have been generated, but none is reported for SHW-derived cultivars. Here, we generated a chromosome-scale assembly for the SHW-derived cultivar 'Chuanmai 104' based on PacBio HiFi reads and chromosome conformation capture sequencing. The total assembly size was 14.81 Gb with a contig N50 length of 58.25 Mb. A BUSCO analysis yielded a completeness score of 99.30%. In total, repetitive elements comprised 81.36% of the genome and 122,554 high-confidence protein-coding gene models were predicted. In summary, the first chromosome-level assembly for a SHW-derived cultivar presents a promising outlook for the study and utilization of SHWs in wheat improvement, which is essential to meet the global food demand.
Collapse
Affiliation(s)
- Zehou Liu
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Fan Yang
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Cao Deng
- The Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
- Departments of Bioinformatics, DNA Stories Bioinformatics Center, Chengdu, China
| | - Hongshen Wan
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Hao Tang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Junyan Feng
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
- Biotechnology and Nuclear Technology Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
| | - Qin Wang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Ning Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China
| | - Jun Li
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China.
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| | - Wuyun Yang
- Crop Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, China.
- Environment Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu, China.
- Key Laboratory of Wheat Biology and Genetic Improvement on Southwestern China, Chengdu, China.
- Key Laboratory of Tianfu Seed Industry Innovation, Chengdu, China.
| |
Collapse
|
30
|
Zang M, Ma ZH, Xu YL, Long XF. Taxonomic identification, phenol biodegradation and soil remediation of the strain Rhodococcus sacchari sp. nov. Z13 T. Arch Microbiol 2024; 206:313. [PMID: 38900186 DOI: 10.1007/s00203-024-04048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/21/2024]
Abstract
Phenols are highly toxic chemicals that are extensively used in industry and produce large amounts of emissions. Notably, phenols released into the soil are highly persistent, causing long-term harm to human health and the environment. In this study, a gram-positive, aerobic, and rod-shaped bacterial strain, Z13T, with efficient phenol degradation ability, was isolated from the soil of sugarcane fields. Based on the physiological properties and genomic features, strain Z13T is considered as a novel species of the genus Rhodococcus, for which the name Rhodococcus sacchari sp. nov. is proposed. The type strain is Z13T (= CCTCC AB 2022327T = JCM 35797T). This strain can use phenol as its sole carbon source. Z13T was able to completely degrade 1200 mg/L phenol within 20 h; the maximum specific growth rate was μmax = 0.93174 h-1, and the maximum specific degradation rate was qmax = 0.47405 h-1. Based on whole-genome sequencing and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis, strain Z13T contains a series of phenol degradation genes, including dmpP, CatA, dmpB, pcaG, and pcaH, and can metabolize aromatic compounds. Moreover, the potential of strain Z13T for soil remediation was investigated by introducing Z13T into simulated phenol-contaminated soil, and the soil microbial diversity was analyzed. The results showed that 100% of the phenol in the soil was removed within 7.5 d. Furthermore, microbial diversity analysis revealed an increase in the relative species richness of Oceanobacillus, Chungangia, and Bacillus.
Collapse
Affiliation(s)
- Meng Zang
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
| | - Zhen-Hua Ma
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
| | - Yu-Lei Xu
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
- Guangxi Key Laboratory of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China
| | - Xiu-Feng Long
- College of Biological and Chemical Engineering, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China.
- Guangxi Key Laboratory of Sugar Resources, Guangxi University of Science and Technology, Liuzhou, 545006, People's Republic of China.
| |
Collapse
|
31
|
Wang Y, Chen P, Lin Q, Zuo L, Li L. Whole-Genome Sequencing of Two Potentially Allelopathic Strains of Bacillus from the Roots of C. equisetifolia and Identification of Genes Related to Synthesis of Secondary Metabolites. Microorganisms 2024; 12:1247. [PMID: 38930629 PMCID: PMC11205695 DOI: 10.3390/microorganisms12061247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/17/2024] [Accepted: 06/17/2024] [Indexed: 06/28/2024] Open
Abstract
The coastal Casuarina equisetifolia is the most common tree species in Hainan's coastal protection forests. Sequencing the genomes of its allelopathic endophytes can allow the protective effects of these bacteria to be effectively implemented in protected forests. The goal of this study was to sequence the whole genomes of the endophytes Bacillus amyloliquefaciens and Bacillus aryabhattai isolated from C. equisetifolia root tissues. The results showed that the genome sizes of B. amyloliquefaciens and B. aryabhattai were 3.854 Mb and 5.508 Mb, respectively. The two strains shared 2514 common gene families while having 1055 and 2406 distinct gene families, respectively. The two strains had 283 and 298 allelochemical synthesis-associated genes, respectively, 255 of which were shared by both strains and 28 and 43 of which were unique to each strain, respectively. The genes were putatively involved in 11 functional pathways, including secondary metabolite biosynthesis, terpene carbon skeleton biosynthesis, biosynthesis of ubiquinone and other terpene quinones, tropane/piperidine and piperidine alkaloids biosynthesis, and phenylpropanoid biosynthesis. NQO1 and entC are known to be involved in the biosynthesis of ubiquinone and other terpenoid quinones, and rfbC/rmlC, rfbA/rmlA/rffH, and rfbB/rmlB/rffG are involved in the biosynthesis of polyketide glycan units. Among the B. aryabhattai-specific allelochemical synthesis-related genes, STE24 is involved in terpene carbon skeleton production, atzF and gdhA in arginine biosynthesis, and TYR in isoquinoline alkaloid biosynthesis. B. amyloliquefaciens and B. aryabhattai share the genes aspB, yhdR, trpA, trpB, and GGPS, which are known to be involved in the synthesis of carotenoids, indole, momilactones, and other allelochemicals. Additionally, these bacteria are involved in allelochemical synthesis via routes such as polyketide sugar unit biosynthesis and isoquinoline alkaloid biosynthesis. This study sheds light on the genetic basis of allelopathy in Bacillus strains associated with C. equisetifolia, highlighting the possible use of these bacteria in sustainable agricultural strategies for weed management and crop protection.
Collapse
Affiliation(s)
| | | | | | | | - Lei Li
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| |
Collapse
|
32
|
de Azevedo BL, Queiroz VF, de Aquino ILM, Machado TB, de Assis FL, Reis E, Araújo Júnior JP, Ullmann LS, Colson P, Greub G, Aylward F, Rodrigues RAL, Abrahão JS. The genomic and phylogenetic analysis of Marseillevirus cajuinensis raises questions about the evolution of Marseilleviridae lineages and their taxonomical organization. J Virol 2024; 98:e0051324. [PMID: 38752754 PMCID: PMC11237802 DOI: 10.1128/jvi.00513-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 04/19/2024] [Indexed: 06/14/2024] Open
Abstract
Marseilleviruses (MsV) are a group of viruses that compose the Marseilleviridae family within the Nucleocytoviricota phylum. They have been found in different samples, mainly in freshwater. MsV are classically organized into five phylogenetic lineages (A/B/C/D/E), but the current taxonomy does not fully represent all the diversity of the MsV lineages. Here, we describe a novel strain isolated from a Brazilian saltwater sample named Marseillevirus cajuinensis. Based on genomics and phylogenetic analyses, M. cajuinensis exhibits a 380,653-bp genome that encodes 515 open reading frames. Additionally, M. cajuinensis encodes a transfer RNA, a feature that is rarely described for Marseilleviridae. Phylogeny suggests that M. cajuinensis forms a divergent branch within the MsV lineage A. Furthermore, our analysis suggests that the common ancestor for the five classical lineages of MsV diversified into three major groups. The organization of MsV into three main groups is reinforced by a comprehensive analysis of clusters of orthologous groups, sequence identities, and evolutionary distances considering several MsV isolates. Taken together, our results highlight the importance of discovering new viruses to expand the knowledge about known viruses that belong to the same lineages or families. This work proposes a new perspective on the Marseilleviridae lineages organization that could be helpful to a future update in the taxonomy of the Marseilleviridae family. IMPORTANCE Marseilleviridae is a family of viruses whose members were mostly isolated from freshwater samples. In this work, we describe the first Marseillevirus isolated from saltwater samples, which we called Marseillevirus cajuinensis. Most of M. cajuinensis genomic features are comparable to other Marseilleviridae members, such as its high number of unknown proteins. On the other hand, M. cajuinensis encodes a transfer RNA, which is a gene category involved in protein translation that is rarely described in this viral family. Additionally, our phylogenetic analyses suggested the existence of, at least, three major Marseilleviridae groups. These observations provide a new perspective on Marseilleviridae lineages organization, which will be valuable in future updates to the taxonomy of the family since the current official classification does not capture all the Marseilleviridae known diversity.
Collapse
Affiliation(s)
- Bruna Luiza de Azevedo
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Victória Fulgêncio Queiroz
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Isabella Luiza Martins de Aquino
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Talita Bastos Machado
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Felipe Lopes de Assis
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Erik Reis
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - João Pessoa Araújo Júnior
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Alameda das Tecomarias s/n, Chácara Capão Bonito, Botucatu, Brazil
| | - Leila Sabrina Ullmann
- Laboratório de Virologia, Departamento de Microbiologia e Imunologia, Instituto de Biotecnologia, Universidade Estadual Paulista (Unesp), Alameda das Tecomarias s/n, Chácara Capão Bonito, Botucatu, Brazil
| | - Philippe Colson
- IHU Méditerranée Infection, Marseille, France
- Microbes Evolution Phylogeny and Infections (MEPHI), Aix-Marseille University, Marseille, France
- Assistance Publique-Hôpitaux de Marseille (AP-HM), Marseille, France
| | - Gilbert Greub
- Centre for Research on Intracellular Bacteria and Giant Viruses, Institute of Microbiology, University Hospital Centre and University of Lausanne, Lausanne, Switzerland
| | - Frank Aylward
- Department of Biological Sciences, Virginia Tech, Blacksburg, Virginia, USA
- Center for Emerging, Zoonotic, and Arthropod-Borne Infectious Disease Virginia Tech, Blacksburg, Virginia, USA
| | - Rodrigo Araújo Lima Rodrigues
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| | - Jônatas Santos Abrahão
- Laboratório de Vírus, Departamento de Microbiologia, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
33
|
Jeong H, Dishuck PC, Yoo D, Harvey WT, Munson KM, Lewis AP, Kordosky J, Garcia GH, Yilmaz F, Hallast P, Lee C, Pastinen T, Eichler EE. Structural polymorphism and diversity of human segmental duplications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597452. [PMID: 38895457 PMCID: PMC11185583 DOI: 10.1101/2024.06.04.597452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Segmental duplications (SDs) contribute significantly to human disease, evolution, and diversity yet have been difficult to resolve at the sequence level. We present a population genetics survey of SDs by analyzing 170 human genome assemblies where the majority of SDs are fully resolved using long-read sequence assembly. Excluding the acrocentric short arms, we identify 173.2 Mbp of duplicated sequence (47.4 Mbp not present in the telomere-to-telomere reference) distinguishing fixed from structurally polymorphic events. We find that intrachromosomal SDs are among the most variable with rare events mapping near their progenitor sequences. African genomes harbor significantly more intrachromosomal SDs and are more likely to have recently duplicated gene families with higher copy number when compared to non-African samples. A comparison to a resource of 563 million full-length Iso-Seq reads identifies 201 novel, potentially protein-coding genes corresponding to these copy number polymorphic SDs.
Collapse
Affiliation(s)
- Hyeonsoo Jeong
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Altos Labs, San Diego, CA, USA
| | - Philip C. Dishuck
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - DongAhn Yoo
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - William T. Harvey
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Katherine M. Munson
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Alexandra P. Lewis
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Jennifer Kordosky
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | - Gage H. Garcia
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
| | | | - Feyza Yilmaz
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Pille Hallast
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Charles Lee
- The Jackson Laboratory for Genomic Medicine, Farmington, CT, USA
| | - Tomi Pastinen
- Children’s Mercy Hospital and University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | - Evan E. Eichler
- Department of Genome Sciences, University of Washington School of Medicine, Seattle, WA, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, USA
| |
Collapse
|
34
|
Jo SJ, Giri SS, Lee YM, Park JH, Hwang MH, Lee SB, Jung WJ, Kim SG, Roh E, Park SC. Genomic insights into novel Erwinia bacteriophages: unveiling their Henunavirus membership and host infection strategies. Curr Microbiol 2024; 81:204. [PMID: 38831133 DOI: 10.1007/s00284-024-03713-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 04/21/2024] [Indexed: 06/05/2024]
Abstract
Erwinia amylovora, the primary causative agent of blight disease in rosaceous plants, poses a significant threat to agricultural yield worldwide, with limited effective countermeasures. The emergence of sustainable alternative agents such as bacteriophages is a promising solution for fire blight that specifically targets Erwinia. In this study, we isolated pEp_SNUABM_01 and pEa_SNUABM_55 from a South Korean apple orchard soil, analyzed their genomic DNA sequences, and performed a comprehensive comparative analysis of Hena1 in four distinct sections. This study aimed to unveil distinctive features of these phages, with a focus on host recognition, which will provide valuable insights into the evolution and characteristics of Henunavirus bacteriophages that infect plant pathogenic Erwinia spp. By elucidating the distinct genomic features of these phages, particularly in terms of host recognition, this study lays a foundation for their potential application in mitigating the risks associated with fire blight in Rosaceae plants on a global scale.
Collapse
Affiliation(s)
- Su Jin Jo
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sib Sankar Giri
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Young Min Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jae Hong Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mae Hyun Hwang
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sung Bin Lee
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Won Joon Jung
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sang Guen Kim
- Laboratory of Phage and Microbial Resistance, Department of Biological Sciences, Kyonggi University, Suwon, 16227, Republic of Korea.
| | - Eunjung Roh
- Crop Protection Division, Rural Development Administration, National Institute of Agriculture Sciences, Wanju, 55365, Republic of Korea
| | - Se Chang Park
- Laboratory of Aquatic Biomedicine, College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, 08826, Republic of Korea.
| |
Collapse
|
35
|
Chantzi N, Mareboina M, Konnaris MA, Montgomery A, Patsakis M, Mouratidis I, Georgakopoulos-Soares I. The determinants of the rarity of nucleic and peptide short sequences in nature. NAR Genom Bioinform 2024; 6:lqae029. [PMID: 38584871 PMCID: PMC10993293 DOI: 10.1093/nargab/lqae029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 02/21/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024] Open
Abstract
The prevalence of nucleic and peptide short sequences across organismal genomes and proteomes has not been thoroughly investigated. We examined 45 785 reference genomes and 21 871 reference proteomes, spanning archaea, bacteria, eukaryotes and viruses to calculate the rarity of short sequences in them. To capture this, we developed a metric of the rarity of each sequence in nature, the rarity index. We find that the frequency of certain dipeptides in rare oligopeptide sequences is hundreds of times lower than expected, which is not the case for any dinucleotides. We also generate predictive regression models that infer the rarity of nucleic and proteomic sequences across nature or within each domain of life and viruses separately. When examining each of the three domains of life and viruses separately, the R² performance of the model predicting rarity for 5-mer peptides from mono- and dipeptides ranged between 0.814 and 0.932. A separate model predicting rarity for 10-mer oligonucleotides from mono- and dinucleotides achieved R² performance between 0.408 and 0.606. Our results indicate that the mono- and dinucleotide composition of nucleic sequences and the mono- and dipeptide composition of peptide sequences can explain a significant proportion of the variance in their frequencies in nature.
Collapse
Affiliation(s)
- Nikol Chantzi
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Manvita Mareboina
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Maxwell A Konnaris
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Department of Statistics, Penn State University, University Park, PA, 16802, USA
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Austin Montgomery
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Michail Patsakis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| | - Ioannis Mouratidis
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
- Huck Institutes of the Life Sciences, Penn State University, University Park, PA, 16802, USA
| | - Ilias Georgakopoulos-Soares
- Institute for Personalized Medicine, Department of Biochemistry and Molecular Biology, The Pennsylvania State University College of Medicine, Hershey, PA, 17033, USA
| |
Collapse
|
36
|
Delesalle VA, Ankeriasniemi RE, Lewis CM, Mody JM, Roy AM, Sarvis WA, Vo DD, Walsh AE, Zappia RJ. Introducing Casbah, Kronus, and MmasiCarm, Members of the Mycobacteriophage Subcluster B3. PHAGE (NEW ROCHELLE, N.Y.) 2024; 5:84-90. [PMID: 39119203 PMCID: PMC11304909 DOI: 10.1089/phage.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
Background As part of a large science education effort, bacteriophages that lyse Mycobacterium smegmatis mc2155 continue to be discovered. Materials and Methods Phages were isolated from soil samples from urban sites in the Northeastern United States. Their genomes were sequenced, assembled, and bioinformatically compared. Results Three lytic siphoviruses belonging to subcluster B3 with high similarity to each other and other B3 mycobacteriophages were isolated. These phages contain double-stranded DNA genomes (68,754 to 69,495 bp) with high GC content (67.4-67.5%) and 102-104 putative protein coding genes. Notable features include a HicA-like toxin and 33 genes exclusive to subcluster B3. One phage had an intein in its terminase sequence. Conclusions Genomic analyses of these phages provide insights into genome evolution and horizontal gene transfer (HGT). The networks for HGT are apparently vast and gene specific. Interestingly, a number of genes are found in both B3 and Gordonia DR phages.
Collapse
Affiliation(s)
| | | | - Colin M. Lewis
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jehan M. Mody
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Abigail M. Roy
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Ward A. Sarvis
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Duy D. Vo
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Allison E. Walsh
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| | - Rose J. Zappia
- Department of Biology, Gettysburg College, Gettysburg, Pennsylvania, USA
| |
Collapse
|
37
|
Bai S, Huang Z, Li XG. Genome analysis of Rossellomorea sp. y25, a deep sea bacterium isolated from the sediments of South China Sea. Mar Genomics 2024; 75:101110. [PMID: 38735673 DOI: 10.1016/j.margen.2024.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024]
Abstract
Rossellomorea sp. y25, a putative new species of yellow pigment-producing, aerobic and chemoheterotrophic bacterium belonging to the family Bacillaceae, was isolated from the sediments at the depth of 1829 m in the South China Sea. In this study, we present the complete genome sequences of strain y25, which consisted of only one circular chromosome with 4,633,006 bp and the content of G + C was 41.76%. A total of 4466 CDSs, 106 tRNA, 33 rRNA, and 101 sRNA genes were obtained. Genomic analysis of strain y25 showed that it has the ability to produce antioxidant carotenoids and a large number of heavy metal resistance genes, such as arsenic, cadmium and zinc. In addition, strain y25 contains a prophage that may contribute to host protection against lysis by related Bacillus-like phages. This is the first report of genome-wide information on a bacterium of the genus Rossellomorea isolated from the deep sea, providing insights into how microorganisms of this genus adapt to deep-sea environments.
Collapse
Affiliation(s)
- Shijie Bai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Xue-Gong Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| |
Collapse
|
38
|
Qi D, Liu Q, Zou L, Zhang M, Li K, Zhao Y, Chen Y, Feng J, Zhou D, Wei Y, Wang W, Zhang L, Xie J. Taxonomic identification and antagonistic activity of Streptomyces luomodiensis sp. nov. against phytopathogenic fungi. Front Microbiol 2024; 15:1402653. [PMID: 38860218 PMCID: PMC11163044 DOI: 10.3389/fmicb.2024.1402653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 05/09/2024] [Indexed: 06/12/2024] Open
Abstract
Banana wilt caused by Fusarium oxysporum f. sp. cubense tropical race 4 (Foc TR4) is a devastating fungal disease. Biocontrol strategies hold immense potential for inhibiting the spread of Foc TR4. Here, 30 actinobacteria were isolated from soils and screened for their antagonistic activity against Foc TR4. Strain SCA4-21T was selected due to its strongest antagonistic activity against Foc TR4. Strain SCA4-21T also exhibited strong antagonistic activity against the other eight phytopathogenic fungi. The strain was identified as the genus Streptomyces according to its physiological, biochemical, and phenotypic characteristics. The phylogenetic trees of 16S rRNA sequences demonstrated that strain SCA4-21T formed a subclade with S. iranensis HM 35T and/or S. rapamycinicus NRRL B-5491T with low bootstrap values. Considering that 16S rRNAs did not provide sufficient resolution for species-level identification, the whole genome of strain SCA4-21T was sequenced. Multilocus sequence analysis (MLSA) based on five housekeeping gene alleles (atpD, gyrB, recA, rpoB, and trpB) revealed that strain SCA4-21T clustered into S. hygroscopicus subsp. hygroscopicus NBRC 13472T with 100% of bootstrap value. The analysis of the genome-based phylogeny also approved the results. Average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) were 91.26 and 44.30%, respectively, with values below the respective species level threshold of 95 and 70%. Hence, strain SCA 4-21T represented a novel species within the genus Streptomyces, named Streptomyces luomodiensis sp. nov. The type strain is SCA4-21T (=GDMCC4.340T = JCM36555T). By the CAZymes analysis, 348 carbohydrate-active enzymes (CAZymes) were detected, including 15 chitinases and eight β-1,3-glucanases. The fermentation broth of strain SCA4-21T, exhibiting strong antagonistic activity against Foc TR4, demonstrated high activities of chitinase and β-1,3-glucanase, which might be involved in antifungal activity. Our results showed an innovative potential biocontrol agent for managing plant fungal diseases, specifically banana fusarium wilt.
Collapse
Affiliation(s)
- Dengfeng Qi
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Qiao Liu
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Liangping Zou
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Miaoyi Zhang
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Kai Li
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yankun Zhao
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yufeng Chen
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Junting Feng
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Dengbo Zhou
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yongzan Wei
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Wei Wang
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Lu Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, China
| | - Jianghui Xie
- National Key Laboratory of Biological Breeding of Tropical Crops, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| |
Collapse
|
39
|
Wottrich S, Mendonca S, Safarpour C, Nguyen C, Marinelli LJ, Hancock SP, Modlin RL, Parker JM. Putative pseudolysogeny-dependent phage gene implicated in the superinfection resistance of Cutibacterium acnes. MICROBIOME RESEARCH REPORTS 2024; 3:27. [PMID: 39421248 PMCID: PMC11480721 DOI: 10.20517/mrr.2023.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 03/29/2024] [Accepted: 04/07/2024] [Indexed: 10/19/2024]
Abstract
Objectives: Cutibacterium acnes, formerly Propionibacterium acnes, is a bacterial species characterized by tenacious acne-contributing pathogenic strains. Therefore, bacteriophage therapy has become an attractive treatment route to circumvent issues such as evolved bacterial antibiotic resistance. However, medical and commercial use of phage therapy for C. acnes has been elusive, necessitating ongoing exploration of phage characteristics that confer bactericidal capacity. Methods: A novel phage (Aquarius) was isolated and analyzed. Testing included genomic sequencing and annotation, electron microscopy, patch testing, reinfection assays, and qPCR to confirm pseudolysogeny and putative superinfection exclusion (SIE) protein expression. Results: Given a superinfection-resistant phenotype was observed, reinfection assays and patch tests were performed, which confirmed the re-cultured bacteria were resistant to superinfection. Subsequent qPCR indicated pseudolysogeny was a concomitantly present phenomenon. Phage genomic analysis identified the presence of a conserved gene (gp41) with a product containing Ltp family-like protein signatures which may contribute to phage-mediated bacterial superinfection resistance (SIR) in a pseudolysogeny-dependent manner. qPCR was performed to analyze and roughly quantify gp41 activity, and mRNA expression was high during infection, implicating a role for the protein during the phage life cycle. Conclusions: This study confirms that C. acnes bacteria are capable of harboring phage pseudolysogens and suggests that this phenomenon plays a role in bacterial SIR. This mechanism may be conferred by the expression of phage proteins while the phage persists within the host in the pseudolysogenic state. This parameter must be considered in future endeavors for efficacious application of C. acnes phage-based therapeutics.
Collapse
Affiliation(s)
- Stephanie Wottrich
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Neurology, Dell Seton Medical Center at the University of Texas at Austin, Austin, TX 78701, USA
| | - Stacee Mendonca
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Cameron Safarpour
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Christine Nguyen
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024, USA
| | - Laura J. Marinelli
- UCLA Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | | | - Robert L. Modlin
- UCLA Dermatology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Jordan Moberg Parker
- Department of Microbiology, Immunology, and Molecular Genetics, University of California Los Angeles, Los Angeles, CA 90024, USA
- Department of Biomedical Science, Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA 91101, USA
| |
Collapse
|
40
|
Bearhart JM, Bethke JL, Christian CS, Cour FN, Creasey KR, Crowe EJ, Dahl JG, Hanson LA, Jaecks AL, Lamantia VA, Madison M, Roskowiak AL, Scheberl JD, VanEperen BM, Wurst ME, Klyczek KK. Complete genome sequence of Microbacterium paraoxydans phage Damascus. Microbiol Resour Announc 2024; 13:e0128723. [PMID: 38624212 PMCID: PMC11080557 DOI: 10.1128/mra.01287-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/17/2024] [Indexed: 04/17/2024] Open
Abstract
Phage Damascus was isolated from soil in northwestern Wisconsin using Microbacterium paraoxydans as the host. The Damascus genome is 56,477 bp with 3' single-stranded overhangs and 56.5% G+C content. Damascus was assigned to cluster EL and shares 42.6%-91.7% gene content with the three other phages in this cluster.
Collapse
Affiliation(s)
- Julisa M. Bearhart
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Jenna L. Bethke
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Cassie S. Christian
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Faith N. Cour
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Karleigh R. Creasey
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Emily J. Crowe
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Julia G. Dahl
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Lindsey A. Hanson
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Abby L. Jaecks
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Vincent A. Lamantia
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Mercedes Madison
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Autumn L. Roskowiak
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Justin D. Scheberl
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Bekkah M. VanEperen
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Morgan E. Wurst
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| | - Karen K. Klyczek
- Department of Biology, University of Wisconsin-River Falls, River Falls, Wisconsin, USA
| |
Collapse
|
41
|
Zhang S, Liu Y, Mohisn A, Zhang G, Wang Z, Wu S. Biodegradation of penicillin G sodium by Sphingobacterium sp. SQW1: Performance, degradation mechanism, and key enzymes. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133485. [PMID: 38377898 DOI: 10.1016/j.jhazmat.2024.133485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/07/2024] [Accepted: 01/08/2024] [Indexed: 02/22/2024]
Abstract
Biodegradation is an efficient and cost-effective approach to remove residual penicillin G sodium (PGNa) from the environment. In this study, the effective PGNa-degrading strain SQW1 (Sphingobacterium sp.) was screened from contaminated soil using enrichment technique. The effects of critical operational parameters on PGNa degradation by strain SQW1 were systematically investigated, and these parameters were optimized by response surface methodology to maximize PGNa degradation. Comparative experiments found the extracellular enzyme to completely degrade PGNa within 60 min. Combined with whole genome sequencing of strain SQW1 and LC-MS analysis of degradation products, penicillin acylase and β-lactamase were identified as critical enzymes for PGNa biodegradation. Moreover, three degradation pathways were postulated, including β-lactam hydrolysis, penicillin acylase hydrolysis, decarboxylation, desulfurization, demethylation, oxidative dehydrogenation, hydroxyl reduction, and demethylation reactions. The toxicity of PGNa biodegradation intermediates was assessed using paper diffusion method, ECOSAR, and TEST software, which showed that the biodegradation products had low toxicity. This study is the first to describe PGNa-degrading bacteria and detailed degradation mechanisms, which will provide new insights into the PGNa biodegradation.
Collapse
Affiliation(s)
- Sinan Zhang
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China; Department of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - YuXuan Liu
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Ali Mohisn
- Department of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Guohui Zhang
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China
| | - Zejian Wang
- Department of Biotechnology, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Shiyong Wu
- Engineering Research Center of Resource Utilization of Carbon-containing Waste with Carbon Neutrality, Ministry of Education, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
42
|
Baumgartner BM, Bono KA, McIntosh DR, Vu AM, Adams CF, Benik BC, Chavez J, Gresky SJ, Sotelo A, Ray JI, Peister A, Kimberley KW, McKenna CC, Theoret JR, Yoon EJ, Windsor EJ. Genome sequences of actinobacteriophages JorRay, Blocker23, Nibbles, and OlgasClover. Microbiol Resour Announc 2024; 13:e0125623. [PMID: 38445868 PMCID: PMC11008117 DOI: 10.1128/mra.01256-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 02/26/2024] [Indexed: 03/07/2024] Open
Abstract
JorRay, Blocker23, Nibbles, and OlgasClover are actinobacteriophages belonging to clusters G1, B2, CT, and DJ, respectively. JorRay and Blocker23 were identified in host bacterium Mycobacterium smegmatis mc2155. Nibbles and OlgasClover were identified in host bacterium Gordonia rubripertincta NRRL B-16540.
Collapse
Affiliation(s)
| | - Kayla A. Bono
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| | - Dawn R. McIntosh
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| | - Anna M. Vu
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| | - Chanel F. Adams
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| | - Brooklyn C. Benik
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| | - Jessica Chavez
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| | - Samantha J. Gresky
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| | - Andres Sotelo
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| | - Jordan I. Ray
- Department of Biology, Morehouse College, Atlanta, Georgia, USA
| | | | - Kendra W. Kimberley
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| | - Chelsey C. McKenna
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| | - James R. Theoret
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| | - Earl J. Yoon
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| | - Erin J. Windsor
- Department of Biological Sciences, College of Southern Nevada, Las Vegas, Nevada, USA
| |
Collapse
|
43
|
Barnes O, Workman CJ, Patterson NC, Oesch R, Johnson KL, Goncz K, Sharbrough J, DeVeaux LC. Desert diversity: genome sequence of Gordonia rubripertincta cluster DJ phage Mossy and cluster DV phage Erutan. Microbiol Resour Announc 2024; 13:e0124523. [PMID: 38470028 PMCID: PMC11008172 DOI: 10.1128/mra.01245-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 02/22/2024] [Indexed: 03/13/2024] Open
Abstract
Lytic bacteriophages Mossy and Erutan were directly isolated from desert soil on Gordonia rubripertincta and characterized by their morphologies and genomes. Mossy, part of the DJ cluster of Actinobacteriophage, has a genome of 61,183 bp. The genome of Erutan, part of the DV cluster, is 66,957 bp.
Collapse
Affiliation(s)
- October Barnes
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Christopher J. Workman
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Noah C. Patterson
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Riley Oesch
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Katie L. Johnson
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Kaarin Goncz
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Joel Sharbrough
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| | - Linda C. DeVeaux
- Department Biology, New Mexico Institute of Mining and Technology, Socorro, New Mexico, USA
| |
Collapse
|
44
|
Bailey DS, Dotson DR, Berkes C, Agbede O, Augustin M, Blackman-Murray I, Chambers T, Felber N, Fleming D, Frazier L, Gray N, Harrison A, Hernandez G, Iwuchukwu N, Iwuji C, Jackson T, Jefferson A, Jordan D, Jordan M, Nicolas B, Person M, Richardson G, Roman A, Stevens C, Suggs M, Thompson N, Timmons-Smith S, Wilfong S, Wilson-Wheatley M. Complete genome sequence of Mycobacterium smegmatis phage Rummer, a subcluster A3 actinophage. Microbiol Resour Announc 2024; 13:e0126823. [PMID: 38466105 PMCID: PMC11008113 DOI: 10.1128/mra.01268-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/22/2024] [Indexed: 03/12/2024] Open
Abstract
Bacteriophage Rummer is a siphovirus morphology actinophage isolated from Mycobacterium smegmatis. Rummer has a 50,908 base pair genome encoding 89 predicted protein-coding genes and three tRNAs. Based on gene content similarity to sequenced actinobacteriophages, Rummer is assigned to phage subcluster A3.
Collapse
Affiliation(s)
- Dondra S. Bailey
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Dominique R. Dotson
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Charlotte Berkes
- Department of Biology, Merrimack College, North Andover, Massachusetts, USA
| | - Oluwanifemi Agbede
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Marcelaine Augustin
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | | | - Talaeya Chambers
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Nicolas Felber
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Dy'Mon Fleming
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Loretta Frazier
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Natalie Gray
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Ayanna Harrison
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Genesis Hernandez
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Nina Iwuchukwu
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Chika Iwuji
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Taysha Jackson
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Angelic Jefferson
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Daya Jordan
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Miracle Jordan
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Brian Nicolas
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Monae Person
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Ga'Nayah Richardson
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Ashley Roman
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Christian Stevens
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - My'Sean Suggs
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Nahshon Thompson
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Summer Timmons-Smith
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | - Shiaishea Wilfong
- Department of Natural Sciences, Coppin State University, Baltimore, Maryland, USA
| | | |
Collapse
|
45
|
Adams RM, Britton HA, Bruce ED, De La Paz Y, Kratz EN, Pfeifer EJ, Priddy DE, Schotter BI, Stuffle WA, Wagner J, Weiss MR, Watt DK, Connerly PL, Rueschhoff EE. Genome sequence of Soos: a siphovirus of the CP cluster infecting Gordonia rubripertincta . Microbiol Resour Announc 2024; 13:e0120423. [PMID: 38526095 PMCID: PMC11008160 DOI: 10.1128/mra.01204-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 03/03/2024] [Indexed: 03/26/2024] Open
Abstract
Novel actinobacteriophage Soos was isolated and purified from Southern Indiana soil using host Gordonia rubripertincta NRRL B-16540. Sequencing revealed a 57,509 bp circularly permuted genome encoding 87 predicted protein-coding genes. Soos is only the third phage in cluster CP, along with phages Clawz and Sting.
Collapse
Affiliation(s)
- Reese M. Adams
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | - Holly A. Britton
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | - Emily D. Bruce
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | - Yucita De La Paz
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | - Emily N. Kratz
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | - Emma J. Pfeifer
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | - Daisy E. Priddy
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | - Brooklyn I. Schotter
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | - Wyatt A. Stuffle
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | - Jordyn Wagner
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | - Meredith R. Weiss
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | - Danielle K. Watt
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | - Pamela L. Connerly
- School of Natural Sciences, Indiana University Southeast, New Albany, Indiana, USA
| | | |
Collapse
|
46
|
Easterwood JC, Katsanos JM, Lloyd J. The genomic characterization of three Microbacterium foliorum-specific bacteriophages, "Nucci," "MCubed," and "QMacho". Microbiol Resour Announc 2024; 13:e0020324. [PMID: 38597796 PMCID: PMC11080523 DOI: 10.1128/mra.00203-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 03/28/2024] [Indexed: 04/11/2024] Open
Abstract
Nucci, MCubed, and QMacho are microbacteriophages that were isolated from soil samples in Charlotte, NC. They were classified into EA10, EA2, and EB clusters, respectively. Nucci and MCubed each had 63 predicted genes, while QMacho had 73 predicted genes.
Collapse
Affiliation(s)
| | | | - Jenna Lloyd
- Department of Biology, Queens University of Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
47
|
Li Q, Zhou Q, Chen Y, Hu K, Sarrà M, Li J, Liu A, Zou L, Liu S. Whole-genome sequencing of Sphingobium baderi SC-1 and identification of a crucial 3-phenoxybenzoic acid-degrading gene. Front Microbiol 2024; 15:1361335. [PMID: 38646623 PMCID: PMC11026547 DOI: 10.3389/fmicb.2024.1361335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Accepted: 03/22/2024] [Indexed: 04/23/2024] Open
Abstract
As an efficient degradation strain, Sphingobium baderi SC-1 can breakdown 3-phenoxybenzoic acid (3-PBA) with high proficiency. To investigate the internal factors that regulate this process, we conducted whole-genome sequencing and successfully identified the pivotal 3-PBA-degrading gene sca (1,230 bp). After sca was expressed in engineered bacteria, a remarkable degradation efficiency was observed, as 20 mg/L 3-PBA was almost completely decomposed within 24 h. The phenol was formed as one of the degradation products. Notably, in addition to their ability to degrade 3-PBA, the resting cells proficiently degraded 4'-HO-3-PBA and 3'-HO-4-PBA. In conclusion, we successfully identified and validated sca as the pivotal enzyme responsible for the efficient degradation of 3-PBA from Sphingomonas baderi, providing a crucial theoretical foundation for further explorations on the degradation potential of SC-1.
Collapse
Affiliation(s)
- Qin Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Qiao Zhou
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Yuan Chen
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Kaidi Hu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Montserrat Sarrà
- Departament d’Enginyeria Química, Biològica i Ambiental, Escola d’Enginyeria, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Jianlong Li
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Aiping Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| | - Likou Zou
- College of Resources, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Shuliang Liu
- College of Food Science, Sichuan Agricultural University, Ya’an, Sichuan, China
| |
Collapse
|
48
|
Tian M, Wu S, Zhang W, Zhang G, Yu X, Wu Y, Jia P, Zhang B, Chen T, Liu G. Saxibacter everestensis gen. nov., sp. nov., A Novel Member of the Family Brevibacteriaceae, Isolated from the North Slope of Mount Everest. J Microbiol 2024; 62:277-284. [PMID: 38446393 DOI: 10.1007/s12275-024-00108-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 03/07/2024]
Abstract
We isolated and analyzed a novel, Gram-stain-positive, aerobic, rod-shaped, non-motile actinobacterium, designated as strain ZFBP1038T, from rock sampled on the north slope of Mount Everest. The growth requirements of this strain were 10-37 °C, pH 4-10, and 0-6% (w/v) NaCl. The sole respiratory quinone was MK-9, and the major fatty acids were anteiso-C15:0 and iso-C17:0. Peptidoglycan containing meso-diaminopimelic acid, ribose, and glucose were the major cell wall sugars, while polar lipids included diphosphatidyl glycerol, phosphatidyl glycerol, an unidentified phospholipid, and an unidentified glycolipid. A phylogenetic analysis based on 16S rRNA gene sequences showed that strain ZFBP1038T has the highest similarity with Spelaeicoccus albus DSM 26341 T (96.02%). ZFBP1038T formed a distinct monophyletic clade within the family Brevibacteriaceae and was distantly related to the genus Spelaeicoccus. The G + C content of strain ZFBP1038T was 63.65 mol% and the genome size was 4.05 Mb. Digital DNA-DNA hybridization, average nucleotide identity, and average amino acid identity values between the genomes of strain ZFBP1038T and representative reference strains were 19.3-25.2, 68.0-71.0, and 52.8-60.1%, respectively. Phylogenetic, phenotypic, and chemotaxonomic characteristics as well as comparative genome analyses suggested that strain ZFBP1038T represents a novel species of a new genus, for which the name Saxibacter gen. nov., sp. nov. was assigned with the type strain Saxibacter everestensis ZFBP1038T (= EE 014 T = GDMCC 1.3024 T = JCM 35335 T).
Collapse
Affiliation(s)
- Mao Tian
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu Province, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Shiyu Wu
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu Province, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Wei Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu Province, 730000, People's Republic of China.
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China.
| | - Gaosen Zhang
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu Province, 730000, People's Republic of China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Xue Yu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu Province, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Yujie Wu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu Province, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Puchao Jia
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu Province, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| | - Binglin Zhang
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu Province, 730000, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Tuo Chen
- State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu Province, 730000, People's Republic of China
| | - Guangxiu Liu
- Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Lanzhou, Gansu Province, 730000, People's Republic of China
- Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou, 730000, People's Republic of China
| |
Collapse
|
49
|
Wang XY, Miao T, Wang Y, Guo Z, Yang JL, Liang X. Complete genome sequence of Psychrobacter cibarius AOSW16051, a trimeric autotransporter adhesin synthesizing bacterium isolated from the Baltic Sea. Mar Genomics 2024; 74:101082. [PMID: 38485290 DOI: 10.1016/j.margen.2023.101082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/10/2023] [Accepted: 12/08/2023] [Indexed: 03/19/2024]
Abstract
Bacteria of the genus Psychrobacter are widely distributed in the global low-temperature marine environment and have been studied for their effects on the settlement and metamorphosis of marine invertebrates. Psychrobacter cibarius AOSW16051 was isolated from the surface water samples of the Baltic Sea on the edge of the Arctic Ocean. Here, we present the complete genome of strain AOSW16051, which consists of a circular chromosome composed of 3,425,040 nucleotides with 42.98% G + C content and a circular plasmid composed of 5846 nucleotides with 38.66% G + C content. The genes predicted in this strain showed its strong outer membrane system, type VI secretion system and adhesion system. Trimeric autotransporter adhesins (TAAs) has been identified in the genome of P. cibarius AOSW16051, which has a variety of biological functions in interacting with host cells. However, there are no reports on TAAs in marine bacteria and aquatic pathogenic bacteria. By analyzing the genomic data, we can gain valuable insights to enhance our understanding of the physiological characteristics of P. cibarius, as well as the biological functions of TAAs and their role in triggering metamorphosis of invertebrate larvae.
Collapse
Affiliation(s)
- Xiao-Yu Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; China-Portugal Belt and Road Joint Laboratory on Space & Sea Technology Advanced Research, Shanghai, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture animals, Shanghai, China
| | - Tianyin Miao
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; China-Portugal Belt and Road Joint Laboratory on Space & Sea Technology Advanced Research, Shanghai, China
| | - Yuyi Wang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; China-Portugal Belt and Road Joint Laboratory on Space & Sea Technology Advanced Research, Shanghai, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture animals, Shanghai, China
| | - Zhangwei Guo
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China.
| | - Jin-Long Yang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; China-Portugal Belt and Road Joint Laboratory on Space & Sea Technology Advanced Research, Shanghai, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture animals, Shanghai, China
| | - Xiao Liang
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, Shanghai, China; China-Portugal Belt and Road Joint Laboratory on Space & Sea Technology Advanced Research, Shanghai, China; Shanghai Collaborative Innovation Center for Cultivating Elite Breeds and Green-culture of Aquaculture animals, Shanghai, China.
| |
Collapse
|
50
|
Chen Z, Ain NU, Zhao Q, Zhang X. From tradition to innovation: conventional and deep learning frameworks in genome annotation. Brief Bioinform 2024; 25:bbae138. [PMID: 38581418 PMCID: PMC10998533 DOI: 10.1093/bib/bbae138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 03/08/2024] [Accepted: 03/10/2024] [Indexed: 04/08/2024] Open
Abstract
Following the milestone success of the Human Genome Project, the 'Encyclopedia of DNA Elements (ENCODE)' initiative was launched in 2003 to unearth information about the numerous functional elements within the genome. This endeavor coincided with the emergence of numerous novel technologies, accompanied by the provision of vast amounts of whole-genome sequences, high-throughput data such as ChIP-Seq and RNA-Seq. Extracting biologically meaningful information from this massive dataset has become a critical aspect of many recent studies, particularly in annotating and predicting the functions of unknown genes. The core idea behind genome annotation is to identify genes and various functional elements within the genome sequence and infer their biological functions. Traditional wet-lab experimental methods still rely on extensive efforts for functional verification. However, early bioinformatics algorithms and software primarily employed shallow learning techniques; thus, the ability to characterize data and features learning was limited. With the widespread adoption of RNA-Seq technology, scientists from the biological community began to harness the potential of machine learning and deep learning approaches for gene structure prediction and functional annotation. In this context, we reviewed both conventional methods and contemporary deep learning frameworks, and highlighted novel perspectives on the challenges arising during annotation underscoring the dynamic nature of this evolving scientific landscape.
Collapse
Affiliation(s)
- Zhaojia Chen
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong 030600, China
| | - Noor ul Ain
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| | - Qian Zhao
- State Key Laboratory for Ecological Pest Control of Fujian/Taiwan Crops and College of Life Science, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xingtan Zhang
- National Key Laboratory for Tropical Crop Breeding, Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangzhou 518120, China
| |
Collapse
|