1
|
Yan J, Yin S, Chen Y, Xu R, Li W, Cai Y, Wang P, Ma X, Fan D. Expression, optimization and biological activity analysis of recombinant type III collagen in Komagataella phaffii. Int J Biol Macromol 2025; 288:138243. [PMID: 39653211 DOI: 10.1016/j.ijbiomac.2024.138243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/22/2024] [Accepted: 11/29/2024] [Indexed: 12/19/2024]
Abstract
Type III collagen, a fundamental constituent of the extracellular matrix (ECM), is extensively utilized across the biomedicine, tissue engineering, and cosmetic industries because of its exceptional biocompatibility and biodegradability. Despite its widespread application, traditional methods of collagen production are often hindered by the limit yield, potential immunogenicity, and batch-to-batch variability. In the present study, we describe a synthetic biological approach for expressing full-length recombinant type III collagen (RCIII) in the Komagataella phaffii system. Furthermore, the protein expression level was effectively increased by co-expression of the MPR1 gene, which improved the intrinsic antioxidant defenses of yeast cells, thereby reducing oxidative stress damage. The resulting RCIII maintains its native secondary structure and exhibits robust biological activities, including the promotion of platelet coagulation, enhancement of cell migration, and anti-inflammatory efficacy. Our findings suggest a viable pathway for large-scale, industrial production of type III collagen, offering a promising biomaterial for advanced biomedical applications, and contributing to the circular economy of the biomedical sector.
Collapse
Affiliation(s)
- Junmiao Yan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Shiyu Yin
- Xi'an Giant Biogene Co., Ltd, Xi'an 710065, Shaanxi, China
| | - Yanru Chen
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Ru Xu
- Xi'an Giant Biogene Co., Ltd, Xi'an 710065, Shaanxi, China
| | - Weina Li
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Yiwen Cai
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China
| | - Pan Wang
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Xiaoxuan Ma
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| | - Daidi Fan
- Engineering Research Center of Western Resource Innovation Medicine Green Manufacturing, Ministry of Education, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China; Biotech. & Biomed. Research Institute, Northwest University, Xi'an 710069, China.
| |
Collapse
|
2
|
Priya P, Shivashankar VB, Rangarajan PN. Synthetic transcription factors establish the function of nine amino acid transactivation domains of Komagataella phaffii Mxr1. J Biol Chem 2025:108211. [PMID: 39855340 DOI: 10.1016/j.jbc.2025.108211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/09/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
The zinc finger transcription factor Mxr1 (methanol expression regulator 1) of the methylotrophic yeast Komagataella phaffii (formerly Pichia pastoris) harbors a DNA-binding domain (DBD) consisting of two C2H2 zinc fingers (Mxr1ZF) between amino acids 36-101 and a previously identified nine amino acid transactivation domain (9aaTAD) between residues 365-373 (TAD A, QELESSLNA). Beyond this, 21 putative 9aaTADs (designated TAD B-V) located between amino acids 401-1155 remain to be characterized. Here, we demonstrate that a compact synthetic transcription factor composed of Mxr1ZF and three tandem copies of TAD A can activate the transcription of Mxr1 target genes for ethanol and methanol metabolism with specificity and efficiency comparable to the full-length protein. Expression of individual synthetic transcription factors containing Mxr1ZF and each of the 20 putative 9aaTADs in K. phaffii Δmxr1 strain revealed that 10 of these putative TADs are functional, capable of reversing the growth defect of the mutant and activating transcription of target genes required for ethanol and methanol metabolism. Functional analysis indicates that Mxr1 9aaTADs rely on General Control Non-derepressible 5 (Gcn5), a histone acetyltransferase, for transactivation. These findings suggest that recruitment of Gcn5-mediated histone acetylation at target promoters is a critical step in transcriptional activation by Mxr1 9aaTADs. This study represents the first comprehensive characterization of 9aaTADs in a K. phaffii zinc finger transcription factor, providing insights into their mechanism and potential applications in synthetic biology.
Collapse
Affiliation(s)
- Prachi Priya
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, INDIA
| | | | - Pundi N Rangarajan
- Department of Biochemistry, Indian Institute of Science, Bangalore 560012, INDIA.
| |
Collapse
|
3
|
Yao C, Yin Y, Li Q, Zhang H, Zhang Y, Shao Q, Liu Q, Ren Y, Cai M. Nucleotide distribution analysis of 5'UTRs in genome-scale directs their redesign and expression regulation in yeast. Metab Eng 2024; 88:113-123. [PMID: 39733855 DOI: 10.1016/j.ymben.2024.12.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 12/19/2024] [Accepted: 12/26/2024] [Indexed: 12/31/2024]
Abstract
Non-conventional yeasts have emerged as important sources of valuable products in bioindustries. However, tools for the control of expression are limited in these hosts. In this study, we aimed to excavate the tools for the regulation of translation that are often overlooked. 5'UTR analysis of genome-scale annotated genes of four yeast species revealed a distinct decreasing 'G' frequency in -100 ∼ -1 region from 5040 5'UTRs in Komagataella phaffii. New 5'UTRs were regenerated by base substitutions in defined regions, and replacement of 'G' by 'A' or 'T' in the -50 ∼ -1 region highly facilitated gene expression. Preference analysis of all nucleotide triplets in 5'UTRs revealed a KZ3 (-3 ∼ -1) that dominantly affected gene expression. A total of 128 KZ3 variants were constructed to work with promoters of methanol-inducible PAOX1 and constitutive PGAP, of which 58 KZ3 variants increased gene expression and maximum difference in strength was 15-fold among all variants. Polysome profiling analysis clarified that 5'UTR-KZ3 enhanced gene expression at translational but not transcriptional levels. Finally, improved production of three industrial proteins and one platform compound were achieved by ready-made 5'UTR-KZ3 or in situ modification of the 5'UTR. This study provides new references and tools for the fine-tuning of translational regulation in yeast and other fungi.
Collapse
Affiliation(s)
- Chaoying Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yu Yin
- Laboratory of Pharmaceutical Crystal Engineering & Technology, School of Pharmacy, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qingyang Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Hanqi Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Yilun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qianqian Shao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China.
| | - Yanna Ren
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai, 200237, China; Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai, 200237, China.
| |
Collapse
|
4
|
Liu Q, Li YH, Tao LF, Yang JY, Zhang YL, Cai MH. Rational design and characterization of enhanced alcohol-inducible synthetic promoters in Pichia pastoris. Appl Environ Microbiol 2024:e0219124. [PMID: 39699198 DOI: 10.1128/aem.02191-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/20/2024] Open
Abstract
The C1 and C2 alcohols hold great promise as substrates for biomanufacturing due to their low cost and rich resources. Pichia pastoris is considered a preferred host for methanol and ethanol bioconversion due to its natural utilization of methanol and ethanol. However, the scarcity of strong and tightly regulated alcohol-inducible promoters limits its extended use. This study aimed to develop enhanced methanol- and ethanol-inducible promoters capable of improving gene expression in P. pastoris. Rational design strategies were employed to rewire the upstream regulatory sequence of the methanol-inducible PAOX1, generating several high-strength methanol-inducible promoters with a stringent regulatory pattern. Eleven strong promoters were identified from 36 endogenous ethanol-inducible candidates recognized from transcriptome analysis. Core promoter regions, the crucial element influencing transcriptional strength, were also characterized. Five high-activity core promoters were then combined with four upstream regulatory sequences of high-strength promoters, resulting in four groups of synthetic promoters. Ultimately, the highly active methanol-inducible PA13 and ethanol-inducible P0688 and PsynIV-5 were selected for the expression of an α-amylase and yielded enzyme activity 1.6, 2.6, and 4.5 times higher as compared to that of PAOX1. This work expands the genetic toolkit available for P. pastoris, providing more precise and efficient options for regulating gene expression. It benefits the use of P. pastoris as an efficient platform for the C1 and C2 alcohol-based biotransformation in industrial biotechnology.IMPORTANCEP. pastoris represents a preferred microbial host for the bio-utilization of C1 and C2 alcohols that are regarded as renewable carbon sources based on clean energy. However, lack of efficient and regulated expression tools highly limits the C1 and C2 alcohols based bioproduction. By exploring high-strength and strictly regulated alcohol-inducible promoters, this study expands the expression toolkit for P. pastoris on C1 and C2 alcohols. The newly developed methanol-inducible PA13 and ethanol-inducible PsynIV-5 demonstrate significantly higher expression levels than the commercial PAOX1 system. The endogenous and synthetic promoter series established in this study provides new construction references and alternative tools for expression control in P. pastoris for C1 and C2 alcohols based biomanufacturing.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yun-Hao Li
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Liu-Fei Tao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Jia-Yi Yang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Yi-Lun Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
| | - Meng-Hao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, Shanghai, China
| |
Collapse
|
5
|
Bandbe CD, Patil KS, Pathan EK. Tuning fungal promoters for the expression of eukaryotic proteins. World J Microbiol Biotechnol 2024; 40:400. [PMID: 39617818 DOI: 10.1007/s11274-024-04198-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 11/10/2024] [Indexed: 12/07/2024]
Abstract
Fungal systems, yeast as well as filamentous fungi, are effective platforms for producing recombinant eukaryotic proteins because of their efficient secretion, robust development features, and capacity for post-translational modification. However, to achieve optimum protein expression in fungal hosts, a precise regulation of gene expression levels is necessary. Promoters are critical cis-regulatory regions that drive gene expression. Therefore, understanding the structure and function of fungal promoters and the factors that influence their performance is an essential step in developing yeast and filamentous fungal platforms as hosts for the expression and secretion of eukaryotic proteins. However, literature on the characterization of filamentous fungal promoters is non-exhaustive. The present review attempts to provide a comprehensive account of available information and future applications of fungal promoters. The properties of promoters from different classes of fungi are discussed with respect to their general structure, the core and proximal components that constitute the fungal promoters, types of fungal promoters based on their functions etc. Furthermore, the utility of fungal promoters for applications in healthcare, biofuels, agriculture and biotechnology are also discussed. The comprehensive understanding of fungal promoters will help in developing tailored promoters, paving the way for the optimum production of economically important eukaryotic proteins in different host organisms.
Collapse
Affiliation(s)
- Charvi D Bandbe
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India
| | - Karan S Patil
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India
| | - Ejaj K Pathan
- Symbiosis School of Biological Sciences, Symbiosis International (Deemed University), Lavale, Pune, 412115, Maharashtra, India.
| |
Collapse
|
6
|
Yu G, Duan Q, Cui T, Jiang C, Li X, Li Y, Fu J, Zhang Y, Wang H, Luan J. Development of a bacterial gene transcription activating strategy based on transcriptional activator positive feedback. J Adv Res 2024; 66:155-164. [PMID: 38123018 PMCID: PMC11674765 DOI: 10.1016/j.jare.2023.12.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/26/2023] [Accepted: 12/16/2023] [Indexed: 12/23/2023] Open
Abstract
INTRODUCTION Transcription of biological nitrogen fixation (nif) genes is activated by the NifA protein which recognizes specific activating sequences upstream of σ54-dependent nif promoters. The large quantities of nitrogenase which can make up 20% of the total proteins in the cell indicates high transcription activating efficiency of NifA and high transcription level of nifHDK nitrogenase genes. OBJECTIVES Development of an efficient gene transcription activating strategy in bacteria based on positive transcription regulatory proteins and their regulating DNA sequences. METHODS We designed a highly efficient gene transcription activating strategy in which the nifA gene was placed directly downstream of its regulating sequences. The NifA protein binds its regulating sequences and stimulates transcription of itself and downstream genes. Overexpressed NifA causes transcription activation by positive reinforcement. RESULTS When this gene transcription activating strategy was used to overexpress NifA in Pseudomonas stutzeri DSM4166 containing the nif gene cluster, the nitrogenase activity was increased by 368 folds which was 16 times higher than that obtained by nifA driven by the strongest endogenous constitutive promoter. When this strategy was used to activate transcription of exogenous biosynthetic genes for the plant auxin indole-3-acetic acid and the antitumor alkaloid pigment prodigiosin in DSM4166, both of them resulted in better performance than the strongest endogenous constitutive promoter and the highest reported productions in heterologous hosts to date. Finally, we demonstrated the universality of this strategy using the positive transcriptional regulator of the psp operon, PspF, in E. coli and the pathway-specific positive transcription regulator of the polyene antibiotic salinomycin biosynthesis, SlnR, in Streptomyces albus. CONCLUSION Many positive transcription regulatory proteins and their regulating DNA sequences have been identified in bacteria. The gene transcription activating strategy developed in this study will have broad applications in molecular biology and biotechnology.
Collapse
Affiliation(s)
- Guangle Yu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Qiuyue Duan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Tianqi Cui
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Chanjuan Jiang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Xiaochen Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Yutong Li
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Jun Fu
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Youming Zhang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China
| | - Hailong Wang
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China.
| | - Ji Luan
- State Key Laboratory of Microbial Technology, Institute of Microbial Technology, Helmholtz International Lab for Anti-infectives, Shandong University-Helmholtz Institute of Biotechnology, Shandong University, Binhai Rd 72, 266237, Qingdao, Shandong, China.
| |
Collapse
|
7
|
Nguyen L, Schmelzer B, Wilkinson S, Mattanovich D. From natural to synthetic: Promoter engineering in yeast expression systems. Biotechnol Adv 2024; 77:108446. [PMID: 39245291 DOI: 10.1016/j.biotechadv.2024.108446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/10/2024]
Abstract
Synthetic promoters are particularly relevant for application not only in yeast expression systems designed for high-level heterologous protein production but also in other applications such as metabolic engineering, cell biological research, and stage-specific gene expression control. By designing synthetic promoters, researcher can create customized expression systems tailored to specific needs, whether it is maximizing protein production or precisely controlling gene expression at different stages of a process. While recognizing the limitations of endogenous promoters, they also provide important information needed to design synthetic promoters. In this review, emphasis will be placed on some key approaches to identify endogenous, and to generate synthetic promoters in yeast expression systems. It shows the connection between endogenous and synthetic promoters, highlighting how their interplay contributes to promoter development. Furthermore, this review illustrates recent developments in biotechnological advancements and discusses how this field will evolve in order to develop custom-made promoters for diverse applications. This review offers detailed information, explores the transition from endogenous to synthetic promoters, and presents valuable perspectives on the next generation of promoter design strategies.
Collapse
Affiliation(s)
- Ly Nguyen
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria
| | - Bernhard Schmelzer
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria
| | | | - Diethard Mattanovich
- BOKU University, Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, 1190 Vienna, Austria; Austrian Centre of Industrial Biotechnology, 1190 Vienna, Austria.
| |
Collapse
|
8
|
Xue Y, Yan Q, Tian X, Han D, Jiang Z. High-level secretory expression and characterization of an acid protease in Komagataella phaffii and its application in soybean meal protein degradation. Int J Biol Macromol 2024; 282:137011. [PMID: 39481721 DOI: 10.1016/j.ijbiomac.2024.137011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 09/22/2024] [Accepted: 10/26/2024] [Indexed: 11/02/2024]
Abstract
Acid proteases play a crucial role in the industrial enzyme market, but low yield limits their widespread application. In this study, we focused on enhancing the secretory expression level of an acid protease (AopepA) from Aspergillus oryzae in Komagataella phaffii through stepwise genetic modification strategies. These included the co-expression of endoplasmic reticulum secretion-associated factors, overexpression of eukaryotic translation initiation factors, knockout of the β-1,3-glucanosyltransferase gene, disruption of the hypoxic heme-dependent repressor gene, and co-expression of the hemoglobin gene. After these modifications, protease activity increased by 4.2-fold, reaching 536.6 U/mL in a shaking flask. The engineered strain produced protease activity of up to 17,392.0 U/mL with a protein concentration of 44.6 g/L in a 5 L fermenter, representing the highest secretory expression level of acid proteases in K. phaffii ever reported. The optimal conditions of AopepA were pH 3.0 and 50 °C. AopepA demonstrated broad hydrolysis activity towards various protein substrates. It efficiently degraded soybean meal proteins into low molecular weight (Mw < 1 kDa, accounting for 82 %) oligopeptides to enhance protein utilization. This study provides valuable insights into improving the secretory expression of acid proteases in K. phaffii and identifies a suitable acid protease for enhancing soybean meal protein utilization.
Collapse
Affiliation(s)
- Yibin Xue
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Qiaojuan Yan
- College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Xueting Tian
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China
| | - Dong Han
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Zhengqiang Jiang
- Key Laboratory of Food Bioengineering (China National Light Industry), College of Food Science & Nutritional Engineering, China Agricultural University, Beijing 100083, China; Food Laboratory of Zhongyuan, Luohe 462300, Henan, China.
| |
Collapse
|
9
|
Liu C, Zhang Y, Ye C, Zhao F, Chen Y, Han S. Combined strategies for improving the heterologous expression of a novel xylanase from Fusarium oxysporum Fo47 in Pichia pastoris. Synth Syst Biotechnol 2024; 9:426-435. [PMID: 38601209 PMCID: PMC11004072 DOI: 10.1016/j.synbio.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 03/03/2024] [Accepted: 03/17/2024] [Indexed: 04/12/2024] Open
Abstract
Xylanase, an enzyme capable of hydrolyzing non-starch polysaccharides found in grain structures like wheat, has been found to improve the organizational structure of dough and thus increase its volume. In our past work, one promising xylanase FXYL derived from Fusarium oxysporum Fo47 and first expressed 779.64 U/mL activity in P. pastoris. It has shown significant potential in improving the quality of whole wheat bread, making it become a candidate for development as a new flour improver. After optimization of expression elements and gene dose, the xylanase activity of FXYL strain carrying three-copies reached 4240.92 U/mL in P. pastoris. In addition, 12 factors associated with the three stages of protein expression pathway were co-expressed individually in order in three-copies strain, and the translation factor Pab1 co-expression increased FXYL activity to 8893.53 U/mL. Nevertheless, combining the most effective or synergistic factors from three stages did not exhibit better results than co-expressing them alone. To further evaluate the industrial potential, the xylanase activity and protein concentration reached 81184.51 U/mL and 11.8 g/L in a 5 L fed-batch fermenter. These engineering strategies improved the expression of xylanase FXYL by more than 104-fold, providing valuable insights for the cost-effective industrial application of FXYL in the baking field.
Collapse
Affiliation(s)
- Chun Liu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yaping Zhang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Chunting Ye
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Fengguang Zhao
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Yian Chen
- School of Light Industry and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Shuangyan Han
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, 510640, China
| |
Collapse
|
10
|
Xu L, Bai X, Joong Oh E. Strategic approaches for designing yeast strains as protein secretion and display platforms. Crit Rev Biotechnol 2024:1-18. [PMID: 39138023 DOI: 10.1080/07388551.2024.2385996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 08/15/2024]
Abstract
Yeast has been established as a versatile platform for expressing functional molecules, owing to its well-characterized biology and extensive genetic modification tools. Compared to prokaryotic systems, yeast possesses advanced cellular mechanisms that ensure accurate protein folding and post-translational modifications. These capabilities are particularly advantageous for the expression of human-derived functional proteins. However, designing yeast strains as an expression platform for proteins requires the integration of molecular and cellular functions. By delving into the complexities of yeast-based expression systems, this review aims to empower researchers with the knowledge to fully exploit yeast as a functional platform to produce a diverse range of proteins. This review includes an exploration of the host strains, gene cassette structures, as well as considerations for maximizing the efficiency of the expression system. Through this in-depth analysis, the review anticipates stimulating further innovation in the field of yeast biotechnology and protein engineering.
Collapse
Affiliation(s)
- Luping Xu
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| | | | - Eun Joong Oh
- Department of Food Science, Purdue University, West Lafayette, IN, USA
- Whistler Center for Carbohydrate Research, Purdue University, West Lafayette, IN, USA
| |
Collapse
|
11
|
Lin X, Ding W, Zheng S, Wu L, Chen X, Xie C, Liu D, Yao D. Novel transcriptional regulation of the GAP promoter in Pichia pastoris towards high expression of heterologous proteins. Microb Cell Fact 2024; 23:206. [PMID: 39044288 PMCID: PMC11267847 DOI: 10.1186/s12934-024-02435-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 05/21/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Pichia pastoris (Komagataella phaffii) is a promising production host, but the usage of methanol limits its application in the medicine and food industries. RESULTS To improve the constitutive expression of heterologous proteins in P. pastoris, four new potential transcription regulators (Loc1p, Msn2p, Gsm1p, Hot1p) of the glyceraldehyde triphosphate dehydrogenase promoter (pGAP) were revealed in this study by using cellulase E4 as reporter gene. On this basis, a series of P. pastoris strains with knockout or overexpression of transcription factors were constructed and the deletion of transcription factor binding sites on pGAP was confirmed. The results showed that Loc1p and Msn2p can inhibit the activity of pGAP, while Gsm1p and Hot1p can enhance the activity of pGAP; Loc1p, Gsm1p and Hot1p can bind directly to pGAP, while Msn2p must be treated to expose the C-terminal domain to bind to pGAP. Moreover, manipulating a single transcription factor led to a 0.96-fold to 2.43-fold increase in xylanase expression. In another model protein, aflatoxin oxidase, knocking out Loc1 based on AFO-∆Msn2 strain resulted in a 0.63-fold to 1.4-fold increase in expression. It can be demonstrated that the combined use of transcription factors can further improve the expression of exogenous proteins in P. pastoris. CONCLUSION These findings will contribute to the construction of pGAP-based P. pastoris systems towards high expression of heterologous proteins, hence improving the application potential of yeast.
Collapse
Affiliation(s)
- Xiangna Lin
- Institute of Biomedicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Weiqiu Ding
- Institute of Biomedicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Shaoyan Zheng
- Institute of Biomedicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Lianna Wu
- Institute of Biomedicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Xue Chen
- Institute of Biomedicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Chunfang Xie
- Department of Bioengineering, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Daling Liu
- Department of Bioengineering, Jinan University, Guangzhou City, 510632, Guangdong Province, China
| | - Dongsheng Yao
- Institute of Biomedicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China.
- National Engineering Research Center of Genetic Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China.
- Guangdong Provincial Key Laboratory of Bioengineering Medicine, Jinan University, Guangzhou City, 510632, Guangdong Province, China.
| |
Collapse
|
12
|
Aqeel SM, Abdulqader AA, Du G, Liu S. Integrated strategies for efficient production of Streptomyces mobaraensis transglutaminase in Komagataella phaffii. Int J Biol Macromol 2024; 273:133113. [PMID: 38885870 DOI: 10.1016/j.ijbiomac.2024.133113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 06/10/2024] [Indexed: 06/20/2024]
Abstract
Transglutaminase (TGase) from Streptomyces mobaraensis commonly used to improve protein-based foods due to its unique enzymatic reactions, which imply considerable attention in its production. Recently, TGase exhibit broad market potential in non-food industries. However, achieving efficient synthesis of TGase remains a significant challenge. Herein, we achieved a substantial amount of a fully functional and kinetically stable TGase produced by Komagataella phaffii (Pichia pastoris) using multiple strategies including Geneticin (G418) screening, combinatorial mutations, promoter optimization, and co-expression. The active TGase expression reached a maximum of 10.1 U mL-1 in shake flask upon 96 h of induction, which was 3.8-fold of the wild type. Also, the engineered strain exhibited a 6.4-fold increase in half-life and a 2-fold increase in specific activity, reaching 172.67 min at 60 °C (t1/2(60 °C)) and 65.3 U mg-1, respectively. Moreover, the high-cell density cultivation in 5-L fermenter was also applied to test the productivity at large scale. Following optimization at a fermenter, the secretory yield of TGase reached 47.96 U mL-1 in the culture supernatant. Given the complexity inherent in protein expression and secretion, our research is of great significance and offers a comprehensive guide for improving the production of a wide range of heterologous proteins.
Collapse
Affiliation(s)
- Sahibzada Muhammad Aqeel
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Al-Adeeb Abdulqader
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China
| | - Guocheng Du
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| | - Song Liu
- Science Center for Future Foods, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China; School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
13
|
Xia Y, Du X, Liu B, Guo S, Huo YX. Species-specific design of artificial promoters by transfer-learning based generative deep-learning model. Nucleic Acids Res 2024; 52:6145-6157. [PMID: 38783063 PMCID: PMC11194083 DOI: 10.1093/nar/gkae429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 04/04/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
Native prokaryotic promoters share common sequence patterns, but are species dependent. For understudied species with limited data, it is challenging to predict the strength of existing promoters and generate novel promoters. Here, we developed PromoGen, a collection of nucleotide language models to generate species-specific functional promoters, across dozens of species in a data and parameter efficient way. Twenty-seven species-specific models in this collection were finetuned from the pretrained model which was trained on multi-species promoters. When systematically compared with native promoters, the Escherichia coli- and Bacillus subtilis-specific artificial PromoGen-generated promoters (PGPs) were demonstrated to hold all distribution patterns of native promoters. A regression model was developed to score generated either by PromoGen or by another competitive neural network, and the overall score of PGPs is higher. Encouraged by in silico analysis, we further experimentally characterized twenty-two B. subtilis PGPs, results showed that four of tested PGPs reached the strong promoter level while all were active. Furthermore, we developed a user-friendly website to generate species-specific promoters for 27 different species by PromoGen. This work presented an efficient deep-learning strategy for de novo species-specific promoter generation even with limited datasets, providing valuable promoter toolboxes especially for the metabolic engineering of understudied microorganisms.
Collapse
Affiliation(s)
- Yan Xia
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Xiaowen Du
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bin Liu
- School of Computer Science and Technology, Beijing Institute of Technology, Beijing, China
| | - Shuyuan Guo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Yi-Xin Huo
- Key Laboratory of Molecular Medicine and Biotherapy, School of Life Science, Beijing Institute of Technology, Beijing 100081, China
- Tangshan Research Institute, Beijing Institute of Technology, Hebei 063611, China
| |
Collapse
|
14
|
Widderich N, Stotz J, Lohkamp F, Visscher C, Schwaneberg U, Liese A, Bubenheim P, Ruff AJ. An up-scaled biotechnological approach for phosphorus-depleted rye bran as animal feed. BIORESOUR BIOPROCESS 2024; 11:49. [PMID: 38739357 DOI: 10.1186/s40643-024-00765-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 04/30/2024] [Indexed: 05/14/2024] Open
Abstract
Side streams from the milling industry offer excellent nutritional properties for animal feed; yet their use is constrained by the elevated phosphorus (P) content, mainly in the form of phytate. Biotechnological P recovery fosters sustainable P management, transforming these streams into P-depleted animal feed through enzymatic hydrolysis. The enzymatic P mobilization not only enables P recovery from milling by-products but also supports the valorization of these streams into P-depleted animal feeds. Our study presents the scalability and applicability of the process and characterizes the resulting P-depleted rye bran as animal feed component. Batch mode investigations were conducted to mobilize P from 100 g to 37.1 kg of rye bran using bioreactors up to 400 L. P reductions of 89% to 92% (reducing from 12.7 gP/kg to 1.41-1.28 gP/kg) were achieved. In addition, High Performance Ion Chromatography (HPIC) analysis showed complete depletion of phytate. The successful recovery of the enzymatically mobilized P from the process wastewater by precipitation as struvite and calcium hydrogen phosphate is presented as well, achieving up to 99% removal efficiency. Our study demonstrates a versatile process that is easily adaptable, allowing for a seamless implementation on a larger scale.
Collapse
Affiliation(s)
- Niklas Widderich
- Institute of Technical Biocatalysis, Hamburg University of Technology, Hamburg, Germany
| | - Johanna Stotz
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany
| | - Florian Lohkamp
- Institute for Animal Nutrition, University of Veterinary Medicine Hanover, Foundation, Hanover, Germany
| | - Christian Visscher
- Institute for Animal Nutrition, University of Veterinary Medicine Hanover, Foundation, Hanover, Germany
| | | | - Andreas Liese
- Institute of Technical Biocatalysis, Hamburg University of Technology, Hamburg, Germany
| | - Paul Bubenheim
- Institute of Technical Biocatalysis, Hamburg University of Technology, Hamburg, Germany.
| | - Anna Joëlle Ruff
- Institute of Biotechnology, RWTH Aachen University, Aachen, Germany.
| |
Collapse
|
15
|
Tsuda M, Nonaka K. Recent progress on heterologous protein production in methylotrophic yeast systems. World J Microbiol Biotechnol 2024; 40:200. [PMID: 38730212 PMCID: PMC11087369 DOI: 10.1007/s11274-024-04008-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/27/2024] [Indexed: 05/12/2024]
Abstract
Recombinant protein production technology is widely applied to the manufacture of biologics used as drug substances and industrial proteins such as recombinant enzymes and bioactive proteins. Various heterologous protein production systems have been developed using prokaryotic and eukaryotic hosts. Especially methylotrophic yeast in eukaryotic hosts is suggested to be particularly valuable because such systems have the following advantages: protein secretion into culture broth, eukaryotic quality control systems, a post-translational modification system, rapid growth, and established recombinant DNA tools and technologies such as strong promoters, effective selection markers, and gene knock-in and -out systems. Many methylotrophic yeasts such as the genera Candida, Ogataea, and Komagataella have been studied since methylotrophic yeast was first isolated in 1969. The methanol-consumption-related genes in methylotrophic yeast are strongly and strictly regulated under methanol-containing conditions. The well-regulated gene expression systems under the methanol-inducible gene promoter lead to the potential application of heterologous protein production in methylotrophic yeast. In this review, we describe the recent progress of heterologous protein production technology in methylotrophic yeast and introduce Ogataea minuta as an alternative production host as a substitute for K. phaffii and O. polymorpha.
Collapse
Affiliation(s)
- Masashi Tsuda
- Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda, Gunma, 370-0503, Japan.
| | - Koichi Nonaka
- Biologics Technology Research Laboratories I, Daiichi Sankyo Co., Ltd., 2716-1 Kurakake, Akaiwa, Chiyoda, Gunma, 370-0503, Japan
| |
Collapse
|
16
|
Shen Q, Cui J, Wang Y, Hu ZC, Xue YP, Zheng YG. Identification of a novel growth-associated promoter for biphasic expression of heterogenous proteins in Pichia pastoris. Appl Environ Microbiol 2024; 90:e0174023. [PMID: 38193674 PMCID: PMC10880622 DOI: 10.1128/aem.01740-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 12/01/2023] [Indexed: 01/10/2024] Open
Abstract
Pichia pastoris (P. pastoris) is one of the most popular cell factories for expressing exogenous proteins and producing useful chemicals. The alcohol oxidase 1 promoter (PAOX1) is the most commonly used strong promoter in P. pastoris and has the characteristic of biphasic expression. However, the inducer for PAOX1, methanol, has toxicity and poses risks in industrial settings. In the present study, analyzing transcriptomic data of cells collected at different stages of growth found that the formate dehydrogenase (FDH) gene ranked 4960th in relative expression among 5032 genes during the early logarithmic growth phase but rose to the 10th and 1st during the middle and late logarithmic growth phases, respectively, displaying a strict biphasic expression characteristic. The unique transcriptional regulatory profile of the FDH gene prompted us to investigate the properties of its promoter (PFDH800). Under single-copy conditions, when a green fluorescent protein variant was used as the expression target, the PFDH800 achieved 119% and 69% of the activity of the glyceraldehyde-3-phosphate dehydrogenase promoter and PAOX1, respectively. After increasing the copy number of the expression cassette in the strain to approximately four copies, the expression level of GFPuv driven by PFDH800 increased to approximately 2.5 times that of the strain containing GFPuv driven by a single copy of PAOX1. Our PFDH800-based expression system exhibited precise biphasic expression, ease of construction, minimal impact on normal cellular metabolism, and high strength. Therefore, it has the potential to serve as a new expression system to replace the PAOX1 promoter.IMPORTANCEThe alcohol oxidase 1 promoter (PAOX1) expression system has the characteristics of biphasic expression and high expression levels, making it the most widely used promoter in the yeast Pichia pastoris. However, PAOX1 requires methanol induction, which can be toxic and poses a fire hazard in large quantities. Our research has found that the activity of PFDH800 is closely related to the growth state of cells and can achieve biphasic expression without the need for an inducer. Compared to other reported non-methanol-induced biphasic expression systems, the system based on the PFDH800 offers several advantages, including high expression levels, simple construction, minimal impact on cellular metabolism, no need for an inducer, and the ability to fine-tune expression.
Collapse
Affiliation(s)
- Qi Shen
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Jie Cui
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yang Wang
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Zhong-Ce Hu
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Ya-Ping Xue
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| | - Yu-Guo Zheng
- Key Laboratory of Bioorganic Synthesis of Zhejiang Province, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou, China
- Engineering Research Center of Bioconversion and Biopurification of Ministry of Education, Zhejiang University of Technology, Hangzhou, China
- National and Local Joint Engineering Research Center for Biomanufacturing of Chiral Chemicals, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
17
|
Arjmand S. Promoters in Pichia pastoris: A Toolbox for Fine-Tuned Gene Expression. Methods Mol Biol 2024; 2844:159-178. [PMID: 39068339 DOI: 10.1007/978-1-0716-4063-0_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
This chapter reviews the different promoters used to control gene expression in the yeast Pichia pastoris, mainly for recombinant protein production. It covers natural inducible, derepressed, and constitutive promoters, as well as engineered synthetic/hybrid promoters, orthologous promoters from related yeasts, and emerging bidirectional promoters. Key examples, characteristics, and regulatory mechanisms are discussed for each promoter class. Recent efforts in promoter engineering through rational design, mutagenesis, and computational approaches are also highlighted. Looking ahead, we anticipate further developments that will enhance promoter design for Pichia pastoris. Overall, this comprehensive overview underscores the importance of promoter choice and engineering for fully harnessing Pichia pastoris biotechnological potential.
Collapse
Affiliation(s)
- Sareh Arjmand
- Protein Research Center, Shahid Beheshti University, Tehran, Iran.
| |
Collapse
|
18
|
Geng K, Lin Y, Zheng X, Li C, Chen S, Ling H, Yang J, Zhu X, Liang S. Enhanced Expression of Alcohol Dehydrogenase I in Pichia pastoris Reduces the Content of Acetaldehyde in Wines. Microorganisms 2023; 12:38. [PMID: 38257867 PMCID: PMC10820543 DOI: 10.3390/microorganisms12010038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/24/2024] Open
Abstract
Acetaldehyde is an important carbonyl compound commonly detected in wines. A high concentration of acetaldehyde can affect the flavor of wines and result in adverse effects on human health. Alcohol dehydrogenase I (ADH1) in Saccharomyces cerevisiae catalyzes the reduction reaction of acetaldehyde into ethanol in the presence of cofactors, showing the potential to reduce the content of acetaldehyde in wines. In this study, ADH1 was successfully expressed in Pichia pastoris GS115 based on codon optimization. Then, the expression level of ADH1 was enhanced by replacing its promoter with optimized promoters and increasing the copy number of the expression cassette, with ADH1 being purified using nickel column affinity chromatography. The enzymatic activity of purified ADH1 reached 605.44 ± 44.30 U/mg. The results of the effect of ADH1 on the content of acetaldehyde in wine revealed that the acetaldehyde content of wine samples was reduced from 168.05 ± 0.55 to 113.17 ± 6.08 mg/L with the addition of 5 mM NADH and the catalysis of ADH1, and from 135.53 ± 4.08 to 52.89 ± 2.20 mg/L through cofactor regeneration. Our study provides a novel approach to reducing the content of acetaldehyde in wines through enzymatic catalysis.
Collapse
Affiliation(s)
- Kun Geng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Ying Lin
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xueyun Zheng
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
- Key Laboratory of Fermentation Engineering of Ministry of Education, School of Biological Engineering and Food, Hubei University of Technology, Wuhan 430068, China
| | - Cheng Li
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Shuting Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - He Ling
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Jun Yang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiangyu Zhu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| | - Shuli Liang
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
- Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
19
|
Wu X, Cai P, Yao L, Zhou YJ. Genetic tools for metabolic engineering of Pichia pastoris. ENGINEERING MICROBIOLOGY 2023; 3:100094. [PMID: 39628915 PMCID: PMC11611016 DOI: 10.1016/j.engmic.2023.100094] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 05/11/2023] [Accepted: 05/11/2023] [Indexed: 12/06/2024]
Abstract
The methylotrophic yeast Pichia pastoris (also known as Komagataella phaffii) is widely used as a yeast cell factory for producing heterologous proteins. Recently, it has gained attention for its potential in producing chemicals from inexpensive feedstocks, which requires efficient genetic engineering platforms. This review provides an overview of the current advances in developing genetic tools for metabolic engineering of P. pastoris. The topics cover promoters, terminators, plasmids, genome integration sites, and genetic editing systems, with a special focus on the development of CRISPR/Cas systems and their comparison to other genome editing tools. Additionally, this review highlights the prospects of multiplex genome integration, fine-tuning gene expression, and single-base editing systems. Overall, the aim of this review is to provide valuable insights into current genetic engineering and discuss potential directions for future efforts in developing efficient genetic tools in P. pastoris.
Collapse
Affiliation(s)
- Xiaoyan Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of7 Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of7 Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
20
|
Joseph JA, Akkermans S, Van Impe JF. Macroscopic modeling of the growth and substrate consumption of wild type and genetically modified Pichia pastoris. Biotechnol J 2023; 18:e2300164. [PMID: 37688402 DOI: 10.1002/biot.202300164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 08/15/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023]
Abstract
Pichia pastoris is a popular yeast platform to generate several industrially relevant products which have applications in a wide range of sectors. The complexities in the processes due to the addition of a foreign gene are not widely explored. Since these complexities can be dependent on the strain characteristics, promoter, and type of protein produced, it is vital to investigate the growth and substrate consumption patterns of the host to facilitate customized process optimization. In this study, the growth rates of P. pastoris GS115 wild type (WT) and genetically modified (GM) strains grown on glycerol and methanol in batch cultivation mode were estimated and the model providing the best representation of the true growth kinetics based on substrate consumption was identified. It was observed that the growth of P. pastoris exhibits Haldane kinetics on glycerol rather than the most commonly used Monod kinetics due to the inability of the latter to describe growth inhibition at high concentrations of glycerol. Whereas, the cardinal parameter model, a newly proposed model for this application, was found to be the best fitting to describe the growth of P. pastoris on methanol due to its ability to describe methanol toxicity. Interestingly, the findings from this study concluded that in both substrates, the genetically engineered strain exhibited a higher growth rate compared to the WT strain. Such an observation has not been established yet in other published works, indicating an opportunity to further optimize the carbon source feeding strategies when the host is grown in fed-batch mode.
Collapse
Affiliation(s)
- Jewel Ann Joseph
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| | - Jan F Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Ghent, Belgium
| |
Collapse
|
21
|
Flores-Villegas M, Rebnegger C, Kowarz V, Prielhofer R, Mattanovich D, Gasser B. Systematic sequence engineering enhances the induction strength of the glucose-regulated GTH1 promoter of Komagataella phaffii. Nucleic Acids Res 2023; 51:11358-11374. [PMID: 37791854 PMCID: PMC10639056 DOI: 10.1093/nar/gkad752] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 08/16/2023] [Accepted: 09/07/2023] [Indexed: 10/05/2023] Open
Abstract
The promoter of the high-affinity glucose transporter Gth1 (PGTH1) is tightly repressed on glucose and glycerol surplus, and strongly induced in glucose-limitation, thus enabling regulated methanol-free production processes in the yeast production host Komagataella phaffii. To further improve this promoter, an intertwined approach of nucleotide diversification through random and rational engineering was pursued. Random mutagenesis and fluorescence activated cell sorting of PGTH1 yielded five variants with enhanced induction strength. Reverse engineering of individual point mutations found in the improved variants identified two single point mutations with synergistic action. Sequential deletions revealed the key promoter segments for induction and repression properties, respectively. Combination of the single point mutations and the amplification of key promoter segments led to a library of novel promoter variants with up to 3-fold higher activity. Unexpectedly, the effect of gaining or losing a certain transcription factor binding site (TFBS) was highly dependent on its context within the promoter. Finally, the applicability of the novel promoter variants for biotechnological production was proven for the secretion of different recombinant model proteins in fed batch cultivation, where they clearly outperformed their ancestors. In addition to advancing the toolbox for recombinant protein production and metabolic engineering of K. phaffii, we discovered single nucleotide positions and correspondingly affected TFBS that distinguish between glycerol- and glucose-mediated repression of the native promoter.
Collapse
Affiliation(s)
- Mirelle Flores-Villegas
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Corinna Rebnegger
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria
| | - Viktoria Kowarz
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Roland Prielhofer
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
| | - Diethard Mattanovich
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria
| | - Brigitte Gasser
- CD-Laboratory for Growth-decoupled Protein Production in Yeast at Department of Biotechnology, University of Natural Resources and Life Sciences (BOKU), Vienna, Austria
- University of Natural Resources and Life Sciences Vienna (BOKU), Department of Biotechnology, Institute of Microbiology and Microbial Biotechnology, Muthgasse 18, 1190 Vienna, Austria
- ACIB GmbH, Muthgasse 11, 1190 Vienna, Austria
| |
Collapse
|
22
|
Zhou H, Wang Z, Qian J. Engineering of the hypoxia-induced Pichia stipitis ADH2 promoter to construct a promoter library for Pichia pastoris. J Biotechnol 2023; 376:24-32. [PMID: 37690664 DOI: 10.1016/j.jbiotec.2023.09.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 09/05/2023] [Accepted: 09/07/2023] [Indexed: 09/12/2023]
Abstract
Hypoxia-inducible promoters of a wide range of activities are desirable for fine-tuning gene expression in response to oxygen limitation, especially for the Crabtree negative yeast Pichia pastoris (Komagataella phaffii) with a high oxygen consumption rate in large-scale fermentations. Here we constructed a hypoxia-inducible promoter library for P. pastoris through error-prone PCR of Pichia stipitis ADH2 promoter (PsADH2). The library of 30 selected promoters showing 0.4- to 5.5-fold of the PsADH2 activity was obtained through high-throughput screening in microplates using the reporter yeast-enhanced green fluorescent protein. Two strong promoters, AM23 and AM30, were further characterized in shake flask cultures at high and low dissolved oxygen levels. They responded more sensitively to the low dissolved oxygen level, achieving a 4.6-, 7.9-fold and 3.6-, 7.7-fold higher fluorescence intensity and transcript level, respectively, than the wild-type PsADH2. Their hypoxia-inducible properties were confirmed with two additional reporters: β-galactosidase and Vitreoscilla hemoglobin, to demonstrate the broad applicability of the promoter library. During the typical fermentation process in shake flasks, the promoter AM30 showed strong expression with cell growth and decreased oxygen levels, without any additional chemical inducers or operations. Since the potent industrial host P. pastoris is recognized as an easy to scale-up system, it is reasonable to expect that the obtained hypoxia-inducible promoter library may have great potential to enable convenient regulation of gene expression under industrial fermentations which are usually run under oxygen limitation due to high cell density cultivations.
Collapse
Affiliation(s)
- Hangcheng Zhou
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Zhipeng Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jiangchao Qian
- State Key Laboratory of Bioreactor Engineering, East China University of Science & Technology, 130 Meilong Road, Shanghai 200237, PR China.
| |
Collapse
|
23
|
Qiao S, Bai F, Cai P, Zhou YJ, Yao L. An improved CRISPRi system in Pichia pastoris. Synth Syst Biotechnol 2023; 8:479-485. [PMID: 37692202 PMCID: PMC10485788 DOI: 10.1016/j.synbio.2023.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 06/09/2023] [Accepted: 06/25/2023] [Indexed: 09/12/2023] Open
Abstract
CRISPR interference (CRISPRi) has been developed and widely used for gene repression in various hosts. Here we report an improved CRISPRi system in Pichia pastoris by fusing dCas9 with endogenous transcriptional repressor domains. The CRISPRi system shows strong repression of eGFP, with the highest efficiency of 85%. Repression of native genes is demonstrated by targeting AOX1 promoter. AOX1 is efficiently repressed and the mutant strains show much slower growth in methanol medium. Effects of gRNA expression and processing on CRISPRi efficiency is also investigated. It is found that gRNA processing by HH/HDV ribozymes or Csy4 endoribonuclease generating clean gRNA is critical to achieve strong repression, and Csy4 cleavage shows higher repression efficiency. However, gRNA expression using native tRNA transcription and processing systems results in relatively weaker repression of eGFP. By expression of two gRNAs targeting promoters of eGFP and AOX1 in an array together with Cys4 recognition sites, both genes can be repressed simultaneously. Cys4-mediated gRNA array processing is further applied to repress fatty acyl-CoA synthetase genes (FAA1 and FAA2). Both genes are efficiently repressed, demonstrating that Cys4 endoribonuclease has the ability to cleave gRNAs array and can be can be used for multiplexed gene repression in P. pastoris.
Collapse
Affiliation(s)
- Shujing Qiao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fan Bai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
| | - Yongjin J. Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
- Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| |
Collapse
|
24
|
Robainas-Del-Pino Y, Viader-Salvadó JM, Herrera-Estala AL, Guerrero-Olazarán M. Functional characterization of the Komagataella phaffii 1033 gene promoter and transcriptional terminator. World J Microbiol Biotechnol 2023; 39:246. [PMID: 37420160 DOI: 10.1007/s11274-023-03682-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 06/16/2023] [Indexed: 07/09/2023]
Abstract
The methylotrophic yeast Komagataella phaffii (syn. Pichia pastoris) is a widely used host for extracellularly producing heterologous proteins via an expression cassette integrated into the yeast genome. A strong promoter in the expression cassette is not always the most favorable choice for heterologous protein production, especially if the correct folding of the protein and/or post-translational processing is the limiting step. The transcriptional terminator is another regulatory element in the expression cassette that can modify the expression levels of the heterologous gene. In this work, we identified and functionally characterized the promoter (P1033) and transcriptional terminator (T1033) of a constitutive gene (i.e., the 1033 gene) with a weak non-methanol-dependent transcriptional activity. We constructed two K. phaffii strains with two combinations of the regulatory DNA elements from the 1033 and AOX1 genes (i.e., P1033-TAOX1 and P1033-T1033 pairs) and evaluated the impact of the regulatory element combinations on the transcript levels of the heterologous gene and endogenous 1033 and GAPDH genes in cells grown in glucose or glycerol, and on the extracellular product/biomass yield. The results indicate that the P1033 has a 2-3% transcriptional activity of the GAP promoter and it is tunable by cell growth and the carbon source. The combinations of the regulatory elements rendered different transcriptional activity of the heterologous and endogenous genes that were dependent on the carbon source. The promoter-terminator pair and the carbon source affected the heterologous gene translation and/or protein secretion pathway. Moreover, low heterologous gene-transcript levels along with glycerol cultures increased translation and/or protein secretion.
Collapse
Affiliation(s)
- Yanelis Robainas-Del-Pino
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - José María Viader-Salvadó
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| | - Ana Lucía Herrera-Estala
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico
| | - Martha Guerrero-Olazarán
- Facultad de Ciencias Biológicas, Instituto de Biotecnología, Universidad Autónoma de Nuevo León UANL, Av. Universidad S/N Col. Ciudad Universitaria, 66455, San Nicolás de los Garza, Nuevo León, Mexico.
| |
Collapse
|
25
|
Wang X, Wang P, Li W, Zhu C, Fan D. Effect and mechanism of signal peptide and maltose on recombinant type III collagen production in Pichia pastoris. Appl Microbiol Biotechnol 2023:10.1007/s00253-023-12579-0. [PMID: 37199749 DOI: 10.1007/s00253-023-12579-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/19/2023]
Abstract
Recombinant type III collagen plays an important role in cosmetics, wound healing, and tissue engineering. Thus, increasing its production is necessary. After an initial increase in output by modifying the signal peptide, we showed that adding 1% maltose directly to the medium increased the yield and reduced the degradation of recombinant type III collagen. We initially verified that Pichia pastoris GS115 can metabolize and utilize maltose. Interestingly, maltose metabolism-associated proteins in Pichia pastoris GS115 have not yet been identified. RNA sequencing and transmission electron microscopy were performed to clarify the specific mechanism of maltose influence. The results showed that maltose significantly improved the metabolism of methanol, thiamine, riboflavin, arginine, and proline. After adding maltose, the cell microstructures tended more toward the normal. Adding maltose also contributed to yeast homeostasis and methanol tolerance. Finally, adding maltose resulted in the downregulation of aspartic protease YPS1 and a decrease in yeast mortality, thereby slowing down recombinant type III collagen degradation. KEY POINTS: • Co-feeding of maltose improves recombinant type III collagen production. • Maltose incorporation enhances methanol metabolism and antioxidant capacity. • Maltose addition contributes to Pichia pastoris GS115 homeostasis.
Collapse
Affiliation(s)
- Xingyin Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Pan Wang
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Weina Li
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Chenhui Zhu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, Shaanxi, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an, 710069, Shaanxi, China.
- Biotech. & Biomed. Research Institute, Northwest University, Xi'an, 710069, Shaanxi, China.
| |
Collapse
|
26
|
Selection of the methylotrophic yeast Ogataea minuta as a high-producing host for heterologous protein expression. J Biosci Bioeng 2023; 135:196-202. [PMID: 36702678 DOI: 10.1016/j.jbiosc.2022.12.006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/11/2022] [Indexed: 01/26/2023]
Abstract
Three Ogataea minuta var. minuta strains have been deposited as NBRC 0975, NBRC 10402, and NBRC 10746 in the National Institute of Technology and Evaluation (NITE) Biological Resource Center (NBRC) collection. We investigated the ability to produce secretory proteins and several genotypic and phenotypic characteristics in order to select the best strain for heterologous protein expression. NBRC 10746 showed the best performance as evaluated by Cypridina noctiluca luciferase expression. Subsequently, clone #5-30 named tat06213, which was obtained by single-colony isolation from NBRC 10746, was established as a promising host for heterologous protein expression. To deepen our understanding of the characteristics of O.minuta var. minuta strains, sequence analysis of the D1/D2 domain of large subunit rRNA was conducted and the resulting phylogenetic tree derived from the D1/D2 domain showed that NBRC 10402 and NBRC 10746 were grouped into a different cluster far from NBRC 0975. Furthermore, a chromosome structure topology with electrophoretic karyotype and AOX1 loci analyzed by pulsed-field gel electrophoresis with Southern blotting showed different chromosome patterns and AOX1-hybridization loci among the strains. Additionally, the sequences of the promoter regions of the cloned AOX1 genes were not identical among the three strains. These findings might explain the differences in heterologous protein expression among the tested O. minuta var. minuta strains.
Collapse
|
27
|
Pan X, Tang M, You J, Hao Y, Zhang X, Yang T, Rao Z. A Novel Method to Screen Strong Constitutive Promoters in Escherichia coli and Serratia marcescens for Industrial Applications. BIOLOGY 2022; 12:biology12010071. [PMID: 36671763 PMCID: PMC9855843 DOI: 10.3390/biology12010071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 01/04/2023]
Abstract
Promoters serve as the switch of gene transcription, playing an important role in regulating gene expression and metabolites production. However, the approach to screening strong constitutive promoters in microorganisms is still limited. In this study, a novel method was designed to identify strong constitutive promoters in E. coli and S. marcescens based on random genomic interruption and fluorescence-activated cell sorting (FACS) technology. First, genomes of E. coli, Bacillus subtilis, and Corynebacterium glutamicum were randomly interrupted and inserted into the upstream of reporter gene gfp to construct three promoter libraries, and a potential strong constitutive promoter (PBS) suitable for E. coli was screened via FACS technology. Second, the core promoter sequence (PBS76) of the screened promoter was identified by sequence truncation. Third, a promoter library of PBS76 was constructed by installing degenerate bases via chemical synthesis for further improving its strength, and the intensity of the produced promoter PBS76-100 was 59.56 times higher than that of the promoter PBBa_J23118. Subsequently, promoters PBBa_J23118, PBS76, PBS76-50, PBS76-75, PBS76-85, and PBS76-100 with different strengths were applied to enhance the metabolic flux of L-valine synthesis, and the L-valine yield was significantly improved. Finally, a strong constitutive promoter suitable for S. marcescens was screened by a similar method and applied to enhance prodigiosin production by 34.81%. Taken together, the construction of a promoter library based on random genomic interruption was effective to screen the strong constitutive promoters for fine-tuning gene expression and reprogramming metabolic flux in various microorganisms.
Collapse
Affiliation(s)
- Xuewei Pan
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mi Tang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jiajia You
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yanan Hao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xian Zhang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Taowei Yang
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Correspondence: ; Tel.: +86-510-85916881
| | - Zhiming Rao
- Key Laboratory of Industrial Biotechnology of the Ministry of Education, Laboratory of Applied Microorganisms and Metabolic Engineering, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
28
|
Erden-Karaoğlan F, Karaoğlan M. Applicability of the heterologous yeast promoters for recombinant protein production in Pichia pastoris. Appl Microbiol Biotechnol 2022; 106:7073-7083. [PMID: 36163554 DOI: 10.1007/s00253-022-12183-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/05/2022] [Accepted: 09/11/2022] [Indexed: 11/02/2022]
Abstract
Promoter choice is an important step in recombinant protein production, which directly determines the expression manner as constitutive or inducible and the expression level of the recombinant protein. This study aims to investigate the applicability of heterologous yeast promoters (Kluyveromyces marxianus TPI, Hansenula polymorpha PMA, Candida tropicalis ICL, and Saccharomyces cerevisiae CUP) in Pichia pastoris. The regulation mode of the CtICL and ScCUP promoters in P. pastoris was found to be inducible and that of the KmTPI and HpPMA was constitutive. The carbon sources in which the promoters exhibited the highest activity were determined as glycerol for PMA and TPI, glucose for CUP, and ethanol for ICL. The DNA region showing the highest activity was determined as 1000 bp for all promoters by promoter deletion analysis. Results from the study demonstrate the potential of inducible and constitutive heterologous promoters allowing expression under different conditions in the P. pastoris expression system and offers alternatives to frequently used promoters. KEY POINTS: • Heterologous promoters exhibited similar expression pattern in P. pastoris with its native host. • HpPMA has the highest promoter activity among the heterologous promoters tested. • Reporter gene expression with ScCUP is responsive to elevating Cu2+in P. pastoris.
Collapse
Affiliation(s)
- Fidan Erden-Karaoğlan
- Department of Food Engineering, Erzincan Binali Yıldırım University, Erzincan, Türkiye.
| | - Mert Karaoğlan
- Department of Food Engineering, Erzincan Binali Yıldırım University, Erzincan, Türkiye
| |
Collapse
|
29
|
Zhu Q, Liu Q, Yao C, Zhang Y, Cai M. Yeast transcriptional device libraries enable precise synthesis of value-added chemicals from methanol. Nucleic Acids Res 2022; 50:10187-10199. [PMID: 36095129 PMCID: PMC9508829 DOI: 10.1093/nar/gkac765] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 11/16/2022] Open
Abstract
Natural methylotrophs are attractive methanol utilization hosts, but lack flexible expression tools. In this study, we developed yeast transcriptional device libraries for precise synthesis of value-added chemicals from methanol. We synthesized transcriptional devices by fusing bacterial DNA-binding proteins (DBPs) with yeast transactivation domains, and linking bacterial binding sequences (BSs) with the yeast core promoter. Three DBP–BS pairs showed good activity when working with transactivation domains and the core promoter of PAOX1 in the methylotrophic yeast, Pichia pastoris. Fine-tuning of the tandem BSs, spacers and differentiated input promoters further enabled a constitutive transcriptional device library (cTRDL) composed of 126 transcriptional devices with an expression strength of 16–520% and an inducible TRDL (iTRDL) composed of 162 methanol-inducible transcriptional devices with an expression strength of 30–500%, compared with PAOX1. Selected devices from iTRDL were adapted to the dihydromonacolin L biosynthetic pathway by orthogonal experimental design, reaching 5.5-fold the production from the PAOX1-driven pathway. The full factorial design of the selected devices from the cTRDL was adapted to the downstream pathway of dihydromonacolin L to monacolin J. Monacolin J production from methanol reached 3.0-fold the production from the PAOX1-driven pathway. Our engineered toolsets ensured multilevel pathway control of chemical synthesis in methylotrophic yeasts.
Collapse
Affiliation(s)
- Qiaoyun Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Chaoying Yao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.,Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
30
|
Rapid Screening for High Expressing Multicopy Recombinants and Enhanced Epidermal Growth Factor (EGF) Protein Production Using Pichia Pastoris. Int J Pept Res Ther 2022. [DOI: 10.1007/s10989-022-10445-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
31
|
Liu B, Zhao Y, Zhou H, Zhang J. Enhancing xylanase expression of Komagataella phaffii induced by formate through Mit1 co-expression. Bioprocess Biosyst Eng 2022; 45:1515-1525. [PMID: 35881246 DOI: 10.1007/s00449-022-02760-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 07/16/2022] [Indexed: 11/02/2022]
Abstract
Komagataella phaffii (K. phaffii) is a famous microbial cell of heterologous protein and value-added chemicals production because of its strict and strong promoter (alcohol oxidase 1 promoter, PAOX1). Formate is an attractive substitute of traditional inducer methanol because methanol is toxic and explosive. To obtain high level of Aspergillus niger ATCC1015 xylanase as a model of heterologous protein by K. phaffii at formate induction, insertion of three-copy cis-acting element W3A into PAOX1 additionally, and co-expression of transcription factor Mit1 under another PAOX1 were carried out separately and simultaneously. The yield of xylanase increased by 41% at formate induction when Mit1 was co-expressed. Furtherly, the yield of xylanase increased by 42% using sorbitol as supplemental carbon source with the result of 408.3 × 103 U‧L-1 xylanase. Therefore, a non-methanol needed and inducible heterologous protein expression system of Komagataella phaffii was developed successfully.
Collapse
Affiliation(s)
- Bing Liu
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093
| | - Yixin Zhao
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093
| | - Hualan Zhou
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093
| | - Jianguo Zhang
- Shanghai Engineering Research Center for Food Rapid DetectionInstitute of Food Science and EngineeringSchool of Health Science and Engineering, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai, People's Republic of China, 200093.
| |
Collapse
|
32
|
Development of a novel platform for recombinant protein production in Corynebacterium glutamicum on ethanol. Synth Syst Biotechnol 2022; 7:765-774. [PMID: 35387228 PMCID: PMC8942793 DOI: 10.1016/j.synbio.2022.03.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/04/2022] [Accepted: 03/15/2022] [Indexed: 02/03/2023] Open
Abstract
Corynebacterium glutamicum represents an emerging recombinant protein expression factory due to its ideal features for protein secretion, but its applicability is harmed by the lack of an autoinduction system with tight regulation and high yield. Here, we propose a new recombinant protein manufacturing platform that leverages ethanol as both a delayed carbon source and an inducer. First, we reanalysed the native inducible promoter PICL from the acetate uptake operon and found that its limited capacity is the result of the inadequate translation initial architecture. The two strategies of bicistronic design and ribozyme-based insulator can ensure the high activity of this promoter. Next, through transcriptional engineering that alters transcription factor binding sites (TFBSs) and the first transcribed sequence, the truncated promoter PA256 with a dramatically higher transcription level was generated. When producing the superfolder green fluorescent protein (sfGFP) under 1% ethanol conditions, PA256 exhibited substantially lower protein accumulation in prophase but an approximately 2.5-fold greater final yield than the strong promoter PH36. This superior expression mode was further validated using two secreted proteins, camelid antibody fragment (VHH) and endoxylanase (XynA). Furthermore, utilizing CRISPRi technology, ethanol utilization blocking strains were created, and PA256 was shown to be impaired in the phosphotransacetylase (PTA) knockdown strains, indicating that ethanol metabolism into the tricarboxylic acid cycle is required for PA256 upregulation. Finally, this platform was applied to produce the “de novo design” protein NEO-2/15, and by introducing the N-propeptide of CspB, NEO-2/15 was effectively secreted with the accumulation 281 mg/L obtained after 24 h of shake-flask fermentation. To the best of our knowledge, this is the first report of NEO-2/15 secretory overexpression.
Collapse
|
33
|
Expanding the promoter toolbox for metabolic engineering of methylotrophic yeasts. Appl Microbiol Biotechnol 2022; 106:3449-3464. [PMID: 35538374 DOI: 10.1007/s00253-022-11948-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 01/31/2023]
Abstract
Methylotrophic yeasts have been widely recognized as a promising host for production of recombinant proteins and value-added chemicals. Promoters for controlled gene expression are critical for construction of efficient methylotrophic yeasts cell factories. Here, we summarized recent advances in characterizing and engineering promoters in methylotrophic yeasts, such as Komagataella phaffii and Ogataea polymorpha. Constitutive and inducible promoters controlled by methanol or other inducers/repressors were introduced to demonstrate their applications in production of proteins and chemicals. Furthermore, efforts of promoter engineering, including site-directed mutagenesis, hybrid promoter, and transcription factor regulation to expand the promoter toolbox were also summarized. This mini-review also provides useful information on promoters for the application of metabolic engineering in methylotrophic yeasts. KEY POINTS: • The characteristics of six methylotrophic yeasts and their promoters are described. • The applications of Komagataella phaffii and Ogataea polymorpha in metabolic engineeringare expounded. • Three promoter engineering strategies are introduced in order to expand the promoter toolbox.
Collapse
|
34
|
Huo X, Wang Z, Xiao X, Yang C, Su J. Nanopeptide CMCS-20H loaded by carboxymethyl chitosan remarkably enhances protective efficacy against bacterial infection in fish. Int J Biol Macromol 2022; 201:226-241. [PMID: 34995671 DOI: 10.1016/j.ijbiomac.2021.12.172] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/10/2021] [Accepted: 12/27/2021] [Indexed: 01/21/2023]
Affiliation(s)
- Xingchen Huo
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhensheng Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
35
|
Herrmann KR, Brethauer C, Siedhoff NE, Hofmann I, Eyll J, Davari MD, Schwaneberg U, Ruff AJ. Evolution of E. coli Phytase Toward Improved Hydrolysis of Inositol Tetraphosphate. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.838056] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein engineering campaigns are driven by the demand for superior enzyme performance under non-natural process conditions, such as elevated temperature or non-neutral pH, to achieve utmost efficiency and conserve limited resources. Phytases are industrial relevant feed enzymes that contribute to the overall phosphorus (P) management by catalyzing the stepwise phosphate hydrolysis from phytate, which is the main phosphorus storage in plants. Phosphorus is referred to as a critical disappearing nutrient, emphasizing the urgent need to implement strategies for a sustainable circular use and recovery of P from renewable resources. Engineered phytases already contribute today to an efficient phosphorus mobilization in the feeding industry and might pave the way to a circular P-bioeconomy. To date, a bottleneck in its application is the drastically reduced hydrolysis on lower phosphorylated reaction intermediates (lower inositol phosphates, ≤InsP4) and their subsequent accumulation. Here, we report the first KnowVolution campaign of the E. coli phytase toward improved hydrolysis on InsP4 and InsP3. As a prerequisite prior to evolution, a suitable screening setup was established and three isomers Ins(2,4,5)P3, Ins(2,3,4,5)P4 and Ins(1,2,5,6)P4 were generated through enzymatic hydrolysis of InsP6 and subsequent purification by HPLC. Screening of epPCR libraries identified clones with improved hydrolysis on Ins(1,2,5,6)P4 carrying substitutions involved in substrate binding and orientation. Saturation of seven positions and screening of, in total, 10,000 clones generated a dataset of 46 variants on their activity on all three isomers. This dataset was used for training, testing, and inferring models for machine learning guided recombination. The PyPEF method used allowed the prediction of recombinants from the identified substitutions, which were analyzed by reverse engineering to gain molecular understanding. Six variants with improved InsP4 hydrolysis of >2.5 were identified, of which variant T23L/K24S had a 3.7-fold improved relative activity on Ins(2,3,4,5)P4 and concomitantly shows a 2.7-fold improved hydrolysis of Ins(2,4,5)P3. Reported substitutions are the first published Ec phy variants with improved hydrolysis on InsP4 and InsP3.
Collapse
|
36
|
Liu Q, Song L, Peng Q, Zhu Q, Shi X, Xu M, Wang Q, Zhang Y, Cai M. A programmable high-expression yeast platform responsive to user-defined signals. SCIENCE ADVANCES 2022; 8:eabl5166. [PMID: 35148182 PMCID: PMC8836803 DOI: 10.1126/sciadv.abl5166] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Rapidly growing yeasts with appropriate posttranslational modifications are favored hosts for protein production in the biopharmaceutical industry. However, limited production capacity and intricate transcription regulation restrict their application and adaptability. Here, we describe a programmable high-expression yeast platform, SynPic-X, which responds to defined signals and is broadly applicable. We demonstrated that a synthetic improved transcriptional signal amplification device (iTSAD) with a bacterial-yeast transactivator and bacterial-yeast promoter markedly increased expression capacity in Pichia pastoris. CRISPR activation and interference devices were designed to strictly regulate iTSAD in response to defined signals. Engineered switches were then constructed to exemplify the response of SynPic-X to exogenous signals. Expression of α-amylase by SynPic-R, a specific SynPic-X, in a bioreactor proved a methanol-free high-production process of recombinant protein. Our SynPic-X platform provides opportunities for protein production in customizable yeast hosts with high expression and regulatory flexibility.
Collapse
Affiliation(s)
- Qi Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Lili Song
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiangqiang Peng
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiaoyun Zhu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Xiaona Shi
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingqiang Xu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Qiyao Wang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yuanxing Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Shanghai Collaborative Innovation Center for Biomanufacturing, 130 Meilong Road, Shanghai 200237, China
| | - Menghao Cai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
- Corresponding author.
| |
Collapse
|
37
|
Gupta J, Kumar A, Surjit M. Production of a Hepatitis E Vaccine Candidate Using the Pichia pastoris Expression System. METHODS IN MOLECULAR BIOLOGY (CLIFTON, N.J.) 2022; 2412:117-141. [PMID: 34918244 DOI: 10.1007/978-1-0716-1892-9_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Hepatitis E virus (HEV) is associated with acute hepatitis disease, which may lead to chronic disease in immunocompromised individuals. The disease is particularly severe among pregnant women (20-30% mortality). No vaccine is available to combat the HEV except Hecolin, which is available only in China. Virus-like particle (VLP) generated from the capsid protein (ORF2) of HEV is known to be a potent vaccine antigen against HEV. Hecolin consists of 368-606 amino acid (aa) region of the capsid protein of HEV, which forms a VLP. It is expressed and purified from the inclusion bodies of E. coli. Here, we describe a method to express the 112-608aa region of the capsid protein (ORF2) of genotype-1 HEV in Pichia pastoris (P. pastoris) and purify VLPs from the culture medium. 112-608aa ORF2 VLPs are secreted into the culture medium in a methanol inducible manner. The purified VLPs are glycosylated and induce robust immune response in Balb/c mice. Further, 112-608aa ORF2 VLPs are bigger than the 368-606 VLP present in Hecolin, which may help them in inducing a superior immune response. P. pastoris offers a robust and economical heterologous expression system to produce large quantities of glycosylated 112-608aa ORF2 VLP, which appears to be a promising vaccine candidate against the HEV.
Collapse
Affiliation(s)
- Jyoti Gupta
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Kumar
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India
| | - Milan Surjit
- Virology Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, Haryana, India.
| |
Collapse
|
38
|
Wang Z, Yan Y, Zhang H. Design and Characterization of an Optogenetic System in Pichia pastoris. ACS Synth Biol 2022; 11:297-307. [PMID: 34994189 DOI: 10.1021/acssynbio.1c00422] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Pichia pastoris (P. pastoris) is the workhorse in the commercial production of many valuable proteins. Traditionally, the regulation of gene expression in P. pastoris is achieved through induction by methanol which is toxic and flammable. The emerging optogenetic technology provides an alternative and cleaner gene regulation method. Based on the photosensitive protein EL222, we designed a novel "one-component" optogenetic system. The highest induction ratio was 79.7-fold under blue light compared to the group under darkness. After switching cells from dark to blue illumination, the system induced expression in just 1 h. Only 2 h after the system was switched back to the darkness from blue illumination, the target gene expression was inactivated 5-fold. The induction intensity of the optogenetic system is positively correlated with the dose and periodicity of blue illumination, and it has good spatial control. These results provide the first credible case of optogenetically induced protein expression in P. pastoris.
Collapse
Affiliation(s)
- Zhiqian Wang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, People’s Republic of China
| | - Yunjun Yan
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, People’s Republic of China
| | - Houjin Zhang
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, MOE Key Laboratory of Molecular Biophysics, Wuhan 430074, People’s Republic of China
| |
Collapse
|
39
|
Rinnofner C, Felber M, Pichler H. Strains and Molecular Tools for Recombinant Protein Production in Pichia pastoris. Methods Mol Biol 2022; 2513:79-112. [PMID: 35781201 DOI: 10.1007/978-1-0716-2399-2_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Within the last two decades, the methylotrophic yeast Pichia pastoris (Komagataella phaffii) has become an important alternative to E. coli or mammalian cell lines for the production of recombinant proteins. Easy handling, strong promoters, and high cell density cultivations as well as the capability of posttranslational modifications are some of the major benefits of this yeast. The high secretion capacity and low level of endogenously secreted proteins further promoted the rapid development of a versatile Pichia pastoris toolbox. This chapter reviews common and new "Pichia tools" and their specific features. Special focus is given to expression strains, such as different methanol utilization, protease-deficient or glycoengineered strains, combined with application highlights. Different promoters and signal sequences are also discussed.
Collapse
Affiliation(s)
- Claudia Rinnofner
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria.
- Bisy GmbH, Hofstaetten/Raab, Austria.
| | - Michael Felber
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
| | - Harald Pichler
- Austrian Centre of Industrial Biotechnology (ACIB), Graz, Austria
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
40
|
Abstract
The availability of exceptionally strong and tightly regulated promoters is a key feature of Komagataella phaffii (syn. Pichia pastoris), a widely applied yeast expression system for heterologous protein production. Most commonly, the methanol-inducible promoter of the alcohol oxidase 1 gene (PAOX1) and the constitutive promoter of the glyceraldehyde 3 phosphate dehydrogenase gene (PGAP) have been used. Recently, also promising novel constitutive (PGCW14), regulated (PGTH1, PCAT1), and bidirectional promoters (histone promoters and synthetic hybrid variants) have been reported.As natural promoters showed so far limited tunability of expression levels and regulatory profiles, various promoter engineering efforts have been undertaken for P. pastoris . PAOX1, PDAS2, PGAP, and PGCW14 have been engineered by systematic deletion studies or random mutagenesis of upstream regulatory sequences. New engineering strategies have focused on PAOX1 core promoter modifications by random or rational approaches and transcriptional regulatory circuits to render PAOX1 independent of methanol induction. These promoter engineering efforts in P. pastoris have resulted in improved, sequence-diversified synthetic promoter variants allowing coordinated fine-tuning of gene expression for a multitude of biotechnological applications.
Collapse
Affiliation(s)
- Thomas Vogl
- Diagnostic and Research Institute of Hygiene, Microbiology and Environmental Medicine, Medical University Graz, Graz, Austria.
| |
Collapse
|
41
|
Erden-Karaoğlan F, Karaoğlan M, Yılmaz G, Yılmaz S, İnan M. Deletion analysis of Pichia pastoris alcohol dehydrogenase 2 (ADH2) promoter and development of synthetic promoters. Biotechnol J 2021; 17:e2100332. [PMID: 34870891 DOI: 10.1002/biot.202100332] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 12/03/2021] [Accepted: 12/03/2021] [Indexed: 01/02/2023]
Abstract
Pichia pastoris (Komagataella phaffii) is a non-conventional Crabtree-negative yeast with the capability of reaching very high cell densities in a fed-batch fermentation process. The alcohol dehydrogenase (ADH) genes of P. pastoris involved in ethanol metabolism were identified and were previously characterized. This work aimed to extend current knowledge of the regulation of the ADH2 promoter. To this end, we first determined the upstream activator (UAS) and repressor (URS) sequences of the promoter by deletion assays. Two upstream activator sites have been identified, positioned between -900 and -801 bp, and -284 and -108 bp upstream of the ADH2 transcription start site. The sequences positioned between -361 and -262 bp had a negative effect on the promoter activity and designated a repressor sequence (URS). We then demonstrated that Mxr1 (methanol expression regulator 1) transcription factor activates the ADH2 promoter through the direct interaction with UAS regions in response to ethanol. Furthermore, five different synthetic promoters were constructed by adding or deleting the regulatory sites. These synthetic promoters were tested for extracellular xylanase production at shake flask level by inducing with ethanol. These promoter variants improved the xylanase production ranging between 165% and 200% of the native promoter. The synthetic promoter 5 (SNT5) that displayed the highest activity was further evaluated at the fermenter scale. The modification in the promoter features might have several implications for industrial processes where decoupling the cell growth and product formation is advantageous.
Collapse
Affiliation(s)
- Fidan Erden-Karaoğlan
- Department of Food Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey.,Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Mert Karaoğlan
- Department of Food Engineering, Erzincan Binali Yıldırım University, Erzincan, Turkey.,Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | - Gürkan Yılmaz
- Department of Food Engineering, Akdeniz University, Antalya, Turkey
| | | | - Mehmet İnan
- Department of Food Engineering, Akdeniz University, Antalya, Turkey.,İzmir Biomedicine and Genome Center, İzmir, Turkey
| |
Collapse
|
42
|
Ergün BG, Berrios J, Binay B, Fickers P. Recombinant protein production in Pichia pastoris: From transcriptionally redesigned strains to bioprocess optimization and metabolic modelling. FEMS Yeast Res 2021; 21:6424904. [PMID: 34755853 DOI: 10.1093/femsyr/foab057] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Accepted: 11/08/2021] [Indexed: 11/13/2022] Open
Abstract
Pichia pastoris is one of the most widely used host for the production of recombinant proteins. Expression systems that rely mostly on promoters from genes encoding alcohol oxidase 1 or glyceraldehyde-3-phosphate dehydrogenase have been developed together with related bioreactor operation strategies based on carbon sources such as methanol, glycerol, or glucose. Although, these processes are relatively efficient and easy to use, there have been notable improvements over the last twenty years to better control gene expression from these promoters and their engineered variants. Methanol-free and more efficient protein production platforms have been developed by engineering promoters and transcription factors. The production window of P. pastoris has been also extended by using alternative feedstocks including ethanol, lactic acid, mannitol, sorbitol, sucrose, xylose, gluconate, formate, or rhamnose. Herein, the specific aspects that are emerging as key parameters for recombinant protein synthesis are discussed. For this purpose, a holistic approach has been considered to scrutinize protein production processes from strain design to bioprocess optimization, particularly focusing on promoter engineering, transcriptional circuitry redesign. This review also considers the optimization of bioprocess based on alternative carbon sources and derived co-feeding strategies. Optimization strategies for recombinant protein synthesis through metabolic modelling are also discussed.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biotechnology Research Center, Ministry of Agriculture and Forestry, 06330 Ankara, Turkey.,Department of Chemical Engineering, Middle East Technical University, 06800 Ankara, Turkey.,UNAM-National Nanotechnology Research Center, Bilkent University, 06800 Ankara, Turkey
| | - Julio Berrios
- School of Biochemical Engineering, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Barış Binay
- Department of Bioengineering, Gebze Technical University, Gebze, Kocaeli, Turkey
| | - Patrick Fickers
- TERRA Teaching and Research Centre, University of Liege, Gembloux Agro-Bio Tech, Gembloux, Belgium
| |
Collapse
|
43
|
Wang Y, Luo X, Zhao Y, Ye X, Yang F, Li Z, Huang Y, Fang X, Huan M, Li D, Cui Z. Integrated Strategies for Enhancing the Expression of the AqCoA Chitosanase in Pichia pastoris by Combined Optimization of Molecular Chaperones Combinations and Copy Numbers via a Novel Plasmid pMC-GAP. Appl Biochem Biotechnol 2021; 193:4035-4051. [PMID: 34553325 DOI: 10.1007/s12010-021-03668-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/03/2021] [Indexed: 12/21/2022]
Abstract
In our previous study, the chitosanase AqCoA and the chitooligosaccharides it produced were found to exhibit significant protective effects against fungal diseases. In this study, we enhanced the expression of AqCoA using the novel pMC-GAP that enables stable transformation of Escherichia coli, and built an integrated model based on the gene copy number, molecular chaperones, and protein production of AqCoA. In terms of gene dosage, the highest hydrolase activity was 0.32 U/ml in the strain with four copies, which was 1.78-fold higher than that of the strain with only one copy (0.18 U/ml). In addition, we found the chaperones such as PDI, ERO1, HAC1, YDJ1, SSE1, SSA4, and SSO2 improved protein expression. Furthermore, the PDI/ERO1, SSA4/SSE1, and YDJ1/SSO2 pairs synergistically increased the expression levels by 61%, 31%, and 42%, respectively. Finally, we investigated the combined effects of gene copy numbers and molecular chaperones on protein expression. The highest activity reached 2.32 U/ml in the strain with six integrated molecular chaperone expression cassettes and sixteen copies of the target gene, which was 13-fold higher than that of the control strain with only one copy (GAP-1AqCoA). Combined optimization of gene dosage and molecular chaperone combinations significantly increased the expression level of AqCoA, providing a powerful strategy to improve the expression of other heterologous proteins in P. pastoris.
Collapse
Affiliation(s)
- Yanxin Wang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Xue Luo
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yuqiang Zhao
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China.,Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Mem. Sun Yat-Sen), Nanjing, 210014, China
| | - Xianfeng Ye
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Fan Yang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Zhoukun Li
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Yan Huang
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China
| | - Xiaodong Fang
- Guangzhou Hanyun Parmaceutical Technology Co. Ltd, Guangzhou, 510000, China
| | - Minghui Huan
- Microbial Research Institute of Liaoning Province, Chaoyang, China
| | - Ding Li
- Institute of Veterinary Immunology &Engineering, Jiangsu Academy of Agricultural Sciences, 210014, Nanjing, People's Republic of China.
| | - Zhongli Cui
- Key Laboratory of Agricultural Environmental Microbiology, Ministry of Agriculture and Rural Affairs, College of Life Sciences, Nanjing Agricultural University, 210095, Nanjing, People's Republic of China. .,Key Laboratory of Plant Immunity, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
44
|
Rao Y, Li P, Xie X, Li J, Liao Y, Ma X, Cai D, Chen S. Construction and Characterization of a Gradient Strength Promoter Library for Fine-Tuned Gene Expression in Bacillus licheniformis. ACS Synth Biol 2021; 10:2331-2339. [PMID: 34449215 DOI: 10.1021/acssynbio.1c00242] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bacillus licheniformis DW2 is an important industrial strain for bacitracin production, and it is also used for biochemical production, however, the lack of effective toolkit for precise regulation of gene expression hindered its application seriously. Here, a gradient strength promoter library was constructed based on bacitracin synthetase gene cluster promoter PbacA. First, different PbacA promoter variants were constructed via coupling PbacA with various 5'-UTRs, and expression ranges of 32.6-741.8% were attained among these promoters. Then, three promoters, PUbay (strong), PbacA (middle), and PUndh (weakest), were applied for red fluorescent protein (RFP) and keratinase expression assays, and these promoters were proven to have good universality for different proteins. Second, the promoter of bacitracin synthetase gene cluster was replaced by these three promoters, and bacitraicn titer was enhanced by 14.62% when PUbay was applied, which was decreased by 98.05% under the mediation of PUndh compared with that of the original strain DW2. Third, promoters PUbay, PUyvgO, and PUndh were selected to regulate the expression levels of critical genes that are responsible for pucheriminic acid synthesis, and pucheriminic acid yield was increased by 194.1% via manipulating synthetic and competitive pathways. Finally, promoters PUbay, PbacA, and PUndh were applied for green fluorescent protein (GFP) and RFP expression in Escherichia coli, and consistent effects were attained based on our results. Taken together, a gradient strength promoter library was constructed in this research, which provided an effective toolkit for fine-tuning gene expression and reprogramming metabolite metabolic flux in B. licheniformis.
Collapse
Affiliation(s)
- Yi Rao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Peifen Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Xinxin Xie
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Jiemin Li
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Yongqing Liao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Xin Ma
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Dongbo Cai
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
| | - Shouwen Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Environmental Microbial Technology Center of Hubei Province, College of Life Sciences, Hubei University, Wuhan, 430062, People's Republic of China
- Fujian Provincial Key Laboratory of Eco-Industrial Green Technology, College of Ecological and Resource Engineering, Wuyi University, Wuyishan 354300, People's Republic of China
| |
Collapse
|
45
|
de Sá Magalhães S, Keshavarz-Moore E. Pichia pastoris ( Komagataella phaffii) as a Cost-Effective Tool for Vaccine Production for Low- and Middle-Income Countries (LMICs). Bioengineering (Basel) 2021; 8:119. [PMID: 34562941 PMCID: PMC8468848 DOI: 10.3390/bioengineering8090119] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 08/05/2021] [Accepted: 08/24/2021] [Indexed: 01/26/2023] Open
Abstract
Vaccination is of paramount importance to global health. With the advent of the more recent pandemics, the urgency to expand the range has become even more evident. However, the potential limited availability and affordability of vaccines to resource low- and middle-income countries has created a need for solutions that will ensure cost-effective vaccine production methods for these countries. Pichia pastoris (P. pastoris) (also known as Komagataella phaffii) is one of the most promising candidates for expression of heterologous proteins in vaccines development. It combines the speed and ease of highly efficient prokaryotic platforms with some key capabilities of mammalian systems, potentially reducing manufacturing costs. This review will examine the latest developments in P. pastoris from cell engineering and design to industrial production systems with focus on vaccine development and with reference to specific key case studies.
Collapse
Affiliation(s)
| | - Eli Keshavarz-Moore
- Department of Biochemical Engineering, University College London, Gower Street, London WC1E 6BT, UK;
| |
Collapse
|
46
|
Naseri G, Prause K, Hamdo HH, Arenz C. Artificial Transcription Factors for Tuneable Gene Expression in Pichia pastoris. Front Bioeng Biotechnol 2021; 9:676900. [PMID: 34434924 PMCID: PMC8381338 DOI: 10.3389/fbioe.2021.676900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Accepted: 06/30/2021] [Indexed: 11/13/2022] Open
Abstract
The non-conventional yeast Pichia pastoris (syn. Komagataella phaffii) has become a powerful eukaryotic expression platform for biopharmaceutical and biotechnological applications on both laboratory and industrial scales. Despite the fundamental role that artificial transcription factors (ATFs) play in the orthogonal control of gene expression in synthetic biology, a limited number of ATFs are available for P. pastoris. To establish orthogonal regulators for use in P. pastoris, we characterized ATFs derived from Arabidopsis TFs. The plant-derived ATFs contain the binding domain of TFs from the plant Arabidopsis thaliana, in combination with the activation domains of yeast GAL4 and plant EDLL and a synthetic promoter harboring the cognate cis-regulatory motifs. Chromosomally integrated ATFs and their binding sites (ATF/BSs) resulted in a wide spectrum of inducible transcriptional outputs in P. pastoris, ranging from as low as 1- to as high as ∼63-fold induction with only small growth defects. We demonstrated the application of ATF/BSs by generating P. pastoris cells that produce β-carotene. Notably, the productivity of β-carotene in P. pastoris was ∼4.8-fold higher than that in S. cerevisiae, reaching ∼59% of the β-carotene productivity obtained in a S. cerevisiae strain optimized for the production of the β-carotene precursor, farnesyl diphosphate, by rewiring the endogenous metabolic pathways using plant-derived ATF/BSs. Our data suggest that plant-derived regulators have a high degree of transferability from S. cerevisiae to P. pastoris. The plant-derived ATFs, together with their cognate binding sites, powerfully increase the repertoire of transcriptional regulatory modules for the tuning of protein expression levels required in metabolic engineering or synthetic biology in P. pastoris.
Collapse
Affiliation(s)
- Gita Naseri
- Institute of Biology, Humboldt Universität zu Berlin, Berlin, Germany
| | - Kevin Prause
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Housam Haj Hamdo
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| | - Christoph Arenz
- Institute of Chemistry, Humboldt Universität zu Berlin, Berlin, Germany
| |
Collapse
|
47
|
Cai P, Duan X, Wu X, Gao L, Ye M, Zhou YJ. Recombination machinery engineering facilitates metabolic engineering of the industrial yeast Pichia pastoris. Nucleic Acids Res 2021; 49:7791-7805. [PMID: 34197615 PMCID: PMC8287956 DOI: 10.1093/nar/gkab535] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 04/28/2021] [Accepted: 06/13/2021] [Indexed: 02/05/2023] Open
Abstract
The industrial yeast Pichia pastoris has been harnessed extensively for production of proteins, and it is attracting attention as a chassis cell factory for production of chemicals. However, the lack of synthetic biology tools makes it challenging in rewiring P. pastoris metabolism. We here extensively engineered the recombination machinery by establishing a CRISPR-Cas9 based genome editing platform, which improved the homologous recombination (HR) efficiency by more than 54 times, in particular, enhanced the simultaneously assembly of multiple fragments by 13.5 times. We also found that the key HR-relating gene RAD52 of P. pastoris was largely repressed in compared to that of Saccharomyces cerevisiae. This gene editing system enabled efficient seamless gene disruption, genome integration and multiple gene assembly with positive rates of 68–90%. With this efficient genome editing platform, we characterized 46 potential genome integration sites and 18 promoters at different growth conditions. This library of neutral sites and promoters enabled two-factorial regulation of gene expression and metabolic pathways and resulted in a 30-fold range of fatty alcohol production (12.6–380 mg/l). The expanding genetic toolbox will facilitate extensive rewiring of P. pastoris for chemical production, and also shed light on engineering of other non-conventional yeasts.
Collapse
Affiliation(s)
- Peng Cai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,School of Bioengineering, Dalian University of Technology, Dalian 116024, China
| | - Xingpeng Duan
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaoyan Wu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Linhui Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Ye
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China.,Laboratory of Synthetic Biology for Biocataysis, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
48
|
Herrmann KR, Hofmann I, Jungherz D, Wittwer M, Infanzón B, Hamer SN, Davari MD, Ruff AJ, Schwaneberg U. Generation of phytase chimeras with low sequence identities and improved thermal stability. J Biotechnol 2021; 339:14-21. [PMID: 34271055 DOI: 10.1016/j.jbiotec.2021.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 06/25/2021] [Accepted: 07/09/2021] [Indexed: 11/18/2022]
Abstract
Being able to recombine more than two genes with four or more crossover points in a sequence independent manner is still a challenge in protein engineering and limits our capabilities in tailoring enzymes for industrial applications. By computational analysis employing multiple sequence alignments and homology modeling, five fragments of six phytase genes (sequence identities 31-64 %) were identified and efficiently recombined through phosphorothioate-based cloning using the PTRec method. By combinatorial recombination, functional phytase chimeras containing fragments of up to four phytases were obtained. Two variants (PTRec 74 and PTRec 77) with up to 32 % improved residual activity (90 °C, 60 min) and retained specific activities of > 1100 U/mg were identified. Both variants are composed of fragments from the phytases of Citrobacter braakii, Hafnia alvei and Yersinia mollaretii. They exhibit sequence identities of ≤ 80 % to their parental enzymes, highlighting the great potential of DNA recombination strategies to generate new enzymes with low sequences identities that offer opportunities for property right claims.
Collapse
Affiliation(s)
- Kevin R Herrmann
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Isabell Hofmann
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Dennis Jungherz
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Malte Wittwer
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Belén Infanzón
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Stefanie Nicole Hamer
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Mehdi D Davari
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Anna Joëlle Ruff
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany.
| | - Ulrich Schwaneberg
- Lehrstuhl für Biotechnologie, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany; DWI-Leibniz Institut für Interaktive Materialien, Forckenbeckstraße 50, 52056, Aachen, Germany.
| |
Collapse
|
49
|
Customized yeast cell factories for biopharmaceuticals: from cell engineering to process scale up. Microb Cell Fact 2021; 20:124. [PMID: 34193127 PMCID: PMC8246677 DOI: 10.1186/s12934-021-01617-z] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
The manufacture of recombinant therapeutics is a fastest-developing section of therapeutic pharmaceuticals and presently plays a significant role in disease management. Yeasts are established eukaryotic host for heterologous protein production and offer distinctive benefits in synthesising pharmaceutical recombinants. Yeasts are proficient of vigorous growth on inexpensive media, easy for gene manipulations, and are capable of adding post translational changes of eukaryotes. Saccharomyces cerevisiae is model yeast that has been applied as a main host for the manufacture of pharmaceuticals and is the major tool box for genetic studies; nevertheless, numerous other yeasts comprising Pichia pastoris, Kluyveromyces lactis, Hansenula polymorpha, and Yarrowia lipolytica have attained huge attention as non-conventional partners intended for the industrial manufacture of heterologous proteins. Here we review the advances in yeast gene manipulation tools and techniques for heterologous pharmaceutical protein synthesis. Application of secretory pathway engineering, glycosylation engineering strategies and fermentation scale-up strategies in customizing yeast cells for the synthesis of therapeutic proteins has been meticulously described.
Collapse
|
50
|
Gao J, Jiang L, Lian J. Development of synthetic biology tools to engineer Pichia pastoris as a chassis for the production of natural products. Synth Syst Biotechnol 2021; 6:110-119. [PMID: 33997361 PMCID: PMC8113645 DOI: 10.1016/j.synbio.2021.04.005] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 01/12/2023] Open
Abstract
The methylotrophic yeast Pichia pastoris (a.k.a. Komagataella phaffii) is one of the most commonly used hosts for industrial production of recombinant proteins. As a non-conventional yeast, P. pastoris has unique biological characteristics and its expression system has been well developed. With the advances in synthetic biology, more efforts have been devoted to developing P. pastoris into a chassis for the production of various high-value compounds, such as natural products. This review begins with the introduction of synthetic biology tools for the engineering of P. pastoris, including vectors, promoters, and terminators for heterologous gene expression as well as Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated System (CRISPR/Cas) for genome editing. This review is then followed by examples of the production of value-added natural products in metabolically engineered P. pastoris strains. Finally, challenges and outlooks in developing P. pastoris as a synthetic biology chassis are prospected.
Collapse
Affiliation(s)
- Jucan Gao
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|