1
|
Carrion SA, Michal JJ, Jiang Z. Imprinted Genes: Genomic Conservation, Transcriptomic Dynamics and Phenomic Significance in Health and Diseases. Int J Biol Sci 2023; 19:3128-3142. [PMID: 37416777 PMCID: PMC10321285 DOI: 10.7150/ijbs.83712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/25/2023] [Indexed: 07/08/2023] Open
Abstract
Since its discovery in 1991, genomic imprinting has been the subject of numerous studies into its mechanisms of establishment and regulation, evolution and function, and presence in multiple genomes. Disturbance of imprinting has been implicated in a range of diseases, ranging from debilitating syndromes to cancers to fetal deficiencies. Despite this, studies done on the prevalence and relevance of imprinting on genes have been limited in scope, tissue types available, and focus, by both availability and resources. This has left a gap in comparative studies. To address this, we assembled a collection of imprinted genes available in current literature covering five species. Here we sought to identify trends and motifs in the imprinted gene set (IGS) in three distinct arenas: evolutionary conservation, across-tissue expression, and health phenomics. Overall, we found that imprinted genes displayed less conservation and higher proportions of non-coding RNA while maintaining synteny. Maternally expressed genes (MEGs) and paternally expressed genes (PEGs) occupied distinct roles in tissue expression and biological pathway use, while imprinted genes collectively showed a broader tissue range, notable preference for tissue specific expression and limited gene pathways than comparable sex differentiation genes. Both human and murine imprinted genes showed the same clear phenotypic trends, that were distinct from those displayed by sex differentiation genes which were less involved in mental and nervous system disease. While both sets had representation across the genome, the IGS showed clearer clustering as expected, with PEGs significantly more represented than MEGs.
Collapse
Affiliation(s)
| | | | - Zhihua Jiang
- ✉ Corresponding author: Dr. Zhihua Jiang (ORCID ID: 0000-0003-1986-088X), Professor of Genome Biology. Phone: 509-335 8761;
| |
Collapse
|
2
|
Aykroyd BRL, Tunster SJ, Sferruzzi-Perri AN. Loss of imprinting of the Igf2-H19 ICR1 enhances placental endocrine capacity via sex-specific alterations in signalling pathways in the mouse. Development 2022; 149:dev199811. [PMID: 34982814 PMCID: PMC8783045 DOI: 10.1242/dev.199811] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/23/2021] [Indexed: 12/14/2022]
Abstract
Imprinting control region (ICR1) controls the expression of the Igf2 and H19 genes in a parent-of-origin specific manner. Appropriate expression of the Igf2-H19 locus is fundamental for normal fetal development, yet the importance of ICR1 in the placental production of hormones that promote maternal nutrient allocation to the fetus is unknown. To address this, we used a novel mouse model to selectively delete ICR1 in the endocrine junctional zone (Jz) of the mouse placenta (Jz-ΔICR1). The Jz-ΔICR1 mice exhibit increased Igf2 and decreased H19 expression specifically in the Jz. This was accompanied by an expansion of Jz endocrine cell types due to enhanced rates of proliferation and increased expression of pregnancy-specific glycoprotein 23 in the placenta of both fetal sexes. However, changes in the endocrine phenotype of the placenta were related to sexually-dimorphic alterations to the abundance of Igf2 receptors and downstream signalling pathways (Pi3k-Akt and Mapk). There was no effect of Jz-ΔICR1 on the expression of targets of the H19-embedded miR-675 or on fetal weight. Our results demonstrate that ICR1 controls placental endocrine capacity via sex-dependent changes in signalling.
Collapse
Affiliation(s)
| | | | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge CB2 3EG, UK
| |
Collapse
|
3
|
Salimi M, Shirazi A, Norouzian M, Jafari A, Edalatkhah H, Mehravar M, Majidi M, Mehrazar MM. H19/Igf2 Expression and Methylation of Histone 3 in Mice Chimeric Blastocysts. Rep Biochem Mol Biol 2021; 9:357-365. [PMID: 33649730 DOI: 10.29252/rbmb.9.3.357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
Abstract
Background Currently, the efficient production of chimeric mice and their survival are still challenging. Recent researches have indicated that preimplantation embryo culture media and manipulation lead to abnormal methylation of histone in the H19/Igf2 promotor region and consequently alter their gene expression pattern. This investigation was designed to evaluate the relationship between the methylation state of histone H3 and H19/Igf2 expression in mice chimeric blastocysts. Methods Mouse 129/Sv embryonic stem cells (mESCs) expressing the green fluorescent protein (mESCs-GFP) were injected into the perivitelline space of 2.5 days post-coitis (dpc) embryos (C57BL/6) using a micromanipulator. H3K4 and H3K9 methylation, and H19 and Igf2 expression was measured by immunocytochemistry and q-PCR, respectively, in blastocysts. Results Histone H3 trimethylation in H3K4 and H3K9 in chimeric blastocysts was significantly less and greater, respectively (p< 0.05), than in controls. H19 expression was significantly less (p< 0.05), while Igf2 expression was less, but not significantly so, in chimeric than in control blastocysts. Conclusion Our results showed, that the alteration ofH3K4me3 and H3K9me3 methylation, change H19/Igf2 expression in chimeric blastocysts.
Collapse
Affiliation(s)
- Maryam Salimi
- Department of Biology and Anatomical Sciences, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abolfazl Shirazi
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran.,Department of Gametes and Cloning, Research Institute of Animal Embryo Technology, Shahrekord University, Shahrekord, Iran
| | - Mohsen Norouzian
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Ameneh Jafari
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Haleh Edalatkhah
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Maryam Mehravar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| | - Mohammad Majidi
- Food and Drug Laboratory Research Center, Food and Drug Organization, MOH & ME, Tehran, Iran
| | - Mohammad Mahdi Mehrazar
- Reproductive Biotechnology Research Center, Avicenna Research Institute, ACECR, Tehran, Iran
| |
Collapse
|
4
|
Pauler FM, Hudson QJ, Laukoter S, Hippenmeyer S. Inducible uniparental chromosome disomy to probe genomic imprinting at single-cell level in brain and beyond. Neurochem Int 2021; 145:104986. [PMID: 33600873 DOI: 10.1016/j.neuint.2021.104986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 01/23/2021] [Accepted: 02/06/2021] [Indexed: 12/27/2022]
Abstract
Genomic imprinting is an epigenetic mechanism that results in parental allele-specific expression of ~1% of all genes in mouse and human. Imprinted genes are key developmental regulators and play pivotal roles in many biological processes such as nutrient transfer from the mother to offspring and neuronal development. Imprinted genes are also involved in human disease, including neurodevelopmental disorders, and often occur in clusters that are regulated by a common imprint control region (ICR). In extra-embryonic tissues ICRs can act over large distances, with the largest surrounding Igf2r spanning over 10 million base-pairs. Besides classical imprinted expression that shows near exclusive maternal or paternal expression, widespread biased imprinted expression has been identified mainly in brain. In this review we discuss recent developments mapping cell type specific imprinted expression in extra-embryonic tissues and neocortex in the mouse. We highlight the advantages of using an inducible uniparental chromosome disomy (UPD) system to generate cells carrying either two maternal or two paternal copies of a specific chromosome to analyze the functional consequences of genomic imprinting. Mosaic Analysis with Double Markers (MADM) allows fluorescent labeling and concomitant induction of UPD sparsely in specific cell types, and thus to over-express or suppress all imprinted genes on that chromosome. To illustrate the utility of this technique, we explain how MADM-induced UPD revealed new insights about the function of the well-studied Cdkn1c imprinted gene, and how MADM-induced UPDs led to identification of highly cell type specific phenotypes related to perturbed imprinted expression in the mouse neocortex. Finally, we give an outlook on how MADM could be used to probe cell type specific imprinted expression in other tissues in mouse, particularly in extra-embryonic tissues.
Collapse
Affiliation(s)
- Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Quanah J Hudson
- Department of Obstetrics and Gynecology, Medical University of Vienna, Vienna, Austria
| | - Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400, Klosterneuburg, Austria.
| |
Collapse
|
5
|
Laukoter S, Pauler FM, Beattie R, Amberg N, Hansen AH, Streicher C, Penz T, Bock C, Hippenmeyer S. Cell-Type Specificity of Genomic Imprinting in Cerebral Cortex. Neuron 2020; 107:1160-1179.e9. [PMID: 32707083 PMCID: PMC7523403 DOI: 10.1016/j.neuron.2020.06.031] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 05/20/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022]
Abstract
In mammalian genomes, a subset of genes is regulated by genomic imprinting, resulting in silencing of one parental allele. Imprinting is essential for cerebral cortex development, but prevalence and functional impact in individual cells is unclear. Here, we determined allelic expression in cortical cell types and established a quantitative platform to interrogate imprinting in single cells. We created cells with uniparental chromosome disomy (UPD) containing two copies of either the maternal or the paternal chromosome; hence, imprinted genes will be 2-fold overexpressed or not expressed. By genetic labeling of UPD, we determined cellular phenotypes and transcriptional responses to deregulated imprinted gene expression at unprecedented single-cell resolution. We discovered an unexpected degree of cell-type specificity and a novel function of imprinting in the regulation of cortical astrocyte survival. More generally, our results suggest functional relevance of imprinted gene expression in glial astrocyte lineage and thus for generating cortical cell-type diversity.
Collapse
Affiliation(s)
- Susanne Laukoter
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Florian M Pauler
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Robert Beattie
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Nicole Amberg
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Andi H Hansen
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Carmen Streicher
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria
| | - Thomas Penz
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Christoph Bock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, 1090 Vienna, Austria
| | - Simon Hippenmeyer
- Institute of Science and Technology Austria, Am Campus 1, 3400 Klosterneuburg, Austria.
| |
Collapse
|
6
|
Bogutz AB, Oh-McGinnis R, Jacob KJ, Ho-Lau R, Gu T, Gertsenstein M, Nagy A, Lefebvre L. Transcription factor ASCL2 is required for development of the glycogen trophoblast cell lineage. PLoS Genet 2018; 14:e1007587. [PMID: 30096149 PMCID: PMC6105033 DOI: 10.1371/journal.pgen.1007587] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/22/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor ASCL2 plays essential roles in diploid multipotent trophoblast progenitors, intestinal stem cells, follicular T-helper cells, as well as during epidermal development and myogenesis. During early development, Ascl2 expression is regulated by genomic imprinting and only the maternally inherited allele is transcriptionally active in trophoblast. The paternal allele-specific silencing of Ascl2 requires expression of the long non-coding RNA Kcnq1ot1 in cis and the deposition of repressive histone marks. Here we show that Del7AI, a 280-kb deletion allele neighboring Ascl2, interferes with this process in cis and leads to a partial loss of silencing at Ascl2. Genetic rescue experiments show that the low level of Ascl2 expression from the paternal Del7AI allele can rescue the embryonic lethality associated with maternally inherited Ascl2 mutations, in a level-dependent manner. Despite their ability to support development to term, the rescued placentae have a pronounced phenotype characterized by severe hypoplasia of the junctional zone, expansion of the parietal trophoblast giant cell layer, and complete absence of invasive glycogen trophoblast cells. Transcriptome analysis of ectoplacental cones at E7.5 and differentiation assays of Ascl2 mutant trophoblast stem cells show that ASCL2 is required for the emergence or early maintenance of glycogen trophoblast cells during development. Our work identifies a new cis-acting mutation interfering with Kcnq1ot1 silencing function and establishes a novel critical developmental role for the transcription factor ASCL2. By controlling precise networks of target genes, transcription factors play important roles in cell fate determination during development. The Ascl2 gene codes for a transcription factor essential for the maintenance of progenitor cell populations able to differentiate into specialized cell types in the intestine and in the extra-embryonic trophoblast lineage. The trophoblast is an essential component of the placenta, an organ required for development of the embryo in placental mammals. Ascl2 belongs to a group of unusual genes, called imprinted genes, which are expressed from only a single parental copy. Ascl2 is only expressed from the maternally inherited copy in the trophoblast, the paternal copy being kept silent. Here, we describe an engineered deletion neighboring Ascl2 that interferes with the complete silencing of the paternal copy of the gene. We show that the low amount of ASCL2 produced from this deletion can rescue the embryonic lethality associated with non-functional maternal copies of Ascl2. Although the rescued embryos can often survive to term, their placenta is highly disorganized and lacks members of a specific cell lineage, the trophoblast glycogen cells. By analyzing the transcriptional profile of mutant trophoblast progenitors in vivo and of differentiated trophoblast stem cells, we show that ASCL2 plays a very early role in the formation of this cell lineage.
Collapse
Affiliation(s)
- Aaron B. Bogutz
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Rosemary Oh-McGinnis
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Karen J. Jacob
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Rita Ho-Lau
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ting Gu
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Marina Gertsenstein
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
7
|
Prabhu AV, Luu W, Li D, Sharpe LJ, Brown AJ. DHCR7: A vital enzyme switch between cholesterol and vitamin D production. Prog Lipid Res 2016; 64:138-151. [PMID: 27697512 DOI: 10.1016/j.plipres.2016.09.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Revised: 09/29/2016] [Accepted: 09/29/2016] [Indexed: 01/07/2023]
Abstract
The conversion of 7-dehydrocholesterol to cholesterol, the final step of cholesterol synthesis in the Kandutsch-Russell pathway, is catalyzed by the enzyme 7-dehydrocholesterol reductase (DHCR7). Homozygous or compound heterozygous mutations in DHCR7 lead to the developmental disease Smith-Lemli-Opitz syndrome, which can also result in fetal mortality, highlighting the importance of this enzyme in human development and survival. Besides serving as a substrate for DHCR7, 7-dehydrocholesterol is also a precursor of vitamin D via the action of ultraviolet light on the skin. Thus, DHCR7 exerts complex biological effects, involved in both cholesterol and vitamin D production. Indeed, we argue that DHCR7 can act as a switch between cholesterol and vitamin D synthesis. This review summarizes current knowledge about the critical enzyme DHCR7, highlighting recent findings regarding its structure, transcriptional and post-transcriptional regulation, and its links to vitamin D synthesis. Greater understanding about DHCR7 function, regulation and its place within cellular metabolism will provide important insights into its biological roles.
Collapse
Affiliation(s)
- Anika V Prabhu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Winnie Luu
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Dianfan Li
- National Center for Protein Sciences, State Key Laboratory of Molecular Biology, Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Laura J Sharpe
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia
| | - Andrew J Brown
- School of Biotechnology and Biomolecular Sciences, The University of New South Wales, Sydney, NSW, Australia.
| |
Collapse
|
8
|
Hochner H, Allard C, Granot-Hershkovitz E, Chen J, Sitlani CM, Sazdovska S, Lumley T, McKnight B, Rice K, Enquobahrie DA, Meigs JB, Kwok P, Hivert MF, Borecki IB, Gomez F, Wang T, van Duijn C, Amin N, Rotter JI, Stamatoyannopoulos J, Meiner V, Manor O, Dupuis J, Friedlander Y, Siscovick DS. Parent-of-Origin Effects of the APOB Gene on Adiposity in Young Adults. PLoS Genet 2015; 11:e1005573. [PMID: 26451733 PMCID: PMC4599806 DOI: 10.1371/journal.pgen.1005573] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 09/15/2015] [Indexed: 01/23/2023] Open
Abstract
Loci identified in genome-wide association studies (GWAS) of cardio-metabolic traits account for a small proportion of the traits' heritability. To date, most association studies have not considered parent-of-origin effects (POEs). Here we report investigation of POEs on adiposity and glycemic traits in young adults. The Jerusalem Perinatal Family Follow-Up Study (JPS), comprising 1250 young adults and their mothers was used for discovery. Focusing on 18 genes identified by previous GWAS as associated with cardio-metabolic traits, we used linear regression to examine the associations of maternally- and paternally-derived offspring minor alleles with body mass index (BMI), waist circumference (WC), fasting glucose and insulin. We replicated and meta-analyzed JPS findings in individuals of European ancestry aged ≤50 belonging to pedigrees from the Framingham Heart Study, Family Heart Study and Erasmus Rucphen Family study (total N≅4800). We considered p<2.7x10-4 statistically significant to account for multiple testing. We identified a common coding variant in the 4th exon of APOB (rs1367117) with a significant maternally-derived effect on BMI (β = 0.8; 95%CI:0.4,1.1; p = 3.1x10-5) and WC (β = 2.7; 95%CI:1.7,3.7; p = 2.1x10-7). The corresponding paternally-derived effects were non-significant (p>0.6). Suggestive maternally-derived associations of rs1367117 were observed with fasting glucose (β = 0.9; 95%CI:0.3,1.5; p = 4.0x10-3) and insulin (ln-transformed, β = 0.06; 95%CI:0.03,0.1; p = 7.4x10-4). Bioinformatic annotation for rs1367117 revealed a variety of regulatory functions in this region in liver and adipose tissues and a 50% methylation pattern in liver only, consistent with allelic-specific methylation, which may indicate tissue-specific POE. Our findings demonstrate a maternal-specific association between a common APOB variant and adiposity, an association that was not previously detected in GWAS. These results provide evidence for the role of regulatory mechanisms, POEs specifically, in adiposity. In addition this study highlights the benefit of utilizing family studies for deciphering the genetic architecture of complex traits. To date, genetic variants identified in large-scale genetic studies using recent technical and methodological advances explain only a small proportion of the genetic basis of obesity, diabetes and other cardiovascular risk factors. These studies were typically conducted in samples of unrelated individuals. Here we utilize a family-based approach to identify genetic variants associated with obesity-related traits. Specifically, we examined the separate contribution of maternally- vs. paternally-inherited common genetic variants to these traits. By examining 1250 young adults and their mothers from Jerusalem, we show that a specific genetic variant, rs1367117, located in the APOB gene on chromosome 2 is related to body mass index and waist circumference when inherited from mother and not from father. This maternal effect is not restricted to Jerusalemites, but is also seen in a large sample of individuals of European descent from independent family studies worldwide. Our findings provide support of the role of complex genetic mechanisms in obesity, and highlight the benefit of utilizing family studies for uncovering genetic pathways underlying common risk factors and diseases.
Collapse
Affiliation(s)
- Hagit Hochner
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
- * E-mail:
| | - Catherine Allard
- Département de Mathématiques, Université de Sherbrooke and Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada
| | | | - Jinbo Chen
- Department of Biostatistics and Epidemiology, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, United States of America
| | - Colleen M. Sitlani
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Cardiovascular Health Research Unit, University of Washington, Seattle, Washington, United States of America
| | - Sandra Sazdovska
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Thomas Lumley
- Department of Statistics, University of Auckland, Auckland, New Zealand
| | - Barbara McKnight
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Kenneth Rice
- Department of Biostatistics, University of Washington, Seattle, Washington, United States of America
| | - Daniel A. Enquobahrie
- Department of Epidemiology, University of Washington, Seattle, Washington, United States of America
| | - James B. Meigs
- Harvard Medical School and General Medicine Division, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| | - Pui Kwok
- Institute of Human Genetics, University of California, San Francisco, California, United States of America
- Cardiovascular Research Institute, University of California, San Francisco, California, United States of America
- Department of Dermatology, University of California, San Francisco, California, United States of America
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Pilgrim Health Care Institute, Boston, Massachusetts, United States of America
| | - Ingrid B. Borecki
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Felicia Gomez
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Cornelia van Duijn
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Najaf Amin
- Genetic Epidemiology Unit, Department of Epidemiology, Erasmus Medical Center, University Medical Center, Rotterdam, the Netherlands
| | - Jerome I. Rotter
- Institute for Translational Genomics and Population Sciences and Department of Pediatrics, Los Angeles BioMedical Research Institute at Harbor-UCLA Medical Center, Torrance, California, United States of America
| | - John Stamatoyannopoulos
- Department of Medicine, University of Washington, Seattle, Washington, United States of America
- Department of Genome Sciences, University of Washington, Seattle, Washington, United States of America
| | - Vardiella Meiner
- Department of Genetics and Metabolism, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Orly Manor
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - Josée Dupuis
- Department of Biostatistics, Boston University School of Public Health, Boston, Massachusetts, United States of America
| | - Yechiel Friedlander
- Braun School of Public Health, Hebrew University-Hadassah Medical Center, Jerusalem, Israel
| | - David S. Siscovick
- New York Academy of Medicine, New York, New York, United States of America
| |
Collapse
|
9
|
A Mouse Model for Imprinting of the Human Retinoblastoma Gene. PLoS One 2015; 10:e0134672. [PMID: 26275142 PMCID: PMC4537222 DOI: 10.1371/journal.pone.0134672] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 07/13/2015] [Indexed: 12/21/2022] Open
Abstract
The human RB1 gene is imprinted due to integration of the PPP1R26P1 pseudogene into intron 2. PPP1R26P1 harbors the gametic differentially methylated region of the RB1 gene, CpG85, which is methylated in the female germ line. The paternally unmethylated CpG85 acts as promoter for the alternative transcript 2B of RB1, which interferes with expression of full-length RB1 in cis. In mice, PPP1R26P1 is not present in the Rb1 gene and Rb1 is not imprinted. Assuming that the mechanisms responsible for genomic imprinting are conserved, we investigated if imprinting of mouse Rb1 can be induced by transferring human PPP1R26P1 into mouse Rb1. We generated humanized Rb1_PPP1R26P1 knock-in mice that pass human PPP1R26P1 through the mouse germ line. We found that the function of unmethylated CpG85 as promoter for an alternative Rb1 transcript and as cis-repressor of the main Rb1 transcript is maintained in mouse tissues. However, CpG85 is not recognized as a gametic differentially methylated region in the mouse germ line. DNA methylation at CpG85 is acquired only in tissues of neuroectodermal origin, independent of parental transmission of PPP1R26P1. Absence of CpG85 methylation in oocytes and sperm implies a failure of imprint methylation establishment in the germ line. Our results indicate that site-specific integration of a proven human gametic differentially methylated region is not sufficient for acquisition of DNA methylation in the mouse germ line, even if promoter function of the element is maintained. This suggests a considerable dependency of DNA methylation induction on the surrounding sequence. However, our model is suited to determine the cellular function of the alternative Rb1 transcript.
Collapse
|
10
|
Ruhrmann S, Stridh P, Kular L, Jagodic M. Genomic imprinting: A missing piece of the Multiple Sclerosis puzzle? Int J Biochem Cell Biol 2015; 67:49-57. [PMID: 26002250 DOI: 10.1016/j.biocel.2015.05.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 05/10/2015] [Accepted: 05/11/2015] [Indexed: 12/14/2022]
Abstract
Evidence for parent-of-origin effects in complex diseases such as Multiple Sclerosis (MS) strongly suggests a role for epigenetic mechanisms in their pathogenesis. In this review, we describe the importance of accounting for parent-of-origin when identifying new risk variants for complex diseases and discuss how genomic imprinting, one of the best-characterized epigenetic mechanisms causing parent-of-origin effects, may impact etiology of complex diseases. While the role of imprinted genes in growth and development is well established, the contribution and molecular mechanisms underlying the impact of genomic imprinting in immune functions and inflammatory diseases are still largely unknown. Here we discuss emerging roles of imprinted genes in the regulation of inflammatory responses with a particular focus on the Dlk1 cluster that has been implicated in etiology of experimental MS-like disease and Type 1 Diabetes. Moreover, we speculate on the potential wider impact of imprinting via the action of imprinted microRNAs, which are abundantly present in the Dlk1 locus and predicted to fine-tune important immune functions. Finally, we reflect on how unrelated imprinted genes or imprinted genes together with non-imprinted genes can interact in so-called imprinted gene networks (IGN) and suggest that IGNs could partly explain observed parent-of-origin effects in complex diseases. Unveiling the mechanisms of parent-of-origin effects is therefore likely to teach us not only about the etiology of complex diseases but also about the unknown roles of this fascinating phenomenon underlying uneven genetic contribution from our parents. This article is part of a Directed Issue entitled: Epigenetics dynamics in development and disease.
Collapse
Affiliation(s)
- Sabrina Ruhrmann
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Pernilla Stridh
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Lara Kular
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maja Jagodic
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Allelic Imbalance Is a Prevalent and Tissue-Specific Feature of the Mouse Transcriptome. Genetics 2015; 200:537-49. [PMID: 25858912 DOI: 10.1534/genetics.115.176263] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 03/27/2015] [Indexed: 12/18/2022] Open
Abstract
In mammals, several classes of monoallelic genes have been identified, including those subject to X-chromosome inactivation (XCI), genomic imprinting, and random monoallelic expression (RMAE). However, the extent to which these epigenetic phenomena are influenced by underlying genetic variation is unknown. Here we perform a systematic classification of allelic imbalance in mouse hybrids derived from reciprocal crosses of divergent strains. We observe that deviation from balanced biallelic expression is common, occurring in ∼20% of the mouse transcriptome in a given tissue. Allelic imbalance attributed to genotypic variation is by far the most prevalent class and typically is tissue-specific. However, some genotype-based imbalance is maintained across tissues and is associated with greater genetic variation, especially in 5' and 3' termini of transcripts. We further identify novel random monoallelic and imprinted genes and find that genotype can modify penetrance of parental origin even in the setting of large imprinted regions. Examination of nascent transcripts in single cells from inbred parental strains reveals that genes showing genotype-based imbalance in hybrids can also exhibit monoallelic expression in isogenic backgrounds. This surprising observation may suggest a competition between alleles and/or reflect the combined impact of cis- and trans-acting variation on expression of a given gene. Our findings provide novel insights into gene regulation and may be relevant to human genetic variation and disease.
Collapse
|
12
|
The impact of assisted reproductive technologies on genomic imprinting and imprinting disorders. Curr Opin Obstet Gynecol 2015; 26:210-21. [PMID: 24752003 DOI: 10.1097/gco.0000000000000071] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
PURPOSE OF REVIEW Genomic imprinting refers to preferential allele-specific gene expression. DNA methylation-based molecular mechanisms regulate establishment and maintenance of parental imprints during early embryo development and gametogenesis. Because of the coincident timing, a potential association between assisted reproductive technology (ART) procedures and imprinting defects has been investigated in various studies. In this review, we provide an overview of genomic imprinting and present a summary of the relevant clinical data. RECENT FINDINGS ART procedures affect DNA methylation pattern, parental imprinting status, and imprinted gene expression in the mouse embryo. In humans, several case series suggested an association between ART and imprinting disorders, with a three-fold to six-fold higher prevalence of ART use among children born with Beckwith-Wiedemann syndrome compared to the general population. However, more recent studies failed to support these findings and could not demonstrate an association between imprinting disorders and ARTs, independent of subfertility. SUMMARY ART procedures may affect methylation status of imprinted regions in the DNA, leading to imprinting disorders. Although the low prevalence of imprinting disorders makes it challenging to perform conclusive clinical trials, further studies in large registries are required to determine the real impact of ARTs on their occurrence.
Collapse
|
13
|
Cleaton MA, Edwards CA, Ferguson-Smith AC. Phenotypic Outcomes of Imprinted Gene Models in Mice: Elucidation of Pre- and Postnatal Functions of Imprinted Genes. Annu Rev Genomics Hum Genet 2014; 15:93-126. [DOI: 10.1146/annurev-genom-091212-153441] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Carol A. Edwards
- Department of Genetics, University of Cambridge, Cambridge CB2 3EG, United Kingdom;
| | | |
Collapse
|
14
|
Wang X, Clark AG. Using next-generation RNA sequencing to identify imprinted genes. Heredity (Edinb) 2014; 113:156-66. [PMID: 24619182 PMCID: PMC4105452 DOI: 10.1038/hdy.2014.18] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 12/02/2013] [Accepted: 12/19/2013] [Indexed: 12/15/2022] Open
Abstract
Genomic imprinting is manifested as differential allelic expression (DAE) depending on the parent-of-origin. The most direct way to identify imprinted genes is to directly score the DAE in a context where one can identify which parent transmitted each allele. Because many genes display DAE, simply scoring DAE in an individual is not sufficient to identify imprinted genes. In this paper, we outline many technical aspects of a scheme for identification of imprinted genes that makes use of RNA sequencing (RNA-seq) from tissues isolated from F1 offspring derived from the pair of reciprocal crosses. Ideally, the parental lines are from two inbred strains that are not closely related to each other. Aspects of tissue purity, RNA extraction, library preparation and bioinformatic inference of imprinting are all covered. These methods have already been applied in a number of organisms, and one of the most striking results is the evolutionary fluidity with which novel imprinted genes are gained and lost within genomes. The general methodology is also applicable to a wide range of other biological problems that require quantification of allele-specific expression using RNA-seq, such as cis-regulation of gene expression, X chromosome inactivation and random monoallelic expression.
Collapse
Affiliation(s)
- X Wang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, NY, USA
| | - A G Clark
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Cornell Center for Comparative and Population Genomics, Cornell University, Ithaca, NY, USA
| |
Collapse
|
15
|
Frésard L, Leroux S, Servin B, Gourichon D, Dehais P, Cristobal MS, Marsaud N, Vignoles F, Bed'hom B, Coville JL, Hormozdiari F, Beaumont C, Zerjal T, Vignal A, Morisson M, Lagarrigue S, Pitel F. Transcriptome-wide investigation of genomic imprinting in chicken. Nucleic Acids Res 2014; 42:3768-82. [PMID: 24452801 PMCID: PMC3973300 DOI: 10.1093/nar/gkt1390] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Genomic imprinting is an epigenetic mechanism by which alleles of some specific genes are expressed in a parent-of-origin manner. It has been observed in mammals and marsupials, but not in birds. Until now, only a few genes orthologous to mammalian imprinted ones have been analyzed in chicken and did not demonstrate any evidence of imprinting in this species. However, several published observations such as imprinted-like QTL in poultry or reciprocal effects keep the question open. Our main objective was thus to screen the entire chicken genome for parental-allele-specific differential expression on whole embryonic transcriptomes, using high-throughput sequencing. To identify the parental origin of each observed haplotype, two chicken experimental populations were used, as inbred and as genetically distant as possible. Two families were produced from two reciprocal crosses. Transcripts from 20 embryos were sequenced using NGS technology, producing ∼200 Gb of sequences. This allowed the detection of 79 potentially imprinted SNPs, through an analysis method that we validated by detecting imprinting from mouse data already published. However, out of 23 candidates tested by pyrosequencing, none could be confirmed. These results come together, without a priori, with previous statements and phylogenetic considerations assessing the absence of genomic imprinting in chicken.
Collapse
Affiliation(s)
- Laure Frésard
- INRA, UMR444 Laboratoire de Génétique Cellulaire, Castanet-Tolosan F-31326, France, ENVT, UMR444 Laboratoire de Génétique Cellulaire, Toulouse F-31076, France, INRA, PEAT Pôle d'Expérimentation Avicole de Tours, Nouzilly F- 37380, France, INRA, Sigenae UR875 Biométrie et Intelligence Artificielle, Castanet-Tolosan F-31326, France, INRA, GeT-PlaGe Genotoul, Castanet-Tolosan F-31326, France, INRA, UMR1313 Génétique animale et biologie intégrative, Jouy en Josas F-78350, France, AgroParisTech, UMR1313 Génétique animale et biologie intégrative, Jouy en Josas F-78350, France, Department of Computer Sciences, University of California, Los Angeles, CA 90095, USA, INRA, UR83 Recherche Avicoles, Nouzilly F- 37380, France and Agrocampus Ouest, UMR1348 Physiologie, Environnement et Génétique pour l'Animal et les Systèmes d'Élevage, Animal Genetics Laboratory, Rennes F-35000, France
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Das R, Lee YK, Strogantsev R, Jin S, Lim YC, Ng PY, Lin XM, Chng K, Yeo GSH, Ferguson-Smith AC, Ding C. DNMT1 and AIM1 Imprinting in human placenta revealed through a genome-wide screen for allele-specific DNA methylation. BMC Genomics 2013; 14:685. [PMID: 24094292 PMCID: PMC3829101 DOI: 10.1186/1471-2164-14-685] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 09/25/2013] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Genomic imprinting is an epigenetically regulated process wherein genes are expressed in a parent-of-origin specific manner. Many imprinted genes were initially identified in mice; some of these were subsequently shown not to be imprinted in humans. Such discrepancy reflects developmental, morphological and physiological differences between mouse and human tissues. This is particularly relevant for the placenta. Study of genomic imprinting thus needs to be carried out in a species and developmental stage-specific manner. We describe here a new strategy to study allele-specific DNA methylation in the human placenta for the discovery of novel imprinted genes. RESULTS Using this methodology, we confirmed 16 differentially methylated regions (DMRs) associated with known imprinted genes. We chose 28 genomic regions for further testing and identified two imprinted genes (DNMT1 and AIM1). Both genes showed maternal allele-specific methylation and paternal allele-specific transcription. Imprinted expression for AIM1 was conserved in the cynomolgus macaque placenta, but not in other macaque tissues or in the mouse. CONCLUSIONS Our study indicates that while there are many genomic regions with allele-specific methylation in tissues like the placenta, only a small sub-set of them are associated with allele-specific transcription, suggesting alternative functions for such genomic regions. Nonetheless, novel tissue-specific imprinted genes remain to be discovered in humans. Their identification may help us better understand embryonic and fetal development.
Collapse
Affiliation(s)
- Radhika Das
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yew Kok Lee
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Ruslan Strogantsev
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Shengnan Jin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Yen Ching Lim
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Poh Yong Ng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Xueqin Michelle Lin
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Keefe Chng
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - George SH Yeo
- Department of Maternal Fetal Medicine, K.K. Women’s and Children’s Hospital, Singapore, Singapore
| | - Anne C Ferguson-Smith
- Department of Physiology, Development & Neuroscience, University of Cambridge, Cambridge, UK
| | - Chunming Ding
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
17
|
Ashbrook DG, Hager R. Empirical testing of hypotheses about the evolution of genomic imprinting in mammals. Front Neuroanat 2013; 7:6. [PMID: 23641202 PMCID: PMC3639422 DOI: 10.3389/fnana.2013.00006] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2013] [Accepted: 04/10/2013] [Indexed: 01/01/2023] Open
Abstract
The close interaction between mother and offspring in mammals is thought to contribute to the evolution of genomic imprinting or parent-of-origin dependent gene expression. Empirical tests of theories about the evolution of imprinting have been scant for several reasons. Models make different assumptions about the traits affected by imprinted genes and the scenarios in which imprinting is predicted to have been selected for. Thus, competing hypotheses cannot readily be tested against each other. Further, it is far from clear how predictions about expression patterns of genes with specific phenotypic effects can be tested given current methodology of assaying gene expression levels, be it in the brain or in other tissues. We first set out a scenario for testing competing hypotheses and delineate the different assumptions and predictions of models. We then outline how predictions may be tested using mouse models such as intercrosses or recombinant inbred (RI) systems that can be phenotyped for traits relevant to imprinting theories. Further, we briefly discuss different molecular approaches that may be used in conjunction with experiments to ascertain expression patterns of imprinted genes and thus the testing of predictions.
Collapse
Affiliation(s)
- David G Ashbrook
- Computational and Evolutionary Biology, Faculty of Life Sciences, University of Manchester Manchester, UK
| | | |
Collapse
|
18
|
Tunster SJ, Jensen AB, John RM. Imprinted genes in mouse placental development and the regulation of fetal energy stores. Reproduction 2013; 145:R117-37. [PMID: 23445556 DOI: 10.1530/rep-12-0511] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Imprinted genes, which are preferentially expressed from one or other parental chromosome as a consequence of epigenetic events in the germline, are known to functionally converge on biological processes that enable in utero development in mammals. Over 100 imprinted genes have been identified in the mouse, the majority of which are both expressed and imprinted in the placenta. The purpose of this review is to provide a summary of the current knowledge regarding imprinted gene function in the mouse placenta. Few imprinted genes have been assessed with respect to their dosage-related action in the placenta. Nonetheless, current data indicate that imprinted genes converge on two key functions of the placenta, nutrient transport and placental signalling. Murine studies may provide a greater understanding of certain human pathologies, including low birth weight and the programming of metabolic diseases in the adult, and complications of pregnancy, such as pre-eclampsia and gestational diabetes, resulting from fetuses carrying abnormal imprints.
Collapse
Affiliation(s)
- S J Tunster
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales CF10 3AX, UK
| | | | | |
Collapse
|
19
|
Carbon M, Raymond D, Ozelius L, Saunders-Pullman R, Frucht S, Dhawan V, Bressman S, Eidelberg D. Metabolic changes in DYT11 myoclonus-dystonia. Neurology 2013; 80:385-91. [PMID: 23284065 DOI: 10.1212/wnl.0b013e31827f0798] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE To identify brain regions with metabolic changes in DYT11 myoclonus-dystonia (DYT11-MD) relative to control subjects and to compare metabolic abnormalities in DYT11-MD with those found in other forms of hereditary dystonia and in posthypoxic myoclonus. METHODS [(18)F]-fluorodeoxyglucose PET was performed in 6 subjects with DYT11-MD (age 30.5 ± 10.1 years) and in 6 nonmanifesting DYT11 mutation carriers (NM-DYT11; age 59.1 ± 8.9 years) representing the parental generation of the affected individuals. These data were compared to scan data from age-matched healthy control subjects using voxel-based whole brain searches and group differences were considered significant at p < 0.05 (corrected, statistical parametric mapping). As a secondary analysis, overlapping abnormalities were identified by comparisons to hereditary dystonias (DYT1, DYT6, dopa-responsive dystonia) and to posthypoxic myoclonus. RESULTS We found significant DYT11 genotype-specific metabolic increases in the inferior pons and in the posterior thalamus as well as reductions in the ventromedial prefrontal cortex. Significant phenotype-related increases were present in the parasagittal cerebellum. This latter abnormality was shared with posthypoxic myoclonus, but not with other forms of dystonia. By contrast, all dystonia cohorts exhibited significant metabolic increases in the superior parietal lobule. CONCLUSIONS The findings are consistent with a subcortical myoclonus generator in DYT11-MD, likely involving the cerebellum. By contrast, subtle increases in the superior parietal cortex relate to the additional presence of dystonic symptoms. Although reduced penetrance in DYT11-MD has been attributed to the maternal imprinting epsilon-sarcoglycan mutations, NM-DYT11 carriers showed significant metabolic abnormalities that are not explained by this genetic model.
Collapse
Affiliation(s)
- Maren Carbon
- Center for Neurosciences, The Feinstein Institute for Medical Research, Manhasset, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Data mining as a discovery tool for imprinted genes. Methods Mol Biol 2012; 925:89-134. [PMID: 22907493 DOI: 10.1007/978-1-62703-011-3_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
Abstract
This chapter serves as an introduction to the collection of genome-wide sequence and epigenomic data, as well as the use of these data in training generalized linear models (glm) to predicted imprinted status. This is meant to be an introduction to the method, so only the most straightforward examples will be covered. For instance, the examples given below refer to 11 classes of genomic regions (the entire gene body, introns, exons, 5' UTR, 3' UTR, and 1, 10, and 100 kb upstream and downstream of each gene). One could also build models based on combinations of these regions. Likewise, models could be built on combinations of epigenetic features, or on combinations of both genomic regions and epigenetic features.This chapter relies heavily on computational methods, including basic programming. However, this chapter is not meant to be an introduction to programming. Throughout the chapter, the reader will be provided with example code in the Perl programming language.
Collapse
|
21
|
A survey of tissue-specific genomic imprinting in mammals. Mol Genet Genomics 2012; 287:621-30. [PMID: 22821278 DOI: 10.1007/s00438-012-0708-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2012] [Accepted: 07/03/2012] [Indexed: 01/20/2023]
Abstract
In mammals, most somatic cells contain two copies of each autosomal gene, one inherited from each parent. When a gene is expressed, both parental alleles are usually transcribed. However, a subset of genes is subject to the epigenetic silencing of one of the parental copies by genomic imprinting. In this review, we explore the evidence for variability in genomic imprinting between different tissue and cell types. We also consider why the imprinting of particular genes may be restricted to, or lost in, specific tissues and discuss the potential for high-throughput sequencing technologies in facilitating the characterisation of tissue-specific imprinting and assaying the potentially functional variations in epigenetic marks.
Collapse
|
22
|
DeVeale B, van der Kooy D, Babak T. Critical evaluation of imprinted gene expression by RNA-Seq: a new perspective. PLoS Genet 2012; 8:e1002600. [PMID: 22479196 PMCID: PMC3315459 DOI: 10.1371/journal.pgen.1002600] [Citation(s) in RCA: 190] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 01/18/2012] [Indexed: 01/05/2023] Open
Abstract
In contrast to existing estimates of approximately 200 murine imprinted genes, recent work based on transcriptome sequencing uncovered parent-of-origin allelic effects at more than 1,300 loci in the developing brain and two adult brain regions, including hundreds present in only males or females. Our independent replication of the embryonic brain stage, where the majority of novel imprinted genes were discovered and the majority of previously known imprinted genes confirmed, resulted in only 12.9% concordance among the novel imprinted loci. Further analysis and pyrosequencing-based validation revealed that the vast majority of the novel reported imprinted loci are false-positives explained by technical and biological variation of the experimental approach. We show that allele-specific expression (ASE) measured with RNA–Seq is not accurately modeled with statistical methods that assume random independent sampling and that systematic error must be accounted for to enable accurate identification of imprinted expression. Application of a robust approach that accounts for these effects revealed 50 candidate genes where allelic bias was predicted to be parent-of-origin–dependent. However, 11 independent validation attempts through a range of allelic expression biases confirmed only 6 of these novel cases. The results emphasize the importance of independent validation and suggest that the number of imprinted genes is much closer to the initial estimates. Typically both copies of mammalian genes are expressed, but in some cases, “imprinting” restricts expression to the maternal or paternal copy. Having two copies of each gene is considered advantageous since in enables compensation when one does not function properly. Why imprinting evolved and its utility to each sex is widely debated, and having a complete catalog of imprinted genes and their functions is essential for fully characterizing this phenomenon. 25 years of screening has revealed about 130 imprinted genes, and the slowing rate of discovery suggests that we are reaching saturation. Two recent studies based on high-throughput sequencing of RNA reported more than 1,300 imprinted genes. To understand the basis of this paradigm shift, we first attempted to reproduce these results. Unable to do so, we performed additional analyses that show that most of these discoveries are due to noise in the experimental approach and assay. We remedy this with new methods that account for this noise and applied them to identify 50 novel putative imprinted genes. These methods will be useful for identifying genuine novel cases of imprinted expression as this type of screening approach becomes broadly utilized.
Collapse
Affiliation(s)
- Brian DeVeale
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Derek van der Kooy
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
- Terrence Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Canada
| | - Tomas Babak
- Department of Biology, Stanford University, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
23
|
Okae H, Hiura H, Nishida Y, Funayama R, Tanaka S, Chiba H, Yaegashi N, Nakayama K, Sasaki H, Arima T. Re-investigation and RNA sequencing-based identification of genes with placenta-specific imprinted expression. Hum Mol Genet 2011; 21:548-58. [PMID: 22025075 DOI: 10.1093/hmg/ddr488] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Within the vertebrate groups, only mammals are subject to a specialized epigenetic process termed genomic imprinting in which genes are preferentially expressed from one parental allele. Imprinted expression has been reported for >100 mouse genes and, for approximately one-quarter of these genes, the imprinted expression is specific to the placenta (or extraembryonic tissues). This seemingly placenta-specific imprinted expression has garnered much attention, as has the apparent lack of conserved imprinting between the human and mouse placenta. In this study, we used a novel approach to re-investigate the placenta-specific expression using embryo transfer and trophoblast stem cells. We analyzed 20 genes previously reported to show maternal allele-specific expression in the placenta, and only 8 genes were confirmed to be imprinted. Other genes were likely to be falsely identified as imprinted due to their relatively high expression in contaminating maternal cells. Next, we performed a genome-wide transcriptome assay and identified 133 and 955 candidate imprinted genes with paternal allele- and maternal allele-specific expression. Of those we analyzed in detail, 1/6 (Gab1) of the candidates for paternal allele-specific expression and only 1/269 (Ano1) candidates for maternal allele-specific expression were authentically imprinted genes. Imprinting of Ano1 and Gab1 was specific to the placenta and neither gene displayed allele-specific promoter DNA methylation. Imprinting of ANO1, but not GAB1, was conserved in the human placenta. Our findings impose a considerable revision of the current views of placental imprinting.
Collapse
Affiliation(s)
- Hiroaki Okae
- Department of Informative Genetics, Environment and Genome Research Center, Tohoku University Graduate School of Medicine, Sendai 980-8575, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Golding MC, Magri LS, Zhang L, Lalone SA, Higgins MJ, Mann MRW. Depletion of Kcnq1ot1 non-coding RNA does not affect imprinting maintenance in stem cells. Development 2011; 138:3667-78. [PMID: 21775415 PMCID: PMC3152924 DOI: 10.1242/dev.057778] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2011] [Indexed: 01/18/2023]
Abstract
To understand the complex regulation of genomic imprinting it is important to determine how early embryos establish imprinted gene expression across large chromosomal domains. Long non-coding RNAs (ncRNAs) have been associated with the regulation of imprinting domains, yet their function remains undefined. Here, we investigated the mouse Kcnq1ot1 ncRNA and its role in imprinted gene regulation during preimplantation development by utilizing mouse embryonic and extra-embryonic stem cell models. Our findings demonstrate that the Kcnq1ot1 ncRNA extends 471 kb from the transcription start site. This is significant as it raises the possibility that transcription through downstream genes might play a role in their silencing, including Th, which we demonstrate possesses maternal-specific expression during early development. To distinguish between a functional role for the transcript and properties inherent to transcription of long ncRNAs, we employed RNA interference-based technology to deplete Kcnq1ot1 transcripts. We hypothesized that post-transcriptional depletion of Kcnq1ot1 ncRNA would lead to activation of normally maternal-specific protein-coding genes on the paternal chromosome. Post-transcriptional short hairpin RNA-mediated depletion in embryonic stem, trophoblast stem and extra-embryonic endoderm stem cells had no observable effect on the imprinted expression of genes within the domain, or on Kcnq1ot1 imprinting center DNA methylation, although a significant decrease in Kcnq1ot1 RNA signal volume in the nucleus was observed. These data support the argument that it is the act of transcription that plays a role in imprint maintenance during early development rather than a post-transcriptional role for the RNA itself.
Collapse
Affiliation(s)
- Michael C. Golding
- Departments of Obstetrics and Gynecology and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON N6A 5W9, Canada
- Children's Health Research Institute, London, ON N6C 2V5, Canada
- Lawson Health Research Institute, London, ON N6C 2V5, Canada
| | - Lauren S. Magri
- Departments of Obstetrics and Gynecology and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON N6A 5W9, Canada
- Children's Health Research Institute, London, ON N6C 2V5, Canada
- Lawson Health Research Institute, London, ON N6C 2V5, Canada
| | - Liyue Zhang
- Children's Health Research Institute, London, ON N6C 2V5, Canada
- Lawson Health Research Institute, London, ON N6C 2V5, Canada
| | - Sarah A. Lalone
- Departments of Obstetrics and Gynecology and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON N6A 5W9, Canada
- Children's Health Research Institute, London, ON N6C 2V5, Canada
- Lawson Health Research Institute, London, ON N6C 2V5, Canada
| | - Michael J. Higgins
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Mellissa R. W. Mann
- Departments of Obstetrics and Gynecology and Biochemistry, University of Western Ontario, Schulich School of Medicine and Dentistry, London, ON N6A 5W9, Canada
- Children's Health Research Institute, London, ON N6C 2V5, Canada
- Lawson Health Research Institute, London, ON N6C 2V5, Canada
| |
Collapse
|
25
|
Abstract
Many questions about the regulation, functional specialization, computational prediction, and evolution of genomic imprinting would be better addressed by having an exhaustive genome-wide catalog of genes that display parent-of-origin differential expression. As a first-pass scan for novel imprinted genes, we performed mRNA-seq experiments on embryonic day 17.5 (E17.5) mouse placenta cDNA samples from reciprocal cross F1 progeny of AKR and PWD mouse strains and quantified the allele-specific expression and the degree of parent-of-origin allelic imbalance. We confirmed the imprinting status of 23 known imprinted genes in the placenta and found that 12 genes reported previously to be imprinted in other tissues are also imprinted in mouse placenta. Through a well-replicated design using an orthogonal allelic-expression technology, we verified 5 novel imprinted genes that were not previously known to be imprinted in mouse (Pde10, Phf17, Phactr2, Zfp64, and Htra3). Our data suggest that most of the strongly imprinted genes have already been identified, at least in the placenta, and that evidence supports perhaps 100 additional weakly imprinted genes. Despite previous appearance that the placenta tends to display an excess of maternally expressed imprinted genes, with the addition of our validated set of placenta-imprinted genes, this maternal bias has disappeared.
Collapse
|
26
|
Yuen RK, Jiang R, Peñaherrera MS, McFadden DE, Robinson WP. Genome-wide mapping of imprinted differentially methylated regions by DNA methylation profiling of human placentas from triploidies. Epigenetics Chromatin 2011; 4:10. [PMID: 21749726 PMCID: PMC3154142 DOI: 10.1186/1756-8935-4-10] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2011] [Accepted: 07/13/2011] [Indexed: 12/01/2022] Open
Abstract
Background Genomic imprinting is an important epigenetic process involved in regulating placental and foetal growth. Imprinted genes are typically associated with differentially methylated regions (DMRs) whereby one of the two alleles is DNA methylated depending on the parent of origin. Identifying imprinted DMRs in humans is complicated by species- and tissue-specific differences in imprinting status and the presence of multiple regulatory regions associated with a particular gene, only some of which may be imprinted. In this study, we have taken advantage of the unbalanced parental genomic constitutions in triploidies to further characterize human DMRs associated with known imprinted genes and identify novel imprinted DMRs. Results By comparing the promoter methylation status of over 14,000 genes in human placentas from ten diandries (extra paternal haploid set) and ten digynies (extra maternal haploid set) and using 6 complete hydatidiform moles (paternal origin) and ten chromosomally normal placentas for comparison, we identified 62 genes with apparently imprinted DMRs (false discovery rate <0.1%). Of these 62 genes, 11 have been reported previously as DMRs that act as imprinting control regions, and the observed parental methylation patterns were concordant with those previously reported. We demonstrated that novel imprinted genes, such as FAM50B, as well as novel imprinted DMRs associated with known imprinted genes (for example, CDKN1C and RASGRF1) can be identified by using this approach. Furthermore, we have demonstrated how comparison of DNA methylation for known imprinted genes (for example, GNAS and CDKN1C) between placentas of different gestations and other somatic tissues (brain, kidney, muscle and blood) provides a detailed analysis of specific CpG sites associated with tissue-specific imprinting and gestational age-specific methylation. Conclusions DNA methylation profiling of triploidies in different tissues and developmental ages can be a powerful and effective way to map and characterize imprinted regions in the genome.
Collapse
Affiliation(s)
- Ryan Kc Yuen
- Department of Medical Genetics, University of British Columbia, 2329 West Mall, Vancouver, BC, V6T 1Z4, Canada.
| | | | | | | | | |
Collapse
|
27
|
Imprinting and expression analysis of a non-coding RNA gene in the mouse Dlk1-Dio3 domain. J Mol Histol 2011; 42:333-9. [PMID: 21706278 DOI: 10.1007/s10735-011-9337-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2011] [Accepted: 06/16/2011] [Indexed: 10/18/2022]
Abstract
The Dlk1-Dio3 imprinted domain not only is implicated growth and development of the embryo and placenta, but also affects adult metabolism and brain function. In this study, we identified the imprinting status of a mouse non-coding RNA gene, B830012L14Rik, mapped to the Dlk1-Dio3 domain by the polymorphism- and sequencing-based approach. Imprinting analysis showed that the gene was expressed maternally at E15.5, E18.5 and postnatal day 1 mice. Two transcripts of approximately 1.9 and 3.5 kb were detected by northern blot. Furthermore, we examined the spatiotemporal expression patterns of the gene during the mouse development. In situ hybridization analysis showed that B830012L14Rik was mainly expressed in forebrain, pituitary, cartilage primordium of spinal column, lung and liver at E13.5 and E15.5. The results of real-time quantitative RT-PCR showed that the B830012L14Rik expression in brain, heart, lung and liver was higher at E15.5 than at E12.5 and E18.5. Furthermore, the gene expression increased progressively in brain from E12.5 to E15.5 whereas decreased from E15.5 to E19.5. This study may provide further insights into the imprinting, genomic features and expression regulation of the Dlk1-Dio3 imprinted cluster.
Collapse
|
28
|
An extended domain of Kcnq1ot1 silencing revealed by an imprinted fluorescent reporter. Mol Cell Biol 2011; 31:2827-37. [PMID: 21576366 DOI: 10.1128/mcb.01435-10] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The distal region of mouse chromosome 7 contains two imprinted domains separated by a relatively gene-poor interval. We have previously described a transgenic mouse line called Tel7KI, which contains a green fluorescent protein (GFP) reporter inserted 2.6 kb upstream of the Ins2 gene at the proximal end of this interval. The GFP reporter from Tel7KI is imprinted and maternally expressed in postimplantation embryos. Here, we present evidence that the distal imprinting center, KvDMR1 (IC2), is responsible for the paternal silencing of Tel7KI. First, we show that Tel7KI is silenced when the noncoding RNA Kcnq1ot1 is biallelically expressed due to absence of maternal DNA methylation at IC2. Second, we use an embryonic stem (ES) cell differentiation assay to examine the effect of an IC2 deletion in cis to Tel7KI and show that it impairs the ability of the paternal transmission Tel7KI ES cells to silence GFP. These results suggested that Kcnq1ot1 silencing extends nearly 300 kb further than previously reported and led us to examine other transcripts between IC1 and IC2. We found that splice variants of Th and Ins2 are imprinted, maternally expressed, and regulated by IC2, showing that the silencing domain uncovered by our transgenic line also affects endogenous transcripts.
Collapse
|
29
|
Chromosome-wide analysis of parental allele-specific chromatin and DNA methylation. Mol Cell Biol 2011; 31:1757-70. [PMID: 21321082 DOI: 10.1128/mcb.00961-10] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
To reveal the extent of domain-wide epigenetic features at imprinted gene clusters, we performed a high-resolution allele-specific chromatin analysis of over 100 megabases along the maternally or paternally duplicated distal chromosome 7 (Chr7) and Chr15 in mouse embryo fibroblasts (MEFs). We found that reciprocal allele-specific features are limited to imprinted genes and their differentially methylated regions (DMRs), whereas broad local enrichment of H3K27me3 (BLOC) is a domain-wide feature at imprinted clusters. We uncovered novel allele-specific features of BLOCs. A maternally biased BLOC was found along the H19-Igf2 domain. A paternal allele-specific gap was found along Kcnq1ot1, interrupting a biallelic BLOC in the Kcnq1-Cdkn1c domain. We report novel allele-specific chromatin marks at the Peg13 and Slc38a4 DMRs, Cdkn1c upstream region, and Inpp5f_v2 DMR and paternal allele-specific CTCF binding at the Peg13 DMR. Additionally, we derived an imprinted gene predictor algorithm based on our allele-specific chromatin mapping data. The binary predictor H3K9ac and CTCF or H3K4me3 in one allele and H3K9me3 in the reciprocal allele, using a sliding-window approach, recognized with precision the parental allele specificity of known imprinted genes, H19, Igf2, Igf2as, Cdkn1c, Kcnq1ot1, and Inpp5f_v2 on Chr7 and Peg13 and Slc38a4 on Chr15. Chromatin features, therefore, can unequivocally identify genes with imprinted expression.
Collapse
|
30
|
Oh-McGinnis R, Bogutz AB, Lefebvre L. Partial loss of Ascl2 function affects all three layers of the mature placenta and causes intrauterine growth restriction. Dev Biol 2011; 351:277-86. [PMID: 21238448 DOI: 10.1016/j.ydbio.2011.01.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 12/17/2022]
Abstract
Several imprinted genes have been implicated in the regulation of placental function and embryonic growth. On distal mouse chromosome 7, two clusters of imprinted genes, each regulated by its own imprinting center (IC), are separated by a poorly characterized region of 280kb (the IC1-IC2 interval). We previously generated a mouse line in which this IC1-IC2 interval has been deleted (Del(7AI) allele) and found that maternal inheritance of this allele results in low birth weights in newborns. Here we report that Del(7AI) causes a partial loss of Ascl2, a maternally expressed gene in the IC2 cluster, which when knocked out leads to embryonic lethality at midgestation due to a lack of spongiotrophoblast formation. The hypomorphic Ascl2 allele causes embryonic growth restriction and an associated placental phenotype characterized by a reduction in placental weight, reduced spongiotrophoblast population, absence of glycogen cells, and an expanded trophoblast giant cell layer. We also uncovered severe defects in the labyrinth layer of maternal mutants including increased production of the trilaminar labyrinth trophoblast cell types and a disorganized labyrinthine vasculature. Our results have important implications for our understanding of the role played by the spongiotrophoblast layer during placentation and show that regulation of the dosage of the imprinted gene Ascl2 can affect all three layers of the chorio-allantoic placenta.
Collapse
Affiliation(s)
- Rosemary Oh-McGinnis
- Department of Medical Genetics, Molecular Epigenetics Group, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
31
|
Proudhon C, Bourc'his D. Identification and resolution of artifacts in the interpretation of imprinted gene expression. Brief Funct Genomics 2010; 9:374-84. [PMID: 20829207 DOI: 10.1093/bfgp/elq020] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Genomic imprinting refers to genes that are epigenetically programmed in the germline to express exclusively or preferentially one allele in a parent-of-origin manner. Expression-based genome-wide screening for the identification of imprinted genes has failed to uncover a significant number of new imprinted genes, probably because of the high tissue- and developmental-stage specificity of imprinted gene expression. A very large number of technical and biological artifacts can also lead to the erroneous evidence of imprinted gene expression. In this article, we focus on three common sources of potential confounding effects: (i) random monoallelic expression in monoclonal cell populations, (ii) genetically determined monoallelic expression and (iii) contamination or infiltration of embryonic tissues with maternal material. This last situation specifically applies to genes that occur as maternally expressed in the placenta. Beside the use of reciprocal crosses that are instrumental to confirm the parental specificity of expression, we provide additional methods for the detection and elimination of these situations that can be misinterpreted as cases of imprinted expression.
Collapse
|
32
|
Abstract
Mammalian androgenones have two paternally or sperm-derived genomes. In mice (Mus musculus) they die at peri-implantation due to the misexpression of imprinted genes-the genes that are expressed monoallelically according to the parent of origin. The misexpressions involved are poorly defined. To gain further insight, we examined the causes of midgestation death of embryos with paternal duplication (PatDp) of distal chromosome 7 (dist7), a region replete with imprinted genes. PatDp(dist7) embryos have a similar phenotype to mice with a knockout of a maternally expressed imprinted gene, Ascl2 [achaete-scute complex homolog-like 2 (Drosophila)], and their death at midgestation could result from two inactive paternal copies of this gene. However, other dist7 misexpressions could duplicate this phenotype, and the potential epistatic load is undefined. We show that an Ascl2 transgene is able to promote the development of PatDp(dist7) embryos to term, providing strong evidence that Ascl2 is the only imprinted gene in the genome for which PatDp results in early embryonic death. While some of the defects in perinatal transgenic PatDp(dist7) fetuses were consistent with known misexpressions of dist7 imprinted genes, the overall phenotype indicates a role for additional undefined misexpressions of imprinted genes. This study provides implications for the human imprinting-related fetal overgrowth disorder, Beckwith-Wiedemann syndrome.
Collapse
|
33
|
Henckel A, Arnaud P. Genome-wide identification of new imprinted genes. Brief Funct Genomics 2010; 9:304-14. [DOI: 10.1093/bfgp/elq016] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
34
|
Sritanaudomchai H, Ma H, Clepper L, Gokhale S, Bogan R, Hennebold J, Wolf D, Mitalipov S. Discovery of a novel imprinted gene by transcriptional analysis of parthenogenetic embryonic stem cells. Hum Reprod 2010; 25:1927-41. [PMID: 20522441 PMCID: PMC2907230 DOI: 10.1093/humrep/deq144] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Parthenogenetic embryonic stem cells (PESCs) may have future utilities in cell replacement therapies since they are closely related to the female from which the activated oocyte was obtained. Furthermore, the avoidance of parthenogenetic development in mammals provides the most compelling rationale for the evolution of genomic imprinting, and the biological process of parthenogenesis raises complex issues regarding differential gene expression. METHODS AND RESULTS We describe here homozygous rhesus monkey PESCs derived from a spontaneously duplicated, haploid oocyte genome. Since the effect of homozygosity on PESCs pluripotency and differentiation potential is unknown, we assessed the similarities and differences in pluripotency markers and developmental potential by in vitro and in vivo differentiation of homozygous and heterozygous PESCs. To understand the differences in gene expression regulation between parthenogenetic and biparental embryonic stem cells (ESCs), we conducted microarray analysis of genome-wide mRNA profiles of primate PESCs and ESCs derived from fertilized embryos using the Affymetrix Rhesus Macaque Genome array. Several known paternally imprinted genes were in the highly down-regulated group in PESCs compared with ESCs. Furthermore, allele-specific expression analysis of other genes whose expression is also down-regulated in PESCs, led to the identification of one novel imprinted gene, inositol polyphosphate-5-phosphatase F (INPP5F), which was exclusively expressed from a paternal allele. CONCLUSION Our findings suggest that PESCs could be used as a model for studying genomic imprinting, and in the discovery of novel imprinted genes.
Collapse
|
35
|
Rescue of placental phenotype in a mechanistic model of Beckwith-Wiedemann syndrome. BMC DEVELOPMENTAL BIOLOGY 2010; 10:50. [PMID: 20459838 PMCID: PMC2881899 DOI: 10.1186/1471-213x-10-50] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2010] [Accepted: 05/11/2010] [Indexed: 12/21/2022]
Abstract
Background Several imprinted genes have been implicated in the process of placentation. The distal region of mouse chromosome 7 (Chr 7) contains at least ten imprinted genes, several of which are expressed from the maternal homologue in the placenta. The corresponding paternal alleles of these genes are silenced in cis by an incompletely understood mechanism involving the formation of a repressive nuclear compartment mediated by the long non-coding RNA Kcnq1ot1 initiated from imprinting centre 2 (IC2). However, it is unknown whether some maternally expressed genes are silenced on the paternal homologue via a Kcnq1ot1-independent mechanism. We have previously reported that maternal inheritance of a large truncation of Chr7 encompassing the entire IC2-regulated domain (DelTel7 allele) leads to embryonic lethality at mid-gestation accompanied by severe placental abnormalities. Kcnq1ot1 expression can be abolished on the paternal chromosome by deleting IC2 (IC2KO allele). When the IC2KO mutation is paternally inherited, epigenetic silencing is lost in the region and the DelTel7 lethality is rescued in compound heterozygotes, leading to viable DelTel7/IC2KO mice. Results Considering the important functions of several IC2-regulated genes in placentation, we set out to determine whether these DelTel7/IC2KO rescued conceptuses develop normal placentae. We report no abnormalities with respect to the architecture and vasculature of the DelTel7/IC2KO rescued placentae. Imprinted expression of several of the IC2-regulated genes critical to placentation is also faithfully recapitulated in DelTel7/IC2KO placentae. Conclusion Taken together, our results demonstrate that all the distal chromosome 7 imprinted genes implicated in placental function are silenced by IC2 and Kcnq1ot1 on the paternal allele. Furthermore, our results demonstrate that the methylated maternal IC2 is not required for the regulation of nearby genes. The results show the potential for fully rescuing trans placental abnormalities that are caused by imprinting defects.
Collapse
|
36
|
Successful computational prediction of novel imprinted genes from epigenomic features. Mol Cell Biol 2010; 30:3357-70. [PMID: 20421412 DOI: 10.1128/mcb.01355-09] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Approximately 100 mouse genes undergo genomic imprinting, whereby one of the two parental alleles is epigenetically silenced. Imprinted genes influence processes including development, X chromosome inactivation, obesity, schizophrenia, and diabetes, motivating the identification of all imprinted loci. Local sequence features have been used to predict candidate imprinted genes, but rigorous testing using reciprocal crosses validated only three, one of which resided in previously identified imprinting clusters. Here we show that specific epigenetic features in mouse cells correlate with imprinting status in mice, and we identify hundreds of additional genes predicted to be imprinted in the mouse. We used a multitiered approach to validate imprinted expression, including use of a custom single nucleotide polymorphism array and traditional molecular methods. Of 65 candidates subjected to molecular assays for allele-specific expression, we found 10 novel imprinted genes that were maternally expressed in the placenta.
Collapse
|
37
|
Tiwari S, Spielman M, Schulz R, Oakey RJ, Kelsey G, Salazar A, Zhang K, Pennell R, Scott RJ. Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana. BMC PLANT BIOLOGY 2010; 10:72. [PMID: 20406451 PMCID: PMC3095346 DOI: 10.1186/1471-2229-10-72] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2009] [Accepted: 04/20/2010] [Indexed: 05/21/2023]
Abstract
BACKGROUND Crossing plants of the same species but different ploidies can have dramatic effects on seed growth, but little is known about the alterations to transcriptional programmes responsible for this. Parental genomic imbalance particularly affects proliferation of the endosperm, with an increased ratio of paternally to maternally contributed genomes ('paternal excess') associated with overproliferation, while maternal excess inhibits endosperm growth. One interpretation is that interploidy crosses disrupt the balance in the seed of active copies of parentally imprinted genes. This is supported by the observation that mutations in imprinted FIS-class genes of Arabidopsis thaliana share many features of the paternal excess phenotype. Here we investigated gene expression underlying parent-of-origin effects in Arabidopsis through transcriptional profiling of siliques generated by interploidy crosses and FIS-class mutants. RESULTS We found that fertilized fis1 mutant seeds have similar profiles to seeds with paternal excess, showing that the shared phenotypes are underpinned by similar patterns of gene expression. We identified genes strongly associated with enhanced or inhibited seed growth; this provided many candidates for further investigation including MADS-box transcription factors, cell cycle genes, and genes involved in hormone pathways. CONCLUSIONS The work presented here is a step towards understanding the effects on seed development of the related phenomena of parental genome balance and imprinting.
Collapse
Affiliation(s)
- Sushma Tiwari
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Melissa Spielman
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Reiner Schulz
- Department of Medical and Molecular Genetics, King's College London School of Medicine at Guy's, King's College and St Thomas' Hospitals, 8th Floor Guy's Tower, London SE1 9RT, UK
| | - Rebecca J Oakey
- Department of Medical and Molecular Genetics, King's College London School of Medicine at Guy's, King's College and St Thomas' Hospitals, 8th Floor Guy's Tower, London SE1 9RT, UK
| | - Gavin Kelsey
- Laboratory of Developmental Genetics and Imprinting, The Babraham Institute, Babraham Research Campus, Cambridge CB2 4AT, UK
| | - Andres Salazar
- Ceres Inc., 1535 Rancho Conejo Boulevard, Thousand Oaks, CA 91320, USA
| | - Ke Zhang
- Ceres Inc., 1535 Rancho Conejo Boulevard, Thousand Oaks, CA 91320, USA
| | - Roger Pennell
- Ceres Inc., 1535 Rancho Conejo Boulevard, Thousand Oaks, CA 91320, USA
| | - Rod J Scott
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| |
Collapse
|
38
|
Genomic imprinting mechanisms in embryonic and extraembryonic mouse tissues. Heredity (Edinb) 2010; 105:45-56. [PMID: 20234385 DOI: 10.1038/hdy.2010.23] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Imprinted genes in mice and humans mainly occur in clusters that are associated with differential DNA methylation of an imprint control element (ICE) and at least one nonprotein-coding RNA (ncRNA). Imprinted gene silencing is achieved by parental-specific insulator activity of the unmethylated ICE mediated by CTCF (CCCTC-binding factor) binding, or by ncRNA expression from a promoter in the unmethylated ICE. In many imprinted clusters, some genes, particularly those located furthest away from the ICE, show imprinted expression only in extraembryonic tissues. Recent research indicates that genes showing imprinted expression only in extraembryonic tissues may be regulated by different epigenetic mechanisms compared with genes showing imprinted expression in extraembryonic tissues and in embryonic/adult tissues. The study of extraembryonic imprinted expression, thus, has the potential to illuminate novel epigenetic strategies, but is complicated by the need to collect tissue from early stages of mouse development, when extraembryonic tissues may be contaminated by maternal cells or be present in limited amounts. Research in this area would be advanced by the development of an in vitro model system in which genetic experiments could be conducted in less time and at a lower cost than with mouse models. Here, we summarize what is known about the mechanisms regulating imprinted expression in mouse extraembryonic tissues and explore the possibilities for developing an in vitro model.
Collapse
|
39
|
Han L, Szabó PE, Mann JR. Postnatal survival of mice with maternal duplication of distal chromosome 7 induced by a Igf2/H19 imprinting control region lacking insulator function. PLoS Genet 2010; 6:e1000803. [PMID: 20062522 PMCID: PMC2794364 DOI: 10.1371/journal.pgen.1000803] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/08/2009] [Indexed: 11/19/2022] Open
Abstract
The misexpressed imprinted genes causing developmental failure of mouse parthenogenones are poorly defined. To obtain further insight, we investigated misexpressions that could cause the pronounced growth deficiency and death of fetuses with maternal duplication of distal chromosome (Chr) 7 (MatDup.dist7). Their small size could involve inactivity of Igf2, encoding a growth factor, with some contribution by over-expression of Cdkn1c, encoding a negative growth regulator. Mice lacking Igf2 expression are usually viable, and MatDup.dist7 death has been attributed to the misexpression of Cdkn1c or other imprinted genes. To examine the role of misexpressions determined by two maternal copies of the Igf2/H19 imprinting control region (ICR)—a chromatin insulator, we introduced a mutant ICR (ICRΔ) into MatDup.dist7 fetuses. This activated Igf2, with correction of H19 expression and other imprinted transcripts expected. Substantial growth enhancement and full postnatal viability was obtained, demonstrating that the aberrant MatDup.dist7 phenotype is highly dependent on the presence of two unmethylated maternal Igf2/H19 ICRs. Activation of Igf2 is likely the predominant correction that rescued growth and viability. Further experiments involved the introduction of a null allele of Cdkn1c to alleviate its over-expression. Results were not consistent with the possibility that this misexpression alone, or in combination with Igf2 inactivity, mediates MatDup.dist7 death. Rather, a network of misexpressions derived from dist7 is probably involved. Our results are consistent with the idea that reduced expression of IGF2 plays a role in the aetiology of the human imprinting-related growth-deficit disorder, Silver-Russell syndrome. Parthenogenetic mouse embryos with two maternal genomes die early in development due to the misexpression of imprinted genes. To gain further insight into which misexpressions might be involved, we examined some of the misexpressions that could determine the small size and fetal death of a “partial parthenogenone”—embryos with maternal duplication of distal Chr 7 (MatDup.dist7). We investigated the involvement of two maternal copies of the Igf2/H19 imprinting control region (ICR), which is associated with lack of activity of the Igf2 gene, encoding a growth factor, and over-activity of H19. By introducing a mutant ICR, we activated Igf2 and expected to correct other misexpressions, such as that of H19. The result was substantial increase in growth and full postnatal viability of MatDup.dist7 fetuses, demonstrating the dependency of their abnormal phenotype on two maternal copies of the ICR. Activation of Igf2 was probably the main effector of this rescue. These results are consistent with the idea that reduced expression of IGF2 is causal in the human growth deficit disorder, Silver-Russell syndrome.
Collapse
Affiliation(s)
- Li Han
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Piroska E. Szabó
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
| | - Jeffrey R. Mann
- Division of Biology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, United States of America
- Department of Zoology, The University of Melbourne, Melbourne, Victoria, Australia
- Laboratory and Community Genetics Theme, Murdoch Childrens Research Institute, The Royal Children's Hospital, Parkville, Victoria, Australia
- * E-mail:
| |
Collapse
|
40
|
Jones MJ, Lefebvre L. An imprinted GFP insertion reveals long-range epigenetic regulation in embryonic lineages. Dev Biol 2009; 336:42-52. [PMID: 19778534 DOI: 10.1016/j.ydbio.2009.09.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 09/03/2009] [Accepted: 09/16/2009] [Indexed: 01/08/2023]
Abstract
Imprinted genes are often grouped in clusters at defined chromosomal locations. Long-range regulatory effects are implicated in the control of imprinting and these could be co-opted in the emergence of novel imprinted genes during evolution. We present a detailed analysis of a novel imprinted GFP mouse line. Tel7KI is a new insertion allele near the Ins2 locus within a cluster of imprinted genes on distal mouse Chr7. The GFP reporter becomes regulated by the host domain in two notable fashions. First, transcription of GFP is imprinted and active exclusively from the maternally inherited allele in the embryo. Second, the expressed maternal allele is subject to position effects reflecting a distinct pattern of expression. The GFP reporter acquires silencing DNA methylation marks on the paternal allele after fertilization. This imprinting is not acquired in the placenta, where GFP is active from both parental alleles, demonstrating key epigenetic differences between embryonic and extraembryonic lineages. Our analysis shows that imprinted clusters can provide environments conducive to the acquisition of imprinting upon novel inserted transcriptional units. The Tel7KI line offers new powerful avenues to explore both genetic and environmental factors implicated in the acquisition and maintenance of imprinted transcription in mammals.
Collapse
Affiliation(s)
- Meaghan J Jones
- Department of Medical Genetics, Life Sciences Institute, Molecular Epigenetics Group, The University of British Columbia, Vancouver, BC, Canada V6T 1Z3
| | | |
Collapse
|
41
|
Lefebvre L, Mar L, Bogutz A, Oh-McGinnis R, Mandegar MA, Paderova J, Gertsenstein M, Squire JA, Nagy A. The interval between Ins2 and Ascl2 is dispensable for imprinting centre function in the murine Beckwith-Wiedemann region. Hum Mol Genet 2009; 18:4255-67. [PMID: 19684026 DOI: 10.1093/hmg/ddp379] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Imprinted genes are commonly clustered in domains across the mammalian genome, suggesting a degree of coregulation via long-range coordination of their monoallelic transcription. The distal end of mouse chromosome 7 (Chr 7) contains two clusters of imprinted genes within a approximately 1 Mb domain. This region is conserved on human 11p15.5 where it is implicated in the Beckwith-Wiedemann syndrome. In both species, imprinted regulation requires two critical cis-acting imprinting centres, carrying different germline epigenetic marks and mediating imprinted expression in the proximal and distal sub-domains. The clusters are separated by a region containing the gene for tyrosine hydroxylase (Th) as well as a high density of short repeats and retrotransposons in the mouse. We have used the Cre-loxP recombination system in vivo to engineer an interstitial deletion of this approximately 280-kb intervening region previously proposed to participate in the imprinting mechanism or to act as a boundary between the two sub-domains. The deletion allele, Del(7AI), is silent with respect to epigenetic marking at the two flanking imprinting centres. Reciprocal inheritance of Del(7AI) demonstrates that the deleted region, which represents more than a quarter of the previously defined imprinted domain, is associated with intrauterine growth restriction in maternal heterozygotes. In homozygotes, the deficiency behaves as a Th null allele and can be rescued pharmacologically by bypassing the metabolic requirement for TH in utero. Our results show that the deleted interval is not required for normal imprinting on distal Chr 7 and uncover a new imprinted growth phenotype.
Collapse
Affiliation(s)
- Louis Lefebvre
- Department of Medical Genetics and Molecular Epigenetics Group, Life Sciences Institute, The University of British Columbia, Vancouver, BC, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Bischoff SR, Tsai S, Hardison N, Motsinger-Reif AA, Freking BA, Nonneman D, Rohrer G, Piedrahita JA. Characterization of conserved and nonconserved imprinted genes in swine. Biol Reprod 2009; 81:906-20. [PMID: 19571260 DOI: 10.1095/biolreprod.109.078139] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To increase our understanding of imprinted genes in swine, we carried out a comprehensive analysis of this gene family using two complementary approaches: expression and phenotypic profiling of parthenogenetic fetuses, and analysis of imprinting by pyrosequencing. The parthenote placenta and fetus were smaller than those of controls but had no obvious morphological differences at Day 28 of gestation. By Day 30, however, the parthenote placentas had decreased chorioallantoic folding, decreased chorionic ruggae, and reduction of fetal-maternal interface surface in comparison with stage-matched control fetuses. Using Affymetrix Porcine GeneChip microarrays and/or semiquantitative PCR, brain, fibroblast, liver, and placenta of Day 30 fetuses were profiled, and 25 imprinted genes were identified as differentially expressed in at least one of the four tissue types: AMPD3, CDKN1C, COPG2, DHCR7, DIRAS3, IGF2 (isoform specific), IGF2AS, IGF2R, MEG3, MEST, NAP1L5, NDN, NNAT, OSBPL1A, PEG3, APEG3, PEG10, PLAGL1, PON2, PPP1R9A, SGCE, SLC38A4, SNORD107, SNRPN, and TFPI2. For DIRAS3, PLAGL1, SGCE, and SLC38A4, tissue-specific differences were detected. In addition, we examined the imprinting status of candidate genes by quantitative allelic pyrosequencing. Samples were collected from Day 30 pregnancies generated from reciprocal crosses of Meishan and White Composite breeds, and single-nucleotide polymorphisms were identified in candidate genes. Imprinting was confirmed for DIRAS3, DLK1, H19, IGF2AS, NNAT, MEST, PEG10, PHLDA2, PLAGL1, SGCE, and SNORD107. We also found no evidence of imprinting in ASB4, ASCL2, CD81, COMMD1, DCN, DLX5, and H13. Combined, these results represent the most comprehensive survey of imprinted genes in swine to date.
Collapse
Affiliation(s)
- Steve R Bischoff
- Department of Molecular Biomedical Sciences, College of Veterinary Medicine, Center for Comparative Medicine and Translational Research, North Carolina State University, Raleigh, North Carolina 27606, USA
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Kobayashi H, Yamada K, Morita S, Hiura H, Fukuda A, Kagami M, Ogata T, Hata K, Sotomaru Y, Kono T. Identification of the mouse paternally expressed imprinted gene Zdbf2 on chromosome 1 and its imprinted human homolog ZDBF2 on chromosome 2. Genomics 2009; 93:461-72. [DOI: 10.1016/j.ygeno.2008.12.012] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2008] [Revised: 12/30/2008] [Accepted: 12/30/2008] [Indexed: 12/20/2022]
|
44
|
Babak T, Deveale B, Armour C, Raymond C, Cleary MA, van der Kooy D, Johnson JM, Lim LP. Global survey of genomic imprinting by transcriptome sequencing. Curr Biol 2009; 18:1735-41. [PMID: 19026546 DOI: 10.1016/j.cub.2008.09.044] [Citation(s) in RCA: 122] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Revised: 09/10/2008] [Accepted: 09/12/2008] [Indexed: 01/10/2023]
Abstract
Genomic imprinting restricts gene expression to a paternal or maternal allele. To date, approximately 90 imprinted transcripts have been identified in mouse, of which the majority were detected after intense interrogation of clusters of imprinted genes identified by phenotype-driven assays in mice with uniparental disomies [1]. Here we use selective priming and parallel sequencing to measure allelic bias in whole transcriptomes. By distinguishing parent-of-origin bias from strain-specific bias in embryos derived from a reciprocal cross of mice, we constructed a genome-wide map of imprinted transcription. This map was able to objectively locate over 80% of known imprinted loci and allowed the detection and confirmation of six novel imprinted genes. Even in the intensely studied embryonic day 9.5 developmental stage that we analyzed, more than half of all imprinted single-nucleotide polymorphisms did not overlap previously discovered imprinted transcripts; a large fraction of these represent novel noncoding RNAs within known imprinted loci. For example, a previously unnoticed, maternally expressed antisense transcript was mapped within the Grb10 locus. This study demonstrates the feasibility of using transcriptome sequencing for mapping of imprinted gene expression in physiologically normal animals. Such an approach will allow researchers to study imprinting without restricting themselves to individual loci or specific transcripts.
Collapse
Affiliation(s)
- Tomas Babak
- Rosetta Inpharmatics, LLC, a wholly owned subsidiary of Merck & Co., 401 Terry Avenue North, Seattle, WA 98109, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Miri K, Varmuza S. Chapter 5 Imprinting and Extraembryonic Tissues—Mom Takes Control. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2009; 276:215-62. [DOI: 10.1016/s1937-6448(09)76005-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
46
|
Wang X, Sun Q, McGrath SD, Mardis ER, Soloway PD, Clark AG. Transcriptome-wide identification of novel imprinted genes in neonatal mouse brain. PLoS One 2008; 3:e3839. [PMID: 19052635 PMCID: PMC2585789 DOI: 10.1371/journal.pone.0003839] [Citation(s) in RCA: 158] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 11/05/2008] [Indexed: 11/19/2022] Open
Abstract
Imprinted genes display differential allelic expression in a manner that depends on the sex of the transmitting parent. The degree of imprinting is often tissue-specific and/or developmental stage-specific, and may be altered in some diseases including cancer. Here we applied Illumina/Solexa sequencing of the transcriptomes of reciprocal F1 mouse neonatal brains and identified 26 genes with parent-of-origin dependent differential allelic expression. Allele-specific Pyrosequencing verified 17 of them, including three novel imprinted genes. The known and novel imprinted genes all are found in proximity to previously reported differentially methylated regions (DMRs). Ten genes known to be imprinted in placenta had sufficient expression levels to attain a read depth that provided statistical power to detect imprinting, and yet all were consistent with non-imprinting in our transcript count data for neonatal brain. Three closely linked and reciprocally imprinted gene pairs were also discovered, and their pattern of expression suggests transcriptional interference. Despite the coverage of more than 5000 genes, this scan only identified three novel imprinted refseq genes in neonatal brain, suggesting that this tissue is nearly exhaustively characterized. This approach has the potential to yield an complete catalog of imprinted genes after application to multiple tissues and developmental stages, shedding light on the mechanism, bioinformatic prediction, and evolution of imprinted genes and diseases associated with genomic imprinting.
Collapse
Affiliation(s)
- Xu Wang
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, United States of America
| | - Qi Sun
- Computational Biology Service Unit, Life Sciences Core Laboratories Center, Cornell University, Ithaca, New York, United States of America
| | - Sean D. McGrath
- The Genome Center at Washington University, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Elaine R. Mardis
- The Genome Center at Washington University, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Paul D. Soloway
- Division of Nutritional Sciences, College of Agriculture and Life Sciences, Cornell University, Ithaca, New York, United States of America
| | - Andrew G. Clark
- Department of Molecular Biology & Genetics, Cornell University, Ithaca, New York, United States of America
- * E-mail:
| |
Collapse
|
47
|
Polycomb Group Proteins Ezh2 and Rnf2 Direct Genomic Contraction and Imprinted Repression in Early Mouse Embryos. Dev Cell 2008; 15:668-79. [DOI: 10.1016/j.devcel.2008.08.015] [Citation(s) in RCA: 262] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2008] [Revised: 07/01/2008] [Accepted: 08/25/2008] [Indexed: 01/24/2023]
|
48
|
Schulz R, McCole RB, Woodfine K, Wood AJ, Chahal M, Monk D, Moore GE, Oakey RJ. Transcript- and tissue-specific imprinting of a tumour suppressor gene. Hum Mol Genet 2008; 18:118-27. [PMID: 18836209 PMCID: PMC2666296 DOI: 10.1093/hmg/ddn322] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The Bladder Cancer-Associated Protein gene (BLCAP; previously BC10) is a tumour suppressor that limits cell proliferation and stimulates apoptosis. BLCAP protein or message are downregulated or absent in a variety of human cancers. In mouse and human, the first intron of Blcap/BLCAP contains the distinct Neuronatin (Nnat/NNAT) gene. Nnat is an imprinted gene that is exclusively expressed from the paternally inherited allele. Previous studies found no evidence for imprinting of Blcap in mouse or human. Here we show that Blcap is imprinted in mouse and human brain, but not in other mouse tissues. Moreover, Blcap produces multiple distinct transcripts that exhibit reciprocal allele-specific expression in both mouse and human. We propose that the tissue-specific imprinting of Blcap is due to the particularly high transcriptional activity of Nnat in brain, as has been suggested previously for the similarly organized and imprinted murine Commd1/U2af1-rs1 locus. For Commd1/U2af1-rs1, we show that it too produces distinct transcript variants with reciprocal allele-specific expression. The imprinted expression of BLCAP and its interplay with NNAT at the transcriptional level may be relevant to human carcinogenesis.
Collapse
Affiliation(s)
- Reiner Schulz
- Department of Medical and Molecular Genetics, King's College London, London SE1 9RT, UK
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Schulz R, Woodfine K, Menheniott TR, Bourc'his D, Bestor T, Oakey RJ. WAMIDEX: a web atlas of murine genomic imprinting and differential expression. Epigenetics 2008; 3:89-96. [PMID: 18398312 DOI: 10.4161/epi.3.2.5900] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The mouse is an established model organism for the study of genomic imprinting. Mice with genetic material originating from only one parent (e.g., mice with uniparental chromosomal duplications) or gene mutations leading to epigenetic deficiencies have proven to be particularly useful tools. In the process of our studies we have accumulated a large set of expression microarray measurements in samples derived from these types of mice. Here, we present the collation of these and third-party microarray data that are relevant to genomic imprinting into a Web Atlas of Murine genomic Imprinting and Differential EXpression (WAMIDEX: https://atlas.genetics.kcl.ac.uk). WAMIDEX integrates the most comprehensive literature-derived catalog of murine imprinted genes to date with a genome browser that makes the microarray data immediately accessible in annotation-rich genomic context. In addition, WAMIDEX exemplifies the use of the self-organizing map method for the discovery of novel imprinted genes from microarray data. The parent-of-origin-specific expression of imprinted genes is frequently limited to specific tissues or developmental stages, a fact that the atlas reflects in its design and data content.
Collapse
Affiliation(s)
- Reiner Schulz
- Department of Medical & Molecular Genetics, School of Medicine at Guy's, King's College & St Thomas' Hospitals, King's College London, London, United Kingdom.
| | | | | | | | | | | |
Collapse
|
50
|
Menheniott TR, Woodfine K, Schulz R, Wood AJ, Monk D, Giraud AS, Baldwin HS, Moore GE, Oakey RJ. Genomic imprinting of Dopa decarboxylase in heart and reciprocal allelic expression with neighboring Grb10. Mol Cell Biol 2008; 28:386-96. [PMID: 17967881 PMCID: PMC2223316 DOI: 10.1128/mcb.00862-07] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2007] [Revised: 06/14/2007] [Accepted: 10/08/2007] [Indexed: 11/20/2022] Open
Abstract
By combining a tissue-specific microarray screen with mouse uniparental duplications, we have identified a novel imprinted gene, Dopa decarboxylase (Ddc), on chromosome 11. Ddc_exon1a is a 2-kb transcript variant that initiates from an alternative first exon in intron 1 of the canonical Ddc transcript and is paternally expressed in trabecular cardiomyocytes of the embryonic and neonatal heart. Ddc displays tight conserved linkage with the maternally expressed and methylated Grb10 gene, suggesting that these reciprocally imprinted genes may be coordinately regulated. In Dnmt3L mutant embryos that lack maternal germ line methylation imprints, we show that Ddc is overexpressed and Grb10 is silenced. Their imprinting is therefore dependent on maternal germ line methylation, but the mechanism at Ddc does not appear to involve differential methylation of the Ddc_exon1a promoter region and may instead be provided by the oocyte mark at Grb10. Our analysis of Ddc redefines the imprinted Grb10 domain on mouse proximal chromosome 11 and identifies Ddc_exon1a as the first example of a heart-specific imprinted gene.
Collapse
Affiliation(s)
- Trevelyan R Menheniott
- King's College London, Department of Medical and Molecular Genetics, 8th Floor Guy's Tower, London SE1 9RT, England
| | | | | | | | | | | | | | | | | |
Collapse
|