1
|
Joudeh LA, Schuck PL, Van NM, DiCintio AJ, Stewart JA, Waldman AS. Progerin can induce DNA damage in the absence of global changes in replication or cell proliferation. PLoS One 2024; 19:e0315084. [PMID: 39636792 PMCID: PMC11620420 DOI: 10.1371/journal.pone.0315084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 11/15/2024] [Indexed: 12/07/2024] Open
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as "progerin." Progerin is also expressed at low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs) and alterations in the nature of DSB repair. The source of DSBs in HGPS is often attributed to stalling and subsequent collapse of replication forks in conjunction with faulty recruitment of repair factors to damage sites. In this work, we used a model system involving immortalized human cell lines to investigate progerin-induced genomic damage. Using an immunofluorescence approach to visualize phosphorylated histone H2AX foci which mark sites of genomic damage, we report that cells engineered to express progerin displayed a significant elevation of endogenous damage in the absence of any change in the cell cycle profile or doubling time of cells. Genomic damage was enhanced and persistent in progerin-expressing cells treated with hydroxyurea. Overexpression of wild-type lamin A did not elicit the outcomes associated with progerin expression. Our results show that DNA damage caused by progerin can occur independently from global changes in replication or cell proliferation.
Collapse
Affiliation(s)
- Liza A. Joudeh
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - P. Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Nina M. Van
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Alannah J. DiCintio
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| | - Jason A. Stewart
- Department of Biology, Western Kentucky University, Bowling Green, Kentucky, United States of America
| | - Alan S. Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, South Carolina, United States of America
| |
Collapse
|
2
|
Biga PR, Duan JE, Young TE, Marks JR, Bronikowski A, Decena LP, Randolph EC, Pavuluri AG, Li G, Fang Y, Wilkinson GS, Singh G, Nigrin NT, Larschan EN, Lonski AJ, Riddle NC. Hallmarks of aging: A user's guide for comparative biologists. Ageing Res Rev 2024; 104:102616. [PMID: 39643212 DOI: 10.1016/j.arr.2024.102616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 11/25/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Since the first description of a set of characteristics of aging as so-called hallmarks or pillars in 2013/2014, these characteristics have served as guideposts for the research in aging biology. They have been examined in a range of contexts, across tissues, in response to disease conditions or environmental factors, and served as a benchmark for various anti-aging interventions. While the hallmarks of aging were intended to capture generalizable characteristics of aging, they are derived mostly from studies of rodents and humans. Comparative studies of aging including species from across the animal tree of life have great promise to reveal new insights into the mechanistic foundations of aging, as there is a great diversity in lifespan and age-associated physiological changes. However, it is unclear how well the defined hallmarks of aging apply across diverse species. Here, we review each of the twelve hallmarks of aging defined by Lopez-Otin in 2023 with respect to the availability of data from diverse species. We evaluate the current methods used to assess these hallmarks for their potential to be adapted for comparative studies. Not unexpectedly, we find that the data supporting the described hallmarks of aging are restricted mostly to humans and a few model systems and that no data are available for many animal clades. Similarly, not all hallmarks can be easily assessed in diverse species. However, for at least half of the hallmarks, there are methods available today that can be employed to fill this gap in knowledge, suggesting that these studies can be prioritized while methods are developed for comparative study of the remaining hallmarks.
Collapse
Affiliation(s)
- Peggy R Biga
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jingyue E Duan
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Tristan E Young
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jamie R Marks
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Anne Bronikowski
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Louis P Decena
- Department of Integrative Biology, W. K. Kellogg Biological Station, Michigan State University, Hickory Corners, MI, USA
| | - Eric C Randolph
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA
| | - Ananya G Pavuluri
- Center for Computational Molecular Biology, Brown University, Providence, RI, USA
| | - Guangsheng Li
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | - Yifei Fang
- Department of Animal Science, Cornell University, Ithaca, NY, USA
| | | | - Gunjan Singh
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nathan T Nigrin
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Erica N Larschan
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Andrew J Lonski
- Department of Molecular Biology, Cellular Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Nicole C Riddle
- Department of Biology, The University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
3
|
Shojaeisaadi H, Schoenrock A, Meier MJ, Williams A, Norris JM, Palmer ND, Yauk CL, Marchetti F. Mutational signature analyses in multi-child families reveal sources of age-related increases in human germline mutations. Commun Biol 2024; 7:1451. [PMID: 39506086 PMCID: PMC11541588 DOI: 10.1038/s42003-024-07140-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 10/24/2024] [Indexed: 11/08/2024] Open
Abstract
Whole-genome sequencing studies of parent-offspring trios have provided valuable insights into the potential impact of de novo mutations (DNMs) on human health and disease. However, the molecular mechanisms that drive DNMs are unclear. Studies with multi-child families can provide important insight into the causes of inter-family variability in DNM rates but they are highly limited. We characterized 2479 de novo single nucleotide variants (SNVs) in 13 multi-child families of Mexican-American ethnicity. We observed a strong paternal age effect on validated de novo SNVs with extensive inter-family variability in the yearly rate of increase. Children of older fathers showed more C > T transitions at CpG sites than children from younger fathers. Validated SNVs were examined against one cancer (COSMIC) and two non-cancer (human germline and CRISPR-Cas 9 knockout of human DNA repair genes) mutational signature databases. These analyses suggest that inaccurate DNA mismatch repair during repair initiation and excision processes, along with DNA damage and replication errors, are major sources of human germline de novo SNVs. Our findings provide important information for understanding the potential sources of human germline de novo SNVs and the critical role of DNA mismatch repair in their genesis.
Collapse
Affiliation(s)
| | - Andrew Schoenrock
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
- Research Computing Services, Carleton University, Ottawa, ON, Canada
| | - Matthew J Meier
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| | - Jill M Norris
- Department of Epidemiology, Colorado School of Public Health, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Nicholette D Palmer
- Department of Biochemistry, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, ON, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| |
Collapse
|
4
|
Jacob M, Reddy RP, Garcia RI, Reddy AP, Khemka S, Roghani AK, Pattoor V, Sehar U, Reddy PH. Harnessing Artificial Intelligence for the Detection and Management of Colorectal Cancer Treatment. Cancer Prev Res (Phila) 2024; 17:499-515. [PMID: 39077801 PMCID: PMC11534518 DOI: 10.1158/1940-6207.capr-24-0178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/26/2024] [Accepted: 07/26/2024] [Indexed: 07/31/2024]
Abstract
Currently, eight million people in the United States suffer from cancer and it is a major global health concern. Early detection and interventions are urgently needed for all cancers, including colorectal cancer. Colorectal cancer is the third most common type of cancer worldwide. Based on the diagnostic efforts to general awareness and lifestyle choices, it is understandable why colorectal cancer is so prevalent today. There is a notable lack of awareness concerning the impact of this cancer and its connection to lifestyle elements, as well as people sometimes mistaking symptoms for a different gastrointestinal condition. Artificial intelligence (AI) may assist in the early detection of all cancers, including colorectal cancer. The usage of AI has exponentially grown in healthcare through extensive research, and since clinical implementation, it has succeeded in improving patient lifestyles, modernizing diagnostic processes, and innovating current treatment strategies. Numerous challenges arise for patients with colorectal cancer and oncologists alike during treatment. For initial screening phases, conventional methods often result in misdiagnosis. Moreover, after detection, determining the course of which colorectal cancer can sometimes contribute to treatment delays. This article touches on recent advancements in AI and its clinical application while shedding light on why this disease is so common today.
Collapse
Affiliation(s)
- Michael Jacob
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Department of Biological Sciences, Texas Tech University, Lubbock, Texas
| | - Ruhananhad P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Lubbock High School, Lubbock, Texas
| | - Ricardo I Garcia
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Aananya P Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Lubbock High School, Lubbock, Texas
| | - Sachi Khemka
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - Aryan Kia Roghani
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Frenship High School, Lubbock, Texas
| | - Vasanthkumar Pattoor
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- University of South Florida, Tampa, Florida
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Nutritional Sciences Department, College of Human Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas
- Public Health Department of Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, Texas
- Department of Speech, Language and Hearing Services, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, Texas
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, Texas
| |
Collapse
|
5
|
Swer PB, Kharbuli B, Syiem D, Sharma R. Age-related decline in the expression of BRG1, ATM and ATR are partially reversed by dietary restriction in the livers of female mice. Biogerontology 2024; 25:1025-1037. [PMID: 38970714 DOI: 10.1007/s10522-024-10117-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 06/26/2024] [Indexed: 07/08/2024]
Abstract
BRG1 (Brahma-related gene 1) is a member of the SWI/SNF (switch/sucrose nonfermentable) chromatin remodeling complex which utilizes the energy from ATP hydrolysis for its activity. In addition to its role of regulating the expression of a vast array of genes, BRG1 mediates DNA repair upon genotoxic stress and regulates senescence. During organismal ageing, there is accumulation of unrepaired/unrepairable DNA damage due to progressive breakdown of the DNA repair machinery. The present study investigates the expression level of BRG1 as a function of age in the liver of 5- and 21-month-old female mice. It also explores the impact of dietary restriction on BRG1 expression in the old (21-month) mice. Salient findings of the study are: Real-time PCR and Western blot analyses reveal that BRG1 levels are higher in 5-month-old mice but decrease significantly with age. Dietary restriction increases BRG1 expression in the 21-month-old mice, nearly restoring it to the level observed in the younger group. Similar expression patterns are observed for DNA damage response genes ATM (Ataxia Telangiectasia Mutated) and ATR (Ataxia Telangiectasia and Rad3-related) with the advancement in age and which appears to be modulated by dietary restriction. BRG1 transcriptionally regulates ATM as a function of age and dietary restriction. These results suggest that BRG1, ATM and ATR are downregulated as mice age, and dietary restriction can restore their expression. This implies that dietary restriction may play a crucial role in regulating BRG1 and related gene expression, potentially maintaining liver repair and metabolic processes as mice age.
Collapse
Affiliation(s)
- Pynskhem Bok Swer
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | | | - Donkupar Syiem
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India
| | - Ramesh Sharma
- Department of Biochemistry, North-Eastern Hill University, Shillong, 793022, India.
| |
Collapse
|
6
|
Rezaeian AH, Wei W. Molecular signaling and clinical implications in the human aging-cancer cycle. Semin Cancer Biol 2024; 106-107:28-42. [PMID: 39197809 PMCID: PMC11625621 DOI: 10.1016/j.semcancer.2024.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/01/2024]
Abstract
It is well documented that aging is associated with cancer, and likewise, cancer survivors display accelerated aging. As the number of aging individuals and cancer survivors continues to grow, it raises additional concerns across society. Therefore, unraveling the molecular mechanisms of aging in tissues is essential to developing effective therapies to fight the aging and cancer diseases in cancer survivors and cancer patients. Indeed, cellular senescence is a critical response, or a natural barrier to suppress the transition of normal cells into cancer cells, however, hypoxia which is physiologically required to maintain the stem cell niche, is increased by aging and inhibits senescence in tissues. Interestingly, oxygen restriction or hypoxia increases longevity and slows the aging process in humans, but hypoxia can also drive angiogenesis to facilitate cancer progression. In addition, cancer treatment is considered as one of the major reasons that drive cellular senescence, subsequently followed by accelerated aging. Several clinical trials have recently evaluated inhibitors to eliminate senescent cells. However, some mechanisms of aging typically can also retard cancer cell growth and progression, which might require careful strategy for better clinical outcomes. Here we describe the molecular regulation of aging and cancer in crosstalk with DNA damage and hypoxia signaling pathways in cancer patients and cancer survivors. We also update several therapeutic strategies that might be critical in reversing the cancer treatment-associated aging process.
Collapse
Affiliation(s)
- Abdol-Hossein Rezaeian
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| | - Wenyi Wei
- Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, United States.
| |
Collapse
|
7
|
Li M, Shao G. Senataxin Attenuates DNA Damage Response Activation and Suppresses Senescence. Antioxidants (Basel) 2024; 13:1337. [PMID: 39594478 PMCID: PMC11591223 DOI: 10.3390/antiox13111337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/25/2024] [Accepted: 10/29/2024] [Indexed: 11/28/2024] Open
Abstract
Oxidative stress, driven by reactive oxygen species (ROS) such as hydrogen peroxide (H2O2), induces DNA double-strand breaks (DSBs) that compromise genomic integrity. The DNA Damage Response (DDR), primarily mediated by ATM and ATR kinases, is crucial for recognizing and repairing DSBs. Senataxin (SETX), a DNA/RNA helicase, is critical in resolving R-loops, with mutations in SETX associated with neurodegenerative diseases. This study uncovers a novel function of senataxin in modulating DDR and its impact on cellular senescence. Senataxin is shown to be crucial not only for DSB repair but also for determining cell fate under oxidative stress. SETX knockout cells show impaired DSB repair and prolonged ATM/ATR signaling detected by Western blotting, leading to increased senescence, as indicated by elevated β-galactosidase activity following H2O2 exposure and I-PpoI-induced DSBs. Wild-type cells exhibit higher apoptosis levels compared to SETX knockout cells under H2O2 treatment, suggesting that senataxin promotes apoptosis over senescence in oxidative stress. This indicates that senataxin plays a protective role against the accumulation of senescent cells, potentially mitigating age-related cellular decline and neurodegenerative disease progression. These findings highlight senataxin as a critical mediator in DDR pathways and a potential therapeutic target for conditions where cellular senescence contributes to disease pathology.
Collapse
Affiliation(s)
| | - Genbao Shao
- Department of Basic Medicine, School of Medicine, Jiangsu University, Zhenjiang 212013, China;
| |
Collapse
|
8
|
Henriques ART, Silva JP, Carvalho F. The impact of opioids on the hallmarks of ageing. Mech Ageing Dev 2024; 222:111994. [PMID: 39326463 DOI: 10.1016/j.mad.2024.111994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 09/28/2024]
Abstract
Opioids rank among the most hazardous substances of abuse, leading to opioid use disorders (which greatly diminish life quality) and contributing to the highest drug-related mortality rates. Nonetheless, both the therapeutic and recreational use of opioids is escalating globally. Interestingly, chronic opioid users often exhibit signs consistent with accelerated ageing, suggesting that they likely interfere with well-characterized ageing mechanisms (e.g., telomere shortening, epigenetic changes, mitochondrial dysfunction, cellular senescence). Here, we review the most recent advances regarding the impact of opioids on well-characterized hallmarks of ageing, to ascertain a potential association between opioid use and accelerated ageing. Our findings indicate that there is accumulating evidence supporting a close association between the use of opioids and the early onset of some ageing hallmarks, namely mitochondrial dysfunction, genomic instability, or telomere shortening. However, there is still limited data available regarding how opioids specifically impact other ageing hallmarks, like nutrient sensing, cellular senescence, or loss of proteostasis. Taking into consideration the high prevalence of opioid use, strengthening the understanding of the mechanisms underlying opioids' impact on ageing assumes utmost relevance, both in terms of improving risk assessment, as well as to help researchers and clinicians prevent or mitigate these effects in clinical settings.
Collapse
Affiliation(s)
- Ana Rita Tavares Henriques
- Applied Molecualr Biosciences Unit (UCIBIO), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - João Pedro Silva
- Applied Molecualr Biosciences Unit (UCIBIO), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| | - Félix Carvalho
- Applied Molecualr Biosciences Unit (UCIBIO), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; Institute for Health and Bioeconomy (i4HB), Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal.
| |
Collapse
|
9
|
Zhang X, Wang T. YIPF2 regulates genome integrity. Cell Biosci 2024; 14:114. [PMID: 39238039 PMCID: PMC11376028 DOI: 10.1186/s13578-024-01300-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 08/28/2024] [Indexed: 09/07/2024] Open
Abstract
Understanding of the mechanisms for genome integrity maintenance can help in developing effective intervention strategies to combat aging. A whole-genome RNAi screen was conducted to identify novel factors involved in maintaining genome stability. The potential target genes identified in the screening are related to the cell cycle, proteasome, and spliceosomes. Unexpectedly, the Golgi protein YIPF2 has been found to play a critical role in maintaining genome stability. The depletion of YIPF2 hinders the process of homologous recombination (HR) repair, which then triggers DNA damage response mechanisms, ultimately leading to cellular senescence. The overexpression of YIPF2 facilitated cellular recovery from DNA damage induced by chemotherapy agents or replicative senescence-associated DNA damage. Our findings indicate that only the intact Golgi apparatus containing YIPF2 provides a protective effect on genome integrity.
Collapse
Affiliation(s)
- Xiao Zhang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint, Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China
- GIBH-CUHK Joint Research Laboratory On Stem Cell and Regenerative Medicine, Guangzhou, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Tao Wang
- Guangdong Provincial Key Laboratory of Stem Cell and Regenerative Medicine, Guangdong-Hong Kong Joint, Laboratory for Stem Cell and Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou, China.
- GIBH-HKU Guangdong-Hong Kong Stem Cell and Regenerative Medicine Research Centre, Guangzhou, China.
- GIBH-CUHK Joint Research Laboratory On Stem Cell and Regenerative Medicine, Guangzhou, China.
| |
Collapse
|
10
|
Vitantonio AT, Dimovasili C, Mortazavi F, Vaughan KL, Mattison JA, Rosene DL. Long-term calorie restriction reduces oxidative DNA damage to oligodendroglia and promotes homeostatic microglia in the aging monkey brain. Neurobiol Aging 2024; 141:1-13. [PMID: 38788462 DOI: 10.1016/j.neurobiolaging.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 04/29/2024] [Accepted: 05/08/2024] [Indexed: 05/26/2024]
Abstract
Calorie restriction (CR) is a robust intervention that can slow biological aging and extend lifespan. In the brain, terminally differentiated neurons and glia accumulate oxidative damage with age, reducing their optimal function. We investigated if CR could reduce oxidative DNA damage to white matter oligodendrocytes and microglia. This study utilized post-mortem brain tissue from rhesus monkeys that died after decades on a 30 % reduced calorie diet. We found that CR subjects had significantly fewer cells with oxidative damage within the corpus callosum and the cingulum bundle. Oligodendrocytes specifically showed the greatest response to CR with a robust reduction in DNA damage. Additionally, we observed alterations in microglia morphology with CR subjects having a higher proportion of ramified, homeostatic microglia and fewer pro-inflammatory, hypertrophic microglia relative to controls. Furthermore, we determined that the observed attenuation in damaged DNA occurs primarily within mitochondria. Overall, these data suggest that long-term CR can reduce oxidative DNA damage and offer a neuroprotective effect in a cell-type-specific manner in the aging monkey brain.
Collapse
Affiliation(s)
- Ana T Vitantonio
- Boston University Chobanian and Avedisian School of Medicine, Department of Pharmacology, Physiology, and Biophysics, 700 Albany St., Room 308, Boston, MA 02118, USA; Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA.
| | - Christina Dimovasili
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA
| | - Farzad Mortazavi
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA
| | - Kelli L Vaughan
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Julie A Mattison
- Translational Gerontology Branch, National Institute on Aging, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | - Douglas L Rosene
- Boston University Chobanian and Avedisian School of Medicine, Department of Anatomy & Neurobiology, 72 East Concord St, Room L1004, Boston, MA 02118, USA; Boston University, Center for Systems Neuroscience, 610 Commonwealth Ave., 7th Floor, Boston, MA 02215, USA
| |
Collapse
|
11
|
Bellani MA, Shaik A, Majumdar I, Ling C, Seidman MM. Repair of genomic interstrand crosslinks. DNA Repair (Amst) 2024; 141:103739. [PMID: 39106540 PMCID: PMC11423799 DOI: 10.1016/j.dnarep.2024.103739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 07/11/2024] [Accepted: 07/25/2024] [Indexed: 08/09/2024]
Abstract
Genomic interstrand crosslinks (ICLs) are formed by reactive species generated during normal cellular metabolism, produced by the microbiome, and employed in cancer chemotherapy. While there are multiple options for replication dependent and independent ICL repair, the crucial step for each is unhooking one DNA strand from the other. Much of our insight into mechanisms of unhooking comes from powerful model systems based on plasmids with defined ICLs introduced into cells or cell free extracts. Here we describe the properties of exogenous and endogenous ICL forming compounds and provide an historical perspective on early work on ICL repair. We discuss the modes of unhooking elucidated in the model systems, the concordance or lack thereof in drug resistant tumors, and the evolving view of DNA adducts, including ICLs, formed by metabolic aldehydes.
Collapse
Affiliation(s)
- Marina A Bellani
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Althaf Shaik
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Ishani Majumdar
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Chen Ling
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA
| | - Michael M Seidman
- Laboratory of Molecular Biology and Immunology, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA.
| |
Collapse
|
12
|
Riew TR, Kim YS. Mutational Landscapes of Normal Skin and Their Potential Implications in the Development of Skin Cancer: A Comprehensive Narrative Review. J Clin Med 2024; 13:4815. [PMID: 39200957 PMCID: PMC11355262 DOI: 10.3390/jcm13164815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/11/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Recent evidence suggests that physiologically normal skin harbors pervasive mutant clones with cancer drivers. Normal skin has the highest burden of somatic mutations due to persistent ultraviolet exposure throughout life. The mutation burden exponentially increases with age and is further modified by skin site, sun-damage history, and skin phototype. Driver gene profiles in normal skin are similar to those in cutaneous squamous cell carcinoma where NOTCH family, FAT family, and TP53 are consistently reported, while other reported profiles include PPM1D, KMT2D, ASXL1, and RBM10. Normal skin seldom harbors canonical hotspot mutations with therapeutic relevance. The pathologic role of mutant clones with cancer drivers in normal skin is classically considered precursors for skin cancer; however, recent evidence also suggests their putative cancer-protective role. Copy number alterations and other structural variants are rare in normal skin with loss in 9q region encompassing NOTCH1 being the most common. Study methodologies should be carefully designed to obtain an adequate number of cells for sequencing, and a comparable number of cells and read depth across samples. In conclusion, this review provides mutational landscapes of normal skin and discusses their potential implications in the development of skin cancer, highlighting the role of driver genes in early malignant progression.
Collapse
Affiliation(s)
- Tae-Ryong Riew
- Department of Anatomy, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
- Department of Biomedicine and Health Sciences, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Yoon-Seob Kim
- Department of Dermatology, Bucheon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| |
Collapse
|
13
|
Fujita H, Wakiya T, Tatara Y, Ishido K, Sakamoto Y, Kimura N, Morohashi H, Miura T, Muroya T, Akasaka H, Yokoyama H, Kanda T, Kubota S, Ichisawa A, Ogasawara K, Kuwata D, Takahashi Y, Nakamura A, Yamazaki K, Yamada T, Matsuyama R, Kanou M, Yamana K, Itoh K, Hakamada K. Novel insight into nicotinamide adenine dinucleotide and related metabolites in cancer patients undergoing surgery. Sci Rep 2024; 14:16557. [PMID: 39019993 PMCID: PMC11254928 DOI: 10.1038/s41598-024-66004-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 06/26/2024] [Indexed: 07/19/2024] Open
Abstract
Nicotinamide adenine dinucleotide (NAD +) plays a pivotal role in numerous cellular functions. Reduced NAD + levels are postulated to be associated with cancer. As interest in understanding NAD + dynamics in cancer patients with therapeutic applications in mind grows, there remains a shortage of comprehensive data. This study delves into NAD + dynamics in patients undergoing surgery for different digestive system cancers. This prospective study enrolled 99 patients with eight different cancers. Fasting blood samples were obtained during the perioperative period. The concentrations of NAD + , nicotinamide mononucleotide (NMN), and nicotinamide riboside were analyzed using tandem mass spectrometry. After erythrocyte volume adjustment, NAD + remained relatively stable after surgery. Meanwhile, NMN decreased the day after surgery and displayed a recovery trend. Interestingly, liver and pancreatic cancer patients exhibited poor postoperative NMN recovery, suggesting a potential cancer type-specific influence on NAD + metabolism. This study illuminated the behavior of NAD + in surgically treated cancer patients. We identified which cancer types have particularly low levels and at what point depletion occurs during the perioperative period. These insights suggest the need for personalized NAD + supplementation strategies, calibrated to individual patient needs and treatment timelines. Clinical trial registration jRCT1020210066.
Collapse
Affiliation(s)
- Hiroaki Fujita
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Taiichi Wakiya
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
- Department of Surgery, Jichi Medical University, Shimotsuke, Tochigi, Japan
| | - Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Keinosuke Ishido
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Yoshiyuki Sakamoto
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Norihisa Kimura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Hajime Morohashi
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Takuya Miura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Takahiro Muroya
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Harue Akasaka
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Hiroshi Yokoyama
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Taishu Kanda
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Shunsuke Kubota
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Aika Ichisawa
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Kenta Ogasawara
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Daisuke Kuwata
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Yoshiya Takahashi
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Akie Nakamura
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Keisuke Yamazaki
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Takahiro Yamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan
| | - Ryo Matsuyama
- Nutraceutical Group, New Business Development Unit, Teijin Limited, Hino, Tokyo, Japan
- Discovery DMPK Research Group, Toxicology & DMPK Research Department, Teijin Institute for Bio-Medical Research, Teijin Pharma Limited, Hino, Tokyo, Japan
| | - Masanobu Kanou
- Nutraceutical Group, New Business Development Unit, Teijin Limited, Hino, Tokyo, Japan
- NOMON Co. Ltd., Kasumigaseki, Chiyoda-Ku, Tokyo, Japan
| | - Kei Yamana
- Nutraceutical Group, New Business Development Unit, Teijin Limited, Hino, Tokyo, Japan
- NOMON Co. Ltd., Kasumigaseki, Chiyoda-Ku, Tokyo, Japan
| | - Ken Itoh
- Department of Stress Response Science, Center for Advanced Medical Research, Hirosaki University Graduate School of Medicine, Hirosaki, Aomori, Japan
| | - Kenichi Hakamada
- Department of Gastroenterological Surgery, Hirosaki University Graduate School of Medicine, 5 Zaifu-Cho, Hirosaki City, Aomori, 036-8562, Japan.
| |
Collapse
|
14
|
Aranda-Anzaldo A, Dent MAR, Segura-Anaya E, Martínez-Gómez A. Protein folding, cellular stress and cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:40-57. [PMID: 38969306 DOI: 10.1016/j.pbiomolbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Proteins are acknowledged as the phenotypical manifestation of the genotype, because protein-coding genes carry the information for the strings of amino acids that constitute the proteins. It is widely accepted that protein function depends on the corresponding "native" structure or folding achieved within the cell, and that native protein folding corresponds to the lowest free energy minimum for a given protein. However, protein folding within the cell is a non-deterministic dissipative process that from the same input may produce different outcomes, thus conformational heterogeneity of folded proteins is the rule and not the exception. Local changes in the intracellular environment promote variation in protein folding. Hence protein folding requires "supervision" by a host of chaperones and co-chaperones that help their client proteins to achieve the folding that is most stable according to the local environment. Such environmental influence on protein folding is continuously transduced with the help of the cellular stress responses (CSRs) and this may lead to changes in the rules of engagement between proteins, so that the corresponding protein interactome could be modified by the environment leading to an alternative cellular phenotype. This allows for a phenotypic plasticity useful for adapting to sudden and/or transient environmental changes at the cellular level. Starting from this perspective, hereunder we develop the argument that the presence of sustained cellular stress coupled to efficient CSRs may lead to the selection of an aberrant phenotype as the resulting adaptation of the cellular proteome (and the corresponding interactome) to such stressful conditions, and this can be a common epigenetic pathway to cancer.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico.
| | - Myrna A R Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Edith Segura-Anaya
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Alejandro Martínez-Gómez
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| |
Collapse
|
15
|
Joudeh LA, Logan Schuck P, Van NM, DiCintio AJ, Stewart JA, Waldman AS. Progerin Can Induce DNA Damage in the Absence of Global Changes in Replication or Cell Proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.02.601729. [PMID: 39005395 PMCID: PMC11244969 DOI: 10.1101/2024.07.02.601729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging, and individuals with HGPS seldom live beyond their mid-teens. The syndrome is commonly caused by a point mutation in the LMNA gene which codes for lamin A and its splice variant lamin C, components of the nuclear lamina. The mutation causing HGPS leads to production of a truncated, farnesylated form of lamin A referred to as "progerin." Progerin is also expressed at low levels in healthy individuals and appears to play a role in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs) and alterations in the nature of DSB repair. The source of DSBs in HGPS is often attributed to stalling and subsequent collapse of replication forks in conjunction with faulty recruitment of repair factors to damage sites. In this work, we used a model system involving immortalized human cell lines to investigate progerin-induced genomic damage. Using an immunofluorescence approach to visualize phosphorylated histone H2AX foci which mark sites of genomic damage, we report that cells engineered to express progerin displayed a significant elevation of endogenous damage in the absence of any change in the cell cycle profile or doubling time of cells. Genomic damage was enhanced and persistent in progerin-expressing cells treated with hydroxyurea. Overexpression of wild-type lamin A did not elicit the outcomes associated with progerin expression. Our results show that DNA damage caused by progerin can occur independently from global changes in replication or cell proliferation.
Collapse
Affiliation(s)
- Liza A. Joudeh
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - P. Logan Schuck
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - Nina M. Van
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - Alannah J. DiCintio
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| | - Jason A. Stewart
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
- Department of Biology, Western Kentucky University, Bowling Green, KY 42101
| | - Alan S. Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 20208
| |
Collapse
|
16
|
Pouncey AL, Powell JT. Through the Smoke Screen Clearly. Arterioscler Thromb Vasc Biol 2024; 44:1702-1703. [PMID: 38924442 DOI: 10.1161/atvbaha.124.321157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Affiliation(s)
- Anna L Pouncey
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| | - Janet T Powell
- Department of Surgery and Cancer, Imperial College London, United Kingdom
| |
Collapse
|
17
|
Nagy N, Hádinger N, Tóth O, Rácz GA, Pintér T, Gál Z, Urbán M, Gócza E, Hiripi L, Acsády L, Vértessy BG. Characterization of dUTPase expression in mouse postnatal development and adult neurogenesis. Sci Rep 2024; 14:13139. [PMID: 38849394 PMCID: PMC11161619 DOI: 10.1038/s41598-024-63405-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 05/28/2024] [Indexed: 06/09/2024] Open
Abstract
The enzyme dUTPase has an essential role in maintaining genomic integrity. In mouse, nuclear and mitochondrial isoforms of the enzyme have been described. Here we present the isoform-specific mRNA expression levels in different murine organs during development using RT-qPCR. In this study, we analyzed organs of 14.5-day embryos and of postnatal 2-, 4-, 10-week- and 13-month-old mice. We demonstrate organ-, sex- and developmental stage-specific differences in the mRNA expression levels of both isoforms. We found high mRNA expression level of the nuclear isoform in the embryo brain, and the expression level remained relatively high in the adult brain as well. This was surprising, since dUTPase is known to play an important role in proliferating cells, and mass production of neural cells is completed by adulthood. Thus, we investigated the pattern of the dUTPase protein expression specifically in the adult brain with immunostaining and found that dUTPase is present in the germinative zones, the subventricular and the subgranular zones, where neurogenesis occurs and in the rostral migratory stream where neuroblasts migrate to the olfactory bulb. These novel findings suggest that dUTPase may have a role in cell differentiation and indicate that accurate dTTP biosynthesis can be vital, especially in neurogenesis.
Collapse
Affiliation(s)
- Nikolett Nagy
- Doctoral School of Biology, Institute of Biology, ELTE Eötvös Loránd University, Pázmány Péter sétány 1/C, 1117, Budapest, Hungary.
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
| | - Nóra Hádinger
- Laboratory of Thalamus Research, Institute of Experimental Medicine, HUN-REN, Szigony utca 43, 1083, Budapest, Hungary
| | - Otília Tóth
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Gergely Attila Rácz
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary
| | - Tímea Pintér
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - Zoltán Gál
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - Martin Urbán
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - Elen Gócza
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
| | - László Hiripi
- Department of Animal Biotechnology, Institute of Genetics and Biotechnology, Hungarian University of Agriculture and Life Sciences, Szent-Györgyi Albert utca 4, 2100, Gödöllő, Hungary
- Laboratory Animal Science Coordination Center, Semmelweis University, Nagyvárad tér 4, 1089, Budapest, Hungary
| | - László Acsády
- Laboratory of Thalamus Research, Institute of Experimental Medicine, HUN-REN, Szigony utca 43, 1083, Budapest, Hungary
| | - Beáta G Vértessy
- Institute of Molecular Life Sciences, Research Centre for Natural Sciences, HUN-REN, Magyar tudósok körútja 2, 1117, Budapest, Hungary.
- Department of Applied Biotechnology and Food Sciences, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Műegyetem rkp. 3, 1111, Budapest, Hungary.
| |
Collapse
|
18
|
Jonischkies K, del Angel M, Demiray YE, Loaiza Zambrano A, Stork O. The NDR family of kinases: essential regulators of aging. Front Mol Neurosci 2024; 17:1371086. [PMID: 38803357 PMCID: PMC11129689 DOI: 10.3389/fnmol.2024.1371086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Aging is defined as a progressive decline of cognitive and physiological functions over lifetime. Since the definition of the nine hallmarks of aging in 2013 by López-Otin, numerous studies have attempted to identify the main regulators and contributors in the aging process. One interesting group of proteins whose participation has been implicated in several aging hallmarks are the nuclear DBF2-related (NDR) family of serine-threonine AGC kinases. They are one of the core components of the Hippo signaling pathway and include NDR1, NDR2, LATS1 and LATS2 in mammals, along with its highly conserved metazoan orthologs; Trc in Drosophila melanogaster, SAX-1 in Caenorhabditis elegans, CBK1, DBF20 in Saccharomyces cerevisiae and orb6 in Saccharomyces pombe. These kinases have been independently linked to the regulation of widely diverse cellular processes disrupted during aging such as the cell cycle progression, transcription, intercellular communication, nutrient homeostasis, autophagy, apoptosis, and stem cell differentiation. However, a comprehensive overview of the state-of-the-art knowledge regarding the post-translational modifications of and by NDR kinases in aging has not been conducted. In this review, we summarize the current understanding of the NDR family of kinases, focusing on their relevance to various aging hallmarks, and emphasize the growing body of evidence that suggests NDR kinases are essential regulators of aging across species.
Collapse
Affiliation(s)
- Kevin Jonischkies
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miguel del Angel
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Allison Loaiza Zambrano
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
19
|
Ozturk S. The close relationship between oocyte aging and telomere shortening, and possible interventions for telomere protection. Mech Ageing Dev 2024; 218:111913. [PMID: 38307343 DOI: 10.1016/j.mad.2024.111913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/17/2024] [Accepted: 01/22/2024] [Indexed: 02/04/2024]
Abstract
As women delay childbearing due to socioeconomic reasons, understanding molecular mechanisms decreasing oocyte quantity and quality during ovarian aging becomes increasingly important. The ovary undergoes biological aging at a higher pace when compared to other organs. As is known, telomeres play crucial roles in maintaining genomic integrity, and their shortening owing to increased reactive oxygen species, consecutive cellular divisions, genetic and epigenetic alterations is associated with loss of developmental competence of oocytes. Novel interventions such as antioxidant treatments and regulation of gene expression are being investigated to prevent or rescue telomere attrition and thereby oocyte aging. Herein, potential factors and molecular mechanisms causing telomere shortening in aging oocytes were comprehensively reviewed. For the purpose of extending reproductive lifespan, possible therapeutic interventions to protect telomere length were also discussed.
Collapse
Affiliation(s)
- Saffet Ozturk
- Department of Histology and Embryology, Akdeniz University School of Medicine, Antalya, Turkey.
| |
Collapse
|
20
|
Marrapodi R, Bellei B. The Keratinocyte in the Picture Cutaneous Melanoma Microenvironment. Cancers (Basel) 2024; 16:913. [PMID: 38473275 PMCID: PMC10930874 DOI: 10.3390/cancers16050913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/08/2024] [Accepted: 02/20/2024] [Indexed: 03/14/2024] Open
Abstract
Melanoma progression is a multistep evolution from a common melanocytic nevus through a radial superficial growth phase, the invasive vertical growth phase finally leading to metastatic dissemination into distant organs. Melanoma aggressiveness largely depends on the propensity to metastasize, which means the capacity to escape from the physiological microenvironment since tissue damage due to primary melanoma lesions is generally modest. Physiologically, epidermal melanocytes are attached to the basement membrane, and their adhesion/migration is under the control of surrounding keratinocytes. Thus, the epidermal compartment represents the first microenvironment responsible for melanoma spread. This complex process involves cell-cell contact and a broad range of secreted bioactive molecules. Invasion, or at the beginning of the microinvasion, implies the breakdown of the dermo-epidermal basement membrane followed by the migration of neoplastic melanocytic cells in the superficial papillary dermis. Correspondingly, several experimental evidences documented the structural and functional rearrangement of the entire tissue surrounding neoplasm that in some way reflects the atypia of tumor cells. Lastly, the microenvironment must support the proliferation and survival of melanocytes outside the normal epidermal-melanin units. This task presumably is mostly delegated to fibroblasts and ultimately to the self-autonomous capacity of melanoma cells. This review will discuss remodeling that occurs in the epidermis during melanoma formation as well as skin changes that occur independently of melanocytic hyperproliferation having possible pro-tumoral features.
Collapse
Affiliation(s)
| | - Barbara Bellei
- Laboratory of Cutaneous Physiopathology and Integrated Center of Metabolomics Research, San Gallicano Dermatological Institute, IRCCS, Via Elio Chianesi 53, 00144 Rome, Italy;
| |
Collapse
|
21
|
Sastre-Oliva T, Corbacho-Alonso N, Rodriguez-Sanchez E, Mercado-García E, Perales-Sanchez I, Hernandez-Fernandez G, Juarez-Alia C, Tejerina T, López-Almodóvar LF, Padial LR, Sánchez PL, Martín-Núñez E, López-Andrés N, Ruiz-Hurtado G, Mourino-Alvarez L, Barderas MG. Albumin Redox Modifications Promote Cell Calcification Reflecting the Impact of Oxidative Status on Aortic Valve Disease and Atherosclerosis. Antioxidants (Basel) 2024; 13:108. [PMID: 38247532 PMCID: PMC10812654 DOI: 10.3390/antiox13010108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Calcific aortic valve disease (CAVD) and coronary artery disease (CAD) are related cardiovascular diseases in which common mechanisms lead to tissue calcification. Oxidative stress plays a key role in these diseases and there is also evidence that the redox state of serum albumin exerts a significant influence on these conditions. To further explore this issue, we used multimarker scores (OxyScore and AntioxyScore) to assess the global oxidative status in patients with CAVD, with and without CAD, also evaluating their plasma thiol levels. In addition, valvular interstitial cells were treated with reduced, oxidized, and native albumin to study how this protein and its modifications affect cell calcification. The differences we found suggest that oxidative status is distinct in CAVD and CAD, with differences in redox markers and thiol levels. Importantly, the in vitro interstitial cell model revealed that modified albumin affects cell calcification, accelerating this process. Hence, we show here the importance of the redox system in the development of CAVD, emphasizing the relevance of multimarker scores, while also offering evidence of how the redox state of albumin influences vascular calcification. These data highlight the relevance of understanding the overall redox processes involved in these diseases, opening the door to new studies on antioxidants as potential therapies for these patients.
Collapse
Affiliation(s)
- Tamara Sastre-Oliva
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Nerea Corbacho-Alonso
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Elena Rodriguez-Sanchez
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain (E.M.-G.); (G.R.-H.)
| | - Elisa Mercado-García
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain (E.M.-G.); (G.R.-H.)
| | - Ines Perales-Sanchez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - German Hernandez-Fernandez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Cristina Juarez-Alia
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Teresa Tejerina
- Department of Pharmacology, School of Medicine, Universidad Complutense de Madrid, 28040 Madrid, Spain;
| | - Luis F. López-Almodóvar
- Cardiac Surgery, Hospital General Universitario de Toledo, Servicio de Salud de Castilla-La Mancha (SESCAM), 45007 Toledo, Spain;
| | - Luis R. Padial
- Department of Cardiology, Hospital General Universitario de Toledo, Servicio de Salud de Castilla-La Mancha (SESCAM), 45007 Toledo, Spain;
| | - Pedro L. Sánchez
- Department of Cardiology, Hospital Universitario de Salamanca-Instituto de Investigación Biomédica de Salamanca (IBSAL), University of Salamanca, 37007 Salamanca, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Ernesto Martín-Núñez
- Cardiovascular Translational Research, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (E.M.-N.); (N.L.-A.)
| | - Natalia López-Andrés
- Cardiovascular Translational Research, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), 31008 Pamplona, Spain; (E.M.-N.); (N.L.-A.)
| | - Gema Ruiz-Hurtado
- Cardiorenal Translational Laboratory, Instituto de Investigación Imas12, Hospital Universitario 12 de Octubre, 28041 Madrid, Spain (E.M.-G.); (G.R.-H.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Hospital Universitario 12 de Octubre, 28041 Madrid, Spain
| | - Laura Mourino-Alvarez
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| | - Maria G. Barderas
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Servicio de Salud de Castilla-La Mancha (SESCAM), 45071 Toledo, Spain; (T.S.-O.); (N.C.-A.); (I.P.-S.); (G.H.-F.); (C.J.-A.); (L.M.-A.)
- Department of Vascular Physiopathology, Hospital Nacional de Paraplejicos, Instituto de Investigación Sanitaria de Castilla-La Mancha (IDISCAM), 45071 Toledo, Spain
| |
Collapse
|
22
|
Copp ME, Shine J, Brown HL, Nimmala KR, Hansen OB, Chubinskaya S, Collins JA, Loeser RF, Diekman BO. Sirtuin 6 activation rescues the age-related decline in DNA damage repair in primary human chondrocytes. Aging (Albany NY) 2023; 15:13628-13645. [PMID: 38078876 PMCID: PMC10756124 DOI: 10.18632/aging.205394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 11/15/2023] [Indexed: 12/21/2023]
Abstract
While advanced age is widely recognized as the greatest risk factor for osteoarthritis (OA), the biological mechanisms behind this connection remain unclear. Previous work has demonstrated that chondrocytes from older cadaveric donors have elevated levels of DNA damage as compared to chondrocytes from younger donors. The purpose of this study was to determine whether a decline in DNA repair efficiency is one explanation for the accumulation of DNA damage with age, and to quantify the improvement in repair with activation of Sirtuin 6 (SIRT6). After acute damage with irradiation, DNA repair was shown to be more efficient in chondrocytes from young (≤45 years old) as compared to middle-aged (50-65 years old) or older (>70 years old) cadaveric donors. Activation of SIRT6 with MDL-800 improved the repair efficiency, while inhibition with EX-527 reduced the rate of repair and increased the percentage of cells that retain high levels of damage. In addition to affecting repair after acute damage, treating chondrocytes from older donors with MDL-800 for 48 hours significantly reduced the amount of baseline DNA damage. Chondrocytes isolated from the knees of mice between 4 months and 22 months of age revealed both an increase in DNA damage with aging, and a decrease in DNA damage following MDL-800 treatment. Lastly, treating murine cartilage explants with MDL-800 lowered the percentage of chondrocytes with high p16 promoter activity, which supports the concept that using SIRT6 activation to maintain low levels of DNA damage may prevent the initiation of senescence.
Collapse
Affiliation(s)
- Michaela E. Copp
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27606, USA
| | - Jacqueline Shine
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hannon L. Brown
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27606, USA
| | - Kirti R. Nimmala
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27606, USA
| | - Oliver B. Hansen
- School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL 60612, USA
| | - John A. Collins
- Department of Orthopedic Surgery, Thomas Jefferson University, Philadelphia, PA 19144, USA
| | - Richard F. Loeser
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Brian O. Diekman
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC 27606, USA
| |
Collapse
|
23
|
Zou T, Liu JY, Qin Q, Guo J, Zhou WZ, Li XP, Zhou HH, Chen J, Liu ZQ. Role of rs873601 Polymorphisms in Prognosis of Lung Cancer Patients Treated with Platinum-Based Chemotherapy. Biomedicines 2023; 11:3133. [PMID: 38137354 PMCID: PMC10741124 DOI: 10.3390/biomedicines11123133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023] Open
Abstract
BACKGROUND Lung cancer is still the most lethal malignancy in the world, according to the report of Cancer Statistics in 2021. Platinum-based chemotherapy combined with immunotherapy is the first-line treatment in lung cancer patients. However, the 5-year survival rate is always affected by the adverse reactions and drug resistance caused by platinum-based chemotherapy. DNA damage and repair system is one of the important mechanisms that can affect the response to chemotherapy and clinical outcomes in lung cancer patients. OBJECTIVE The objective of this study is to find the relationship between the polymorphisms of DNA repair genes with the prognosis of platinum-based chemotherapy in lung cancer patients. PATIENTS AND METHODS We performed genotyping in 17 single nucleotide polymorphisms (SNPs) of Excision Repair Cross-Complementation group (ERCC) genes and X-ray Repair Cross-Complementing (XRCC) genes of 345 lung cancer patients via Sequenom MassARRAY. We used Cox proportional hazard models, state, and plink to analyze the associations between SNPs and the prognosis of lung cancer patients. RESULTS We found that the ERCC5 rs873601 was associated with the overall survival time in lung cancer patients treated with platinum-based chemotherapy (p = 0.031). There were some polymorphisms that were related to the prognosis in specific subgroups of lung cancer. Rs873601 showed a great influence on the prognosis of patients more than 55 years, Small Cell Lung Cancer (SCLC), and smoking patients. Rs2444933 was associated with prognosis in age less than 55 years, SCLC, metastasis, and stage III/IV/ED patients. Rs3740051 played an important role in the prognosis of SCLC and metastasis patients. Rs1869641 was involved in the prognosis of SCLC patients. Rs1051685 was related to the prognosis in non-metastasis patients. CONCLUSION The ERCC5 rs873601 (G>A) was a valuable biomarker for predicting the prognosis in lung cancer patients treated with platinum-based chemotherapy.
Collapse
Affiliation(s)
- Ting Zou
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Jun-Yan Liu
- Department of Orthopaedics, Xiangya Hospital, Central South University, Changsha 410008, China;
| | - Qun Qin
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Jie Guo
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Wen-Zhi Zhou
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- International Science and Technology Innovation Cooperation Base for Early Clinical Trials of Biological Agents in Hunan Province, Changsha 410008, China
| | - Xiang-Ping Li
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China;
| | - Juan Chen
- Department of Pharmacy, National Institution of Drug Clinical Trial, Xiangya Hospital, Central South University, Changsha 410008, China; (T.Z.); (Q.Q.); (J.G.); (W.-Z.Z.); (X.-P.L.)
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha 410078, China;
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
24
|
Fenech MF, Bull CF, Van Klinken BJW. Protective Effects of Micronutrient Supplements, Phytochemicals and Phytochemical-Rich Beverages and Foods Against DNA Damage in Humans: A Systematic Review of Randomized Controlled Trials and Prospective Studies. Adv Nutr 2023; 14:1337-1358. [PMID: 37573943 PMCID: PMC10721466 DOI: 10.1016/j.advnut.2023.08.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 07/19/2023] [Accepted: 08/07/2023] [Indexed: 08/15/2023] Open
Abstract
Accumulation of deoxyribonucleic acid (DNA) damage diminishes cellular health, increases risk of developmental and degenerative diseases, and accelerates aging. Optimizing nutrient intake can minimize accrual of DNA damage. The objectives of this review are to: 1) assemble and systematically analyze high-level evidence for the effect of supplementation with micronutrients and phytochemicals on baseline levels of DNA damage in humans, and 2) use this knowledge to identify which of these essential micronutrients or nonessential phytochemicals promote DNA integrity in vivo in humans. We conducted systematic literature searches of the PubMed database to identify interventional, prospective, cross-sectional, or in vitro studies that explored the association between nutrients and established biomarkers of DNA damage associated with developmental and degenerative disease risk. Biomarkers included lymphocyte chromosome aberrations, lymphocyte and buccal cell micronuclei, DNA methylation, lymphocyte/leukocyte DNA strand breaks, DNA oxidation, telomere length, telomerase activity, and mitochondrial DNA mutations. Only randomized, controlled interventions and uncontrolled longitudinal intervention studies conducted in humans were selected for evaluation and data extraction. These studies were ranked for the quality of their study design. In all, 96 of the 124 articles identified reported studies that achieved a quality assessment score ≥ 5 (from a maximum score of 7) and were included in the final review. Based on these studies, nutrients associated with protective effects included vitamin A and its precursor β-carotene, vitamins C, E, B1, B12, folate, minerals selenium and zinc, and phytochemicals such as curcumin (with piperine), lycopene, and proanthocyanidins. These findings highlight the importance of nutrients involved in (i) DNA metabolism and repair (folate, vitamin B12, and zinc) and (ii) prevention of oxidative stress and inflammation (vitamins A, C, E, lycopene, curcumin, proanthocyanidins, selenium, and zinc). Supplementation with certain micronutrients and their combinations may reduce DNA damage and promote cellular health by improving the maintenance of genome integrity.
Collapse
Affiliation(s)
- Michael F Fenech
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; Clinical and Health Sciences, Health and Biomedical Innovation, University of South Australia, Adelaide, South Australia, Australia; Genome Health Foundation, North Brighton, South Australia, Australia.
| | - Caroline F Bull
- Molecular Diagnostics Solutions, CSIRO Health & Biosecurity, Adelaide, South Australia, Australia; School of Molecular and Biomedical Sciences, University of Adelaide, North Terrace, Adelaide, South Australia, Australia.
| | - B Jan-Willem Van Klinken
- GSK Consumer Healthcare (now named Haleon), Warren, New Jersey, USA; Brightseed, San Francisco, CA, United States.
| |
Collapse
|
25
|
van der Woude M, Davó-Martínez C, Thijssen K, Vermeulen W, Lans H. Recovery of protein synthesis to assay DNA repair activity in transcribed genes in living cells and tissues. Nucleic Acids Res 2023; 51:e93. [PMID: 37522336 PMCID: PMC10570043 DOI: 10.1093/nar/gkad642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 06/19/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023] Open
Abstract
Transcription-coupled nucleotide excision repair (TC-NER) is an important DNA repair mechanism that protects against the negative effects of transcription-blocking DNA lesions. Hereditary TC-NER deficiencies cause pleiotropic and often severe neurodegenerative and progeroid symptoms. While multiple assays have been developed to determine TC-NER activity for clinical and research purposes, monitoring TC-NER is hampered by the low frequency of repair events occurring in transcribed DNA. 'Recovery of RNA Synthesis' is widely used as indirect TC-NER assay based on the notion that lesion-blocked transcription only resumes after successful TC-NER. Here, we show that measuring novel synthesis of a protein after its compound-induced degradation prior to DNA damage induction is an equally effective but more versatile manner to indirectly monitor DNA repair activity in transcribed genes. This 'Recovery of Protein Synthesis' (RPS) assay can be adapted to various degradable proteins and readouts, including imaging and immunoblotting. Moreover, RPS allows real-time monitoring of TC-NER activity in various living cells types and even in differentiated tissues of living organisms. To illustrate its utility, we show that DNA repair in transcribed genes declines in aging muscle tissue of C. elegans. Therefore, the RPS assay constitutes an important novel clinical and research tool to investigate transcription-coupled DNA repair.
Collapse
Affiliation(s)
- Melanie van der Woude
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Carlota Davó-Martínez
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Karen L Thijssen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Wim Vermeulen
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| | - Hannes Lans
- Department of Molecular Genetics, Erasmus MC Cancer Institute, Erasmus University Medical Center, 3015 GD, Rotterdam, The Netherlands
| |
Collapse
|
26
|
López-Gil L, Pascual-Ahuir A, Proft M. Genomic Instability and Epigenetic Changes during Aging. Int J Mol Sci 2023; 24:14279. [PMID: 37762580 PMCID: PMC10531692 DOI: 10.3390/ijms241814279] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/15/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Aging is considered the deterioration of physiological functions along with an increased mortality rate. This scientific review focuses on the central importance of genomic instability during the aging process, encompassing a range of cellular and molecular changes that occur with advancing age. In particular, this revision addresses the genetic and epigenetic alterations that contribute to genomic instability, such as telomere shortening, DNA damage accumulation, and decreased DNA repair capacity. Furthermore, the review explores the epigenetic changes that occur with aging, including modifications to histones, DNA methylation patterns, and the role of non-coding RNAs. Finally, the review discusses the organization of chromatin and its contribution to genomic instability, including heterochromatin loss, chromatin remodeling, and changes in nucleosome and histone abundance. In conclusion, this review highlights the fundamental role that genomic instability plays in the aging process and underscores the need for continued research into these complex biological mechanisms.
Collapse
Affiliation(s)
- Lucía López-Gil
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| | - Amparo Pascual-Ahuir
- Department of Biotechnology, Instituto de Biología Molecular y Celular de Plantas, Universitat Politècnica de València, Ingeniero Fausto Elio s/n, 46022 Valencia, Spain;
| | - Markus Proft
- Department of Molecular and Cellular Pathology and Therapy, Instituto de Biomedicina de Valencia IBV-CSIC, Consejo Superior de Investigaciones Científicas CSIC, Jaime Roig 11, 46010 Valencia, Spain
| |
Collapse
|
27
|
Ferreira AF, Soares M, Almeida-Santos T, Ramalho-Santos J, Sousa AP. Aging and oocyte competence: A molecular cell perspective. WIREs Mech Dis 2023; 15:e1613. [PMID: 37248206 DOI: 10.1002/wsbm.1613] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/30/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023]
Abstract
Follicular microenvironment is paramount in the acquisition of oocyte competence, which is dependent on two interconnected and interdependent processes: nuclear and cytoplasmic maturation. Extensive research conducted in human and model systems has provided evidence that those processes are disturbed with female aging. In fact, advanced maternal age (AMA) is associated with a lower chance of pregnancy and live birth, explained by the age-related decline in oocyte quality/competence. This decline has largely been attributed to mitochondria, essential for oocyte maturation, fertilization, and embryo development; with mitochondrial dysfunction leading to oxidative stress, responsible for nuclear and mitochondrial damage, suboptimal intracellular energy levels, calcium disturbance, and meiotic spindle alterations, that may result in oocyte aneuploidy. Nuclear-related mechanisms that justify increased oocyte aneuploidy include deoxyribonucleic acid (DNA) damage, loss of chromosomal cohesion, spindle assembly checkpoint dysfunction, meiotic recombination errors, and telomere attrition. On the other hand, age-dependent cytoplasmic maturation failure is related to mitochondrial dysfunction, altered mitochondrial biogenesis, altered mitochondrial morphology, distribution, activity, and dynamics, dysmorphic smooth endoplasmic reticulum and calcium disturbance, and alterations in the cytoskeleton. Furthermore, reproductive somatic cells also experience the effects of aging, including mitochondrial dysfunction and DNA damage, compromising the crosstalk between granulosa/cumulus cells and oocytes, also affected by a loss of gap junctions. Old oocytes seem therefore to mature in an altered microenvironment, with changes in metabolites, ribonucleic acid (RNA), proteins, and lipids. Overall, understanding the mechanisms implicated in the loss of oocyte quality will allow the establishment of emerging biomarkers and potential therapeutic anti-aging strategies. This article is categorized under: Reproductive System Diseases > Molecular and Cellular Physiology.
Collapse
Affiliation(s)
- Ana Filipa Ferreira
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - Maria Soares
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- PhD Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, Coimbra, Portugal
| | - Teresa Almeida-Santos
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- Faculty of Medicine, Azinhaga de Santa Comba, University of Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| | - João Ramalho-Santos
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, Calçada Martim de Freitas, University of Coimbra, Coimbra, Portugal
| | - Ana Paula Sousa
- Reproductive Medicine Unit, Centro Hospitalar e Universitário de Coimbra, Coimbra, Portugal
- CNC-Center for Neuroscience and Cell Biology, CIBB, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
28
|
Xie K, Ehninger D. Ageing-associated phenotypes in mice. Mech Ageing Dev 2023; 214:111852. [PMID: 37454704 DOI: 10.1016/j.mad.2023.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/22/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Ageing is a continuous process in life featuring progressive damage accumulation that leads to physiological decline, functional deterioration and ultimately death of an organism. Based on the relatively close anatomical and physiological similarity to humans, the mouse has been proven as a valuable model organism in ageing research over the last decades. In this review, we survey methods and tools currently in use to assess ageing phenotypes in mice. We summarize a range of ageing-associated alterations detectable at two major levels of analysis: (1) physiology and pathophysiology and (2) molecular biomarkers. Age-sensitive phenotypes provided in this article may serve to inform future studies targeting various aspects of organismal ageing in mice. In addition, we discuss conceptual and technical challenges faced by previous ageing studies in mice and, where possible, provide recommendations on how to resolve some of these issues.
Collapse
Affiliation(s)
- Kan Xie
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany
| | - Dan Ehninger
- Translational Biogerontology Lab, German Center for Neurodegenerative Diseases (DZNE), Venusberg-Campus 1/99, 53127 Bonn, Germany.
| |
Collapse
|
29
|
Mišík M, Kundi M, Worel N, Ferk F, Hutter HP, Grusch M, Nersesyan A, Herrera Morales D, Knasmueller S. Impact of mobile phone-specific electromagnetic fields on DNA damage caused by occupationally relevant exposures: results of ex vivo experiments with peripheral blood mononuclear cells from different demographic groups. Mutagenesis 2023; 38:227-237. [PMID: 37418160 PMCID: PMC10448860 DOI: 10.1093/mutage/gead022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Accepted: 07/05/2023] [Indexed: 07/08/2023] Open
Abstract
The aim of this study was to investigate if age and body mass of humans have an impact on the DNA-damaging properties of high-frequency mobile phone-specific electromagnetic fields (HF-EMF, 1950 MHz, universal mobile telecommunications system, UMTS signal) and if this form of radiation has an impact on the genotoxic effects of occupationally relevant exposures. Pooled peripheral blood mononuclear cells (PBMC) from three groups [young normal weight, young obese (YO), and older age normal weight individuals] were exposed to different doses of HF-EMF (0.25, 0.5, and 1.0 W/kg specific absorption rate-SAR) and simultaneously or sequentially to different chemicals which cause DNA damage (CrO3, NiCl2, benzo[a]pyrene diol epoxide-BPDE, and 4-nitroquinoline 1-oxide-4NQO) via different molecular mechanisms. We found no difference in regard to the background values in the three groups but a significant increase of DNA damage (81% without and 36% with serum) in cells from old participants after radiation with 1.0 W/kg SAR 16 h. In combined treatment experiments we found no impact of the UMTS signal on chemically induced DNA damage in the different groups in general. However, a moderate decrease of DNA damage was seen in simultaneous treatment experiments with BPDE and 1.0 W/kg SAR in the YO group (decline 18%). Taken together our findings indicate that HF-EMF cause DNA damage in PBMC from older subjects (69.1 years). Furthermore, they show that the radiation does not increase induction of DNA damage by occupationally relevant chemicals.
Collapse
Affiliation(s)
- Miroslav Mišík
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Nadine Worel
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Franziska Ferk
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Hans-Peter Hutter
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Michael Grusch
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | | | | |
Collapse
|
30
|
Veschetti L, Treccani M, De Tomi E, Malerba G. Genomic Instability Evolutionary Footprints on Human Health: Driving Forces or Side Effects? Int J Mol Sci 2023; 24:11437. [PMID: 37511197 PMCID: PMC10380557 DOI: 10.3390/ijms241411437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/30/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023] Open
Abstract
In this work, we propose a comprehensive perspective on genomic instability comprising not only the accumulation of mutations but also telomeric shortening, epigenetic alterations and other mechanisms that could contribute to genomic information conservation or corruption. First, we present mechanisms playing a role in genomic instability across the kingdoms of life. Then, we explore the impact of genomic instability on the human being across its evolutionary history and on present-day human health, with a particular focus on aging and complex disorders. Finally, we discuss the role of non-coding RNAs, highlighting future approaches for a better living and an expanded healthy lifespan.
Collapse
Affiliation(s)
| | | | | | - Giovanni Malerba
- GM Lab, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, 37134 Verona, Italy; (L.V.); (M.T.); (E.D.T.)
| |
Collapse
|
31
|
Fardid R, Janipour S, Haddadi G, Mahdavi M, Sharifzadeh S, Lotfi M, Rostamyari M. Evaluation of the relationship between γ-H2AX biomarker levels and dose received after radiation exposure in abdominal-pelvic and chest CT scans. J Cancer Res Ther 2023; 19:1392-1397. [PMID: 37787314 DOI: 10.4103/jcrt.jcrt_950_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Background As one of the most informative diagnostic radiation instruments, computed tomography (CT) has seen considerable improvement since its implementation in the 1970s; however, the possibility of low-dose radiation risk after CT procedures is still challenging and little is known about the biological effects of CT exposure on patients. As a result, this research aimed to look at the biological and cytogenetic effects of low-dose abdominal-pelvic and chest CT scans on adults, focusing on the number of γ-H2AX foci formation. Materials and Methods Blood tests were taken before and 10 min after CT exams on patients aged 25-55 who were undergoing abdominal-pelvic and chest CT exams with very low-ionizing radiation exposure (TLD doses of 15.67-63.45 mGy). Blood lymphocytes that had been isolated, fixed, and stained were dyed with γ-H2AX antibodies. Finally, the percentage of phosphorylation of histone H2AX as an indicator of double-strand breaks was determined using a cytometry technique. Results Our findings showed that after CT examination, the mean value of γ-H2AX foci in patients increased (P < 0.0001). A statistically significant correlation between dose radiation and the number of γ-H2AX foci was also found (P = 0.047, r = 0.4731). The current study also found a pattern of elevated γ-H2AX foci in patients over 40 years of age relative to younger patients. Conclusion A Significant activation of γ-H2AX foci was found in lymphocytes of peripheral blood samples of patients after CT compared to before CT scan. This increase in γ-H2AX foci levels in blood cells may be a useful quantitative biomarker of low-level radiation exposure in humans.
Collapse
Affiliation(s)
- Reza Fardid
- Department of Radiology, School of Paramedical Sciences; Ionizing and Non-Ionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sara Janipour
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Golamhassan Haddadi
- Department of Radiology, School of Paramedical Sciences; Ionizing and Non-Ionizing Radiation Protection Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maziyar Mahdavi
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sedigheh Sharifzadeh
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehrzad Lotfi
- Department of Radiology, Medical Imaging Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maliheh Rostamyari
- Department of Radiology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
32
|
Joudeh LA, DiCintio AJ, Ries MR, Gasperson AS, Griffin KE, Robbins VP, Bonner M, Nolan S, Black E, Waldman AS. Corruption of DNA end-joining in mammalian chromosomes by progerin expression. DNA Repair (Amst) 2023; 126:103491. [PMID: 37018982 PMCID: PMC10133198 DOI: 10.1016/j.dnarep.2023.103491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 03/23/2023] [Accepted: 03/29/2023] [Indexed: 04/03/2023]
Abstract
Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic condition characterized by features of accelerated aging and a life expectancy of about 14 years. HGPS is commonly caused by a point mutation in the LMNA gene which codes for lamin A, an essential component of the nuclear lamina. The HGPS mutation alters splicing of the LMNA transcript, leading to a truncated, farnesylated form of lamin A termed "progerin." Progerin is also produced in small amounts in healthy individuals by alternative splicing of RNA and has been implicated in normal aging. HGPS is associated with an accumulation of genomic DNA double-strand breaks (DSBs), suggesting alteration of DNA repair. DSB repair normally occurs by either homologous recombination (HR), an accurate, templated form of repair, or by nonhomologous end-joining (NHEJ), a non-templated rejoining of DNA ends that can be error-prone; however a good portion of NHEJ events occurs precisely with no alteration to joined sequences. Previously, we reported that over-expression of progerin correlated with increased NHEJ relative to HR. We now report on progerin's impact on the nature of DNA end-joining. We used a model system involving a DNA end-joining reporter substrate integrated into the genome of cultured thymidine kinase-deficient mouse fibroblasts. Some cells were engineered to express progerin. Two closely spaced DSBs were induced in the integrated substrate through expression of endonuclease I-SceI, and DSB repair events were recovered through selection for thymidine kinase function. DNA sequencing revealed that progerin expression correlated with a significant shift away from precise end-joining between the two I-SceI sites and toward imprecise end-joining. Additional experiments revealed that progerin did not reduce HR fidelity. Our work suggests that progerin suppresses interactions between complementary sequences at DNA termini, thereby shifting DSB repair toward low-fidelity DNA end-joining and perhaps contributing to accelerated and normal aging through compromised genome stability.
Collapse
Affiliation(s)
- Liza A Joudeh
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alannah J DiCintio
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Madeline R Ries
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Andrew S Gasperson
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Kennedy E Griffin
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Victoria P Robbins
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Makenzie Bonner
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Sarah Nolan
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Emma Black
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA
| | - Alan S Waldman
- Department of Biological Sciences, University of South Carolina, Columbia, SC 29208, USA.
| |
Collapse
|
33
|
Alshami ML, Al‐Maliky MA, Alsagban AA, Alshaeli AJ. Epidemiology and incidence of oral squamous cell carcinoma in the Iraqi population over 5 years (2014-2018). Health Sci Rep 2023; 6:e1205. [PMID: 37064317 PMCID: PMC10090270 DOI: 10.1002/hsr2.1205] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 03/12/2023] [Accepted: 03/21/2023] [Indexed: 04/18/2023] Open
Abstract
Background Oral squamous cell carcinoma is one of the most common and life-threatening neoplasms worldwide, and is responsible for approximately 90% of all oral malignancies. Aim This study was aimed at providing updated information on oral squamous cell carcinoma in all Iraqi governorates for the 5-year period from 2014 to 2018, including the annual incidence and demographic variables. Materials and Methods The total number of oral squamous cell carcinoma cases in Iraq, along with associated demographic information (age, sex, and site), for the 5-year period from 2014 to 2018 was obtained. The statistical analysis consisted of descriptive analysis, including frequency, percentage, and mean ± standard deviation. A χ 2 test was performed to compare frequencies between male and female patients, among age groups, and among different OSCC sites. The χ 2 test was also used to assess the association of each OSCC site with age and sex. The significance threshold was set at p < 0.05, and the confidence interval was set at 95%. The incidence rate of oral squamous cell carcinoma for each year was calculated by dividing the number of OSCC cases per year by the population of Iraq, then multiplying the result by 100,000. Results A total of 722 cases were recorded. Statistically, oral squamous cell carcinoma was found to be more prevalent in males and individuals over 40 years of age. The tongue was the most common site of occurrence. Lip squamous cell carcinoma cases were high in males. The incidence rate of oral squamous cell carcinoma was estimated to be 0.4 per 100,000 people. Conclusion Males and older people are at relatively higher risk of developing oral cancer. The tongue is the most affected site, but any site in the oral cavity may be involved. Further exploration of the causes of oral malignancy in Iraq is necessary to improve prevention strategies.
Collapse
|
34
|
Bujarrabal-Dueso A, Sendtner G, Meyer DH, Chatzinikolaou G, Stratigi K, Garinis GA, Schumacher B. The DREAM complex functions as conserved master regulator of somatic DNA-repair capacities. Nat Struct Mol Biol 2023; 30:475-488. [PMID: 36959262 PMCID: PMC10113156 DOI: 10.1038/s41594-023-00942-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/08/2023] [Indexed: 03/25/2023]
Abstract
The DNA-repair capacity in somatic cells is limited compared with that in germ cells. It has remained unknown whether not only lesion-type-specific, but overall repair capacities could be improved. Here we show that the DREAM repressor complex curbs the DNA-repair capacities in somatic tissues of Caenorhabditis elegans. Mutations in the DREAM complex induce germline-like expression patterns of multiple mechanisms of DNA repair in the soma. Consequently, DREAM mutants confer resistance to a wide range of DNA-damage types during development and aging. Similarly, inhibition of the DREAM complex in human cells boosts DNA-repair gene expression and resistance to distinct DNA-damage types. DREAM inhibition leads to decreased DNA damage and prevents photoreceptor loss in progeroid Ercc1-/- mice. We show that the DREAM complex transcriptionally represses essentially all DNA-repair systems and thus operates as a highly conserved master regulator of the somatic limitation of DNA-repair capacities.
Collapse
Affiliation(s)
- Arturo Bujarrabal-Dueso
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Georg Sendtner
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - David H Meyer
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Georgia Chatzinikolaou
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Kalliopi Stratigi
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - George A Garinis
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology-Hellas, Department of Biology, University of Crete, Heraklion, Crete, Greece
| | - Björn Schumacher
- Institute for Genome Stability in Aging and Disease, Medical Faculty, University and University Hospital of Cologne, Cologne, Germany.
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
35
|
Bailie E, Maidarti M, Hawthorn R, Jack S, Watson N, Telfer EE, Anderson RA. The ovaries of transgender men indicate effects of high dose testosterone on the primordial and early growing follicle pool. REPRODUCTION AND FERTILITY 2023; 4:RAF-22-0102. [PMID: 37000633 PMCID: PMC10160535 DOI: 10.1530/raf-22-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 03/31/2023] [Indexed: 04/01/2023] Open
Abstract
Androgens are essential in normal ovarian function and follicle health but hyperandrogenism, as seen in polycystic ovary syndrome, is associated with disordered follicle development. There are few data on the effect of long-term exposure to high levels of testosterone as found in transgender men receiving gender-affirming endocrine therapy. In this study, we investigate the effect of testosterone on the development, morphological health and DNA damage and repair capacity of human ovarian follicles in vivo and their survival in vitro. Whole ovaries were obtained from transgender men (mean age: 27.6 ± 1.7 years; range 20-34 years, n = 8) at oophorectomy taking pre-operative testosterone therapy. This was compared to cortical biopsies from age-matched healthy women obtained at caesarean section (mean age: 31.8±1.5 years; range= 25-35 years, n=8). Cortical tissues were dissected into fragments and either immediately fixed for histological analysis or cultured for 6 days and subsequently fixed. Follicle classification and morphological health were evaluated from histological sections stained with H&E and expression of γH2AX as a marker of DNA damage by IHC. In uncultured tissue, testosterone exposure was associated with reduced follicle growth activation, poor follicle health and increased DNA damage. After 6 days of culture, there was enhanced follicle activation compared to control with further deterioration in morphological health and increased DNA damage. These data indicate that high circulating concentrations of testosterone have effects on the primordial and small-growing follicles of the ovary. These results may have implications for transgender men receiving gender-affirming therapy prior to considering pregnancy or fertility preservation measures.
Collapse
Affiliation(s)
- Emily Bailie
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Mila Maidarti
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | | | - Stuart Jack
- Simpson Centre for Reproductive Health, Royal Infirmary, Edinburgh, UK
| | - Neale Watson
- Spire Thames Valley Hospital, Wexham St, Slough, UK
| | - Evelyn E Telfer
- Institute of Cell Biology, Hugh Robson Building, University of Edinburgh, Edinburgh, UK
| | - Richard A Anderson
- MRC Centre for Reproductive Health, Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
36
|
Semerci O, Gucer H. The Significance of Unsampled Microscopic Thyroid Carcinomas in Multinodular Goiter. Endocr Pathol 2023; 34:119-128. [PMID: 36527546 DOI: 10.1007/s12022-022-09743-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/05/2022] [Indexed: 12/23/2022]
Abstract
Thorough gross examination and appropriate sampling of the thyroidectomy specimens are fundamental to the diagnosis and clinical risk management of patients. This study aims to investigate the frequency and clinical significance of initially unsampled microscopic thyroid carcinomas in total thyroidectomy specimens with presumed benign multinodular thyroid disease. Seventy-two total thyroidectomy specimens belonging to multinodular goiter patients were randomly selected and included in this prospectively designed study. Inclusion criteria were set as no suspicion of malignancy before surgery as well as lack of intra-parenchymal primary thyroid carcinoma after histopathological evaluation of slides generated from initial sampling. Subsequently, the remaining thyroidectomy specimens were submitted for microscopic examination and sign-outs were finalized following the microscopic examination of the entire thyroid tissue. Microcarcinomas, with a maximum diameter of 3.5 mm, were detected in 29 cases (40.2%) after the whole gland sampling. Although most of these tumors were low-risk papillary microcarcinomas confined to the thyroid, one specimen also showed a medullary microcarcinoma measuring 1.5 mm. Three had micrometastatic nodal disease. There was no local recurrence or distant metastatic disease during the follow-up (mean 51.4 months). This study further supports microscopic carcinomas, including papillary microcarcinoma, and medullary microcarcinoma might stay hidden in thyroidectomy specimens. Increased glandular weight, male gender, and advanced age were significant risk factors in the detection of microcarcinomas in this series. While each multinodular thyroidectomy specimen is unique, we recommend dynamic extensive sampling (rather than bare-minimum approach) strategy based on careful gross and initial histologic examination findings as well as by taking into consideration risk factors.
Collapse
Affiliation(s)
- Orhan Semerci
- Department of Pathology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey
| | - Hasan Gucer
- Department of Pathology, Faculty of Medicine, Recep Tayyip Erdoğan University, Rize, Turkey.
| |
Collapse
|
37
|
Copp ME, Shine J, Brown HL, Nimmala KR, Chubinskaya S, Collins JA, Loeser RF, Diekman BO. SIRT6 activation rescues the age-related decline in DNA damage repair in primary human chondrocytes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.27.530205. [PMID: 36909504 PMCID: PMC10002640 DOI: 10.1101/2023.02.27.530205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/04/2023]
Abstract
While advanced age has long been recognized as the greatest risk factor for osteoarthritis (OA), the biological mechanisms behind this connection remain unclear. Previous work has demonstrated that chondrocytes from older cadaveric donors have elevated levels of DNA damage as compared to chondrocytes from younger donors. The purpose of this study was to determine whether a decline in DNA repair efficiency is one explanation for the accumulation of DNA damage with age, and to quantify the improvement in repair with activation of Sirtuin 6 (SIRT6). Using an acute irradiation model to bring the baseline level of all donors to the same starting point, this study demonstrates a decline in repair efficiency during aging when comparing chondrocytes from young (≤45 years old), middle-aged (50-65 years old), or older (>70 years old) cadaveric donors with no known history of OA or macroscopic cartilage degradation at isolation. Activation of SIRT6 in middle-aged chondrocytes with MDL-800 (20 μM) improved the repair efficiency, while inhibition with EX-527 (10 μM) inhibited the rate of repair and the increased the percentage of cells that retained high levels of damage. Treating chondrocytes from older donors with MDL-800 for 48 hours significantly reduced the amount of DNA damage, despite this damage having accumulated over decades. Lastly, chondrocytes isolated from the proximal femurs of mice between 4 months and 22 months of age revealed both an increase in DNA damage with aging, and a decrease in DNA damage following MDL-800 treatment.
Collapse
Affiliation(s)
- Michaela E Copp
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC
| | - Jacqueline Shine
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
| | - Hannon L Brown
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC
| | - Kirti R Nimmala
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC
| | - Susan Chubinskaya
- Department of Pediatrics, Rush University Medical Center, Chicago, IL
| | - John A Collins
- Department of Orthopedic Surgery, Thomas Jefferson University
| | - Richard F Loeser
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Division of Rheumatology, Allergy, and Immunology, University of North Carolina
| | - Brian O Diekman
- Thurston Arthritis Research Center, University of North Carolina at Chapel Hill, Chapel Hill, NC
- Joint Department of Biomedical Engineering, University of North Carolina and North Carolina State University, Raleigh, NC
| |
Collapse
|
38
|
Sonowal R, Swimm AI, Cingolani F, Parulekar N, Cleverley TL, Sahoo A, Ranawade A, Chaudhuri D, Mocarski ES, Koehler H, Nitsche K, Mesiano S, Kalman D. A microbiota and dietary metabolite integrates DNA repair and cell death to regulate embryo viability and aneuploidy during aging. SCIENCE ADVANCES 2023; 9:eade8653. [PMID: 36827370 PMCID: PMC9956122 DOI: 10.1126/sciadv.ade8653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
During aging, environmental stressors and mutations along with reduced DNA repair cause germ cell aneuploidy and genome instability, which limits fertility and embryo development. Benevolent commensal microbiota and dietary plants secrete indoles, which improve healthspan and reproductive success, suggesting regulation of germ cell quality. We show that indoles prevent aneuploidy and promote DNA repair and embryo viability, which depends on age and genotoxic stress levels and affects embryo quality across generations. In young animals or with low doses of radiation, indoles promote DNA repair and embryo viability; however, in older animals or with high doses of radiation, indoles promote death of the embryo. These studies reveal a previously unknown quality control mechanism by which indole integrates DNA repair and cell death responses to preclude germ cell aneuploidy and ensure transgenerational genome integrity. Such regulation affects healthy aging, reproductive senescence, cancer, and the evolution of genetic diversity in invertebrates and vertebrates.
Collapse
Affiliation(s)
- Robert Sonowal
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Alyson I. Swimm
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Francesca Cingolani
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Noyonika Parulekar
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Tesia L. Cleverley
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Immunology and Molecular Pathogenesis Graduate Program, Emory University, Atlanta, GA, USA
| | - Anusmita Sahoo
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Yerkes National Primate Research Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Ayush Ranawade
- Department of Biology, Northeastern University, Boston, MA, USA
| | - Debalina Chaudhuri
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Edward S. Mocarski
- Emory Vaccine Center, Emory University, Atlanta, GA, USA
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Heather Koehler
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, GA, USA
| | - Karolina Nitsche
- Mouse Transgenic and Gene Targeting Core, Emory University, Atlanta, GA, USA
| | - Sam Mesiano
- Department of Reproductive Biology, Case Western Reserve University and Department of Obstetrics and Gynecology, University Hospitals of Cleveland, Cleveland, OH, USA
| | - Daniel Kalman
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
39
|
Rigby Dames BA, Kilili H, Charvet CJ, Díaz-Barba K, Proulx MJ, de Sousa AA, Urrutia AO. Evolutionary and genomic perspectives of brain aging and neurodegenerative diseases. PROGRESS IN BRAIN RESEARCH 2023; 275:165-215. [PMID: 36841568 PMCID: PMC11191546 DOI: 10.1016/bs.pbr.2022.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This chapter utilizes genomic concepts and evolutionary perspectives to further understand the possible links between typical brain aging and neurodegenerative diseases, focusing on the two most prevalent of these: Alzheimer's disease and Parkinson's disease. Aging is the major risk factor for these neurodegenerative diseases. Researching the evolutionary and molecular underpinnings of aging helps to reveal elements of the typical aging process that leave individuals more vulnerable to neurodegenerative pathologies. Very little is known about the prevalence and susceptibility of neurodegenerative diseases in nonhuman species, as only a few individuals have been observed with these neuropathologies. However, several studies have investigated the evolution of lifespan, which is closely connected with brain size in mammals, and insights can be drawn from these to enrich our understanding of neurodegeneration. This chapter explores the relationship between the typical aging process and the events in neurodegeneration. First, we examined how age-related processes can increase susceptibility to neurodegenerative diseases. Second, we assessed to what extent neurodegeneration is an accelerated form of aging. We found that while at the phenotypic level both neurodegenerative diseases and the typical aging process share some characteristics, at the molecular level they show some distinctions in their profiles, such as variation in genes and gene expression. Furthermore, neurodegeneration of the brain is associated with an earlier onset of cellular, molecular, and structural age-related changes. In conclusion, a more integrative view of the aging process, both from a molecular and an evolutionary perspective, may increase our understanding of neurodegenerative diseases.
Collapse
Affiliation(s)
- Brier A Rigby Dames
- Department of Computer Science, University of Bath, Bath, United Kingdom; Department of Psychology, University of Bath, Bath, United Kingdom.
| | - Huseyin Kilili
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom
| | - Christine J Charvet
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| | - Karina Díaz-Barba
- Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México
| | - Michael J Proulx
- Department of Psychology, University of Bath, Bath, United Kingdom
| | | | - Araxi O Urrutia
- Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, United Kingdom; Licenciatura en Ciencias Genómicas, UNAM, CP62210, Cuernavaca, México; Instituto de Ecología, UNAM, Ciudad Universitaria, CP04510, Ciudad de México, México.
| |
Collapse
|
40
|
Olsen MB, Huse C, de Sousa MML, Murphy SL, Sarno A, Obermann TS, Yang K, Holter JC, Jørgensen MJ, Christensen EE, Wang W, Ji P, Heggelund L, Hoel H, Dyrhol-Riise AM, Gregersen I, Aukrust P, Bjørås M, Halvorsen B, Dahl TB. DNA Repair Mechanisms are Activated in Circulating Lymphocytes of Hospitalized Covid-19 Patients. J Inflamm Res 2022; 15:6629-6644. [PMID: 36514358 PMCID: PMC9741826 DOI: 10.2147/jir.s379331] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 10/20/2022] [Indexed: 12/12/2022] Open
Abstract
Purpose Reactive oxygen species (ROS) are an important part of the inflammatory response during infection but can also promote DNA damage. Due to the sustained inflammation in severe Covid-19, we hypothesized that hospitalized Covid-19 patients would be characterized by increased levels of oxidative DNA damage and dysregulation of the DNA repair machinery. Patients and Methods Levels of the oxidative DNA lesion 8-oxoG and levels of base excision repair (BER) proteins were measured in peripheral blood mononuclear cells (PBMC) from patients (8-oxoG, n = 22; BER, n = 17) and healthy controls (n = 10) (Cohort 1). Gene expression related to DNA repair was investigated in two independent cohorts of hospitalized Covid-19 patients (Cohort 1; 15 patents and 5 controls, Cohort 2; 15 patients and 6 controls), and by publicly available datasets. Results Patients and healthy controls showed comparable amounts of oxidative DNA damage as assessed by 8-oxoG while levels of several BER proteins were increased in Covid-19 patients, indicating enhanced DNA repair in acute Covid-19 disease. Furthermore, gene expression analysis demonstrated regulation of genes involved in BER and double strand break repair (DSBR) in PBMC of Covid-19 patients and expression level of several DSBR genes correlated with the degree of respiratory failure. Finally, by re-analyzing publicly available data, we found that the pathway Hallmark DNA repair was significantly more regulated in circulating immune cells during Covid-19 compared to influenza virus infection, bacterial pneumonia or acute respiratory infection due to seasonal coronavirus. Conclusion Although beneficial by protecting against DNA damage, long-term activation of the DNA repair machinery could also contribute to persistent inflammation, potentially through mechanisms such as the induction of cellular senescence. However, further studies that also include measurements of additional markers of DNA damage are required to determine the role and precise molecular mechanisms for DNA repair in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Maria Belland Olsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Camilla Huse
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Mirta Mittelstedt Leal de Sousa
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway,Proteomics and Modomics Experimental Core Facility (PROMEC), NTNU, Trondheim, Norway
| | - Sarah Louise Murphy
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Antonio Sarno
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway,Department of Fisheries and New Biomarine Industry, SINTEF Ocean, Trondheim, Norway
| | - Tobias Sebastian Obermann
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Kuan Yang
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Jan Cato Holter
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Marte Jøntvedt Jørgensen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Erik Egeland Christensen
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Wei Wang
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ping Ji
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway
| | - Lars Heggelund
- Department of Internal Medicine, Vestre Viken Hospital Trust, Drammen, Norway,Department of Clinical Science, Faculty of Medicine, University of Bergen, Bergen, Norway
| | - Hedda Hoel
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway,Department of Medicine, Lovisenberg Diaconal Hospital, Oslo, Norway
| | - Anne Margarita Dyrhol-Riise
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Department of Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Ida Gregersen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway,Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital, Oslo, Norway
| | - Magnar Bjørås
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Trondheim, Norway,Department of Microbiology, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway,Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Tuva Børresdatter Dahl
- Division of Critical Care and Emergencies, Oslo University Hospital, Oslo, Norway,Correspondence: Tuva Børresdatter Dahl, Division of Critical Care and Emergencies and Research Institute of Internal Medicine, Oslo University Hospital, Sognsvannsveien 20, Oslo, Norway, Tel +4723072786, Email
| |
Collapse
|
41
|
Lidsky PV, Yuan J, Rulison JM, Andino-Pavlovsky R. Is Aging an Inevitable Characteristic of Organic Life or an Evolutionary Adaptation? BIOCHEMISTRY. BIOKHIMIIA 2022; 87:1413-1445. [PMID: 36717438 PMCID: PMC9839256 DOI: 10.1134/s0006297922120021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 09/27/2022] [Accepted: 11/04/2022] [Indexed: 01/15/2023]
Abstract
Aging is an evolutionary paradox. Several hypotheses have been proposed to explain it, but none fully explains all the biochemical and ecologic data accumulated over decades of research. We suggest that senescence is a primitive immune strategy which acts to protect an individual's kin from chronic infections. Older organisms are exposed to pathogens for a longer period of time and have a higher likelihood of acquiring infectious diseases. Accordingly, the parasitic load in aged individuals is higher than in younger ones. Given that the probability of pathogen transmission is higher within the kin, the inclusive fitness cost of infection might exceed the benefit of living longer. In this case, programmed lifespan termination might be an evolutionarily stable strategy. Here, we discuss the classical evolutionary hypotheses of aging and compare them with the pathogen control hypothesis, discuss the consistency of these hypotheses with existing empirical data, and present a revised conceptual framework to understand the evolution of aging.
Collapse
Affiliation(s)
- Peter V Lidsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| | - Jing Yuan
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
| | - Jacob M Rulison
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA
- University of California Berkeley, CA, USA
| | - Raul Andino-Pavlovsky
- Department of Microbiology and Immunology, University of California San Francisco, CA, USA.
| |
Collapse
|
42
|
Zhu L, Hassan SH, Gao X, Johnson JQ, Wang Y, Bregy MV, Wei Z, Chen J, Li P, Stetler RA. Neuron-targeted Knockout of APE1 Forces Premature Cognitive Impairment and Synaptic Dysfunction in Adult Mice. Aging Dis 2022; 13:1862-1874. [PMID: 36465182 PMCID: PMC9662274 DOI: 10.14336/ad.2022.0331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/31/2022] [Indexed: 08/02/2023] Open
Abstract
Adaptable and consistent neural function relies at least in part on the ongoing repair of oxidative damage that can accumulate in the brain over a lifespan. To determine whether forebrain neuron-targeted knockout of AP endonuclease 1 (APE1), a critical enzyme in the base excision DNA repair pathway, contributes to neuronal impairments, we generated APE1 conditional knockout mice under the control of the CamKIIα promotor (APE1 cKO). Spatial learning and memory were tested using the Morris water maze. Synaptic markers, including synapsin, vGLUT, GABA1, and GAD were immunostained and quantified. Dendritic morphology and number were characterized using Golgi staining. Long-term potentiation (LTP) was measured in slices from the 6-month-old brain. APE1 cKO mice did not significantly differ from WT mice in the learning phase of the Morris water maze, but performed significantly worse during the memory phase of the Morris water maze. vGLUT, GABA1, and GAD immunostaining was significantly decreased in APE1 cKO mice without concomitant changes in the number of synapsin-positive structures, suggesting that neural networks may be impaired but not at the level of total presynaptic structures. Dendrites were reduced both in number and length of spines in APE1 cKO mice. APE1 cKO brain slices exhibited decreased LTP induction compared to WT brain slices. Together, these data indicate that the conditional loss of APE1 in forebrain neurons leads to a phenotype consistent with expedited brain aging.
Collapse
Affiliation(s)
- Ling Zhu
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Sulaiman H Hassan
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- 2Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Xuguang Gao
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Joycelyn Q Johnson
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Yangfan Wang
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - M Victoria Bregy
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Zhishuo Wei
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Jun Chen
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- 2Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| | - Peiying Li
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - R Anne Stetler
- 1Pittsburgh Institute of Brain Disorder & Recovery and Department of Neurology University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- 2Geriatric Research, Education and Clinical Center, Veterans Affairs Pittsburgh Health Care System, Pittsburgh, PA 15261, USA
| |
Collapse
|
43
|
Jin R, Niu C, Wu F, Zhou S, Han T, Zhang Z, Li E, Zhang X, Xu S, Wang J, Tian S, Chen W, Ye Q, Cao C, Cheng L. DNA damage contributes to age-associated differences in SARS-CoV-2 infection. Aging Cell 2022; 21:e13729. [PMID: 36254583 PMCID: PMC9741512 DOI: 10.1111/acel.13729] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 09/01/2022] [Accepted: 09/26/2022] [Indexed: 12/14/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19), caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is known to disproportionately affect older individuals. How aging processes affect SARS-CoV-2 infection and disease progression remains largely unknown. Here, we found that DNA damage, one of the hallmarks of aging, promoted SARS-CoV-2 infection in vitro and in vivo. SARS-CoV-2 entry was facilitated by DNA damage caused by extrinsic genotoxic stress or telomere dysfunction and hampered by inhibition of the DNA damage response (DDR). Mechanistic analysis revealed that DDR increased expression of angiotensin-converting enzyme 2 (ACE2), the primary receptor of SARS-CoV-2, by activation of transcription factor c-Jun. Importantly, in vivo experiment using a mouse-adapted viral strain also verified the significant roles of DNA damage in viral entry and severity of infection. Expression of ACE2 was elevated in the older human and mice tissues and positively correlated with γH2AX, a DNA damage biomarker, and phosphorylated c-Jun (p-c-Jun). Finally, nicotinamide mononucleotide (NMN) and MDL-800, which promote DNA repair, alleviated SARS-CoV-2 infection and disease severity in vitro and in vivo. Taken together, our data provide insights into the age-associated differences in SARS-CoV-2 infection and a novel approach for antiviral intervention.
Collapse
Affiliation(s)
- Rui Jin
- Beijing Institute of BiotechnologyBeijingChina
| | - Chang Niu
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Fengyun Wu
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Sixin Zhou
- Department of SurgeryChinese PLA General HospitalBeijingChina
| | - Tao Han
- BaYi Children's Hospital, the Seventh Medical CenterChinese PLA General HospitalBeijingChina
| | - Zhe Zhang
- Beijing Institute of BiotechnologyBeijingChina
| | - Entao Li
- Key Laboratory of Jilin Province for Zoonosis Prevention and Control, Changchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchunChina
| | - Xiaona Zhang
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Shanrong Xu
- School of Life ScienceAnqing Normal UniversityAnqingChina
| | - Jiadong Wang
- Department of Radiation Medicine, School of Basic Medical Sciences, Institute of Systems BiomedicinePeking University Health Science CenterBeijingChina
| | - Shen Tian
- College of Life SciencesCapital Normal UniversityBeijingChina
| | - Wei Chen
- Beijing Institute of BiotechnologyBeijingChina
| | - Qinong Ye
- Beijing Institute of BiotechnologyBeijingChina
| | - Cheng Cao
- Beijing Institute of BiotechnologyBeijingChina
| | - Long Cheng
- Beijing Institute of BiotechnologyBeijingChina
| |
Collapse
|
44
|
Fu Y, Wu T, Yu H, Xu J, Zhang JZ, Fu DY, Ye H. The Transcription of Flight Energy Metabolism Enzymes Declined with Aging While Enzyme Activity Increased in the Long-Distance Migratory Moth, Spodoptera frugiperda. INSECTS 2022; 13:936. [PMID: 36292884 PMCID: PMC9604208 DOI: 10.3390/insects13100936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/08/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Of all the things that can fly, the flight mechanisms of insects are possibly the least understood. By using RNAseq, we studied the aging-associated gene expression changes in the thorax of Spodoptera frugiperda females. Three possible flight energy metabolism pathways were constructed based on 32 key metabolic enzymes found in S. frugiperda. Differential expression analysis revealed up to 2000 DEGs within old females versus young ones. Expression and GO and KEGG enrichment analyses indicated that most genes and pathways related to energy metabolism and other biological processes, such as transport, redox, longevity and signaling pathway, were downregulated with aging. However, activity assay showed that the activities of all the five tested key enzymes increased with age. The age-associated transcriptional decrease and activity increase in these enzymes suggest that these enzymes are stable. S. frugiperda is a long-distance migrator, and a high activity of enzymes may be important to guarantee a high flight capacity. The activity ratio of GAPDH/HOAD ranged from 0.594 to 0.412, suggesting that lipid is the main fuel of this species, particularly in old individuals. Moreover, the expression of enzymes in the proline oxidation pathway increased with age, suggesting that this energy metabolic pathway also is important for this species or linked to some aging-specific processes. In addition, the expression of immunity- and repair-related genes also increased with age. This study established the overall transcriptome framework of the flight muscle and aging-associated expression change trajectories in an insect for the first time.
Collapse
Affiliation(s)
- Yan Fu
- Yunnan Academy of Biodiversity, School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Ting Wu
- Yunnan Academy of Biodiversity, School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Hong Yu
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Jin Xu
- Yunnan Academy of Biodiversity, School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Jun-Zhong Zhang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China
| | - Da-Ying Fu
- Yunnan Academy of Biodiversity, School of Biodiversity Conservation, Southwest Forestry University, Kunming 650224, China
| | - Hui Ye
- School of Ecology and Environment, Yunnan University, Kunming 650091, China
| |
Collapse
|
45
|
Shvedova M, Samdavid Thanapaul RJR, Thompson EL, Niedernhofer LJ, Roh DS. Cellular Senescence in Aging, Tissue Repair, and Regeneration. Plast Reconstr Surg 2022; 150:4S-11S. [PMID: 36170430 PMCID: PMC9529244 DOI: 10.1097/prs.0000000000009667] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
SUMMARY Society and our healthcare system are facing unprecedented challenges due to the expansion of the older population. As plastic surgeons, we can improve care of our older patients through understanding the mechanisms of aging that inevitably impact their outcomes and well-being. One of the major hallmarks of aging, cellular senescence, has recently become the focus of vigorous research in academia and industry. Senescent cells, which are metabolically active but in a state of stable cell cycle arrest, are implicated in causing aging and numerous age-related diseases. Further characterization of the biology of senescence revealed that it can be both detrimental and beneficial to organisms depending on tissue context and senescence chronicity. Here, we review the role of cellular senescence in aging, wound healing, tissue regeneration, and other domains relevant to plastic surgery. We also review the current state of research on therapeutics that modulate senescence to improve conditions of aging.
Collapse
Affiliation(s)
- Maria Shvedova
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Rex Jeya Rajkumar Samdavid Thanapaul
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Elizabeth L Thompson
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Laura J Niedernhofer
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| | - Daniel S Roh
- From the Division of Plastic and Reconstructive Surgery, Department of Surgery, Boston University School of Medicine; and Department of Biochemistry, Molecular Biology, and Biophysics, Institute on the Biology of Aging and Metabolism, University of Minnesota Medical School
| |
Collapse
|
46
|
Evidence of Sex Differences in Cellular Senescence. Neurobiol Aging 2022; 120:88-104. [PMID: 36166919 DOI: 10.1016/j.neurobiolaging.2022.08.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/20/2022]
|
47
|
Importance of Incidental Findings in Preoperative Computed Tomography Angiography for Abdominal-Based Free Flap Breast Reconstruction: A Multi-institutional Study. Plast Reconstr Surg 2022; 150:527-535. [PMID: 35748758 DOI: 10.1097/prs.0000000000009388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
BACKGROUND Besides its intended purpose of perforator mapping, CTA can also identify incidental findings that may require further evaluation. In this multi-institutional study, we evaluated the frequency of incidental findings and their significance and impact on treatment course. We also aimed to identify risk factors for detecting such findings. METHOD A retrospective review of patients who underwent perforator mapping with CTA was performed over a 5-year period from three academic institutions. Relevant sociodemographic and clinicopathologic information were reviewed, as well as CTA reports and follow up visits and treatment outcomes. Univariate and multivariate analyses were performed to assess the relationship between risk factors and incidental findings. RESULTS From January 2015 to July 2020, a total of 656 patients were identified that met inclusion criteria. Overall, 342 incidental findings were found, out of which 76 required additional imaging or consultation. Ultimately, 10 (1.5%) patients had findings that altered reconstructive management, including 5 (0.8%) patients having severe disease that cancelled their reconstruction altogether. Advanced age and immediate reconstruction timing were independent risk factors for incidental findings. CONCLUSION Incidental findings can be commonly identified on preoperative CTA for DIEP flap breast reconstruction. Suspicious findings should be investigated thoroughly as they can alter the reconstructive course. Understanding of high-risk groups for incidental findings can further advance patient education during initial consultation.
Collapse
|
48
|
Majid S, Van Belleghem F, Ploem JP, Wouters A, Blust R, Smeets K. Interactive toxicity of copper and cadmium in regenerating and adult planarians. CHEMOSPHERE 2022; 297:133819. [PMID: 35114265 DOI: 10.1016/j.chemosphere.2022.133819] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/31/2021] [Accepted: 01/28/2022] [Indexed: 06/14/2023]
Abstract
In a polluted environment, metals are present as complex mixtures. As a result, organisms are exposed to different metals at the same time, which affects both metal-specific as well as overall toxicity. Detailed information about the molecular mechanisms underlying the adverse effects of combined exposures remains limited in terms of different life stages. In this study, the freshwater planarian Schmidtea mediterranea was used to investigate developmental and physiological responses associated with a combined exposure to Cu and Cd. In addition, the cellular and molecular mechanisms underlying the provoked adverse effects were studied in different exposure scenarios. Mixed exposure resulted in a decline in survival, diverse non-lethal morphological changes, neuroregenerative impairments, altered behaviour and a limited repair capacity. Underlying to these effects, the cellular redox state was altered in all exposure conditions. In adult animals, this led to DNA damage and corresponding transcriptional changes in cell cycle and DNA repair genes. In regenerating animals, changes in hydrogen peroxide and glutathione contents led to regenerative defects. Overall, our results demonstrate that (1) developing organisms are more susceptible to metal exposures, and (2) the toxicity of an individual metal increases significantly in a mixed exposure scenario. These aspects have to be included in current risk assessment strategies.
Collapse
Affiliation(s)
- Sanah Majid
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium; Systemic Physiological & Eco-toxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan, 2020, Belgium
| | - Frank Van Belleghem
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium; Department of Environmental Sciences, Faculty of Science, Open University of the Netherlands, Heerlen, 6419, AT, the Netherlands
| | - Jan-Pieter Ploem
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium
| | - Annelies Wouters
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium
| | - Ronny Blust
- Systemic Physiological & Eco-toxicological Research (SPHERE), Department of Biology, University of Antwerp, Groenenborgerlaan, 2020, Belgium
| | - Karen Smeets
- Laboratory of Toxicology, Centre for Environmental Sciences (CMK), Hasselt University, Diepenbeek, 3590, Belgium.
| |
Collapse
|
49
|
Bouleftour W, Magne N. Aging preclinical models in oncology field: from cells to aging. Aging Clin Exp Res 2022; 34:751-755. [PMID: 34528213 DOI: 10.1007/s40520-021-01981-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022]
Abstract
Aging is a universal complex and multifactorial physiological process that leads to the increasing incidence of various diseases including cancer. Indeed, 40% of individuals aged 65 years and over will have newly diagnosed cancers. Although most treated patients are elderly people, a low inclusion of the geriatric population is observed in most clinical trials. Furthermore, lethal side effects of antineoplastic therapy are markedly exacerbated with aging. Most cancer therapies were validated on young mice models, complicating results transposition to elderly patients. Thus, understanding the role of aging in tumor progression and response to cancer therapies with accurate preclinical models must be investigated. Therefore, this review aimed to summarize the state of the literature about preclinical models used to investigate the impact of aging microenvironment on tumorigenic potential, and on antineoplastic therapy response. Despite the advances in technology, and the increasing incidence of cancer in the elderly population, this present review focuses on the few studies using preclinical tumor model of aging. Since the biology of aging is challenging, aging animal models are an inevitable prelude. New emerging tools such as human organoid offer a promising path in research dedicated to aging.
Collapse
Affiliation(s)
- Wafa Bouleftour
- Medical Oncology Department, Lucien Neuwirth Cancer Institute, 108 bis avenue Albert Raimond, 42270, Saint Priest en Jarez, France.
| | - Nicolas Magne
- Radiotherapy Department, Lucien Neuwirth Cancer Institute, 42270, Saint Priest en Jarez, France
| |
Collapse
|
50
|
Pretzsch E, Nieß H, Bösch F, Westphalen C, Jacob S, Neumann J, Werner J, Heinemann V, Angele M. Age and metastasis – How age influences metastatic spread in cancer. Colorectal cancer as a model. Cancer Epidemiol 2022; 77:102112. [PMID: 35104771 DOI: 10.1016/j.canep.2022.102112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 01/15/2022] [Accepted: 01/17/2022] [Indexed: 12/12/2022]
|